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Abstract. Reliable detection of fundus lesion is important for auto-
mated screening of diabetic retinopathy. This paper presents a novel
method to detect the fundus lesion in retinal fundus image based on
a visual attention model. The proposed method intends to model the
visual attention mechanism of ophthalmologists during observing fundus
images. That is, the abnormal structures, such as the dark and bright
lesions in the image, usually attract the most attention of experts, how-
ever, the normal structures, such as optic disc and vessels, have been
usually selectively ignored. To measure the visual attention for abnor-
mal and normal areas, the incremental coding length is computed in
local and global manner respectively. The final saliency map of fundus
lesion is a fusion of attention maps computed for the abnormal and nor-
mal areas. Experimental results conducted on the publicly DiaRetDB1
dataset show that the proposed method achieved a sensitivity of 0.71 at
a specificity of 0.82 and an AUC of 0.76 for fundus lesion detection, and
achieved an accuracy of 100 % for normal area (optic disc) detection.
The proposed method can assist the ophthalmologists in the inspection
of fundus lesion.

Keywords: Diabetic retinopathy · Fundus lesion detection · Visual
attention · Incremental coding length

1 Introduction

Diabetic Retinopathy (DR) is one of the main causes of blindness, and it is
usually asymptomatic until the disease is at a late stage. The early detection
of DR is thus important for patients to prevent visual loss. In fundus image,
the most common signs of DR are the dark lesions, such as microaneurysms and
hemorrhages, and the bright lesions, such as exudates and cotton-wool spots. The
existence of these lesions can reflect the severity of DR. Currently, the inspection
of these lesions is usually performed with the naked eye of ophthalmologists,
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Fig. 1. Examples of retinal fundus images. (a) A normal fundus image. (b) A fundus
image contains lesions.

such manual screening of DR, however, is time-consuming, subjective and error-
prone. To diagnosis DR timely and reliably, the automated screening of DR is
extensively investigated in past decades.

The first step of automated DR screening is the detection of fundus lesion,
and because of the variability in appearance of those lesions, different algorithms
have been designed to detect each type of those lesions separately. For microa-
neurysms detection, such as multi-scale correlation filtering [1] and diameter
closing [2] have been presented. For hemorrhages detection, a splat feature clas-
sification approach has been reported in [3]. For the exudates detection, such
as dynamic thresholding [4] and clustering based approach [5] have been used
to detect the lesion. And with respect to the detection of cotton-wool spots, an
improved Fuzzy C-Means approach has been presented in [6].

In fact, during clinically examining of the fundus image, all of those lesions
will attract the most visual attention of experts, since they have irregular pat-
terns compared with other areas. On the other hand, the normal structure such
as optic disc will be selectively ignored since they are the locations that have
been recently attended by the visual attention of many normal retinal images,
which is so-called inhibition of return (IoR) [7]. Figure 1 shows two examples of
retinal fundus images, for the task of DR screening, the lesions in Fig. 1(b) will
attract the most attention of the experts.

Inspired by the biological vision mechanism, in this paper, a novel method
for fundus lesion detection is presented based on a visual attention model, which
intends to detect both of the dark and bright lesions in one unified framework.

The proposed method measures the “irregularity” of abnormal areas by incre-
mental coding length (ICL) [8,9] in a local manner, and models the inhibition
of return of normal areas also with ICL but in a global manner.

The rest of this paper is structured as follows. Section 2 describes our method
to detect fundus lesion based on visual attention model. Experimental results
are presented in Sect. 3. Section 4 concludes the paper.
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2 Methodology

2.1 Abnormality Attention Computation

Here we assume that visual attention is driven by the predictive coding principle,
i.e., the optimization of metabolic energy consumption in the brain [10]. The area
attracted more attention of the visual system, i.e., the abnormal structure, is
regarded as the location that need a more expensive neural code to be represented
by its surrounding areas.

In this work, we use the incremental coding length (ICL) [8,9] to measure which
area is more abnormal. Given an input image I, and p is a patch of image I. Let
Np be the spatial surrounding patches of p, which are captured in an overlapping
manner. If the patches of image I are encoded with a lossy coding method with
fixed distortion ε, Lε(Np) and Lε(Np ∪p) denotes the coding length of patches Np

and Np ∪ p respectively. The incremental coding length of patch p is then defined
as [8,9]:

δLε(p) = Lε(Np ∪ p) − Lε(Np) (1)

where δLε(p) is larger, the patch p is more abnormal than its surrounding areas.
To compute δLε(p), we use the same scheme as suggested in [9], i.e.,

δLε(p) ≈ Lε(p|Np) (2)

where p|Np is the sparse representation of patch p over its surrounding patches
Np.

