
Chapter 1
Climate Variability and Changes
in Precipitation Extremes and Characteristics

Ramesh S. V. Teegavarapu

Abstract Climate variability and change are expected to bring several changes
to hydrologic cycles and regimes in different parts of the world. Natural climate
variability based on large-scale, global inter-year, quasi-decadal and decadal, and
multidecadal-coupled oceanic–atmospheric oscillations (e.g., El Niño Southern
Oscillation (ENSO), Atlantic Multidecadal Oscillation (AMO) and Pacific Decadal
Oscillation (PDO), Madden–Julian Oscillation (MJO), Indian Ocean Dipole (IOD))
contribute to regional variations in extremes and characteristics of essential climatic
variables (e.g., temperature, precipitation, etc.) in different parts of the globe. These
oscillations defined based on climate anomalies that are related to each other at
large distances (referred to as teleconnections) are known to impact regional and
global climate. Linkages of these teleconnections to the variability in regional
precipitation patterns have been well documented in several research studies. This
chapter focuses on evaluation of climate variability influences on precipitation
extremes and characteristics. Several indices and metrics are discussed for such
evaluation, and a few results from case studies are presented.

Keywords Climate variability • Precipitation extremes and characteristics •
Coupled oceanic and atmospheric oscillations • Hydrologic design

1.1 Climate Variability: Introduction and Background

Our terrestrial environment continues to transform under the natural cyclic varia-
tions of climate and evolve due to changing climate mainly influenced by human
activities. Climate variability generally denotes deviations in climatological statis-
tics over a given period, and these deviations are usually referred to as anomalies.
Variability can be associated with natural internal processes within a climate system
or anthropogenic influences referred to as external forcings. Climate change on the
other hand refers to a significant variation in state of the climate over an extended
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period of time again linked to both internal and external anthropogenic influences.
Essential climatic variables (ECVs) that have been observed, reconstructed, and
projected in future by climate change models tell different stories of our changing
planet’s climate. Understanding these changes from the past based on limited
observations and adapting to future changes based on uncertain projections of future
climate derived from climate models (Teegavarapu 2010) are two main challenges
faced by water management agencies. Separating clean signal of natural cyclical
changes of climate from noise of human-induced changes is a difficult task we need
to understand and undertake.

1.2 Coupled Oceanic–Atmospheric Oscillations

Natural climate variability on multiple timescales (ranging from inter-annual,
multidecadal, and longer geologic timescales) is a major obstacle to the reliable
characterization of global climate changes resulting from human activities (Ghil
2002; Gurdak, et al. 2009). Quantifying the human fingerprint on climate change
and predicting future changes are two of the greatest challenges facing all scientists
who are involved in understanding variability of hydrologic cycles in different
regions around the world. Detection and attribution which deal with identification
of trends in essential climatic variables (ECVs) and address the causes, respectively,
generally lead the current climate change and impact studies. Climate change is
expected to bring several changes to hydrologic cycles and regimes in different
parts of the world. In addition to uncertain sea level rise rates and future changes
in temperature and precipitation patterns, human-induced climate change masks the
natural climate variability. This is primarily because they are dependent on large-
scale, global decadal oscillation weather systems. Some of these are limited to
large multidecadal sea surface temperature (SST) anomalies which have significant
impacts on regional and global climate.

1.3 Inter-year, Decadal, and Multidecadal Oscillations

The following sections provide brief descriptions of inter-year, decadal, and multi-
decadal oscillations.

1.3.1 El Niño Southern Oscillation (ENSO)

The ENSO is a slow oscillation in which the atmosphere and ocean in the tropical
Pacific region interact to produce a slow, irregular variation between two phases:
the warm and cool phase of ocean temperatures. ENSO is a major source of inter-
annual climatic variability in many regions of the world. One of the indices used for
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Fig. 1.1 Variation of ONI used for the determination of ENSO phases

defining two phases of ENSO is Oceanic Niño Index (ONI). The index is calculated
based on observed sea surface temperature in the region that spans a swath from 5ıN
to 5ıS latitude and 120ıW to 170ıW longitude. Figure 1.1 shows the ONI values
and especially values above 2 indicating strong El Niño years. These variations
are more commonly known as El Niño (the warm phase) and La Niña (the cool
phase). Even though ENSO is centered in the tropics, the changes associated with
El Niño and La Niña events affect climate around the world. ENSO events tend
to form between April and June and typically reach full strength in December.
ENSO is by far the most studied teleconnection and probably most publicized due
to strong El Niño events of 1982–1983 and 1997–1998 which lead to the highest
damages to agricultural and other sectors. ENSO is considered as the single largest
cause of extremes in precipitation (as well as the cause of inter-annual variability)
accounting for 15–20 % of the global variance of precipitation (Dai et al. 1997).
The contribution is higher than 20 % in ENSO regions. These conclusions were
based on monthly gridded datasets from 1900 to 1988. Studies performed by Goly
and Teegavarapu (2012) indicated that El Niño is responsible for higher precipitation
totals compared to La Niña in the months of December to February in Florida, USA.
The conclusions were based on gridded precipitation datasets and also historical
precipitation data from several rain gauges.

1.3.2 Atlantic Multidecadal Oscillation (AMO)

The Atlantic Multidecadal Oscillation (AMO) is a naturally occurring oceanic–
atmospheric phenomenon on the North Atlantic Ocean that manifests in variability
of SST. The AMO index is calculated using SST anomalies calculated in the region
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between the latitude of 75.0ıN and 0.0ıS and between the longitudes of 10.0ıE and
75.0ıW. Temperature variations have been instrumentally observed for over 150
years, but considering paleoclimatic evidence, such as ice cores and tree rings, it
can be concluded that AMO has been present for the last millennium. To better
understand this naturally occurring oscillation, and its effect on extreme events, it
is helpful to study past phases. SST is an indicator of a specific phase. During the
warm phase, elevated SST is generally observed, while the cold phase experiences
lower SST. Since instrumental temperature records are available only from 1880, the
existence of two phases of AMO, dating back to the nineteenth century or earlier,
can be confirmed only possible using sediment core or tree ring data. United States
Geological Survey (USGS) 2011 used data from sediment core from the Gulf of
Mexico and coral core from Puerto Rico and found that these two sources showed
a similar variability and correlated with the instrumental temperature data of the
twentieth century, concluding that SST oscillations have existed at least since the
1800s. AMO has two phases, warm and cool, with each phase lasting about 20–
40 years, yielding in an approximate of 70 years long cycle. Between the extreme
values of the cool and warm phases, an SST difference of 1 ıF can be observed.
The effects of AMO can either obscure or exaggerate the global warming due to
anthropogenic sources, depending on the current phase. AMO is known to have
impacts on temperature, rainfall, hurricanes, drought, or floods. There are several
different studies and agencies that determine warm and cool phases for the AMO,
some of which determine the intervals with gaps between them, such as Enfield et
al. (2001), which lists the cool periods to be 1905–1925 and 1970–1990 and the
warm periods to be 1930–1960 and 1995–2010. Some studies (e.g., Koch-Rose et
al. 2011; Teegaravapu et al. 2013) have used different intervals for AMO, without
leaving any gaps between them. The intervals are consecutive and include every
year from 1985 to 2010. Since the phases of AMO can last up to 20 to 30 years, it is
possible to make a clear distinction about the effects when studying historical data of
precipitation extremes. A study published by USGS (2011) looked at the frequency
of hurricane occurrences, under the different phases of AMO. Using historical data
provided by the National Oceanic and Atmospheric Administration (NOAA), the
number of category 4 and 5 hurricanes was counted. It was concluded that during
the 26 years long negative phase, eight hurricanes made landfall, while the positive
phase lasting only 13 years experienced 14 hurricane landfalls.

