
Chapter 11
Complex Analysis Method for Elasticity
of Quasicrystals

In Chapters 7–9, we frequently used the complex analysis method to solve the
problems of elasticity of quasicrystals and many exact analytic solutions were
obtained by this method. In these chapters, we only provided the results, and the
underling principle and details of the method could not be discussed. Considering
the relative new feature and particular effect of the method, it is helpful to attempt a
further discussion in depth. Of course, this may lead to a slight repletion with
relevant content of Chaps. 7–9.

It is well known that the so-called complex potential method in elasticity is
effective, in general, only for solving harmonic and biharmonic partial differential
equations in the classical theory of elasticity, and for these equations, the solutions
can be expressed by the analytic functions of single complex variable z ¼ xþ iy;
i ¼ ffiffiffiffiffiffiffi�1

p
. In addition, in the classical elasticity, quasi-biharmonic partial differential

equation can be solved by analytic functions of some different complex variables
such as z1 ¼ xþ a1y; z2 ¼ xþ a2y; . . . in which a1; a2; . . . are complex constants.
The study of elasticity of quasicrystals has led to discovery of some multi-harmonic
and multi-quasiharmonic equations, which cover quite a wide range of partial
differential equations appearing in the field to date and have been introduced in
Chaps. 5–9. The discussion on the complex analysis for these equations is signif-
icant. We know that the Muskhelishvili complex analysis method for classical plane
elasticity [1], which solves mainly the biharmonic equation, and the complex
potential method developed by Lekhlitzkii [2] for classical anisotropic plane elas-
ticity, which solve mainly the quasi-biharmonic equation, made great contributions
for quite a wide range of fields in science and engineering. The present formulation
and solutions of the complex analysis, e.g. quadruple and sextuple harmonic
equations and quadruple quasiharmonic equation, are a new development of the
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complex analysis method used for classical elasticity. Though the new method is
used to solve the elasticity problems of quasicrystals at present, it may be extended
into other disciplines of science and technology in future.

At first, we simply review the complex analysis method for harmonic and
biharmonic equations and then focus on those for quadruple and sextuple harmonic
equations and quadruple quasiharmonic equation and, with discussions in detail,
presenting their new features from the angle of elasticity as well as complex
potential method.

11.1 Harmonic and Biharmonic in Anti-Plane Elasticity
of One-Dimensional Quasicrystals

The final governing equations of elasticity of one-dimensional quasicrystals present
the following two kinds discussed in Chap. 5:

c44r2uz þR3r2wz ¼ 0

R3r2uz þK2r2wz ¼ 0
ð11:1:1Þ

ðc1 @4

@x4
þ c2

@4

@x3@y
þ c3

@4

@x2@y2
þ c4

@4

@x@y3
þ c5

@4

@y4
ÞG ¼ 0 ð11:1:2Þ

in which Eq. (11.1.1) is actually two decoupled harmonic equations of uz and wz,
whose complex variable function method was introduced in Sects. 8.1 and 8.2, and
here we do not repeat any more.

Equation (11.1.2) is a quasi-biharmonic equation which describes the
phonon-phason coupling elasticity field for some kinds of one-dimensional qua-
sicrystal systems, refer to Chap. 5. As some solutions of them in terms of the
complex variable function method, whose origin comes from the classical work of
Lekhlitskii [2], reader can find some beneficial hints in the monograph.

11.2 Biharmonic Equations in Plane Elasticity of Point
Group 12mm Two-Dimensional Quasicrystals

From Chap. 6, we know that in elasticity of dodecagonal quasicrystals, the phonon
and phason fields are decoupled each other. For whose plane elasticity we have the
final governing equations as follows:

r2r2F ¼ 0; r2r2G ¼ 0 ð11:2:1Þ
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The complex representation of solution of (11.2.1) is

Fðx; yÞ ¼ Re½�zu1ðzÞþ
Z

w1ðzÞdz�

Gðx; yÞ ¼ Re½�zp1ðzÞþ
Z

v1ðzÞdz�

9>>=
>>; ð11:2:2Þ

where /1ðzÞ;w1ðzÞ; p1ðzÞ and v1ðzÞ are any analytic functions of complex variable
z ¼ xþ iy ði ¼ ffiffiffiffiffiffiffi�1

p Þ. For these kind of biharmonic equations, Muskhelishvili [1]
developed systematic complex variable function method, in which reader can find
some details in the well-known monograph and we need not discuss those any
more. The Muskhelishvili’s method has some developments in China, e.g. Lu [3]
and Fan [4].

11.3 The Complex Analysis of Quadruple Harmonic
Equations and Applications in Two-Dimensional
Quasicrystals

As it was discussed in Chaps. 6–8, for point groups 5m and 10mm or point groups
5, 5, and 10, 10 quasicrystals, either by the displacement potential formulation or by
the stress potential formulation, we obtain the final governing equation is quadruple
harmonic equation, whose complex variable function method is newly created by
Liu and Fan [5, 6] based on the displacement potential formulation and by Li and
Fan [7, 8] based on the stress potential formulation. This complex potential method
that greatly develops the methodology was used in the classical elasticity. It is
necessary to give some further discussions in depth. For simplicity, the following
discussion is based on the stress potential formulation only, and solutions are given
only for point groups 5, 5, and 10, 10 quasicrystals, because the point groups 5m
and 10mm quasicrystals can be seen as a special case of the former.

11.3.1 Complex Representation of Solution
of the Governing Equation

Because it is relatively simpler for the case of point groups 5m and 10mm, which
belong to the special case of point groups 5, 5 and point groups 10 and 10, we here
discuss only the final governing equation of plane elasticity of pentagonal of point
groups 5, 5 and decagonal quasicrystals of point groups 10, 10
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r2r2r2r2G ¼ 0 ð11:3:1Þ

where Gðx; yÞ is the stress potential function. The solution of Eq. (11.3.1) is

G ¼ 2Re½g1ðzÞþ�zg2ðzÞþ 1
2
�z2g3ðzÞþ 1

6
�z3g4ðzÞ� ð11:3:2Þ

where gjðzÞ ðj ¼ 1; � � �; 4Þ are four analytic functions of a single complex variable
z � xþ iy ¼ reih. The bar denotes the complex conjugate hereinafter, i.e. �z ¼
x� iy ¼ re�ih: We call these functions be the complex stress potentials, or the
complex potentials in brief.

11.3.2 Complex Representation of the Stresses
and Displacements

Sect. 8.4 shows that from fundamental solution (11.3.2), one can find the complex
representation of the stresses as below:

rxx ¼ �32c1ReðXðzÞ � 2g0004 ðzÞÞ
ryy ¼ 32c1ReðXðzÞþ 2g0004 ðzÞÞ
rxy ¼ ryx ¼ 32c1ImXðzÞ
Hxx ¼ 32R1ReðH0ðzÞ � XðzÞÞ � 32R2ImðH0ðzÞ � XðzÞÞ
Hxy ¼ �32R1ImðH0ðzÞþXðzÞÞ � 32R2ReðH0ðzÞþXðzÞÞ
Hyx ¼ �32R1ImðH0ðzÞ � XðzÞÞ � 32R2ReðH0ðzÞ � XðzÞÞ
Hyy ¼ �32R1ReðH0ðzÞþXðzÞÞþ 32R2ImðH0ðzÞþXðzÞ

ð11:3:3Þ

where

HðzÞ ¼ gðIVÞ2 ðzÞþ�zgðIVÞ3 ðzÞþ 1
2
�z2gðIVÞ4 ðzÞ

XðzÞ ¼ gðIVÞ3 ðzÞþ�zgðIVÞ4 ðzÞ
ð11:3:4Þ

in which one prime, two prime, three prime, and superscript (IV) denote the first- to
fourth-order differentiation of gjðzÞ to variable z; in addition H0ðzÞ ¼ dHðzÞ=dz and
it is evident that HðzÞ and XðzÞ are not analytic functions.

By some derivation from (11.3.3), we have the complex representation of the
displacements such as
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ux þ iuy ¼ 32ð4c1c2 � c3 � c1c4Þg004ðzÞ � 32ðc1c4 � c3Þðg0003 ðzÞþ zg0004 ðzÞÞ ð11:3:5Þ

wx þ iwy ¼ 32ðR1 � iR2Þ
K1 � K2

HðzÞ ð11:3:6Þ

with constants

c ¼ MðK1 þK2Þ � 2ðR2
1 þR2

2Þ; c1 ¼
c

K1 � K2
þM; c2 ¼ cþðLþMÞðK1 þK2Þ

4ðLþMÞc ;

c3 ¼ R2
1 þR2

2

c
; c4 ¼ K1 þK2

c
ð11:3:7Þ

11.3.3 The Complex Representation of Boundary
Conditions

In the following, we consider only the stress boundary value problem; i.e. at the
boundary curve Lt, the tractions ðTx; TyÞ and generalized tractions ðhx; hyÞ are given,
and there are the stress boundary conditions such as

rxx cosðn; xÞþ rxy cosðn; yÞ ¼ Tx; rxy cosðn; xÞþ ryy cosðn; yÞ ¼ Ty; ðx; yÞ 2 Lt
ð11:3:8Þ

Hxx cosðn; xÞþHxy cosðn; yÞ ¼ hx ; Hxy cosðn; xÞþHyy cosðn; yÞ ¼ hy;
ðx; yÞ 2 Lt

ð11:3:9Þ

where Tx ; Ty and hx ; hy are tractions and generalized tractions at the boundary Lt
where the stresses are prescribed.

