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    Chapter 1   
 Recent Trends in ADPKD Research                     

     Yu     Bin     Shin      and     Jong     Hoon     Park    

    Abstract     Autosomal Dominant Polycystic Kidney Disease (ADPKD) is one of the 
most common inherited disorders. It is the fourth leading cause of renal replacement 
and renal failure worldwide. Mutations in  PKD1  or  PKD2  cause ADPKD. Patients 
with ADPKD show progressive growth of renal cysts fi lled with cystic fl uid, leading 
to end-stage renal disease (ESRD) and renal failure by their sixth decade of life. 
Currently, there are no curative treatments for ADPKD. Therefore, patients require 
dialysis or kidney transplantation. To date, researchers have elucidated many of the 
mechanisms that cause ADPKD and developed many methods to diagnose the dis-
ease. ADPKD is related to growth factors, signaling pathways, cell proliferation, 
apoptosis, infl ammation, the immune system, structural abnormalities, epigenetic 
mechanisms, microRNAs, and so on. Various therapies have been reported to slow 
the progression of ADPKD and alleviate its symptoms.  

  Keywords     ADPKD   •   Polycystic kidney   •   Cyst   •   Renal failure   •   ESRD   •   Pathogenesis   
•   Disease mechanism  

1.1       Autosomal Dominant Polycystic Kidney Disease 

1.1.1     Pathogenesis of ADPKD 

 Three inherited cystic diseases of the kidney are known. These are autosomal domi-
nant polycystic liver disease (ADPLD), autosomal recessive polycystic kidney dis-
ease (ARPKD), and autosomal dominant polycystic kidney disease (ADPKD). 
  PRKCSH    and   SEC63    genes are involved in ADPLD, and it causes bile duct cystic 
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dilations. Abnormal expression of the   PKHD1    gene results in ARPKD, which mani-
fests as fusiform collecting duct dilatations, congenital hepatic fi brosis, and liver 
cysts. 

 Polycystic kidney disease 1 and 2 ( PKD1  and  PKD2 ) are two causative genes of 
ADPKD. Patients with ADPKD have kidney and bile duct cysts. Germline mutation 
of  PKD1  or  PKD2  leads to cyst formation. Monogenic disorders of these two genes 
have an incidence of 1 in 600 to 1 in 1000 individuals, meaning that ADPKD is one 
of the most common hereditary disorders. Also, it is the fourth leading cause of renal 
replacement and renal failure worldwide (Fedeles et al.  2014 ). Most cases of ADPKD 
are inherited, while about 10 % are due to   de novo  mutation   (Rossetti et al.  2001 ).  

1.1.2     Manifestations of ADPKD 

 Patients with ADPKD have symptoms as follows: They have fl uid-fi lled renal cysts 
in their kidneys and other epithelial organs. Usually, both of their kidneys are 
extremely enlarged and fi lled with cystic fl uid. Because of the formation of cysts, 
patients have renal enlargement and it eventually causes end-stage renal failure 
( ESRD  ) (Hou et al.  2002 ). Approximately 10 % of ESRD cases are caused by 
ADPKD. In normal adult humans, the kidneys comprise about 0.5 % of body weight. 
The kidneys of ADPKD patients weigh about 22 kg, comprising about 20 % of body 
weight (Ekser and Rigotti  2010 ). There are also various  manifestations   of ADPKD 
that are unrelated to the kidneys. One of the most common manifestations in ADPKD 
patients is  hypertension   (Martinez and Grantham  1995 ). Connective tissue defects 
such as  cardiac defects  ,  intracranial aneurysms  , and  hepatocystic disease   also occur 
in ADPKD patients (Wu et al.  2000 ; Hughes et al.  1995 ). When these symptoms 
become aggravated, patients have to undergo  dialysis   and  transplantation  . 

 One of the most pronounced phenotypes of ADPKD is cyst formation in the 
kidneys. When the disease becomes severe, patients with enlarged cysts can even 
resemble pregnant women. Then, how does cyst formation progress in the kidney? 

