Chapter 11
Complex Analysis Method for Elasticity
of Quasicrystals

In Chapters 7-9, we frequently used the complex analysis method to solve the
problems of elasticity of quasicrystals and many exact analytic solutions were
obtained by this method. In these chapters, we only provided the results, and the
underling principle and details of the method could not be discussed. Considering
the relative new feature and particular effect of the method, it is helpful to attempt a
further discussion in depth. Of course, this may lead to a slight repletion with
relevant content of Chaps. 7-9.

It is well known that the so-called complex potential method in elasticity is
effective, in general, only for solving harmonic and biharmonic partial differential
equations in the classical theory of elasticity, and for these equations, the solutions
can be expressed by the analytic functions of single complex variable z = x + iy,

i = v/—1. In addition, in the classical elasticity, quasi-biharmonic partial differential
equation can be solved by analytic functions of some different complex variables
such as z; = x4+ a1y,20 = x4+ 0y, ... in which ay, o, ... are complex constants.
The study of elasticity of quasicrystals has led to discovery of some multi-harmonic
and multi-quasiharmonic equations, which cover quite a wide range of partial
differential equations appearing in the field to date and have been introduced in
Chaps. 5-9. The discussion on the complex analysis for these equations is signif-
icant. We know that the Muskhelishvili complex analysis method for classical plane
elasticity [1], which solves mainly the biharmonic equation, and the complex
potential method developed by Lekhlitzkii [2] for classical anisotropic plane elas-
ticity, which solve mainly the quasi-biharmonic equation, made great contributions
for quite a wide range of fields in science and engineering. The present formulation
and solutions of the complex analysis, e.g. quadruple and sextuple harmonic
equations and quadruple quasiharmonic equation, are a new development of the
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complex analysis method used for classical elasticity. Though the new method is
used to solve the elasticity problems of quasicrystals at present, it may be extended
into other disciplines of science and technology in future.

At first, we simply review the complex analysis method for harmonic and
biharmonic equations and then focus on those for quadruple and sextuple harmonic
equations and quadruple quasiharmonic equation and, with discussions in detail,
presenting their new features from the angle of elasticity as well as complex
potential method.

11.1 Harmonic and Biharmonic in Anti-Plane Elasticity
of One-Dimensional Quasicrystals

The final governing equations of elasticity of one-dimensional quasicrystals present
the following two kinds discussed in Chap. 5:

044V2uz +R3V2Wz =0

11.1.1
R;V2u, + K>Vw, = 0 ( )
ot ot ot ot o*
(e ot ta Ox3dy T Ox20y? ta Ox0y? tes 8_)14)G =0 (11.1.2)

in which Eq. (11.1.1) is actually two decoupled harmonic equations of u«, and w,
whose complex variable function method was introduced in Sects. 8.1 and 8.2, and
here we do not repeat any more.

Equation (11.1.2) is a quasi-biharmonic equation which describes the
phonon-phason coupling elasticity field for some kinds of one-dimensional qua-
sicrystal systems, refer to Chap. 5. As some solutions of them in terms of the
complex variable function method, whose origin comes from the classical work of
Lekhlitskii [2], reader can find some beneficial hints in the monograph.

11.2 Biharmonic Equations in Plane Elasticity of Point
Group 12mm Two-Dimensional Quasicrystals

From Chap. 6, we know that in elasticity of dodecagonal quasicrystals, the phonon
and phason fields are decoupled each other. For whose plane elasticity we have the
final governing equations as follows:

VV2F =0, V?V?G=0 (11.2.1)
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The complex representation of solution of (11.2.1) is

PUMZR$%@+/%@M

(11.2.2)
wazmm@wjx@m

where ¢,(z), ¥, (z), m1(z) and y,(z) are any analytic functions of complex variable
z=x+iy (i= V=1 ). For these kind of biharmonic equations, Muskhelishvili [1]
developed systematic complex variable function method, in which reader can find
some details in the well-known monograph and we need not discuss those any

more. The Muskhelishvili’s method has some developments in China, e.g. Lu [3]
and Fan [4].

11.3 The Complex Analysis of Quadruple Harmonic
Equations and Applications in Two-Dimensional
Quasicrystals

As it was discussed in Chaps. 6-8, for point groups 5m and 10mm or point groups
5,5, and 10, 10 quasicrystals, either by the displacement potential formulation or by
the stress potential formulation, we obtain the final governing equation is quadruple
harmonic equation, whose complex variable function method is newly created by
Liu and Fan [5, 6] based on the displacement potential formulation and by Li and
Fan [7, 8] based on the stress potential formulation. This complex potential method
that greatly develops the methodology was used in the classical elasticity. It is
necessary to give some further discussions in depth. For simplicity, the following
discussion is based on the stress potential formulation only, and solutions are given
only for point groups 5, 5, and 10, 10 quasicrystals, because the point groups 5m
and 10mm quasicrystals can be seen as a special case of the former.

11.3.1 Complex Representation of Solution
of the Governing Equation

Because it is relatively simpler for the case of point groups 5m and 10mm, which
belong to the special case of point groups 5, 5 and point groups 10 and 10, we here
discuss only the final governing equation of plane elasticity of pentagonal of point

groups 5, 5 and decagonal quasicrystals of point groups 10, 10
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VIVIVAVAG =0 (11.3.1)

where G(x,y) is the stress potential function. The solution of Eq. (11.3.1) is

1 1
G = 2Refgi(2) +282(2) + 5783(2) + £2°84(2)] (113.2)
where g;(z) (j=1,---,4) are four analytic functions of a single complex variable

z=x+iy=re. The bar denotes the complex conjugate hereinafter, i.e. 7=

x —iy =re . We call these functions be the complex stress potentials, or the
complex potentials in brief.

11.3.2 Complex Representation of the Stresses
and Displacements

Sect. 8.4 shows that from fundamental solution (11.3.2), one can find the complex
representation of the stresses as below:

o = —32¢1Re(Q(z) — 247 (z))

ayy = 32c1Re(Q(z) +2¢4'(2))

Oy = Oy = 32¢ImQ(2)

H, = 32RRe(0'(z) — Q(z)) — 32R,Im(O’(z) — Q(z)) (11.3.3)
H,, = —32R;Im(0'(z) + Q(z)) — 32R,Re(O'(z) + Q(2))

Hy, = —32R,Im(0'(z) — Q(z)) — 32R,Re(O'(z) — Q(z))

H,, = —32R;Re(0O'(z) + Q(2)) + 32R,Im(O'(z) + Q(2)

where

1
0) =&V () +z¢i () + -2V (2)

2 (11.3.4)
v - (v

Qz) =" (@) +24" ()
in which one prime, two prime, three prime, and superscript (IV) denote the first- to
fourth-order differentiation of g;(z) to variable z, in addition ®’(z) = d®(z)/dz and
it is evident that ®(z) and Q(z) are not analytic functions.

By some derivation from (11.3.3), we have the complex representation of the
displacements such as
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e+ ity = 32(4c103 — €3 — c1¢a)g) () — 32(cica — ¢3) (87 (2) + 287 () (11.3.5)

32(R; — iR,)

Wy + Wy :ﬁ@)@ (11.3.6)
with constants
— M(K, + Ky) — 2(R? + R3), ¢ =M= c+ (L+M)(K +K)
1 2 1 2),€C Kl 2 = 4(L+M)C ,
_R+R Ktk
Cc3 = ,Cq4 =
c c

(11.3.7)

11.3.3 The Complex Representation of Boundary
Conditions

In the following, we consider only the stress boundary value problem; i.e. at the
boundary curve L, the tractions (T, Ty) and generalized tractions (hy, hy) are given,
and there are the stress boundary conditions such as

O €08(0, X) + 0y, cos(n, y) = Ty, oy cos(n,x) +ay,cos(n,y) =Ty, (x,y) €L,
(11.3.8)

H, cos(n,x) + Hy,cos(n,y) = hy, , Hy, cos(n,x)+ Hy,cos(n,y) = hy,

o) e L, (11.3.9)

where T, T, and h,, h, are tractions and generalized tractions at the boundary L,
where the stresses are prescribed.

