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  Pref ace   

 The extinction of plant species is progressively taking place due to their being 
trapped in the vicious circle of ever-increasing industrialization, deforestation, 
global warming, climate change, and also unscrupulous human activities. The situ-
ation warrants acceleration of efforts to develop methods for their germplasm pres-
ervation. In this context, the importance of in vitro morphogenesis cannot be 
overemphasized, as the interplay of morphogenic factors, which can precisely be 
managed in vitro – grown plant system cannot be done ex vitro. Furthermore, its 
application for germplasm preservation becomes imperative, particularly in case of 
hybrids which must be propagated vegetatively, where seeds are not produced, the 
plant is systemically infected, or the plant material is very limited. The application 
of micropropagation techniques has witnessed major advances and numerous ben-
efi ts over the last few decades and is the only aspect of biotechnology that has been 
convincingly documented with regard to its feasibility for mass-scale propagation 
commercially. 

 Molecular biology and biotechnology have now become an integral part of tissue 
culture research. The tremendous impact generated by genetic engineering and con-
sequently the generation of transgenics has helped in the manipulation of plant 
genomes at will. There is indeed rapid development in this area with commendable 
success in India. It has, therefore, become increasingly diffi cult to author a book on 
the subject. Hence, this edited volume would hopefully prove informative to read-
ers. The book provides a source material to researchers intending to initiate work in 
these areas. 

 The editors acknowledge the unstinted support received from contributors who 
spared valuable time in writing chapters for this volume and also sincerely thank the 
publishers for their cooperation in making this book a reality. We are indebted to Dr. 
H. C. Chaturvedi, former emeritus scientist (CSIR), and Dr. A. K. Sharma, former 
head, Tissue Culture Lab, CSIR-National Botanical Research Institute (NBRI), 
Lucknow, who introduced us to plant tissue culture and to the intricacies of the 
technique. 

 While preparing this book, we have received unfl inching support from colleague 
and research students in the Plant Biotechnology group. Prof. Altaf Ahmad extended 
full cooperation and read a number of manuscripts. Postdocs of the Plant 
Biotechnology Laboratory, Dr. Ankita Varshney, Dr. Nigar Fatima, Dr. Ruphi Naz, 
and Dr. Saad Bin Javed, and doctoral students, Ms. Afsheen Shahid, Ms. Mehrun 
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Nisha Khanam, Mr. Sheikh Altaf Husain, Mr. Anees Ahmad, and Mr. Naushad 
Alam, extended full cooperation and solicited timely help. 

 Once again, thanks to all those who helped in various ways.  

  Aligarh, Uttar Pradesh, India     Mohammad     Anis    
     Naseem     Ahmad     

Preface
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 1      Plant Tissue Culture: A Journey 
from Research to Commercialization                     

     Mohammad     Anis      and     Naseem     Ahmad   

    Abstract 
   Tissue culture was a subject of academic interest for a long time. In recent years, it 
has become a useful tool for agriculture and medicine. It has therefore been a popu-
lar area of biological research. Considerable amount of literature has been gener-
ated, but it is not commensurate with the results obtained. The continuous and 
non-organized exploitation has resulted in many medicinal plants becoming rare, 
and a good number have even become extinct. Therefore, tissue culture has emerged 
as a science with a vast potential for human welfare ranging from large- scale plant 
production in horticulture and forestry, human health, plant protection as well as 
environmental protection. In vitro rejuvenation holds remarkable potentials for the 
production and superior plant-based medicine. There are mainly four approaches 
for in vitro germplasm preservation, which may lead to development of a tissue 
bank; cryopreservation, normally growing and multiplying shoot culture, slow-
growth culture and regenerative long-term excised root culture. The main parameter 
for evaluating the worth of these approaches includes practicability, prolonged 
retention of regenerative potentiality and the least chances of genetic instability.  
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  Abbreviations 

   BA    6-benzyl adenine   
  2iP    2-isopentenyl adenine   
  IAA    Indole-3-acetic acid   
  IBA    Indole-3-butyric acid   
  Kn    6-furfurylaminopurine   
  PGRs    Plant growth regulators   
  MS    Murashige and Skoog ( 1962 ) medium   
  NAA    α-Naphthalene acetic acid   

1.1         Introduction 

 Biodiversity is nature’s fabric of life. The economic prosperity of any country 
depends on this natural capital. Today we are in a global battle for the conservation 
of this natural wealth. Being driven primarily by climate disruption, habitat changes 
and over-exploitation, biodiversity loss is pushing earth towards the sixth mass 
extinction. Continuous and often indiscriminate collections of medicinal plants in 
bulk quantity from diverse ecosystem, coupled with destruction of natural habitats, 
are resulting in irreplaceable loss of valuable genetic diversity.  Medicinal plants   
account for one-third of the species in the ‘Red Data Book of India’. The country’s 
rich biodiversity has been sadly and seriously affected with the increasing human 
population. The in vitro multiplications of protocols offer a potential technique of 
generating suffi cient material for commercial planting. Its utilization in forestry, 
agriculture and horticulture is growing worldwide. Large numbers of plants have 
been recovered initiated from a sole entity in a comparatively short instance and 
space (Bhojwani and Razdan  1983 ). Micropropagation is fast, uses little quantity of 
shoots and succeeds when other methods fail (Fay  1992 ). The technique has been 
used globally for monitoring of secondary metabolite at various stages of growth 
and differentiation. 

 Tissue culture becomes a popular area of research with most laboratories jump-
ing on the bandwagon, changing their names or opening a new section to include 
tissue culture. Conventionally these plants take a long time for multiplication and 
have a low rate of fruit/seed set and poor seed viability/germination, and often roots/
rhizome of few years old plant contains the effective principle. Thus, in order to 
obtain active ingredients from storage organs, often whole plants are dug out which 
eliminate its chances of survival and perpetuation in nature. 

 Recent advancement in biotechnological methodology of culturing plant cell and 
tissues has provided new means of rapidly propagating and conserving the endan-
gered and other vulnerable plant species. 

 As per directives of the University Grants Commission ( UGC  )    in 2003, the cur-
ricula for both UG and PG were revised where greater emphasis was made on the 
courses related to Plant Biotechnology and Molecular Biology. Prof. M. Anis, the 
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group leader, established a laboratory and study programme in Plant Biotechnology 
in the Botany Department, AMU, Aligarh. On the basis of the research output made 
in this area during the last 15 years, he was instrumental in arranging huge grants 
from various government agencies. Based on the overall achievements and prog-
ress, the department was supported under the Special Assistance Programme DRS-I 
(2009–2014) and DRS-II (2016–2021), DST-FIST-I (2006–2010), DST-FIST-II 
(2011–2016) and DBT-HRD (2008–2013). This has paved the way for establishing 
a Plant Molecular Biology and Nanobiotechnology lab with an aim to expand 
 academic operations by offering new courses and upgrading programmes to attract 
a wider spectrum of students and researchers. 

 A number of reproducible protocols originated from tissue culture studies using 
different  morphogenic pathways   on plants belonging to different categories have 
been established for the multiplication and conservation of phytodiversity. In addi-
tion, evaluation on the effect of different light intensities on photosynthesis and 
antioxidant enzymes during acclimatization of in vitro regenerated plants has been 
carried out. Since the possibility of occurrence of genetic variation (somaclonal 
variation) during in vitro process cannot be ruled out, we have been focusing on 
enhanced axillary shoot proliferation which is least prone to somaclonal variation. 

