
An Approach for Automatically
Generating R2RML-Based Direct Mapping

from Relational Databases

Mohamed A.G. Hazber1, Ruixuan Li1(B), Guandong Xu2,
and Khaled M. Alalayah3,4

1 School of Computer Science and Technology,
Huazhong University of Science and Technology, Wuhan, China

moh hazbar@yahoo.co.uk, rxli@hust.edu.cn
2 Faculty of Engineering and IT,

University of Technology Sydney, Sydney, Australia
guandong.xu@uts.edu.au

3 Computer Science, IBB University, Ibb, Yemen
kh101ed2005@yahoo.com

4 Computer Science, Najran University-Sharurah, Najran, Saudi Arabia

Abstract. For integrating relational databases (RDBs) into semantic
web applications, the W3C RDB2RDF Working Group recommended
two approaches, Direct Mapping (DM) and R2RML. The DM provides a
set of mapping rules according to RDB schema, while the R2RML allows
users to manually define mappings according to existing target ontology.
The major problem to use R2RML is the effort for creating R2RML
mapping documents manually. This may lead to appearance of many
mistakes in the R2RML documents and requires domain experts. In this
paper, we propose and implement an approach to generate an R2RML
mapping documents automatically from RDB schema. The R2RML map-
ping reflects the behavior of the DM specification and allows any R2RML
parser to generate a set of RDF triples from relational data. The input of
generating approach is DBsInfo class that automatically generated from
relational schema. An experimental prototype is developed and shows
the effectiveness of our approach algorithms.

Keywords: Relational Database to Resource Description Framework
(RDB2RDF) · Direct Mapping · R2RML · Relational database ·
Resource Description Framework (RDF)

1 Introduction

The continuous explosion of resource description framework (RDF) data opens
door for new innovations in big data, social network analysis, and semantic web
initiatives, which can be shared and reused through the application, enterprise
and community boundaries. The semantic web [1] is one of the most impor-
tant research fields that aim to construct a web of data based on the RDF [2]
c© Springer Science+Business Media Singapore 2016
W. Che et al. (Eds.): ICYCSEE 2016, Part I, CCIS 623, pp. 151–169, 2016.
DOI: 10.1007/978-981-10-2053-7 15



152 M.A.G. Hazber et al.

data model. It allows data to be shared and reused through applications, enter-
prise and community boundaries. Relational databases (RDBs) are the primary
sources of web data, “deep web” [3]. The main reason is one of the studies
[3] showed that internet accessible databases contained up to 500 times more
data compared to the static web, and roughly 70 % of websites are backed by
RDBs. The W3C RDB2RDF Working Group recently recommended a speci-
fication for languages to map RDB (data and schemas) to RDF and OWL,
tentatively called Direct Mapping (DM) [4] and R2RML (Relational Database
to RDF Mapping Language) [5]. However, the W3C Working Group does not
recommend any implementation for DM and R2RML. The DM provides a set of
automatic mapping rules to construct an ontology schema (RDF(S) and OWL)
from RDB schema and convert relational data to RDF graphs according to that
schema [6]. The ontology constructed reflects the structure and content of the
relational database. Nevertheless, the DM method may not be constantly suffi-
cient or optimum, especially when mapping a relational database to an existing
ontology. R2RML is a customized mapping language, which allows users to define
mappings manually. In this approach, the expert user expresses the RDB schema
using an existing target ontology in order to convert the relational data into RDF
datasets.

The R2RML specification is accompanied by the DM specification [4], repre-
senting a standard approach for converting an RDB into RDF without the use
of a customized mapping definition. Thus, the RDF generated using DM can
be represented in R2RML. R2RML provides more flexibility than DM specifi-
cation. Meanwhile, creating R2RML rules by domain experts manually is com-
plex, time consuming process, cumbersome, mistakable, high cost process, and
requires the supports of domain experts in knowledge acquisition. Moreover, the
users who are interested to apply the R2RML for RDF generating from RDB
are requested to learn how to create an R2RML mapping document, in addition
to a significant gap between the structure of RDB and the R2RML mappings
specifications. One of the ways to solve those problems and ease-of-loading for
creating an R2RML document from users efficiently is to generate an initial
R2RML mapping document automatically from RDB schema that reflects the
conduct of the DM specification. Afterward users will be able to modify that
document into a text editor or user interface (display screen). Thus, making the
process engine of generating RDF triples (such as morph-RDB [7], nknos [8],
RDF-RDB2RDF1, etc.) takes the R2RML mapping document and RDB data
as an input, and then provides an output corresponding RDF dataset (triples).
This is done by automatically mapping RDB concepts to an ontology vocab-
ulary, which could be used as a base to support generating RDF triples from
RDB data. Recently, the two reports presented by a survey report [9] and W3C’s
RDB2RDF Implementation [10] are discussed and listed a few existing tools or
ongoing projects that have been made available to support the task of mapping
generation. However, some of those tools either create mappings in RDB2RDF
languages such as ODEMapster GUI (creates R2O mappings) or only give

1 https://metacpan.org/release/RDF-RDB2RDF.

https://metacpan.org/release/RDF-RDB2RDF


RML-BDM: Automatically Generating R2RML-Based Direct Mapping 153

syntactic sugar (form-based tools) to users, who still require a good knowledge
of R2RML, which makes them not usable enough.

