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    Chapter 2   
 Genetic Mechanisms of ADPKD                     

     Do     Yeon     Kim      and     Jong     Hoon     Park    

    Abstract     Autosomal dominant polycystic kidney disease is caused by mutation of 
PKD1 (polycystic kidney disease-1) or PKD2 (polycystic kidney disease-2). PKD1 
and PKD2 encode PC1 (polycystin-1) and PC2 (polycystin-2), respectively. In addi-
tion, the mutation of cilia-associated proteins is also a recognized major factor of 
pathogenesis, since PC1 and PC2 are located in primary cilium. Abnormalities of 
PC1 or PC2 lead to aberrant signaling through downstream pathways, such as the 
negative growth regulation, G protein activation, and canonical and non-canonical 
Wnt pathways. According to the “second hit” model, an additional somatic muta-
tion results in the expansion of cyst growth. In this chapter we discuss the genetic 
mechanisms and signaling pathways involved in ADPKD.  
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2.1       Polycystin-1 and Polycystin-2 

 Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations of 
two genes, namely  PKD1   (polycystic kidney disease-1) and  PKD2   (polycystic kid-
ney disease-2), which encode polycystin-1 (PC1) and polycystin-2 (PC2), respec-
tively. Approximately 85 % of ADPKD cases result from mutations in PKD1.  PC1   
is a 450-kD receptor-like protein with a large extracellular N terminus, 11 membrane- 
spanning domains, and a short cytoplasmic C terminus. The expression of PC1 was 
evaluated in epithelial cells during development (Ward et al.  1996 ), but its expres-
sion level is high in fetal renal tissue only and low in adult tissue (Chauvet et al. 
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 2002 ). PC1 localizes to the cilium, plasma membrane, and adhesion complex in 
polarized epithelial cells (Ibraghimov-Beskrovnaya et al.  1997 ; Huan and van 
Adelsberg  1999 ). PC1 and PC2 form a complex through their C-terminal tails 
(CTTs) to play a role in intracellular Ca 2  +  regulation (Tsiokas et al.  1997 ; Qian et al. 
 1997 ). The N terminus of PC1 consists of 15 PKD repeat motifs, two leucine-rich 
motifs, and a C-type lectin domain (Harris et al.  1995 ; Bycroft et al.  1999 ). These 
domains play an important role in mediating the subcellular localization of PC1 
within the plasma membrane and junctional complexes (Streets et al.  2009 ; Babich 
et al.  2004 ). The CTT of PC1 includes a G protein-binding domain, a coiled-coil 
domain, and residues associated with ubiquitin-mediated degradation (Low et al. 
 2006 ). The N- and C-terminal domains of PC1 can be cleaved. The N-terminal 
domain is cleaved at the G protein-coupled receptor proteolysis site (GPS) in the 
early secretory pathway (Wei et al.  2007 ; Yu et al.  2007 ). Generally, PC1 exists as a 
heterogeneous population of the full-length and N-terminal cleaved forms (Wei 
et al.  2007 ). However, one study suggested that N-terminal cleavage is necessary for 
the complete functional activation of PC1 (Qian et al.  2002 ). One interesting study 
revealed that cleaved CTT, which is assembled in the nucleus during reduced fl uid 
fl ow in mouse kidney, was increased in the cyst-lining cells in ADPKD (Low et al. 
 2006 ). 