 The group of Plant Biotechnology in the University, Botany Department, has 
made signifi cant contributions towards the development and progress of tissue cul-
ture technology in the country for mass propagation and morphogenic studies on 
large number of plants, including recalcitrant species that are diffi cult to be propa-
gated from seeds. The research team has made pioneer and excellent contribution 
towards the mass propagation of several ornamental, medicinal, fruit and woody 
trees including endangered plants. 

 The present communication describes various approaches of in vitro manipula-
tion for plant regeneration in selected plants, with medicinal/economic importance. 
The results are of great practical signifi cance for their mass propagation with con-
servation and have been published in journals of international repute.  

1.2      Salix alba  L. 

   Salix alba       ( Salicaceae ) is a large tree with olive-green, yellow or purple branches 
frequently cultivated in Western Himalaya up to an altitude of 2400 m. It is vegeta-
tively propagated by cutting during February to March and used mostly in post and 
planks, house building, packing boxes, furniture, agricultural implements, etc. The 
regeneration potential of various explants was evaluated by manipulating various 
culture conditions. Among the various treatments of different cytokinins (BA, Kin, 
2iP) singly on woody plant medium, BA was found superior in comparison with 
others in nodal explant. However, amalgamation of auxins (IAA, IBA or NAA) with 
optimum doses of BA was superior in the production of a maximum of 12.77 shoots 
with 1.83 cm average shoot length induced from nodal explants. 

 The presence of various additives, viz. silver nitrate, glutamine, ammonium 
nitrate or adenine sulphate, favours the production of good-quality shoots. Among 
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all, 2.0 mg/l of AgNO 3  was found to be the optimum for proper growth and develop-
ment of shoots. 

 In vitro isolated shoots from the cluster were transferred to the media containing 
different auxins (IAA, IBA or NAA) at various doses for root induction. Among the 
various treatments tested, 0.5 μM IBA was found best for highest root induction. 
Plantlets with proper root and shoot systems were acclimatized using standard pro-
cedure. All the regenerants were lastly shifted to pots in the net house where they 
grew well lacking any noticeable morphological dissimilarity. No  somacl  onal  varia-
  tion among regenerants was observed as confi rmed by PCR-based DNA markers 
(Khan  2014 ).  

1.3      Erythrina variegata  L. 

  Erythrina variegata  L. ( Fabaceae ) is highly  medic     inal and is being used in tradi-
tional medicinal system in various parts of Asia, for liver disorder treatment to lep-
rosy. Its extracts have been reported to show hypoglycaemic, antidiuretic, 
antihyperlipidaemic and sedative properties. It is a salt and drought tolerant and 
even grows in waterlogged conditions, giving it the ability to survive even near the 
seashores. It also possesses aesthetic value because of its beautiful infl orescence 
and is in high demand in the international market. Its vegetative propagation is, 
however, limited because of the requirement of large cutting which is diffi cult to 
transport. Therefore, it is a very good candidate for in vitro and physiological stud-
ies which are not possible using conventional methods. For developing an effi cient 
regeneration system, nodal explants were incubated on MS culture medium fortifi ed 
with different doses and amalgamations of plant growth regulators (PGRs). 
Combination of 5.0 μM 6-benzylaminopurine (BA) and 0.5 μM 1- naphthaleneacetic 
acid (NAA) was found to be most effective and induced maximum number of shoots 
(~13) per explant with average (4.8 cm) mean shoot length in 93.6 % cultures. 
Addition of cobalt (≤50 μM) to the medium signifi cantly enhanced the growth 
parameters of the culture, increasing the number of shoots to more than 16 shoots/
explant after 8 weeks of culture on the standardized medium. Rooting in in vitro 
obtained shoots was profi ciently induced on full-strength MS medium fortifi ed with 
2.5 μM indole-3-butyric acid (IBA) which yielded more than three roots/shoots with 
mean root length of 3.2 cm. The cultures transferred from the media supplemented 
with optimized cobalt concentration showed better rhizogenic competence as com-
pared to the one transferred from medium lacking cobalt. Cobalt exposure increased 
the percentage (83.5 %) of explants showing root induction on the similar medium 
as compared to unexposed cultures (74 %). Genetic characterization of the regener-
ants was also done using PCR-based DNA markers, to ensure that cobalt exposure 
or the use of plant growth regulators in the protocol has not compromised the genetic 
integrity of the progeny plantlets. Screening of 570 bands produced by DNA-based 
ten selected ISSR  pri     mers did not record any polymorphism among the regenerants, 
establishing their clonal nature. Thus, the developed regeneration protocol for 
 Erythrina variegata  can be used for its propagation and conservation and in other 
in vitro manipulations for plants’ improvement (Javed and Anis  2015 ).  

M. Anis and N. Ahmad



7

1.4      Withania somnifera  L. (Dunal) 

   Withania somnifera       (winter cherry) commonly called as ashwagandha belongs to 
family  Solanaceae . It is also known as Indian ginseng and considered as highly 
representative of plant kingdom in the Indian system of medicine. It is an erect 
 greyish shrub growing up to the height of 75 cm. It is composed of about 12 alka-
loids, 40 withanolides and several sitoindosides. The major constituents are mainly 
present in the leaves. The roots are also composed of glucose, starch, dulcitol, 
reducing sugar and withanol, and currently an estimation of withaferin A and witha-
nolides D was reported by HPLC analysis (Ganzera et al.  2003 ). 

 It is commonly used in the  Ayurvedic system   of medicine and chiefl y claimed 
to possess potent aphrodisiac rejuvenative and life-prolonging properties. It is also 
used as a memory enhancer and in other gastric problems (Williamson  2002 ). It also 
helps various ailments like chronic fatigue, weakness, teeth loose, impotency, dehy-
dration, weakness in the bones, premature ageing, muscle tension and emaciation. 
Leaves and fruits are also helpful in various problems like tumour, carbuncle, ulcers 
and tubercular glands. 

 Roots are also useful in rheumatism, general ability, nervous exhaustion, 
memory loss, spermatorrhoea and constipation. In Ayurveda,  th     e roots are also 
prescribed for gynaec disorders, bronchitis, infl ammation, skin diseases, fever rheu-
matism, etc. (Fatima  2013 ). 

 It propagates through seeds, but seeds possess very short viability with low ger-
mination rate which resists its propagation via seeds even after stratifi cation. Due to 
indiscriminate use and ruthless collection from the wild, the species is now getting 
the category of endangered. 

 Therefore, an effi cient propagation system is necessary for the propagation and 
commercial utilization of important medicinal plant. In order to reduce the pressure 
on natural population and also to provide an alternative method for the production 
of planting material, the present experiments were taken into consideration in order 
to develop an effi cient in vitro method which can be utilized for mass propagation 
of selected medicinal plant. 

 Direct shoot bud emergence was noticed on the Murashige and Skoog ( 1962 ) 
culture medium with the supplementation of different doses of various cytokinins 
(BA, Kin, 2iP) either single or in combination with different auxins (IAA, IBA or 
IAA) in nodal and shoot tip explants. However, both explants failed to show any 
micropropagation response on control MS medium devoid of growth regulators. 