From (11.3.8) and after some derivation, the phonon stress boundary condition
can be reduced to the equivalent form

g004ðzÞþ g0003 ðzÞþ zg0004 ðzÞ ¼
i

32c1

Z
ðTx þ iTyÞds; z 2 Lt ð11:3:10Þ

From Eqs. (11.3.9), (11.3.3), and (11.3.4), we have

ðR2 � iR1ÞHðzÞ ¼ i
Z

ðhx þ ihyÞds; z 2 Lt ð11:3:11Þ
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11.3.4 Structure of Complex Potentials

11.3.4.1 Arbitrariness in the Definition of the Complex Potentials

For simplicity, we introduce the following new symbols

gðIVÞ2 ðzÞ ¼ h2ðzÞ; g0003 ðzÞ ¼ h3ðzÞ; g004ðzÞ ¼ h4ðzÞ ð11:3:12Þ

and then, Eq. (11.3.3) can be rewritten as follows:

rxx þ ryy ¼ 128c1Re h04ðzÞ ð11:3:13Þ

ryy � rxx þ 2irxy ¼ 64c1XðzÞ ¼ 64c1½h03ðzÞþ�zh004ðzÞ� ð11:3:14Þ

Hxy � Hyx � iðHxx þHyyÞ ¼ 64ðiR1 � R2ÞXðzÞ ð11:3:15Þ

ðHxx � HyyÞ � iðHxy þHyxÞ ¼ 64ðR1 þR2ÞH0ðzÞ ð11:3:16Þ

Similar to the classical elasticity, from Eqs. (11.3.13) to (11.3.16), it is obvious
that a state of phonon and phason stresses is not altered, if one replaces

h4ðzÞ by h4ðzÞþDizþ c ð11:3:17Þ

h3ðzÞ by h3ðzÞþ c0 ð11:3:18Þ

h2ðzÞ by h2ðzÞþ c00 ð11:3:19Þ

where D is a real constant and c; c0; c00 are arbitrary complex constants.
Now, consider how these substitutions affect the displacement components

which were determined by formulas (11.3.5) and (11.3.6). Direct substitution shows
that

ux þ iuy ¼ 32ð4c1c2 � c3 � c1c4Þh4ðzÞ � 32ðc1c4 � c3Þðh3ðzÞþ zh04ðzÞÞ
þ 32ð4c1c2 � 2c3ÞDizþ ½32ð4c1c2 � c3 � c1c4Þc� 32ðc1c4 � c3Þc0�

ð11:3:20Þ

wx þ iwy ¼ 32ðR1 � iR2Þ
K1 � K2

½h2ðzÞþ zh03ðzÞþ
1
2
z2h004ðzÞ� þ

32ðR1 � iR2Þ
K1 � K2

c00

ð11:3:21Þ
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Formulas (11.3.20) and (11.3.21) show that a substitution of the form (11.3.17)
and (11.3.19) will affect the displacement, unless

D ¼ 0; c ¼ c1c4 � c3
4c1c2 � c3 � c1c4

c0; c00 ¼ 0

11.3.4.2 General Formulas for Finite Multi-connected Regions

Consider now the case when the region S, occupied by the quasicrystal, is
multi-connected. In general, the region is bounded by several simple closed con-
tours s1; s2; . . .; sm; smþ 1, the last of these contours is to contain all the others,
depicted in Fig. 11.1, i.e. a plate with holes. We assume that the contours do not
intersect themselves and have no points in common. Sometimes, we call
s1; s2; . . .; sm as inner boundaries and smþ 1 as outer boundary of the region. It is
evident that the points z1; z2; . . .; zm are fixed points in the holes, but located out of
the material.

Similar to the discussion of the classical elasticity theory (refer to [1]), we can
obtained

h04ðzÞ ¼
Xm
k¼1

Ak lnðz� zkÞþ h04�ðzÞ ð11:3:22Þ

h4ðzÞ ¼
Xm
k¼1

Akz lnðz� zkÞþ
Xm
k¼1

ck lnðz� zkÞþ h4�ðzÞ ð11:3:23Þ

Fig. 11.1 Finite
multi-connected region
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h3ðzÞ ¼
Xm
k¼1

c0k lnðz� zkÞþ h3�ðzÞ ð11:3:24Þ

Recalling zk denotes the fixed points outside the region S, h3�ðzÞ; h4�ðzÞ are
holomorphic (analytic and single-valued, refer to Major Appendix) in region S, Ak

real constants, and ck; c
0
k complex constants.

By substituting (11.3.22)–(11.3.24) into (11.3.16), one can find that

h2ðzÞ ¼
Xm
k¼1

c00k lnðz� zkÞþ h2�ðzÞ ð11:3:25Þ

h2�ðzÞ is holomorphic in S, and c00k are complex constants.
Consideration will be given to the condition of single valuedness of phonon

displacements. From Eq. (11.3.5), one has

ux þ iuy ¼ 32ð4c1c2 � c3 � c1c4Þh4ðzÞ � 32ðc1c4 � c3Þðh3ðzÞþ zh04ðzÞÞ
ð11:3:26Þ

Substituting (11.3.23)–(11.3.25) into (11.3.26), it is immediately seen that

½ux þ iuy�sk ¼ 2pif½32ð4c1c2 � c3 � c1c4Þþ 32ðc1c4 � c3Þ�Akzþ 32ð4c1c2 � c3
� c1c4Þck þ c0kðzÞg

ð11:3:27Þ

in which ½ �k denotes the increase undergone by the expression in brackets for one
anticlockwise circuit of the contour sk. Hence it is necessary and sufficient for the
single valuedness of phonon displacements that are shown in formulas (11.3.22)–
(11.3.25)

Ak ¼ 0; 32ð4c1c2 � c3 � c1c4Þck þ c0k ¼ 0 ð11:3:28Þ

Similar to the above-mentioned discussion, by Eq. (11.3.6), one has

½wx þ iwy�sk ¼
32ðR1 � iR2Þ
K1 � K2

ð�2piÞc00k ð11:3:29Þ

Hence it is necessary and sufficient for the single valuedness of phason dis-
placements is

c00k ¼ 0 ð11:3:30Þ
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It will now be shown that the quantities ck; c
0
k may be very simply expressed in

terms of Xk; Yk, where ðXk; YkÞ denote the resultant vector of the external stresses,
exerted on the contour sk . From (11.3.10), applying it to the contour sk , one has

�32c1i½h4ðzÞþ h3ðzÞþ zh04ðzÞ�sk ¼ Xk þ iYk ð11:3:31Þ

with

Xk ¼
Z
Sk

Txds; Yk ¼
Z
Sk

Tyds

In the present case, the normal vector n must be directed outwards with respect
to the region sk . Consequently, the contour sk must be traversed in the clockwise
direction. Taking this fact into consideration, one obtains

�2piðck � c0kÞ ¼
i

32c1
ðXk þ iYkÞ ð11:3:32Þ

By Eqs. (11.3.28), (11.3.31), and (11.3.32), one has

Ak ¼ 0

ck ¼ d1ðXk þ iYkÞ; c0k ¼ d2ðXk � iYkÞ
ð11:3:33Þ

where

d1 ¼ 1
64c1p½32ð4c1c2 � c3 � c1c4Þþ 1� ; d2 ¼ � 4c1c2 � c3 � c1c4

2c1p½32ð4c1c2 � c3 � c1c4Þþ 1�
ð11:3:34Þ

and which are independent from the suffix k. So that

h4ðzÞ ¼ d1
Xm
k¼1

ðXk þ iYkÞ lnðz� zkÞþ h4�ðzÞ

h3ðzÞ ¼ d2
Xm
k¼1

ðXk � iYkÞ lnðz� zkÞþ h3�ðzÞ

h2ðzÞ ¼ h2�ðzÞ

ð11:3:35Þ

We can conclude that the complex functions h2ðzÞ; h3ðzÞ; h4ðzÞ must be
expressed by formula (11.3.35) to assure the single valuedness of stresses and
displacements, where h2�ðzÞ; h3�ðzÞ; h4�ðzÞ are holomorphic in region S.
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11.3.4.3 Case of Infinite Regions

From the point of view of application, the consideration of infinite regions is
likewise of major interest. We assume that the contour smþ 1 has entirely moved to
infinity.

Because Eqs. (11.3.13) and (11.3.14) are similar to the classical elasticity theory,
we have

h4ðzÞ ¼ d1ðX þ iYÞ ln zþðBþ iCÞzþ h04ðzÞ
h3ðzÞ ¼ d2ðX � iYÞ ln zþðB0 þ iC0Þzþ h03ðzÞ

ð11:3:36Þ

where B;C;B0;C0 are unknown real constants to be determined and

X ¼
Xm
k¼1

Xk; Y ¼
Xm
k¼1

Yk

h03ðzÞ; h04ðzÞ are functions, holomorphic in region S, including the point at
infinity; i.e. for sufficiently large zj j, they may be expanded into series of the form

h04ðzÞ ¼ a0 þ a1
z
þ a2

z2
þ � � � ; h03ðzÞ ¼ a00 þ

a01
z
þ a02

z2
þ � � � ð11:3:37Þ

On the basis of (11.3.2), the state of phonon and phason stresses will not be
altered by assuming

a0 ¼ a00 ¼ 0

By the theorem of Laurent, the function h2�ðzÞ may be represented in region S
including point at infinity by the series

h2�ðzÞ ¼
Xþ1

�1
cnz

n ð11:3:38Þ

Substituting Eqs. (11.3.36) and (11.3.38) into Eq. (11.3.16), one has

ðHxx � HyyÞ � iðHxy þHyxÞ

¼ 2� 32ðR1 þR2Þ½
Xþ1

�1
cnnz

n�1 þ�zð� d2
z2

þ h0003 ðzÞÞþ 1
2
�z2ð2d1

z3
þ h00004 ðzÞÞ�

ð11:3:39Þ
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and hence it follows that for the stresses to remain finite as zj j ! 1, one must have

cn ¼ 0 ðn� 2Þ

It is obvious that the phonon and phason stresses will be bounded, if these
conditions are satisfied. Hence one has finally

h4ðzÞ ¼ d1ðX þ iYÞ ln zþðBþ iCÞzþ h04ðzÞ
h3ðzÞ ¼ d2ðX � iYÞ ln zþðB0 þ iC0Þzþ h03ðzÞ
h2ðzÞ ¼ ðB00 þ iC00Þzþ h02ðzÞ

ð11:3:40Þ

where B00; C00 are unknown real constants to be determined, h02ðzÞ is function,
holomorphic in region S, including the point at infinity; thus, it has the form similar
to that of (11.3.37):

h02ðzÞ ¼ a
00
0 þ

a
00
1

z
þ a

00
2

z2
þ � � � ð11:3:41Þ

We have assumed that a0 ¼ a
0
0 ¼ 0 already and now further assume a

00
0 ¼ 0, i.e.

h04ð1Þ ¼ h03ð1Þ ¼ h02ð1Þ ¼ 0:

Then from (11.3.40) and (11.3.13)–(11.3.16), one can determine

B ¼ rð1Þ
xx þ rð1Þ

yy

128c1
; B

0 ¼ rð1Þ
xx � rð1Þ

yy

64c1
; C

0 ¼ rð1Þ
xy

32c1
;

B
00 ¼ R2ðHð1Þ

xy � Hð1Þ
yx Þ � R1ðHð1Þ

xx þHð1Þ
yy Þ

64ðR2
1 � R2

2Þ
; C

00 ¼ R1ðHð1Þ
xy � Hð1Þ

yx Þ � R2ðHð1Þ
xx þHð1Þ

yy Þ
64ðR2

1 � R2
2Þ

ð11:3:42Þ

and C has no usage and we put it to be zero, in which rð1Þ
ij and Hð1Þ

ij represent the
applied stresses at point of infinity.

