
A Strategy for Small Files Processing in HDFS

Zhenshan Bao(✉), Shikun Xu, Wenbo Zhang, Juncheng Chen, and Jianli Liu

College of Computer Science, Beijing University of Technology, Beijing 100124, China
baozhenshan@bjut.edu.cn

Abstract. Hadoop distributed file system (HDFS) as a popular cloud storage
platform, benefiting from its scalable, reliable and low-cost storage capability.
However it is mainly designed for batch processing of large files, it’s mean that
small files cannot be efficiently handled by HDFS. In this paper, we propose a
mechanism to store small files in HDFS. In our approach, file size need to be
judged before uploading to HDFS. If the file size is less than the size of the block,
all correlated small files will be merged into one single file and we will build index
for each small file. Furthermore, prefetching and caching mechanism are used to
improve the reading efficiency of small files. Meanwhile, for the new small files,
we can execute appending operation on the basis of merged file. Contrasting to
original HDFS, experimental results show that the storage efficiency of small files
is improved.

Keywords: Hadoop · HDFS · Small file · File merging · Prefetching and
caching · Appending operation

1 Introduction

Data gradually become the most valuable information in this age, and every year to grow
exponentially. Many applications in the area of education, e-business, Biology consist
of mass data, and every day each industry produces large amounts of data. According
to the study of relevant authorities, the amount of data in 2013 reached 4.4 zettabytes,
and is forecasting a tenfold growth by 2020 to 44 zettabytes [1]. In addition, type and
size of the data are also varied. Today, there are many large E- commerce companies
such as TaoBao, JD and Amazon. These sites store vast amounts of small files. We need
to store and manage these huge amounts of small files more effectively, and a better
using experience can be provided for users. Today single machine processes massive
small files seem to be difficult, the expansion of the longitudinal computer performance,
not only cost too much, but also meet bottleneck sooner or later. Thus distributed
processing mode has become the key to solve those problems.

Hadoop as an open source distributed framework, because of reliability, high
performance, high scalability, thus it attracts more and more individuals and organiza‐
tions to use [2]. HDFS is one of the core components of Hadoop. It is a storage compo‐
nent which can be deployed in cheap hardware. Meanwhile, as a distributed file system,
it’s responsible for the distributed data storage and data management. When we store
the large files in HDFS, they are divided into several blocks, and the blocks are stored

© Springer Science+Business Media Singapore 2016
W. Che et al. (Eds.): ICYCSEE 2016, Part I, CCIS 623, pp. 109–119, 2016.
DOI: 10.1007/978-981-10-2053-7_11

in the DataNode. Furthermore, blocks fit well with replication for providing fault toler‐
ance and availability. To insure against corrupted blocks and disk and machine failure,
each block is replicated to small number of physically separate machines (typically
three) [3]. Each file block will generates metadata in the NameNode memory when the
machines start up. Metadata records a series of information. When the client wants to
read a file, first of all, it will read the metadata information in the NameNode, through
metadata information to find the corresponding DataNode, and then get target files. As
shown in Fig. 1 is the basic storage framework of HDFS.

Fig. 1. Basic storage framework of HDFS

In Fig. 1, it is not hard to find that big file is divided into four blocks. Each block
size is 128 Mbytes (the new version of Hadoop default size). Meanwhile in NameNode
will generate corresponding metadata about blocks. Under the circumstances, HDFS for
small file management will be a problem. Because namenode is responsible for storing
file metadata in memory, the limit to the number of files in a filesystem is governed by
a mount of memory on the NameNode. In file management strategy of HDFS, if the file
size is less than a block size, this file will occupy a block alone, and in the NameNode
memory it will generate metadata. If there are 10 million small files, there will be 10
million blocks. Those small files will use NameNode about 3 Gigabyte memories [4].
If we have massive small files, the memory pressure of NameNode will be huge, maybe
beyond the capacity of current hardware. If you need to read a lot of small files from
clusters, frequently switching between nodes also bring a huge network load.