 Among various treatments tried, maximum shoot regeneration was achieved on 
MS medium supplemented with BA (2.5 μM) and NAA (0.5 μM) in nodal seg-
ments. One hundred percent rooting frequency was observed in cultured shootlets 
on rooting media composed of NAA (0.5 μM), on one-half MS medium. Histological 
examinations also confi rm the induction  of      various shoot primordia in both nodal 
and shoot tip explants. The obtained complete plantlets with rooted shoots were 
acclimatized with green house and transferred to natural light with 95 % survival 
rate (Fatima and Anis  2012 ). 
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 In order to improve the regeneration potential, the effect of phenyl urea deriva-
tive, thidiazuron (TDZ), was also studied using nodal explants. MS culture medium 
containing TDZ (0.0–10.0 μM) was successful in producing shoot and retaining 
high shoot development rate and subsequent elongation on hormone-free MS 
medium. TDZ at a dose of 0.5 μM was mainly effective in bud break which formed 
optimum multiplication frequency (98 %) and a number of shoots (23.8 ± 0.33) with 
shoot length (4.83 ± 0.66 cm), after 4 weeks of culture. These induced shoots when 
transferred onto the MS medium lacking TDZ showed the greatest shoot number 
(32.4 ± 0.24) with shoot height (7.66 ± 0.08 cm) latterly of the fourth subculture pas-
sage. Among the various doses of IBA (50–500 μM) experienced for ex vitro root-
ing, the maximum percentage of rooting was obtained in Soilrite™ when the lower 
end of the isolated shootlets was employed with 200 μM (IBA) for 15 min, which 
induced maximum roots (18.3 ± 0.16) with root length of (7.63 + 0.08 cm) per shoot. 
After proper hardening in the plant growth chamber, the regenerated plantlets were 
transported to the net house where they grow well, reach maturity and show normal 
fl owering (Fatima and Anis  2011 ). 

 The morphogenetic response of copper sulphate and zinc sulphate on nodal seg-
ment was also studied. Inclusion of micronutrients CuSO 4  (25–200 μM) and ZnSO 4  
(50–500 μM) in an already standardized MS medium showed better response in 
shoot bud formation and lengthening. ZnSO 4  gives a better response in comparison 
with CuSO 4 ; about 61 and 66 shoots per explant were obtained with 100 μM CuSO 4  
and 300 μM ZnSO 4 , respectively. Rooting in micropropagated shoots was achieved 
on one-half MS + NAA (0.5 μM). Chlorophyll a, chlorophyll b, total chlorophyll 
and carotenoid content in the micropropagated plants increase with the increasing 
copper and zinc concentration up to optimum dose of 100 and 300 μM of CuSO 4  
and ZnSO 4 , respectively, in the medium.  Micropr     opagated plantlets were hardened 
by the following standard procedure with 95 % survival rate. All the regenerated 
plants were morphologically similar (Fatima et al.  2011 ). 

 Non-embryogenic, synthetic seeds were produced by encapsulating nodal seg-
ments (containing axillary buds) of  Withania somnifera  L. in calcium alginate 
hydrogel comprising MS culture medium. A 3% sodium alginate with 100 μM cal-
cium chloride CaCl 2  was found to be the optimum concentration for the creation of 
consistent syn seeds. The effect of different treatments, i.e. MS medium containing 
different doses of cytokinins (0.5, 1.0, 2.5, 5.0 and 10.0 μM) along with optimum 
dose of auxins NAA (0.5) on in vitro regeneration response of synthetic seeds, was 
assessed. The optimum percentage (86.2 %) of the transformation of calcium 
alginate- coated nodal segments into plantlets was obtained on MS medium com-
posed of BA (2.5 μM) and NAA (0.5 μM) after 4 weeks of incubation. Rooted 
plantlets were achieved on one-half MS supplemented with 0.5 μM NAA. Plantlets 
obtained from stored synthetic seeds were hardened accordingly. Signifi cant 
enhancement in the pigment contents (chlorophyll, carotenoids) and net photosyn-
thetic rates with an increase in acclimatization days may be due to the proper work-
ing of photosynthetic machinery. Activities of antioxidant enzymes, i.e. superoxide 
dismutase, catalase and peroxidase, were signifi cantly increased which suggest 
their preventive role in membrane oxidation and damage to biological molecules. 
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Also, an enhanced level of lipid peroxidation, as indicated by MDA content, is a 
sensitive diagnostic index of oxidative  i     njury, clearly indicating its positive deter-
mining role in combating oxidative stress. The generated RAPD and ISSR patterns 
from regenerated plantlets with the mother plant were similar which confi rms the 
genetic stability among the clones. The synthetic seed technology could possibly 
pave the way for the conservation, short-term storage and germplasm exchange with 
potential storability and limited quarantine restrictions (Fatima et al.  2013 ).  

1.5      Cuphea procumbens  Orteg. 

 The stimulatory effect of different doses of three cytokinins, BA, Kin and 2iP, on 
in vitro shoot bud induction, proliferation and multiplication of a potential medici-
nal herb   Cuphea procumbens       was investigated. Young nodal explant excised from 
15 days old using cotyledonary node explants excised from 15-day-old sterilized 
seedlings and multiple shoots were induced on MS medium augmented with differ-
ent doses of cytokinins. Maximum shoot regeneration frequency (70 %), mean num-
ber (9.33) of shoots per explant and the highest shoot length (4.16 cm) were obtained 
on MS medium enriched with 2.5 μM BA along with 0.5 μM NAA after 4 weeks of 
incubation. The addition of 200 mg/l casein hydrolysate to the standardized medium 
increases regenerants’ growth. Microshoots of 4 cm length were successfully rooted 
on one-half MS medium supplemented with different concentrations of IBA. The 
in vitro raised healthy plantlets with properly developed roots and shoots were 
acclimatized and maintained in the net house with 80 % survival.  Random amplifi ed 
polymorphic DNA (RAPD)   marker analysis of ten randomly selected in vitro raised 
plantlets confi rms their genetic fi delity with the mother plant. The results suggested 
that the culture environments used for explant multiplying are suitable for clonal 
propagation of the selected remedial plant as these do not seem to hinder with 
genetic integrity of regenerants. High multiplication rate associated with observed 
genetic stability  c     learly indicates the effi cacy of the present in vitro clonal propaga-
tion protocol of their valuable plants of high commercial value (Fatima et al.  2012 ).  

1.6      Syzygium cumini  L. 

   Syzygium cumini       ( Myrtaceae ) is a large evergreen tree, native to the Indian subcon-
tinent and adjoining regions of Southeast Asia. It possesses antioxidant, antimicro-
bial, anti-infl ammatory and antiamnesic activities and is used in various neurological 
disorders. The fruit has various promising therapeutic values (antidiabetic proper-
ties) with various phytoconstituents, such as tannins, alkaloids, steroids, fl avonoids, 
terpenoids, fatty acid and vitamins. The plant is propagated with seeds and vegeta-
tive methods. Vegetative methods are less effective and seed propagation may result 
in genetic variation. The seeds have short dormancy period and lose viability after 
maturation. A study was conducted to evaluate the effect of metatopolin (an aro-
matic cytokinin) at different concentrations with IAA, IBA or NAA on MS medium. 
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Among the various concentrations (0.5–10.0 μM) tested, 5.0 μM was found to be 
the optimum single treatment. However, the mean number of shoots per explant 
increased considerably when the combination of optimum metatopolin with differ-
ent auxins was tried. Among all the tested concentrations, metatopolin (5.0 μM) + 
NAA (2.0 μM) proved to be the best treatment for induction of maximum shoots 
(25.37) with shoot length (6.54 cm) per explant (Naaz et al.  2014 ). 