From (11.3.8) and after some derivation, the phonon stress boundary condition
can be reduced to the equivalent form

GO+ TA+ @ =5 [(E4im)ds, zel (11310
From Egs. (11.3.9), (11.3.3), and (11.3.4), we have

(R, — iR)O(z) :i/(hx+ihy)ds, zel, (11.3.11)
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11.3.4 Structure of Complex Potentials

11.3.4.1 Arbitrariness in the Definition of the Complex Potentials

For simplicity, we introduce the following new symbols

85" (2) = ha(2), 85 (2) = h3(2), &{(2) = ha(2) (11.3.12)

and then, Eq. (11.3.3) can be rewritten as follows:

0w+ 0yy = 128c1Re K (2) (11.3.13)

Oy — Oxx + 2i0,, = 64¢1Q(2) = 64c; [H(z) +zh) (2)] (11.3.14)
Hyy — Hyc — i(Ho + Hyy) = 64(iRy — R2)Q(2) (11.3.15)
(Hu — Hyy) — i(Hy + Hyx) = 64(R; +R2)0'(2) (11.3.16)

Similar to the classical elasticity, from Eqgs. (11.3.13) to (11.3.16), it is obvious
that a state of phonon and phason stresses is not altered, if one replaces

h4(Z) byh4(Z)+DiZ+V (11.3.17)
h3(z) by hi(z)+ (11.3.18)
ha(z) by ha(z)+9" (11.3.19)

where D is a real constant and y, y’, 7" are arbitrary complex constants.

Now, consider how these substitutions affect the displacement components
which were determined by formulas (11.3.5) and (11.3.6). Direct substitution shows
that

U, + iuy = 32(461C2 —Cc3 — C1C4)h4(Z) — 32(C1C4 — C3)(/’l3 (Z) +Zh£(z))
+32(deicy — 2¢3)Diz+ [32(4cicy — 3 — creq)y — 32(cieq — ¢3)Y)
(11.3.20)

32(R; — iR,)
K, — K,

32(Ry — iRy)

1
Wyt iy = @)+ (D) + 5 W]+

(11.3.21)
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Formulas (11.3.20) and (11.3.21) show that a substitution of the form (11.3.17)
and (11.3.19) will affect the displacement, unless

C1C4 — C3 —

DZO,yi V/7V7:0

46‘1C2 — C3 — C1C4

11.3.4.2 General Formulas for Finite Multi-connected Regions

Consider now the case when the region S, occupied by the quasicrystal, is
multi-connected. In general, the region is bounded by several simple closed con-
tours 1,52, ..., 8u,Sm+1, the last of these contours is to contain all the others,
depicted in Fig. 11.1, i.e. a plate with holes. We assume that the contours do not
intersect themselves and have no points in common. Sometimes, we call
S1, $2,..., S, as inner boundaries and s, as outer boundary of the region. It is
evident that the points z, 2, . . ., z,, are fixed points in the holes, but located out of
the material.

Similar to the discussion of the classical elasticity theory (refer to [1]), we can
obtained

Wy (z) = zm:Ak In(z — z) + 1}, (2) (11.3.22)
k=1
hy(z) = Zm:Akzln(z —zx) + Zm: YeIn(z — zx) + hai(2) (11.3.23)
k=1 k=1

Fig. 11.1 Finite
multi-connected region
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m

h3(z) = Y In(z — z) + 13 (2) (11.3.24)
k=1

Recalling z; denotes the fixed points outside the region S, hs.(z),hs.(z) are
holomorphic (analytic and single-valued, refer to Major Appendix) in region S, Ag
real constants, and y,, 7, complex constants.

By substituting (11.3.22)—(11.3.24) into (11.3.16), one can find that

m

h(z) = > In(z = 2) + ho.(2) (11.3.25)
k=1

hy.(z) is holomorphic in S, and y; are complex constants.
Consideration will be given to the condition of single valuedness of phonon
displacements. From Eq. (11.3.5), one has

uy + iy = 32(4cicp — c3 — cica)ha(2) — 32(cics — ¢3)(h3(z) +2h)(2))
(11.3.26)

Substituting (11.3.23)—(11.3.25) into (11.3.26), it is immediately seen that

[y + iuy]sk =27i{[32(4c1c2 — ¢35 — c1cq) +32(c1eq — ¢3)]Akz +32(dc1c — 3

— crea)ye+7(2)}
(11.3.27)

in which [], denotes the increase undergone by the expression in brackets for one
anticlockwise circuit of the contour s;. Hence it is necessary and sufficient for the
single valuedness of phonon displacements that are shown in formulas (11.3.22)—
(11.3.25)

Ay =0, 32(4cier —c3 —crea)y +7, =0 (11.3.28)
Similar to the above-mentioned discussion, by Eq. (11.3.6), one has

_ 32(Ry —iRy) —

[wy +iwy] = X — K (—2mi)yy (11.3.29)

Hence it is necessary and sufficient for the single valuedness of phason dis-
placements is

7% =0 (11.3.30)
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It will now be shown that the quantities vy,, 7} may be very simply expressed in

terms of Xy, Yy, where (X;, Yi) denote the resultant vector of the external stresses,
exerted on the contour s;. From (11.3.10), applying it to the contour s, one has

—32¢1ilha(z) + 13 (2) + 2, (2)),, = Xi + Y% (11.3.31)

with
Xk = / TXdS, Yk = / Tyds
Sk Sk
In the present case, the normal vector n must be directed outwards with respect

to the region s;. Consequently, the contour s; must be traversed in the clockwise
direction. Taking this fact into consideration, one obtains

L ‘
—2mie = ) = 35, Keet 1Y) (11.3.32)

By Egs. (11.3.28), (11.3.31), and (11.3.32), one has

Ay =0
) , ) (11.3.33)
Vi = di (Xk +lYk), Ve = dz(Xk - lYk)
where
B 1 b= — dcicr — c3 — c1e4
© 64c m[32(4cicy — 3 —creq) + 1] 2 2¢1m[32(4cicp — 3 — creq) + 1]
(11.3.34)
and which are independent from the suffix k. So that
= Z Xi + 1Y) In(z — zx) + hae (2)
“ (11.3.35)
:dzz Xk — lYk 111 Z_Zk)+h3*( )
k=1
hy(z) = ha.(2)

We can conclude that the complex functions hy(z), h3(z), ha(z) must be
expressed by formula (11.3.35) to assure the single valuedness of stresses and
displacements, where h5,(z), h34(z), h4.(z) are holomorphic in region S.
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11.3.4.3 Case of Infinite Regions

From the point of view of application, the consideration of infinite regions is
likewise of major interest. We assume that the contour s, | has entirely moved to
infinity.

