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Abstract. Raw Global Positioning System (GPS) data can provide rich
context information for behaviour understanding and transport planning.
However, they are not yet fully understood, and fine-grained identifica-
tion of transportation mode is required. In this paper, we present a robust
framework without geographic information, which can effectively and
automatically identify transportation modes including car, bus, bike and
walk. Firstly, a trajectory segmentation algorithm is designed to divide
raw GPS trajectory into single mode segments. Secondly, several mod-
ern features are proposed which are more discriminating than traditional
features. At last, an additional postprocessing procedure is adopted with
considering the wholeness of trajectory. Based on Random Forest clas-
sifier, our framework can achieve a promising accuracy by distance of
82.85 % for identifying transportation modes and especially 91.44 % for
car mode.
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1 Introduction

Due to ever-growing traffic congestion, human activities have become more com-
plex and associated life trajectories more intensive. User behaviour extraction,
trajectory analysis and traffic pattern recognition are particularly significant for
service provider and decision maker [3]. Normally, urban transportation modes
are classified as road ones (car, bus, bike and walk) and rail ones (subway and
train). It’s obviously easy for researchers to distinguish rail ones from road ones
by using such relatively simple methods as velocity modelling [2]. But our work
focuses on identifying different means of road transportation modes which are
more complicated depending on the raw GPS data.

In the past several years, researchers collected the data information of trans-
portation modes through questionnaires and telephone interviews recorded by
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participants, which often resulted in inaccurate and incomplete data under easy
overlooked or short trips [10]. Nowadays, urban sensing technology enables us to
collect scientific data in a new and innovative way. Being two of the lowest-power
sensors available on the phone, accelerometer and GPS are the predominantly
used sensors in transportation mode identification. Accelerometer can detect
acceleration in the phone’s 3 axial directions. However, its readings are phone
orientation and position-dependent, as well as vehicle-dependent. To identify
transportation modes accurately, sampling rate is typically 10HZ and above.
The high sampling rate, 3 axial directions, and position dependence make the
classification complicated and increases power consumption [12]. Compared with
accelerometer, GPS devices are becoming more popular for urban transportation
mode identification in that its advantage of mobility and low sample rate.

In this paper, we present a robust framework to identify urban road trans-
port including car, bus, bike and walk from raw GPS data. The contributions
of the paper lies in three aspects: (1) A trajectory segmentation algorithm is
designed based on logical assumptions, which can find almost 90 % single mode
segments. (2) Several modern features are defined such as acceleration change
rate, timeslice type, 85 % percentile velocity and acceleration, which were more
discriminating than traditional features. (3) Relying on the wholeness of trajec-
tory, a postprocessing procedure is developed to further improve the precision
of mode identification without geographic information.

The remainder of the article is organized as follows. Related work is discussed
in Sect. 2. Section 3 describes the dataset for our study. In Sect. 4 the classifica-
tion model is introduced, followed by a presentation of postprocessing procedure
in Sect. 5. In Sect. 6, the result of experiment is reported. Finally, we draw a
conclusion, closed with corresponding discussion in Sect. 7.

2 Related Work

Identifying hybrid transportation modes from context information is still a
relatively popular study. Biljecki et al. [2], Lin et al. [9], Shin et al. [14],
Witayangkurn et al. [17] and Zheng et al. [19], present different approaches
for identifying transportation modes. Table 1 shows a summary of the reviewed
methods for transportation mode identification using GPS data. As shown in
Table 1, a common processing step is applied to divide GPS logs into single mode
segments based on criteria, such as transition points which denote a transition
of transportation modes from one segment to another.