  PC2   (968 aa; ~110 kDa) is a six-transmembrane protein with intracellular N and 
C termini (Mochizuki et al.  1996 ). PC2 acts as a Ca 2  +  −responsive cation channel of 
the transient receptor potential family (Gonzalez-Perrett et al.  2001 ). Although PC2 
is co-localized with PC1 to the cilium and plasma membrane (Yoder et al.  2002 ; Yu 
et al.  2009 ), the major portion of cellular PC2 is observed in the intracellular com-
partment and functions to release calcium from the intracellular store (Vassilev 
et al.  2001 ). The channel formed by PC1 and PC2 in complex is activated in response 
to ciliary bending, and it leads to signal transduction by chemical or mechanical 
stimuli (Nauli et al.  2003 ). The calcium-conducting pore consists of the loop 
between the fi fth and sixth transmembrane domains, and a missense mutation in the 
conducting pore was shown to cause ADPKD (Koulen et al.  2002 ). PC2 also func-
tions as an indirect regulator of the cytoplasmic calcium level together with two 
other intracellular Ca 2  +  channels, namely the inositol 1, 4, 5-triphosphate receptor 
(IP3R) and ryanodine receptor. The C-terminus of PC2, which directly interacts 
with IP3R, results in IP3-induced Ca 2  +  fl ux. PC2 also binds to the ryanodine recep-
tor channel and regulates calcium-induced calcium release (Anyatonwu et al.  2007 ; 
Li et al.  2009 ). The largest pools of PC2 appear in the ER and the early Golgi body 
among the subcellular compartments (Cai et al.  1999 ; Koulen et al.  2002 ). PC2’s 
subcellular localization requires specifi c signal transduction and traffi cking proteins 
that bind to PC2’s C terminus (Chapin and Caplan  2010 ). The movement of PC2 
from the ER to the Golgi is modulated by polycystin-2 interactor (PIGEA-14), 
which causes a redistribution of PC2 (Hidaka et al.  2004 ). 

 The PC1 and PC2 proteins are co-located in the primary cilium and ER (Yoder 
et al.  2002 ); however, they are also found in other locations depending on their func-
tions (Hanaoka et al.  2000 ; Grimm et al.  2003 ). Especially, many studies have sug-
gested that PC1 and PC2 reciprocally infl uence each other’s localization. One study 
confi rmed that impairing the function of PC1 prevents GPS cleavage in ADPKD 
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cyst cells, which leads to a decreased co-localization and amount of both PC1 and 
PC2 in primary cilia (Xu et al.  2007 ). The interaction between PC1 and PC2 has 
been recognized as an important factor for creating a functional ion channel through 
the intrinsic channel formed by activated PC2 alone or the emergent channel formed 
by the PC1-PC2 complex (Hanaoka et al.  2000 ). A physical connection between 
PC1 and PC2 is mediated by the CTTs of PC1 and PC2 (Qian et al.  1997 ; Tsiokas 
et al.  1997 ; Casuscelli et al.  2009 ). Through this interaction, PC2 prevents the abil-
ity of PC1 to activate G proteins (Delmas et al.  2002 ).  

2.2     Signaling Pathways of PKD1 and PKD2 

 Although the complete pathologic mechanisms remain to be elucidated, the loss of 
function of the PC1 and/or PC2 proteins leads to ADPKD pathogenesis through a 
myriad of  signaling pathways  , including planar cell polarity (PCP), Wnt, mamma-
lian target of rapamycin (mTOR), cyclic adenosine monophosphate (cAMP), 
G-protein coupled receptor (GPCR), cystic fi brosis transmembrane conductance 
regulator (CFTR), epidermal growth factor receptor (EGFR), mitogen-activated 
protein kinase (MAPK), cellular Ca 2  + , and the cell cycle (Gallagher et al.  2010 ). As 
explained above, PC1 and PC2 form a complex that functions as a transient receptor 
potential channel to maintain intracellular calcium homeostasis (Vassilev et al. 
 2001 ; Anyatonwu and Ehrlich  2005 ) and as a calcium release channel (Koulen et al. 
 2002 ). Disruption of PC1/PC2 results in a decreased level of intracellular Ca 2  + , lead-
ing to upregulated cAMP signaling and increased cell proliferation (Masyuk et al. 
 2006 ) (Fig.  2.1 ).