In this paper, we design and implement algorithms to automatically generate
R2RML mapping documents that reflect the behavior of the Direct Mapping
specification, which will be applicable as a base support generating the RDF
triples from RDB data. Firstly, we design and implement an algorithm that
takes an RDB schema as an input and extracts a DBsInfo class (has all the
information about RDB schema) as an output. Secondly, we present an algorithm
design approach to automatically generate an R2RML mapping document based
on a DBsInfo class. Subsequently, generating an RDF dataset by integrating our
work with the R2RML processor, which takes an R2RML mapping document
and RDB data as inputs and generates the RDF triples as an output. The
experimental results show important factors for the building R2RML mappings
and their influence on the mapping generation time and size of R2RML and
RDF file. These results together reflect the effectiveness of our algorithm and its
implementation in Java with Jena API.

The rest of the paper is organized as follows. Section 2 provides an overview
of the related works. Basic concepts which give a brief overview of the R2RML
and DM with the relationship between them are described in Sect. 3. Section 4
proposes the approach and the algorithm. A prototype implementation of the
architecture of our processor prototype and experimental results with discus-
sion regarding the effectiveness and the run-time efficiency test on the proposed
algorithms are presented in Sect. 5. Finally, Sect. 6 concludes this paper with the
future work.

2 Related Work

Several approaches (auto or manual) have been proposed in the integrating RDB
and semantic web, mainly concerning the creation and maintenance of mappings
between RDF and RDB. Mapping RDB to RDF is a domain where quite a few
works have been proposed over the last years [11]. Generally, the objective is
to express the RDB contents using ontology (RDF graph) in a way that allows
queries submitted to the RDF schema to be answered with data stored in the
RDB. Also, for bringing data residing in RDB into the semantic web, several
automated or semi-automated methods for ontology schemes representation have
been created [12–14].

Currently, there are two main approaches recommended by W3C RDB2RDF
Working Group for mapping RDB into RDF that we have mentioned previously:
DM [4] and R2RML [5]. In the DM approach the ontology model is constructed
from RDB model, and the contents of the RDB are transformed to generate
ontology instances [6,12,15,16]. The approach [6,12] proposed (automatic-direct
mapping rules) by investigating several cases of RDB schema to be directly
mapped into ontology represented in RDF(S)-OWL and transformed RDB data
to ontological instances (represented in RDF triples) based on the structure of
the database schema. While in approach [16] a tool RDB2OWL language for



154 M.A.G. Hazber et al.

mapping a database into an ontology in a compact notation within the ontol-
ogy class and property annotations was presented. This tool was implemented
by converting the RDB2OWL mappings into executable D2RQ mappings to
produce the RDF dump of the source RDB, or to turn it into an SPARQL
endpoint.

On the other side, the customized mapping approach such as ODEMapster
[17], Triplify [18], D2R Server [19], and OpenLink Virtuoso [20] lets a domain
expert to create a mapping between the relational schema and an existing target
ontology, which is used to convert RDB content to RDF. However, early surveys
of RDB-to-RDF tools [21] revealed that the tools typically adopt proprietary
mapping languages. Triplify [18] offers a Linked Data publishing interface and
provides a simplistic approach to publish RDF from RDB. D2R Server [19] is an
engine that directly maps the RDB into RDF and uses D2RQ mappings to trans-
late requests from external applications to SQL queries on the RDB. This imple-
mentation was first available for the D2R language and later for R2RML. More-
over, there are some tools for implantation DM and R2RML such as r2rml4net2

and db2triples3. The r2rml4net is a library for processing the R2RML mapping
documents, which provides functions to load R2RML mapping document and
functions to convert relational data to the RDF dump. The db2triples-software
tool is an RDB2RDF Antidot4 Java implementation of the DM specifications
and the R2RML for extracting data from RDBs and loading data into an RDF
triple store. Recent efforts offered MIRROR system [22] for produce mappings
in the R2RML language and an RML mapping language [23], an extension of
R2RML, for non-relational sources and the integration of heterogeneous data for-
mats to support XML and JSON data sources expressions in the mappings. In
this work, we focus on the RDB schema. Meanwhile, other researches introduced
a semi-automatic mapping approach for generating R2RML mappings based on
a set of correspondence assertions (mapping between relational metadata and
the vocabulary of a domain ontology) defined by domain experts [24,25]. There-
fore, the user still needs to draw correspondence assertions (CAs) from the input
system (source RDB schema and target ontology/RDF schema) to specify the
mapping between them.

Based on the previous literature, mapping generation remains far from well
understood and need to be further explored. Therefore, generation of R2RML
mapping documents automatically from RDBs becomes an important challenge
to avoid appearance of mistakes in R2RML mappings in addition, it reduces the
generation time and no need for domain experts.

3 Basic Concepts

This section gives a brief overview of the R2RML and DM with the rela-
tionship between them. The W3C has recently standardized the RDB-to-RDF
2 https://bitbucket.org/r2rml4net/core/wiki/Home.
3 https://github.com/antidot/db2triples.
4 http://www.antidot.net/.

https://bitbucket.org/r2rml4net/core/wiki/Home
https://github.com/antidot/db2triples
http://www.antidot.net/


RML-BDM: Automatically Generating R2RML-Based Direct Mapping 155

(RDB2RDF) mapping mechanism and language to bridge the gap between RDBs
and the semantic web. These standardized namely Direct Mapping (DM) of rela-
tional data to RDF [4] and R2RML: RDB to RDF mapping language [5]. The
mapping engine of approaches/tools generates RDF dataset from RDB schema
and its instances. The main step in this engine is to decide how to represent
RDB schema concepts in terms of RDF classes and properties from tables and
columns. This is done by mapping RDB concepts to an ontology vocabulary, to
be used as the base to generate a set of RDF triples from relational data.