Precise identification of transportation mode is attributed to the high quality
recognition of transition points. Many existing approaches of finding transition
points require fine-grained acceleration data or geographic data. Usually, fine-
grained acceleration data is generated by accelerometer embedded in mobile
phone. Shin et al. [14] detected walking activity through acceleration data as
a separator to partition the data stream into other activity segments. With
the increase in sampling rate and time complexity, the accuracy of transporta-
tion mode identification can not be significantly improved. In addition, many
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researchers explored transition points relying on geographic data instead of accel-
eration data. For instance, Liao et al. [8] segmented multi-modal trajectories
by analysing the proximity to potential transition locations such as bus stops.
Biljecki et al. [2] used OpenStreetMap data to help the segmentation process in
a two-step process, partition of trajectories to single-journey segments based on
two meaningful locations, and segmentation of journeys into single-mode seg-
ments. Geographic data such as road networks, bus stops and parking lots are
not widely used by current approaches, because it can add to the cost and com-
plexity of the system and increase calculation consumption. It is beneficial to
develop approaches that do not rely on such data. Mountain and Raper [11] indi-
cated that transition points mainly appeared in a rapid and sustained change in
direction or speed when one user ceased one activity and began another. Zheng
et al. [19] found transition points by a logical assumption that the start point
and end point of walk segment can be a transition point in very high probability.
Compared with their researches, we design a novel processing method which is
robust for noise and perform better in finding transition points.

For each segment generated by transition points, most of the previous work
was accomplished by building classification models with extracting significant
features. Many of these models regard velocity as the significant feature for mode
identification. Bolbol et al. [4] concluded the velocity variable could contribute
positively to the classification. Due to the measurements of noise, researchers
noted that approximately maximum values should be used [13,16]. Zheng et al.
[18] proposed the method which is still robust for noise using top two maxi-
mum values of velocity. Besides, Stenneth et al. [15] derived features related
to transportation network to improve classification effectiveness. In spite of high
accuracy, their work needs great calculation consumptions. Zheng et al. [18] con-
sidered features that characterize changes in movement direction, velocity and
acceleration. However, modern cities show more characteristics along with the
development of times, such as traffic congestion, changes of people’s behavior.
Our work extract more powerful features to achieve high quality transportation
mode identification, which can also fix and enhance traditional methods.

Table 1. A summary of the reviewed methods for transportation mode identification
using GPS data

Study Sensor Geographic information Modes Accuracy

Zheng et al. [18] GPS No 4 76.2 %

Witayangkurn et al. [17] GPS No 5 77.4 %

Lin et al. [9] GPS Yes 4 76.3 %
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3 Data Preprocessing

In this section, we first introduce the GPS trajectory dataset in Geolife project
from Microsoft Research Asia and define several terms used in this paper. Then
we describe the procedure of trajectory segmentation in detail.

3.1 Data Survey

The GPS trajectory dataset used in this paper was collected in Geolife project
[18,20,21] from Microsoft Research Asia by 182 users in a period of over five
years (from April 2007 to August 2012). The majority of the data was created
in Beijing, the capital city of China, which has an integrated urban land use and
a composite transportation network including the complex road network. This
dataset recorded a broad range of users’ outdoor movements, including not only
life routines like go home and go to work but also some entertainments and sports
activities. In each day of data collection, every user can label their data in the
following way, 2011/03/19, 06:43:50-06:52:14, bus. Each trajectory in this dataset
is represented by a sequence of time-stamped point. Every point contains the
specific information of latitude, longitude and time. The uneven time sampling
rate is set to be 2 s or 5 s. 73 users of total 182 users have labelled their trajectories
with transportation mode. In this experiment, we use the dataset of version 1.3
which contains abundant information about transportation modes.

