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    Chapter 7   
 Validation of Effective Therapeutic Targets 
for ADPKD Using Animal Models                     

     Yu     Mi     Woo     ,     Je     Yeong     Ko     , and     Eun     Ji     Lee    

    Abstract     Various polycystic kidney disease (PKD) animal models including  Pkd1 - 
or  Pkd2 -defi cient mice have been developed and effi ciently utilized to identify 
novel therapeutic targets as well as elucidate multiple mechanisms of cyst formation 
in PKD. Based on several successful in vivo studies, preclinical approaches using 
PKD animal models would shed light on the development of potential therapeutic 
strategies for PKD. Here, we provide an update on the current evidence obtained by 
the in vivo evaluation of PKD therapeutic candidates and discuss the effect of thera-
peutic targets.  
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7.1       Various Polycystic Kidney Disease (PKD) Animal Models 
Are Available to Reveal the Biological Functions 
of PKD- Causing Genes 

 The initial development of PKD is driven by an increase of cell proliferation. 
However, depending on the disease progression, dysregulated apoptosis, differenti-
ation, fi brosis, and infl ammation can also occur, indicating that PKD is a complex 
disease induced by defects of multiple signaling pathways. Based on this character-
istic of PKD, many research groups have developed PKD mice models to under-
stand the physiological mechanisms of PKD development and screen effective 
therapeutic targets for curing PKD. Rodent models of PKD share common patho-
genic phenotypes, including cyst formation in multiple nephron segments and an 
increase of cell proliferation, but display different characteristics in the progression 
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of cyst formation, life span, and renal cilia phenotypes. In this section, the morpho-
logical features and signaling alterations of well-established  PKD rodent models   are 
introduced. 

7.1.1     Pkd1 or Pkd2-Targeted Mouse Models 

 Mutation of the  PKD1  gene is known as a representative cause of the development 
of human PKD and the most commonly inherited mutation of  PKD  (Kim et al. 
 2009 ). Therefore,   Pkd1 -targeted mice   were produced to evaluate the biological 
function of Pkd1 in vivo. While  Pkd1  constitutive knockout mice show embryonic 
lethality accompanied by kidney cysts, liver cysts, and abnormal cardiovascular and 
skeletal development (Boulter et al.  2001 ), mouse models of the kidney-specifi c 
inactivation of  Pkd1  usually survive until birth (Shibazaki et al.  2008 ). Kidneys 
conditionally targeted by the  Pkd1  gene show rapid cyst formation from postnatal 
day 1 (P1) to P14 with an increase of cell proliferation followed by activation of the 
MAPK/ERK pathway (Shibazaki et al.  2008 ). Another gene mutated in human 
PKD is  PKD2 , which causes approximately 15 % of familial autosomal dominant 
PKD (ADPKD) cases (Kim et al.  2009 ). To reveal the physiological effect of  Pkd2  
inactivation, various PKD mice targeted by  Pkd2  have been generated. The  Pkd2  
homozygous knockout mutant mice exhibit embryonic lethality like mice homozy-
gous for  Pkd1  and show body edema, cardiac defects, and cysts of the kidney and 
pancreas (Kim et al.  2009 ; Wu et al.  2000 ). In addition  to  Pkd2  constitutive knock-
out mice  ,   PKD2  transgenic mice   were generated (Park et al.  2009 ). Histological 
analysis of these transgenic mice showed that renal cysts originated from a range of 
nephron segments at 18 months of age (Park et al.  2009 ). Also, the activation of 
B-Raf/Mek/Erk signaling was observed in the cystic kidneys of this transgenic 
mouse model (Park et al.  2009 ). These polycystin-targeted mice models show that 
the polycystin proteins play a role in organogenesis during embryonic development 
and that defects of polycystin induce the cystic kidney phenotype via activation of 
the MAPK/ERK pathway, leading to an increase of cell proliferation.  