3.1 R2RML Standard

R2RML is a language for describing customized mappings from a relational data-
base to RDF dataset. The input of an R2RML mapping is an RDB schema and
its instance. The output is an RDF graph. This mapping definition is represented
as an RDF graph using the R2RML vocabulary and serialized in the RDF Turtle
syntax (RDF triple Language) [26] which is the recommended syntax to write
R2RML mapping documents. The structure of an R2RML mapping document
consists of one or more triples maps, which contains a logical table, a subject
map, and a number of predicate-object maps. The logical table can either be an
SQL table, an SQL view, or an SQL query statement. The triples map specifies a
rule for mapping each row of a logical table to a set of RDF triples. The subject
map contains the rules for generating the subject for each row, often represented
as an IRI. While the predicate-object map contains the rules for generating a
predicate maps and object maps (or referencing object maps) from the values in
the table row. The referencing object map allows using the subjects of another
triples map as an object. Since both triples maps may be based on different
logical tables, it may require a correlation between the logical tables.

Furthermore, a triples map specifies RDF triples corresponding to a logical
table while the subject map and the number of predicate-object maps used to
specify how the triples should be. So, RDF triples are created by combining the
subject map with a predicate map and a (referencing) object map, and applying
these three to each logical table row.

3.2 Direct Mapping (DM)

The DM is a notable one as the W3C candidate recommendation [4]. It is default
method to translate a relational database (schema and data) to an ontology
(OWL/RDF(S) and RDF triples) automatically through directly mapping with-
out user interaction. The ontology represented in OWL/RDF(S) format. The
RDF will reflect the exact data model of the relational data, rather than the
domain of the data. A direct mapping is typically working by transform each
table to a class, column to property, and relationship to an object property. Each
row in the table will be transformed to an individual that will be a member of



156 M.A.G. Hazber et al.

the table’s class. The foreign key transformed with a property that links one
individual to another. The range of other properties will be literals.

Furthermore, generating IRI (prefix-name space) for the triples of the RDB
schema and data (tables, columns in a table, and each row in a table) during the
mapping process produced by combining base IRI and table name for each table,
and base IRI, table name and column(s) name for each column in table. While
the IRI for each row in table produced by combining base IRI and primary key
column(s) of the table.

Therefore, a DM is the default and automatic way to translate RDBs into
RDF without any input from the user, while R2RML is a mapping language,
which allows users to manually define mappings. Thus, the DM can be repre-
sented in R2RML, which is accompanied with the DM specification, describing
a standard method for generating RDF from RDB without using a customized
mapping definition.

4 Approach and Algorithm

In this section, we introduced an approach that provides (RML-BDM) R2RML
based on direct mapping rules from RDB to RDF(S)-OWL for automatically
generating an R2RML mapping document from an RDB schema. Then any
R2RML engine (e.g. nknos-r2rml parser) can be used to create the RDF dataset
following the DM specification.

4.1 RDB Metadata Generation (DBsInfo Class)

In this section, we introduce a DBsInfo class, as a representation of an RDB’s
metadata, to be used as a source of information for RML-BDM generation. Basic
information needed to proceed includes table names, view names and columns’
properties that include column names, data types, size, and whether the column
is nullable, index, primary key (PK), unique key (UK), and/or foreign key (FK).
Moreover, the most important information needed when the attribute is FK are
Ref to Table (reference to table) and Ref to Column (reference to column). The
processor for producing a DBsInfo class, which contains all the information about
the database, is shown in the Fig. 1. This processor has three levels, which contain
forth algorithms (classes) to extract all the information about database tables,
views, columns, datatype, columns properties, PKs, FKs, UKs, columns index,
and relationships between tables through the foreign keys, etc. These algorithms
are FillDBsInfo, FillTablesInfo, FillColumnsInfo, and FillTableRelationships.

Briefly, FillDBsInfo is the main algorithm that extracts the general important
information about the database and invoking the FillTablesInfo algorithm to rep-
resent the functionality of tables and views. Algorithm FillTablesInfo extracts
all the information about table and view, in addition to the information of table
columns and table relationships with other tables by invoking algorithm Fill-
ColumnsInfo and algorithm FillTableRelationships, respectively.



RML-BDM: Automatically Generating R2RML-Based Direct Mapping 157

A DBsInfo provides an image of metadata obtained from an existing RDB.
The main purpose behind constructing a DBsIno class is to read essential meta-
data into memory outside the database’s secondary storage. In this study, the
DBsInfo class is designed to upgrade the semantic level of RDB and to play the
role of an intermediate stage for database migration from RDB to RDF acting
on both levels: schema translation and data conversion.

Get DBsInfo for converstion

FillDBsInfo(Tables_Info,Vie
ws_Info,Columns_Info)

DBsInfo

FillTablesInfo(Table_Name
,WithItFields)

FillColumnsInfo(Table_N
ame,Column_Name)

FillTableRelationShips
(Table_Name)

Call Function with input

Return output (Class) Function

DBsInfo

TablesInfo

TableRelationShips
ColumnsInfo

Fig. 1. Processor of algorithms for extracting RDB metadata (DBsInfo).

4.2 Rules of Approach: R2RML-Based Direct Mapping

This section defines the algorithms, which the mapping RDB schema to
R2RML file is based on DM approach (RML-BDM). The RDB2RDF algo-
rithm is the core of an R2RML engine. According to the algorithm ideas pro-
posed in W3C recommendation R2RML [5], DM [4] and our previous works
[6,12], we have designed a group of mapping algorithms, R2RML Genera-
tor (Algorithm 1), GreateMapClass (Algorithm 2), GenerateLogicalTable
(Algorithm 3), GenerateSubjectMap (Algorithm 4), GenerateTempate
(Algorithm 5), GeneratepredicateObject (Algorithm 6), and GenerateRe-
fObjMap (Algorithm 7), to achieve the R2RML-BDC mapping file. Concisely,
R2RML Generator is the main algorithm invoking the other algorithms to
implement the functionality of R2RML triples map.