 First, it starts at the normal renal tubule.  Germline mutation   of  PKD1  or  PKD2  
causes the loss of one allele, and a somatic  second hit   causes the loss of the other 
normal allele (explained in Chap.   2    ). Then, one or more additional steps lead to 
cystogenesis as a ‘ third hit  ’, which may include nephrotoxic injury and/or ischemia. 
The third hit leads to cell proliferation in the renal tubules and causes small dilations 
that subsequently expand and form fl uid-fi lled cysts of various sizes (Weimbs  2007 ; 
Bell et al.  2011 ). As cell proliferation persists, the dilation also progresses. Then, the 
dilated regions are separated from their original tubules, becoming a distinct cyst 
(Weimbs  2011 ). Once cysts are formed, they grow increasingly larger as the disease 
progresses. Therefore, cystogenesis is the most remarkable feature of ADPKD. 

 In addition, a variety of mechanisms can evoke ADPKD disease progression and 
cystogenesis, including somatic mutation, germ line mutation, modifying genes, 
increased cell proliferation, apoptosis, defective planar cell polarity, extracellular 
matrix abnormalities, fl uid secretion, infl ammation, and environmental factors (Paul 
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and Vanden Heuvel  2014 ; Zhou  2009 ). To date, researchers have elucidated a  variety 
of mechanisms that can cause ADPKD, methods to diagnose the disease, and thera-
pies to slow and alleviate the symptoms of ADPKD.   

1.2     Studies on ADPKD 

 As many studies on other diseases have investigated their early diagnosis and treat-
ments, those on ADPKD have also sought to identify the mechanisms of disease and 
to develop methods to cure ADPKD. For several decades, researchers have been 
working towards these goals. Some of most remarkable approaches that have been 
employed to study ADPKD are as follows. 

1.2.1     Growth Factors, Signaling Pathways, and Cell 
Proliferation 

 Cyst expansion in the kidneys of ADPKD patients is the most remarkable feature of 
the disease. The tubular epithelial cells that surround the cysts proliferate and drive 
their enlargement. Therefore, inhibiting cell proliferation is an important target for 
easing the symptoms of ADPKD (LaRiviere et al.  2015 ). In normal kidneys, a 
 homeostatic   balance is maintained between cell proliferation and apoptosis. 
However, in the kidneys of ADPKD patients, cell proliferation is more frequent than 
apoptosis. This imbalance eventually leads to cyst formation (Gregoire et al.  1987 ). 
Many studies have suggested a variety of mechanisms that may cause or contribute 
to cell proliferation and cyst enlargement in cystic kidney epithelia. 

 A wide range of  growth factors   are involved in cystogenesis. One of the main 
growth factors is epidermal growth factor (EGF), which along with EGF receptor, 
and other members of the EGF family such as transforming growth factor (TGF)-α, 
heparin-binding EGT, and amphiregulin, plays an important role in regulating cell 
proliferation of the cystic epithelia (Du and Wilson  1995 ). TGF-α is overexpressed 
in human polycystic kidney. Also, TGF-β is a major growth factor in 
ADPKD. Upregulation of TGF-β is related to cyst expansion during disease pro-
gression, but it is less involved in cyst initiation (Hassane et al.  2010 ; Wilson et al. 
 1996 ). Other growth factors such as hepatocyte growth factor (HGF), insulin-like 
growth factor 1 (IGF-1), and tyrosine kinase receptor of HGF and IGF-1 are also 
related to cyst formation in ADPKD. 

 In addition to growth factors, many signaling pathways are involved in 
ADPKD. First of all, the second messenger adenosine 3ʹ, 5ʹ cyclic monophosphate 
( cAMP  ) is crucial in cystic kidney. cAMP, an intracellular mediator of adenylyl 
cyclase signaling, promotes cell proliferation of cystic epithelia. ADPKD patients 
and various animal models of polycystic kidney disease show an elevated cAMP 
level in kidney. Even in normal human kidney, stimulation by cAMP drives a cystic 
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phenotype. Upregulation of cAMP mainly infl uences calcium signaling. cAMP 
induces cyst expansion and fl uid secretion in intact cysts (Ye and Grantham  1993 ). 
When the level of intracellular calcium is decreased, cAMP/PKA signaling acti-
vates the Src/Ras/Raf/MEK/ERK pathways in ADPKD patients. ERK signaling, 
which is induced by PKA, also leads to the activation of  mTOR signaling   (Spirli 
et al.  2010 ; Distefano et al.  2009 ). Signal transducer and activator of transcription 3 
( STAT3  ) responses to cAMP. STAT3 plays key roles in the development and main-
tenance of proinfl ammatory conditions in cystic kidneys (Martinez and Grantham 
 1995 ; Talbot et al.  2014 ). 