In this paper, we mainly to solve the massive small file problem in HDFS. To reduce
the NameNode memory usage, we use small files merging. On read and write we also
do the corresponding processing, this way to store small files in the HDFS has certain
performance improvements.

The rest of our paper is organized as follows: Sect. 2 we introduce the related
works; Sect. 3 explains the proposed approach for handing small files in HDFS.

110 Z. Bao et al.

Experimental results and analysis are presented in Sect. 4; Sect. 5 presents
conclusions and provides future directions.

2 Related Works

Solutions for dealing with small files can be divided into two categories: Hadoop own
solutions and current academic solutions. For Hadoop Archive (HAR) is mainly used
to archive small files in HDFS, the purpose is that reducing memory usage of NameNode
[5]. But for HAR low speed in terms of small files retrieving. Once the package is
completed, if there are some new small files, HAR need all the small files repackaged,
and we can’t perform appending operations on the basis of merged file. Figure 2 is a
HAR file structure. SequenceFile seems to play the role of a small file container, which
uses <key, value> structure. However, this structure seems not optimistic on retrieval
efficiency, because it is similar to link storage structure. If you want to search a certain
key and get value, you need to traverse the entire SequenceFile file, which greatly
reduces the retrieval efficiency. And converted into Sequencefile it takes a very long
time [6]. CombineFileInputFormat can combine multiple files into a split, but we need
to design Class to achieve, and it is not easy to implement [7]. Currently there are many
different ways in academic dealing with small files. In [8] presented an approach for
small files in the application in WEBGIS, although processing performance for small
files has improved in some extent. However, this approach applies only to geographic
information data. In [9] is mainly aimed at PPT files, this article described the operation
of the prefetching mechanism, index files and the correlated files, but this is a specific
application mode. In [10] mainly discuss MP3 files, a new storage method by use of the
rich description of MP3 files, but it is only based on MP3 files storage model. In [11]
authors have proposed a new architecture of HAR and we referred to as New Hadoop
Archive(NHAR). This method can improve efficiency of accessing small files, but we
can’t do appending operation when we have some new small files. Meanwhile, files are
not considered the correlations when archiving. In [12] proposed a method for merging
files, reducing memory consumption, but did not highlight the file read and write effi‐
ciency results. In [13] describes the general framework for handling small files, and
introduces the several components of the framework, but for files merging algorithm
and file appending operation didn’t make a specific description.

foo/

File-1

File-2

File-3

File-n

Bar.har/

_masterindex

_index

Part-0
[file-5,file-8,file-9,...]

Part-1
[file-7,file-12,file-3,...]

.

.

.

.

archive

Fig. 2. Archive small files in HAR

A Strategy for Small Files Processing in HDFS 111

3 Proposed Approach

In this part we will introduce our approach from 5 respects as follows:

3.1 File Merging

File Merging is the fundamental to solve the small file problems in HDFS. It can reduce
the numbers of metadata files in NameNode memory. We merge massive correlated
files into a single file, so the NameNode can just maintains the metadata of the single
file. The main purpose of this approach is to reduce the memory load of NameNode.
Neither the traditional processing way of Hadoop nor other storage strategies, the basic
idea is file merging. But we must ensure that no small file is spitted across two blocks.
This means that we must ensure the integrity of the file.

Figure 3 shows the basic idea of merging algorithm.

Small
file1

Small
file2

Small
file3

Small
file4

Small
file5

Small
file6

Small
file7

Small
file8

BLOCK1 BLOCK2

Remaining
Size

Combined
file

Fig. 3. Basic idea of merging algorithm

Remaining size in the Fig. 3 we can explain that we can’t guarantee the merged file
is just equal to the size of a block, when remaining size of current block can’t suitable
for the size of next small file, we should put this small file into next block.