 For rooting, isolated shoots (4 cm) from clumps were excised and transferred to 
the rooting medium containing various concentrations of IBA and NAA on full- or 
half-strength MS medium. Of the different treatments evaluated, the best rooting 
response (85 %) with average root number (6.33) and root length (7.13 cm) was 
observed on half-strength MS medium containing NAA (5.0 μM). Properly rooted 
plantlets with four to fi ve fully expanded leaves were successfully hardened off in 
growth room and fi nally to the normal environmental conditions. No detectable 
variation among the potted plants in respect to morphological and growth character-
istics was observed. The genetic integrity  am     ong regenerants was also confi rmed by 
using PCR-based DNA markers (RAPD/ISSR) (Naaz  2015 ).  

1.7      Albizia lebbeck  L. (Benth.) 

   Albizia lebbeck       ( Fabaceae ) is indigenous to tropical Southern Asia and found 
mainly in India, Australia, Bangladesh, etc. It is a deciduous, hermaphrodite woody 
tree, attaining a height of 30 m. It is used to treat boils, cough, eye fl u, gingivitis, 
lung problem and abdominal tumours. In addition, antiprotozoal, hypoglycaemic, 
anticancer and analgesic properties have also been reported. 

 Conventionally, it is propagated through seeds or microcuttings. Propagation 
through seeds is not useful due to the long seed dormancy. Moreover, the progeny 
from seeds is not homogeneous. Therefore, tissue culture technique is applied for 
propagation which provides an alternative for mass production of plants with uni-
form characteristics. 

 The manipulations of various culture conductions were carried out for in vitro 
production of plantlets from different explants, viz. seedling-derived cotyledonary 
node, node, cotyledon, hypocotyls, root and mature nodal explants. Among the vari-
ous experiments carried out, hypocotyl explants excised from 15-day-old aseptic 
seedling produced an optimal shoot regeneration frequency (81 %) and number (22) 
of shoots on MS medium supplied with 7.5 μM BA after 4 weeks of incubation. 

 Further, excellent response in shoot multiplication was recorded when shoot 
clusters were subcultured to a medium augmented with 7.5 μM BA and 0.5 μM 
NAA, producing highest number of shoots (34) per hypocotyl explant with mean 
shoot length of 6.3 cm after 8 weeks of culture. 

 Adventitious root induction in in vitro isolated shoots was readily achieved with 
various auxins (IAA, IBA or NAA) at different concentrations. The maximum root 
regeneration frequency was achieved on MS medium supplemented with IBA (2.0 
μM) which produced an average of 5.2 roots with mean root length (4.4 cm) per 
shootlet. The micropropagated plantlets were acclimatized in soil with 80 % 
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survival rate. Various physiological parameters during hardening were also evalu-
ated. The estimation of photosynthetic pigments and antioxidant enzyme analysis 
has been an important parameter in  deter     mining the ability of the plants to survive 
oxidative stress and played an important role for better adaptation of regenerated 
plantlets transferred from in vitro to ex vitro environment (Perveen  2013 ).  

1.8      Acacia gerrardii  (Benth.) 

   Acacia gerrardii       ( Fabaceae ) is a small-size tree legume commonly available in arid 
river valleys. Its unusual papery bark, ample shade and spring fl owers make an 
excellent tree to mix with traditional and landscape species. Generally, it is propa-
gated through seeds but seeds are recalcitrant with short seed viability. Vegetative 
propagation method through cutting is rather slow, and a good number of cuttings 
died during transportation and plantation. Various treatments containing cytokinins 
(BA/Kin) at different concentrations either single or in augmentation with auxins 
(IAA, IBA or NAA) have been evaluated on MS medium in order to establish an 
in vitro method for its propagation from CN explants excised from aseptically raised 
seedlings. The explants failed to show any response on control MS medium devoid 
of plant growth regulators. However, the addition of cytokinin helped in shoot bud 
induction in CN explants. Among all the concentrations tested, 5.0 μM BA exhib-
ited 5.5 shoot per explant in 90 % cultures. Kin (5.0 μM) was found to be least effec-
tive. A combination of auxin and cytokinin showed synergism in shoot bud induction 
and proliferation. The combined effect of BA (5.0 μM) and NAA (0.5 μM) resulted 
in an increase in shoot number (Varshney et al.  2013 ). 

 The regenerated shootlets were rooted well in vitro on a medium containing full- 
strength MS salts and IBA (2.0 μM). The in vitro regenerated plantlets were suc-
cessfully acclimatized and established in normal garden soil under full sun with 
70 %  survi     val rate.  

1.9     Current Status of Plant Tissue Culture 
Commercialization in India 

 The response of various explants from different genotypes to different plant growth 
regulators clearly shows where tissue culture is today and where it is heading as an 
equal partner with molecular biology, as a tool in basic plant biology and in various 
other areas of application. Knowledge of tissue culture has contributed greatly to 
our understanding of the factors responsible for growth, metabolism, differentiation 
and morphogenesis of plant cells. The techniques of plant tissue culture have been 
employed as an important aid to conventional methods of plant improvement. These 
have been used as a tool for the propagation of genetically manipulated superior 
clones and for ex situ conservation of valuable germplasm. 

 In recent years, there has been an explosion in the number of commercial plant 
tissue culture units  in India  . Till date, 95 commercial tissue culture production units 
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have been recognized by the Department of Biotechnology, Government of India 
under the National Certifi cation System for tissue culture-raised plants (NCS-TCP 
2016). The potential for the domestic market is enormous, and by conservative esti-
mates, it is around Rs. 200 crores with an annual growth rate of 20 %. The produc-
tion capacity of commercial tissue culture units ranges between 0.5 million and 10 
million plants per annum with an aggregate production capacity of about 200 mil-
lion plantlets per year. 

 Micropropagation industry in India is providing major support to the Indian agri-
culture in four crop groups: fruits, ornamentals, spices and forestry/plantation crop. 
Banana is the largest selling tissue culture food crop. TC papaya plants are now 
marketed for extraction and processing of papain. TC anthuriums, orchids and ger-
beras have attained commercial importance. TC rose plants are used as pot plants. 
Nearly 500 ha are under tissue culture cardamom cultivation in Southern India 
recording 20–30 % increase in yield. Vanilla cultivation is expected to increase from 
the existing 50 ha to more than 400 ha in the coming years using TC plants. Sugar 
companies have in-house units of micropropagation of sugarcane. ‘Jain Tissue 
Culture’, working since 1995 for propagation and supply of ‘Tissue Culture Planting 
Material’ in the country, is the biggest laboratory for banana, pomegranate and 
strawberry in the world. There is a growing demand for bamboo and eucalyptus for 
selective reforestation. Thus, from few research laboratories several years ago, tis-
sue culture is rapidly becoming a commercial industry in the country. Today, micro-
propagation and in vitro conservation have been standardized for various plant 
species. It no longer remains an empirical science and is now being employed in 
studying intricate pathways of plant metabolites and molecular  genomics   of plants.     
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    Abstract 

   Reduction in the forest cover from the Indian Himalayan region (IHR), due to 
overexploitation, has resulted in decreased availability of non-timber forest prod-
ucts, including medicinal plants of high economic value. With the ever- increasing 
human population and growing demand for plants and plant-derived products, 
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there has been tremendous anthropogenic pressure on these primary producers. 
Many plant species are a source of high-value drugs; due to increasing global 
demand for the ‘naturals’, they are being subjected to reckless, often illegal 
 harvesting, well beyond the natural regeneration capacity. This has led to many 
species being listed in the Red Data Book or in various IUCN threat categories. 
Improper harvesting (season and/or age of the plant/plant parts) not only results 
in uneconomical yields due to low content of active ingredients but also adversely 
affects the process of natural regeneration. There is, therefore, an urgent need for 
commercially important species to be subjected to improved management prac-
tices and regulated harvesting to generate better economic benefi ts on one hand 
and to encourage cultivation for sustained utilization as well as economic devel-
opment of the region on the other. This twin strategy would also help to improve 
the conservation status of such species. 