7.1.2     PKD Mouse Models Targeted by IFT-Related Genes 

 The fi rst PKD mouse model showing a relationship between ciliary dysfunction and 
PKD development was the  oak ridge polycystic kidney (ORPK) mouse   induced by 
mutation of  Ift88  (Tg737, Polaris), which belongs to the IFT-B complex (Lehman 
et al.  2008 ). This model shows a number of abnormal phenotypes induced by ciliary 
malfunction. It has been reported that renal cysts, hydrocephalus, pancreatic abnor-
malities, and aberrant patterning of skeletal structure are observed in this model 
(Cano et al.  2004 ; Banizs et al.  2005 ; Ko and Park  2013 ). Furthermore, a reduction 
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in the number of ciliated cells and abnormal ciliary structure were observed in the 
pancreatic and renal cells of ORPK mice (Cano et al.  2004 ; Pazour et al.  2000 ). 

 In addition to the ORPK mouse model, various PKD mouse models induced by 
the inactivation of IFT-related genes have been developed. One of the PKD mouse 
models targeting the IFT complex B subunit was induced by the specifi c inactiva-
tion of  Ift20  in renal collecting duct cells (Jonassen et al.  2008 ). This model shows 
severe and rapid renal cyst progression with a complete loss of cilia, leading to the 
alteration of Wnt signaling (Jonassen et al.  2008 ). In addition to the  Ift20-targeted 
mouse model  , Ift25 and Ift27, which belong to the IFT-B complex, are constitu-
tively inactivated in vivo. Interestingly, although Ift25 and Ift27 are subunits of IFT 
complex B, which is involved in cilia assembly, the inactivation of these two genes 
was found to have no effect on cilia assembly (Keady et al.  2012 ; Eguether et al. 
 2014 ). In these models, the phenotype of cilia appears normal, but they display 
multiple developmental defects such as skeletal malfunctions, omphaloceles, and 
polydactyly as well as an alteration of Hh signaling (Keady et al.  2012 ; Eguether 
et al.  2014 ). Not only IFT complex B, but also a IFT complex A-targeted mouse 
have been generated. A representative PKD animal model induced by the inactiva-
tion of IFT complex A is a mouse with a conditional allele for  Ift140  in the renal 
collecting duct cells (Jonassen et al.  2012 ). In general, subunits that belong to IFT 
complex A are involved in cilia disassembly, so it is conceivable that the inactiva-
tion of  Ift140  might induce an increase of cilia length. However, severe shortening 
or absence of primary cilia was observed in the  Ift140 -deleted renal collecting duct 
cells with a PKD phenotype (Jonassen et al.  2012 ). These fi ndings suggest that a 
normal ciliary function is important for the maintenance of homeostasis in renal 
epithelial cells and that defects of ciliary structure or function contribute to the 
development of PKD through an increase of cell proliferation.  

7.1.3     Juvenile Cystic Kidney & Congenital Polycystic 
Kidney Mice 

 Juvenile cystic kidney ( jck  ) mice are produced by a missense mutation of the   Nek8  
gene   (Liu et al.  2002 ). This mouse model shows renal cysts in multiple nephron 
segments and a life span of approximately 20–25 weeks (Nagao et al.  2012 ). The 
protein product of this mutated gene is observed in the entire length of the primary 
cilia in kidney, and it results in the abnormal localization of polycystins in length-
ened primary cilia in the kidneys of jck mice (Sohara et al.  2008 ; Smith et al.  2006 ). 
Interestingly, the kidney phenotype of jck mice displays gender dimorphism in the 
progression of cyst formation, with a more severe phenotype in male mice because 
of gonadal hormones (Smith et al.  2006 ). 

 The congenital polycystic kidney ( cpk  ) mouse is one of the PKD models with a 
mutation of the   Cys1  gene   encoding cystin protein, which is localized to the primary 
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cilia (Hou et al.  2002 ). Most cysts observed in cpk mice are derived from the col-
lecting ducts and proximal tubules and are accompanied by an increased expression 
of proto-oncogenes and growth factors together with an alteration in the expression 
of genes associated with cell adhesion (Hou et al.  2002 ; Ko and Park  2013 ; Rocco 
et al.  1992 ; Nakamura et al.  1993 ).  