Let x ∈ R
n denotes the feature vector of the patch p, and D ∈ R

n×m is the
dictionary matrix whose columns are the feature vectors of surrounding patches
Np, as shown in Fig. 2. Finding the spare representation of p is to seek the optimal
sparse code vector α ∈ R

m, which solves the following optimization problem:

min
α

1
2

‖x − Dα‖2
2 + λ ‖α‖1 (3)

where the first term is the square reconstruction error, the second term is a
�1 sparsity penalty on the code and λ is a coefficient controlling the sparsity
penalty.

The incremental coding length δLε(p) now is proportional to the number of
non-zero entries of α, and in this work, it is computed as ‖α‖1. The larger that is,
the more abnormal the patch p will be. The final map of abnormality attention is
then generated by accumulating δLε(p) per pixel. Figure 4 illustrates examples
of the map of abnormality attention, as shown in this figure, both dark and
bright lesions have the higher response of the abnormality attention. However,
the normal area, especially like the optic disc, also has higher response since it
appears as irregular pattern in a single image. To suppress the unexpected high
response in those normal areas, we model the IoR in following section.
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2.2 Inhibition of Return Modelling

In the clinical task of DR screening, the normal areas, such as optic disc (OD)
and vessels, will be selectively ignored by the experienced experts. At this point,
we intend to model the IoR of normal areas. It is worth noting that, the normal
vessel structures are networks and appearing as piece-wise linear structures, the
patch of vessel generally can be sparely represented by its surroundings, the
coding length δLε(p) of majority of vessels is usually small. We hence mainly
focus on modeling the inhibition of return for OD.

In light of the work in [10], we extend the computation of above-mentioned
ICL in a global manner, as shown in Fig. 3. Instead of considering the surrounding
patches of OD, we here introduce a set of reference set of OD Nod, from which a
dictionary Dod ∈ R

j×k is learned to yield a sparse representation of OD. Given
an input patch pod, its feature vector is denoted as y, the spare code vector β is
the optimal solution of the following problem:

min
β

1
2

‖y − Dodβ‖2
2 + γ ‖β‖1 (4)

where γ is a coefficient controlling the sparsity penalty.
Since ODs have a common appearance in different fundus images, the β of

the patch located at the OD will be sparser than the one of the patch at other
positions. Additionally, under a same level of sparsity, the square reconstruction
error of the patch located at the OD will be smaller than the one of the patch
at other positions. A weighted ICL of pod is then computed by

δLε(pod) ≈ Lε(pod|Nod) = ‖y − Dodβ‖2
2 · ‖β‖1 (5)

Fig. 2. Sparse representation of abnormal structures. (Color figure online)

Fig. 3. Sparse representation of optic disc.
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Fig. 4. Examples of abnormality attention map. (a), (c) and (e) Fundus images contains
lesions. (b), (d) and (f) The map of abnormality attention.

For the patch located at the center of OD, its coding length δLε(pod) is thus
short, which can be used to reflect the level of inhibition of return. To avoid the
overflow of the coding length, we introduce a sigmoid function and let

δLε(pod) =
1

1 + exp−Λ
− 1, Λ = ‖y − Dodβ‖2

2 · ‖β‖1 (6)
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Fig. 5. The weighted ICL map of optic disc of Fig. 4(a), (c) and (e).

Fig. 6. IoR maps of normal areas. (a)–(b) IoR maps of the OD. (e)–(f) IoR maps of
the vessels.

Fig. 7. Final lesion saliency map of Fig. 4(a), (c) and (e).
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Figure 5 shows the weighted ICL map of the OD, where the OD region has
the lowest response compared to others. Notice that there is only one OD in one
fundus image, after computing the weighted ICL for each patch of the image,
we select the point with the minimum weighted ICL as the center of the OD,
and adopt an OD segmentation method [11] to segment the region of OD. The
OD boundary is then approximated with a circle. The map of IoR of the OD
is generated by setting the pixels inside the region of the segmented OD region
to zero, while setting others to one. Further, to eliminate some interference of
vessels, we here simply segment the vessel structures from the input fundus image
with an adaptive thresholding method [1], and also construct an IoR map of the
vessel structures by setting the pixels inside the segmented vessels to zero, while
setting others to one. These maps are both smoothed with a Gaussian filter, and
the final IoR maps are shown in Fig. 6.

2.3 Lesion Saliency Map Construction

After computing the abnormality attention and the IoR of input image, we next
construct the final lesion saliency map. In this work, we multiply the map of
abnormality attention and the two maps of IoR pixel-wisely, and let the result
image as the final lesion saliency map, as shown in Fig. 7.