 In order to meet such challenges, in vitro propagation (tissue culture) tech-
niques have provided a well-recognized potential for rapid multiplication of elite 
clones for the supply of much needed good-quality planting material for cultiva-
tion and also to achieve conservation objectives. Keeping these goals in mind, 
studies were taken up to assess the active ingredient content of plants/plant parts 
collected from natural populations growing in different locations/altitudes in the 
wild and to develop in vitro propagation methods for selected high-value alpine 
medicinal herbs ( Aconitum balfourii ,  A. heterophyllum ,  Picrorhiza kurrooa  and 
 Podophyllum hexandrum ). Using elite plant material, attempts have been made to 
establish tissue culture protocols that involved the induction of multiple shoots, 
improved rooting and subsequent development of suitable methods for hardening 
and fi eld transfer. In a few cases, the survival and growth of tissue culture-raised 
(TCR) plants was also monitored to evaluate their fi eld performance.  

  Abbreviations 

   BAP     6-Benzylaminopurine   
  IBA     Indole-3-butyric acid   
  IAA     Indole-3-acetic acid   
  IHR     Indian Himalayan region   
  GA 3      Gibberellic acid   
  Kn     Kinetin   
  MS     Murashige and Skoog   
  NAA     α-Naphthalene acetic acid   
  PGS     Plant growth substance   
  SR     Seed raised   
  TCR     Tissue culture raised   
  TDZ     (Thidiazuron): 1-phenyl-3 (1,2,3-thiadiazol-5-yl) urea   
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2.1         Introduction 

 The forest cover from the Indian Himalayan region (IHR) has been substantially 
reduced over the years, and it varies from 10.14% (Jammu and Kashmir) to 90.38 % 
(Mizoram) across IHR states (Anonymous  2013 ). The recommended cover of 67 % 
and above is not present in many of the Himalayan states. This has adversely affected 
the availability of non-timber forest products, including medicinal plants of high com-
mercial and therapeutic value. The increasing human population and the growing 
demand for plants and plant-based products have collectively placed very high anthro-
pogenic pressure on these primary producers. Many plant species are known sources of 
high-value drugs, and due to the increasing global demand for the ‘naturals’, they are 
being subjected to reckless, often illegal harvesting, well beyond their natural regen-
erative capacity. This has led to many species being listed in the Red Data Book and/or 
in various threat categories (Nandi et al.  2002 ; Anonymous  2003 ; Ved et al.  2003 ). 

 The  life and economy   of the hill people, to a large extent, depend on the plants, 
and thus any reduction in the forest cover does have a great negative effect on natural 
resources including their living conditions. Moreover, improper harvesting (season 
and/or age of the plant/plant parts) results in uneconomical yields due to the subop-
timal content of active ingredients and also adversely affects the process of natural 
regeneration. There is, therefore, an urgent need for all such commercially important 
species to be subjected to improved management practices and regulated harvesting 
to generate improved long-term economic benefi ts on one hand and to encourage 
their cultivation for sustained utilization as well as economic development of the 
region on the other. Keeping these goals in mind, studies were taken up to assess the 
active ingredient content of plants/plant parts collected from natural populations of 
selected medicinal plants growing in different locations/altitudes in the wild and to 
develop in vitro propagation (tissue culture based) methods for these  high-value 
alpine medicinal herbs   ( Aconitum balfourii ,  A. heterophyllum ,  Picrorhiza kurrooa  
and  Podophyllum hexandrum ). Using elite (in terms of high active principle content) 
plant material, attempts have been made to establish their in vitro (tissue) cultures, 
induce multiple shoots, improve rooting of shoots and subsequently develop suitable 
methods for hardening before fi eld transfer. In a few cases, the survival and growth 
of in vitro-raised (IVR) plants was also monitored to evaluate fi eld performance. 

 A brief description of all four species selected (Fig.  2.1 ) for  in vitro propagation   
has been provided below.

     Aconitum balfourii  Stapf.   [= A. atrox  (Brhul) Muk.; family, Ranunculaceae; 
English name, aconite; local names, ‘Meetha’ and ‘Bish’] is a highly valued medici-
nal herb endemic to the alpine and subalpine belts of the IHR and grows above 
3200 m altitude (Samant et al.  1998 ). Its tuberous roots are used by various ethnic 
communities for curing different ailments (rheumatism, fever, etc.) and are impor-
tant source of ingredients used in the preparation of Indian Ayurvedic medicines 
(Chopra et al.  1984 ; Anonymous  1988 ). The medicinal properties have been attrib-
uted to several diterpenoid alkaloids, mainly aconitine, balfourine, bikhaconitine 
and pseudaconitine, the latter being highly toxic and biologically 2.5 times more 
active than aconitine (Chopra et al.  1984 ; Khetwal et al.  1992 ). 
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   Aconitum heterophyllum  Wall.   (family, Ranunculaceae; common name, aconite; 
local name, ‘Atish’) is an erect herbaceous rosette distributed in the subalpine and 
alpine regions of IHR at 3000 m and above. The tubers and roots are being used as 
tonic and for curing different ailments like fever, diarrhoea and dyspepsia. The tubers 
and roots are known to contain alkaloids like atisine, heteratisine and aconitine 
(Pelletier et al.  1968 ; Pandey et al.  2008 ). Both  A. balfourii  and  A. heterophyllum  
pass through long juvenile phase and their propagation, mainly through seeds, is 
quite poor under natural conditions. Flowering and fruiting are erratic due to harsh 
climatic conditions, and only limited or no viable seeds are produced (Pandey et al. 
 2000  and references therein). At present  A. balfourii  and  A. heterophyllum  are under 
‘vulnerable’ and ‘critically endangered’ category, respectively (Ved et al.  2003 ). 

   Picrorhiza kurrooa    Royle ex Benth. (family: Scrophulariaceae; local name, 
‘Kutki’) is endemic to Himalayan alpines and distributed between 3300 and 4800 m 

  Fig. 2.1    Different medicinal plants  us  ed in the study growing under the natural habitat. ( a ) 
 Aconitum balfourii , ( b )  A. heterophyllum , ( c )  Picrorhiza kurrooa  and ( d )  Podophyllum 
hexandrum        
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altitude. The extracts of runners and roots have been used in several ‘Ayurvedic’ prep-
arations, prescribed for hepatic disorders. The plant is also used in traditional as well 
as modern system of medicine as a stomachic, purgative, antiperiodic and brain tonic 
and in dyspepsia and fever. It contains picroside I, II and III and kutkoside as major 
bioactive compounds (Weinges et al.  1972 ; Jia et al.  1999 ). Indiscriminate collection 
of this plant from the wilds and lack of organized cultivation have led to considerable 
depletion of its natural populations, and it is presently categorized as ‘critically endan-
gered’ and listed in CITES Appendix II (Anonymous  2003 ; Ved et al.  2003 ). 