Because Eqgs. (11.3.13) and (11.3.14) are similar to the classical elasticity theory,
we have

hy(z) = di(X +iY) Inz+ (B+iC)z+hi(z)

. Sm TS (11.3.36)
hi(z) = do(X — i¥) Inz+ (B +iC")z+ h3(2)

where B, C,B’, C’ are unknown real constants to be determined and

m m

X = Zxk, Y = Z Yi
k=1 k=1

h3(z), h(z) are functions, holomorphic in region S, including the point at
infinity; i.e. for sufficiently large |z|, they may be expanded into series of the form

a a a, d
hg(z):a0+?l+z—§+---,hg(z)=a6+?'+z—§+~-- (11.3.37)

On the basis of (11.3.2), the state of phonon and phason stresses will not be
altered by assuming

ap=ay, =0

By the theorem of Laurent, the function h,,(z) may be represented in region S
including point at infinity by the series

+ o0
he(z) =Y eaZ" (11.3.38)

Substituting Eqgs. (11.3.36) and (11.3.38) into Eq. (11.3.16), one has

(He = Hyy) = i(Hyy + Hyy)

+ o0
d 1, 2d
=2 x 32(Ri +R)[D_ cun"”! +z(—z—j +1Y(2) + EZZ(Z—; + 1" (2)]

(11.3.39)
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and hence it follows that for the stresses to remain finite as |z| — oo, one must have
cn=0(n>2)

It is obvious that the phonon and phason stresses will be bounded, if these
conditions are satisfied. Hence one has finally

hy(z) = di(X +iY) Inz+ (B+iC)z+hi(z)
hi(z) = da(X — i¥) Inz+ (B’ +iC")z+ h(z) (11.3.40)
ho(z) = (B" +iC")z+ h3(2)

where B”, C” are unknown real constants to be determined, h9(z) is function,

holomorphic in region S, including the point at infinity; thus, it has the form similar
to that of (11.3.37):

" "

" a
M) =ap+ 4 F (11.3.41)
We have assumed that a, = a, = 0 already and now further assume @, = 0, i.e.
hy(00) = h3(00) = hy(00) = 0.

Then from (11.3.40) and (11.3.13)—(11.3.16), one can determine

B a6l _ ) _ gl _ o'
T 128¢; T T 64 T T 32’
g RS — )~ RiH B o RiHS — HE) — Re(H + HY)
64(R} — R3) ’ 64(R} — R3)

(11.3.42)

and C has no usage and we put it to be zero, in which agjoo) and Hfjoo) represent the
applied stresses at point of infinity.

11.3.5 Conformal Mapping

If we constrain our discussion only for the case of stress boundary value problems,
then the problems will be solved under boundary conditions (11.3.10) and
(11.3.11). For some complicated regions, solutions of the problems cannot be
directly obtained in the physical plane (i.e. the z-plane). We must use a conformal

mapping
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z=w(() (11.3.43)
to transform the region studied in the plane onto interior of the unit circle 7y in the
mapping plane (say, e.g. {-plane).

Substituting (11.3.43) into (11.3.40), we have

ha(2) = ®a(0) = di (X +1¥) Ino(0) + Boo(0) + 0)(0)
hi(z) = ©3(0) = do(X — i¥) In () + (B +iC)w () + DI() (11.3.44)
hy(z) = ©2(0) = (B" +iC")oo({) + DY(L)

where
®;(0) = hilw(0)], 0] () = Ko(0)],j=1,...,4

In addition,

HE) =

~

At the mapping plane, the boundary conditions (11.3.10) and (11.3.11) stand for

D4(0) + B3(0) + 0o(0) Z%‘((:)) :3561/(Tx+ifv)ds, (11.3.10)
(R, — iR,)O(0) = i/(hXJrihy)ds (11.3.11)

where ¢ = e? represents the value of { at the unit circle (i.e. p = 1). From these
boundary value equations, we can determine the unknown functions

D;(0) j=2,3,4).

11.3.6 Reduction in the Boundary Value Problem
to Function Equations

Due to @({) =0, we now have three unknown functions ®;({) (i =2, 3, 4).
Taking conjugate of (11.3.10") yields

@

04(0) + D3(0) + (o) (3((;)) = —32LC1 (T, — iT,)ds (11.3.10")
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Substituting the Eq. (11.3.4) into (11.3.11") and then multiplying ‘“fl” on both
sides of (11.3.10"), (11.3.10"), and (11.3.11") lead to

1 [®4(6)dc 1 [D3(0)doc 1 (o) Dy(o)de 1 1 tdo
27 o— 2mi o—C 2ni) '(6) 0— ¢ 32e2mi) o

Y

1 [@4o)ds 1 [D3(c)dc 1 [ o) Pylo)ds 1 1 tdo

2mi oc—1{ 2mi o—1{ 2ni ) o'(6) o—C T 32c12ni) o—¢

' L ' ’ (11.3.45)
1 [®y(0)do . 1 [ofo)® / (o) (D"
2mi c—"_ 2ni ) o'(6) o— ( 27u [/ (0)]? 0 —
3 /w(a)za) (0)@y(o)de, 1 1 [ hdo
(o) o-( ' Ri—iR2mi) o—{

y

where t=i [ (T +iT,)ds,t = —i [ (T — iTy)ds,h =i [ (h +ihy)ds in Eq. (11.3.45),
which are the function equations to determine the complex potentials ®@;({), which
are analytic in the interior of the unit circle y, and satisfy the boundary value
conditions (11.3.45) at the unit circle.

11.3.7 Solution of the Function Equations

According to the Cauchy’s integral formula (refer to Major Appendix),

1 (I)i(O') - 1 (Di(O') ey
- G_Cda—Qi(C),?/g_ do = ©;(0), |¢[<1

" 2
7 /

So that (11.3.45) are reduced to

_ 1 (o) (I);(g)do' _ i 1 [ tdo
@4(C)+®3(0)+%/m O'*é’ 7%% O'*C
) 7
- 1 (o) ¥, (0)do - i 1 tdo
@4(0) + D3(8) + %/w(o) c—( 32 ﬁ -¢

®2(0)+ %/3))’((?) o—¢ 2m [/ Z (DH

(u(o‘) (o) @)(0)do i 1 hdo
_/ (o) o 1= Rl—iRzﬁ/a—C

V

(11.3.46)
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The calculation of integrals in (11.3.46) depends upon the configuration of the
sample, so the mapping function is @({) and the applied stresses are t and h,
respectively. In the following, we will give a concrete solution for a given con-
figuration and applied traction.

11.3.8 Example 1 Elliptic Notch/Crack Problem
and Solution

We calculate the stress and displacement field induced by an elliptic notch L :

(2—2 + “Z—i = 1) in an infinite plane of decagonal quasicrystal (see Fig. 11.2), the edge
of which is subjected to a uniform pressure p. Though the problem was solved in
Sect. 8.4, to figure out its outline from the general formulation is meaningful.

The boundary conditions can be expressed in Egs. (11.3.10) and (11.3.11), and
for simplicity, we assume h, = h, = 0. Thus

i/ (T +iTy)ds = i/ (—pcos(n,x) —ipcos(n,y))ds = —pz = —pw(0)

i / (hy + ihy)ds = 0
(11.3.47)

In addition in this case in formula (11.3.44)

/ / U " (11-3-48)

so @;({) = (I)?(C) but in the following, we omit the superscript of the functions
®Y({) for simplicity.

Fig. 11.2 An elliptic notch in
a decagonal quasicrystal
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z -plane C-plane

Fig. 11.3 Conformal mapping from the region at z-plane with an elliptic hole onto the interior of
the unit circle at {-plane

The conformal mapping is
1
z=o() = Ro(z +m() (11.3.49)

to transform the region containing ellipse at the z-plane onto the interior of the unit

circle at the (-plane, refer to Fig. 11.3, where (= ¢+inp= pe® and

__a+b __a-b
RO 2 ,m—a+b.

Substituting (11.3.48) and (11.3.49) into function Eq. (11.3.46), one obtains

_ pRo (1+m?)¢

;(0) = 320 ml® -1 (11.3.50)
R
D4(() = _%mc

PR U +m)[(1L+m?) (1 +m{) — (C +m)]
32 (m® —1)°

D, (0)

If we take m = 1, from (11.3.50) we can obtain solution of the Griffith crack; in
particular, the explicit solution at z-plane can be explored by taking inversion

{=w(z) =z/a—+/7%/a* — 1 (as m = 1) into the relevant formulas.