– R2RML Generator: This algorithm is the main algorithm to generate the
R2RML mapping file based on the direct approach mapping.

– GreateMapClass: This algorithm creates map class name from the
table/view name. The map class name is a triples map that used to trans-
late each row in the logical table to number of RDF triples and link-connect
between triples map classes (classes corresponding to tables that have the



158 M.A.G. Hazber et al.

relationships with each other). The output is a map class name corresponding
table/view name.

– GenerateLogicalTable: This algorithm maps the table/view into logical
table using the r2rml format depending on DM method, where the table name
of RDB is rr:tableName in the logical table. This reflects which table/view is
mapped to generate triples from its rows by using an R2RML parser. Then
the return of this algorithm is the RDF triples.

– GenerateSubjectMap: This is one of the important algorithms. It generates
the unique IRI used as a subject for all the RDF triples generated from the row
of the table in rr:tableName. This algorithm invokes the GenerateTemplate
algorithm to the identification form of the primary key of each triple generated
from the row of table/view. The algorithm’s input is a table/view name of
DBsInfo.TablesInfo class. The DBsInfo.TablesInfo class used to store all the
columns of the table/view, the properties of the table and properties of its
columns, and its relationships to other tables.

– GenerateTemplate: This algorithm of generating IRI format for all triples
from base IRI, table name, and table columns especially from primary keys
(PKs), unique keys (UKs), or collect some columns that are not-null (when
the table does not have any PK or UK defined). Therefore, this algorithm is
characterized by the formation of a basic IRI key that is unrepeatable for all
the triples generated from the table rows, where each row maps to a set of
triples refer to the same subject (IRI key row) and all the triples of the table
rows refer to the table name in rr:Class. Then the return of this algorithm is
the RDF triples format in r2rml.

– GeneratepredicateObject: This algorithm maps the table/view column to
PredicateObjectMap that includes a pair of predicate and object map. It
generates the RDF terms for the predicate and object of a triple respectively.
The value of rr:predicate is IRI consists of base IRI, table name and the
columns name which are the algorithm inputs. The rr:object is a column
name. Then the return of this algorithm is the RDF triples format in r2rml
that will be associated with a subject (generated by the GenerateSubjectMap
algorithm).

– GenerateRefObjMap: This algorithm maps all the table relationships
to the reference triples, which are generated for referencing object maps,
through a rr:joinCondition to another table similar to local triples.
The referencing object map allows using the subjects of another triples
map as an object (produced by a predicate-object map). Since both
triples maps may base on different logical tables, it may require a link
between the logical tables. All relationships of the table are stored in the
DBsInfo.TableRelationShips, including FK Table Name, FK Column Name,
Ref To TableName, and Ref To Column Name, which are the inputs of algo-
rithm. Then the return of this algorithm is the RDF triples format in r2rml
corresponding to relationship of table with other tables. The output of the
algorithm is associated with the objectMap generated by a PredicateOb-
jectMap.



RML-BDM: Automatically Generating R2RML-Based Direct Mapping 159

Algorithm 1. R2RML Generator (DBsInfo, NS Prefix)
1: Input: DBsInfo Has all information of database schema, NS Prefix;

2: Output: R2RML Mapping File: RDF Dataset;

3: Var

4: TBs: TableInfo[] //Class as List to save list information of tables in DBsInfo;

5: Col: ColumnsInfo[] //Class as List of table columns information;

6: TBR: TableRelationShipInfo[]//Class as List of table relationships;

7: Triples:String //to save triple generated;

8: Begin

9: Triples ← θ;

10: TBs ← DBsInfo.Schema TableInfo;

11: for each table T in TBs do

12: Triples ← CreateMapClass (T.Table Name) ;

13: Triples ← Triples U GenerateLogicalTable (T.Table Name, T.Table Type) ;

14: Triples ← Triples U GenerateSubjectMap (T.Table Name, T ) ;

15: Col ← T.Table ColumnInfo;

16: for each Column C in Col do

17: Triples ← Triples U GeneratepredicateObjectMap (T.Table Name, C.Column Name) ;

18: end for

19: TBR ← T.Table RelationShipInfo;

20: for each TableRealtionShip TR in TBR do

21: Triples ← Triples U GenerateRefObjectMap(TR.getForeignKeyTable Name () ,

22: TR.getForeignKeyColumn Name () , TR.getReferenceToPKTable Name () ,

23: TR.getReferenceToPKColumn Name ());

24: end for

25: end for

26: Triples ← Triples U ”.” + ”\n\n”;

27: R2RMLMapping File ← Triples;

28: Return R2RML Mapping File // to Save it in RDF File Format Or TTL

29: End

Algorithm 2. CreateMapClass(Table Name)
1: Input: Tabl Name: Name of table or view that will be mapped;
2: Output: MapClassName : Triples //ex map:Students;
3: Begin
4: MapClassName ← ”map : ” + Table Name + ”s” + ”\n”;
5: return MapClassName;
6: End

5 Prototype Implementation

5.1 Architecture

Figure 2 shows the architecture of our RML-BDM processor prototype. Depend-
ing on the proposed algorithms, we have implemented an R2RML-BDB processor
prototype and have been integrated with nknos-r2rml parser5 [8]. The processor
takes system configuration, a DB connection to the relational database and a
base IRI as inputs and produces automatically the R2RML mapping document
and resulting RDF dataset as outputs shown by screen display.

The architecture and process flow of the R2RML-BDB processor prototype
is illustrated in Fig. 2, where the functional modules are briefly described as
follows.