1.3.3 Pacific Decadal Oscillation (PDO)

The Pacific Decadal Oscillation (PDO) is an inter-decadal climate variability phe-
nomenon characterized by changes in sea surface temperature, sea level pressure,
and wind patterns. The warm and cold phases are defined by positive and negative
values of PDO index, respectively. The oscillation was discovered in 1997 by Steven
Hare who has conducted a study on salmon fisheries in the Pacific Northwest. PDO
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is characterized by the sea surface temperature and sea level pressure change that
occurs over the North Pacific Ocean (Mantua et al. 1997; Mantua and Hare 2002).
Tree ring analysis suggests that this phenomenon has existed and reoccurring with
50–70 years intervals (Mantua et al. 1997). To determine the driving forces of the
PDO, statistical analysis was applied on the SST, the sea level pressure (SLP), and
the wind stress across the North Pacific Ocean (Schneider and Cornuelle 2005). This
was done to study the temporal and spatial effects of this climate variability. The
climate variations related to PDO have significant effects across the North Pacific,
as well as the Americas with influences on the water resources, fisheries, and other
natural habitats.

1.3.4 North Atlantic Oscillation (NAO)

The North Atlantic Oscillation (NAO) (Wallace and Gutzler 1980) is characterized
by low pressure occurring over Iceland and high pressure over the Azores, which
is centrally located between Portugal and North America. NAO is in the positive
phase when the Icelandic low pressure and the Azores subtropical high pressure
are strongly dominant. During this phase the Atlantic experiences stronger westerly
winds, which bring storms in higher frequency to Europe. When NAO is in the
positive (warm) phase, the east coast of North America has a milder winter with
above-average temperatures and more precipitation. During the positive phase,
the crossing storms are stronger and more frequent, in a northern direction.
Winter conditions are warm and wet across Europe, while Canada and Greenland
experience cold and dry conditions. Negative phase will occur when the pressure
areas, the Icelandic low and the Azores high, are not as dominant. In this phase, the
westerly winds are weaker, allowing the cold Arctic air to enter the USA and reach
southern areas. There are fewer storms over the Atlantic, and the east coast of North
America has a colder winter and precipitation in the form of snow. Snowstorms with
subfreezing conditions occur in higher frequency over the USA. Characteristics of
the negative NOA index include colder temperatures over northern Europe, while
the Mediterranean experiences more moisture and milder winters. Fewer and weaker
storms are crossing over the Atlantic in the west to east direction. The winter along
the East Coast of the USA has more cold air outbreaks, as well as snowy weather
conditions.

1.3.5 Other Major Oscillations

A number of other high- and low-frequency oscillations influence hydroclimatic
variables in different regions of the world. These oscillations include Arctic Oscil-
lation (AO), Madden–Julian Oscillation (MJO), Pacific North American (PNA)
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pattern, and Indian Ocean Dipole (IOD). The IOD, referred to as the Indian Niño,
is an irregular oscillation of sea surface temperatures with cool and warm phases.
Exhaustive discussion about these oscillations is available elsewhere (Cronin 2009;
Teegavarapu 2013; Rosenzweig and Hillel 2008).

1.4 Regional and Global Influences of Oscillations

Regional and global influences of oscillations on ECVs are documented by several
studies (Cronin 2009; Teegavarapu 2013). AMO, ENSO, PDO, and NAO have
influences on precipitation and temperature characteristics of the USA. The effects
of PDO can be felt during winter and spring, between November and March across
the USA. When PDO is in a warm phase, higher temperatures are observed across
the Northwestern USA, while southeast America experiences cool temperatures.
PDO is dependent upon the ENSO, because it showed more decadal variability in
response to ENSO (Newman et al. 2003). The results of this study also showed
that the oscillation has a strongest effect on SST across the northern part of the
pacific during winter and spring. Previously it was believed that the PDO has greater
effect on the same geographical area during summer (Zhang et al. 1996). Zhang
studied the inter-annual variability of SST and SLP and the Southern Oscillation
Index time series. Based upon historical data, a change in the temporal variability
was observed and analyzed with several techniques. This variation showed a trend
that was inter-annual and consistent with an ENSO-like oscillation. In addition,
a linearly independent decadal variability was also observed. This inter-decadal
variability has similar properties like the ENSO, except it shows effects over the
North Pacific and not confined to the equatorial area. A shift was observed in the
data, around 1977, which is consistent with the phase change of PDO from cool to
warm. Hurrell and Van Loon in their research paper published in 1995 studied the
changes in distribution of precipitation and surface temperature over the Northern
Hemisphere, more specifically the North Atlantic. These changes can be correlated
with the current phase of NAO. Data about the oscillation is available for the past
150 years. When analyzing the data and the changes occurring, it was established
that NAO has been in the positive phase since the 1980s. It was concluded that the
precipitation anomalies of the same period can be correlated with the warm NAO
phase. Anomalies include changes in temperature and precipitation. Wintertime
warming over Europe and wintertime cooling of the northwest Atlantic have been
recorded. Northern Europe has experienced winters wetter than usual, while winters
are dryer in southern Europe. It was also concluded that as a result of the current
positive phase of NAO, the storm tracks over the Atlantic have experienced a
northward shift (Hurrell and Van Loon 1995). Teleconnections can be analyzed
using several different parameters. Wallace and Gutzler (1980) used sea level
pressure and geopotential height to find evidence of oscillation patterns of at least
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a month, on the Northern Hemisphere. Correlation statistics were used to find the
strongest teleconnections. After the analysis, it was concluded that the NAO and the
Pacific/North Oscillation have strong presence. Also, there is a correlation between
the Atlantic Jet Stream and the NAO (Wallace and Gutzler 1980). The IOD is known
to have an opposing effect or neutralizing effect on the influences of El Niño on
the Indian subcontinent that reduces monsoon precipitation amounts. El Niño is
linked with wetter conditions in the southeastern USA, a few regions in South
America and Northern Africa during the months of December–February. Also,
dry conditions are known to exist in several regions of Asia including India and
wet conditions in the Northwestern USA and southwestern part of South America
during the months of June–August. La Niña is associated with wet conditions in few
regions of the USA and drier conditions in the southeastern USA during the months
of December–February. Parts of India and Asia experience wet conditions during
June–August months associated with La Niña. AMO influences on precipitation
with increases in extremes during warm phase in several regions of the southeastern
USA are documented by Teegaravapu et al. (2013) and Goly and Teegavarapu
(2014). Increased hurricane landfalls were also noted during warm phase of AMO.
The temporal windows associated with cool and warm phases of ENSO and AMO
are provided in Table 1.1. Similarly, the temporal windows associated with cool and
warm phases of PDO and NAO are provided in Table 1.2. In many regions limited
information about temporal variations in influences of oscillations are available, and
spatial extent is not clearly defined.

Table 1.1 Years identified as cool and warm episodes for AMO and ENSO (1950–2010)

AMO ENSOa

Cool (La Niña) 1970–1994 1950, 1954, 1955, 1964, 1967, 1970, 1971, 1973, 1974, 1975,
1983, 1984, 1988, 1995, 1998, 1999, 2000, 2005, 2007, 2008

Warm (El Niño) 1950–1969,
1995–2010

1951, 1953, 1957, 1958, 1963, 1965, 1968, 1969, 1972, 1976,
1977, 1982, 1986, 1987, 1991, 1994, 1997, 2002, 2004, 2006,
2009

Neutral – 1952, 1956, 1959, 1960, 1961, 1962, 1966, 1978, 1979, 1980,
1981, 1985, 1989, 1990, 1992, 1993, 1996, 2001, 2003

Source: Goly and Teegavarapu (2014), adopted with permission
aDenotes for the current year–subsequent year, for example, 1950–1951 is represented by 1950.

Table 1.2 Years identified as
cool and warm episodes for
AMO and ENSO
(1900–2010)

PDO NAO

Cool 1900–1925 1952–1972, 1977–1980
1946–1976
2000–2010

Warm 1926–1945 1950–1951, 1973–1976, 1981–2001
1977–1999

Source: Pierce (2013)
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1.5 Evaluation of Changes in Precipitation Extremes
and Characteristics

Evaluation of precipitation characteristics and extremes will involve a number of
steps ranging from data collection to development of inferences about the influences
of climate variability using statistical tests. The following steps are recommended
for analysis of precipitation data:

• Collect and evaluate the precipitation data for different temporal and spatial
scales.