The concrete results are given in Sect. 8.4, which are omitted here.
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11.3.9 Example 2 Infinite Plane with an Elliptic Hole
Subjected to a Tension at Infinity

In this case

X=Y=0T,=T,=0B=-——B=C=0B=C=0t=t=h=0

64c,’
(11.3.51)
so that from (11.3.44)
ha(z) = ®4(0) = Bo(() +D4(0)
h3(z) = @3(0) = B3(0) (11.3.51)
ha(2) = 2(0) = B3(0)

Substituting (11.3.52) into (11.3.45), we obtain the similar equations on func-
tions <DJQ(C) (j =2,3,4) bv, so the solution is similar to (11.3.50).

11.3.10 Example 3 Infinite Plane with an Elliptic Hole
Subjected to a Distributed Pressure at a Part
of Surface of the Hole

The problem is shown in Fig. 11.4. We here use the conformal mapping

2= () :Ro(c+%) (11.3.52)

to transform the region at z-plane onto the exterior of the unit circle y at {-plane (see
Fig. 11.5).
In terms of the similar procedure, the solution we found [9] is as follows:

1 p mRo1 62+ ! oy —(
- . 022 n
32e; 2ni | € o e —¢

+ip(di — d2)(z1 — z2) In{

D4(0) +z1In(o1 — ) —z2In(o2 — C)]

Fig. 11.4 Infinite plane with
an elliptic hole subjected to a M
distributed pressure at a part T LEET Y Z, o, ./_\

M
i
Zy KRR TFF
of surface of the hole and its y 5.{ 4
conformal mapping at {-plane
— —
j\_."'
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z—plane {—plane

Fig. 11.5 Conformal mapping from the region at z-plane with an elliptic hole onto the exterior of
the unit circle at {-plane

() = 321[ L. {7 (1(;@23305 % Ro(a ngi)(,i )+mz2> S,
—ipldi+ ) {(5 —Z) I+ (@ —2) (22+_m:1)}
o0 = o 0 s B
{2Re12 : m + [Zz —Ro(( - %)} _ {(02 — (o f(gt(gz(;a_l E 20)(02 — 03 ”
(11. 3 53)
where

m m
21 =Ro(o1+ —), 22 = Ro(o2+ —)
(] a2

11.4 Complex Analysis for Sextuple Harmonic Equation
and Applications to Three-Dimensional Icosahedral
Quasicrystals

Plane elasticity of icosahedral quasicrystals has been reduced to a sextuple har-
monic equation to solve in Chap. 9, where we have shown the solution procedure
of the equation for a notch/crack problem by complex variable function method and
we here provide further discussion in depth from point of complex function theory.


http://dx.doi.org/10.1007/978-981-10-1984-5_9
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The aim is to develop the complex potential method for higher-order
multi-harmonic equations. Though there are some similar natures in the follow-
ing description with that introduced in the preceding section, the discussion here is
necessary, because the governing equation and boundary conditions for icosahedral
quasicrystals are quite different from those for decagonal quasicrystals.

11.4.1 The Complex Representation of Stresses
and Displacements

In Sect. 9.5 by the stress potential, we obtain the final governing equation under the
approximation R?/uK; < 1

VVIVAVAVAVEG =0 (11.4.1)

Fundamental solution of Eq. (11.4.1) can be expressed in six analytic functions
of complex variable z, i.e.

G(x,y) = Re[gi(2) +2g2(2) +Z%g3(2) + g4 (z) +Z'gs5(z) +2g6(z)]  (11.4.2)

where g;(z) are arbitrary analytic functions of z = x + iy and the bar denotes the
complex conjugate.

From Egs. (11.4.1), (11.4.2), (9.5.2) and (9.5.3), the stresses can be expressed as
follows:

O+ Oyy = 48c2c3RIMT(2) 0y — 04 4 2i0yy = Bicre3R(12Y'(z) — Q' (2))

24AR
Oy — (0 = —960c3¢4fg(2) 0, = ——~crc3 ImT7(z)

(n+4)

H, — Hy — i(Ho + Hyy) = —96c205¥'(2) — 8¢102RQ (2)

Hyy + Hyy + i(Hy — Hyy) = —480c2¢5f2(z) — 4c162RO'(2) (11.4.3)

Hy. +iH,, = 48cyc61"(z) — 42R* (2K, — K1)Q'(2)

24R?
(n+4)

H, = 3 ImI7(z)
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where
Y (z) = f5(2) + 574 (2)
['(z) = fa(z) +47fi(z) + 102 (2)
Q(z) = f3(2) + 3% (2) + 62°3 () + 102°f" (2)
O(2) = £(2) + 22 (2) + 32/ (2) + 4212 (2) + 52£™V)(2)
2K, — _3R? 1
Cc1 :R< K Zﬁg:li ;R%Q 3R >,C3 :sz(,uKz—Rz)—R(ZKZ—Kl)
K, — R?)? 1 K, — 2R?
C = ,U(Kl - KZ) - R _WKVTTRZ?CAt =ciR+ ECS(KI + ﬂ)lT‘u)
2
05 = 2cs— IR, c6 = (2K — K1)R? — 4oy 1E2 R (11.4.4)

4K — 2R

In the above expressions, the function g;(z) is not used and to be assumed
21(z2) =0 so fi(z) =0 for simplicity, we have introduced the following new
symbols

8@ =A6). &=, &©=h) (114.5)

where gl(") denote nth derivative with the argument z. Similar to the manipulation in

the previous section, the complex representations of displacement components can
be written as follows (here we have omitted the rigid body displacements)

2¢y
uy + iy = 6CgR(’u +¢7)I(z) — 2¢3¢7RQ(2)

+ A
= m (240c0Im f5(z) + ClCZRZIm(®(Z) —2Qz) +6I'(z) — 24%(2)))
. R NTTRY
Wy 4wy = — oGk — 280 (24¢9¥ (2) — c3O(2))
2
w, = 4(#K2 R ) (2406‘1()Imf6 (Z)) =+ c1c2R21m(®(z) - 29(2)

(K1 — 2K2)R(u(Ky + K2) — 3R?)
+6I(z) — 24¥(2))
(11.4.6)
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in which
Ky +2¢iR 5
71 = m7 cs = c1c3R(u(Ki — K3) — RY)

(ko — R (11.4.7)

,uK 2R2 )7 €10 :CIC3R2_C4(C3R—C2K1)
1 —

cog = cg +2c3¢4(cr —

11.4.2 The Complex Representation of Boundary
Conditions

The boundary conditions of plane elasticity of icosahedral quasicrystals can be
expressed as follows:

oul+oym=T,, onl+o,m=T, oyxl+o,m=T, (11.4.8)
Hyl+Hym = hy,  Hyl+Hym = hy,  Hel+Hym = h, (11.4.9)

for (x,y) € L which represents the boundary of a multi-connected quasicrystalline
material, and

d dx
I = cos(m, x) :d—y, m = cos(n,y) = %
A S

T = (T, Ty, T;) and h = (h,,hy, h;) denote the surface traction vector and
generalized surface traction vector, and n represents the outward unit normal vector

of any point of the boundary, respectively.
Utilizing Eq. (11.4.3) and the first two formulas of Eq. (11.4.8), one has

— 4c2e3R[3(fa(2) +43f5(2) + 102 (2) — (f(2) + 34f5(2) + 62/ (2) + 10" (2))]
:i/(Tx—i—iTy)ds, zeL
(11.4.10)

Taking conjugate on both sides of Eq. (11.4.10) yields

—46:03R[B(a(2) + 47) + 10277 2)) — (5(2) +32(2) + 62(2) + 1027 (2)
_ —i/(Tx _iT)ds, z€ L
(11.4.11)
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Similarly, from Eq. (11.4.3) and the first two formulas of (11.4.9), one obtains

48¢5(2¢4 — c1R)¥(z) +2¢1c2RO(z2) = i/ (hy+ihy)ds, zeL  (11.4.12)

Furthermore, we assume
T,=h,=0 (11.4.13)

For simplicity and by the third equations in (11.4.8) and (11.4.9) and the for-
mulas of (11.4.3) and (11.4.13), one has

{fé(z) +f5(z) =0
4enRelfs(z) + 575(2)] + (2K2 — Ki)RRelfa(z) +47f3(2) + 102°f¢ () + 20f5(2)] = 0

zeL (11.3.14)
in which

_ 4C4(MK2 — RZ)

= (2K — Ki)R
ci = (2K, 1) (1K1 — 2ROR

(11.4.15)

As we have shown in the previous section, complex analytic functions (i.e. the
complex potentials) must be determined by boundary value equations, which are
discussed below.