5 https://github.com/nkons/r2rml-parser.

https://github.com/nkons/r2rml-parser


160 M.A.G. Hazber et al.

Algorithm 3. GenerateLogicalTable(Table Name,Table Type)
1: Input: Tabl Name: Name of table or view that will be mapped;
2: Table Type: table or view;
3: Output: Triples :Map table or view to Triple of LogicalTable;
4: Begin
5: Triples ← θ;
6: Triples ← Triples U ”rr : logicalTable[rr : tableName′” + ”\”” + Table Name +

”\”” + ”′; ]; ”;
7: Triples ← Triples U ”\n”;
8: return Triples;
9: End

Algorithm 4. GenerateSubjectMap(Table Name,T)
1: Input: Tabl Name: Name of table or view;
2: T : has all table Information (DBsInfo.Schema TableInfo);
3: Output: Triples :Map Row ID in table to subjectMap;
4: Begin
5: Triples ← θ;
6: Triples ← Triples U ”rr : subjectMap[” + ”\n”;
7: Triples ← Triples U GenerateTemplate(Table Name, T );
8: Triples ← Triples U ”rr : class NS : ” + Table Name + ”; \n”;
9: Triples ← Triples U ”]; ”;

10: Triples ← Triples U ”\n”;
11: return Triples;
12: End

– System config module: This module configures the execution environment for
the R2RML-BDB processor according to the user-specified settings, including:
1. DB config: This is used to specify all parameters for connection to any

database.
2. R2RML file input type: It is used to specify the file name and type of

R2RML document that will be used for storing an R2RML schema gen-
erated from RDB schema and then used it with any R2RML Parser to
produce RDF triples from RDB data.

3. RDF triples output type: It is used to specify the name file and type
(format) of RDF graph to be used for storing RDB data as RDF graph
format.

4. Base IRI (NS Prefix): This NS-IRI is used to specify the namespace prefix
of IRI for all the RDF triples.

– DB connection: This module uses to connect with the database (using JDBC
driver engine in Java) and make it ready for reading. The input is DB config
parameters and the output is DB-connection class.

– DB analysis processor: This module implements the algorithms of extracting
RDB metadata (DBsInfo) (Fig. 1) from RDB. Metadata is extracted from
RDB using JDBC driver engine in Java. The output is DBsInfo class that
has many classes to store all the information about RDB schema such as



RML-BDM: Automatically Generating R2RML-Based Direct Mapping 161

Algorithm 5. GenerateTemplate(Table Name,T)
1: Input: Tabl Name, T;

2: Output: Triples: Map Row ID in table to subjectMap;

3: Var

4: Cols Template ← θ; //Array to save List of columns to generate Row Id as SubjectMap;

5: NotNulls ← θ; // Array to save List of columns are not null;

6: PKs Count ← T.Table ColumnPKs.length;

7: UNQs Count ← T.Table ColumnUniques.length;

8: Begin

9: Triples ← θ;

10: if (PKs Count == 0 && UNQs Count == 0) then

11: NotNulls=getNotNullColumns(idx TBs);

12: end if

13: if (PKs Count > 0) then

14: Cols Template=DBs Info.Schema TableInfo[idx TBs].Table ColumnPKs;

15: else if (UNQs Count > 0) then

16: Cols Template=DBs Info.Schema TableInfo[idx TBs].Table ColumnUniques;

17: else if (NotNulls.length > 0) then

18: Cols Template=NotNulls;

19: if (Cols Template.length > 2) then

20: Cols Template=getPartoFColumnsLeftPictureFileds(idx TBs,Cols Template,3);

21: end if

22: else

23: Cols Template=ConvertArrayListToStringArray(DBs Info.Schema TableInfo[idx TBs].

Columns Name);

24: if (Cols Template.length > 2) then

25: Cols Template=getPartoFColumnsLeftPictureFileds(idx TBs,Cols Template,3);

26: end if

27: end if

28: Triples ← Triples U ”rr : template′” + pfx.NS + Table Name + ” ”;

29: for each column Col in Cols Template do

30: Triples ← Triples U ”{\”” + Col + ”\”}”;

31: end for

32: Triples ← Triples U ”′; ”;
33: Triples ← Triples U ”\n”;

34: return Triples;

35: End

Algorithm 6. GeneratepredicateObjectMap(Table Name,Column Name)
1: Input: Tabl Name, Column Name;
2: Output: Triples :Map Column to Triple of PredicateObjectMap;
3: Begin
4: Triples ← θ;
5: Triples ← Triples U””rr : predicateObjectMap[” + ”\n”;
6: Triples ← Triples U ”rr : predicate NS : ” + Table Name + ”.” +

Column Name + ”; \n”;
7: Triples ← Triples U ”rr : objectMap[rr : column\”” + Column Name + ”\”]” +

”\n”;
8: Triples ← Triples U ”]; ”;
9: Triples ← Triples U ”\n”;

10: return Triples;
11: End



162 M.A.G. Hazber et al.

Algorithm 7 . GenerateRefObjectMap(FK Table Name, FK Column Name,
Ref To TableName, Ref To Column Name)
1: Input: FK Table Name: Name of table that has FK;
2: FK Column Name : Name of column that is FK;
3: Ref To TableName: Name of table referred to it;
4: Ref To Column Name: Name of column referred to it;
5: Output: Triples :Map relationships to Triples of RefObjectMap;
6: Begin
7: Triples ← θ;
8: Triples ← Triples U ”rr : predicateObjectMap[” + ”\n”;
9: Triples ← Triples U ”rr : predicate NS : ” + FK Table Name + ”.” + FK

