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Abstract. Flash disks are being widely used as an important alterna-
tive to conventional magnetic disks, although accessed through the same
interface by applications, their distinguished feature, i.e., different read
and write cost makes it necessary to reconsider the design of existing
replacement algorithms to leverage their performance potential.

We propose an adaptive cost-aware replacement policy based on aver-
age hit distance (AHD) to control the movement of buffer pages when
hits occur, thus pages that are re-visited within AHD will stay still. Such
a mechanism makes our method adaptive to workloads of different access
patterns. The experimental results show that our method not only adap-
tively tunes itself to workloads of different access patterns, but also works
well for different kind of flash disks compared with existing methods.

1 Introduction

Social computing related applications bring great impacts to our daily lives,
while produce large volume of data that need to be processed more efficiently.
To this end, researchers developed flash-based storage devices to accelerate the
computation. Flash-based storage devices have been steadily expanded into per-
sonal computer and enterprise server markets with ever increasing capacity of
their storage and dropping of their price. A flash disk usually demonstrates
extremely fast random read speeds, but slow random write speeds, and the best
attainable performance can hardly be obtained from database servers without
elaborate flash-aware data structures and algorithms [1], which makes it neces-
sary to reconsider the design of IO-intensive and performance-critical software
to achieve maximized performance.

During the past years, researchers proposed many buffer replacement algo-
rithms [2–11] addressing the asymmetric read and write operation of flash disks,
these methods, however, cannot work well for workloads suffering from “tem-
poral locality”. Here “temporal locality” means that in practice, a workload
of databases, Web servers and operating systems, usually contains some pages
that are requested with high frequency within a short time, but will not be
requested in the future. We call such pages once-frequently-requested pages
and the remaining pages except once-requested pages frequently-requested pages.
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As once-frequently-requested pages will not be requested again in the future,
keeping them in the buffer for a long time does not facilitate the improvement
of system performance. Although existing methods [2–11] can tell the difference
between pages that are requested only once and pages that are requested multi-
ple times, they cannot tell the difference between once-frequently-requested pages
and frequently-requested pages.

We propose an optimized buffer replacement strategy, namely ABR, which
uses average hit distance (AHD) to control the movement of buffer pages when
hits occur, thus pages that are re-visited within a distance less than AHD will
stay still. As a result, once-frequently-requested pages can also be flushed out
quickly. This mechanism makes ABR adaptive to workloads of different access
patterns and can really improve the hit ratio of frequently-requested pages. More-
over, ABR maintains a buffer directory, namely, ghost buffer, to remember
recently evicted buffer pages. The reference count of each entry in the ghost
buffer is used to adaptively determine the length of the buffer list and the inser-
tion position when it is re-visited, such that ABR can adaptively decide how
many pages each list should maintain in response to an evolving workload.

2 Background and Related Work

2.1 Flash Memory

Flash disks usually consist of NAND flash chips. The three basic operations are
read, write, and erase. Read and write operations are performed in unit of a
page. Erase operations are performed in unit of a block, which is much larger
than a page, usually contains 64 pages. NAND flash memory does not support
in-place update, the write to the same page cannot be done before the page is
erased. To overcome the physical limitation of flash memory, flash disks employ
an intermediate software layer called Flash Translation Layer (FTL) to emulate
the functionality of block device and hide the latency of erase operation as much
as possible.

2.2 Buffer Replacement Policies

Assuming that the secondary storage consists of magnetic disks, the goal of
existing buffer replacement policies is to minimize the buffer miss ratio for a
given buffer size. Existing studies on magnetic disks, such as 2Q [12], ARC [13],
LIRS [14], CLOCK [15], LRU-K [16], FBR [17] and LRFU [18] aim at improving
the traditional LRU heuristic, which are not efficient when applied to flash disks
due to the asymmetric access times.

The flash aware buffer policy (FAB) [3] maintains a block-level LRU list, of
which pages of the same erasable block are grouped together. FAB is mainly used
in portable media player applications where most write requests are sequential.

