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Abstract. One of the most important work to analyse online social net-
works is link mining. A new type of social networks with positive and
negative relationships are burgeoning. We present a link mining method
based on random walk theory to mine the unknown relationships in
directed social networks which have negative relationships. Firstly, we
define an extended Laplacian matrix based on this type of social net-
works. Then, we prove the matrix can be used to compute the similarities
of the node pairs. Finally, we propose a link mining method based on
collaboration recommendation method. We apply our method in two real
social networks. Experimental results show that our method do better
in terms of sign accuracy and AUC for mining unknown links in the two
real datasets.

Keywords: Social networks · Link mining · Collaborative filtering ·
Random walk

1 Introduction

In recent years, a new type of networks called signed social networks is bur-
geoning, such as Slashdot news review site, Epinions consumer review site and
Wikipedia vote site. The relationships in these networks can be positive (friendly,
like) or negative (hostile, dislike) and are more complicated than the relation-
ships in traditional social networks whose links are all positive. So the research in
social networks needs more comprehensive analysis of the two types of relation-
ships and the research results in traditional unsigned networks are not applicable.
Link mining in signed social networks is more complicated than that in general
networks and can offer us more information. We can mine not only the possi-
bilities of future links between unrelated nodes but also the future relationships
(friendly or hostile).

A popular type of methods analysing the structure of general social networks
is to calculate the commute distance based on random walk theory. These meth-
ods show good performance both in terms of accuracy and time complexity [1,2].
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We aim at mining the sign and direction of future links in directed social net-
works using the relationships between Laplacian matrix and commute distance.
However, the commute distance should be symmetric and traditional Laplacian
matrix in directed graph is asymmetric. We define an extended Laplacian matrix
and prove that it can be a legal similarity distance in directed signed networks.
We also mine the sign and direction of links based on the idea of collaborative
filtering which is usually used in recommendation systems.

The rest of the paper is organized as follows. We review related works about
link mining in signed social networks in Sect. 2 and introduce some definitions
and basic theories in Sect. 3. In Sect. 4, we present our exact definition of com-
mute distance in signed social networks. And link mining process is proposed in
Sect. 5. In Sect. 6, we design different experiments and show the experimental
results. Finally, we provide the conclusions in Sect. 7.

2 Related Works

Link mining in signed social networks became popular through the work of Guha
and Kumar [3]. They proposed a framework of trust propagation schemes to
mine the sign of links in undirected signed networks. Kunigis et al. [4,5] studied
the resistance distance in signed networks and mined the friend/foe relationship,
however, they did not mine the directions of the links. Leskovec et al. [6] proposed
status theory in signed networks and used it to mine positive and negative links.
Chiang et al. [7] gave a definition of social imbalance (MOIs) based on l-cycles
in signed social networks and proposed a link mining method.

Although there are large bodies of works involving negative relationships in
on-line domains, they pursue directions different from our work focus here. In this
paper, we focus on commute distance property in directed signed social networks
to mine not only the sign but also the direction of the unknown relationships.
It is well known that the commute distance is related to the spectrum of the
graph Laplacian in general undirected social networks [8]. Our work focuses on
the relationship between the commute distance and graph Laplacian in directed
signed networks and using the relationship to mining the unknown links.

3 Preliminaries

3.1 Mathematical Model

We begin our work by describing the method for directed unweighted signed
social networks, and then extend it to weighted networks. Given a directed graph
G = (V,E) with a sign (positive or negative) on each edge, we let adjacent matrix
A := (aij)i:j=1,2,··· ,n denote the adjacent matrix of graph G. The element aij
indicates the sign of the edge from node i to j. That is, aij = 1 when i marks
j as a friend, −1 when i marks j as a foe, 0 when i doesn’t mark j. Because G
is a directed graph, A is asymmetric and aij �= aji. And because there are too
many users in social networks, the matrix A is a sparse matrix.
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3.2 Commute Distance in General Social Networks

Fouss et al. [8] present a method to compute the similarities of node pairs based
on a Markov-chain model of random walk through the undirected general graph.
They prove that the square root of average commute distance is an Euclidean
distance and provide similarities between any pair of nodes, having the nice
property of increasing when the number of paths connecting those elements
increases and when the ‘length’ of paths decreases.