3.2 Travel Survey Definitions

In order to better understand GPS trajectories, some terms have been defined
to describe different fragments of the trajectory. The total trajectory about a
specific user in one day is called a trip. A trip is consist of a number of segments
(such as car segment, walk segment, etc.). A new segment is generated when a
user changes transportation mode or the time between two consecutive points
exceed the specified threshold. A transition point is the point whose previous and
posterior points belong to different segment. For instance, in Fig. 1, a transition
point is generated when a user changes transportation mode from bus to walk.
The time interval of two consecutive point is 2 s or 5 s, in Fig. 1 Δt is 2 s.

p0 p1

p2

p3
p4

p5

p6
p7 p8

p9

Bus Segment Walk Segment

Δt transition point

Fig. 1. Trip, segment and transition point
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3.3 Data Preprocessing Procedure

Just as Mountain and Raper [11] stated that, the situation of one user may have
ceased one activity and begun another mainly appears in a rapid and sustained
change in direction or speed. We adopt the concept and presented a new tra-
jectory segmentation method. Our approach is comprised of two portions, label
specification and segmentation procedure. Algorithm 1 gives a detailed descrip-
tion of our trajectory segmentation procedure.

Label Specification. In this procedure, we first specify the points as walk-point if
its velocity and acceleration is under the appointed threshold values, or non-walk-
point. Owing to the error specification caused by noise points, it would lead to the
following observations. First, the abnormal points may appear in the trajectory,
which are usually far away from the nearest adjacent points. Second, the sharp-
pointed points may occur with sharp turnings which would deviate from the
trajectory trend and generate a zigzag segment. The second phenomenon usually
happens when GPS points accumulated together, such as walk segments. The
aforementioned two phenomenons would result in some points with high speed
which belong to walk segment actually, thus may classify the walk segment as
the bus segment or other modes mistakenly. So we put forward label revision
method to eliminate the abnormal points specification. The loop in line 9 to 19
of Algorithm 1 describes the procedure in detail. The state of point (walk point
or non-work point) depends on the states of its previous and posterior points.
Our procedure for label specification can not only keep high points specification,
but also maintain the trajectories original.

Segmentation. In segmentation procedure, we adopt the concept that the tran-
sition points usually appear in the situation that velocity encounter with sudden
change. So we first get candidate transition points collection and many segments.
Line 20 to 27 in Algorithm 1 describes the processing procedure in detail. Then,
the segments with a length under the specified value dthd should be merged with
its nearby segments. Firstly, the merged segment usually continues almost 90 s
through statistical analysis. This statistic time is consistent with the maximum
tolerable time of pedestrians in red light. Most of pedestrians achieve 50 m with
normal walk speed in 90 s. An example of this practice is the situation that, a car
stops for a few seconds, then goes on the trip with high velocity, and the interval
usually does not exceed 90 s. Secondly, the common users would not frequently
change their transportation modes within such a short distance. For instance,
within a short distance, it is impossible for a person to take the following transi-
tion, Bus→Walk→Bus→Walk→Bus. Hence this type of segments generated by
interval should be merged with its nearby segments.
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Algorithm 1. Trajectory Segmentation algorithm
Input: GPS logs T , velocity threshold vthd, acceleration threshold athd, distance

threshold dthd, positive integer N represent point number, scale represent coef-
ficient of proportionality, 0 < scale ≤ 1, candidate transition points collection
CTP , segment collection CSEG divided by CTP

Output: a set of segment
1: function SEGALG(T, vthd, athd, dthd, N, scale)
2: for each pi ∈ T do
3: if pi.v < vthd and pi.a < athd then
4: label pi as walk-point
5: else
6: label pi as non-walk-point
7: end if
8: end for
9: Initialize positive integer M ← �(N ∗ scale)�

10: repeat
11: for each pi ∈ T do
12: if at least M in N of both adjacent previous points and posterior points

of pi is labelled as walk-point then
13: label pi as walk-point
14: end if
15: if at least M in N of both adjacent previous points and posterior points

of pi is labelled as non-walk-point then
16: label pi as non-walk-point
17: end if
18: end for
19: until all points’ label keep unchanged
20: Initialize candidate transition points collection CTP
21: CTP ← φ
22: for each pi ∈ T do
23: if at least M in N of adjacent points in front of pi is labelled as non-walk-

point and at least M in N of adjacent posterior points of pi is labelled
as walk-point or opposite then

24: CTP ← CTP ∪ pi

25: end if
26: end for
27: generate a segment collection CSEG based on the transition points collection

CTP
28: for each segment segj ∈ CSEG do
29: if distance of segment segj < dthd then
30: merge segj with its previous and posterior segments into one segment
31: end if
32: end for
33: end function
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4 Methodologies

This section is organized as follows. Firstly, features used to identify transporta-
tion modes are extracted from raw GPS logs. Secondly, the remainder of analysis
in this section will focus on the inference model.