   An increased level of  cAMP   has been identifi ed in many animal models of poly-
cystic kidney disease (PKD), not only in the kidney but also in other tissues, such as 
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  Fig. 2.1    Representative signaling pathways regulated by polycystin 1 and/or 2       
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cholangiocytes (Masyuk et al.  2007 ), vascular smooth muscle cells (Kip et al.  2005 ), 
and the choroid plexus (Banizs et al.  2007 ). cAMP levels are modulated by the 
activities of membrane-bound GPCRs, soluble adenylyl cyclases (ACs), and cAMP 
phosphodiesterases (PDEs). Several hypotheses have been proposed regarding the 
mechanisms by which the cAMP level is infl uenced in PKD. At fi rst, reduced cal-
cium directly inhibits PDE1, indirectly suppresses PDE3, and activates membrane 
bound AC6 (Gattone et al.  2003 ; Wang et al.  2010 ). Next, a defect in PC2-mediated 
calcium entry in the ciliary protein complex occurs, leading to the inhibition of 
AC5/6 and the activation of PDE4C (Choi et al.  2011 ). Also, depletion of the endo-
plasmic reticulum (ER) calcium store triggers the accumulation of stromal interac-
tion molecule 1 to the plasma membrane and activates AC6 (Spirli et al.  2012 ). 
Likewise, several factors can contribute to an increase in the intracellular level of 
cAMP—disrupted PC1 binds to heterotrimeric G proteins (Parnell et al.  1998 ), 
vasopressin V2 receptor is upregulated, and circulating vasopressin, forskolin, ATP, 
or other adenylyl cyclase agonists are increased (Putnam et al.  2007 ; Hovater et al. 
 2008 ). Certain ACs and PDEs are recognized as being important in PKD progres-
sion because of their infl uence on compartmentalized pools of cAMP (Torres and 
Harris  2014 ). 

 One of the most evident characteristics of ADPKD pathogenesis is elevated cel-
lular growth and division. Polycystin proteins inhibit cell growth through interac-
tions with several pathways including the  mTOR   (Shillingford et al.  2006 ) and 
Janus kinase (JAK)-signal transducers and activators of transcription (STAT) 
(Bhunia et al.  2002 ) pathways. PC1 inhibits mTOR activity by stabilizing the tuber-
ous sclerosis 1-tuberous sclerosis 2 (TSC1-TSC2) complex, which is known as a 
negative regulator of the mTOR complex (Huang and Manning  2008 ; Distefano 
et al.  2009 ; Dere et al.  2010 ). PC1 stabilizes the TSC1-TSC2 complex through two 
distinct mechanisms. PC1 suppresses the ERK-dependent phosphorylation of TSC2 
at S664 (Distefano et al.  2009 ) and Akt-dependent phosphorylation of TSC2 at 
S939 by binding to TSC2 at the plasma membrane (Dere et al.  2010 ). The infl uence 
of the PC1-TSC2 interaction allows the TSC1-TSC2 complex to inhibit the mTOR 
signaling pathway. PC1 also functions as a positive regulator of p21 (cyclin- 
dependent kinase inhibitor) by binding and activating members of the  JAK-STAT 
pathway   (Bhunia et al.  2002 ). Following the PC2-JAK2 interaction and the forma-
tion of the intact C terminus of PC1, PC1 can activate STAT1 and STAT3 and it 
allow to increase p21 and decrease cell growth (Bhunia et al.  2002 ). PC2 also 
reduces cell proliferation by binding both eukaryotic translation elongation initia-
tion factor 2a (eIF2a) and pancreatic ER-resident eIF2a kinase (Liang et al.  2008 ). 

 The  Wnt signaling pathways   regulate cell growth, differentiation, and planar cell 
polarity and are classifi ed into the canonical ( β-catenin dependent  ) and noncanoni-
cal ( β-catenin independent  ) pathways. Both PC1 and PC2 affect the canonical Wnt 
pathway. In the case of PC1, the cleaved PC1 CTT directly or indirectly binds to 
β-catenin, translocates to the nucleus, and promotes T cell factor (TCF)-dependent 
transcription (Lal et al.  2008 ). PC2 also modulates the expression levels of some 
Wnt pathway components (Kim et al.  2009 ). In the noncanonical Wnt pathway, the 
function of PC1 is associated with the maintenance of planar cell polarity. Planar 
cell polarity is essential for oriented cell division and the establishment of kidney 

D.Y. Kim and J.H. Park



17

tubule structure, and defects in this process trigger the expansion of renal tubules 
and cyst formation (Fischer et al.  2006 ).  