Algorithm of small file merging

Step1: Get all correlated files in a directory
Step2: For file directory, we do traversal operation, Analyzing whether the file size is

less than the block size. If the file size is larger than block size we upload this
file to HDFS, otherwise we perform file merging operations. (Hadoop new
version default block size is 128 M)

Step3: Initialization of variables. Create two empty file, such as “combinefile” and
“mapfile”, and their initial size is 0. We also set variable “current_offset” and
“BlockId” is 0. And also we set variable “limitsize” equal to block size

Step4: Next, we should judge whether the sum of current file size and “current_offset”
less than “limitsize”, If the sum is less than or equal to “limitsize”, we can set
current file Block logical number equal to “BlockId”, if sum is just equal to
“limitsize”, then we execute “BlockId++” operation, at this time

112 Z. Bao et al.

“current_offset” equal to “limitsize + 1”, and “limitsize” equal to “BlockId”
multiplied by block size. Otherwise, “current_offset” equal to the sum of offset
and file size of this file

Step5: if the sum of current file size and “current_offset” larger than “limitsize”, then
we should execute “BlockId ++” operation, block logical number of current
file equal to “BlockId”, and “current_offset” equal to “limitsize + 1”, and
“current_offset” equal to the sum of offset and file size of this file, and “limitsize”
equal to “BlockId” multiplied by block size. Update the current file information
to the mapping file (mapping file will introduce in next part)

Step6: Continue to repeat the Step4 and the Step5 until no small files. Then upload
merged file to HDFS, and store mapping file in NameNode

3.2 Mapping File

Build the mapping file, the purpose is to find the target file information, through relevant
information, we can quickly locate to block address about small files, and then extracted
from the content of the block. Mapping file structure is shown in Fig. 4:

Small file name Block logical number Offset Length

Fig. 4. Mapping file structure

Small File Name: This is the small file name under the directory, that’s can serve as
a unique identifier for a file, regardless of the Linux system, or under the Windows
system, it is not allowed to small file name repetition.

Block Logical Number: A merge file contains to a lot of blocks, each small file should
be in a certain block. So if we want to get a small file, we must get the block logical
number of small file.

Offset: The starting address of each small file in merged file.
Length: That’s mean small file size, by the offset and length we can get the small

file content from merged file.
The following Fig. 5, it is a mapping file contents demo.

Fig. 5. Mapping file contents demo

A Strategy for Small Files Processing in HDFS 113

3.3 Prefetching and Caching

In the HDFS, when a file is read, firstly the client must request the NameNode to get
metadata information of merged file, and then we will get the block information about
merged file. The NameNode also provides a mapping record of small file. So the question
is here. When we visit small files frequently, NameNode will get a heavy load and access
speed will be slow. Thus we must reduce load on NameNode and improve access speed.
So we used prefetching and caching techniques, the more details we can refer to paper
[14, 15].

3.3.1 The Metadata Information Caching
When we access to a small file, Firstly we need to get the metadata information about
merged file from NameNode. If the client cache has file metadata information, then we
can get those metadata in client cache directly.

3.3.2 Prefetching Mapping File Information
According to the merged file metadata information, the client decided to which block
we should read, if the small file mapping records are perfected from the mapping file in
advance, then we can read small file directly.

Metadata information caching and prefetching mapping file information these two
mechanisms can accelerate I/O access speed, thus it can be improve the efficiency of
file reading.

Start read file
Merg ed file metadata

information is in the client
cache?

Read target file
information from

DataNode

Return result

Store merge file
metadata in client

cache

No

Yes

file map information in the
client cache?

Get merged file
metadata

information from
NameNode

Put correlated files
map information
into client cache

Open map file and
search file map

information

No

Yes

Fig. 6. File reading process

114 Z. Bao et al.

3.4 File Access Operation

When reading the files, at first we should determine whether the client cache has merged
file metadata information, If the client cache has metadata information, then continue
to determine whether client cache has file mapping information, if there is, we can read
small file content from DataNode directly. If we can’t find metadata information in client
cache, we need to read it from NameNode, and store merged file metadata in client cache,
then open mapping file and search file mapping information and put correlated files
mapping information into client cache. At last, read target file information from Data‐
Node. File reading process is shown in Fig. 6.