4.1 Feature Selection

Timeslice type (TS). The dataset was collected in Beijing which has a complex
road network. Individual activity makes their moving trajectories interweave
together due to daily routine. According to the time-statistical analysis, the
rush hours mainly distributed in the time slot 7:00–10:00 and 16:00–21:00. Dur-
ing these two timeslices, people are more likely to encounter traffic congestions.
When the average velocity of car is as slow as bike or in other uncommon situa-
tions, transportation modes may be labelled as other improper modes, then this
mistaken information will result in inaccurate mode identification. Therefore,
we divide the whole daily time into two timeslice types, as T busy and T idle.
Specifically, we denote the timeslice type value of segment as T busy if its times-
lice falls into the specified time slots described above, otherwise, the type will
be set to T idle.

Acceleration change rate (ACR). Nowadays, a majority of modern cities have
built the private passageways for buses in order to economize the time wasted
on the roadway, especially in the heavy traffic city of Beijing. In rush hours,
transportation modes always line up together under the red light. Even though,
bus drivers can drive straight in special bus lane regardless of the states of cars
or pedestrians in the arterial road. Also, taxi drivers always shift down or speed
up frequently according to the drivers’ personal behaviors, skills and preferences.
For example, under the tempt of profit, a taxi driver would continually change
velocity in a very small time slot to keep high speed, slow down or speed up
suddenly. Therefore, there are many swings in the acceleration distribution of
single car mode. However, the bus drivers or pedestrians are prone to keeping
a small acceleration change. This phenomenon implies the potential mode dif-
ference among bus, car and walk. ACR modeling this principle is defined as
Eqs. (1) and (2). First we can calculate the ARate of each GPS point based on
Eq. (1), in which Ai is the acceleration of point i. Then we can get the statistics
of the number of GPS points whose ARate are greater than a certain threshold
Ar, and calculate ACR based on Eq. (2), in which Distance is the total distance
of single segment.

p1 : ARate = |A2 − A1|/A1; (1)

ACR = |Pv|/Distance; (2)

Where Pv = {pi|pi ∈ P, pi.ARate > Ar}. Generally speaking, ACR makes it
clear that the change frequency of acceleration in different transportation modes,
which can be identified from each other.
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85th percentile of velocity and acceleration (85thV, 85thA). As the primary vari-
ables for mode identification, velocity and acceleration play important roles in
transportation mode identification. Due to sensor noise and data drift, the points
always deviate from their original trend in the raw GPS trajectory. In Fig. 2, we
use box plot to present the distribution of velocity and acceleration. The box
plot uses the median, the approximate quartiles, and the lowest and highest
data points to convey the level, spread and symmetry of a distribution of data
values. Figure 2(a) and (b) make a comparison between 85 % percentile velocity
and the maximum velocity. The comparison indicates the robustness of 85th
percentile velocity, which is different from the maximum velocity that is prone
to being disturbed by positioning errors. Also, as shown in Fig. 2(c) and (d),
Fig. 2(d) describes the actual distribution of acceleration compared to Fig. 2(c).
Noticeable mode shift of car reflects the potential characteristic when used in
distinguishing car from other modes. These two features will get supports from
later experiment results.