11.3.5 Conformal Mapping

If we constrain our discussion only for the case of stress boundary value problems,
then the problems will be solved under boundary conditions (11.3.10) and
(11.3.11). For some complicated regions, solutions of the problems cannot be
directly obtained in the physical plane (i.e. the z-plane). We must use a conformal
mapping
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z ¼ xðfÞ ð11:3:43Þ

to transform the region studied in the plane onto interior of the unit circle c in the
mapping plane (say, e.g. f-plane).

Substituting (11.3.43) into (11.3.40), we have

h4ðzÞ ¼ U4ðfÞ ¼ d1ðXþ iYÞ lnxðfÞþBxðfÞþU0
4ðfÞ

h3ðzÞ ¼ U3ðfÞ ¼ d2ðX � iYÞ lnxðfÞþ ðB0 þ iC0ÞxðfÞþU0
3ðfÞ

h2ðzÞ ¼ U2ðfÞ ¼ ðB00 þ iC00ÞxðfÞþU0
2ðfÞ

ð11:3:44Þ

where

UjðfÞ ¼ hj½xðfÞ�;U0
j ðfÞ ¼ h0j ½xðfÞ�; j ¼ 1; . . .; 4

In addition,

h0iðzÞ ¼
U0

iðfÞ
x0ðfÞ

At the mapping plane, the boundary conditions (11.3.10) and (11.3.11) stand for

U4ðrÞþU3ðrÞþxðrÞU
0
4ðrÞ

x0ðrÞ ¼
i

32c1

Z
ðTx þ iTyÞds; ð11:3:100Þ

ðR2 � iR1ÞHðrÞ ¼ i
Z

ðhx þ ihyÞds ð11:3:110Þ

where r ¼ eiu represents the value of f at the unit circle (i.e. q ¼ 1). From these
boundary value equations, we can determine the unknown functions
UjðfÞ ðj ¼ 2; 3; 4Þ.

11.3.6 Reduction in the Boundary Value Problem
to Function Equations

Due to U1ðfÞ ¼ 0, we now have three unknown functions UiðfÞ ði ¼ 2; 3; 4Þ.
Taking conjugate of (11.3.10′) yields

U4ðrÞþU3ðrÞþxðrÞU
0
4ðrÞ

x0ðrÞ ¼ � i
32c1

Z
ðTx � iTyÞds ð11:3:1000Þ
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Substituting the Eq. (11.3.4) into (11.3.11′) and then multiplying 1
2pi

dr
r�f on both

sides of (11.3.10′), (11.3.10″), and (11.3.11′) lead to

1
2pi

Z
c

U4ðrÞdr
r� f

þ 1
2pi

Z
c

U3ðrÞdr
r� f

þ 1
2pi

Z
c

xðrÞ
x0ðrÞ

U0
4ðrÞdr
r� f

¼ 1
32c1

1
2pi

Z
c

tdr
r� f

1
2pi

Z
c

U4ðrÞdr
r� f

þ 1
2pi

Z
c

U3ðrÞdr
r� f

þ 1
2pi

Z
c

xðrÞ
x0ðrÞ

U0
4ðrÞdr
r� f

¼ 1
32c1

1
2pi

Z
c

tdr
r� f

1
2pi

Z
c

U2ðrÞdr
r� f

þ 1
2pi

Z
c

xðrÞ
x0ðrÞ

U0
3ðrÞdr
r� f

þ 1
2pi

½
Z
c

xðrÞ2

½x0ðrÞ�2
U00

4ðrÞdr
r� f

�
Z
c

xðrÞ2x00ðrÞ
½x0ðrÞ�3

U0
4ðrÞdr
r� f

� ¼ 1
R1 � iR2

1
2pi

Z
c

hdr
r� f

ð11:3:45Þ

where t ¼ i
R ðTx þ iTyÞds; t ¼ �i

R ðTx � iTyÞds; h ¼ i
R ðh1 þ ih2Þds in Eq. (11.3.45),

which are the function equations to determine the complex potentials UiðfÞ, which
are analytic in the interior of the unit circle c, and satisfy the boundary value
conditions (11.3.45) at the unit circle.

11.3.7 Solution of the Function Equations

According to the Cauchy’s integral formula (refer to Major Appendix),

1
2pi

Z
c

UiðrÞ
r� f

dr ¼ UiðfÞ; 1
2pi

Z
c

UiðrÞ
r� f

dr ¼ Uið0Þ; fj j\1

So that (11.3.45) are reduced to

U4ðfÞþU3ð0Þþ 1
2pi

Z
c

xðrÞ
xðrÞ

U0
4ðrÞdr
r� f

¼ i
32c1

1
2pi

Z
c

tdr
r� f

U4ð0ÞþU3ðfÞþ 1
2pi

Z
c

xðrÞ
xðrÞ

U0
4ðrÞdr
r� f

¼ � i
32c1

1
2pi

Z
c

tdr
r� f

U2ðfÞþ 1
2pi

Z
c

xðrÞ
x0ðrÞ

U0
3ðrÞdr
r� f

þ 1
2pi

½
Z
c

xðrÞ2

½x0ðrÞ�2
U00

4ðrÞdr
r� f

�
Z
c

xðrÞ2x00ðrÞ
½x0ðrÞ�3

U0
4ðrÞdr
r� f

� ¼ i
R1 � iR2

1
2pi

Z
c

hdr
r� f

ð11:3:46Þ
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The calculation of integrals in (11.3.46) depends upon the configuration of the
sample, so the mapping function is xðfÞ and the applied stresses are t and h,
respectively. In the following, we will give a concrete solution for a given con-
figuration and applied traction.

11.3.8 Example 1 Elliptic Notch/Crack Problem
and Solution

We calculate the stress and displacement field induced by an elliptic notch L :

ðx2a2 þ y2

b2 ¼ 1Þ in an infinite plane of decagonal quasicrystal (see Fig. 11.2), the edge
of which is subjected to a uniform pressure p. Though the problem was solved in
Sect. 8.4, to figure out its outline from the general formulation is meaningful.

The boundary conditions can be expressed in Eqs. (11.3.10) and (11.3.11), and
for simplicity, we assume hx ¼ hy ¼ 0. Thus

i
Z

ðTx þ iTyÞds ¼ i
Z

ð�p cosðn; xÞ � ip cosðn; yÞÞds ¼ �pz ¼ �pxðrÞ

i
Z

ðhx þ ihyÞds ¼ 0

ð11:3:47Þ

In addition in this case in formula (11.3.44)

X ¼ Y ¼ 0;

B ¼ 0;B
0 ¼ C

0 ¼ 0;B
00 ¼ C

00 ¼ 0
ð11:3:48Þ

so UjðfÞ ¼ U0
j ðfÞ, but in the following, we omit the superscript of the functions

U0
i ðfÞ for simplicity.

Fig. 11.2 An elliptic notch in
a decagonal quasicrystal
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The conformal mapping is

z ¼ xðfÞ ¼ R0ð1f þmfÞ ð11:3:49Þ

to transform the region containing ellipse at the z-plane onto the interior of the unit
circle at the f-plane, refer to Fig. 11.3, where f ¼ nþ ig ¼ qeiu and
R0 ¼ aþ b

2 ; m ¼ a�b
aþ b :

Substituting (11.3.48) and (11.3.49) into function Eq. (11.3.46), one obtains

U3ðfÞ ¼ pR0

32c1

ð1þm2Þf
mf2 � 1

U4ðfÞ ¼ � pR0

32c1
mf

ð11:3:50Þ

U2ðfÞ ¼ pR0

32c1

fðf2 þmÞ½ð1þm2Þð1þmf2Þ � ðf2 þmÞ�
ðmf2 � 1Þ3

If we take m ¼ 1, from (11.3.50) we can obtain solution of the Griffith crack; in
particular, the explicit solution at z-plane can be explored by taking inversion
f ¼ x�1ðzÞ ¼ z=a� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2=a2 � 1
p

(as m ¼ 1) into the relevant formulas.
The concrete results are given in Sect. 8.4, which are omitted here.

-plane ζz -plane

Fig. 11.3 Conformal mapping from the region at z-plane with an elliptic hole onto the interior of
the unit circle at f-plane
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11.3.9 Example 2 Infinite Plane with an Elliptic Hole
Subjected to a Tension at Infinity

In this case

X ¼ Y ¼ 0; Tx ¼ Ty ¼ 0;B ¼ p
64c1

;B
0 ¼ C

0 ¼ 0;B
00 ¼ C

00 ¼ 0; t ¼ t ¼ h ¼ 0

ð11:3:51Þ

so that from (11.3.44)

h4ðzÞ ¼ U4ðfÞ ¼ BxðfÞþU0
4ðfÞ

h3ðzÞ ¼ U3ðfÞ ¼ U0
3ðfÞ

h2ðzÞ ¼ U2ðfÞ ¼ U0
2ðfÞ

ð11:3:51Þ

Substituting (11.3.52) into (11.3.45), we obtain the similar equations on func-
tions U0

j ðfÞ ðj ¼ 2; 3; 4Þ bv, so the solution is similar to (11.3.50).

11.3.10 Example 3 Infinite Plane with an Elliptic Hole
Subjected to a Distributed Pressure at a Part
of Surface of the Hole

The problem is shown in Fig. 11.4. We here use the conformal mapping

z ¼ xðfÞ ¼ R0ðfþ m
f
Þ ð11:3:52Þ

to transform the region at z-plane onto the exterior of the unit circle c at f-plane (see
Fig. 11.5).

