
Processing ASP.Net Web Services Using
Generic Delegation Approach

Vilakshan Saxena, Harshit Santosh and Chittaranjan Pradhan

Abstract For the electronic business applications, web services are usually con-
sidered as the design models. Here, our aim is to design an efficient model to deal
with both the distributed applications and cooperative applications. In both the
cases when it comes to implementation of web services in respective applications,
the consumer (developer) has to put an effort to manually provide the reference of
the respective web service through a specific set of steps depending upon the target
IDE. But what if we have a technique to perform the above mentioned approach in
a dynamic and generic fashion without manually adding the web reference for any
web service. In this paper, we will represent an efficient approach for interacting
with any web service irrespective of its syntax (WSDL) and semantics without
adding its web reference. Through this approach the consumer of the web service
can access the respective web service dynamically by just mentioning its URL in
his/her code and through a little object oriented methodology. Our approach is
based on accessing the particular web service by automatic generation of proxy
class, delegation, dynamic data type handling through reflections API and pro-
ducing the desired output in a generic fashion.

Keywords Web services ⋅ Reflections API ⋅ Proxy class ⋅ Web service
authentication

Vilakshan Saxena (✉) ⋅ Chittaranjan Pradhan
KIIT University, Bhubaneswar, India
e-mail: vilakshankiit@gmail.com

Chittaranjan Pradhan
e-mail: chitaprakash@gmail.com

Harshit Santosh
MIT, Manipal, India
e-mail: harshitsantosh@gmail.com

© Springer Science+Business Media Singapore 2017
J.K. Mandal et al. (eds.), Proceedings of the First International Conference
on Intelligent Computing and Communication, Advances in Intelligent Systems
and Computing 458, DOI 10.1007/978-981-10-2035-3_16

147



1 Introduction

Web service is a technique in which one electronic device can communicate to
another over a network. It is provided as a software functionality at web node with the
services available as utility computing. It describes a methodology of integrating
web-based applications using the internet protocol. For data tagging, XML standard is
used [1]. To transfer data, SOAP standard is used. Similarly, for the description of the
services,WSDL can be used. To get the available services, UDDI standard is used [2].

Using the web service, two software packages exchange data between them-
selves over the internet. The requesting software system is called as service
requester and the processing software system is considered as the service provider
[3, 4]. We need a generic software system which is free from any specific pro-
gramming language. Since XML tags are interpreted by almost all software, it can
be used as the data exchange tags in web services. The set of rules used for data
communication are defined in Web Services Description Language (WSDL) file
[5]. Universal Description, Discovery and Integration (UDDI) is used as the
directory of data types and compatible software systems. Once the service provider
validates the service requester through WSDL file, Simple Object Access Protocol
(SOAP) can be used for data transfer [6, 7].

In the proposed approach, we access the particular web service by automatic
generation of proxy class, delegation, dynamic data type handling through
Reflections API and producing the desired output in a generic fashion.

2 Related Work

In 2005, John B. Oladosu et al. have done a study on web services; which includes
the advantages of the web services over the previous services such as CORBA,
COM etc. The study also includes the different components of web service along
with the different standards. The application of web services in the e-health domain
has also been discussed in the paper [1].

In 2009 C. Boutrous Saab et al. developed a technique on processing of web
services by focusing on the two basic features of web service. The first feature deals
with the interaction problem provided in the interaction protocol. The second
feature deals with the design process of a web service [3].

3 Proxy Class

A client can communicate with the web service using SOAP message. This mes-
sage encapsulates the input parameters and output parameters in the XML form.
A proxy class maps the input and output parameters to the XML elements and sends

148 Vilakshan Saxena et al.



the message over the network. Using this technique, the proxy class frees the
consumer from the communication with web services at SOAP level and permits
the consumer to invoke the web services from the development environments
supporting web service proxies and SOAP. The proxy class can be added to the
development environment/project in Microsoft.NET Framework: (i) using WSDL
tool and/or (ii) adding web reference in Microsoft Visual Studio. The proxy classes
can also be processed in the similar way in J2EE Framework.