(a) Maximum velocity (b) 85% percentile velocity

(c) Maximum acceleration (d) 85% percentile acceleration

Fig. 2. Distribution of velocity and acceleration
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Besides the features described above, we also extract other prominent
features about velocity and acceleration including features between second max-
imum velocity and acceleration (MaxV2, MaxA2), mean velocity and accelera-
tion (MeanV, MeanA), median velocity and acceleration (MedianV, MedianA),
minimum velocity and acceleration (MinV, MinA), expectation of velocity and
acceleration (Ev, Ea), covariance of velocity and acceleration (Dv, Da). Consid-
ering the details of GPS trajectory, features introduced by Zheng et al. [18] such
as Heading Change Rate (HCR), Stop Rate (SR) and Velocity Change Rate
(VCR), are extracted from the raw GPS trajectory.

4.2 Classification Model

The GPS trajectory dataset used in this paper was collected in Geolife project
from Microsoft Research Asia. From this type of dataset, experimental results
have demonstrated that the segmentation method based on transition points fol-
lowed by a Decision Tree algorithm showed the highest identification accuracy
of the transportation modes [18,19]. In our work, we decided to employ Ran-
dom Forest as a model because the works by Stenneth et al. [15] showed that
performance of Random Forest is better than Decision Tree in transportation
mode identification. Random Forest Classifier, developed by Breiman et al. [6],
is an ensemble classification and regression method that constructs a number of
decision trees at the training level, predicts the class using each tree and out-
puts the final class as the mode of the individually predicted classes. One of
the major advantages of RF model is that it can handle high dimension data,
obtain important features automatically. It is obvious to improve the training
speed by extracting a few attributes from original features set every time. It is
more stable and less prone to prediction errors as a result of data perturbations
[7]. Therefore, RF model is viewed as one of the most accurate general-purpose
learning techniques available [1].

5 Postprocessing Procedure

After applying the former inference model, we can obtain the predicted trans-
portation modes of segment divided by transition points. Considering the whole-
ness of trajectory and walk mode logical assumption [19], and the analysis that
car, bike and bus mode have similar velocity in the heavy traffic. Therefore,
we view the whole trajectory as a chain of predicted modes, and modify the
predicted modes as the high probability modes which follow the general trend.
This practice can solve the above issues to some extent. Figure 3(a) gives the
predicted mode sequence after the first classification. According to experience,
the segment classified as bus mode in the line is likely the segment with improper
classification. So we change the predicted bus mode to car mode, reasoning that
the person is impossible to switch car mode to bus mode, or bike mode directly.
Moreover, this segment is surrounded with predicted car mode and has simi-
lar characteristics with non-walk mode. After processing, we ‘repair’ the original
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predicted mode sequence as the available final-result mode sequence. Figure 3(b)
shows the modified transportation mode line.

walk car car car bus car

(a) Original predicted transportation mode

walk car car car car car

(b) Modified predicted transportation mode

Fig. 3. General case of segment postprocessing

6 Results and Discussion

In this section, we firstly describe how we select the parameters for each proce-
dure. Secondly, we verify the efficiency of presented features and get the corre-
sponding results about our overall inference model.

6.1 Parameter Setting

In the preprocessing step, two consecutive GPS points are divided into two differ-
ent segments if the time gap is more than 20min. When labelling the points in
Algorithm 1, the value of velocity and acceleration threshold vthd, athd is 1.8m/s
and 0.6m/s2 [19]. From Fig. 4, when variable N and scale is set to be 10 and 0.8,
we can get highest recall of transition points. Referring to the situation that most
of pedestrians achieve 50 m with normal walk speed in 90 s, then interval distance
dthd is set to be 50 m. About the features, we set the threshold value for HCR,
SR and VCR of 15, 3.2 and 0.36 respectively [18]. Figure 5 shows the inference
accuracy changing over the threshold value Ar when ACR is used alone to identify
transportation modes. Obviously, when Ar equals to 0.25, ACR shows its greatest
advantages in identifying transportation modes.