In terms of the similar procedure, the solution we found [9] is as follows:

U4ðfÞ ¼ 1
32c1

� p
2pi

� �mR0

f
ln
r2
r1

þ z ln
r2 � f
r1 � f

þ z1 lnðr1 � fÞ � z2 lnðr2 � fÞ
� �

þ ipðd1 � d2Þðz1 � z2Þ ln f

Fig. 11.4 Infinite plane with
an elliptic hole subjected to a
distributed pressure at a part
of surface of the hole and its
conformal mapping at f-plane
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U3ðfÞ ¼ 1
32c1

� p
2pi

� � ð1þm2ÞR0f

ðf2 � mÞ ln
r2
r1

þ R0ðr1 � r2Þð1þmf2Þ
ðf2 � mÞ � z2 lnðr2 � fÞþ z1 lnðr1 � fÞ

� �

� ipðd1 þ d2Þ � ðz1 � z2Þ ln fþðz1 � z2Þ ð1þm2Þ
f2 � m

� �

U2ðfÞ ¼ 1
32c1

� pR0

2pi
� ðmf

2 þ 1Þðf2 þmÞ
ðf2 � mÞ3 ðln r2

r1
þ r2 � r1

ðr2 � fÞðr1 � fÞÞþ
1

32c1
� p
2pi

� ðmf
2þ 1Þ

ðf2 � mÞ2�

2Rez2 � r2 � r1
ðr2 � fÞðr1 � fÞ þ z2 � R0ðf� m

f
Þ

� �
� ðr2 � fÞðr1 � fÞþ ðr2þ r1 � 2fÞðr2 � r1Þ

ðr2 � fÞðr1 � fÞ
� �� �

ðmf2 þ 1Þðf2 þmÞ
ðf2 � mÞ3 ip d1ðz1 � z2 � z1 þ z2Þ 1

f� r1
þ ðd2 � d1Þðz1 � z2Þ 1

f2
þ 1

f
þ 1

ðf� r1Þ2
" #( )

ð11:3:53Þ

where

z1 ¼ R0ðr1 þ m
r1
Þ ; z2 ¼ R0ðr2 þ m

r2
Þ

11.4 Complex Analysis for Sextuple Harmonic Equation
and Applications to Three-Dimensional Icosahedral
Quasicrystals

Plane elasticity of icosahedral quasicrystals has been reduced to a sextuple har-
monic equation to solve in Chap. 9, where we have shown the solution procedure
of the equation for a notch/crack problem by complex variable function method and
we here provide further discussion in depth from point of complex function theory.

Fig. 11.5 Conformal mapping from the region at z-plane with an elliptic hole onto the exterior of
the unit circle at f-plane
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The aim is to develop the complex potential method for higher-order
multi-harmonic equations. Though there are some similar natures in the follow-
ing description with that introduced in the preceding section, the discussion here is
necessary, because the governing equation and boundary conditions for icosahedral
quasicrystals are quite different from those for decagonal quasicrystals.

11.4.1 The Complex Representation of Stresses
and Displacements

In Sect. 9.5 by the stress potential, we obtain the final governing equation under the
approximation R2=lK1 	 1

r2r2r2r2r2r2G ¼ 0 ð11:4:1Þ

Fundamental solution of Eq. (11.4.1) can be expressed in six analytic functions
of complex variable z, i.e.

Gðx; yÞ ¼ Re½g1ðzÞþ�zg2ðzÞþ�z2g3ðzÞþ�z3g4ðzÞþ�z4g5ðzÞþ�z5g6ðzÞ� ð11:4:2Þ

where giðzÞ are arbitrary analytic functions of z = x + iy and the bar denotes the
complex conjugate.

From Eqs. (11.4.1), (11.4.2), (9.5.2) and (9.5.3), the stresses can be expressed as
follows:

rxx þ ryy ¼ 48c2c3R ImC0ðzÞ ryy � rxx þ 2irxy ¼ 8ic2c3Rð12W0ðzÞ � X0ðzÞÞ

rzy � irzx ¼ �960c3c4f 06ðzÞ rzz ¼ 24kR
ðlþ kÞ c2c3 ImC0ðzÞ

Hxy � Hyx � iðHxx þHyyÞ ¼ �96c2c5W0ðzÞ � 8c1c2RX
0ðzÞ

Hyx þHxy þ iðHxx � HyyÞ ¼ �480c2c5f 06ðzÞ � 4c1c2RH
0ðzÞ ð11:4:3Þ

Hyz þ iHxz ¼ 48c2c6C0ðzÞ � 4c2R2ð2K2 � K1ÞX0ðzÞ

Hzz ¼ 24R2

ðlþ kÞ c2c3 ImC0ðzÞ
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where

WðzÞ ¼ f5ðzÞþ 5�zf 06ðzÞ
CðzÞ ¼ f4ðzÞþ 4�zf 05ðzÞþ 10�z2f 006 ðzÞ
XðzÞ ¼ f3ðzÞþ 3�zf 04ðzÞþ 6�z2f 005 ðzÞþ 10�z3f 0006 ðzÞ
HðzÞ ¼ f2ðzÞþ 2�zf 03ðzÞþ 3�z2f 004 ðzÞþ 4�z3f 0005 ðzÞþ 5�z4f ðIVÞ6 ðzÞ

c1 ¼ Rð2K2 � K1ÞðlK1 þ lK2 � 3R2Þ
2ðlK1 � 2R2Þ ; c3 ¼ 1

R
K2ðlK2 � R2Þ � Rð2K2 � K1Þ

c2 ¼ lðK1 � K2Þ � R2 � ðlK2 � R2Þ2
lK1 � 2R2 ; c4 ¼ c1Rþ 1

2
c3ðK1 þ lK1 � 2R2

kþ l
Þ

c5 ¼ 2c4 � c1R; c6 ¼ ð2K2 � K1ÞR2 � 4c4
lK2 � R2

lK1 � 2R2 ð11:4:4Þ

In the above expressions, the function g1ðzÞ is not used and to be assumed
g1ðzÞ ¼ 0 so f1ðzÞ ¼ 0 for simplicity, we have introduced the following new
symbols

gð9Þ2 ðzÞ ¼ f2ðzÞ; gð8Þ3 ðzÞ ¼ f3ðzÞ; gð7Þ4 ðzÞ ¼ f4ðzÞ;
gð6Þ5 ðzÞ ¼ f5ðzÞ; gð5Þ6 ðzÞ ¼ f6ðzÞ

ð11:4:5Þ

where gðnÞi denote nth derivative with the argument z. Similar to the manipulation in
the previous section, the complex representations of displacement components can
be written as follows (here we have omitted the rigid body displacements)

uy þ iux ¼ �6c3Rð 2c2
lþ k

þ c7ÞCðzÞ � 2c3c7RXðzÞ

uz ¼ 4
lðK1 þK2Þ � 3R2 ð240c10Im f6ðzÞþ c1c2R

2ImðHðzÞ � 2XzÞþ 6CðzÞ � 24WðzÞÞÞ

wy þ iwx ¼ � R
c1ðlK1 � 2R2Þ ð24c9WðzÞ � c8HðzÞÞ

wz ¼ 4ðlK2 � R2Þ
ðK1 � 2K2ÞRðlðK1 þK2Þ � 3R2Þ ð240c10Im f6ðzÞÞþ c1c2R

2ImðHðzÞ � 2XðzÞ

þ 6CðzÞ � 24WðzÞÞ
ð11:4:6Þ
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in which

c7 ¼ c2K1 þ 2c1R
lK1 � 2R2 ; c8 ¼ c1c3RðlðK1 � K2Þ � R2Þ

c9 ¼ c8 þ 2c3c4ðc2 � ðlK2 � R2Þ2
lK1 � 2R2 Þ; c10 ¼ c1c3R

2 � c4ðc3R� c2K1Þ
ð11:4:7Þ

11.4.2 The Complex Representation of Boundary
Conditions

The boundary conditions of plane elasticity of icosahedral quasicrystals can be
expressed as follows:

rxxlþ rxym ¼ Tx; ryxlþ ryym ¼ Ty; rzxlþ rzym ¼ Tz ð11:4:8Þ

HxxlþHxym ¼ hx; HyxlþHyym ¼ hy; HzxlþHzym ¼ hz ð11:4:9Þ

for ðx; yÞ 2 L which represents the boundary of a multi-connected quasicrystalline
material, and

l ¼ cosðn; xÞ ¼ dy
ds

; m ¼ cosðn; yÞ ¼ � dx
ds

T ¼ ðTx; Ty; TzÞ and h ¼ ðhx; hy; hzÞ denote the surface traction vector and
generalized surface traction vector, and n represents the outward unit normal vector
of any point of the boundary, respectively.

Utilizing Eq. (11.4.3) and the first two formulas of Eq. (11.4.8), one has

� 4c2c3R½3ðf4ðzÞþ 4�zf 05ðzÞþ 10�z2f 006 ðzÞÞ � ðf3ðzÞþ 3zf 04ðzÞþ 6z2f 005 ðzÞþ 10z3f 0006 ðzÞÞ�
¼ i

Z
ðTx þ iTyÞds; z 2 L

ð11:4:10Þ

Taking conjugate on both sides of Eq. (11.4.10) yields

�4c2c3R½3ðf4ðzÞþ 4zf 05ðzÞþ 10z2f 006 ðzÞÞ � ðf3ðzÞþ 3�zf 04ðzÞþ 6z2f 05ðzÞþ 10�z3f 0006 ðzÞ
¼ �i

Z
ðTx � iTyÞds; z 2 L

ð11:4:11Þ
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Similarly, from Eq. (11.4.3) and the first two formulas of (11.4.9), one obtains

48c2ð2c4 � c1RÞWðzÞþ 2c1c2RHðzÞ ¼ i
Z

ðhx þ ihyÞds; z 2 L ð11:4:12Þ

Furthermore, we assume

Tz ¼ hz ¼ 0 ð11:4:13Þ

For simplicity and by the third equations in (11.4.8) and (11.4.9) and the for-
mulas of (11.4.3) and (11.4.13), one has

f6ðzÞþ f6ðzÞ ¼ 0
4c11Re½f5ðzÞþ 5�zf 06ðzÞ� þ ð2K2 � K1ÞRRe½f4ðzÞþ 4�zf 05ðzÞþ 10�z2f 006 ðzÞþ 20f6ðzÞ� ¼ 0

�

z 2 L ð11:3:14Þ

in which

c11 ¼ ð2K2 � K1ÞR� 4c4ðlK2 � R2Þ
ðlK1 � 2R2ÞR ð11:4:15Þ

As we have shown in the previous section, complex analytic functions (i.e. the
complex potentials) must be determined by boundary value equations, which are
discussed below.