BPLRU [4] also maintains an block-level LRU list. Different from FAB,
BPLRU uses an internal RAM of SSD as a buffer to change random write



138 X. Tang et al.

to sequential write to improve the write efficiency and reduce the number of
erase operation. However, this method cannot really reduce the number of write
requests from main memory buffer.

Clean first LRU (CFLRU) [2] is a flash aware buffer replacement algorithm
for operating systems. It was designed to exploit the asymmetric performance
of flash IO by first paging out clean pages arbitrarily based on the assumption
that writing cost is much more expensive. The LRU list is divided into two
regions: the working region and the clean-first region. Each time a miss occurs,
if there are clean pages in the clean-first region, CFLRU will select the least
recent referenced clean page in the clean-first region as a victim. Compared with
LRU, CFLRU reduces the write operations significantly.

Based on the same idea, [5] makes improvements over CFLRU by organizing
clean pages and dirty pages into different LRU lists to achieve constant com-
plexity per request. In CFDC [6], dirty pages that are close to each other in the
dirty queue are grouped into different clusters. Compared with CFLRU, CFDC
improves the write efficiency.

Different from the above methods, ACR [7] addresses the problem that the
ratio of write to read of different flash disks may vary significantly, and is adaptive
to different types of flash disks.

3 The ABR Policy

3.1 Data Structures

As shown in Fig. 1, ABR splits the LRU list into two LRU lists, i.e., LC and LD.
LC keeps clean pages and LD dirty pages. Assume that the buffer contains s
pages when it is full, then |LC ∪ LD| = s ∧ LC ∩ LD = ∅. Further, LC(LD) is
divided into LCT (LDT ) and LCB(LDB), and LCT ∧ LCB = ∅(LDT ∧ LDB = ∅),
LCT (LDT ) contains frequently-requested clean (dirty) pages while LCB(LDB)
contains once-requested and once-frequently-requested clean (dirty) pages, and
frequently-requested clean (dirty) pages that are not referenced for a long time.

The sizes of LCB and LDB will be dynamically adjusted with the change of
access patterns, which are controlled by δC and δD, respectively.

The difference of data structure between ACR [7] and ABR lies in that we
use a ghost buffer LH in ABR to trace the past references by recording the page
id of those pages that are paged out from LC or LD. Fixing this parameter is
potentially a tuning question, in our experiment, |LH | = s/2. The notions used
in this paper are shown in Table 1.

3.2 Cost-Based Eviction

If the buffer is full and the currently requested page p is in the buffer, it is served
without accessing the auxiliary storage, otherwise, we will select from LC or LD

a page x for replacement according to the metrics of “cost”, not clean or dirty.
The cost associated to LC (LD), say CLC

(CLD
), is a weighted value denoting

the overall replacing cost.
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Table 1. Notations used in this paper

Notation Description

LC the clean list

LCT the top portion of LC

LCB the bottom portion of LC

δC the number of clean pages contained in LCB

LD the dirty list

LDT the top portion of LD

LDB the bottom portion of LD

δD the number of dirty pages contained in LDB

LH the ghost buffer containing page id of evicted pages

Cr the cost of reading a page from a flash disk

Cw the cost of writing a dirty page to a flash disk

s the size of the buffer in pages

ρrd the number of physical read operations of LD

ρwd the number of physical write operations of LD

ρrc the number of physical read operations of LC

ιd the number of logical operations of LD

ιc the number of logical operations of LC

The basic idea is that the length of LC (LD) should be proportional to the
ratio of the replacement cost of LC (LD) to that of all buffer pages according
to recent m requests, in our experiment, m = s/2. This ratio can be formally
represented as Formula 1:

β = CLC
/(CLC

+ CLD
) (1)

The policy of selecting a victim page can be stated as: If |LC | < β · s, it
means LD is too long, and the LRU page in LD should be paged out, otherwise
the LRU page of LC should be paged out.