  Podophyllum hexandrum  (family, Podophyllaceae; English name, mayapple; 
Hindi name, ‘Bankakri’; local names, ‘Banwaigan’ and ‘Papri’) has  g  ained consider-
able importance because the rhizomes of this species (and that of some other 
 Podophyllum  species) contain several lignans, out of which one of the non-alkaloid 
compounds, podophyllotoxin, is extremely important (Van Uden et al.  1989 ; Canel 
et al.  2000 ; Tabassum et al.  2014 ). It is a potent antiviral agent (Beutner and von 
Krogh  1990 ) as well as the starting compound for the preparation of semisynthetic 
compounds, namely, etoposide, Etopophos and teniposide, which are effective anti-
tumour agents used in the treatment of lung cancer, variety of leukaemia and other 
solid tumours (Van Uden et al.  1989 ; Canel et al.  2000 ; Lee and Xiao  2005 ). Two 
species, namely,  P. hexandrum  Royle (occurring in Central Himalaya) and  P. sikki-
mensis  R. Chatterji and Mukerji (found in Eastern Himalaya) have been  rep  orted 
from India.  P. hexandrum  (generally growing above 2800 m) contains three times 
more podophyllotoxin as compared to the American species,  P. peltatum , and hence 
its ever-increasing demand. Its uncontrolled collection from the natural populations 
is infl icting tremendous damage;  P. hexandrum  is currently placed under ‘endan-
gered’ category and listed in CITES Appendix II (Anonymous  2003 ; Ved et al.  2003 ). 
Details of these three species can be found in a recent article (Paul et al.  2013 ).  

2.2     Analysis of Active Ingredients 

2.2.1     Aconitine and Pseudaconitine 

 Quantifi cation of diterpenoid alkaloids, namely,  aconitine and pseudaconitine  , was 
carried out in tubers of  Aconitum heterophyllum  and  A. balfourii  collected from 
higher altitudes of Indian Central Himalaya [seven locations (3000–3600 m) in 
Garhwal and four locations (3250–3430 m) in Kumaun region of Uttarakhand] fol-
lowing column, thin-layer and high-performance liquid chromatography 
(HPLC) with the aim of identifying elites (Pandey et al.  2008 ). The aconitine levels 
in different populations of  A. heterophyllum  varied from 0.13 to 0.75 % (dry weight 
basis); maximum and minimum levels were detected in tubers from Phurkia (3260 
m) and Kafni (3400 m), respectively. In  A. balfourii  the amount of aconitine and 
pseudaconitine also varied and was found to range from 0.13–0.83 % to 0.06–
0.62 %, respectively. The highest level of pseudaconitine (0.62 %) was recorded in 
samples collected from Phurkia Bugyal (3430 m), while the lowest and about ten-
fold less value (0.06 %) was recorded in tubers from Kafni population (3400 m); 
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highest level of aconitine (0.83 %) was also recorded in tubers collected from 
Phurkia Bugyal (3430 m), while the lowest values were found in samples from 
Kedarnath population (3600 m). The active principle content could not be correlated 
with altitude (Pandey et al.  2008 ). However, in another study, the amount of pseud-
aconitine and aconitine content in  A. balfourii  and  A. heterophyllum  was found to 
generally increase with altitude (Bahuguna et al.  2000 ). The amount of pseudaconi-
tine and aconitine reported by Pandey et al. ( 2008 ) was higher than the values 
reported for these species by Bahuguna et al. ( 2000 ). The existing natural popula-
tions are likely to be of seed origin and thus the observed variation in active ingredi-
ent content could be attributed to genotypic differences. Ecological factors like 
habitat, temperature and soil characteristics are likely to affect qualitative and quan-
titative changes in aconitine analogues; reported variation in the levels of active 
principles in different studies could also result from the  met  hods used for the extrac-
tion, purifi cation and estimation. 

 A number of important chemical compounds identifi ed from various  Aconitum  
species along with their biological activities have been  su  mmarized in recent 
reviews (Srivastava et al.  2010 ; Sharma and Gaur  2012 ).  

2.2.2     Picrosides 

 The runners/stolons of   P. kurrooa    are known to contain different medicinal and 
bioactive compounds which act as hepatoprotective  agent  s and been identifi ed as 
picroside I, picroside II, kutkoside, apocynin, androsin, cucurbitacin glycosides, 
catechol, etc. (Weinges et al.  1972 ; Jia et al.  1999 ).  P. scrophulariifl ora  is also a 
source of iridoid glycosides such as picroside I, picroside II and kutkoside; how-
ever, it contains an additional phenylethanoid glycoside and plantamajoside which 
are absent in  P. kurrooa  (Li et al.  1998 ), and hence  P. scrophulariifl ora  is a better 
substitute for  P. kurrooa . Kutkoside was thought to be a single compound; however 
a recent report indicates that kutkoside is a mixture of several iridoid glycosides, 
namely, picroside II, picroside IV and 6-ferulloylcatalpol (Bhandari et al.  2010 ). 
Extracts of both  P. kurrooa  and  P. scrophulariifl ora  have been reported to contain 
high antioxidant activity (Ray et al.  2002 ; Bhandari et al.  2010 ; Tiwari et al.  2012 ). 

 There are limited reports on active ingredient  c  ontent of runner/stolon of  P. kur-
rooa  collected from different populations. Purohit et al. ( 2008 ) analyzed fi ve high- 
altitude populations (narrow and broadleaf plants, collected from Tungnath, Kilpur, 
Valley of Flowers, Kuwari Pass and Panwali Kantha at 2700–3800 m altitudes) from 
Garhwal Himalaya in Uttarakhand and reported that picrotin and picrotoxin content 
ranged from 1.00 to 6.05 mg/g. In general, the broadleaf plants from all the popula-
tions showed higher content than the narrow ones. The minimum (1.0 mg/g) picro-
tin and picrotoxin content was found in narrow leaf plant samples from Kuwari Pass 
(2800–3800 m) population, while the maximum amount (6.05 mg/g) was reported 
from broadleaf samples from Valley of Flowers (2700–3600 m) population (Purohit 
et al.  2008 ). Sharma et al. ( 2012b ) analyzed runner samples from seven accessions 
of  P. kurrooa  collected from high-altitude regions of Himachal Pradesh, India (e.g. 
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Chamba, Manikaran, Manali, Khoksar, Marhi, Keylong and Rohtang from 996 to 
3978 m altitude) by reversed-phase HPLC and reported that the highest level of the 
major bioactive compounds, picroside I (3.5 %) and picroside II (2.0 %), was found 
in Rohtang population (3978 m). The variability of these major constituents within 
the same species at different altitudinal ranges would thus help in identifying supe-
rior  cl  ones (elites) for multiplication and conservation. 