11.4.3 Structure of Complex Potentials

11.4.3.1 The Arbitrariness of the Complex Potentials

For explicit description, Eq. (11.4.3) can be written as follows:

rzy � irzx ¼ �960c3c4f 06ðzÞ

c1ðryy � rxx � 2irxyÞþ ic2½Hxy � Hyx þ iðHxx þHyyÞ� ¼ �192ic2c3c4W0ðzÞ

2c1ðHzy þ iHzxÞ � Rð2K2 � K1Þ½Hxy � Hyx þ iðHxx þHyyÞ�
¼ 96c3cRð2K2 � K1ÞW0ðzÞþ 96c1c3c6C0ðzÞ

c5ðryy � rxx þ 2irxyÞþ ic2R½Hxy � Hyx � iðHxx þHyyÞ� ¼ �16ic2c3c4X
0ðzÞ
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Hyx þHxy þ iðHxx � HyyÞ ¼ �480c2c5f 06ðzÞ � 4c1c2RH
0ðzÞ ð11:4:16Þ

Similar to the discussion of two-dimensional quasicrystals, from the equations, it
is obvious that a state of phonon and phason stresses is not altered, if one replaces

fiðzÞ by fiðzÞþ ci ði ¼ 2; . . .; 6Þ ð11:4:17Þ

where ci are the arbitrary complex constants.
Now, consider how these substitutions affect the components of the displace-

ment vectors which were determined by the formula (11.4.6). Substituting (11.4.13)
into (11.4.8)–(11.4.12) shows that if the complex constants ciði ¼ 2; . . .; 6Þ satisfy

3ð 2c2
lþ k

þ c7Þc4 þ c7c3 ¼ 0

24c9c5 � c8c2 ¼ 0

40c10c6 � c1c3R
2½4ð1� c9

c8
Þc5 �

2c2
ðlþ kÞc7 c4� ¼ 0

ð11:4:18Þ

then the substitution (11.4.17) will not affect the displacements.

11.4.3.2 General Formulas for Finite Multi-connected Region

Consider now the case when the region S, occupied by the body, is multi-connected
(see Fig. 11.1).

Since the stress must be single-valued and Eq. (11.4.16)

rzy � irzx ¼ �960c3c4f 06ðzÞ ð11:4:19Þ

we know that f 06ðzÞ is holomorphic and hence single-valued in the region inside
contour smþ 1, so the complex function can be expressed as follows:

f6ðzÞ ¼
Zz

z0

f 06ðzÞdzþ constant ð11:4:20Þ

where z0 denotes fixed point. From Eq. (11.4.20), we have

f6ðzÞ ¼ bk lnðz� zkÞþ f6�ðzÞ ð11:4:21Þ

f6�ðzÞ is holomorphic in the region with contour smþ 1.
Substituting (11.4.21) into the second formula of Eq. (11.4.16), i.e.
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c1ðryy � rxx � 2irxyÞþ ic2½Hxy � Hyx þ iðHxx þHyyÞ� ¼ �192ic2c3c4W0ðzÞ;

shows that f 05ðzÞ is holomorphic in the region enclosed by contour smþ 1, so one has

f5ðzÞ ¼ ck lnðz� zkÞþ f5�ðzÞ ð11:4:22Þ

where f5�ðzÞ is holomorphic in the region of interior of contour smþ 1.
Similar to the above-mentioned discussion, from Eqs. (11.4.16) to (11.4.18), the

complex functions fiði ¼ 2; 3; 4Þ can be written as follows:

f4ðzÞ ¼ dk lnðz� zkÞþ f4�ðzÞ
f3ðzÞ ¼ ek lnðz� zkÞþ f3�ðzÞ
f2ðzÞ ¼ tk lnðz� zkÞþ f2�ðzÞ

ð11:4:23Þ

where dk; ek and tk are complex constants and fi�ðzÞ ði ¼ 2; 3; 4Þ is holomorphic in
the region inside contour smþ 1.

By substituting (11.4.21)–(11.4.23) into the complex expressions of displace-
ments, the condition of single valuedness of displacements will be given as follows:

� 3ð 2c2
lþ k

þ c7Þdk þ c7ek ¼ 0

24c9ck þ c8tk ¼ 0

240c10bk þ c1c3R
2ðtk � 2ek þ 6dk � 24ckÞ ¼ 0

ð11:4:24Þ

Applying the boundary conditions given above to the contour sk and from
Eq. (11.4.24), we know that the above complex constants may be very simply
expressed in terms of surface traction and generalized surface traction as

bk ¼ c1c3R2

240c10
½ 12c2
ðlþ kÞc7 dk þ 24ð1þ c9

c8
Þck�

ck ¼ c8
�96p½c3c8ð2c4 � c1RÞ � c1c3R� ðhx � ihyÞ

tk ¼ c8
4p½c3c8ð2c4 � c1RÞ � c1c3R� ðhx þ ihyÞ

dk ¼ ðlþ kÞc7
24pc2c3Rð2c2 þðlþ kÞc7Þ ðTx þ iTyÞ

ek ¼ � 2c2 þðlþ kÞc7
16pc22c3R

ðTx � iTyÞ

ð11:4:25Þ

We can easily extend the above results to the case there are m inner boundaries.
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11.4.4 Case of Infinite Regions

From the point of view of application, the consideration of infinite regions is
likewise of major interest. We assume that the contour smþ 1 has entirely moved to
infinity.

Similar to the discussion of two-dimensional quasicrystal, we have

f6ðzÞ ¼
Xm
k¼1

bk ln zþ f6��ðzÞ; f5ðzÞ ¼
Xm
k¼1

ck ln zþ f5��ðzÞ

f4ðzÞ ¼
Xm
k¼1

dk ln zþ f4��ðzÞ; f3ðzÞ ¼
Xm
k¼1

ek ln zþ f3��ðzÞ

f2ðzÞ ¼
Xm
k¼1

tk ln zþ f2��ðzÞ

ð11:4:26Þ

where fj��ðzÞ ðj ¼ 2; . . .; 6Þ are functions, holomorphic outside smþ 1, not
including the point at infinity. By the theorem of Laurent, the function h2�ðzÞ may
be represented outside smþ 1 by the series

fji��ðzÞ ¼
Xþ1

�1
ajnz

n ðj ¼ 2; . . .; 6Þ ð11:4:27Þ

Substituting the first equation of (11.4.26) and (11.4.27) into the first one of
Eq. (11.4.16), one has

rzy � irzx ¼ �960c3c4ð
Xm
k¼1

bk
1
z
þ

X1
�1

na6nz
n�1Þ ð11:4:28Þ

Hence it follows that for the stress to remain finite as zj j ! 1, one must have

a6n ¼ 0 ðn� 2Þ ð11:4:29Þ

Similarly, from Eqs. (11.4.15)–(11.4.18), to make the stresses be bounded, the
following conditions are also to be satisfied

ajn ¼ 0 ðn� 2; j ¼ 2; . . .; 5Þ ð11:4:30Þ

So we can obtain the expressions of the complex function fiðzÞði ¼ 2; . . .; 6Þ for
the stresses to remain finite as zj j ! 1, for example

f6ðzÞ ¼
Xm
k¼1

bk ln zþðBþ iCÞzþ f 06 ðzÞ ð11:4:31Þ

294 11 Complex Analysis Method for Elasticity of Quasicrystals



where B;C are unknown real constants to be determined, f 06 ðzÞ is function, holo-
morphic outside smþ 1, including the point at infinity. The determination of
unknown constants B;C is similar to that given in Sect. 11.3.4, but the details are
omitted here due to the limitation of the space.

11.4.5 Conformal Mapping and Function Equations
at f-Plane

We now have five equations of boundary value (11.4.10)–(11.4.12) and (11.3.14),
from which the unknown functions fjðzÞ ðj ¼ 2; . . .; 6Þ will be determined; in
addition, we have assumed that f1ðzÞ ¼ 0, because it has no usage. For some
complicated regions, the function equations cannot be directly solved at the
physical plane (i.e. the z-plane), and the conformal mapping is particularly mean-
ingful in the case.

Assume that a conformal mapping

z ¼ xðfÞ ð11:4:32Þ

is used to transform the region at z-plane onto the interior of the unit circle c at
f-plane. Under the mapping, the unknown functions fjðzÞ become

fjðzÞ ¼ fj½xðfÞ� ¼ UjðfÞ ðj ¼ 2; . . .; 6Þ ð11:4:33Þ

Substituting (11.4.32) and (11.4.33) into the first relation of boundary conditions
(11.3.14) yields

1
2pi

Z
c

U6ðrÞ
r� 1

drþ 1
2pi

Z
c

U6ðrÞ
r� 1

dr ¼ 0

This shows

U6ð1Þ ¼ 0 ð11:4:34Þ

according to the Cauchy integral formula.
Substitution of (11.4.32), (11.4.33), and (11.4.34) into boundary conditions

(11.4.10)–(11.4.12) and the second one of condition (11.3.14) leads to the
boundary value equations to determine the unknown functions UjðfÞ ðj ¼ 2; . . .; 5Þ
at f-plane, i.e.
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3
2pi