Hereafter, we call the read and write operations that are served in buffer
are logical, and ones that reach the disk are referred to as physical. Logical and
physical operations are two different operations, and they all affect the overall
performance. Assume that n is the number of pages in a file and s the number of
pages allocated to the file in the buffer. The probability that a logical operation
will be served in the buffer is s/n, and the probability that a logical operation
will be translated to a physical one is (1 − s/n). The probability is used to
compute the values of CLC

and CLD
, as shown by Formulas 2 and 3, for which

the meaning of each notion is shown in Table 1.

CLC
= (ιc · (1 − s/n) + ρrc) · Cr (2)

CLD
= ιd · (1 − s/n) · (Cw + Cr) + ρrd · Cr + ρwd · Cw (3)
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Fig. 1. Data organization of ABR

3.3 The ABR Algorithm

Simply using the above eviction strategy cannot solve the “temporal locality”
problem. We introduce to use average hit distance to tackle this problem.

Average Hit Distance. For a sequence of requests R = “r1, r2, · · · , rn”, where
each ri refers to a data page, assume that ri and rj(i < j) refer to the same page
p and no other request rk(i < k < j) refer to p, we define the Hit Distance d of
p between ri and rj is p.d = j − i. p.d = 0, if the number of requests ≤ 1 on p.

For example, for “r1(p1), r2(p2), r3(p3), r4(p1), r5(p4), r6(p1)”, if the current
request is r4, we have p1.d = 3 and p2.d = p3.d = 0. If the current request in r6,
then p1.d = 2. To differentiate the two Hit Distances of p1, we denote them as
r4.d = 3 and r6.d = 2, similarly, we have r1.d = r2.d = r3.d = r5.d = 0.

Definition 1 (Average Hit Distance(AHD, ξ)). For the recent n requests
R=“r1, r2, · · · , rn”, R+ =“r

′
1, r

′
2, · · · , r

′
m” is the set of m requests of R (m ≤ n),

where each request r of R+ satisfies r.d > 0. The Average Hit Distance ξ of R is
the average number of the Hit Distance of requests in R+, as shown in Formula 4.

ξ =
∑m

i=1 ri.d

m
(4)

For example, assume the recent 8 requests are R =“r1(p1), r2(p2), r3(p2),
r4(p3), r5(p2), r6(p4), r7(p1), r8(p2)”, we have r1.d = 0, r2.d = 0, r3.d = 1,
r4.d = 0, r5.d = 2, r6.d = 0, r7.d = 6, r8.d = 3. According to Definition 1, the
AHD for R is ξ = (r3.d+r5.d+r7.d+ r8.d)/4 = 3.

Intuitively, if the Hit Distance of a request r on p is greater than or equal to
AHD, i.e. r.d ≥ ξ, it means that the interval between two continuously access to
p is relatively large, thus p should be considered as a frequently-requested page,
otherwise, if p will not be re-visited in the future, even if p is visited frequently
within a short time, as its Hit Distance is less than AHD, p should be considered
as a once-frequently-requested page instead of a frequently-requested page.
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We use AHD to determine whether a hit on page p should be taken into
account. Let r be the request corresponding to the hit on p, the idea of changing
p.hit can thus be stated as Formula 5.

p.hit =
{

p.hit, r.d < ξ
p.hit + 1, otherwise

(5)

However, there are still two problems that are needed to be solved before using
the above method, otherwise, some frequently-requested pages with Hit Distance
less than AHD will be wrongly moved out from the buffer, as shown in below.

P1 : where is the start position to compute Hit Distance?
P2 : what is the upper bound of AHD?
Example and Solution to P1. As shown in Fig. 2 (A), the dashed line rep-

resents a sequence of requests, where each large red dot denotes a request on
page p, while each small black dot denotes a request on other page. d1 to d4

represent the Hit Distance of r2 to r5, respectively. If the current request is r2,
we have r2.d = d1. Since d1 < AHD, p.hit will not increase. Similarly, p.hit will
not increase when processing r3, r4 and r5. Such case usually occurs if p is a
page containing meta data or the root node of a B-tree index.