3.1 Using WSDL Tool

The Web Services Description Language (WSDL) tool of. NET Framework SDK
allows us to create and use web service proxies. This tool accepts a set of arguments
to generate a proxy. When the proxy is generated, the proxy class can be compiled
to an assembly file and added as a project item [5, 7].

3.2 Adding Web Reference in Microsoft Visual Studio

When a project needs to consume one or more number of web services, web
reference methodology is used. Once the web reference is added to the respective
project, then it can be used easily to access corresponding web services over the net
using object oriented methodology [8].

4 C# and VB Reflection API

The reflection API is used to create an instance of a type, bind the type to or extract the
type from an existing object, and access the methods and its characteristics [9]. The
attributes can also be invoked using the reflection. The reflection is used due to these:

• When the attributes of program’s metadata needs to be accessed.
• When the types in an assembly needs to be examined and instantiated.
• When new types are built using System.Reflection.Emit class.
• When late binding needs to be performed at run time.

5 NET Web Service Authentication

Web service authentication is performed in order to secure the web service from
been hijacked by third party contenders as it travels from source to destination over
the network. Web service authentication can be performed using many ways [10].
In .NET framework authentication can be performed using many ways as follows:

Processing ASP.Net Web Services Using Generic Delegation Approach 149



• Basic authentication using web service Credentials property.
• Custom Authentication using several security extensions.
• Simple authentication of web services using SOAP and authorization headers

which focus on object oriented methodology of creation SOAP header classes
and objects and usage of individual member variables for username and pass-
word, in which password can be clear text or MD5 hashed.

6 Proposed Algorithm

Here, we propose an algorithm representing an interface for catering of any .NET
web services using generic delegation approach. Unlike creating separate classes
and objects for each of the web references corresponding with different web ser-
vices, this interface acts as a delegate for any target web service resulting in creation
of one point two way communication for separate web references. Let WS.asmx is
the target web service that we want to access with this interface. The steps of the
algorithm are as follows:

a. Receive the input parameters regarding the target web service such as

i. Web Service URL. (www.abc.com/WS.asmx?wsdl).
ii. Service Name (Can be retrieved from the WSDL file of the web service).
iii. Method Name (Desired function name to be called).
iv. Input parameters.
v. Authentication Class Name.
vi. Username.
vii. Password.

The last three parameters are optional and are required only if there is authen-
tication header associated with the web service with a username and a password.

b. Create an instance of the proxy class and associate it with the provided web
service URL as mentioned in (6.a.i) and store the compiled results in ‘Compiler
Results’ class.

c. Using the object mentioned in (6.b), dynamically create instance of the target
‘Service Name’ as mentioned in (6.a.ii).

d. Once the instance of the target service name is created extract the structure of
the method (function) as provided by Method Name parameter as mentioned in
(6.a.iii).

e. Using the Reflection API extract the target data type of the Input parameters
provided. (As mentioned in (6.a.iv)) as they are boxed into a generic data type.
Note Here we don’t know the data type of the input parameters provided to the
interface due to which we have used the Reflection API to detect the data type of
the parameters dynamically.

150 Vilakshan Saxena et al.

http://www.abc.com/WS.asmx?wsdl


f. After extracting the target data type (As mentioned in (6.e)) extract all the input
parameters from provided Input parameters and store it in an array.

g. Search the extracted method structure (As mentioned in (6.d)) among all the
methods present in the target web service (As web service can be a collection of
many methods) until there is a proper match.

h. Once the target method is found and analyzed process the generic input
parameters (As extracted in (6.e)) and store there values in the desired input
parameters of the target method to be called.

i. As the data type of the input parameters is determined dynamically, so the
provided input parameters are sequentially captured according to the data type in
the target method parameters.

j. Once all the parameters are mapped (As mentioned in (6.h)), call the target
method.

k. Once the target methods is successfully processed (As mentioned in (6.j)) store
the desired output in a generic variable using Reflection API and return it to the
calling interface. This output variable will acts as a parent variable which can be
correspondingly unboxed into respective data type by the client.