Z
c

U4ðrÞ
r� 1

drþ 4
2pi

Z
c

xðrÞ
x0ðrÞ

U0
5ðrÞ

r� 1
dr� 1

2pi

Z
c

U3ðrÞ
r� 1

dr

� 3
1
2pi

Z
c

xðrÞ
x0ðrÞ

U0
4ðrÞ

r� 1
dr� 6

1
2pi

Z
c

½½xðrÞ�
2U00

5ðrÞ
x0ðrÞ2

� ½xðrÞ�2x00ðrÞ
x0ðrÞ3

U0
5ðrÞ�

dr
r� 1

¼ 1
4c2c3

1
2pi

Z
c

t
r� 1

dr

ð11:4:35Þ

3
2pi

Z
c

U4ðrÞ
r� 1

drþ 4
2pi

Z
c

xðrÞ
x0ðrÞ

U0
4ðrÞ

r� 1
dr� 1

2pi

Z
c

U3ðrÞ
r� f

dr

� 3
1
2pi

Z
c

xðrÞ
x0ðrÞ

U3ðrÞ
r� f

dr� 6
1
2pi

Z
c

½xðrÞ
2
U00

5ðrÞ
½x0ðrÞ�2

� xðrÞ2x00ðrÞU0
5ðrÞ

½x0ðrÞ�3 � dr
r� 1

¼ 1
4c2c3R

1
2pi

Z
c

t
r� 1

dr

ð11:4:36Þ

1
2pi

Z
c

U2ðrÞ
r� 1

drþ 2
1
2pi

Z
c

xðrÞ
x0ðrÞ

U0
3ðrÞ

r� 1
drþ 3

1
2pi

Z
c

½xðrÞ
2
U00

4ðrÞ
½x0ðrÞ�2

� xðrÞ2x00ðrÞU0
4ðrÞ

½x0ðrÞ�3 � dr
r� 1

þ 4
1
2pi

Z
c

½xðrÞ
2
U000

5 ðrÞ
½x0ðrÞ�3 � 3

xðrÞ3x00ðrÞU00
5ðrÞ

½x0ðrÞ�4

þ 3
xðrÞ3x00ðrÞU0

5ðrÞ
½x0ðrÞ�5 � xðrÞ3x000ðrÞU0

5ðrÞ
½x0ðrÞ�4 � dr

r� 1
¼ 1

2pi

Z
h

r� 1
dr

ð11:4:37Þ

4c11
2pi

Z
c

U5ðrÞ
r� 1

drþ ð2K2 � K1ÞR
2pi

Z
c

½U4ðrÞ
r� 1

þ 4
xðrÞ
x0ðrÞ

U0
5ðrÞ

r� 1
�dr ¼ 0 ð11:4:38Þ

in which t ¼ i
R ðTxþ iTyÞds; t ¼ �i

R ðTx � iTyÞds; h ¼ i
R ðh1 þ ih2Þds. For given

configuration and applied stresses, we can obtain the solution by solving these
function equations.
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11.4.6 Example: Elliptic Notch Problem and Solution

We consider an icosahedral quasicrystal solid with an elliptic notch, which pene-
trates through the medium along the z-axis direction, the edge of the elliptic notch
subjected to the uniform pressure p, similar to Fig. 11.2.

Since the measurement of generalized traction has not been reported so far, for
simplicity, we assume that hx ¼ 0; hy ¼ 0:

However the calculation cannot be completed at the z-plane owing to the
complicity, and we have to employ the conformal mapping

z ¼ xðfÞ ¼ R0ð1f þmfÞ ð11:4:38Þ

to transform the exterior of the ellipse at the z-plane onto the interior of the unit
circle c at the f-plane, in which

R0 ¼ ðaþ bÞ=2; m ¼ ða� bÞ=ðaþ bÞ

Let

fjðzÞ ¼ fj½xðfÞ� ¼ UjðfÞ ðj ¼ 2; . . .; 6Þ ð11:4:39Þ

Substituting (11.4.38) into the first formula of (11.4.25), then multiplying on
both sides of equations by dr=½2piðr� fÞ� (r represents the value of at the unit
circle), and integrating around the unit circle c yield

1
2pi

Z
c

U6ðrÞ
r� 1

drþ 1
2pi

Z
c

U6ðrÞ
r� 1

dr ¼ 0 ð11:4:40Þ

by means of Cauchy integral formula, we have

U6ð1Þ ¼ 0 ð11:4:41Þ

Substituting (11.4.38) and (11.4.41) into (11.4.22)–(11.4.24), then multiplying
both sides of equations by dr=½2piðr� fÞ� (r represents the value of at the unit
circle), and integrating around the unit circle c yields
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3
2pi

Z
c

U4ðrÞ
r� 1

drþ 4
2pi

Z
c

xðrÞ
x0ðrÞ

U0
5ðrÞ

r� 1
dr� 1

2pi

Z
c

U3ðrÞ
r� 1

dr

� 3
1
2pi

Z
c

xðrÞ
x0ðrÞ

U0
4ðrÞ

r� 1
dr� 6

1
2pi

Z
c

½½xðrÞ�
2U00

5ðrÞ
½x0ðrÞ�2

� ½xðrÞ�2x00ðrÞ
½x0ðrÞ�3

U0
5ðrÞ�

dr
r� 1

¼ p
4c2c3

Z
c

xðrÞ
r� 1

dr

ð11:4:42Þ

3
2pi

Z
c

U4ðrÞ
r� 1

drþ 4
2pi

Z
c

xðrÞ
x0ðrÞ

U0
5ðrÞ

r� 1
dr� 1

2pi

Z
c

U3ðrÞ
r� f

dr

� 3
1
2pi

Z
c

xðrÞ
x0ðrÞ

U0
4ðrÞ

r� f
dr� 6

1
2pi

Z
c

½xðrÞ
2
U00

5ðrÞ
½x0ðrÞ�2

� xðrÞ2x00ðrÞU0
5ðrÞ

½x0ðrÞ�3 � dr
r� 1

¼ p
4c2c3R

1
2pi

Z
c

xðrÞ
r� 1

dr

ð11:4:43Þ

1
2pi

Z
c

U2ðrÞ
r� 1

drþ 2
1
2pi

Z
c

xðrÞ
x0ðrÞ

U0
3ðrÞ

r� 1
drþ 3

1
2pi

Z
c

½xðrÞ
2
U00

4ðrÞ
½x0ðrÞ�2

� xðrÞ2x00ðrÞU0
4ðrÞ

½x0ðrÞ�3 � dr
r� 1

þ 4
1
2pi

Z
c

½xðrÞ
3
U000

5 ðrÞ
½x0ðrÞ�3 � 3

xðrÞ3x00ðrÞU00
5ðrÞ

½x0ðrÞ�4

þ 3
xðrÞ3x00ðrÞU0

5ðrÞ
½x0ðrÞ�5 � xðrÞ3x000ðrÞU0

5ðrÞ
½x0ðrÞ�4 � dr

r� 1
¼ 0

ð11:4:44Þ

4c11
2pi

Z
c

U5ðrÞ
r� 1

drþ ð2K2 � K1ÞR
2pi

Z
c

½U4ðrÞ
r� 1

þ 4
xðrÞ
x0ðrÞ

U0
5ðrÞ

r� 1
�dr ¼ 0 ð11:4:45Þ

Because

xðrÞ
x0ðrÞ ¼ r

r2 þm
mr2 � 1
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and

f
f2 þm

mf2 � 1
U0

5ðfÞ ¼ f
f2 þm

mf2 � 1
ða1 þ 2a2fþ 3a3f

2 þ � � �Þ

are analytic in fj j\1 and continuous in the unit circle c, by means of Cauchy
integral formula, from Eq. (11.4.42), we have

1
2pi

Z
c

U4ðrÞ
r� 1

dr ¼ U4ðfÞ

1
2pi

Z
c

r
r2 þm
mr2 � 1

U0
5ðrÞ

r� 1
dr ¼ f

f2 þm

mf2 � 1
U0

5ðfÞ

Substituting

xðrÞ
x0ðrÞ ¼ � 1

r
mr2 þ 1
r2 � m

;
xðrÞ2x00ðrÞ

x0ðrÞ3
¼ 2rðmr2 þ 1Þ2

ðr2 � mÞ3

into Eq. (11.4.42), and note that

� 1
f
mf2 þ 1

f2 � m
U0

4ðfÞ ¼ � 1
f
mf2 þ 1

f2 � m
ðb1 þ 2

b2
f

þ 3
b3
f2

þ � � �Þ

2fðmf2 þ 1Þ2
ðf2 � mÞ3 U0

5ðfÞ ¼
2fðmf2 þ 1Þ2
ðf2 � mÞ3 ða1 þ 2

a2
f

þ 3
a3
f2

þ � � �Þ

are analytic in fj j[ 1 and continuous in the unit circle c, by means of Cauchy
integral formula and analytic extension of the complex variable function theory;
from Eq. (11.4.42), we obtain

1
2pi

Z
c

U3ðrÞ
r� 1

dr ¼ 0;
1
2pi

Z
c

xðrÞ
x0ðrÞ

U0
4ðrÞ

r� 1
dr ¼ 0

1
2pi

Z
c

½xðrÞ
2U00

5ðrÞ
x0ðrÞ2

� xðrÞ2x00ðrÞ
x0ðrÞ3

U0
5ðrÞ�

dr
r� 1

¼ 0

Substituting the above results into Eq. (11.4.42), with the help of Eq. (11.4.45),
one has
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U4ðfÞ ¼ R0

12c2c3R
pmf� ð2K2 � K1ÞR0

2c2c3C11

pmfðf2 þmÞ
ðmf2 � 1Þ

U5ðfÞ ¼ � ð2K2 � K1ÞR0

48c2c3C11
pmf

ð11:4:46Þ

Similar to the above discussion, from Eqs. (11.4.43) and (11.4.44), one has

U2ðfÞ ¼ � R0

2c2c3R
pfðf2 þmÞðm3f2 þ 1Þ

ðmf2 � 1Þ3

þ ð2K2 � K1ÞR0

2c2c3C11

pmf3ðf2 þmÞ½m2f6 � ðm3 þ 4mÞf4 þð2m4 þ 4m2 þ 5Þf2 þm�
ðmf2 � 1Þ5

U3ðfÞ ¼ � R0

4c2c3R
pfðm2 þ 1Þ
ðmf2 � 1Þ � ð2K2 � K1ÞR0

12c2c3C11

pmf3ðf2 þmÞðmf2 � m2 � 2Þ
ðmf2 � 1Þ3

ð11:4:47Þ

The elliptic notch problem is solved. The solution of the Griffith crack subjected
to a uniform pressure can be obtained corresponding to the case m ¼ 1;R0 ¼ a=2 of
the above solution. The solution of crack can be expressed explicitly in the z-plane,
and the concrete results refer to Sect. 9.7 in Chap. 9 for the concrete results.