3.5 File Append Operation

In order to make full use of every piece of space, so we execute file append operations.
When we merge files, we cannot guarantee the size of each block is equal to the sum of
the file size. File append operation can also improve the efficiency of file merging. File
appending process as shown in Fig. 7.

start append small files

The current file can put Into
this block

Write file into
current block

Merged file is opened
for writing

Next block Update map file

Yes

No

Analyzing all blocks is
completed

Creat new block

Yes

No

Fig. 7. File appending process

A Strategy for Small Files Processing in HDFS 115

4 Evaluation and Results

4.1 Experimental Environment

Test platform includes a total of three machines. The number of copies of file blocks is
set to 2 and the default block size is 64 M, The following we can see relevant configu‐
ration information.

Experimental Environment Related parameters

JDK 1.7.0_79
OS Ubuntu 12.04 64-bit
Hadoop 2.6.0
Memory 2G
Hard disk 100G
CPU Intel core 2 /2.4GHz
NameNode 1
DateNode 2

4.2 Workload Overview

The workload for main memory usage measurement contains a total of about 100,000
files. The size of the small files range from 3 KB to 16000 KB, The size of all files is
approximately 7.5 GB. The distribution of the file sizes is shown in Fig. 8.

Fig. 8. Distribution of file sizes in workload

4.3 Memory Usage Measurement

The different number of files stored in HDFS. Random read files after each startup
NameNode, analyzing the NameNode Memory. The memory usage of NameNode for
original HDFS and the proposed approach is shown in Fig. 9.

We can find that in Fig. 9 the memory used by proposed Approach is less than
Original HDFS. However, when the number of small files is 10000, in this paper, the

116 Z. Bao et al.

optimization of design effect is not obvious, with the increase of the number of files
advantage gradually. The main reason proposed approach can save memory, because
we use File merging strategy. The block metadata is stored by NameNode for single
combined file and not for every single small file. So this can reduce memory usage.

4.4 Time Taken for File Access

File access time, group by the number of the small files in 10000, 20000, 30000, 40000,
50000, 60000, 70000, 80000, 90000 and 100000. The access time of every group is
recorded. Each group is test 3 times. Ignoring the impact of network latency and the
average of the residual values is obtains as the access time of the each group. The time
taken for read operation in HDFS and proposed approach is depicted in the graph shown
in Fig. 10.

Fig. 10. Time taken for read operation

Fig. 9. Memory usages of HDFS and proposed approach

A Strategy for Small Files Processing in HDFS 117

In this scenario, for small file reading efficiency in performance is not very obvious,
that’s maybe caused by our caching strategies or some other factors such as Time-
consuming when searching for small files. But after the 50000 files, this scheme is
superior to the original HDFS in reading time. Because we use combined file to reduce
the number of metadata in the NameNode, it also can reduce the NameNode access
frequency, in some extend that’s reduce the network load. Meanwhile Using the caching
and prefetching strategy can make efficiency improve.

5 Conclusions

In this paper we focused on small file problems in HDFS. As the growth of the number
of small files, it will gradually bring the load to NameNode. In this paper, starting from
this issue, we merged a large number of small file into single file to reduce the memory
usage of NameNode. When reading the file we use caching and prefetching mechanism.
We confirmed our method by experiments, this scheme can reduce the NameNode
memory consumption, and improve the reading efficiency, but the effect is not too
prominent. In future work, we will do more research in file reading, such as caching and
prefetching strategy.

Acknowledgement. This research supported by Beijing Key Laboratory on Integration and
Analysis of Large Scale Stream Data (ID: PXM2015_014204_500221) and the significant special
project for Core electronic devices, high-end general chips and basic software products.
(2012ZX01039-004).