Besides, our Random Forest classifier is the combination of 100 randomized
decision trees. At each node in decision tree, a subset of features is randomly
selected. Typically the size of every subset is

√
n, where n is the total number

of features. In our experiment, the number of feature set used in the inferring is
19, i.e., n equals to 19. Thus, we set the number of subset features k is 4. With
regard to the toolkit we used in the experiments, Weka (Waikato Environment
for Knowledge Analysis) 3.7 toolkit [5] is selected to implement Decision Tree and
Random Forest. About 70 % of all the segments are trained, and the remaining
are used for testing.
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Fig. 5. Selecting threshold (Ar) for ACR. ACR is the only feature used in the inference
model

6.2 Effectiveness of Preprocessing and Postprocessing Step

The preprocessing step divides the GPS trajectory into single mode segments
based on transition points collection. In the first part, we evaluate the effective-
ness of our label specification procedure by the precision of points specification.
According to the statistics of the number of walk points and non-walk points,
the precision of points specification rises to 78.79 % from 76.42 % after the pro-
cedure of label specification, demonstrating 2.37 % improvment in labelling the
state of points. Then the second part of preprocessing step is measured in terms
of the recall of transition points. While the recall of transition points has higher
priority over their precision mainly because we hope to obtain all the transition
points. Therefore, if the distance between an inferred transition points and its
ground truth is within 150 m, we regard the transition point as a correct infer-
ence. As a result, we retrieved 89.3 percent of the actual transition points from
the corresponding GPS data.
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Meanwhile, in the postprocessing procedure, we consider the wholeness of tra-
jectory to further improve the precision of mode identification. As it turns out,
the postprocessing procedure has achieved an accuracy by distance of 82.85 %
based on the inference model using features we explored in the experiment,
while 81.13 % without postprocessing. This indicates that we can make almost
2 percent improvement in accuracy by distance for transportation mode iden-
tification. Zheng et al. [18] put forward the graph-based postprocessing which
bring 3.4 % promotion over the preliminary inference result. This comparison
makes clearly that our postprocessing procedure accuracy is 1.7 % lower than
the performance of graph-based postprocessing. Nevertheless, the graph-based
postprocessing mentioned above requires spatial knowledge as input, we have to
know most geographic information of urban region. For the regions which are not
covered by trajectory data, it can not perform better. What is more, it needs a
lot of statistical calculation. But our postprocessing procedure not only doesn’t
rely on spatial knowledge, but also can handle whole trajectory of individuals
anywhere.

6.3 Feature Evaluation

Considering the out-off-balance caused by the distance of each segment with
its characteristics, we focus on the accuracy by segment (AS), which means
the accuracy of the number of segment classified correctly. In order to evalu-
ate the efficiency of the features, we ranked features by information gain and
single feature classification in our work. From Table 2, we can observe that two
ranking methods keep top 11 identical features, 85thV shows obvious advantage
over other features, ACR performs well in identifying transportation modes and
85thA outperforms other features related to acceleration.

Table 2. Classification features ranking

(a) Information
gain ranking

Rank Features

1 85thV

2 MedianV

3 MeanV

4 Ev

5 Dv

6 SR

7 HCR

8 ACR

9 VCR

10 MaxV2

11 85thA

(b) Single feature for seg-
ment accuracy ranking

Rank Feature AS

1 85thV 45.70%

2 MeanV 43.23%

3 MedianV 41.57%

4 Ev 41.52%

5 HCR 40.87%

6 SR 39.74%

7 VCR 38.83%

8 Dv 37.53%

9 ACR 36.80%

10 MaxV2 36.66%

11 85thA 29.78%
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Table 3. Feature comparison