11.5 Complex Analysis of Generalized Quadruple
Harmonic Equation

In Chaps. 6–8, we have shown that the plane elasticity of octagonal quasicrystals is
governed by the final equation

ðr2r2r2r2 � 4er2r2K2K2 þ 4eK2K2K2K2ÞF ¼ 0 ð11:5:1Þ

either by displacement potential or by stress potential, in which

r2 ¼ @2

@x2 þ @2

@y2 ; K2 ¼ @2

@x2 � @2

@y2

e ¼ R2ðLþMÞðK2 þK3Þ
½MðK1 þK2 þK3Þ�R2�½ðLþ 2MÞK1�R2�

)
ð11:5:2Þ

Due to the appearance of operator K2, it seems there is no any connection with
complex variable functions in solving Eq. (11.5.1). But if we rewrite it as

½ @
8

@x8
þ 4ð1� 4eÞ @8

@x6@y2
þ 2ð3þ 16eÞ @8

@x4@y4
þ 4ð1� 4eÞ @8

@x2@y6
þ @8

@y8
�F ¼ 0

ð11:5:3Þ
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then find that this is one of typical multi-quasiharmonic partial differential equation
with quadruple, and there is complex representation of solution such as

Fðx; yÞ ¼ 2Re
X4
k¼1

FkðzkÞ; zk ¼ xþ lky ð11:5:4Þ

in which functions FkðzkÞ are analytic functions of complex variable zk
(k ¼ 1; . . .; 4) and lk ¼ ak þ ibk (k ¼ 1; . . .; 4) are complex parameters and deter-
mined by the roots of the following eigenvalue equation

l8 þ 4ð1� 4eÞl6 þ 2ð3þ 16eÞl4 þ 4ð1� 4eÞl2 þ 1 ¼ 0 ð11:5:5Þ

We have shown that in Chaps. 7 and 8, some solutions of dislocations (based on
the displacement potential formulation) and notchs/cracks (based on the stress
potential formulation) can be found in terms of this complex analysis. In the pro-
cedure, it must carry out some calculations on determinants of fourth order, so the
solution expressions are quite lengthy, but which are analytic substantively.

11.6 Conclusion and Discussion

The discovery of quadruple and sextuple harmonic equations is significant for
modern elasticity. This chapter gives a comprehensive discussion on the complex
analysis for solving the equations, and we think the study is preliminary.

The above-mentioned complex potential approach is a new development of
Muskhelishvili approach of the classical elasticity, which extends greatly the scope
of the method. We believe the quadruple and sextuple harmonic equations are
useful not only in quasicrystals but probably also in other disciplines of science and
engineering. So the complex analysis method can be used for other studies.

Apart from the development to extend the scope of the complex potential theory
and method, we also developed the Muskhelishvili method for the conformal
mapping. According to the monograph [1], the conformal mapping is limited within
the rational function class. But we extended it into the transcendental function class,
and some exact analytic solutions for more complicated cracked configurations are
achieved (see, e.g. Chap. 8).

This method is effective not only for solving elasticity problems but also for
solving plasticity problem (see, e.g. Li and Fan [10] and Fan and Fan [11] and Li
and Fan [12, 13]). The new summarization on the method can be found in article
[14] and other references [15, 16].
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11.7 Appendix of Chapter 11: Basic Formulas of Complex
Analysis

It is enlightened that Muskhelishvili [1] gave extensive description in detail on
complex analysis in due presentation of elasticity in his classical monograph, which
is very beneficial to readers. However there is no possibility for the present book.
We provide here some points only of the function theory, which were frequently
cited in the text. These can be referred for readers who are advised to read books of
Privalov [17] and Lavrentjev and Schabat [18] for the further details. Other
knowledge has been provided in due succession of the text of Chaps. 7–9 and 11.
The present contents can also be seen as a supplement in reading the material given
in Chaps. 7–9 and 11 if it is needed. The importance of complex analysis is not
only in deriving the solutions by the complex potential formulation but also in
dealing with the solutions by integral transforms and dual integral equations to be
discussed in the Appendix B of Major Appendix of this book.

11.7.1 Complex Functions, Analytic Functions

Usually, z ¼ xþ iy is denoted as a complex variable in which
ffiffiffiffiffiffiffi�1

p ¼ i, or z ¼ reih,
and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, called the modulus of the complex number, h ¼ arctanðyxÞ, the

argument angle of z. Assume f ðzÞ be a function of one complex variable, or
complex function in abbreviation, which is denoted as

f ðzÞ ¼ Pðx; yÞþ iQðx; yÞ ð11:7:1Þ

in which both Pðx; yÞ and Qðx; yÞ are functions with real variables and called the
real and imaginary parts, respectively, and marked by

Pðx; yÞ ¼ Re f ðzÞ;Qðx; yÞ ¼ Im f ðzÞ

There is a sort of complex functions called analytic functions (or regular func-
tions; single-valued analytic functions are called holomorphic functions) which
have important applications in many branches of mathematics, physics, and engi-
neering. The concepts related with this are discussed as follows.

The complex function f ðzÞ is analytic in a given region, and this means that it
can be expanded in the neighbourhood of any point z0 of the region into a
non-negative integer power series (i.e. the Taylor series) of the form

f ðzÞ ¼
X1
n¼0

anðz� z0Þn ð11:7:2Þ
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in which an is a constant (in general, a complex number). The concept are
frequently used in the previous and later calculation.

Another definition of an analytic function is that if the complex function f ðzÞ is
given in the region, the real part Pðx; yÞ and imaginary part Qðx; yÞ are
single-valued, have continuous partial derivatives of the first order, and satisfy
Cauchy–Riemann condition such as

@P
@x

¼ @Q
@y

;
@P
@y

¼ � @Q
@x

ð11:7:3Þ

in the region.
These kind of functions, P and Q, are named mutually conjugate harmonic ones.

From (11.7.3), it follows that

r2P ¼ ð @
2

@x2
þ @2

@y2
ÞP ¼ 0;r2Q ¼ ð @

2

@x2
þ @2

@y2
ÞQ ¼ 0

This concept is also often used in the following.
An analytic function can also be defined in integral form. Assuming f ðzÞ is a

complex function in a certain complex number region D, and C is any simple
smooth closed curve (sometimes called simple curve for simplicity) in D, we can
obtain that f ðzÞ is analytic in the region ifZ

C

f ðzÞdz ¼ 0 ð11:7:4Þ

The result is known as the Cauchy’s integral theorem (or simply called the
Cauchy’s theorem) which has been frequently used in the text and appendixes.

The theory of complex functions proves that the above definitions are mutually
equivalent.

11.7.2 Cauchy’s formula

An important result of the Cauchy’s theorem is the so-called Cauchy’s formula, i.e.
if f ðzÞ analytic in a single-connected region Dþ bounded by a closed curve C and
continuous in Dþ þC (Fig. 11.6), then

1
2pi

Z
C

f ðtÞ
t � z

dt ¼f ðzÞ ð11:7:5Þ

in which z is an arbitrary point in Dþ .
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Proof Taking z as the centre, q as the radius, make a small circle c in Dþ .
According to Cauchy’s theorem (11.7.4),

Z
C

f ðtÞ
t � z

dt ¼
Z
c

f ðtÞ
t � z

dt ð11:7:6Þ

As f ðzÞ is analytic in Dþ and continuous in Dþ + C, there is a small number
e[ 0, for any point t and c, if q is sufficiently small, such as

f ðtÞ � f ðzÞj\ej

and note that t � zj ¼ qj , hence

lim
e!0

Z
c

f ðtÞ
t � z

dt ¼
Z
c

f ðzÞ
t � z

dt ð11:7:7Þ

Just as mentioned previously, f ðzÞ is analytic in Dþ , and the value of the integral

Z
c

f ðzÞ
t � z

dt

will not be changed when q is reducing. Therefore the limit mark in the left-hand
side of (11.7.7) can be removed. In addition

Z
c

f ðzÞ
t � z

dt ¼ f ðzÞ
Z
c

dt
t � z

¼ f ðzÞ
Z2p
0

qeih

qeih
dh ¼ 2pif ðzÞ

Based on (11.7.6) and this result, formula (11.7.5) is proved.

Fig. 11.6 A finite region Dþ

304 11 Complex Analysis Method for Elasticity of Quasicrystals



In formula (11.7.5), if z is taken its values in a region D� consisting of the points
lying outside C (see Fig. 11.6), then

1
2pi

Z
C

f ðtÞ
t � z

dt ¼ 0 ð11:7:8Þ

In fact, this is a direct consequence of the Cauchy’s theorem, because in this case
the integrand f ðzÞ=ðf� zÞ as function of f is analytic in region Dþ , where f
denotes the point in the region Dþ .

Suppose all conditions are the same as those for (11.7.5), then

1
2pi

Z
C

f ðtÞ
t � z

dt ¼ f ð0Þ ð11:7:9Þ

Proof For simplicity here the proof is given for the case C being a circle. Being
analytic in the region Dþ , f ðzÞ may be expanded non-negative integer power series,
in which z0 ¼ 0, such that

f ðzÞ ¼ a0 þ a1zþ a2z
2 þ � � � ¼ f ð0Þþ f

0 ð0Þzþ 1
2!
f
00 ð0Þz2 þ � � �

The function f ðzÞ in formula (11.7.9) is the value of �f ð1zÞ at the circle C, and here

�f ð1
z
Þ ¼ f ð0Þþ f 0 ð0Þ 1

z
þ 1

2!
f 00 ð0Þ 1

z2
þ � � �

is an analytic function in D�. From the Cauchy’s formula,

1
2pi

Z
C

dt
tkðt � zÞ ¼

1 k ¼ 0

0 k[ 0

(

such that (11.7.9) is proved.
In contrast to the above, current function f ðzÞ is analytic in D� (including

z ¼ 1), and then

1
2pi

Z
C

f ðzÞ
t � z

dt ¼ �f ðzÞþ f ð1Þ z 2 D�

f ð1Þ z 2 Dþ

�
ð11:7:10Þ

The proof of this formula can be offered in the similar manner adopted for
(11.7.5), but the following points must be noted:
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(i) The analytic function f ðzÞ in D� (including z ¼ 1) may be expanded as the
following series

f ðzÞ ¼ c0 þ c1
1
z
þ c2

1
z2

þ � � �

(ii) 1
2pi

R
C

c0
t�zdt ¼

0 z 2 D�

c0 z 2 Dþ

(

where c0 ¼ f ð1Þ 6¼ 0.
All conditions are the same as that for formula (11.7.10), and there exists

1
2pi

Z
C

f ðtÞ
t � z

dt ¼ 0 ð11:7:11Þ

11.7.3 Poles

Suppose a finite point in z-plane (i.e. z is not a point at infinity), and in the
neighbourhood of the point, the function presents the form as follows:

f ðzÞ ¼ GðzÞþ f0ðzÞ ð11:7:12Þ

in which f0ðzÞ is an analytic function in the neighbourhood of point a, and

GðzÞ ¼ A0

z� a
þ A1

ðz� aÞ2 þ � � � Am

ðz� aÞm ð11:7:13Þ

where A1;A2; . . .;Am are constants, such that f ðzÞ is called having a pole with order
m and z ¼ a is the pole.