3 Experiments

3.1 Dataset

We tested our method on the public DiaRetDB1 V2.1 dataset [12], which con-
tains 89 color fundus images with the fixed 1500 × 1152 resolution and are cap-
tured by the 50◦ FOV digital fundus camera. The images in this database involve
four kinds of lesion, such as microaneurysms and hemorrhages, exudates and
cotton-wool spots. For each image, four ground truth annotated by four dif-
ferent medical experts are provided. Since there are disagreements among four
experts’ annotations, we take a consensus of 75 % agreement as the fusion ground
truth, as suggested in [12]. According to this ground truth, there are 51 images
which contain lesions and 38 images without any lesions.

3.2 Implementation Details

In our experiments, the input image is contrast enhanced with the method in
[13]. And for computing abnormality attention, the feature of p and Np were
extracted by directly vectorizing the red and green channel of the preprocessed
RGB image patch with the size of 8×8×2. The blue channel of RGB patch was
abandoned since it is rather dark and short of useful information. In addition,
because both dark and bright lesions in the fundus image have a variety of size,
the computation of coding length was performed on image pyramid with 10
levels.



Fundus Lesion Detection Based on Visual Attention Model 391

For computing the IoR of the OD region, the feature vector included three
local features, i.e., the Dense SIFT [14], LIOP [15] and HoG [16], which were
extracted from the green channel of RGB image patch, and the dictionary Dod

is learned with the K-SVD algorithm [17].

3.3 Results

The performance of the proposed lesion detection was evaluated at image level
as most of previous works in bright lesion detection. In this work, a detection
of the image is considered as a true positive (TP) if finding out at least one
kind of lesions in the image with lesions; a false negative (FN) if there is no
founding of any lesions or only finding out the normal objects in the image with
lesions; a false positive (FP) if finding out some objects in the image without any
lesions; a true negative if there is no founding of any lesions in the image without
any lesions. The sensitivity (SE) of the proposed method was then computed as
TP/(TP + FN), the specificity (SP) was computed as TN/(TN + FP).

The proposed method achieves a SE of 0.71 at a SP of 0.82. To the best
of our knowledge, no corresponding quantitative results have been reported for

1 - Specificity
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

S
en

si
ti

vi
ty

0

0.2

0.4

0.6

0.8

1

Our method (AUC:0.76)

Fig. 8. ROC curve of fundus lesion detection.

Fig. 9. The interference of lesion detection on normal images. (a) Image patch with
normal macular reflection. (b) The corresponding saliency map patch of (a). (c)
Image patch with the irregular background of tessellated retina. (b) The corresponding
saliency map patch of (d).
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Table 1. The performance of OD detection.

Methods #Images Success ACC

Soares et al. [21] 89 88 98.88 %

Mahfouz and Fahmy [22] 89 87 97.75 %

Ramakanth and Babu [23] 89 88 98.88 %

The proposed method 89 89 100%

detecting the dark and bright lesion at the same time. For comparison, here we
simply exhibit some results of the methods only detect the dark or bright lesions.
For bright lesion (exudates) detection, [18] reported a SE of 0.70 at a SP of 0.85
conducted on the same dataset, while for dark lesion (hemorrhages) detection,
[19] reported a SE of 0.85 at a SP of 0.21 conducted on a private dataset. Noted
that our method detects the dark and bright lesions at the same time, and
can achieve a competitive performance with these methods, which proved that
the proposed method is competent for the fundus lesion detection. The receiver
operating characteristic (ROC) curve of the proposed lesion detection is also
shown in Fig. 8, and the area under the ROC curve (AUC) is 0.76.

The proposed method is sensitive to the abnormal pattern of the fundus
image, and many false positives occur on the normal macular reflection of the
fundus image or the background region of the tessellated retina, as shown in
Fig. 9. A further study on the lesion classification with supervised knowledge
will improve the performance. We will attempt to resolve this problem as part
of the future work.

Considering the computation of IoR for the OD can also be regarded as a
method of OD localization, which can be used to analysis the cup-to-disc ratio
for glaucoma diagnosis [20]. We also conducted an evaluation of our method
to locate the OD on the database. Table 1 lists the accuracies of the proposed
OD localization method and other approaches conducted on DiaRetDB1 V2.1
database, as can be seen, the proposed method can locate the OD region robustly,
and outperforms other OD localization approaches.

4 Conclusions

In this paper, we proposed a novel method based on visual attention model to
detect fundus lesions from the color retinal image. The abnormality attention
of fundus lesion was measured with the incremental coding length computed in
a local manner, while the IoR of the OD area was measured with the weighted
incremental coding length computed in a global manner. The proposed method
was evaluated on the DiaRetDB1 V2.1 database. The results revealed that the
proposed method was an efficient scheme for automated lesion detection, and it
was also an alternate method to locate the OD for the purpose of automated
glaucoma diagnosis.
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