11.4.3 Structure of Complex Potentials

11.4.3.1 The Arbitrariness of the Complex Potentials
For explicit description, Eq. (11.4.3) can be written as follows:
Oy — 10, = —960c3c4fs(2)
c1(0yy — Oxe — 2i0yy) +ica[Hy — Hye + i(He + Hyy)] = —192ic2c3¢4W'(2)

2\ (Hey + iHoy) — R(2Ky — K1) [Hyy — Hyy + i(Hyy + Hiy)]
= 96¢3¢R(2K; — K1)¥'(z) + 96¢1c3¢617 (2)

¢5(0yy — Oxx + 2i04y) + icaR[Hyy — Hyy — i(Hy + Hyy)] = —16ic2c3c4Q'(z)



292 11 Complex Analysis Method for Elasticity of Quasicrystals

Hyy + Hyy + i(Hy — Hyy) = —480c2¢5f3(z) — 4c162RO'(2) (11.4.16)

Similar to the discussion of two-dimensional quasicrystals, from the equations, it
is obvious that a state of phonon and phason stresses is not altered, if one replaces

fi(z) by fi(z) + 7 (i=2,...,6) (11.4.17)

where y; are the arbitrary complex constants.

Now, consider how these substitutions affect the components of the displace-
ment vectors which were determined by the formula (11.4.6). Substituting (11.4.13)
into (11.4.8)—(11.4.12) shows that if the complex constants y;(i = 2,...,6) satisfy

26‘2
3 +c7)Ps+c79, =0
(H-i—l 7)74 773
24c975 — gy, =0 (11.4.18)
Co.__ 2¢o
40c107¢ — c1c3R*A(1 — =)5 — ————7,] =0
c10Y6 — c1c3R™[4( 68)/5 (,u+/1)c7/4]

then the substitution (11.4.17) will not affect the displacements.

11.4.3.2 General Formulas for Finite Multi-connected Region

Consider now the case when the region S, occupied by the body, is multi-connected
(see Fig. 11.1).
Since the stress must be single-valued and Eq. (11.4.16)

Oy — (0 = —960c3¢4f3 (2) (11.4.19)

we know that f{(z) is holomorphic and hence single-valued in the region inside
contour s, +1, SO the complex function can be expressed as follows:

fo(z) = /fé(z)dz—k constant (11.4.20)

20
where zo denotes fixed point. From Eq. (11.4.20), we have
fo(z2) = b In(z — z) +fo4 (2) (11.4.21)

fo+(2) is holomorphic in the region with contour s, 1.
Substituting (11.4.21) into the second formula of Eq. (11.4.16), i.e.
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c1(0yy — Oxx — 2i0yy) +ica[Hy — Hyx + i(Hyx + Hyy)] = —192icac3ca V' (2),
shows that f{(z) is holomorphic in the region enclosed by contour s,, 41, o one has

f5(2) = cxIn(z — z) +f5:(2) (11.4.22)

where f5.(z) is holomorphic in the region of interior of contour s, ;.
Similar to the above-mentioned discussion, from Eqgs. (11.4.16) to (11.4.18), the
complex functions f;(i = 2,3,4) can be written as follows:

fa(z) = dxIn(z — z) +fa(2)
£(z) = exIn(z — z) + f5:(2) (11.4.23)
£(2) =t n(z — z) +(2)

where dy, e; and f; are complex constants and f;,(z) (i = 2,3,4) is holomorphic in
the region inside contour s, 1.

By substituting (11.4.21)—(11.4.23) into the complex expressions of displace-
ments, the condition of single valuedness of displacements will be given as follows:

26‘2 —
—3(E2 e -0
(u+ﬂv+c7) kT crek

24c90t + sty =0
240c 9by + c1c3R* (tx — 2ex + 64y — 24¢) =0

(11.4.24)

Applying the boundary conditions given above to the contour s; and from
Eq. (11.4.24), we know that the above complex constants may be very simply
expressed in terms of surface traction and generalized surface traction as

k= zlofz (Mf%dﬂ%*(l + )l
“T _96”[0308(2046i ciR) — cic3R] (e = i)
"= 4nfczes(2¢q —C8C1R) —c13R] (ki + ihy) (11.4.25)
= 24nc2031?(212;):|)-i7u ey (BT
e = —%(E —iTy)

We can easily extend the above results to the case there are m inner boundaries.
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11.4.4 Case of Infinite Regions

From the point of view of application, the consideration of infinite regions is
likewise of major interest. We assume that the contour s, ; has entirely moved to
infinity.

Similar to the discussion of two-dimensional quasicrystal, we have

fs@) =) bzt foul2), f5(2) = clnz+fsu(z)
k=1 k=1

falz) = de Inz+fu(2), f(2) = Zek Inz+ f3::(2) (11.4.26)

= k=1

k=1

m

f2(Z) = Z trInz +f2**(Z)
k=1

where fi.(z) (j=2,...,6) are functions, holomorphic outside s,,4, not
including the point at infinity. By the theorem of Laurent, the function A, (z) may
be represented outside s, 1 by the series

+ oo
fine@) =D @' (i=2,...,6) (11.4.27)

Substituting the first equation of (11.4.26) and (11.4.27) into the first one of
Eq. (11.4.16), one has

m 1 o0
Oy — i0 = —960csca( b=+ Y nag2"") (11.4.28)
k=1 —00

Hence it follows that for the stress to remain finite as |z| — oo, one must have
aen =0 (n>2) (11.4.29)

Similarly, from Eqgs. (11.4.15)—(11.4.18), to make the stresses be bounded, the
following conditions are also to be satisfied

a4 =0(n>2,j=2,...,5) (11.4.30)

So we can obtain the expressions of the complex function f;(z)(i = 2,. . .,6) for
the stresses to remain finite as |z| — oo, for example
fs(2) =D bilnz+ (B+iC)z+£(2) (11.4.31)
k=1
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where B, C are unknown real constants to be determined, ]‘6O (z) is function, holo-
morphic outside s, 41, including the point at infinity. The determination of
unknown constants B, C is similar to that given in Sect. 11.3.4, but the details are
omitted here due to the limitation of the space.

11.4.5 Conformal Mapping and Function Equations
at (-Plane

We now have five equations of boundary value (11.4.10)—(11.4.12) and (11.3.14),
from which the unknown functions fi(z) (j=2,...,6) will be determined; in
addition, we have assumed that fi(z) = 0, because it has no usage. For some
complicated regions, the function equations cannot be directly solved at the
physical plane (i.e. the z-plane), and the conformal mapping is particularly mean-
ingful in the case.

Assume that a conformal mapping

z=o(() (11.4.32)

is used to transform the region at z-plane onto the interior of the unit circle y at
(-plane. Under the mapping, the unknown functions f;(z) become

[@) =flo@Q =0 (=2.....6) (11.4.33)

Substituting (11.4.32) and (11.4.33) into the first relation of boundary conditions
(11.3.14) yields

1 () 1 ()
—,/ ooy L [ 26l g
2ni ) o —¢ 2ni ) o —¢

Y y

This shows
De(c) =0 (11.4.34)

according to the Cauchy integral formula.