 Following the identifi cation of clear mechanisms driving cell proliferation in the 
cysts of ADPKD, there have been many clinical trials to alleviate disease progres-
sion. Some representative drugs are  vasopressin V2 receptor (V2R)   antagonist, 
somatostatin analogs, mTOR inhibitors ( rapamycin  ,  sirolimus  , and  everolimus  ), 
Raf kinase inhibitors (PLX5568 and  sorafenib  ), Src/Abl inhibitor SKI-606 ( bosuti-
nib  ), and MEK inhibitors (PD184653 and UO126) (Renken et al.  2011 ; Sweeney 
et al.  2008 ; Shillingford et al.  2006 ; Elliott et al.  2011 ; Omori et al.  2006 ; Tao et al. 
 2005 ; Buchholz et al.  2011 ; Shibazaki et al.  2008 ; Yamaguchi et al.  2010 ).  

1.2.2     Infl ammation and Immune System 

 Recently, activation of macrophages was detected in the cyst lining epithelia in 
several mouse models of ADPKD. This fi nd means that activated macrophages are 
involved in the proliferation of tubular epithelial cells (Karihaloo et al.  2011 ; Rae 
et al.  2007 ; Swenson-Fields et al.  2013 ). In addition, some infl ammatory responses 
and gene expression patterns associated with the immune system were determined 
to be involved in ADPKD through computational analysis (Song et al.  2009 ). An 
increased concentration of  monocyte chemotactic protein-1 (MCP-1)   induces an 
increased number of mononuclear cells. We can detect MCP-1 in urine samples 
from ADPKD patients, which indicates an impairment of the innate immune system 
because of disease progression (Swenson-Fields et al.  2013 ). Macrophages play a 
major role in early developmental stages by removing apoptotic cells after the dif-
ferentiation of organs. An increased number of macrophages results in the up- 
regulation of cell proliferation, down-regulation of apoptosis, and fi nally enlargement 
of cysts in the kidneys. Several studies have suggested that the downregulation of 
macrophages might be helpful for curing polycystic kidney diseases.  

1.2.3     Structural Abnormality 

 The progressive accumulation of extracellular matrix is one of the notable hall-
marks of fi brosis in ADPKD. Some animal models of polycystic kidney disease 
exhibit a thickened and laminated basement membrane and express high levels of 
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 α1 type IV collagen   and  laminins   β1 and β2 (Katz et al.  1989 ). Polycystin-1, the 
protein encoded by  PKD1 , is involved in interactions between cells and the extracel-
lular matrix. An excessive accumulation of fi broblasts results in cyst expansion in 
ADPKD kidney. Recently, in studies using zebrafi sh, researchers have found that 
polycystin proteins might be engaged in producing collagen. Therefore, we can 
infer that the accumulation of collagen is due to malfunctions of  PKD1  and  PKD2  
(Mangos et al.  2010 ). 

  Extracellular matrix   maintains its structure through continual turnover. The rate 
of the degradation of extracellular matrix is mediated by the  matrix metalloprotein-
ases (MMPs)  , and  tissue inhibitors of metalloproteinases (TIMPs)   (Catania et al. 
 2007 ). In the kidneys of a mouse model with a mutation in  Pkd1 , the levels of 
MMP-2 and MMP-14 were upregulated (Hassane et al.  2010 ). Moreover, the levels 
of MMP-1, MMP-9, and TIMP-1 in serum were increased in the kidneys of ADPKD 
patients (Nakamura et al.  2000 ). Taken together, most MMPs and TIMPs were ele-
vated in cystic conditions. In addition, the extracellular matrix interacts with cells. 
This interaction controls cell proliferation, differentiation, and other cellular func-
tions through specifi c matrix receptor proteins. Typical examples of these matrix 
receptor proteins are  integrins   and proteoglycan-containing  syndecans   (Geiger et al. 
 2001 ). To summarize many studies, researchers found that several integrins and 
syndecans were increased in ADPKD patients, particularly α2β1 integrin, integrin 
α8, integrin αv, integrin β4, and syndecan-4 (Wilson and Burrow  1999 ; Wallace 
et al.  2008 ; Wilson et al.  1999 ; Zeltner et al.  2008 ). 