7 Experimental Results

The scope of effectiveness of this approach can be evaluated on the basis of
checking this approach in different type of scenarios.

7.1 Authenticated Web Service

Authenticated web services are those web services which accept a valid username
and password for connecting a client to its internal resources for various operations.
There are various ways to provide an authentication firewall for the web service
like:

i. Windows authentication:—Authenticity is checked on basis of valid accounts
on which clients are logged into using windows user id and password.

ii. SOAP headers:—SOAP headers can be defined as a custom way to apply
authenticity to a web service as the owner of the web service implements a
separate class using SOAP API and SOAP base classes along with the
functional classes of the web service for storing and verifying username and
password.

iii. DB driven:—Owner of the web service stores and processes the valid user-
name and password by storing it in a database table using database level
security like encryption and hashing (Fig. 1).

Processing ASP.Net Web Services Using Generic Delegation Approach 151



Our algorithm handles the authentication of target web service in all the three
cases:

i. For windows authentication (7.a.i) our algorithm implements the built in feature
of the underlying framework and enforces it to check for valid windows
username and password.

ii. For handling SOAP headers authentication (7.a.ii), our algorithm dynamically
creates instance of the SOAP header class using ‘Compiler Result’ support
class as mentioned in (6.b) and (6.c). After creating the instance, the algorithm
extracts the desired username and password attribute along with their corre-
sponding data type using the ‘Reflection API’ as mentioned in (6.e). It then sets
the username (6.a.vi) and password (6.a.vii), through the input parameters
passed to the algorithm.

7.2 Web Services with Client Security Certificate

When the applications call the web services, they must be authenticated by the web
services. The authentication checking must be performed before the web service
authorization. One of the authentication techniques is achieved by using client
certificate. The user may receive an “access denied” error message when a client

Fig. 1 Authenticated web service

Fig. 2 Web services using client security certificate

152 Vilakshan Saxena et al.



application tries to call a web service. But, when a console application tries to call
the same web service, the error message may be omitted. In these cases, the
computer system keeps two different certificate stores:

iii. The local machine store, which is used for web applications.
iv. The local user store, which is used for interactive applications.

To enable an application to use a client certificate, you must install the client
certificate in the local machine store and the user logged into that machine should also
have proper permission to access that certificate (Fig. 2). Our algorithm handles the
authentication of the client certificate for accessing web services, (given that the valid
client certificate is already installed on client machine) by using a specific validation
call back approach in which it checks for the valid client certificate using X509 client
certificate base classes and parsing of the DER encoded file. (Key for parsing the
DER encoded file is to be exported at the time of installing the client certificate).

8 Catering of the Algorithm

As the effectiveness of the proposed algorithm is observed, here is a brief
description about how to cater the algorithm in respective target projects.

a. Add the reference of the algorithm to the target project.
b. Create an object of the respective class associated with the algorithm as shown

below:

WebServiceAlgorithmobj= newWebServiceAlgorithmðÞ

c. After creation of the object (8.b), call the algorithm (target function) for pro-
cessing of the web service.

d. For normal ASP.Net web services, the target function (8.c) can be called as
shown below:

ReturnObject= obj.TargetFunction

ðWeb Service URL, Service Name, Method Name, Input parametersÞ

where:

(i) First parameter is the URL of the web service.
(ii) Second one is the service name (class of the web service).
(iii) Third one is name of the method to be called to get the output.
(iv) Fourth parameter (8.g) represents collection of input parameter to be used

in the method.

e. For authenticated web service, the target function (8.c) can be called as shown
below:

Processing ASP.Net Web Services Using Generic Delegation Approach 153



ReturnObject= obj.TargetFunction

ðWeb Service URL, Service Name, SOAPAuthentication

Header Name, Username, Password, Target Function

Name, Input parametersÞ

where:
All other input parameters are same (8.d) except for three input parameters:—
(SOAP Authentication Header Name) which is the name of the authentication
header associated with the web service and contains the respective username and
password, (Username) is the desired username and (Password) is the desired
password.
Note Above mentioned approach (8.e) highlights authentication using SOAP
header. As far as Windows and DB driven authentication is concerned our
algorithm does not need SOAP header, only username and password is required.

f. As far as web services with client certificate are concerned, the proposed
algorithm is developed in such a way that it caters these cases implicitly.

g. For populating input parameters for the desired function client can form the
input structure as follows:

(i) Create a class for the input parameter.
(ii) Declare variables for each input with required data types as needed by the

web service.
(iii) Create public caterers for each variable for accessing them.

