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Abstract. Big data becomes a hot topic. MapReduce is a popular programming
paradigm for big data analysis with many benefits. Even though it has widely
applications in industry, MapReduce still has limitations in some applications.
For these limitations, some extensions have been proposed. In these brief commu‐
nications, we discuss the benefits and limitations of MapReduce programming
paradigm and also its extensions to make MapReduce go beyond the limitations.
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1 Introduction

We are at the new frontier of information explosion, in which industry, academia, busi‐
ness and governments are accumulating data in an unimaginable, unpredictable and
unprecedentedly high speed. Thus big data processing techniques are in demand, whose
goal is to accomplish computation tasks over huge datasets in a reasonable time.

To handle big data, it is a natural way to adopt parallel techniques. In the past few
year, many parallel computing platforms have been built, which involve hundreds or
even thousands of machines to process big data. Each platform may have a special
programming paradigm. One of the most notable one is MapReduce [9], which is
proposed by Google. Google also put up a computational diagram Pregel for graph.
Spark made some improvements. Others like Hyacks and Graphlab is based on distrib‐
uted system.

MapReduce provides an easy way to accomplish computational tasks on big data
and can scale to large computer clusters. Meanwhile, it also supports the hardware fault
tolerance during the process of calculation. To use this paradigm, the user only needs
to write two functions, Map and Reduce. The system can manage the task parallel
execution and coordination of mappers and reducers, and handle the failures. A MapRe‐
duce algorithm instructs these functions to perform a computational task collaboratively.

The MapReduce process a computational task as follows. It involves more than one
map job. The input of each map job is one or more DFS files. A Map job converts file
blocks to a key-value sequence. The main controller collects a series of key-value pairs
from every Map task and sorts them by key sizes. For each time, a reducer process
key-value pairs sharing the same key value, and combines the value according to
requirement.
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In MapReduce, grouping and aggregation are according to the same criterion. The
Map function converts all input elements into key-value pairs. A map job can generate
multiple key-value pairs from the same key. The Reduce function combines the values
of a series of key-value table on a demand basis. The output of each reducer is also a
key-value sequence, since the reduce task receives the key K of each key pairs as input
keys. The outputs of all Reducers are merged into a single file as the final results.

As the earliest big data computing tools, MapReduce unavoidably has some foibles.
However, they do not influence its important role in the research and development of
big data. It has many advantages beyond other methods. The parallel big data processing
improves the performance in big data analysis, which follows by other big data para‐
digms. This model is easy to use, even for programmers with no experience of distributed
development. Also, it hides the details of parallel computing, disaster error, the optimi‐
zation and load balance. MapReduce can easily handle large-scale parallel computing.
For example, Google uses MapReduce to provide web search services, sorting, data
mining, machine learning, and other systems. Through MapReduce, applications can
run in more than 1000 large cluster nodes which provide optimized disaster error. What’s
more, the scalability of MapReduce is very awesome. For every server, MapReduce puts
computing ability access to the cluster. For most of the past distributed processing
frameworks [11, 12], their scalability inferiors to MapReduce a lot. Of course, there are
still some limitations about MapReduce. However, with some effective proper algo‐
rithm, these problems can be solved completely.

To prove that MapReduce still alive, we will discuss a few representative examples
of limitation in MapReduce and give some extensions to solve these problems. MapRe‐
duce is unique and can’t be replaced. We will discuss in this paper and give evidence to
demonstrate this thought.

2 Limitations

MapReduce is becoming a basic framework for processing massive data, due to its
excellent scalability, reliability and elasticity. After released, MapReduce went through
years of improvement into a mature paradigm. Although this is not a perfect approach,
many ways have been proposed to advance it and contribute it to a more efficient, prac‐
tical and convenient tool for big data analysis. First, we list some limitations to illustrate
present problems. Here are some limitations in MapReduce and we take them as exam‐
ples to share our view about MapReduce.

Limitation 1: incremental iterative MapReduce
Cloud intelligence applications often perform iterative computations on constantly

changing datasets [4]. Many data-centric algorithms require efficient iterative compu‐
tations, such as the well-known PageRank [5] algorithm in web search engines, gradient
descent [6] algorithm for optimization, and many other iterative algorithms for appli‐
cations including k-means algorithm, recommender systems [7] and link prediction [8].
Previous studies are too expensive to perform an entirely new large-scale MapReduce
iterative job. It’s difficult to timely accommodate new changes to the underlying datasets.
To handle sophisticated iteration algorithm, the problem is eager to be solved.
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Limitation 2: multiple inputs MapReduce
MapReduce is not designed to directly support operations with multiple inputs such

as joins [2]. Many studies on join algorithms including Bloom join [10] in MapReduce
have been conducted but they still have non-joining data generated and transmitted over
the network. The join operation is considered as a paradigm of such operations. Although
there have been many studies on join algorithms in parallel DBMSs, a MapReduce
environment is not straightforward to implement joins. To improve MapReduce compe‐
tence with multiple inputs, the solutions of this problem are in demand.