– The average first hitting time h(i, j)is defined as the expect time that a
random walker, starting in state i hits the state j for the first time. It can be
computed as shown in formula (1).

h(i, j) =
n∑

k∈nbs(i)

pik +
n∑

k∈nbs(i)

pik h(k, j) (1)

In general networks, pik means the transition probability from state i to state
k. It can be expressed as shown in formula (2).

pik =
aik
n∑

k∈nbs(i)

aik

=
aik
n∑

k=1

aik

(2)

Where, aik is the element of the adjacency matrix A of the graph which is
defined as usual as: aik = wik if node i is connected to node k and aik = 0
otherwise.

– The average commute distance n(i, j) is defined as the expect time that
a random walker, starting in state i, enters state j for the first time and goes
back to i.

Fouss et al. [8] prove the average commute distance can be computed by the
Moore-Penrose pseudoinverse of the Laplacian matrix in undirected general net-
works as shown in formula (3).

n(i, j) = VG(l+ii + l+jj − 2l+ij) (3)

l+ij is the element of the Moore-Penrose pseudoinverse (L+)of the Laplacian
matrix (L) of the graph. L = D − A, D is the degree matrix of the graph
and A is the adjacent matrix of the graph. VG means the volume of the graph.
VG =

∑
i

dii, dii is the diagonal element of the degree matrix D.

4 Commute Distance in Directed Signed Social Networks

In this section we define the commute distance in directed signed networks and
prove the distance is a legal kernel to compute the similarities of node pairs.

In signed networks, the weight aik may be negative and the transition prob-
ability pik may be negative by the previous definition in formula (2). It conflicts



Link Mining in Online Social Networks with Directed Negative Relationships 431

with the traditional non-negative probability. However, if we simply see the neg-
ative weight aik as zero, the network would degenerate into an general network
and lose a lot of important information.

Feynman in [9] proposed the definition of negative probability. In his work,
probabilities may be negative under certain assumed conditions. In recent years,
negative probabilities theory has been widely used in quantum field. Here, if we
consider probabilities as an intermediary probability from one state to another
state and showing some posture (hostile or friend), the transition probability
between states can be negative.

In signed networks, transition probabilities between states in Markov chain
can be involved in three situations as shown in Fig. 1. By definition, the transition
probability from state S0 to state Sn is equal to the product of every transition
probability. There is no difference between the first situation and traditional
general graph. The transition probability from state S0 to state Sn in the second
situation and the third may be negative or positive. It depends on the number
of negative edges in these situations. The final probability is negative when the
number of negative edges is (−1)2k+1 (k ≥ 0), but positive when the number is
(−1)2k (k ≥ 0) . The product coincides with the structure balance theory that
the foe of my foe is more likely to be my friend.

Fig. 1. Transition probabilities in signed graph(dotted line means −1, solid line means
+1, (1)all edges are positive (2)all edges are negative (3)some edges are positive and
some edges are negative)

In some special cases, the denominator in formula (2) (
n∑

j∈nbs(i)

aij) may be

zero when the number of positive edges is equal to that of negative edges. To
avoid this meaningless situation, we use the absolute value of the out-degree to
calculate the sum of the weights. We denote the extended transition probability
P̃ (1) in signed networks as shown in formula (4).

p̃ik =
aik

n∑
j∈nbs(i)

|aij |
(−1≤ p̃ik ≤ 1) (4)
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We also extend the definition of the diagonal degree matrix D denoted as
D̃, and d̃ii =

∑
(i,j)∈E

|aij |. According to the definition of transition probability

matrix, P̃ is equal to D̃−1A. In most cases,
∑
i

p̃ik in formula (4) is not equal

to 1 and clashes with the property of transition probability matrix. Hence, we
should normalize the matrix P̃ .

The corresponding Laplacian matrix is asymmetric because matrix A is asym-
metric. In this paper, we use the normalize Laplacian matrix which is proposed
by Chung [11], L̃ = (L + LT )/2, to define Laplacian matrix in directed signed
network as shown in formula (5).