7.1.4     Han:SPRD Cy Rat Model 

 The Han:SPRD Cy rat  model   is caused by a missense mutation of the  Pkdr1  (also 
called Cy and Anks6) gene (Nagao et al.  2010 ). The protein SamCystin that is 
encoded by the Pkdr1 gene is mainly expressed in the early postnatal kidney and 
proximal tubules (Nagao et al.  2010 ). A point mutation of the Pkdr1 gene results in 
the aberrant expression and mislocalization of SamCystin in this rat model (Nagao 
et al.  2010 ). Kidneys of heterozygous mutant rats (Cy/+) show a mild progression 
of the PKD phenotype compared with homozygous mutant rats (Cy/Cy) (Nagao 
et al.  2003 ). In addition, the Han:SPRD Cy rat model displays a gender-specifi c 
kidney phenotype. The kidneys of male Cy/+ rats display a more severe renal cystic 
phenotype compared with that of the female rats, which affects to average life span 
of both the males and females of the Cy/+ rat model (Nagao et al.  2003 ).   

7.2     Potential Candidate Targets for PKD Treatment 

 At present, there are no FDA-approved therapies for the treatment of 
ADPKD. Nevertheless, recent studies have suggested a number of promising targets 
and molecular pathways related to cystogenesis, providing new insights into poten-
tial therapeutic interventions. The main treatment approaches attempted in ADPKD 
have focused on inhibiting cystic cell proliferation and fl uid secretion (Bukanov 
et al.  2012 ; Calvet  2008 ; Yang et al.  2008 ; Chang and Ong  2012 ). More currently, 
inhibition of the renin-angiotensin-aldosterone system, targeting ciliary function, 
membrane glycosphingolipids, extracellular matrix, and epigenetic restoration, has 
also been under investigation (Natoli et al.  2010 ; Elliott et al.  2011 ; Li  2011 ). Here, 
we present a review of candidate ADPKD drugs and current trials according to the 
drug targets in PKD rodent models, as follows. 

7.2.1     Cyclic AMP (cAMP)-Dependent Signaling Inhibitors 

 cAMP is a well-known regulator involved in cyst fl uid accumulation (Wallace et al. 
 2001 ; Sullivan et al.  1998 ), and an elevated level of cAMP stimulates the activation 
of the B-Raf/MEK/ERK pathway in ADPKD (Yamaguchi et al.  2003 ). It has been 
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reported that a number of agonists targeting the vasopressin and somatostatin path-
ways can result in cAMP accumulation (Gattone et al.  2003 ; Masyuk et al.  2007 ). 

7.2.1.1      Vasopressin V2 Receptor Antagonist   

 The vasopressin receptor (V2R) on collecting ducts binds to vasopressin and 
increases cAMP accumulation by activating adenylyl cyclase. The vasopressin V2R 
antagonists, OPC-31260 and OPC-41061 ( tolvaptan  ), have been shown to reduce 
renal cAMP and cystogenesis in four rodent models of renal cystic disease (cpk 
mice, pcy mice, PCK rats, and Pkd2ws25/- mice) (Torres et al.  2004 ; Wang et al. 
 2008 ; Gattone et al.  2003 ; Gattone et al.  1999 ). Tolvaptan is effective in the treat-
ment of hypervolemic or euvolemic hyponatremia and congestive heart failure 
(Irazabal et al.  2011 ). These promising preclinical results have translated into clini-
cal trials under the Tolvaptan Effi cacy and Safety in Management of PKD and 
Outcomes (TEMPO) 3:4 program (Torres et al.  2011 ; Torres et al.  2012 ). The 
TEMPO 3:4  trial   was designed as a 3-year multicenter randomized placebo- 
controlled trial (n = 1445) investigating the progression of changes in total kidney 
volume (TKV), PKD complications and drug safety. In ADPKD patients who were 
treated with tolvaptan for 3 years, the rate of TKV increase was reduced by almost 
50 % compared with that in the placebo group (2.8 % vs. 5.5 % per year, p < 0.001). 
Tolvaptan was also shown to ameliorate the decline of renal function (Torres et al. 
 2012 ). This result is consistent with the fi ndings of a recent study that evaluated the 
effi cacy of tolvaptan in the Japanese sub-population (n = 177) (Muto et al.  2015 ). 
However, the long-term administration of tolvaptan caused reduced tolerability and 
signifi cant adverse effects. For example, after the discontinuation of tolvaptan, 
8.3 % of patients in the treatment group had severe aquaresis and an elevation of 
aminotransferase enzyme concentrations, indicating the potential for acute liver 
failure, and TKV progression continued at the same rate as before therapy (Torres 
et al.  2012 ). Overall, tolvaptan is the fi rst pharmacotherapeutic intervention to have 
been demonstrated to have a therapeutic benefi t in ADPKD (Baur and Meaney 
 2014 ). At present, the TEMPO 4:4 trial is underway in the USA and tolvaptan has 
been approved in Europe and Japan for the pharmacological treatment of ADPKD.  