(iv) Assign the variables with the desired values through the public caterers
defined.

154 Vilakshan Saxena et al.



(v) Pass the object of this class as a parameter in the target function (8.c) of
the web service.

h. The output of the proposed algorithm returns a parent object which can be
correspondingly unboxed into respective data type.

9 Conclusion

In the proposed algorithm, we have presented an approach for processing ASP.Net
web services using delegation technique, in which one common delegate will act as
medium of communication between clients and any number and type of ASP.Net
web services. The proposed algorithm encourages reusability, modularity and
generic development. It also reduces time and effort of referencing each web service
explicitly and makes target application adaptive to new changes with respect to web
services. We can conclude that the proposed algorithm is a generic, robust and
effective algorithm for any.Net web service. In future we will try to increase the
scope of the algorithm to different additional platforms.

References

1. John B. Oladosu, Funmilola A. Ajala, Olukunle O. Popoola, “On the Use of Web Services
Technology in E-Health Applications”, Journal of Theoretical and Applied Information
Technology, Vol. 12, No. 2, 2010, pp. 94–103.

2. M. Vasko, S. Dustdar, “An Analysis of Web Services Workflow Patterns in Collaxa”, Web
Services, Lecture Notes in Computer Science, Springer, 2004, pp. 1–14.

3. C. Boutrous Saab, D. Coulibaly, S. Haddad, T. Melliti, P. Moreaux, S. Rampacek, “An
Integrated Framework for Web Services Orchestration”, International Journal of Web Services
Research, Vol. 6, No. 4, 2009.

4. S. Mokarizadeh, P. Kungas, M. Matskin, “Utilizing Web Services Networks for Web Service
Innovation, International Conference on Web Services, IEEE, 2014, pp. 646–653.

5. K. Elgazzar, A.E. Hassan, P. Martin, “Clustering WSDL Documents to Bootstrap the
Discovery of Web Services”, International Conference on Web Services, IEEE, 2010,
pp. 147–154.

6. M. Paolucci, T. Kawamura, T. R. Payne, K. Sycara, “Semantic Matching of Web Services
Capabilities”, International Semantic Web Conference, LNCS, Springer Verlag, 2002,
pp. 333–347.

7. McGrawhill Company Inc., “What the heck are Web Services?” Business Week, 2005.
8. A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford, Y. Goland, A.

Guizar, N. Kartha, C. K. Liu, R. Khalaf, D. Konig, M. Marin, V. Mehta, S. Thatte, D. V. R.
Rijn, P. Yendluri, A. Yiu, “Web Services Business Process Execution Language Version 2.0.”,
Technical report, OASIS WSBPEL Technical Committee, 2007.

9. C. Peiris, “Creating a .net Web Service”, Caulfield, Australia, 2005.
10. Guofeng Yan, Yuxing Peng, Shuhong Chen, Pengfei You, “QoS Evaluation of End to End

Services in Virtualized Computing Environments”, International Journal of Web Services
Research, Vol. 12, No. 1, 2015, pp. 27–44.

Processing ASP.Net Web Services Using Generic Delegation Approach 155


	16 Processing ASP.Net Web Services Using Generic Delegation Approach
	Abstract
	1 Introduction
	2 Related Work
	3 Proxy Class
	3.1 Using WSDL Tool
	3.2 Adding Web Reference in Microsoft Visual Studio

	4 C# and VB Reflection API
	5 NET Web Service Authentication
	6 Proposed Algorithm
	7 Experimental Results
	7.1 Authenticated Web Service
	7.2 Web Services with Client Security Certificate

	8 Catering of the Algorithm
	9 Conclusion
	References