Substitution of (11.4.32), (11.4.33), and (11.4.34) into boundary conditions
(11.4.10)—(11.4.12) and the second one of condition (11.3.14) leads to the
boundary value equations to determine the unknown functions ®;({) (j =2,...,5)
at {-plane, i.e.
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o)y, L [ B, L [TE)

do — —d
a—ga+2ni a)’(a)a—go 2mi a—ga
7 y

sl /mdeL /[waﬂz%

2mi o (6) 0 —¢ 2mi

5|
kﬂh‘.\

POk (11.4.35)

do 1 1 t

do

o/ (0) 0'—§_4C2C327'El'1 g—¢

)
v

3 (D4(G)da+ 4 /w(a) (o) 1 [ ®5(0)

2| o — C 2
7 v b
—2
1 [ w(c) P3(0) 1 (o) (o)
o (@) o—C " 65 T (11.4.36)
7

do — —
a)’(a)afca 2ni ) o

do

do

w(a)zw”(a)d)'s(a) de 1 1 / t
[ (o)) 6—¢c 4dcyesR2mi ) o—¢
)

/ 2 /!
1. (DZ(J)da—FZL_ (o) (D3(6)da—|—3i, [(U(O') (I>4ga)
2ni) o—¢ 2ni ) o'(6)o—¢ 2mi [@'(0)]

o) W) o1 [ () (o)
] + L (o' (0)] (o)

W o-c om

4C]1 /(DS(O')d (2K2 —KI)R/ @4(0’)
— o+ - [

2ni | o —¢ 27i o—¢ '(6) 0 —¢
in which t =i [ (T +iT,)ds,t = —i [ (T — iT,)ds,h =i [ (hy + ih,)ds. For given
configuration and applied stresses, we can obtain the solution by solving these
function equations.
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11.4.6 Example: Elliptic Notch Problem and Solution

We consider an icosahedral quasicrystal solid with an elliptic notch, which pene-
trates through the medium along the z-axis direction, the edge of the elliptic notch
subjected to the uniform pressure p, similar to Fig. 11.2.

Since the measurement of generalized traction has not been reported so far, for
simplicity, we assume that s, = 0,h, = 0.

However the calculation cannot be completed at the z-plane owing to the
complicity, and we have to employ the conformal mapping

2= () = Ro(% +m() (11.4.38)

to transform the exterior of the ellipse at the z-plane onto the interior of the unit
circle y at the {-plane, in which

Ry=(a+b)/2, m=(a—Db)/(a+Db)
Let
fi(2) = flo(0)] = 0;(0) (j=2,...,6) (11.4.39)

Substituting (11.4.38) into the first formula of (11.4.25), then multiplying on
both sides of equations by do/[27i(6 — ()] (o represents the value of at the unit
circle), and integrating around the unit circle y yield

L/q)6(”)da+ L/(1)6—@&7 —0 (11.4.40)

2ni ) o —¢ 2ni ) o—¢
Vi 7

by means of Cauchy integral formula, we have
Dg(c) =0 (11.4.41)

Substituting (11.4.38) and (11.4.41) into (11.4.22)—(11.4.24), then multiplying
both sides of equations by do/[27i(c — {)] (o represents the value of at the unit
circle), and integrating around the unit circle y yields
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%/f“gdﬁ % %%@do—ﬁ/@da
/ / /

—3%/%%@2%—6%/[% (11.4.42)
G

%, iT@da 211 (:, s 4 21

4%4 z,)/(((;)) ?ﬁagda 62m / [ ([w),(q))/;g 2 (11.4.43)

_W;w"(a)cbg(a) do _ ,,/ 1 [,

[ (o)) 0 —¢ 4cacsR2mi / g—¢

0(0) " (0)V(0), do 1 [ (o) <I>g"<a>_ 0(0) o (0)®!(0)
/(o) ]0—€+42’”'/ T

o(0) &' (0)®5(0) (o) & (0)Wy(0), do _
PR 0
(@) To-c

[/ (0]

+3

(2K, — K;)R O, (o) M q),s(o_) -
/[0 —c o' (0) o — g]da =0 (11.445)

2mi

4 ()
ﬂ/ S(J)dtﬂ—
2mi o—¢

7

Because




11.4 Complex Analysis for Sextuple Harmonic Equation and Applications ... 299

and

2 2
CQ/ZJ(DIS(C) = gczﬂ@q +20(2{:—|—3o(3§2+ )

are analytic in |{|<1 and continuous in the unit circle y, by means of Cauchy
integral formula, from Eq. (11.4.42), we have

! ./qh—@d(f = Dy (0)

2ni ) o —¢
7

1 2 Q!
s o-+m S(G)da Ctm

@/
2mi mo:—10—¢ Cmg 5(0)
Substituting
2 2 2 2
(o)  1me*+1  o(o)w(s) 2a(ms”+1)
' (0) co2—m’ w’(a)3 (62 —m)’

into Eq. (11.4.42), and note that

2
0 e e
2(m%+1)* — 2(me® +1)° o .03 ,
“Cmy ®5(C)—7(C2_ ) (1+2C +3C =)

are analytic in |{| > 1 and continuous in the unit circle y, by means of Cauchy
integral formula and analytic extension of the complex variable function theory;
from Eq. (11.4.42), we obtain

L PR L
2ni ) 6 —¢ T 2mi w'(c) 0 —¢

1 20!(q) 20 (o) d
o l.(,{)(O') 5(6) _ (1)(0') w (6) q)l (0_)] g =0
2mi ) a)’(O')Z 0)’(0)3 > o—¢

-
Y

Substituting the above results into Eq. (11.4.42), with the help of Eq. (11.4.45),
one has
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_ R (2K> — Ki)Ro pm{ (L +m)
4(0) = pme — 2
12¢5¢3R 2c03C1 (m{" —1) (11.4.46)
(2K, — K1)Ry
(I) __ e
5(5) 486‘2C3C11

Similar to the above discussion, from Eqs. (11.4.43) and (11.4.44), one has

Ry plC+m)(m’C+1)
2¢yc3R (m¢* — 1)3

(2K, — Kl)RomeS(C2 + m)[mzé'6 — (m? —|—4m)(:4 + (2m* +4m? + 5)(:2 +m|

0,() = —

2c2¢3Cyy (m® — 1)°
s (0) = — X0 plim* +1)  (2Ky — K\)Ro pm{ (8 +m)(m{® — m? = 2)
T T aeeR (mi* —1) 12¢;¢3Cy (m* —1)°

(11.4.47)

The elliptic notch problem is solved. The solution of the Griffith crack subjected
to a uniform pressure can be obtained corresponding to the case m = 1, Ry = a/2 of
the above solution. The solution of crack can be expressed explicitly in the z-plane,
and the concrete results refer to Sect. 9.7 in Chap. 9 for the concrete results.

11.5 Complex Analysis of Generalized Quadruple
Harmonic Equation

In Chaps. 6-8, we have shown that the plane elasticity of octagonal quasicrystals is
governed by the final equation

(VAV2VAV? — 46V AP A% + 4e A2 A2 A2 A2)F = 0 (11.5.1)

either by displacement potential or by stress potential, in which

RA(L+M)(K> +K3) (11.5.2)

&= MK 1K+ K:)—R[(L+2M)K, —F7]

2_ > 4 & 2_o &2
\Y% =2 +ay2» A = o ayz}

Due to the appearance of operator A2, it seems there is no any connection with
complex variable functions in solving Eq. (11.5.1). But if we rewrite it as

o8 o8 o® ok
[63 +4(1 48)6662 2(3—“68)8)5‘84 4(1 48)8266 8_y3]F

(11.5.3)

=0
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then find that this is one of typical multi-quasiharmonic partial differential equation
with quadruple, and there is complex representation of solution such as
4
F(x,y) =2Re Fio(zi),ze = x+ .y (11.5.4)
k=1

in which functions Fy(z) are analytic functions of complex variable gz
(k=1,...,4) and p, = o +if, (k=1,...,4) are complex parameters and deter-
mined by the roots of the following eigenvalue equation

18+ 41— 4e)u® +2(3 4 168)u* +4(1 —de)i> +1=0 (11.5.5)

We have shown that in Chaps. 7 and 8, some solutions of dislocations (based on
the displacement potential formulation) and notchs/cracks (based on the stress
potential formulation) can be found in terms of this complex analysis. In the pro-
cedure, it must carry out some calculations on determinants of fourth order, so the
solution expressions are quite lengthy, but which are analytic substantively.