Column Name + ”; ” + ”\n”;
10: Triples ← Triples U ”rr : objectMap[” + ”\n”;
11: Triples ← Triples U ”a rr : RefObjectMap; ” + ”\n”;
12: Triples ← Triples U ”rr : parentTriplesMap” + CreateMapClass(Ref To

TableName) + ”; ” + ”\n”;
13: Triples ← Triples U ”rr : joinCondition[” + ”\n”;
14: Triples ← Triples U ”rr : child\”” + FK Column Name + ”\”; ” + ”\n”;
15: Triples ← Triples U ”rr : parent\”” + Ref To Column Name + ”\”; ]” + ”\n”;
16: Triples ← Triples U ”]; ” + ”\n”;
17: Triples ← Triples U ”]; ”;
18: Triples ← Triples U ”\n”;
19: return Triples;
20: End

DB Config

R2RML File
Input type

RDF Triples
Output Type

DB 
Connection Schema

Data

RDB

DB analysis 
Processor

Generator R 2RML Mapping 
File based on Direct mapping 

specification 

Direct 
R2RML 
Mapping 

FileDBsInfo
(Tables,Views,colu
mns,datatypes,size
s,PKs,FKs,relations
hips,Indexes,Uniqu

es, nulls,…)

R2RML Parser 
(nknos-R2RML parser )Rows of tables or views

Generator RDF Triples

RDF Triples 
Store

SPARQL 

2

1

3

4

5
6

10

11

9

Display RDF 
Triples

7

U
se

r c
an

 b
e 

m
od

ify
 th

e 
R

2R
M

L 
M

ap
pi

ng
 fi

le
D

ire
ct

ly
 fr

om
 th

e 
S

ys
te

m
 in

te
rfa

ce

8

System Config

User
Interface

Fig. 2. A general overview of the R2RML mapping generation process in RML-BDM
system.



RML-BDM: Automatically Generating R2RML-Based Direct Mapping 163

tables, views, columns, data types, sizes, constraints, PKs, FKs, relationships,
indexes, unique, and nulls, etc.

– Generator R2RML Mapping File: This module is used to automatically gen-
erate an R2RML mapping file based on the behavior of the DM specification
from the DBsInfo class, according to our approach algorithms. The input of
this processor is DBsInfo (contains all information about RDB schema) the
output is R2RML mapping file formatted as rdf format (or TTL). The output
file can encapsulate all mapping results into a standard input for any R2RML
processor later to produce a set of RDF triples that is similar to those resulting
from DM.

– R2RML Parser (RDF processor): It is used to generate a real RDF triples
file from RDB data depending on R2RML mapping file to make it accessible
to RDF store. Moreover, this stage is to satisfy our approach for generating
R2RML mapping file. We used the open source tool nkons-r2rml-parser (or
use any other R2RML processor) which is integrated with our RML-BDM
system to generate a set of triples that correspond to the ones generated by
DM approach.

– Screen display (user interface): The user can specify the configuration set-
ting for execution environments (system config module), display the database
information-schema (DBsInfo class), R2RML mapping file, and the resulting
RDF triples on the tool screen through the user interface.

5.2 Implementation

The algorithms described in this paper have been implemented in RML-BDM
processor prototype and integrated with nkons-r2rml-parser [8]. This prototype
has been implemented on Netbeans IDE 7.3.1 (J2SE, JDK 1.7) platform. Thus,
the inputs of processor are user-specific configuration system, a SQL connec-
tion to the relational database, and a base IRI. Meanwhile, the outputs are
produced automatically, including the DBsInfo class, an R2RML mapping doc-
ument and resulting RDF dataset. These outputs are shown in screen display,
and the R2RML mapping document and RDF triples can be saved in an RDF
file in different syntax formats (RDF/XML, N-TRIPLES, TURTLE (or TTL),
and N3). Moreover, the RDF mapping file can be used with any R2RML parser
for converting relational data to RDF triples. Current system prototype supports
SQL connections to MySQL Server and already included drivers for major com-
mercial and open source databases, including Postgres, SQL Server and Oracle.

5.3 Experimental Results and Discussion

We carried out RDB metadata and R2RML mapping extraction experiments
with our R2RML-BDC tool on a Laptop with configurations as Windows 7 (32-
bit), CPU Intel(R) Core i5-2410M 2.30 GHz, RAM 6 GB. A prototype for this
experiment is implemented using MYSQL, Java programming language, Net-
beans IDE 7.3.1 and Apache Jena tools. Experimental tests on the effectiveness
and validity of our RDB2RDF mapping algorithms were conducted with the



164 M.A.G. Hazber et al.

Table 1. A list of RDB schema and data sizes

RDB SizeDB SizeDB View Table Column FKs PKS Rows

(kb) Schema(kb)

rdblab 100035.2 160 0 6 16 5 7 100200

Iswc 20176 256 0 9 46 11 13 90000

Tracker 20000 1056 0 25 162 38 25 95003

Sakila 9132.26 625 7 16 131 22 18 92227

Norhwind 14048 576 16 13 191 13 16 120943

Table 2. A list of results for our approach

RDB Time of extract metadata + SizeR2RML R2RML SizeRDF RDF

GenerateR2RMLFile(ms) (kb) Tuples (mb) triples

rdblab 295 6.45 181 58.9 752916

Iswc 685 14.8 387 74.7 756094

Tracker 3551 50 1276 103 1083491

Sakila 3697 37.8 956 88 953581

Norhwind 4069 50.1 1141 133 1278842

Fig. 3. Important factors of RDBs to build R2RML mapping file. (Color figure online)



RML-BDM: Automatically Generating R2RML-Based Direct Mapping 165

Fig. 4. Dataset sizes in RDBs (schema and data). (Color figure online)