7.2.1.2      Somatostatin Analogs   

 The somatostatin agonist octreotide was shown to be effective in slowing the pro-
gression of liver and kidney cystic disease in a small group of ADPKD patients 
(Ruggenenti et al.  2005 ) and the PCK rat model (Masyuk et al.  2007 ). The activa-
tion of somatostatin SSTR2 receptor, which is expressed in the kidneys, by  octreo-
tide   signifi cantly decreased the intracellular level of cAMP, consequently slowing 
cyst growth and disease progression (Hogan et al.  2010 ). Ruggenenti et al. demon-
strated that octreotide decreased TKV in 12 patients with ADPKD in Italy 
(Ruggenenti et al.  2005 ). Although it was a short-term pilot study in a small group, 
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they observed a reduction in the rate of TKV increase and cyst size with only mild 
adverse events such as gastrointestinal disorder. In a follow-up paper, the benefi cial 
effect of octreotide was evaluated in a long-term, randomized, placebo-controlled 
and multicenter trial (Caroli et al.  2013 ). In this study, adult ADPKD patients (with 
an estimated glomerular fi ltration rate > 40 mL/min per 1.73 m 2 ) were randomly 
divided into two groups and treated with two 20 mg intramuscular injections of 
octreotide longacting release (LAR) (n = 40) or 0.9 % (v/v) sodium chloride solution 
(n = 39) every 28 days for 3 years. As a result, at the 1-year follow-up, mean TKV 
increased signifi cantly less in the octreotide-LAR group than it did in the placebo 
group (46.2 mL vs. 143.7 mL, p = 0.032). However, at the 3-year follow-up, the 
mean TKV was shown to be signifi cantly different between the two treatment 
groups (220.1 mL vs. 454.3 mL, p = 0.25). This result indicates the probable occur-
rence of tachyphylaxis due to the downregulation or desensitization of somatostatin 
receptors (Hogan et al.  2012 ; Caroli et al.  2013 ). Notably, the initial short-term 
reduction in glomerular fi ltration rate (GFR) showed a correlation with the subse-
quent decline of GFR in the octreotide-LAR group, suggesting that the participants 
who had larger initial reductions in GFR appeared to show a slower long-term pro-
gression towards renal failure while being treated with somatostatin (Caroli et al. 
 2013 ). Overall, somatostatin analogues were shown to be relatively safe and well 
tolerated in all participants compared with previous ADPKD trials. At present, a 
follow-up study, the Developing Interventions to Halt Progression of ADPKD 1 
(DIPAK1) Study, which was designed to examine the effi cacy of another somatosta-
tin analogue, lanreotide, on renal function in ADPKD, has been conducted mostly 
in Europe (Meijer et al.  2014 ).   

7.2.2      Mammalian Target of Rapamycin (mTOR) Inhibitors   

 mTOR is a serine/threonine kinase that is involved in the promotion of cell prolif-
eration and cell division as well as transcription and protein synthesis. Intriguingly, 
the mTOR signaling pathway is abnormally upregulated in the cyst-lining epithelial 
cells of ADPKD mouse models, possibly due to a loss of regulation by PC1 (Wahl 
et al.  2006 ; Wander et al.  2011 ).  Rapamycin  , also known as sirolimus, inhibits 
mTOR’s kinase activity by binding to FK506-binding protein (Sabers et al.  1995 ). 
In preclinical studies, mTOR inhibitors including  sirolimus   and  everolimus   were 
shown to be highly effective in decreasing renal cystogenesis and improving kidney 
function in several rodent models of ADPKD (Shillingford et al.  2006 ;  2010 ; Wahl 
et al.  2006 ). However, two key randomized, Phase II trials of the studies evaluating 
mTOR pathway inhibition have failed to demonstrate the therapeutic effi cacy of 
either drug on either TKV or estimated glomerular fi ltration rate (Torres et al.  2010 ; 
Serra et al.  2010 ; Walz et al.  2010 ). In addition, both studies showed that treatment 
with mTOR inhibitors led to therapy-specifi c side effects including immunosup-
pression, diarrhea, acne, and mucositis as well as being limited by an inadequate 
degree of mTOR inhibition (Watnick and Germino  2010 ). Therefore, it should be 
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considered that the doses of these drugs that were shown to signifi cantly reduce cyst 
growth in several rodent models were high (approximately 10-fold higher than the 
doses used in clinical trials) (Novalic et al.  2012 ). Efforts to overcome the systemic 
toxicity of mTOR inhibitors are also being made to enhance the drug specifi city to 
the kidney. One possible approach is using  folate-conjugated drugs   as candidates 
for kidney-specifi c targeting, because folate receptors are overexpressed in the api-
cal membranes of proximal tubule cells. In fact, a recent study demonstrated that 
treatment with folate-conjugated rapamycin (0.3 mol/kg per day) effectively 
reduced renal cyst development and preserved renal function without adverse events 
in the bpk mouse model (Shillingford et al.  2012 ).  