References

1. http://www.emc.com/leadership/digital-universe/2014iview/index.html
2. Apache Hadoop. http://hadoop.apache.org/
3. White, T.: Hadoop: The Definitive Guide, 4E. O’Reilly Media (2015)
4. Liu, X., Peng, C., Yu, Z.: Research on the small files problem of Hadoop. In: International

Conference on Education, Management, Commerce and Society (EMCS 2015). Atlantis Press
(2015)

5. HadoopArchivesGuide. http://hadoop.apache.org/docs/stable/hadoop-archives/Hadoop
Archives.html

6. SequenceFile. http://wiki.apache.org/hadoop/SequenceFile
7. CombineFileInputFormat. http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/

mapred/lib/CombineFileInputFormat.html
8. Liu, X., Han, J., Zhong, Y., Han, C., He, X.: Implementing WebGIS on Hadoop: a case study

of improving small file I/O performance on HDFS. In: IEEE International Conference on
Cluster Computing and Workshops, pp. 1–8 (2009)

9. Dong, B., Qiu, J., Zheng, Q., Zhong, X., Li, J., Li, Y.: A novel approach to improving the
efficiency of storing and accessing small files on Hadoop: a case study by PowerPoint files.
In: IEEE International Conference on Services Computing (SCC), pp. 65–72 (2010)

118 Z. Bao et al.

http://www.emc.com/leadership/digital-universe/2014iview/index.html
http://hadoop.apache.org/
http://hadoop.apache.org/docs/stable/hadoop-archives/HadoopArchives.html
http://hadoop.apache.org/docs/stable/hadoop-archives/HadoopArchives.html
http://wiki.apache.org/hadoop/SequenceFile
http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapred/lib/CombineFileInputFormat.html
http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapred/lib/CombineFileInputFormat.html

10. Zhao, X., Yang, Y., Sun, L.-L., et al.: Based on the Hadoop mass MP3 file storage structure.
J. Comput. Appl. 32(6), 1724–1726 (2012)

11. Vorapongkitipun, C., Nupairoj, N.: Improving performance of small-file accessing in
Hadoop. In: 11th International Joint Conference on Computer Science and Software
Engineering (JCSSE), pp. 200–205 (2014)

12. Patel, A., Mehta, M.A.: A novel approach for efficient handling of small files in HDFS. In:
2015 IEEE International Advance Computing Conference (IACC), pp. 1258–1262 (2015)

13. Changtong, L.: An improved HDFS for small file. In: 2016 18th International Conference on
Advanced Communication Technology (ICACT) (2016). doi:10.1109/ICACT.2016.7423438

14. Peng, X., Feng, D., Jiang, H., Wang, F.: FARMER: a novel approach to file access correlation
mining and evaluation reference model for optimizing peta-scale filesystem performance. In:
Proceedings of the 17th International Symposium on High Performance Distributed
Computing, pp. 185–196 (2008)

15. Dong, B., Zhong, X., Zheng, Q., Jian, L., Liu, J., Qiu, J., Li, Y.: Correlation based file
prefetching approach for Hadoop. In: IEEE Second International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 41–48 (2010). [14]

A Strategy for Small Files Processing in HDFS 119

http://dx.doi.org/10.1109/ICACT.2016.7423438

	A Strategy for Small Files Processing in HDFS
	Abstract
	1 Introduction
	2 Related Works
	3 Proposed Approach
	3.1 File Merging
	3.2 Mapping File
	3.3 Prefetching and Caching
	3.3.1 The Metadata Information Caching
	3.3.2 Prefetching Mapping File Information

	3.4 File Access Operation
	3.5 File Append Operation

	4 Evaluation and Results
	4.1 Experimental Environment
	4.2 Workload Overview
	4.3 Memory Usage Measurement
	4.4 Time Taken for File Access

	5 Conclusions
	Acknowledgement
	References