L̃ =
L + LT

2
=

(D̃ − A) + (D̃T − AT )
2

=
D̃ + D̃T

2
− A + AT

2
= D̃′ − B (5)

Note: D̃T is not the transposed matrix of D̃ and d̃Tii =
∑

(j,i)∈E

|aji|.
In the paper of Fouss [8], the derivation process of the relationship between

commute distance and Laplacian matrix doesn’t make any requirements for the
value of transition possibility matrix P . The relationship between commute dis-
tance and Laplacian matrix L̃ shown in formula (6) is still proper when the
transition probability is negative.

n(i, j) = VG(l̃+ii + l̃+jj − 2l̃+ij) (6)

Now, we should prove the Laplacian matrix L̃ is a legal kernel and it can
express the commute distance. A legal kernel should meet the Mercer’s theorem
and be symmetric and positive semidefinite. Undoubtedly, L̃ is symmetric by
definition. Let’s prove L̃ is positive semidefinite.

Theorem 1. L̃ defined in this paper is positive semidefinite in any graph G.

Proof. Let L̃ be the sum over the edges of graph G.
L̃ =

∑
i

∑
j

L̃(i,j). Where, L̃(i,j) ∈ RV ∗V has four non-zero elements:

l̃
(i,j)
ii = l̃

(i,j)
jj = |aij |+|aji|

2 ≥ |aij+aji|
2 , l̃(i,j)ij = l̃

(i,j)
ji = −bij = −aij+aji

2

Let x ∈ RV be a vertex column vector. Considering the bilinear of L̃(i,j), we
find L̃(i,j) is positive semidefinite.

xT L̃(i,j)x

= x2
i ∗ |aij |+|aji|

2 − 2xixj ∗ aij+aji

2 + x2
j ∗ |aij |+|aji|

2

≥ x2
i ∗

∣∣∣aij+aji

2

∣∣∣ − 2xixj ∗ aij+aji

2 + x2
j ∗

∣∣∣aij+ãji

2

∣∣∣
=

∣∣∣aij+aji

2

∣∣∣ (xi − sgn
(

aij+aji

2

)
xj)2

≥ 0
xT L̃x =

∑
i

∑
j

xT L̃(i,j)x ≥ 0

Hence L̃ is positive semidefinite.
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The extended Laplacian matrix L̃ can be used to calculate the similarity of
node pairs. The time complexity in calculating the inverse of Laplacian matrix
is O(n2). The time cost of commute distance method is huge for social networks
which have millions of users. Matrix factorization method such as singular value
decomposition (SVD) [12] is one of the effective ways to reduce the computational
cost.

5 Link Mining Based on Collaborative Recommendation

Our proposed link mining method is based on the idea of collaborative filtering.
We regard the target node as an item and the edges from the top-k nodes to the
target node as the ratings given by the users. The top-k similarities of node i
are used to predict the edge form i to j as shown in formula (7).

r(i, j) =

∑
m∈i′stop−knodes

sim(i,m) ∗ amj

∑
m∈i′stop−knodes

sim(i,m)
(7)

Where, r(i, j) is denoted as average attitude (friendly/hostile) from the top-k
nodes of i to the node j. sim(i,m) is nodes similarity which can be calculated
with the commute time proposed in formula (6). sim(i, j) = n(i, j). amj is the
element of the adjacent matrix A of the directed signed network.

6 Experiments

6.1 Experiment Process

The link mining algorithm proposed in this paper consists of three steps:

(1) Compute the extended Laplacian matrix L̃ as shown in formula (5) and it’s
Moore-Penrose pseudo-inverse.

(2) Compute the commute distance as shown in formula (6).
(3) Mine the direction and sign of the node pair in test set.

We compare experimentally our algorithm with four existing link mining
algorithms, the low rank modelling with matrix factorization algorithm [7], tran-
sitive node similarity algorithm [13] and resistance distance method [4] denoted
as LR-ALS, FriendTNS+ and A-sym, respectively. Henceforth, our proposed link
mining approach based on commute distance similarity is denoted as CSLP.

6.2 Datasets and Metrics

To evaluate the performance of the algorithms, we adopt two real social signed
networks: the Slashdot Zoo dataset and the Epinions dataset (downloaded from
snap.stanford.edu). The two real datasets show high local clustering coefficients

http://www.snap.stanford.edu
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and low average shortest path lengths. These features can be mainly discovered
in small-world networks.

In the experiment process, we adopt rand walk methodology to select 4000
nodes from each dataset and divide each dataset into two sets: (i) the training
set ET is regarded as known information and, (ii) the test set EP is used for
testing and no information in the test set is allowed to be used for link min-
ing. We evaluate and compare these algorithms using a 10-fold cross-validation
methodology.