In our method, p.hit will not increase when processing r2, but will increase
by 1 when processing r3. The Hit Distance of r3 is the distance from r1 to r3,
instead of that between r2 and r3. That is, we use a flag to denote whether a
certain request is a valid one. When processing r2, since d1 < AHD, r2 is marked
as an invalid request. When computing the Hit Distance of r3, we will check the
previous valid request of p, then we have r3.d=d

′
1=d1+d2>AHD. Similarly, p.hit

will not increase when processing r4, but will increase by 1 when processing r5,
because r4.d=d3< AHD, while r5.d=d

′
2=d3+d4>AHD.

Example and Solution to P2. As shown in Fig. 2 (B), the thick line repre-
sents pages in the buffer. The circled blue numbers ➀ and ➁ represent two cases
of AHD, the red dots denote the requests on page p. δC and δD are the size of
LCB and LDB, respectively. Notice that the newly entered pages that have no
page id in the ghost buffer are always inserted at the MRU position of either
LCB or LDB .

Case ➀ (AHD > δC+δD
2 ): In this case, there may exist some request (e.g., r2

on p) such that δC+δD
2 < r2.d < AHD ∧2 · r2.d > (δC + δD). Thus r2 is an invalid

request and p.hit doesn’t increase by 1, thus p will not be moved to LCT or LDT

when processing r2. As a result, even if p is frequently revisited with a Hit Distance
relatively large, p may be flushed out when processing r3 in the future.

Case ➁ (AHD ≤ δC+δD
2 ): In this case, for any request r2 on p satisfying

r2.d ≤ AHD, we have 2 · r2.d ≤ (δC + δD). Thus in the worst case, p still can
be moved to LCT or LDT when processing r3.

Based on the above discussion, we use the following Formula to get AHD,
not Formula 4.

ξ =
{ ∑m

i=1 ri.d

m , ξ ≤ δC + δD

(δC + δD)/2, otherwise
(6)
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Fig. 2. Problems about Hit Distance and AHD. (Color figure online)
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Fig. 3. Illustration of computing AHD. (A) is the structure of an item of a hash table
H, (B) is the structure of an item of a priority queue Q, (C.1) to (C.7) show the process
of a reference sequence.
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AHD Computing. To compute the AHD of the past n requests, we use two
data structures, a hash table H and a priority queue Q. For a reference sequence
R, H is used to maintain the position of the most recent valid request on each
page. Q is used to maintain the recent n requests. Figure 3 (A) shows the struc-
ture of an item of H, the key is a page id, the value is the position of an entry
in Q, which denotes the start position to compute Hit Distance. Figure 3 (B)
shows the structure of an item of Q, which consists of five member variables,
pid is the page id of p, d is the Hit Distance of r, T is the order of r in a refer-
ence sequence, hit is the reference count of p after processing r, bV alid is a flag
denoting whether the current request r on p is a valid request. If bV alid = T, it
means the position of p in H should be changed according to r.

Let R=“r1(p1),r2(p2),r3(p1),r4(p1),r5(p3),r6(p1),r7(p3)” be a reference
sequence. Assume δC + δD = 4 and n = 6 (Q

′
s length) in this example, i.e.

we compute the AHD of the recent 6 requests. Initially, H and Q are both
empty. The process of R is as follows.

(1) process r1(p1). The status is shown in Fig. 3 (C.1).
(2) process r2(p2). The status is as Fig. 3 (C.2).
(3) process r3(p1). As shown in Fig. 3 (C.3), p1 is hit and r3.T = 3. From H

in Fig. 3 (C.2) we know p1’s valid position is 1 and ξ = 0, then we have r3.d = 2
and r3.hit = 1 as r3.d ≥ ξ = 0. Thus r3.bV alid =T and we change p1’s valid
position in H to 3. Finally, we set the value of ξ as ξ = r3.d/1 = 2.