If a is a point at infinity, f0ðzÞ in (11.7.12) is regular at point at infinity (i.e.
f ðtÞ ¼ c0 þ c1z�1 þ c2z�2 þ � � �), while at z ¼ 1

GðzÞ ¼ A0 þA1zþ � � � þAmz
m ð11:7:14Þ

then we say that f ðzÞ has a pole of order m at z ¼ 1.

11.7.4 Residual Theorem

If the function f ðzÞ has pole a with order m, its integral may be evaluated simply by
computing residual.
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What is the meaning of the residual? Suppose f ðzÞ is analytic in the neigh-
bourhood of point z ¼ a, but except z ¼ a, and infinite at z ¼ a. In this case, the
point z ¼ a is named isolated singular point. The residual of the function f ðzÞ at
point z ¼ a is the value of the integral

1
2pi

Z
C

f ðzÞdz

in which C represents any closed contour enclosing point z ¼ a. For a residual, we
will use the resignation as Res f ðaÞ.

If z ¼ a is a m-order pole of f ðzÞ, its residual may be evaluated from the
following formula and

Res f ðaÞ ¼ 1
ðm� 1Þ! limz!a

dm�1

dzm�1 ðz� aÞmf ðzÞgf ð11:7:15Þ

Obviously, the integral is

Z
C

f ðzÞdz ¼ 2piRes f ðaÞ

So the evaluation of integrals may be reduced to the calculation of derivatives,
and it is greatly simplified. In particular, if z ¼ a is a first-order pole, then

Res f ðaÞ ¼ lim
z!a

ðz� aÞf ðzÞ ð11:7:16Þ

in which the calculation is much simpler.
What follows the residual theorem is introduced as: let the function f ðzÞ be

analytic in region D and continuous in DþC except at finite isolated poles
a1; a2; . . .; an, then

Z
C

f ðzÞdz ¼ 2pi
Xn
k¼1

Res f ðakÞ ð11:7:17Þ

where C represents the boundary of region D.
Almost all integrals in the text can be evaluated by the residual theorem.

Example Calculate the integral

1
2p

Z1
�1

1
�mx2 þ k

e�ixtdx ¼ I ð11:7:18Þ

in terms of the residual theorem, where m and k are positive constants.
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Though the integral is a real integral, it is difficult to evaluate because the
integration limit is infinite and there are two singular points at the integration path,
but it is easily completed by using the residual theorem. At first, we extend the real
variable x to a complex one, i.e. put x ¼ x1 þ ix2, where x1;x2 are real variables.
At the complex plane x, a half-circle with origin ð0; 0Þ and radius R ! 1 is taken
as an additional integral path, referring to Fig. 11.7. Along the real axis, the inte-
grand of the integral has two poles ð� ffiffiffiffiffiffiffiffiffi

k=m
p

; 0Þ and ð ffiffiffiffiffiffiffiffiffi
m=k

p
; 0Þ, and the value of

the integral is equal to

1
2p

Z1
�1

1
�mx2 þ k

e�ixtdx ¼ I1 ¼ lim
R!1;r!0

ð
Z
CR

þ
Z
1

þ
Z
2

þ
Z
3

þ
Z
C1

þ
Z
C2

Þ

ð11:7:19Þ

where the first integral in the right-hand side of (11.7.19) is carried out on path of
the grand half-circle, the second to fourth ones are on the path along the real axes
except intervals ð�r � ffiffiffiffiffiffiffiffiffi

k=m
p

;� ffiffiffiffiffiffiffiffiffi
k=m

p þ rÞ and ð�rþ ffiffiffiffiffiffiffiffiffi
k=m

p
;

ffiffiffiffiffiffiffiffiffi
k=m

p þ rÞ, and
the fifth and sixth ones are on two small half-circle arcs C1 and C2 with origins
ð� ffiffiffiffiffiffiffiffiffi

k=m
p

; 0Þ and ð ffiffiffiffiffiffiffiffiffiffi
k=m;

p
0Þ and radius r, respectively. Because the integrand in the

interior enclosing by the integration path in (11.7.19) is analytic, according to the
Cauchy theorem [referring to formula (11.7.3)]

I1 ¼ 0 ð11:7:20Þ

Based on the behaviour of the integrand and the Jordan lemma, the first one in
the right-hand side of (11.7.19) must be zero. So that

lim
R!1;r!0

ð
Z
1

þ
Z
2

þ
Z
3

þ
Z
C1

þ
Z
C2

Þ ¼ 0

Fig. 11.7 Integration path at
x-plane
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and

lim
R!1;r!0

ð
Z
1

þ
Z
2

þ
Z
3

Þ ¼ I ¼ � lim
r!0

ð
Z
C1

þ
Z
C2

Þ

At arc C1: xþ ffiffiffiffiffiffiffiffiffi
k=m

p ¼ reih1 ; dx ¼ ireih1dh1, and at arc C2:

x� ffiffiffiffiffiffiffiffiffi
k=m

p ¼ reih2 ; dx ¼ ireih2dh2. Substituting these into the above integrals and
after some simple calculations, we obtain

I ¼ p

m
ffiffiffiffiffiffiffiffiffi
k=m

p sin
ffiffiffiffiffiffiffiffiffi
k=m

p
t ð11:7:21Þ

In the inversion of some integral transforms and even in the solution of certain
integral equations, many key calculations are completed by the similar procedure
exhibited above, which will be shown in the Major Appendix B of this book.

11.7.5 Analytic Extension

A function f1ðzÞ is analytic at region D1, and if one can construct another function
f2ðzÞ analytic at region D2, D1 and D2 are not mutually intersected regions but with
common bounding C, furthermore

f1ðzÞ ¼ f2ðzÞ z 2 C

we can say that f1ðzÞ and f2ðzÞ are analytic extension to each other, and we can also
say that function

FðzÞ ¼ f1ðzÞ as z 2 D1

f2ðzÞ as z 2 D2

(

analytic at D ¼ D1 þD2 is an analytic extension of f1ðzÞ as well as f2ðzÞ.

11.7.6 Conformal Mapping

In the text of Chaps. 7–9 and 11, by using one or several analytic functions which
are also named complex potentials, we have expressed the solutions of harmonic,
biharmonic, quadruple harmonic, sextuple harmonic, quasi-biharmonic, and
quasi-quadruple harmonic equations, which is the complex representation of
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solutions. We can see that the complex representation is only the first step for
solving boundary value problems. For some problems with complicated boundaries,
one must utilize the conformal mapping to transform the problem onto the mapping
plane; the corresponding boundaries can be simplified to a unit circle or straight
line; the calculation can be put forward; and in some cases, exact analytic solutions
are available.

The so-called conformal mapping is that the complex variable z ¼ xþ iy and
another one f ¼ nþ ig can be connected by

z ¼ xðfÞ ð11:7:22Þ

in which xðfÞ is a single-valued analytic function of f ¼ nþ ig in some region.
Except certain points, the inversion of mapping (11.7.22) exists. If for a certain
region, the mapping is single-valued, and we say it is a single-valued conformal
mapping. In general, the mapping is single-valued, but the inversion f ¼ x�1ðzÞ is
impossibly single-valued. It has the following properties:

(1) A angle at point z ¼ z0 after the mapping becomes a angle at point f ¼ f0, but
the both angles have the same value of the argument, the rotation is either in
the same direction, and this is the first kind of conformal mapping (e.g. shown
in Fig. 11.5), or in counter direction, which is the second kind of conformal
mapping (e.g. depicted in Fig. 11.3).

(2) If xðfÞ is analytic and single-valued in region X and transforms the region into
region D, then the inversion f ¼ x�1ðzÞ is analytic and single-valued in region
D and maps D onto X.

(3) If D is a region and c is a simple closed curve in it, and its interior belongs to
D, and if x�1ðzÞ is analytic, and maps c onto a closed curve c at X region
bilaterally single-valued, then xðfÞ is analytic and single-valued in the region
and maps D onto the interior of X.

In the text, we mainly used the following two kinds of conformal mapping, i.e.
(1) Rational function conformal mapping, e.g.

xðfÞ ¼ c
f
þ a0 þ a1fþ . . .þ anf

n ð11:7:23Þ

or

xðfÞ ¼ Rfþ b0 þ b1
1
f
þ . . .þ bn

1
fn

ð11:7:24Þ

in which, c, a0, a1, …, an, R, b0, b1, …, bn are constants. These mappings can be
used in studying infinite region with a crack at physical plane onto the interior of
unit circle at mapping plane. In the monograph of Muskhelishvili [1], he postulated
that his method is only suitable for this kind of mapping functions. Fan [4] extended
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it to transcendental mapping functions and achieved exact analytic solutions for
crack problems for complicated configuration.

(2) Transcendental functions are as follows:

xðfÞ ¼ H
p
ln½1þ ð1þ fÞ2

ð1� fÞ2� ð11:7:25Þ

and

xðfÞ ¼ 2W
p

arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
tan

pa
2W

� �� �
� a ð11:7:26Þ

which can be used to transform a finite specimen with a crack onto the interior of
unit circle or upper half-plane (or lower half-plane) at mapping plane, where H, W ,
and a represent sample sizes and crack size.
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