7.2.3      Statins   (HMG CoA Reductase Inhibitors) 

 Statins are widely used to reduce cholesterol in clinical settings by inhibiting the 
enzyme  HMG-CoA reductase  . Statins were also shown to decrease renal cystogen-
esis and improve renal function in the Han:SPRD rat model (Gile et al.  1995 ; Zafar 
et al.  2007 ). Recently, it has been reported that 110 young adults with ADPKD were 
randomly assigned to treatment with  pravastatin   or placebo for 3 years to determine 
the effect of pravastatin in ADPKD. Signifi cant effects on the primary outcomes 
were shown with a signifi cant decrease in the rate of TKV increase over the study 
period (pravastatin: 23 % vs. placebo: 31 %, p = 0.02) (Cadnapaphornchai et al. 
 2014 ). However, it is diffi cult to determine the effi cacy of pravastatin because there 
were no signifi cant changes of renal function or urinary protein excretion between 
the pravastatin and placebo treated groups in a randomized clinical trial of 49 adults 
with ADPKD for 2 years (Fassett et al.  2010 ).   

7.3     Other Pre-Clinical Trials That Have Attempted 
to Identify the Potential Therapeutic Targets of ADPKD 

 Other therapeutic strategies targeting cell proliferation have been investigated, 
including direct inhibition of the cell proliferation-regulating proteins that are 
involved in the Raf/MEK/ERK signaling pathway. Sorafenib, a non-selective Raf 
inhibitor that fi nally reduces ERK activation, completely inhibited in vitro cyst 
growth in human ADPKD cystic cells cultured within a three dimensional collagen 
gel (Yamaguchi et al.  2010 ). However, unexpectedly, the administration of sorafenib 
to  Pkd2  conditional knockout mice promotes liver cyst growth (Spirli et al.  2012 ). 
Another group reported that a different small molecule  Raf inhibitor   (PXL5568) 
retarded cyst expansion without an improvement in renal function in the Han:SPRD 
rat model (Buchholz et al.  2011 ). In addition, PD184352 of  MEK inhibitors   reduced 
cyst development and disease progression in the pcy mouse model, but UO126, 
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which is another MEK inhibitor (Omori et al.  2006 ), was not shown to signifi cantly 
alter cyst growth in the Pkd1 conditional knockout mouse model (Shibazaki et al. 
 2008 ). For another trial, metformin, an  AMP-activated protein kinase (AMPK) acti-
vator  , repressed cyst growth of MDCK cells cultured in vitro in collagen gels and 
in vivo  Pkd1  conditional knockout mice by activating AMPK and suppressing 
mTOR and CFTR (Takiar et al.  2011 ). Furthermore, alterations of glycosphingo-
lipid metabolism with increased GlcCer may have an important role in promoting 
cyst development. Inhibition of the synthesis of GlcCer blocked cell cycle progres-
sion and proliferation by repressing the Akt/mTOR pathway in ADPKD mouse 
models (Natoli et al.  2010 ). 