(4) process r4(p1). As shown in Fig. 3 (C.4), p1 is hit and r4.T = 4. From
H in Fig. 3 (C.3) we know that p1’s valid position is 3 and ξ = 2, then we have
r4.d = 1 and r4.hit = 1 as r4.d ≤ ξ = 2. Thus r4.bV alid =F and p1’s valid
position is still equal to 3. Finally, ξ = r3.d+r4.d

2 = 1.5.
(5) process r5(p3). It’s the first time p3 enters into Q, the value of its member

variables is shown in Fig. 3 (C.5), p3’s valid position in H is set to 5.
(6) process r6(p1). As shown in Fig. 3 (C.6), p1 is hit and r6.T = 6. From H

in Fig. 3 (C.5) we know that p1’s valid position is 3 and ξ = 1.5, then we have
r6.d = 3 and r6.hit = 2 since r6.d ≥ ξ = 1.5. Thus r6.bV alid =T and we change
p1’s valid position in H to 6. Finally, ξ = r3.d+r4.d+r6.d

3 = 2.
(7) process r7(p3). As shown in Fig. 3 (C.7), p3 is hit and r7.T = 7. As the

size of Q is 6, before r7 is added to the tail of Q, r1 is firstly removed from the
head of Q. From H in Fig. 3 (C.6) we know that p3’s valid position is 5 and ξ = 2,
then we have r7.d = 2 and r7.hit = 1 since r7.d ≥ ξ = 2. Thus r7.bV alid =T
and we change p3’s valid position in H to 7. Finally, as r1 is not a hit request,
we just need to add 1 and r7.d to the denominator and numerator of Formula 4
respectively, i.e. ξ = r3.d+r4.d+r6.d+r7.d

4 = 2, otherwise, 1 and r1.d are firstly
subtracted from the denominator and numerator of Formula 4, respectively.

As illustrated in this example, for each request, the computing of AHD can be
done with time complexity of O(1). In this example, we assume δC +δD = 4, thus
ξ is directly computed by

∑m
i=1 ri.d

m according to Formula 6. In Algorithm 1, we
use updateAHD(ξ) to denote the procedure of computing AHD, the pseudo-code
is omitted for limited space.
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The Algorithm. As shown in Algorithm 1, in the beginning stage before the
buffer is full, i.e., |LC ∪ LD| < s ∧ |LH | = 0, if the request on p is a miss-request
and p′s page id is not in LH , Algorithm 1 will execute the code in Case III. Since
|LC ∪ LD| < s, we will call Procedure ReadIn() in line 16 to fetch p from the
disk. After that updateAHD() is called in line 17. At last, δC or δD will increase
by 1 by calling Procedure AdjustBottomProtionList(). If the current request on
p is a hit-request, that is, p ∈ LC ∪ LD, we will execute the code in Case I.
Specifically, if p ∈ LCB (LDB), it means that p should not stay anymore in LCB

(LDB), since LCB (LDB) is used to maintain once-requested clean (dirty) pages.
Then we move p to the MRU position of LCT or LDT and adjust the size of LCB

and LDB , respectively.
If the buffer is full, for a hit-request corresponding to Case I and discussed

already. If the current request is a miss-request, then we will check whether p′s
id is contained in LH . If p′s id is contained in LH , which corresponds to Case II.
In this case, we will firstly call evictPage() to select a victim page to make room
for p. If p.hit = 0, it means that the size of LCB or LDB is too small, then δC

or δD will increase by 1 (lines 10-11). After that, we will fetch p from disk by
calling Procedure ReadIn(), then call updateAHD() in line 13, and adjust the
length of LCB and LDB in line 14. If the current request is a miss-request and
p′s id is not in LH , which corresponds to Case III.

Based on Algorithm 1, we can effectively identify once-frequently-requested
pages from pages that are requested multiple times to improve the overall per-
formance. By using a hash table to maintain the pointers to each page in the
buffer, the complexity serving each request is O(1).