Fig. 5. Schema sizes in RDBs and R2RML mapping files. (Color figure online)

schema sizes of the five RDBs created with MYSQL Server and tested in our
experiments. These RDBs are rdblab [15], iswc6, tracker7, sakila8, and North-
wind9, which covering various of important RDB concepts such as tables, views,

6 http://d2rq.org/example/iswc-mysql.sql.
7 http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1 appe.html#5-1.
8 http://mysql-tools.com/en/downloads/mysql-databases/4-sakila-db.html.
9 https://code.google.com/p/northwindextended/downloads/detail?

name=Northwind.MySQL5.sql.

http://d2rq.org/example/iswc-mysql.sql
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1_appe.html#5-1
http://mysql-tools.com/en/downloads/mysql-databases/4-sakila-db.html
https://code.google.com/p/northwindextended/downloads/detail?name=Northwind.MySQL5.sql
https://code.google.com/p/northwindextended/downloads/detail?name=Northwind.MySQL5.sql


166 M.A.G. Hazber et al.

Fig. 6. The running time of algorithmic routines in RML-BDM.

columns, constraints, single or composite primary key, one or many foreign key in
one table, and all types of relationships. Moreover, some databases have encoded
a parent-child relationship which one table as parent related to many tables as
child.

First, the databases information concepts that automatically extracted by
our system are shown in Table 1. These concepts are the important factors
for building R2RML mapping files and affecting the algorithm performance for
extracting RDB metadata, generating R2RML mapping file and converting data
of RDB to RDF datasets. Second, the results of R2RML schema tuples and RDF
triples are shown in Table 2. The two fields namely SizeDBschema (in Table 1)
and SizeR2RML (in Table 2) show the sizes of the RDBs schema compared to
R2RML mapping files that were extracted. From these two fields, we can observe
that the ontology is the best to store the schema and infer the knowledge from
the ontology. Figures 3 and 4 are the analysis bar-chart of the Table 1. Figure 4
shows schema sizes and rows of the RDBs that tested in our experiments. Figure 5
reveals the best case to store the schema in ontology compared to RDB. The
X-axis used to show the different domain datasets, whilst Y-axis shows the size
of the database in kilobytes (kb). Moreover, the performance analysis of the dif-
ferent databases is shown in the Fig. 6. The execution time of creating R2RML
mapping file included the running time for extracting RDB metadata-DBsInfo
(RDB have data) and generating R2RML mapping file in algorithm R2RML
Generator. Therefore, from the tables and figures analyses, we can conclude
what are the most important factors for extracting R2RML mapping document
from RDB and affecting the time of extraction. Although the size of tracker
database greater than the size of sakila and northwind database, but the execu-
tion time of R2RML Generator algorithm is smaller, because there are other



RML-BDM: Automatically Generating R2RML-Based Direct Mapping 167

factors have influenced the execution time an R2RML mapping file generator
with the size of the database.

6 Conclusion and Future Work

We introduced an approach tool for the automatically generating an R2RML
mapping document from an RDB schema, and any R2RML engine can be use this
mapping document to create a set of RDF dataset that following the DM spec-
ification. RML-BDM is a tool that enables domain experts and non-experts to
automatically create an R2RML mapping files from RDBs by using the R2RML
format. RML-BDM has been integrated with nknos-r2rml parser that can export
RDB contents as RDF graphs, based on an R2RML mapping document.

The process was tested using five RDBs having different sizes of schema
and covering several RDB concepts and types of relationships between tables.
In future works, we will add other tools to address an expressing customized
mappings from various types of data sources such as XML, NoSQL, and object-
oriented to an RDF triples.

Acknowledgments. This work is supported by National Natural Science Founda-
tion of China under grants 61572221, 61173170, 61300222, 61370230, 61433006 and
U1401258, Innovation Fund of Huazhong University of Science and Technology under
grants 2015TS069 and 2015TS071, Science and Technology Support Program of Hubei
Province under grant 2014BCH270 and 2015AAA013, and Science and Technology
Program of Guangdong Province under grant 2014B010111007.

References

1. Shadbolt, N., Hall, W., Berners-Lee, T.: The semantic web revisited. IEEE Intell.
Syst. 21(3), 96–101 (2006)

2. Manola, F., Miller, E., McBride, B.: RDF 1.1 Primer. W3C Working Group Note,
24 June 2014 (2014)

3. He, B., Patel, M., Zhang, Z., Chang, K.C.-C.: Accessing the deep web. Commun.
ACM 50(5), 94–101 (2007)

4. Arenas, M., Bertails, A., Prud, E., Sequeda, J.: A direct mapping of relational
data to RDF. W3C Recommendation, 27 September 2012. http://www.w3.org/
TR/rdb-direct-mapping/

5. Souripriya Das, O., Seema Sundara, O., Cyganiak, R.: R2RML: RDB to RDF
mapping language. W3C. http://www.w3.org/TR/r2rml/

6. Hazber, M.A.G., Li, R., Zhang, Y., Xu, G.: An approach for mapping relational
database into ontology. In: Proceedings of the 12th Web Information System
and Application Conference (WISA 2015), Jinan, Shangdong, China, pp. 120–125
(2015)

7. Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and experiences of R2RML-
based SPARQL to SQL query translation using morph. In: Proceedings of the 23rd
International Conference on World Wide Web (WWW 2014), New York, USA,
pp. 479–490 (2014)

http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/rdb-direct-mapping/
http://www.w3.org/TR/r2rml/