2.3     Genetic Mechanisms of Pathogenesis 

 Approximately 85 % of ADPKD patients have mutations in PKD1; thus, it is sup-
posed that mutations in PKD1 cause a more severe disease than mutations in PKD2 
do (Rossetti et al.  2007 ). Generally, patients with PKD1 mutations develop ADPKD 
symptoms at younger ages relative to patients with PKD2 mutations, but their dis-
ease phenotypes are infl uenced by mutations in both genes (Hateboer et al.  1999 ). 
A myriad of mutation types that can cause ADPKD have been revealed, and the 
position of each mutation determines the severity of the disease (Rossetti et al. 
 2002 ; Rossetti and Harris  2013 ). Recent studies revealed that the type of mutation 
is more important, because patients with truncating mutations showed more severe 
disease phenotypes than did those with non-truncating mutations (Pei et al.  2012 ; 
Cornec-Le Gall et al.  2013 ). 

 ADPKD is genetically dominant at the organismal level, but recessive at the cel-
lular level (Chapin and Caplan  2010 ). Although a germ line mutation in PKD1 or 
PKD2 is necessary to induce cyst formation in ADPKD, cysts form in only part of 
the kidney tubules and hepatic bile duct. However, in adult tissues, both copies of 
the mutated polycystic gene undergo recessive loss of function, causing cyst forma-
tion to be accelerated in a subset of tubular epithelial cells. This paradox is explained 
by the occurrence of an additional somatic “ second hit  ” mutation (Qian et al.  1996 ; 
Watnick et al.  1998 ; Pei et al.  1999 ). Although the somatic second hit mutation 
mechanism is generally applicable to human ADPKD, additional factors contribute 
to determining the extent of cyst formation, including non-cell autonomous effects 
on polycystins-expressing cells (Nishio et al.  2005 ), the timing of PKD1 in the 
developmental stages (Piontek et al.  2007 ), and hypomorphic mutations of PC1 
compared to complete loss of function mutations (Rossetti et al.  2009 ; Hopp et al. 
 2012 ). Especially, reduced PC1 dosage is suggested to explain autosomal recessive 
PKD phenotypes, in which the degree of PC1 dysregulation is associated with the 
extent of tubule dilation and cyst formation (Hopp et al.  2012 ). 

 ADPKD is characterized by the formation of multiple fl uid-fi lled kidney cysts. 
Thus, we need to focus on the mechanisms of cyst expansion. In the patient’s kid-
ney, cells are organized in a circle and these lumens must fi ll with fl uid. Subsequently, 
cysts increase by cell proliferation, leading to the dilation of the renal tubule and 
renal failure (Qian et al.  1996 ; Brasier and Henske  1997 ). One model involves a loss 
of oriented cell division in the cells of mouse models with kidney-specifi c PKD1 or 
PKD2 mutation, which does not initiate cyst formation. This model suggests that a 
defect of planar cell polarity is an important factor in the expansion of many cysts; 
however, this factor was not essential for the initiation of cyst formation (Nishio 
et al.  2010 ). According to other studies, ion absorption and secretion in cyst-lining 
epithelial cells are signifi cant for cyst formation. cAMP can stimulate Cl –  transport, 
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resulting in the rapid and progressive dilation of tubules (Grantham  1996 ). In addi-
tion, one research group reported that tubule enlargement is prevented by inhibitors 
of Na +  −K +  −2Cl –  cotransporters and CFTR (Montesano et al.  2009 ). Therefore, 
cAMP signaling plays a key role in renal cyst formation by promoting Cl –  driven 
fl uid secretion. Furthermore, polycystin proteins also function as regulators of 
cAMP signaling by modulating the expression, localization, and activity of Cl –  
channels (Chapin and Caplan  2010 ).     
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