In this paper, we use sign accuracy, AUC, precision and recall as evaluation
metrics.

– Sign accuracy. Sign accuracy is the ratio of the number of right edges in the
predicting results, which have the same signs as the corresponding edges in
the test set, to the number of edges in the test set EP .

– AUC. AUC is equivalent to the area under the receiver-operating character-
istic (ROC) curve. It is the probability that a randomly chosen missing edge
(an edge in EP ) is given a higher similarity value than a randomly chosen
non-existent edge (an edge in E −ET , where E denotes the universal set). In
the implement process, among n times of independent experiments, if there
are m times the missing edge having higher similarity value and p times the
missing edge and non-existent edge having the same similarity value, we define
AUC, as follows: AUC = (m + 0.5 ∗ p)/n.

– Precision. Precision is the ratio of the number of right edges in the predicting
results, having the right signs and direction, to the number of edges in the pre-
dicting results. As there is no existing method for predicting links’ direction,
the precision measure is only for the method proposed in this paper.

– Recall. Recall is the ratio of the number of right edges (both sign and direc-
tion) in the predicting results to the number of edges in the test set EP . This
measure is also only for the method proposed in this paper.

In this section we compare CLSP with other methods in terms of sign accu-
racy and AUC. Sign prediction accuracies of various methods are calculated with
different values of k and the accuracies are averaged by 10-fold cross validation.
The detailed results are shown in Fig. 2. In our algorithm, k is the top-k similar-
ities. In FriendTNS+, k means the top-k transitive similarities. k is equal to the
reduced dimension in LR-ALS and A-sym algorithm. The line charts in Fig. 2
show the accuracy for signs with different values of k. We can see that CLSP
consistently achieves the highest accuracy for most of thresholds T in two real
datasets, and the CLSP algorithm gets obviously higher sign accuracy in the
Slashdot dataset.

We also compare CLSP with other algorithms in terms of AUC as shown
in Fig. 3. We use a pure chance predictor as baseline algorithm which simply
randomly selects pairs of nodes to be friends. The AUC value of pure chance
predictor is 0.5. We use the AUC metric, which pays attention to an algorithm’s
overall ability to rank all the missing links over non-existent ones. We plot a
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Fig. 2. Sign accuracy comparison of CSLP, A-sym, FriendTNS+ and the LR-ALS
algorithm for Slashdot (b) Epinions datasets.

curve for AUC vs. the fraction of observed edges used in the training set. As
shown, CLSP does better than pure chance and other algorithms, indicating
that it is a strong predictor of missing structure. The main reason is the method
seizes the edges’ sign and direction and the link predicting process is based on
the idea of collaborative filtering.
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Fig. 3. AUC comparison of CSLP, A-sym, FriendTNS+, LR-ALS algorithm and pure-
chance for (a)Slashdot (b) Epinions datasets.

We present the precision performance of CLSP when we take into account
both right direction and sign in predicting results. As shown in Fig. 4, the preci-
sion is lower than sign accuracy shown in Fig. 2 at corresponding different levels
of k. However, the precision is close to 80 percent in the two real datasets. In the
Slashdot dataset, the precision is high to 0.7813 while it is 0.8010 in Epinions
dataset.
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Fig. 4. Precision (right sign and direction) in CLSP proposed in this paper for
(a)Slashdot (b) Epinions datasets.

Next, we proceed to examine the performance of our algorithm in terms of
recall. The experiment result is shown in Fig. 5. The maximum value of recall is
0.4332 in the Slashdot dataset while it is 0.430 in the Epinions dataset.
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Fig. 5. Recall (right sign and direction) in CLSP proposed in this paper for (a)Slashdot
(b) Epinions datasets.

7 Conclusion

We introduce a definition of the commute distance similarity in directed signed
networks and use the similarity to mine the direction and sign of links. Our core
mining process is based on the idea of collaborative filtering between friendships
and links. The study extends the research approach of link mining and can be
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the necessary supplement of link mining in directed networks. The experiment
results show the method gaining better performance in terms of sign accuracy
and AUC measures than several existing algorithms.

In the future, we will continue our research on link mining in directed signed
networks. With further study, we will explore the refinement of corresponding
parameters and evaluation measure [15]. In addition, we will extend the predicted
information by considering the bi-direction link prediction [14].
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