 Renal cysts are mainly caused by the dysregulation of cell proliferation followed 
by imbalanced calcium infl ux as well as the malfunction of the PC1-PC2 protein 
complex. A large majority of pre-clinical trials have been focused on cAMP signal-
ing, vasopressin-V2R, and the signaling pathways centered on the mTOR or MAP 
kinases. However, accumulating evidence has suggested that ADPKD progression 
seems to be infl uenced by the accumulated factors inside the cysts released by cyst- 
lining epithelia (Ye et al.  1992 ; Gardner et al.  1991 ). Fluids secretion is mainly 
accelerated by abnormal chloride effl ux into the cyst cavity via cystic fi brosis trans-
membrane conductance regulator (CFTR) or other specifi c transporters (Miranda 
et al.  2013 ). Approaches targeting CFTR or its regulating mechanisms using natural 
compounds have been attempted in several pre-clinical trials (Yuajit and 
Chatsudthipong  2016 ). Among them,  steviol  , a natural compound fi rstly isolated 
from the plant Stevia rebaudiana, effectively slowed down cyst development in 
ADPKD mice. The rodent model used was  Pkd1  f/f :  Pkhd1-cre , in which  Pkd1  is 
conditionally knocked-out only in kidney tubular cells, leading to ADPKD. Treatment 
with steviol delayed the growth of renal cysts in  Pkd1  f/f :  Pkhd1-cre  with enhanced 
renal function as indicated by reduced blood urea nitrogen and creatine levels. The 
specifi c mechanisms by which steviol inhibits disease progression were found to be 
mediated by the CFTR signaling pathway followed by the activation of AMPK. A 
lowered expression of CFTR subsequently inhibited fl uids secretion as well as cell 
proliferation in steviol-injected mice, and it fi nally attenuated the disease pheno-
types (Yuajit et al.  2014 ). Some other trials have targeted infl ammation or fi brosis, 
which commonly accompany the progression of ADPKD. Among the tested inter-
ventions,  Angiotensin-converting enzyme inhibitors   have effectively ameliorated 
the renal cysts development and improved renal function in Han:SPRD rats (Keith 
et al.  1994 ; Zafar et al.  2007 ). Angiotensin essentially stimulates the production of 
pro-infl ammatory factors as well as cell proliferation; therefore, inhibition of its 
synthesis reasonably led to an alleviation of the disease. The other drug that was 
evaluated for targeting infl ammation in ADPKD was  pyrrolidine dithiocarbamate  , 
which has both anti-infl ammatory and anti-proliferative effects. Treatment with this 
agent clearly resulted in a decreased TKV of male Lewis polycystic kidney rats, 
thereby reducing the ratio of kidney weight to total body weight by about 25 %. 
However, no changes in cell proliferation, interstitial infl ammation, and fi brosis 
occurred, leading to no effects on renal function (Ta et al.  2014 ). Apoptosis- 
regulating mechanisms have been also suggested as another potential target. 
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Inhibition of caspase-3 activity via treatment with IDN-8050 for 5 weeks resulted in 
reduced kidney enlargement as well as cysts volume density by 44 % and 29 %, 
respectively, in Han: SPRD rat model. It led to enhanced renal function with down- 
regulation both of cell proliferation and apoptosis. Those therapeutic effects have 
been observed with only three-hour treatment with the same drug as well, which 
means that long-term administration is not necessarily required for effective allevia-
tion of the disease phenotype (Tao et al.  2005a ;  b ). The indirect effect of targeting 
apoptosis to inhibit PKD progression has been also been tested by injection of CDK 
inhibitor roscovitine into cpk and jck mice. Mice treated with  roscovitine   showed 
delayed renal cyst development with blockade of cell cycle as well as apoptosis 
(Bukanov et al.  2006 ). Besides, a pre-clinical study using  lovastin   has revealed its 
therapeutic effects on the metabolic distributions in Han: SPRD rats. Lovastin is a 
lipid-lowering therapeutic medication and its use in the treatment of the Han:SPRD 
rat model led to the alleviation of renal cysts with enhanced renal function as well 
as metabolic alterations (Klawitter et al.  2013 ). Finally, dietary modulation has been 
recently suggested as another novel potential therapeutic option for 
ADPKD. Interestingly,  food restriction   effectively delayed ADPKD progression 
with a reduction in the volume of renal cysts, interstitial infl ammation, and fi brosis. 
These changes were mediated by regulating mTOR and AMPK activities (Warner 
et al.  2015 ). In these regards, targeting additional disease-stimulating factors other 
than the main mechanisms that initiate the disease could be another strategy to iden-
tify novel therapeutic targets for ADPKD.     
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