Analysis Adaptivity. The adaptivity means that our method continually
revises the parameter δC and δD that are used to control the size of LCB and
LDB . Moreover, the adaptivity means that if the workload is to change from one
access pattern to another one or vice versa, we will track such change and adapt
itself to exploit the new opportunity.

Scan-Resistant. When serving a long sequence of one-time-only requests, ABR
will only evict pages in LCB ∪LDB . This is because, when requesting a new page
p, i.e., p 	∈ LC ∪ LD ∪ LH , p is always put at the MRU position of LCB or LDB .
It will not impose any affect on pages in LCT ∪ LDT unless it is requested again
before it is paged out from LH . For this reason, we say ABR is scan-resistant.
Furthermore, a buffer is usually used by several processes or threads concurrently,
when a scan of a process or thread begins, less hits will be encountered in LCB ∪
LDB compared to LCT ∪ LDT , and hence, according to Algorithm 1, the size
of LCT and LDT will grow gradually, and the resistance of ABR to scans is
strengthened again.

Loop-Resistant. We say that ABR is loop-resistant means that when the size
of the loop is larger than the buffer size, ABR will keep partial pages of the loop
sequence in the buffer, and hence, achieve higher performance. We explain this
point from three aspects. (1) The loop requests only pages in LC . In the first
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Algorithm 1: ABR(page p, type T )

Case I: p ∈ LC ∪ LD, a buffer hit has occurred.

1 if (p ∈ LC) then {ιc ← ιc + 1; if (p ∈ LCB) then {δC ← max{λ · s, δC − 1};}};
2 else {ιd ← ιd + 1; if (p ∈ LDB) then {δD ← max{λ · s, δD − 1};}}
3 if (T = read ∧ p ∈ LC) then {if (p.d ≥ ξ) then {move p to MRU of LCT ;} }
4 else if (p.d ≥ ξ) then {move p to the MRU position of LDT ;}
5 else if (T = write ∧ p ∈ LC) then {move p to the MRU position of LDB ;}
6 if (p.d ≥ ξ) then {p.hit ← p.hit + 1; p.bHasHit = TRUE;}
7 updateAHD(ξ);
8 AdjustBottomPortionList();

Case II: p ∈ LH , a buffer miss has occurred.

9 evictPage();
10 if (T = read ∧ p.bHasHit = FALSE) then {δC ← min{|LC |, δC + 1};}
11 if (T = write ∧ p.bHasHit = FALSE) then {δD ← min{|LD|, δD + 1};}
12 ReadIn(p, T , true);
13 updateAHD(ξ);
14 AdjustBottomPortionList();

Case III: p 	∈ LC ∪ LD ∪ LH , a buffer miss has occurred.

15 if (|LC ∪ LD| = s) then {evictPage();}
16 ReadIn(p, T , false);
17 updateAHD(ξ);
18 AdjustBottomPortionList();

Procedure evictPage()

1 β ← CLC
/(CLC

+ CLD
); /*β is computed based on the recent s/2 requests*/

Case I: |LC | < β · s /* LD is longer than expected*/.

2 ρwd ← ρwd + 1;
3 q ← FindEvictedPage(LDB); write the content of q to disk;
4 if (|LH | = s/2) then {delete the item in the LRU position of LH ;}
5 delete q from LDB and insert its page id as a new item in the MRU position of LH ;

Case II: |LC | ≥ β · s /* LC is longer than expected*/.

6 if (|LH | = s/2) then {delete the item in the LRU position of LH ;}
7 q ← FindEvictedPage(LCB); delete q and insert its page id to MRU of LH ;

Procedure ReadIn(page p, type T , bool bTop)

1 if (T = read) then increase ρrc and ιc by 1
else increase ρrd and ιd by 1
2 fetch p from the disk; p.hit ← 0; p.bHasHit = FALSE;
3 if (T = read ∧ bTop = TRUE) then insert it to the MRU of LCT ;
4 if (T = read ∧ bTop = FALSE) then insert it to the MRU of LCB ;
5 if (T = write ∧ bTop = TRUE) then insert it to the MRU of LDT ;
6 if (T = write ∧ bTop = FALSE) then insert it to the MRU of LDB ;