• Assess missing data lengths, nonhomogeneity issues, and erroneous data.
• Fill missing data using appropriate spatial or temporal interpolation methods

using available data from single- or multisensor precipitation estimates.
• Check the homogeneity of data after any infilling and note change points (if any)

in the time series.
• Apply corrections to estimates (i.e., infilled data) and reevaluate the homogeneity

of the time series.
• Identify temporal windows for climate variability analysis.
• Identify a list of indices that can characterize the changes in the variables (or time

series of variables).
• Identify and select statistical methods for analysis of these indices: examples of

these include statistical inference tests (parametric and nonparametric).
• Identify, select, and execute parametric and nonparametric trend tests if trend

evaluation is required.
• Report statistically significant results from inference and trend analysis tests.
• Assess the spatial and temporal influences of climate variability on precipitation.
• Understand and document potential implications associated with the influences

(noted in the previous step) of climate variability on hydrologic design, water
resources management.

Spatial and temporal changes and trends in precipitation extremes and charac-
teristics due to climate variability can be evaluated using a number of indices.
These indices reflect different characteristics of precipitation time series, and
they include (1) inter- and intra-annual variations, (2) seasonality, (3) spatial and
temporal variability of extremes, (4) nature of extremes (based on events related
to the type of storm: convective, frontal), (5) transition states as defined by
rain or no-rain dichotomous events, (6) temporal persistence as defined by serial
autocorrelation, (7) intra-event temporal distribution of precipitation, (8) antecedent
moisture conditions (AMC) preceding extreme events, (9) temporal occurrences of
extremes, (10) number of extremes over a specific threshold, (11) inter-event time
definition (IETD) (based events), and (12) individual and coupled influences of
internal modes of climate variability. One major question that needs to be answered
related to precipitation extremes and characteristics is: How does the inter-annual,
decadal, and multidecadal climate variability affect the occurrence of precipitation
extremes relating to magnitude and frequency?
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1.5.1 Extreme Precipitation Indices

Indices for precipitation extremes defined by the Expert Team on Climate Change
Detection and Indices (ETCCDI) (WMO 2009) can be computed at each site to
gain a clear understanding of changes in precipitation extremes during different
phases. A total of 27 indices were developed by ETCCDI (WMO 2009) to
describe particular characteristics of extremes, including frequency, amplitude, and
persistence for temperature and precipitation. Nine extreme precipitation indices as
defined by ETCCDI in Table 1.2 are explained in this section. The indices RX1day
and RX5day refer to the maximum one-day and five-day precipitation in a given
time period. The indices R10mm, R20mm, and Rnnmm are used to calculate the
number of times a given value of threshold (viz., 10 mm, 20 mm, and “nn” mm)
(WMO 2009) is exceeded. A threshold value of 25.4 mm is considered for “nn” in
this study. Simple daily intensity index (SDII) and total precipitation in wet days
(PRCPTOT) refer to average and total precipitation amounts of all wet days in a
given time period, respectively. The time period used for the analysis can vary from
a season to year. Consecutive dry days (CDD) and consecutive wet days (CWD)
indices provide the largest number of consecutive dry and wet days in a given time
period, respectively. Precipitation depth greater than or equal (less than) to 1 mm
is used to categorize wet (dry) days in the calculation of SDII, PRCPTOT, CDD,
and CWD indices. A few indices described in Table 1.3 require serially continuous
(i.e., gap-free) precipitation datasets. Some of the indices can also be obtained from
data with gaps (i.e., missing records), and they include RX1day, RX5day, CDD,
and CWD. However, the indices may be underestimated due to the infilling process.
Two recent studies (Goly and Teegavarapu 2014 and Teegaravapu et al. 2013) have
documented the changes in several extreme precipitation indices in two phases of
AMO and ENSO in the state of Florida, USA.

Table 1.3 Extreme precipitation indices and their explanation (WMO 2009)

Index Description

RX1day Maximum 1-day precipitation
RX5day Maximum 5-day precipitation
SDII Simple daily intensity index
R10mm Count of precipitation days with DR greater than 10 mm
R20mm Count of precipitation days with DR greater than 20 mm
Rnnmm Count of days where DR greater than a threshold value
CDD Consecutive dry days (DR < 1 mm)
CWD Consecutive wet days (DR �1 mm)
R95pTOT Total precipitation due to wet days (>95th percentile)
R99pTOT Total precipitation due to extremely wet days (>99 percentile)
PRCPTOT Total precipitation in wet days (DR >1 mm)

DR: Daily Rainfall
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1.5.2 Drought Characterization

1.5.2.1 Standard Precipitation Index (SPI)

Standard Precipitation Index (SPI) (WMO 2012), an internationally recognized
index, developed by McKee et al. (1993, 1995), is useful to evaluate dry and wet
conditions. It is generally used for drought monitoring; however, it is also very
effective in analyzing wet periods. The only input for this conceptually simple
index is the precipitation, requiring monthly data without gaps, with a minimum
length of 20 to 30 years, but optimally a longer period, 50 or 60 years or more
is recommended. The confidence level of the analysis and the length of the data
are positively correlated. The length of water deficit or abundance due to drought
and heavy precipitation can have different effects on soil moisture, streamflow,
or groundwater supply on different timescales. SPI can be calculated for different
intervals, to capture and analyze the effects, based on the point of interest. Standard
Precipitation Index (SPI) calculation involves fitting a probability distribution
(typically a gamma distribution) to 1-, 3-, 6-, and 12-month precipitation totals and
then use of standard normal distribution to obtain SPI values. Probability density
function of gamma distribution in standard form is given in Eq. (1.1). The variable
˛ is the shape parameter. SPI values can be used to define dry and wet conditions as
explained in Table 1.4.

f .x/ D
1

� .˛/
x˛�1e�x; x � 0 (1.1)

An example of SPI calculation based on monthly precipitation observations at a
rain gauge site (site name, Wakkanai and location; latitude, 45.4025000; longitude,
141.6686111) in Japan is provided in Fig. 1.2. A total of 78 years of monthly data
is used for developing 3-month SPI. Teegavarapu (2016) has evaluated the changes
in SPI for 155 sites in Japan and indicted more drought occurrences in ENSO warm
phase (El Niño). Goly and Teegavarapu (2014) observed an opposite effect of ENSO
in their study of drought occurrences in Florida.

Table 1.4 Identification of
dry or wet conditions based
on SPI

SPI Value Dry or Wet Condition

2.0 and greater Extremely wet
1.99 to 1.50 Very wet
1.49 to 1.00 Moderately wet
0.99 to �0.99 Near normal
�1.0 to �1.49 Moderately dry
�1.50 to �1.99 Severely dry
�2 and less Extremely dry
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Fig. 1.2 Calculation of a 3-month SPI for a rain gauge site in Japan

1.6 Precipitation Characteristics

Changes in precipitation characteristics based on available historical data can be
evaluated for influences of oscillations using a number of indices. These indices are
discussed in the following sections.

1.6.1 Inter-year and Intra-year Variations

Precipitation characteristics that vary within a year as well as over several years
can be evaluated for influences of climate variability. Within year variations can
be assessed at different temporal scales ranging from sub-hourly time intervals to
seasons.