168 M.A.G. Hazber et al.

8. Konstantinou, N., Kouis, D., Mitrou, N.: Incremental export of relational database
contents into RDF graphs. In: Proceedings of the 4th International Conference on
Web Intelligence, Mining and Semantics (WIMS 2014), Thessaloniki, Greece, p. 33
(2014)

9. Michel, F., Montagnat, J., Faron-Zucker, C.: A survey of RDB to RDF trans-
lation approaches and tools. Research Report. I3S (2014). https://hal.inria.fr/
hal-00903568

10. Villazn-Terrazas, B., Hausenblas, M.: RDB2RDF Implementation Report.
W3C Working Group Note, 14 August 2012. http://www.w3.org/TR/rdb2rdf-
implementations/

11. Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr., T., Auer, S.,
Sequeda, J., Ezzat, A.: A survey of current approaches for mapping of relational
databases to rdf. W3C RDB2RDF XG Incubator Report W3C (2009)

12. Mohamed, H., Jincai, Y., Qian, J.: Towards integration rules of mapping from
relational databases to semantic web ontology. In: 2010 International Conference
on Web Information Systems and Mining (WISM), Sanya, China, pp. 335–339
(2010)

13. Vavliakis, K.N., Grollios, T.K., Mitkas, P.A.: RDOTE publishing relational data-
bases into the semantic web. J. Syst. Softw. 86(1), 89–99 (2013)

14. Sequeda, J.F., Arenas, M., Miranker, D.P.: On directly mapping relational data-
bases to RDF and OWL. In: Proceedings of the 21st international conference on
World Wide Web (WWW 2012), Lyon, France, pp. 649–658 (2012)

15. Hazber, M.A.G., Li, R., Gu, X., Xu, G., Li, Y.: Semantic SPARQL query in a
relational database based on ontology construction. In: Proceedings of the 11th
International Conference on Semantics, Knowledge and Grids (SKG 2015). Beijing,
China (2015)

16. Čerāns, K., Būmans, G.: RDB2OWL: a language and tool for database to ontology
mapping. In: Proceedings of the CAiSE 2015 Forum at the 27th International
Conference on Advanced Information Systems Engineering (CAiSE 2015), Kista,
Sweden, pp. 81–88 (2015)

17. Barrasa, J., Corcho, Ó., Gómez-Pérez, A.: R2O, an extensible and semantically
based database-to-ontology mapping language. In: Second Workshop on Semantic
Web and Databases(SWDB 2004), pp. 1069–1070 (2004)

18. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: light-
weight linked data publication from relational databases. In: : Proceedings of the
18th International Conference on World Wide Web (WWW 2009), pp. 621–630
(2009)

19. Bizer, C., Cyganiak, R.: D2R server-publishing relational databases on the seman-
tic web. In: Presented at the 5th International Semantic Web Conference (ISWC
2006), Athens, GA, USA (2006)

20. OpenLink Virtuoso Universal Server. http://virtuoso.openlinksw.com
21. Sequeda, J.F., Tirmizi, S.H., Corcho, O., Miranker, D.P.: Survey of directly map-

ping sql databases to the semantic web. Knowl. Eng. Rev. 26(4), 445–486 (2011)
22. de Medeiros, L.F., Priyatna, F., Corcho, O.: MIRROR: automatic R2RML mapping

generation from relational databases. In: Cimiano, P., Frasincar, F., Houben, G.-J.,
Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 326–343. Springer, Heidelberg
(2015)

23. Dimou,A.,Vander Sande,M.,Colpaert, P.,Verborgh,R.,Mannens,E.,VandeWalle,
R.: RML: a generic language for integrated RDF mappings of heterogeneous data. In:
Proceedings of the 7th Workshop on Linked Data on the Web (LDOW 2014), Seoul,
Korea (2014)

https://hal.inria.fr/hal-00903568
https://hal.inria.fr/hal-00903568
http://www.w3.org/TR/rdb2rdf-implementations/
http://www.w3.org/TR/rdb2rdf-implementations/
http://virtuoso.openlinksw.com


RML-BDM: Automatically Generating R2RML-Based Direct Mapping 169

24. Neto, L.E.T., Vidal, V.M.P., Casanova, M.A., Monteiro, J.M.: R2RML by assertion:
a semi-automatic tool for generating customised R2RML mappings. In: Cimiano,
P., Fernández, M., Lopez, V., Schlobach, S., Völker, J. (eds.) ESWC 2013. LNCS,
vol. 7955, pp. 248–252. Springer, Heidelberg (2013)

25. Pequeno, V.M., Vidal, V.M., Casanova, M.A., Neto, L.E.T., Galhardas, H.: Spec-
ifying complex correspondences between relational schemas and RDF models for
generating customized R2RML mappings. In: Proceedings of the 18th International
Database Engineering & Applications Symposium, Porto, Portugal, pp. 96–104
(2014)

26. Prud’hommeaux, E., Carothers, G., Beckett, D., Berners-Lee, T.: RDF 1.1 Turtle:
terse RDF triple language. World Wide Web Consortium. http://www.w3.org/
TR/turtle/. Accessed 24 Dec 2014

http://www.w3.org/TR/turtle/
http://www.w3.org/TR/turtle/

	An Approach for Automatically Generating R2RML-Based Direct Mapping from Relational Databases
	1 Introduction
	2 Related Work
	3 Basic Concepts
	3.1 R2RML Standard
	3.2 Direct Mapping (DM)

	4 Approach and Algorithm
	4.1 RDB Metadata Generation (DBsInfo Class)
	4.2 Rules of Approach: R2RML-Based Direct Mapping

	5 Prototype Implementation
	5.1 Architecture
	5.2 Implementation
	5.3 Experimental Results and Discussion

	6 Conclusion and Future Work
	References