Function FindEvictedPage(list L)

1 q ← L.Tail;
2 while (q.hit > 0) do {q.hit ← q.hit/2; move q to MRU of L; q ← L.Tail;}
3 return q;

Procedure AdjustBottomPortionList()

1 if (|LC ∪ LD| = s) then
2 Move the MRU (or LRU) page of LCB and LDB (or LCT and LDT ) to LRU

(MRU) of LCT and LDT (or LCB and LDB) to make |LCB | = δC ∧ |LDB | = δD;
3 else {δC ← |LCB |; δD ← |LDB |;}
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cycle of the loop request, all pages are fetched into the buffer and inserted at
the MRU position of LCB sequentially. Before each insertion, ABR will select a
victim page q. If q is the LRU page of LDB , then after the insertion of p in the
MRU position of LCB , ABR will adjust the size of LCB and p will be adjusted
to the LRU position of LCT ; otherwise p is still at the MRU position of LCB .
With the processing of the loop requests, more pages of the loop sequence will
be moved to LCT and these pages are thus kept in buffer, therefore the hit ratio
will not be zero anymore. (2) The loop requests only pages in LD. This is same
to (1). (3) The loop contains pages in both LC and LD. In this case, obviously,
dirty pages will stay in buffer longer than clean pages and the order of the pages
eviction is not same as they entered into the buffer, and hence, ABR can process
them elegantly to achieve higher hit ratio.

4 Experiments

4.1 Experimental Setup

Due to the implementation of FTL is device-related and supplied by the disk
manufacturer, and there is no interface supplied for users to trace the number
of write and read, we choose to use the simulator of [19] to count the numbers
of read and write operations.

Methods for Comparison. We implemented LRU, CFLRU [2] and CFDC
[6]. Further, we implemented ACR [7] and ABR. All these methods were imple-
mented on the simulator using Visual C++ 6.0. For CFLRU, we set the “window
size” of “clean-first region” to 75 % of the buffer size, for CFDC, the “window
size” of “clean-first region” is 50 % of the buffer size, and the “cluster size” of
CFDC is 64, the value of these parameters are suggested by the papers.

Traces for Experiment. We simulated a database file of 64MB, which corre-
sponds to 32 K physical pages and each page is 2KB, the buffer size is 4 K pages.
We generated four synthetical traces which satisfy Zipf distributions. The statis-
tics of the four traces are shown in Table 2, where x%/y% in column “Read/Write
Ratio” means that for a certain trace, x% of total requests are about read opera-
tions and y% about write operations; while x%/y% in column “Locality” means
that for a certain trace, x% of total operations are performed in a certain y% of
the total pages.

Storage Mediums. We select two flash chips for our experiment, Samsung
MCAQE32G5APP and Samsung MCAQE32G8APP-0XA [20]. The ratio of the
cost of random read to that of random write is 1:118 and 1:2, respectively. The
reason for the huge discrepancy of the two flash disks lies in that the first flash
disk is based on MLC NAND chip, while the second flash disk is based on SLC
NAND chip. Both type of flash disks are already adopted as auxiliary storage in
many applications.

Metrics. We choose the following metrics to evaluate the nine buffer replace-
ment policies: (1) number of physical read operations; (2) number of physi-
cal write operations, which includes the write operations caused by the erase
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Table 2. The statistics of the traces

Trace Total requests Read/Write ratio Locality

T1 3,000,000 90 % / 10 % 60 % / 40 %

T2 3,000,000 80 % / 20 % 50 % / 50 %

T3 3,000,000 60 % / 40 % 60 % / 40 %

T4 3,000,000 80 % / 20 % 80 % / 20 %
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flash disk.

operations of flash disks; and (3) running time. Though there may exist some dif-
ferences compared with the results tested on a real platform, they reflect the over-
all performance of different replacement policies by and large with neglectable
tolerance.
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4.2 Impacts of Large Asymmetry

Figure 4 (a) shows the comparison of the number of random read operations
on trace T1 to T4 w.r.t. Samsung MCAQE32G5APP flash disk, from which we
know that LRU has least read operations, the reason lies in that LRU does not
differentiate read and write operations, thus it will not delay the paging out of
dirty pages in the buffer. On the contrary, CFLRU firstly pages out clean pages,
thus it needs to read in more pages than other methods.