1.6.2 Storm Events Based on Inter-event Time
Definition (IETD)

Rainfall time series can be considered as a series of rainfall pulses through time.
Isolation of individual storm event from such a long record of p requires application
of specific criteria to determine when an event begins and ends. One such criterion
is inter-event time definition (IETD): Minimum temporal spacing without rainfall
required to consider two rainfalls as belonging to different events, used for the
statistical analysis of rainfall records. The concepts of IETD are illustrated in
Figs. 1.3 and 1.4. If the period between pulses of rainfall is less than or equal to
IETD, then the two pulses of rainfall are categorized as belonging to one event.
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Fig. 1.3 Two storm events
separated by a time interval

Fig. 1.4 Two storm events separated by a time interval

IETD can be equal to lag –time when autocorrelation is equal to zero. The inter-
event time definition (IETD) is defined as the minimum temporal spacing without
rainfall required to consider two rainfall events as belonging to different events
(Adams and Papa 2000).

Two rainfall events are considered as distinct events if:

1. The precipitation (�P) that falls during a time interval between the events is less
than a specific threshold value.

2. The time interval (�t) is greater than a selected time interval (e.g., time of
concentration).
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The use of design storms based on IDF curves for stormwater management was
evaluated by Adams and Howard (1986). The analytical probabilistic models for
stormwater management models prescribed by Adams and Papa (2000) describe
the need for identification of individual storms using inter-event time definition.
Rainfall volumes, durations, intensities, and inter-event times can be characterized
using exponential or gamma distributions (Behera et al. 2010) for use in analytical
probabilistic models. The statistics of storm event characteristics are influenced by
the values of IETD, and these can be analyzed in the context of climate variability
and change. Pierce (2013) has documented changes in IETD of storms for AMO,
PDO, and NAO in Florida, USA.

1.6.3 Wet and Dry Spells

Determining wet and dry spells can provide further information about the precipita-
tion characteristics. Mean or total monthly rainfall values will give indication about
how wet or dry the month was; however, determining the distribution of the rainfall
can be essential when managing watersheds and flood or drought conditions. The
conditions in the watershed will vary based on the distribution of the total rainfall
over any interval. Precipitation threshold values can be established for evaluation
of dry and wet thresholds; in general, a zero value of precipitation is ideal for
consideration. Once the threshold is established, consecutive wet and dry days can
be estimated as wet and dry spells, respectively. The length of each wet and dry
spell can be used to calculate the mean length of wet and dry spell individually. The
lengths of spells considering a threshold level are representative of regional rainfall
patterns and can be evaluated for changes. The number of wet or dry spells that is
equal or longer than a prefixed threshold value can be evaluated in different temporal
windows that coincide with different phases of oscillations.

1.6.4 Transitions of Wet and Dry States

Transition probabilities associated with dry and wet spells are calculated based on
conditions specified in Table 1.5. These probabilities are referred to as two-state
first-order Markov chain probabilities.

Table 1.5 Rain or no-rain states in two consecutive time intervals for determination of transition
probabilities

Time interval (iC1)

Time Ri > 0 RiC1 > 0 [Wet–Wet] RiC1 D 0 [Wet–Dry]
Interval (i) Ri D 0 RiC1 > 0 [Dry–Wet] RiC1 D 0 [Dry–Dry]
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Two-state first-order Markov chain probabilities are given in Eqs. (1.2), (1.3),
(1.4), and (1.5):

P11 D Pr .RiC1 > 0 j Ri > 0/ (1.2)

The variable P11 refers to probability of occurrence of positive precipitation in
time interval i C 1 given the occurrence of positive precipitation in the previous
interval, i:

P10 D Pr .RiC1 D 0 j Ri > 0/ (1.3)

The variable P10 refers to probability of no precipitation in time interval i C 1

given the occurrence of positive precipitation in the previous interval, i:

P01 D Pr .RiC1 > 0 j Ri D 0/ (1.4)

The variable P01 refers to probability of occurrence of precipitation in time
interval i C 1 given no precipitation in the previous interval, i:

P00 D Pr .RiC1 D 0 j Ri D 0/ (1.5)

The variable P00 refers to probability of no precipitation in time interval i C 1

given no precipitation in the previous interval, i:

1.6.5 Persistence

Precipitation data can be assessed for serial autocorrelation using the time series
at different temporal resolutions. The autocorrelation coefficient is also referred to
as serial correlation coefficient. The first-order autocorrelation coefficient can be
referred to as correlation coefficient of the first N-1 observations (observations),
�1 : : : : : : �N�1, and the next N-1 observations, �2 : : : : : : �N . These two series are
used for calculations of average values, and they are referred to as �.1/ and �.2/,
respectively. The autocorrelation values can be obtained for different lag (t) values
as given in Eq. (1.6):

�t D

PN�t
iD1

�
�i � �.1/

� �
�iCt � �.2/

�

r
PN�t

iD1

�
�i � �.1/

�2
r

PN
iD2

�
�i � �.2/

�2
(1.6)

For sufficiently large N, the autocorrelation at a specific lag can be defined by
Eq. (1.7).
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�t D

PN�t
iD1

�
�i � �

� �
�iCt � �

�

PN�t
iD1

�
�i � �

�2
(1.7)

The variable � is the mean (average) of the entire available time series data.
Autocorrelograms can be evaluated for two-sample datasets from two time periods
that coincide with the temporal windows of the oscillation. Spatial variations in lag-
1 autocorrelation values in Japan were noted in different phases of ENSO and PDO
in a recent study reported by Teegavarapu (2016).

1.6.6 Seasonality

The seasonality index (SI) defined by Walsh and Lawler (1981) can be used to
determine the intra-annual monthly distribution of precipitation. The SI can also
be used for spatial representation of seasonal variability over regions, providing a
better understanding of rainfall regimes. The SI, as given in Eq. (1.8), is the sum
of the absolute deviations of the monthly rainfall from the mean monthly rainfall,
divided by the total annual precipitation of the given year:

SIi D
1

Ri

nD12X

nD1

ˇ
ˇ
ˇ
ˇxi;n �

Ri

12

ˇ
ˇ
ˇ
ˇ (1.8)

where Ri is the total annual precipitation in a particular year and xi;n is the actual
monthly rainfall in month n. The SI in Eq. (1.2) yields yearly indices, which can
be qualified based on the established index values, to determine the degree of
seasonality, shown in Table 1.6. Teegavarapu (2016) and Pierce (2013) evaluated
seasonality index values for Japan and Florida, respectively, and concluded that
warm and cool phases of PDO have strong influences on the spatial variability of
seasonality of precipitation.

Table 1.6 Classification of seasonality index values and links to precipitation regimes (Walsh and
Lawler 1981)

Seasonality index Precipitation regime

<0.19 Precipitation spread throughout the year
0.20–0.39 Precipitation spread throughout the year, but with a definite wetter season
0.40–0.59 Rather seasonal with a short drier season
0.60–0.79 Seasonal
0.80–0.99 Marked seasonal with a long dry season
1.00–1.19 Most precipitation in <3 months
>1.20 Extreme seasonality, with almost all precipitation in 1–2 months
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1.6.7 Changes to Extremes of Specific Duration and Frequency

Changes to extreme values of precipitation for different temporal durations in differ-
ent phases of oscillations can be evaluated by developing depth–duration–frequency
(DDF) or intensity-duration-frequency (IDF) curves. Data for two different temporal
windows that coincide with the phases of oscillations can be used to fit probability
distribution functions (PDFs) to characterize the precipitation extremes of different
durations. Svensson and Jones (2010) in a recent survey of evaluation of rainfall
frequency distributions have indicated that generalized extreme value (GEV) dis-
tribution is most frequently used to characterize rainfall extremes. Besides GEV,
lognormal, three-parameter lognormal, and Pearson and log-Pearson distributions
should also be evaluated for characterizing extreme precipitation data. Goodness-
of-fit (GOF) hypothesis tests and performance measures such as mean absolute
deviation (MAD) and mean square deviation (MSD) (Jain and Singh 1987) can
be used to measure the relative goodness-of-fits of distributions to the data. GEV
with a flexible three-parameter model expressed by a probability density function
(PDF) given in Eq. (1.9) (Teegaravapu et al. 2013) is generally used to characterize
precipitation extremes.

f .x/ D

8
<

:

1
�

exp
�
�.1 C kozo/� 1

ko
�

.1 C kozo/�1� 1
ko ko ¤ 0

1
�

exp .�zo � exp .�zo// ko D 0

(1.9)

The variables ko, � , and � refer to the shape, scale, and location parameters,
respectively, and the value of zo D .x � �/ =� . The parameters of the distribution
can be estimated using maximum log-likelihood estimation (MLE) method or L-
moment method. The maximum precipitation depth for each time interval is related
with the corresponding return period from the cumulative distribution function
(CDF). The maximum precipitation depth can be determined using a theoretical
distribution function that is used to characterize the distribution of precipitation
extremes.