 In another study (Tiwari et al.  2012 ) picroside content and antioxidant activity were 
determined in rhizomes of  P. scrophulariifl ora  and  P. kurrooa  collected from Munsyari 
region of Uttarakhand, India. Separation and quantifi cation was achieved by HPTLC 
and subsequently by densitometrically. The study revealed that picroside I and picro-
side II content was higher in  P. scrophulariifl ora  than in  P. kurrooa . Picroside I content 
was found to be 1.26 and 1.61 %, and picroside II was 0.48 and 0.61 % in  P. kurrooa  
and  P. scrophulariifl ora , respectively. The antioxidant potential of these two species 
using DPPH assay was found to be quite high, i.e. at a concentration of 0.1 mg/ml, the 
scavenging activities of  P. kurrooa  and  P. scrophulariifl ora  were found to be 37.70 and 
34.30 %, respectively (Tiwari et al.  2012 ). In another investigation, high levels of pic-
rosides (picroside I and picroside II, up to 7.33 %) were reported in rhizomes collected 
from one of the three different populations of  P. scrophulariifl ora  from the Eastern 
Himalayan region (Bantawa et al.  2010 ). These workers also reported a micropropaga-
tion protocol for rapid multiplication of this high  picroside   containing population 
which can be used for cultivation and conservation.  

2.2.3     Podophyllotoxin 

 Podophyllotoxin levels were determined  in   rhizome and root samples of  P. hexan-
drum  plants (with known leaf morphological variants, i.e. 1 L, 2 L and 3 L; 4 L 
samples could not be obtained) collected from 17 different populations (2800–
3600 m altitudes) along an altitudinal gradient spread across Uttarakhand state 
(Pandey  2002 ; Pandey et al.  2015 ). Extraction, purifi cation and subsequent analysis 
(by HPLC) were carried out by published methods (Van Uden et al.  1989 ; Nadeem 
et al.  2007 ), and the results indicated a wide variation in the podophyllotoxin con-
tent, ranging from 0.012 to 5.80 % (on dry weight basis); among these morphologi-
cal variants, 2 L plants of Kedarnath area (highest altitude, 3600 m) exhibited 
maximum content, both in rhizomes and roots (Pandey  2002 ; Pandey et al.  2015 ). 
In another investigation, analyses of rhizomes collected from eight populations 
along an altitudinal gradient (2740–3350 m, i.e. Dhungiadhaung, 2740 m; Dwali, 
2790 m; Juharpani, 2900 m; Khamia, 3125 m; Khatia, 3240 m; Kathlia I, 3250 m; 
Phurkia, 3260 m; and Kathlia II. 3350 m) of Kumaun region in Indian Central 
Himalaya indicated variation in podophyllotoxin levels, ranging from 0.36 % to 
1.08 % (Nadeem et al.  2007 ). It was observed that the minimum  p  odophyllotoxin 
content (0.36 %) was recorded in samples from Dwali (2790 m), while the maxi-
mum (1.08 %) was detected in samples from Kathlia II (3260 m) populations; the 
regression analysis revealed a positive correlation between podophyllotoxin content 
and increase in the altitude (Nadeem et al.  2007 ). 
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 Podophyllotoxin levels in rhizomes have been reported to vary considerably, and 
values up to 8.26 % were found in samples collected from the states of Uttarakhand 
and Himachal Pradesh in IHR (Purohit et al.  1998 ,  1999 ; Sharma et al.  2000 ). 
Furthermore, levels ranging from 3.02 to 9.53 % were reported from 28 populations 
occurring at various altitudes (1570–4300 m) in Himachal Pradesh (Naik et al. 
 2010 ). Similar levels were also estimated from the rhizome buds of various popula-
tions collected from Zanskar valley of Jammu and Kashmir state in IHR (Kitchlu 
et al.  2011 ). Sharma ( 2013 ) has also reported  podoph  yllotoxin levels ranging from 
3.44 to 5.87 % in rhizomes collected from Himachal Pradesh, but no relationship 
between the active principle content and altitude was observed. 

 Besides rhizomes, leaves of  P. peltatum  have also been reported to be a rich 
source of podophyllotoxin (Bastos et al.  1996 ; Canel et al.  2001 ; Moraes et al.  2000 , 
 2002 ). However, the occurrence of podophyllotoxin in leaves of  P. hexandrum  from 
wild has been reported only recently (Pandey et al.  2013 ; Sharma  2013 ). In a 
detailed study, podophyllotoxin content in leaf and stem samples of  P. hexandrum  
plants (with leaf morphological variants, i.e. 1 L, 2 L and 3 L) collected from seven 
different populations (2800–3600 m) of Uttarakhand was analyzed by established 
methods, and the content was found to range from 0.001 to 0.60 %; among these 
morphological variants, 3 L plants of Dodital area (altitude, 3100 m) exhibited max-
imum content, both in leaf and stem samples (Pandey et al.  2013 ). However, these 
estimates were found to be  low  er as compared to values up to 5.80 % reported from 
rhizomes/roots collected from the same region (Pandey  2002 , Pandey et al.  2015 ). 
Sharma ( 2013 ) also determined the podophyllotoxin content of  P. hexandrum  leaf 
samples from four high-altitude populations (2730–3978 m, Himachal Pradesh), 
and the maximum amount (0.30 %) was found in Marhi (3300 m) population. The 
podophyllotoxin content of leaves was nearly two-fold higher (0.60 %) in a study 
conducted by Pandey et al. ( 2013 ) as compared to the report by Sharma ( 2013 ). On 
the other hand, levels of up to 5.2 % have been reported, both in leaves and rhizomes 
of  P. peltatum  (Bastos et al.  1996 ; Canel et al.  2001 ; Moraes et al.  2000 ,  2002 ,  2005 ; 
Cushman et al.  2005 ; Zheljazkov et al.  2011 ). Thus leaves can be an alternate and 
readily renewable source of the compound which is routinely in high demand by 
pharmaceutical industries. 

 It is important to mention that in all above cited studies, a wide variation in podo-
phyllotoxin content was observed. Thus, the observed differences in content in vari-
ous populations of  P. peltatum  and  P. hexandrum  can be ascribed to genotypic 
differences (Bastos et al.  1996 ; Moraes et al.  2000 ; Nadeem et al.  2007 ; Naik et al. 
 2010 ; Pandey et al.  2013 ). Further, the age of the plant also infl uences active ingre-
dient content in rhizomes of  P. hexandrum  (Pandey et al.  2007 ; Sharma et al.  2000 ). 
In this investigation analyses were carried out on samples from wild populations; 
thus, the age of sampled plants could not be ascertained. It is possible that variations 
arise due to the presence of different chemo types in natural  po  pulations as also on 
the method of extraction (Bastos et al.  1996 ; Canel et al.  2001 ). Both biotic and 
abiotic factors, including soil conditions, are known to affect the lignan yield in  P. 
peltatum  (Moraes et al.  2005 ). 
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 An attempt was also made to grow plants of  P. hexandrum  at a lower altitude 
(1150 m altitude) in order to examine if there are changes in  podophyllotox  in con-
tent in plants of known age; such study should also help in suggesting a suitable 
strategy for promoting cultivation at alternate locations to reduce the pressure on 
natural populations and for developing cultivation packages. The podophyllotoxin 
content in various plant parts (rhizomes, roots and leaves) of  P. hexandrum  
(expressed as % of dry wt) is summarized (Table  2.1 , Pandey et al.  2007 ). The con-
tent in rhizomes was low and similar for 1- and 2-year-old plants and increased 
gradually reaching a maximum value (0.108 %) in 5-year-old plants. In general, it 
was higher in roots than in the rhizomes of 1- to 4-year-old plants. The content in 
the roots increased up to 4 years when highest level (0.159 %) of podophyllotoxin 
was recorded; this level was higher than that present in rhizomes of 5-year-old 
plants. However, the levels in the roots declined drastically in 5-year-old plants. The 
podophyllotoxin content of leaves was considerably lower than that of rhizomes and 
roots of the same plants and was found in the range of 0.0003–0.009 %; the levels 
were below detectable limit in 3- and 4-year-old plants. It must be added that vari-
ous growth parameters (leaf area, leaf length and above- and below-ground bio-
mass) recorded a concomitant increase with plant age (Pandey et al.  2007 ).