Limitation 3: minimal algorithms MapReduce
Ideally, a MapReduce system should achieve a high degree of load balancing among

the participating machines, and minimize the space usage, CPU and I/O time, and
network transfer at each machine. Although these principles have guided the develop‐
ment of MapReduce algorithms, limited emphasis has been placed on enforcing serious
constraints on the aforementioned metrics simultaneously [3]. To guarantee the best
parallelization and up to small constant factors, many studies about minimal algorithms
of MapReduce have been performed.

3 Extensions

With many attentions about MapReduce, researchers have carried on many research
work and come up with many extensions to go beyond the limitations. These extensions
improve the performance of MapReduce, making it more powerful. Here we introduce
some extensions that can effectively make up for the inadequacy of MapReduce.

Extensions 1: incremental iterative MapReduce
I2 MapReduce puts up to deal with incremental iterative MapReduce.
I2 MapReduce introduces a Map-Reduce Bipartite Graph model to represent iterative

and incremental computations, which contains a loop between mappers and reducers [4].
A converged iterative computation means that a Map-Reduce Bipartite Graph state is
stable. In many cases, only a very small fraction of the underlying dataset has changed,
and the newly converged state is quite close to the previously converged state. Based
on this observation, the design and implementation of I2 MapReduce to efficiently utilize
the converged a Map-Reduce Bipartite Graph state to perform incremental updates is
proposed.

An existing MapReduce application needs only slight code modification to take
advantage of I2 MapReduce.

Extensions 2: multiple inputs MapReduce
As to multiple inputs MapReduce, a new type of bloom filter [10] called Intersection

Bloom filter which represents the intersection of the datasets to be joined is proposed.
Unlike previous solutions that filter only on one dataset, the method filters out disjoint

elements or non-joining tuples from both datasets. Each tuple from the input datasets is
queried into the intersection filter and will be removed if it is a disjoint element. There
are three approaches for building the intersection filter and show their feasibility in two-
way joins and join cascades.
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It is proved that the join operation using the intersection filter is more efficient than
other solutions since it significantly reduces redundant data, and thus produces much
less intermediate data [2]. Moreover, the intersection filter provides an extremely impor‐
tant characteristic for a join cascade in which intermediate join results generated from
component joins only contain actual joining tuples without filtering. Although the inter‐
section filter has false positives and an extra cost for the pre-processing step, its efficiency
in space-saving and filtering often outweighs these drawbacks.

Extensions 3: minimal algorithms MapReduce
In recent years, optimum algorithms of MapReduce are studied. MapReduce has

grown into an extremely popular architecture for large-scaled parallel computation.
Even though there have been a great variety of algorithms developed for MapReduce,
few are able to achieve the ideal goal of parallelization: balanced workload across the
participating machines, and a speedup over a sequential algorithm linear to the number
of machines [3].

“Minimal MapReduce algorithm” puts together for the first time four strong criteria
towards the highest parallel degree. At first glance, the conditions of minimality appear
to be fairly stringent. Nonetheless, the existences of simple yet elegant algorithms that
minimally settle an array of important database problems.

The proposed algorithms demonstrate that the immediate benefit brought forward
by minimality and significantly improve the existing state of the art for all the problems
tackled.

4 Discussions

In this section, we discuss important drawbacks and solutions about MapReduce. In
recent days, there is a debate whether MapReduce should be abandon. Some new
methods have been proposed to take the place of MapReduce and claimed it is not wise
to follow MapReduce which has many foibles and weakness. However, as discussed in
Sect. 2, MapReduce can be improved through the above algorithm that we found. With
these improvements, it is still lively in big data analysis. Through the extensions,
MapReduce is becoming more and more mature and one of its implementation, Hadoop,
has won more and more users. Besides, many proposed techniques on MapReduce give
us more confidence on MapReduce. We have many reasons to believe that MapReduce
will not vanish and it will have broad prospects, especially in offline social network.
Hadoop has advantages in offline calculation with great accuracy. We are looking
forward to breakthrough about MapReduce.
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