1.6.7.1 Changing Intensity–Duration–Frequency Relationships

An example of DDF curves developed for four regions in the state of Florida, USA,
in a recent study by Teegaravapu et al. (2013) using GEV is shown in Fig. 1.5.
Precipitation extremes obtained from DDF curves developed for a specific return
period indicate that the selection of temporal window coinciding with a specific
phase of AMO is critical for hydrologic design. Regional differences in extreme
precipitation depths based on DDF curves during different AMO phases are evident.
Underestimation of design storms is possible when entire available historical data is
used compared to the data obtained from one AMO phase alone.
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Fig. 1.5 Precipitation depth–duration–frequency curves for a 25-year return period during AMO
warm, cool, and combined phases (cool and warm) for different stations: (a) North Florida, (b)
Key West, (c) Palm Beach, and (d) Lake Okeechobee (Adopted from Teegaravapu et al. 2013)

1.6.8 Variations in Temporal Occurrences of Extremes

Changes in intra-year temporal occurrences of extremes caused due to climate
variability of change have wide range of implications on water resources manage-
ment. An example of such variations in occurrences is shown in Fig. 1.6 based on
results from evaluation of precipitation extremes in two phases of AMO. Kernel
density estimates (KDEs) using Gaussian kernels showing temporal occurrences
of precipitation extremes for different durations are shown. It is evident from the
figure that higher densities are seen in cool phase during earlier months of the year
compared to those in warm phase. This suggests that flood realization potential is
higher in earlier months of the year in the cool phase, and this requires adequate
planning and preparation for any flood control management. In general, it has been
noticed that precipitation extremes with higher magnitudes are occurring in AMO
warm phase than in cool phase especially at durations higher than 24 h.
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Fig. 1.6 Kernel density estimates of occurrences of precipitation extremes during AMO phases for
nine temporal durations for cool (1970–1994) and warm (1942–1969) phases of AMO (Adapted
from Teegavarapu et al. 2013)

1.6.9 Temporal Distributions of In-Storm Precipitation

Temporal distribution defines the time distribution of rainfall amounts within a
storm event. Synthetic rainfall distributions are commonly used for hydrologic
design in many regions of the world. For example, the Soil Conservation Service
(SCS) of the USA provides four types of curves referred to as types I, IA, II,
and III that are applicable to different regions of the USA. The time distribution
will provide information about early, central, and late peaking storms. Changes
in temporal distribution of in-storm precipitation totals are noted for different
storm events in Florida by Goly and Teegavarapu (2014). Late peaking storms
are known to increase flood peaks and are of concern for disaster management
agencies.

1.6.10 Antecedent Moisture Conditions (AMC)

Antecedent moisture conditions preceding extreme precipitation events of specific
temporal duration can be evaluated for changes in two different phases of oscilla-
tions. Higher AMCs will lead to larger peak runoff volumes and discharges based on
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Fig. 1.7 Non-exceedance
probability curves for AMO
cool and warm phases 5-day
antecedent precipitation
amounts (Adapted from Goly
and Teegavarapu 2014)

extreme precipitation events, and these runoff discharges may sometimes exceed the
design discharges that were used for hydrologic/hydraulic infrastructure. In a recent
study, Goly and Teegavarapu (2014) have investigated the variations in AMC for
multidecadal (e.g., AMO) and inter-year oscillations (e.g., ENSO). Figure 1.7 shows
the non-exceedance plots of a 5-day antecedent precipitation amounts for AMO cool
and warm phases. Higher exceedance probabilities can be noted for warm phase.
Similar conditions of AMC for ENSO influences on precipitation patterns in Japan
were noted in a recent study (Teegavarapu 2016). Hydrologic design discharges
need to be reevaluated considering the influences of climate variability on extreme
precipitation events.

1.7 Evaluations of Precipitation Variability Influenced
by Teleconnections

1.7.1 Precipitation Data

Precipitation data at different temporal and spatial resolutions can be used for
evaluation of influences of climate variability on extremes and characteristics.
Serially continuous (data without gaps) and error-free and chronologically complete
precipitation dataset is needed for evaluation of some of the indices discussed earlier
in this chapter. Monthly data can be used for a handful of indices (i.e., seasonality,
standard precipitation index). Daily data and data at finer temporal resolutions
can be evaluated for short duration precipitation extremes and characteristics
(Teegaravapu et al. 2013) including transition probabilities and autocorrelation.
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1.7.2 Homogeneity Analysis and Tests

Precipitation data are initially evaluated for serial continuity, outliers, and homo-
geneity. Exploratory data analysis techniques (mostly graphical) can be used in
the first step of preliminary assessment of data. Homogeneity evaluation can be
carried out using Buishand’s (Buishand 1982) or Alexandersson’s standard normal
homogeneity test (SNHT) (Alexandersson 1986) or von Neumann ratio test (Von
Neumann 1941). Randomness of time series values can be tested with the help of
runs test (Wald–Wolfowitz test) for use in statistical hypothesis tests.

1.7.3 Point Precipitation Data

Point-based precipitation data refers to observed data collected using a recording
or a non-recording gauge. Gauge measurements are influenced by random and
systematic errors and several others including gauge catch. In many instances
extreme precipitation events are not recorded by gauges. Radar-based precipitation
datasets can be used for assessments, with an acknowledgment of limitation that
only comprehensive data from most recent decades are available. Infilling of precip-
itation datasets is required to obtain serially complete precipitation datasets in many
situations. These datasets are critical for calculation and evaluation of a number
of indices that are discussed earlier in this chapter. Some of those indices include
autocorrelation, transition probabilities, IETD calculations, etc. A number of deter-
ministic and stochastic interpolation methods that are available for estimation
of missing precipitation data are documented by Teegavarapu and Chandramouli
(2005). New methods based on improvised universal function approximation-
based kriging (Teegavarapu 2007), association rule mining (Teegavarapu 2009),
mathematical programming (Teegavarapu 2012), nearest neighbor, and clustering
(Teegavarapu 2013) approaches are available for infilling missing data. Corrections
to spatially interpolated data are recommended. These corrections may involve the
use of single-best estimator methods (Teegavarapu 2009) or quantile-based methods
(Teegavarapu 2014).

1.7.4 Gridded Precipitation Data

Gridded precipitation data based on spatially interpolated estimations from point
observations from single-sensor (i.e., rain gauge) or multisensor estimates are
widely available for spatial evaluation of precipitation. It is important to note that
using such data may result in underestimation of higher-end extremes and overes-
timation of lower-end extremes. Goly and Teegavarapu (2014) indicate that both
point and spatially complete gridded precipitation datasets are valuable for analysis.
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Justifiable inferences about spatial variability in precipitation characteristics and
extremes can be drawn when the two datasets are used independently. Goly and
Teegavarapu (2014) indicated that variance deflation; over- and underestimation
of lower- and higher-end extremes, respectively; and alteration of statistical dis-
tributions are inevitable consequences of spatial interpolation methods often used
for generation of gridded datasets. In conclusion, inferences based on gridded
precipitation data should be interpreted carefully.