11.6 Conclusion and Discussion

The discovery of quadruple and sextuple harmonic equations is significant for
modern elasticity. This chapter gives a comprehensive discussion on the complex
analysis for solving the equations, and we think the study is preliminary.

The above-mentioned complex potential approach is a new development of
Muskhelishvili approach of the classical elasticity, which extends greatly the scope
of the method. We believe the quadruple and sextuple harmonic equations are
useful not only in quasicrystals but probably also in other disciplines of science and
engineering. So the complex analysis method can be used for other studies.

Apart from the development to extend the scope of the complex potential theory
and method, we also developed the Muskhelishvili method for the conformal
mapping. According to the monograph [1], the conformal mapping is limited within
the rational function class. But we extended it into the transcendental function class,
and some exact analytic solutions for more complicated cracked configurations are
achieved (see, e.g. Chap. 8).

This method is effective not only for solving elasticity problems but also for
solving plasticity problem (see, e.g. Li and Fan [10] and Fan and Fan [11] and Li
and Fan [12, 13]). The new summarization on the method can be found in article
[14] and other references [15, 16].
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11.7 Appendix of Chapter 11: Basic Formulas of Complex
Analysis

It is enlightened that Muskhelishvili [1] gave extensive description in detail on
complex analysis in due presentation of elasticity in his classical monograph, which
is very beneficial to readers. However there is no possibility for the present book.
We provide here some points only of the function theory, which were frequently
cited in the text. These can be referred for readers who are advised to read books of
Privalov [17] and Lavrentjev and Schabat [18] for the further details. Other
knowledge has been provided in due succession of the text of Chaps. 7-9 and 11.
The present contents can also be seen as a supplement in reading the material given
in Chaps. 7-9 and 11 if it is needed. The importance of complex analysis is not
only in deriving the solutions by the complex potential formulation but also in
dealing with the solutions by integral transforms and dual integral equations to be
discussed in the Appendix B of Major Appendix of this book.

11.7.1 Complex Functions, Analytic Functions

Usually, z = x + iy is denoted as a complex variable in which /—1 =i, or z = re',

and r = /x2 +3?2, called the modulus of the complex number, 0 = arctan(y), the

argument angle of z. Assume f(z) be a function of one complex variable, or
complex function in abbreviation, which is denoted as

f(2) = P(x,y) +iQ(x,y) (11.7.1)

in which both P(x,y) and Q(x,y) are functions with real variables and called the
real and imaginary parts, respectively, and marked by

P(x,y) = Ref(z), O(x,y) = Imf(z)

There is a sort of complex functions called analytic functions (or regular func-
tions; single-valued analytic functions are called holomorphic functions) which
have important applications in many branches of mathematics, physics, and engi-
neering. The concepts related with this are discussed as follows.

The complex function f(z) is analytic in a given region, and this means that it
can be expanded in the neighbourhood of any point zy of the region into a
non-negative integer power series (i.e. the Taylor series) of the form

@)= an(z—2)" (11.7.2)


http://dx.doi.org/10.1007/978-981-10-1984-5_7
http://dx.doi.org/10.1007/978-981-10-1984-5_9
http://dx.doi.org/10.1007/978-981-10-1984-5_11
http://dx.doi.org/10.1007/978-981-10-1984-5_7
http://dx.doi.org/10.1007/978-981-10-1984-5_9
http://dx.doi.org/10.1007/978-981-10-1984-5_11
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in which a, is a constant (in general, a complex number). The concept are
frequently used in the previous and later calculation.

Another definition of an analytic function is that if the complex function f(z) is
given in the region, the real part P(x,y) and imaginary part Q(x,y) are
single-valued, have continuous partial derivatives of the first order, and satisfy
Cauchy—Riemann condition such as

OP 0Q OP 0
or_00 0P _ 00 (173
Ox 0dy Oy Ox
in the region.

These kind of functions, P and Q, are named mutually conjugate harmonic ones.
From (11.7.3), it follows that

?* P

0? o?
a2 a9y

2
P= (s + —
v (8x2 + 0y?

)P =0,V?Q = ( 0=0

This concept is also often used in the following.

An analytic function can also be defined in integral form. Assuming f(z) is a
complex function in a certain complex number region D, and I' is any simple
smooth closed curve (sometimes called simple curve for simplicity) in D, we can
obtain that f(z) is analytic in the region if

/ﬂ@&zo (11.7.4)
r

The result is known as the Cauchy’s integral theorem (or simply called the
Cauchy’s theorem) which has been frequently used in the text and appendixes.

The theory of complex functions proves that the above definitions are mutually
equivalent.

11.7.2 Cauchy’s formula

An important result of the Cauchy’s theorem is the so-called Cauchy’s formula, i.e.
if f(z) analytic in a single-connected region Dt bounded by a closed curve I" and
continuous in Dt + " (Fig. 11.6), then

L [f@)
r

in which z is an arbitrary point in D% .
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Fig. 11.6 A finite region D

Proof Taking z as the centre, p as the radius, make a small circle y in D*.
According to Cauchy’s theorem (11.7.4),

f0) 4 [ 10
r—z r—z
r v

dr (11.7.6)

As f(z) is analytic in Dt and continuous in D + T, there is a small number
&> 0, for any point ¢ and Y, if p is sufficiently small, such as

f(1) = f(2) <&

and note that |f — z| = p, hence

lim &dt: &dz (11.7.7)
e—0 t—z J r—2z

Just as mentioned previously, f(z) is analytic in D", and the value of the integral

f(—z)dt
J 1z

will not be changed when p is reducing. Therefore the limit mark in the left-hand
side of (11.7.7) can be removed. In addition

2n

ei()
%dt—f(z)/td_—tz—f(z)/%‘w_zmﬂz)
J 0

7 /

Based on (11.7.6) and this result, formula (11.7.5) is proved.
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In formula (11.7.5), if z is taken its values in a region D~ consisting of the points
lying outside I'" (see Fig. 11.6), then

1L [f@)
— | —=dtr=0 11.7.8
2ni ) t—z ( )
r

In fact, this is a direct consequence of the Cauchy’s theorem, because in this case
the integrand f(z)/({ — z) as function of { is analytic in region D", where {
denotes the point in the region D™ .

Suppose all conditions are the same as those for (11.7.5), then

1 [f(0) =
3 :dl—f( ) (11.7.9)
r

Proof For simplicity here the proof is given for the case I" being a circle. Being

analytic in the region DT, f(z) may be expanded non-negative integer power series,
in which zy = 0, such that

n"

fR) =ao+aiz+az + - =f(0)+f (0)z+ o 0)2 4 ---

The function f (z) in formula (11.7.9) is the value of f (%) at the circle I', and here

f”(o)i + ...