 The main physiological function of the kidney is  fi ltration  , and it is essential for 
 homeostasis  . Components that are over-accumulated or unnecessary are secreted, 
while other essential factors remain in the circulation. This process occurs when 
body fl uid passes through the kidney, especially in the renal tubules. A sensory 
organelle called the cilium can detect physical and chemical stimuli such as the fl ow 
of fl uid (Hildebrandt and Otto  2005 ). Cilia protrude from the epithelial cells towards 
the lumen of renal tubules. Cilia are microtubule-based structures and they originate 
from the basal body or centrosome (Paul and Vanden Heuvel  2014 ). Alongside 
many other factors, ciliary defects can also cause polycystic kidney disease. Recent 
studies have demonstrated that malfunctions of the cilia could infl uence cyst devel-
opment (Garcia-Gonzalo and Reiter  2012 ).  

1.2.4     Epigenetic Changes and microRNA 

 Another biological mechanism that could explain the symptoms and pathogenesis 
of ADPKD is epigenetic regulation. Epigenetic changes including histone modifi ca-
tions such as acetylation, methylation, and phosphorylation are also related to the 
mechanisms of ADPKD (Li  2011 ). The mechanism that can control DNA methyla-
tion was revealed—an increased level of TGF-β evokes  DNA methylation   in 
ADPKD tissue, and it might result in fi brosis in kidney (Bechtel et al.  2010 ). 
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 Furthermore,  microRNAs   can also evoke ADPKD by directly binding to their 
target genes. The importance of microRNAs in ADPKD has been emphasized. 
microRNAs can regulate the expression level of their target mRNA(s) and are 
related to cell proliferation, differentiation, apoptosis, and many other cellular pro-
cesses. Individual microRNAs might be increased or decreased in the kidneys of 
ADPKD patients. Some microRNAs target  PKD1  or  PKD2  directly, or they can 
target other genes related to the phenotype of ADPKD. For example, the miR- 
17 ~ 92 microRNA cluster, miRNA-21, miR-15a, and miRNA-199a have been iden-
tifi ed as candidate ADPKD-involved microRNAs that can regulate cell proliferation 
and the pathogenesis of ADPKD (Patel et al.  2013 ; Sun et al.  2015 ; Lakhia et al. 
 2015 ; Lee et al.  2008 ). 

 Targeting microRNAs that bind to  PKD1  or  PKD2  might be a viable method to 
regulate the clinical manifestations of ADPKD, but most previous research about 
microRNAs and ADPKD has suggested that microRNAs alone are not suffi cient for 
the treatment of ADPKD. Another factor is needed to cure the disease, so many 
studies have offered microRNAs and their target genes as new therapeutic targets. 
As a variety of microRNAs involved in cystogenesis have begun to be revealed by 
microRNA microarray data, research on microRNAs in ADPKD is predicted to 
become increasingly active in the future (Tan et al.  2011 ).   

1.3     What Is Coming Next in ADPKD Research? 

 Until now, research on ADPKD has been conducted using various approaches such 
as those at the molecular and structural levels, as well as clinical trials. Although all 
of these approaches can yield useful results, we need to increasingly focus on iden-
tifying methods for the diagnosis and treatment of ADPKD. All researchers should 
seek to develop a framework for integrating studies across disciplines, and then 
apply that framework to deciphering an effective treatment modality for curing 
ADPKD. As many exciting studies are currently underway, it is possible that we 
may be able to discover a new therapeutic method in the near future.     
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