1.7.5 Trend Evaluation

Trend analysis will help to (1) understand and confirm the existence (or nonexis-
tence) of statistically significant changes in precipitation extremes or characteristics;
(2) develop defensible (statistically) parametric and nonparametric methods for
evaluation of changes in space and time; (3) develop and evaluate new methods
or variants of existing trend evaluation methods considering issues related to
homogeneity, data length, and others; and (4) ascertain and confirm any attributable
reasons (natural climate variability influenced or anthropogenic changes) to the
changes or trends. The number of sites selected for any study will depend on a
number of factors: (a) long historical record length, (b) availability of error- and
gap-free data records, and (c) availability of sites in watersheds with exhaustive
hydrometeorological data. Smoothing methods and filters (e.g., moving average,
LOWESS (derived from “locally weighted scatter plot smooth”) and Savitzky–
Golay filter, and variants of LOWESS) can be used to assess the nonlinear variation
of precipitation extremes with time. The following are the tasks that need to be
completed for evaluation of trends:

1. Collect and evaluate the precipitation time series data at several sites in the region
of interest for homogeneity issues.

2. Extract extremes and conduct analysis to check for existence of change points in
the time series.

3. Develop and test nonparametric and parametric approaches for trend assessment
considering issues such as serial autocorrelation, length of the data, temporal
windows (moving and constant) and temporal windows linked to different phases
of natural climate variability, or anthropogenic activity.

4. Assess natural or anthropogenic-based variations in extremes using detection and
attribution methods.

Trend assessment can be carried out using nonparametric tests such as Spear-
man’s rho and Mann–Kendall tests. Modified Mann–Kendall test can be used if
ranked data based on the sample indicates several ties. If strong serial autocor-
relation exists at several lags that are higher than confidence limits as evaluated
using autocorrelogram and by Ljung–Box Q-test (Ljung and Box 1978), trend-free
pre-whitening can be employed. Serial autocorrelation affects the null distribution
of trend tests, and therefore these tests and corrective procedures are required.
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Change points in the precipitation time series can be identified using Pettitt’s test
(Pettitt 1979). Step change in mean or median values can be evaluated using several
tests (e.g., distribution-free cumulative sum control chart (CUSUM) (nonparametric
test), cumulative deviation (parametric), Worsley’s likelihood ratio (parametric)).
Parametric (e.g., two-sample t-test) and nonparametric (e.g., Rank Sum or Mann–
Whitney) tests will also be used to evaluate statistically significant changes in mean
and median values in two different data periods (two different temporal slices). A
robust estimator of linear trend using Thiel-Sen trend line can be developed for
each flow extreme time series. In case of parametric modeling, linear regression
models can be developed and hypothesis tests can be used to evaluate the statistically
significant slope parameter. Exhaustive evaluation of residuals needs to be carried
out using Durbin–Watson test to check for autocorrelation in residuals, probability
plots, and goodness-of-fit (GOF) hypothesis tests (e.g., Kolmogorov–Smirnov (KS)
and Lilliefors test) for normality of residuals and autocorrelation function plots for
visual assessment of serial autocorrelation at different lags. These tests can help in
validating the assumptions of linear regression analysis. Spatial evaluation of trends
can be carried out either by grouping the data into pooled datasets considering
homogenous subregions defined by hydroclimatology and other physical features
of the watersheds or basins in the region of interest or by using site-based
trend assessment results. Methods for attribution and detection may be based on
fingerprinting technique or its variants and time series analysis-based methods
wherein noise is removed from the signal.

1.7.6 Biases Due to Missing and Filled Precipitation Data

Existence of missing data in precipitation time series will influence analysis of
short- and long-term variations in precipitation based on different indices discussed
in this chapter. Data filling may not always alter site-specific statistics of imputed
data when spatial interpolation methods are used for temporal scales larger than a
day (e.g., monthly, seasonal, or annual). However, data filling can lead to changes
in probability distribution of data and significant biases when event-based analysis
(such as daily or hourly extreme precipitation analysis) is performed. In some cases,
spatial interpolation is only approach as temporal interpolation fails due to lack of
high serial correlation at several lags in daily precipitation data. At temporal resolu-
tions of a day or less, spatial interpolation alters probability distributions of data and
changes the autocorrelation structure and dry and wet spell transitions (Teegavarapu
2014). Many research efforts have focused on analyzing the trends in precipitation
data, but biases introduced in these trends due to data infilling techniques are rarely
investigated. Therefore, evaluation of (1) bias in extreme precipitation data due
to infilling of data gaps, (2) changes in long-term trends in extreme precipitation
indices due to infilling, and (3) variations in probability distributions of infilled and
unfilled datasets are essential. In a recent study, Teegavarapu et al. (2011) indicated
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that infilling may lead to underestimation of both magnitude and frequency of heavy
and very heavy precipitation events. Results show that infilling may also affect the
spatial characteristics of extreme precipitation in the region. In general, it was noted
that bias introduced by the data infilling increases as gaps (i.e., amounts of missing
data) in precipitation data increase. Therefore, care should be taken while analyzing
extreme precipitation events from precipitation data wherein gaps have been infilled
or data with gaps is analyzed without infilling. Also, results from their study
indicate that analysis of precipitation time series with missing data gaps infilled
and unfilled data will lead to different conclusions about precipitation extremes
and characteristics in different temporal windows of coupled oceanic–atmospheric
oscillations.

1.8 Statistical Tests

Parametric and nonparametric statistical inference tests can be used to evaluate
statistically significant differences in indices related to precipitation characteristics
in two different phases of oscillations or two temporal windows.

1.8.1 Parametric and Nonparametric Tests

Samples for statistical hypothesis tests are generally identified based on datasets
corresponding to different phases or temporal windows of oscillations. Para-
metric and nonparametric tests can be used to determine whether there is any
statistically significant difference between the two population means or medians,
respectively.

1.8.2 Parametric Test: Two-Sample Unpaired T-Test

A two-sample parametric t-test can be used to test null hypothesis that the two-
sample datasets come from normal distributions with equal means but unknown
variances. Satterthwaite’s modified t-test (Satterthwaite 1946) is used when vari-
ances of two samples are unequal. Descriptions of two-sample parametric t-test and
its modified version are provided in this section. Prior to the use of two-sample
unpaired t-test, a two-sample F-test is used to evaluate the sample variances. The F-
test evaluates the null hypothesis that the two-sample datasets come from normal
distributions with the same variance. If the F-test confirms the null hypothesis,
then the t-test statistic provided in Eq. (1.10) is calculated. The t-test statistic is
calculated using Eqs. (1.10) and (1.11) when the sample variances based on two
different sampling periods are equal:
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The degrees of freedom (df ) is defined by Eq. (1.11):

df D n1 C n2 � 2 (1.11)

The variables n1 and n2 are the number of samples in dataset 1 and dataset 2, S2
1

and S2
2 are sample variances, and x1 and x2 are mean values of datasets 1 and 2,

respectively. The unpaired two-sample t-test used for unequal sample variances is
defined by Eqs. (1.12) and (1.13). The test is referred to as Satterthwaite’s modified
t-test (Satterthwaite 1946). The Welch–Satterthwaite modification Welch (1947) for
degrees of freedom (df ) in the case of this t-test is given in Eq. (1.13):

t D
jx1 � x2j

s
S2

1

n1

C
S2

2

n2

(1.12)

df D

�
S2

1

n1

C
S2

2

n2

�2

S4
1

n2
1 .n1 � 1/

C
S4

2

n2
2 .n2 � 1/

(1.13)