From Fig. 4 (b) we know that LRU suffers from more write cost than other
methods, and CFDC suffers from more write operations due to that it will page
out all pages in a cluster before paging out pages in other clusters. Although
CFLRU and ACR suffer from less write operations than LRU and CFDC, we
can see that ABR consumes less write operations than them, this is because for
the cost ratio of 1:118, (1) ABR often makes correct predictions, and (2) ABR
keeps more dirty pages in the buffer than CFLRU and ACR.

Figure 4 (c) presents the results of normalized running time, from which we
know that ABR works better than other methods. The reason lies in that the
cost of write operation is much more expansive than that of read operation for
Samsung MCAQE32G5APP flash disk and our eviction policy is based on cost
of clean and dirty lists. Besides, we can see that by exploiting AHD and reference
frequency, ABR works better than ACR.

Thus for flash disks with large asymmetry on read and write operations,
by firstly paging out clean pages, flash-aware buffer replacement policies work
better than LRU since they improve the overall performance by reducing the
costly write operations significantly. Moreover, ABR works best, due to that it
makes correct prediction and that frequently-requested dirty pages stay in buffer
longer than once-requested and once-frequently-requested dirty pages.

4.3 Impacts of Small Asymmetry

Figure 5 (a) shows the comparison of the number of read operations w.r.t. Sam-
sung MCAQE32G8APP-0XA flash disk, from which we know that CFLRU and
CFDC consume much more read operations than other methods, the reason lies
in that they firstly page out clean pages without considering the real cost of
fetching clean pages from a flash disk into buffer. As a result, they suffer from
large read cost. Although our methods keeps more dirty pages in buffer than
clean pages since the cost of read operation is still cheaper than write operation,
ABR achieves competing performance to LRU for read operation by improving
the hit ratio of frequently-requested clean pages.

From Fig. 4 (b) we know that the number of write operations of ABR becomes
larger than that in Fig. 4 (b), this is because the ratio of read and write becomes
smaller than before, and our policy will pay more attention to clean pages.
Though CFLRU and CFDC have less write operations than LRU, they waste
many more read operations, which makes them achieving worse performance
than LRU, as shown in Fig. 5 (c). Again, we can see that ABR works best by
exploiting AHD and reference frequency.
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Therefore, for flash disks with small asymmetry on read and write opera-
tions, ABR is better than LRU, CFLRU, CFDC and ACR, because ABR only
consumes the same or less read operations than LRU, which is much less than
that consumed by CFLRU and CFDC; though still need to consume more write
operations than CFLRU and CFDC, the saved cost of read operation is far more
than that wasted by write operations.

5 Conclusions

Considering that existing buffer replacement methods cannot process workload
with temporal locality, we propose an adaptive cost-based replacement policy,
namely ABR. ABR organizes buffer pages into clean list and dirty list, and the
newly entered pages will not be inserted at the MRU position of either list, but
at some position in middle. By exploiting average hit distance to control the
movement of buffer pages, ABR is wise in identifying once-frequently-requested
pages and the frequently-requested pages can stay in the buffer for a longer time.
Besides, ABR considers reference count and is more adaptive than existing works
to workloads of different access patterns, and thus, achieves better performance.
The experimental results on different traces and flash disks show that ABR not
only adaptively tunes itself to workloads of different access patterns, but also
works well for different kind of flash disks compared with existing methods.

We plan to make further improvement on ABR by considering changing the
write operations from random write to sequential write and implement ABR
in a real platform to evaluate it with various real workloads for flash-based
applications.
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