Z

7 = F0) + 7 0)

Z

+

N | o=
N =

is an analytic function in D~. From the Cauchy’s formula,
1 / d |1 k=0
2ni ) t*(t—z) |0 k>0
r

such that (11.7.9) is proved.
In contrast to the above, current function f(z) is analytic in D~ (including
z = 0), and then

1 f(z)dt:{ff(ZHf(OO) z€D” (11.7.10)

2ni ) t—z (00) zeD™t
r

The proof of this formula can be offered in the similar manner adopted for
(11.7.5), but the following points must be noted:
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(i) The analytic function f(z) in D~ (including z = co) may be expanded as the
following series

1 1
f(Z):CO“FClE‘FCzZ—Z—F"'

0 zeD™
0 zE€DT

(ii) ﬁftc—“zdt:{
r C

where ¢y = f(o0) # 0.
All conditions are the same as that for formula (11.7.10), and there exists

L [f()
2ni ) t—z
r

dr=0 (11.7.11)

11.7.3 Poles

Suppose a finite point in z-plane (i.e. z is not a point at infinity), and in the
neighbourhood of the point, the function presents the form as follows:

f(2) = G(2) +/o(2) (11.7.12)

in which f;(z) is an analytic function in the neighbourhood of point a, and

AO Al Am
G(z) = + .- — 11.7.13
R e R A (117.13)
where Ay, A,, ..., A, are constants, such that f(z) is called having a pole with order

m and z = a is the pole.
If a is a point at infinity, fy(z) in (11.7.12) is regular at point at infinity (i.e.
ft) =co+ciz7 ' +cz 2+ -+ +), while at z = co

G(z) = Ag+Aiz+ - +A4,7" (11.7.14)

then we say that f(z) has a pole of order m at z = cc.

11.7.4 Residual Theorem

If the function f(z) has pole a with order m, its integral may be evaluated simply by
computing residual.
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What is the meaning of the residual? Suppose f(z) is analytic in the neigh-
bourhood of point z = a, but except z = a, and infinite at z = a. In this case, the
point z = a is named isolated singular point. The residual of the function f(z) at
point z = a is the value of the integral

1
%/f(z)dz
T

in which I" represents any closed contour enclosing point z = a. For a residual, we
will use the resignation as Res f(a).

If z=a is a m-order pole of f(z), its residual may be evaluated from the
following formula and

m—1

Res f(a) = oty lim (e~ @) (2) (11.7.15)

Obviously, the integral is

/f(z)dz = 2miRes f(a)

r

So the evaluation of integrals may be reduced to the calculation of derivatives,
and it is greatly simplified. In particular, if z = a is a first-order pole, then

Res f(a) = lim(z — a)f () (11.7.16)

—a

in which the calculation is much simpler.

What follows the residual theorem is introduced as: let the function f(z) be
analytic in region D and continuous in D41 except at finite isolated poles
ap,ay, ..., a,, then

[ e =253 Res () (117.17)
k=1

r

where I represents the boundary of region D.
Almost all integrals in the text can be evaluated by the residual theorem.

Example Calculate the integral

A ‘
2— / ﬁe_l“}’dw =1 (11718)
T —ma

in terms of the residual theorem, where m and k are positive constants.
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Fig. 11.7 Integration path at w4
w-plane )

F

\| m

Though the integral is a real integral, it is difficult to evaluate because the
integration limit is infinite and there are two singular points at the integration path,
but it is easily completed by using the residual theorem. At first, we extend the real
variable w to a complex one, i.e. put @ = w; + iw,, where w1, @, are real variables.
At the complex plane o, a half-circle with origin (0, 0) and radius R — oo is taken
as an additional integral path, referring to Fig. 11.7. Along the real axis, the inte-
grand of the integral has two poles (—+/k/m,0) and (1/m/k,0), and the value of
the integral is equal to

100 1 —iwt :
T " dw—’l—RJ;o‘.‘Lo/ / / / /+/>

—00 Cr 1 Ci G
(11.7.19)

where the first integral in the right-hand side of (11.7.19) is carried out on path of
the grand half-circle, the second to fourth ones are on the path along the real axes
except intervals (—r — y/k/m,—+/k/m+r) and (—r+ /k/m,\/k/m+r), and
the fifth and sixth ones are on two small half- 01rc1e arcs C and C, with origins

(=+/k/m,0) and (1/k/m,0) and radius r, respectively. Because the integrand in the
interior enclosing by the integration path in (11.7.19) is analytic, according to the
Cauchy theorem [referring to formula (11.7.3)]

L=0 (11.7.20)

Based on the behaviour of the integrand and the Jordan lemma, the first one in
the right-hand side of (11.7.19) must be zero. So that

e[ )
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and

[ e[

At arc  Cp;: o+ k/m=re" do=ire?df;, and at arc Cy:
o — +/k/m = re’®> do = ire’>d0,. Substituting these into the above integrals and
after some simple calculations, we obtain

1= Wsin Vk/mt (11.7.21)

In the inversion of some integral transforms and even in the solution of certain
integral equations, many key calculations are completed by the similar procedure
exhibited above, which will be shown in the Major Appendix B of this book.

11.7.5 Analytic Extension

A function fi(z) is analytic at region D, and if one can construct another function
f>(2) analytic at region D,, D and D, are not mutually intersected regions but with
common bounding I', furthermore

fiz) =flz) zel

we can say that fi(z) and f>(z) are analytic extension to each other, and we can also
say that function

A aszeD
Fla) = {fz(z) asz €Dy

analytic at D = D + D, is an analytic extension of fi(z) as well as f>(z).

11.7.6 Conformal Mapping

In the text of Chaps. 7-9 and 11, by using one or several analytic functions which
are also named complex potentials, we have expressed the solutions of harmonic,
biharmonic, quadruple harmonic, sextuple harmonic, quasi-biharmonic, and
quasi-quadruple harmonic equations, which is the complex representation of


http://dx.doi.org/10.1007/978-981-10-1984-5_7
http://dx.doi.org/10.1007/978-981-10-1984-5_9
http://dx.doi.org/10.1007/978-981-10-1984-5_11
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solutions. We can see that the complex representation is only the first step for
solving boundary value problems. For some problems with complicated boundaries,
one must utilize the conformal mapping to transform the problem onto the mapping
plane; the corresponding boundaries can be simplified to a unit circle or straight
line; the calculation can be put forward; and in some cases, exact analytic solutions
are available.

The so-called conformal mapping is that the complex variable z = x4+ iy and
another one { = ¢+ in can be connected by

z= () (11.7.22)

in which o({) is a single-valued analytic function of { = ¢ +in in some region.
Except certain points, the inversion of mapping (11.7.22) exists. If for a certain
region, the mapping is single-valued, and we say it is a single-valued conformal
mapping. In general, the mapping is single-valued, but the inversion { = m~!(z) is
impossibly single-valued. It has the following properties:

(1) A angle at point z = z¢ after the mapping becomes a angle at point { = {,, but
the both angles have the same value of the argument, the rotation is either in
the same direction, and this is the first kind of conformal mapping (e.g. shown
in Fig. 11.5), or in counter direction, which is the second kind of conformal
mapping (e.g. depicted in Fig. 11.3).

(2) If w({) is analytic and single-valued in region Q and transforms the region into
region D, then the inversion { = w~!(z) is analytic and single-valued in region
D and maps D onto Q.

(3) If Dis aregion and c is a simple closed curve in it, and its interior belongs to
D, and if w~!(z) is analytic, and maps ¢ onto a closed curve y at Q region
bilaterally single-valued, then w({) is analytic and single-valued in the region
and maps D onto the interior of Q.

In the text, we mainly used the following two kinds of conformal mapping, i.e.
(1) Rational function conformal mapping, e.g.

c
w(C)=Z+a0+aIC+...+anc" (11.7.23)
or
1 1
ol) =RC+bo+big 4. tbugm (11.7.24)
in which, ¢, ag, ay, ..., ay, R, by, by, ..., b, are constants. These mappings can be

used in studying infinite region with a crack at physical plane onto the interior of
unit circle at mapping plane. In the monograph of Muskhelishvili [1], he postulated
that his method is only suitable for this kind of mapping functions. Fan [4] extended
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it to transcendental mapping functions and achieved exact analytic solutions for
crack problems for complicated configuration.
(2) Transcendental functions are as follows:

o) = gln[l + mo;] (11.7.25)

T (1-¢

and

o) = 27Warctan{\/ 1- tan(;—;/)} —a (11.7.26)

which can be used to transform a finite specimen with a crack onto the interior of
unit circle or upper half-plane (or lower half-plane) at mapping plane, where H, W,
and a represent sample sizes and crack size.
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