Application of parametric two-sample t-test requires normality of the samples as
requisite condition. Sample data individually from two datasets or groups can be
tested for normality. Normality can be confirmed using visual checks using normal
probability plots (Mage 1982; McBean and Rovers 1998) initially. After initial
confirmation of normality, several statistical hypothesis tests such as Kolmogorov–
Smirnov (Smirnov 1939; Sheskin 2003), Lilliefors (1967), Jarque–Bera (1987),
and chi-Square goodness-of-fit (Corder and Foreman 2009) tests can be used for
additional confirmations. A well-known Lilliefors test as a two-sided goodness-
of-fit test for normality is applicable for situations where a fully specified null
distribution is not known. In case of the Kolmogorov–Smirnov (KS) test, the null
distribution of the sample needs to be completely specified. Alternatively, Jarque–
Bera test can help check the validity of null hypothesis that the data comes from a
normal distribution with an unknown mean and variance, and chi-square test can be
used to evaluate the null hypothesis that the data follows a normal distribution using
parameters (mean and variance) estimated from the sample. It is important to note
that chi-square test is sensitive to the number of bins used for grouping the sample
data. If datasets do not conform to normality, logarithmic, square, square root,
and several other transformations recommended by Helsel and Hirsch (2002) are
initially evaluated. If none of these transformations are helpful to achieve normality,
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Fig. 1.8 Statistically significant changes in the extreme precipitation depths during two AMO
phases for nine different durations (Adapted from Teegavarapu et al. 2013, Journal of Hydrology)

then a power transform such as Box–Cox (Box and Cox 1964) transformation can be
used. The parameter of such power transform is obtained by optimization of a log-
likelihood function with an objective of maximization of log-likelihood function. If
all transformations fail, nonparametric tests can be adopted. Results for statistically
significant changes in extreme precipitation depths (Teegaravapu et al. 2013) during
two phases of AMO using two-sample unpaired t-test are shown in Fig. 1.8.

1.8.3 Nonparametric Test: Mann–Whitney U-Test

The Mann–Whitney U-test can be used to evaluate the null hypothesis (Ho) that data
from two samples are from continuous distributions with equal medians, against
the alternative (Ha) that they are not. The test assumes that the two samples are
independent. The samples can be of different lengths. In order to apply the Mann–
Whitney U-test, the precipitation datasets for two samples (e.g., data from El Niño
and La Niña phases or two phases of any oscillation) can be used. The variables n1

and n2 are used to refer to the number elements in each sample. The data in each
sample l, nl are then ranked from lowest to highest, including tied rank values where
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appropriate. The equations related to Mann–Whitney U-test statistic are as follows
as defined by Corder and Foreman (2009):
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The variable Su is the standard deviation and Rl is the rank from the sample l of
interest and xu is the mean. The variable Z� is the z-score for a normal approximation
of the data. The null hypothesis is rejected if the calculated Z� statistic is greater than
the selected critical value at 5 % significance level (˛) obtained from the standard
normal distribution table. The notation used in Eqs. (1.14), (1.15), (1.16), and (1.17)
in this section is borrowed from Teegavarapu et al. (2013).

1.8.4 Bootstrap Sampling and Confidence Intervals

The use of bootstrap sampling methods (Efron 1979; Efron and Gong 1983) and
finally the generation of confidence intervals can help make inferences about the
sample statistics when limited numbers of datasets related to precipitation extremes
or indices exist due to missing data or other reasons. Bootstrap sampling method
(Efron and Tibshirani 1993) can be used to obtain samples from data in each
phase of the oscillation or a specific temporal window, and confidence intervals on
sample mean statistic can be developed. A general procedure of bootstrap sampling
methodology explained by Davison and Hinkley (1997) and Teegavarapu et al.
(2013) is adopted in this section. The notation used for explaining the bootstrap
confidence interval generation is also based on Davison and Hinkley (1997). The
sample values y1; y2; : : : : : : ; yn are thought of as the outcomes of independent and
identically distributed (f{{d) random variables Y1; Y2; : : : : : : ; Yn whose cumulative
distribution function (CDF) is denoted by F. The estimate of F denoted by bF is
obtained using data y1; y2; : : : : : : ; yn. The following steps are carried out (Davison
and Hinkley 1997) to obtain bootstrap sampling confidence intervals:

• Bootstrap (re) sample y�
1 ; y�

2 ; : : : : : : :; y�
n

f{{d bF are obtained from the original
samples allowing repetitions.
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• bF, an estimator of F, is obtained nonparametrically using empirical distribution
function (EDF) of the original data, i.e., by placing a probability of “1/n” at each
data value from sample y1; y2; : : : : : : ; yn.

• Sample mean statistic c�� is computed from bootstrap sample y�
1 ; y�

2 ; : : : : : : :; y�
n .

• The above steps are repeated “N” times, to obtain N sample means
c��

1 ; c��
2 ; : : : : : : :; c��

N . The practical size of “N” depends on the tests to be run
on the data.

The size of “N” recommended by Chernick (2007) is 1,000 and 10,000 for
evaluating the sample statistic and confidence intervals, respectively. In the current
study, these values are used. After N samples are obtained, normally approximated
confidence intervals are computed for the uncertainty assessment. If b� (estimated
mean of original data) is approximately normal, then b� � N .� C ˇ; �/. The
confidence interval (CI) of � for known bias (ˇ D ˇ(F)) and variance (� D � (F))
(Davison and Hinkley 1997) is given in:

CI D b� � ˇ ˙ Z˛:�1=2 (1.18)
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at 95 % confidence interval; ˛ D 0:025; Z˛ D �1:96

The variable c�� is the mean of c��
1 ; c��

2 ; : : : : : : :; c��
N and Z˛ is the ˛ quantile of the

standard normal distribution.
In a recent study, uncertainty assessment of mean precipitation extremes is

performed by Teegaravapu et al. (2013) using bootstrap sampling methodology. The
95 % confidence intervals using bootstrap resampling with normal approximation
are computed using a total of 10,000 bootstrap samples that are obtained from
data for each phase. The flowchart shown in Fig. 1.9 provides the steps required to
estimate confidence intervals. These intervals can be computed at different spatial
scales (individual rain gauges, different homogeneous rainfall areas and regions).
Teegaravapu et al. (2013) report that in general considering the lower limit, the
higher values of extremes are observed in AMO warm phase than in the cool phase
for all durations, and for the upper limit, higher precipitation extremes are realized
in AMO cool phase compared to those in AMO warm phase up to a 12-h duration.
However, for durations equal or above 24 h, precipitation extremes are higher in
warm phase compared to those in cool phase.
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1.9 Wavelet-Based Methods and Analysis

Wavelet analysis can be used to evaluate the temporal patterns of oscillations
and precipitation (Goly and Teegavarapu 2014). Continuous wavelet transform
(CWT) allows the study of the temporal structure of precipitation and makes
inferences on the influence of oscillation patterns. An example of the continuous
wavelet transform power spectrum plots of total precipitation during dry season
for continental and peninsular regions of Florida, USA, adopted from a recent
study by Goly and Teegavarapu (2014) is shown in Fig. 1.9. The spectrum plots
can be compared to those of AMO and ENSO oscillations mean index during dry
season. A common time span of 1915–2011 is used for generation of the plots for

Start

Process Precipitation
Data

Warm Phase Data (w)
Length of data (n)

Cool Phase Data (c)
Length of data (m)

Number of
samples = N ?

Obtain sampling distribution
confidence intervals

End

Yes

No

Generate random N samples W˙ & C˙ of size n & m by
sampling with replacement

Compute sample statistic qw &qc 

( (

for W˙ & C˙

Fig. 1.9 Bootstrap sampling approach for the determination of confidence intervals (Adapted from
Teegaravapu et al. 2013)
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Fig. 1.10 Continuous wavelet power spectrum of (a) oceanic–atmospheric oscillation climate
indices (dry season) and (b) precipitation (dry season) for continental and peninsular regions of
Florida. The thick black contours designate the 5 % significance level against red noise (Adapted
with permission from Goly and Teegavarapu 2014)

both the oscillation indices. The statistical significance of the peaks in the wavelet
spectrum was tested using Monte Carlo methods against a lag-1 autoregressive red
noise background. The peaks with greater than 95 % confidence interval are shown
by thick black contours. AMO with a cycle of approximately 70 years is clearly
apparent in this wavelet power spectrum plot shown in Figure 1.10. Similar plot for
ENSO shows a much smaller wavelength with a recurrence period of 2–7 years.
Significant power in this band was observed during 1940–1960, 1965–1972, 1978–
1990, and 1996–1999 years in the wavelet spectrum of ENSO. A look at each power
spectrum plot will suggest that in both continental and peninsular regions of state of
Florida, significant power at the 5 % significance level is evidenced and coincident
with the patterns exhibited by ENSO is noted.