Combine features Traditional features New features

52 % 58.4 % 60 %

Another, we evaluate entire features in three different combination
ways. ACR, 85thV, 85thA and TS make up the combinefeatures. The
traditionalfeatures include top two maximum velocity (MaxV1, MaxV2), top
two maximum acceleration (MaxA1, MaxA2), MedianV, MedianA, MinV, MinA,
MeanV, MeanA, Ev, Dv, Ea, Da, SR, HCR and VCR, while the newfeatures is
the feature set which we explored in this experiment. The results are shown in
Table 3, from which the overall accuracy by segment of combinefeatures indi-
cates that the new features are enough to identify transportation mode in the
proposed work. It means that our approach will not lose too much performance
when applying our feature combination only. Meanwhile, considering the whole
features, the overall accuracy by segment of newfeatures rises from 58.4 % to
60 % compared the traditionalfeatures.

Finally, when Decision Tree is selected to perform the inference, the overall
accuracy by segment can achieve 58.9 %, about 1.1 % lower than Random For-
est which can perform 60 %. To summarise, Random Forest outperforms other
classification model while considering the newfeatures.

6.4 Mode Identification

For transportation mode identification, we evaluated the classification by using
two well-known performance measures: Precision and Recall. As described in
the previous section, we used Random Forest classifier as the mode identifi-
cation classifier. We could achieve an overall accuracy by distance of 82.85 %,
demonstrating a better discrimination about transportation modes than previous
researches [9,14,17,18]. As shown in Table 4, walk mode identification achieves
about 66.11 % accuracy while 91.23 % of recall. Very few actual walk segments
are classified as other modes because of label revision in data preprocessing step.
In addition, both accuracy and recall of car mode identification in matrix remain
high scores. Among many reasons, the most important one is that car segments
hold very long distance with the characteristic of high velocity. Also, the overall
accuracy by distance of bike mode can reach about 81.82 %.

Table 4. Matching matrix of the detecting results in terms of distance and percentage

Detected results (KM and percentage)

Mode Walk Car Bus Bike Recall

Walk 1665.0 (91.23%) 50.7 (2.78%) 72.2 (3.96%) 37.2 (2.03%) 91.23%

Car 400.5 (3.22%) 11547.3 (92.91%) 469.6 (3.78%) 11.7 (0.9%) 92.91%

Bus 192.0 (6.25%) 626.8 (20.40%) 1931.7 (62.89%) 321.3 (10.46%) 62.89%

Bike 261.0 (10.00%) 403.8 (15.48%) 276.8 (10.63%) 1666.3 (63.89%) 63.89%

Precision 66.11% 91.44% 70.24% 81.82%
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From the misclassification between car and bus, 3.78 % length of car mode
are misclassified as bus mode and 20.4 % length of bus mode are misclassified as
car mode. For the dataset we explored in this paper, it was created in Beijing,
China. Being the capital city of China, it has the complex road network. During
the daytime, bus and car are more likely to encounter traffic congestions and
perform the similar behavior. In spite of this phenomenon, the overall accuracy
by distance of bus mode can perform 70.24 percent, which is better than similar
researches [9,18].

7 Conclusions

In this paper, we presented a new robust framework for identifying road trans-
portation modes focusing on raw GPS data. Firstly, without geographic infor-
mation, we design a trajectory segmentation algorithm which can find almost
all the transition points. Secondly, we propose some features which are more
discriminating in transportation mode identification than the features which
existing works [4,13,18] used. Additionally, the natural flow of whole GPS tra-
jectory is considered when processing segments after classification. As a result,
our work maintains relatively high precision when comparing with previous work
[9,14,17,18], especially for car mode detection. The overall accuracy by distance
of our framework can perform 82.85 % in transportation mode identification.

The application of our framework may be useful for user behavior analysis.
However, many issues remain open and they are worthy of further study. First,
the wholeness of trajectory maybe play a more significant role in identifying
transportation modes instead of each segment individually. We can not ensure
the natural flow of the travel pattern of every participant. Secondly, segmen-
tation method generates many little segments segmented by transition points
and influences the effectiveness of new introduced features. So combing different
segmentation method is also potential work to do.
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