1.10 Regional Hydroclimatology Influences

In many regions around the world, local hydroclimatology may play a major role
in restricting spatial and temporal influences of oscillations. Temporal shift in the
occurrences of extremes from cool to warm phases or vice versa and distribution
of intra-annual extremes will have impact on operation of hydrologic and hydraulic
structures. Synthetic design storms generally used for hydrologic design and DDF
curves need to be revisited and revised considering the occurrences and magnitudes
of precipitation extremes in different phases of oscillations.
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1.11 Influences of Individual and Coupled Oscillations

Two or multiple teleconnections influencing regional hydrology simultaneously in
specific temporal windows may increase or decrease the frequency and magnitudes
of extreme precipitation events and influence intra-annual temporal occurrences
of extremes. Teegaravapu et al. (2013) suggest that emphasis should be placed
on those temporal windows in which the combined influences of two or more
teleconnections lead to rare extremes and data selection for design should be
representative of these extremes. Site-specific extremes for hydrologic design
confined to one specific region are routinely carried out. However, consideration
of region-specific influences of climate variability at different spatial and temporal
scales is recommended. Goly and Teegavarapu (2014) in a recent work documented
an exhaustive study of combined influences of AMO and ENSO on precipita-
tion extremes and characteristics in the state of Florida, USA. They conclude
that precipitation extremes and characteristics are influenced by the two-coupled
oceanic–atmospheric phenomena, with seasonally and spatially varying signatures
in Florida. Essential climatic variables in many regions across the world are
influenced more than one oscillation. A few examples of such multiple influences
in different regions of the world include PDO and ENSO in Japan; ENSO, IOD,
and MJO in India; and PDO, AMO, ENSO, and NAO in the USA. When multiple
oscillations influence the precipitation regimes in a particular region, it is often
difficult to evaluate combined influences or associate a particular pattern or change
in precipitation to one specific oscillation. This is mainly due to lack of long-term
precipitation data and the varying and overlapping temporal windows of intra-year,
decadal, and quasi-decadal and multidecadal oscillations.

1.12 Influences of Oscillations on Precipitation:
Spatial Extent

Regional and global influences of oscillations on precipitation and temperature
extremes are documented in several studies (e.g., Teegavarapu 2013). However, in
any given region, the spatial extent of any oscillation is not clearly delineated due
to lack of dense observational network of rain gauges or reliable gridded data at
a spatial resolution that is adequate to define the spatial extent of the influences.
In recent studies availability of gridded precipitation data has helped in specifying
spatial extents of influences. Teegaravapu et al. (2013) and Goly and Teegavarapu
(2014) documented spatially uniform and nonuniform influences of ENSO and
AMO in the state of Florida, USA, respectively, using gridded precipitation data.
In the case of AMO, differences in the nature of influences especially in spatial
extents in two phases were noted due to thermic and hyperthermic (in continental
and peninsular regions) soil regimes in the state of Florida. In few regions of the
world (e.g., the southeastern USA, Japan, and India), the paths of hurricane or
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cyclone landfalls will influence the spatial variability of precipitation extremes. In
the southern part of Florida, USA, precipitation extremes of longer durations are
limited to regions that frequently experience hurricane landfalls.

1.13 Meteorologically Homogenous Areas

Evaluation of climate variability influences can be evaluated for regions that are
classified as meteorologically homogeneous areas. These areas are developed by
hydrologists and meteorologists based on information about the regional variations
of precipitation, temperature, and other hydroclimatic variables. Teegaravapu et al.
(2013) have used meteorologically homogeneous areas developed by a local water
management agency in South Florida for evaluation of influences of AMO on
precipitation extremes and characteristics. They found that there are differences in
how AMO influences precipitation extremes in different areas. In many instances,
Köppen–Geiger climate classification (Kottek et al. 2006) for a specific region can
be beneficial in delineating the region into several homogenous climate zones.

1.14 Relating Indices and Precipitation Depths

Relationship between monthly oscillation indices of AMO, ENSO, PDO, and others
and precipitation depths can be established and evaluated. A simple correlation-
based analysis using monthly precipitation totals and lagged values of indices can
reveal useful relationships that can help in forecasting seasonal precipitation totals.
Spatially and temporally variable SST anomalies and variations in other climatic
variables in different regions of the world can be used to establish the links.

1.15 Forecasts Based on Oscillations

Information about the hydroclimatic variables and their links to coupled oceanic–
atmospheric oscillations can be beneficial to water management agencies involved
in the planning for future water uses. Strong relationships between rainfall occur-
rences and streamflows have been observed in several parts of the world with
variables that relate to the manifestation of teleconnections. Strong correlations
between sea surface temperatures (SSTs) and streamflows (Dawod and El-Rafy
2002; Beek 2010) are examples of such relationships. Dawod and El-Rafy also
report the links between the annual River Nile flows and SSTs at different locations
in Indian Ocean and Pacific Ocean. An example of predictability of the flow is
in the next hydrologic year (Beek 2010) using information available at the end of
June. A high correlation between predicted set of flows and observed flows suggests



34 R.S.V. Teegavarapu

the utility of multiple linear regression equation linking flow and SSTs. Seasonal
forecasts using climate change information are linked to analogue years through
the use of historical climate records (Ludwig 2009). ENSO is strongly correlated
with one or more hydroclimatic variables in several regions around the globe.
These strong correlations can be used for seasonal rainfall and streamflow forecasts.
Souza and Lall (2003) report the utility of using NINO3.4 (an indicator used to
define the ENSO state) and North Atlantic Dipole index to forecast streamflows
in northeast Brazil. Australian rainfall amounts were linked to El Niño by Chiew
et al. (1998) and Southern Oscillation (SO) index (Chiew et al. 2003). Similar
links in general will help in futuristic seasonal to yearly forecasts of rainfall
helping water resources management professionals. In general teleconnections can
be used for seasonal climate forecasts with benefits to water resources management.
Water allocation can be improved if seasonal forecasts are available (Stone et al.
1996), and similarly future rainfall forecasts can be extremely beneficial to agrarian
communities especially in arid and semiarid regions. Seasonal forecasts may help
in water pricing and also developing plans for water use restrictions (Ludwig 2009).

1.16 Conclusions

Evaluation of influences of individual and coupled inter-year, decadal and multi-
decadal, coupled oceanic–atmospheric oscillations on precipitation characteristics
and extremes is the focus of this chapter. Precipitation regime changes are known
to be influenced by several coupled oceanic–atmospheric oscillations around the
globe. Exhaustive evaluation of individual and combined influences of these
oscillations, descriptive extreme index-based assessment of precipitation extremes
and changes in rainfall characteristics, identification of spatially varying influences
of oscillations on dry and wet spell transition states, antecedent precipitation prior
to extreme events, intra-event temporal distribution of precipitation, and changes in
temporal occurrences of extremes is discussed in this chapter. Understanding these
oscillations and their influences focusing on different spatial scales and temporal
resolutions considering multiple duration-specific precipitation extremes is critical
for flood control, water supply management, and hydrologic design. Parametric
and nonparametric statistical tests using long-term precipitation data at point and
grid scale can be used to assess statistically significant changes in the precipitation
characteristics from one phase to another of each oscillation. Understanding of
influences of oscillations on precipitation variability with regional hydroclimatology
defining the spatial extent of these influences is critical for hydrologic analysis,
design, and flood control management. This chapter presented an overview of oscil-
lations and their possible influences on precipitation characteristics and extremes.
Wherever possible, results from precipitation data analysis from regions influenced
by single and multiple oscillations are used to explain the nature of variability in
precipitation extremes and characteristics.
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