   The podophyllotoxin content of rhizomes of young plants (1-, 2- and 4-year-old) 
was found to increase with age in population growing at 2400 m (Purohit et al. 
 1999 ). The reported values for plants of any given age were higher than that found 
in the present study (Table  2.1 ). However, prior to this study, no information was 
available on the podophyllotoxin content in rhizomes, roots and leaves of plants of 
a known age series along with the growth parameters (including dry matter produc-
tion) of seed-raised plants grown at a relatively lower altitude. Growing of alpine 
plants in accessible locations at near-natural conditions or at lower altitudes can be 
an overall strategy to promote their cultivation at relatively convenient locations, 
with a view to reduce pressure on the wild populations. 

 The podophyllotoxin content in rhizomes of another Himalayan species, i.e.
 P. sikkimensis , reported for the fi rst time from our laboratory, ranged from 0.06 % to 

    Table 2.1     Podophyllotoxin c  ontent in different parts of  P. hexandrum  plants (1- to 5-year-old, 
seed raised) grown at a lower altitude (Kosi, 1150 m)   

 Plant age (year) 

 Podophyllotoxin content (% of dry wt) 

 Rhizome  Roots  Leaf 

 1  0.016 ± 0.001  0.022 ± 0.008  0.005 ± 0.001 

 2  0.017 ± 0.002  0.039 ± 0.003  0.009 ± 0.003 

 3  0.040 ± 0.001  0.056 ± 0.000  ND 

 4  0.080 ± 0.021  0.159 ± 0.012  ND 

 5  0.108 ± 0.026  0.011 ± 0.005  0.0003 ± 0.0001 

 LSD ( P  = 0.005)  0.056  0.003  0.007 

  Source: Pandey et al. ( 2007 ) 
  LSD  Least signifi cant difference, ± = Standard error of mean; Values are an average of three deter-
minations.  ND  Not detected  
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0.73 % in plants  c  ollected from Thangu area of Sikkim in Eastern Himalaya (Paul 
et al.  2013 ). Though the levels are well below those reported in  P. hexandrum  or  P. 
peltatum , estimations from other populations are required to be carried out in order 
to provide a clearer picture on its active ingredients.   

2.3     Tissue Culture (In Vitro) Studies 

2.3.1      Aconitum balfourii  

 Tubers (at the time of senescence of aerial parts) from an identifi ed population of 
 A .   balfourii       were collected from Kedarnath area (District Rudraprayag, Uttarakhand; 
3300 m; 30 o 43ʹ to 30 o 45ʹ N and 79 o 3ʹ to 79 o 4ʹ E) and grown in the Institute Nursery 
at Kosi-Katarmal (District Almora, Uttarakhand; 1150 m; 29 o 38ʹ15ʹʹ and 
79 o 38ʹ10ʹ E). Apical portions of fully grown plants were de-topped to encourage the 
growth of axillary buds. These buds (along with a small portion of the stem) were 
excised and used as explants which were disinfected and cultured as described ear-
lier (Pandey et al.  2004 ). The explants were transplanted in test tubes containing 
20 ml of Murashige and Skoog’s medium (Murashige and Skoog  1962 , MS) supple-
mented with sucrose (3 %, w/v), agar (0.8 %, w/v) and BAP (4.5, 13.5 or 22.5 μM); 
these explants were subcultured at least four to fi ve times at 3 days interval to obtain 
contamination-free cultures. The axillary buds sprouted to form shoots and young 
leaves from these shoots were used for callus induction. 

 Callus formation occurred along the leaf margins  w     ithin 5 weeks on the MS 
medium supplemented with various combinations of BAP (0.5–4.5 μM) and NAA 
(5.4–26.9 μM); maximum (75 %) explants with calli were obtained on MS medium 
supplemented with 4.5 μM BAP and 26.9 μM NAA. Hence, healthy and proliferat-
ing callus growing on this medium was transferred to the fresh medium containing 
different concentrations of BAP (4.5–22.2 μM) and NAA (0. 5–5.4 μM) for shoot 
induction. It was found that relatively lower levels of NAA (0.5–5.4 μM) and BAP 
(4.5 μM) resulted in excellent shoot regeneration. The adventitious shoot formation 
was maximum (100 %) on the medium supplemented with 4.5 μM BAP and 1.4 μM 
NAA, resulting in nearly six shoots/callus lump (Fig.  2.2a ). Therefore, this medium 
was routinely used for shoot multiplication. Subsequently, single shoots were sepa-
rated and subcultured on the MS medium containing BAP alone (0.5–44.4 μM) for 
shoot multiplication and elongation.

   BAP at 1.1 μM concentration produced maximum number of shoots (24.7 per 
fl ask, 4.2 per cultured shoot/subculture) as well as resulted in shoot elongation 
(about 3.5 cm) within 4 weeks (Fig.  2.2b ). The excised shoots developed on the MS 
medium  supplement     ed with 1.1 μM BAP were placed on the medium supplemented 
with various concentrations of IBA for rooting. Root formation was initiated within 
15–18 days in cultures supplemented with IBA (4.9, 12.3 or 24.5 μM), and maxi-
mum rooting (89 %) was observed on the medium containing 12.3 μM IBA (Fig. 
 2.2c ). Well-rooted microshoots were fi rst transferred to Erlenmeyer fl asks contain-
ing sterilized soil rite, moistened with one-half MS salts and hardened for 2 weeks 
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  Fig. 2.2    Different stages during  i     n vitro propagation of selected medicinal herbs:  Aconitum bal-
fourii  ( a – c ),  A. heterophyllum  ( d – f ),  Picrorhiza kurrooa  ( g – i ) and  Podophyllum hexandrum  ( j – l ). 
( a ) In vitro shoot formation on the MS medium supplemented with 4.5 μM BAP and 1.4 μM NAA; 
( b ) shoot multiplication on the MS medium containing 1.1 μM BAP only; ( c ) rooting of shoots on 
the MS medium supplemented with 12.3 μM IBA after 4 weeks of culture; ( d ) germinated seed 
after 6 weeks of inoculation on the MS medium; ( e ) appearance of shoot budlike structures in 
cultures on the MS medium supplemented with 5.0 μM BAP and 1.0 μM NAA; ( f ) shoot multipli-
cation from seedling explants (without radicle) on the MS medium containing 1.0 μM BAP; ( g ) 
initiation of shoot multiplication from cotyledonary node explants after 4 weeks of inoculation on 
the MS medium containing 1.0 μM BAP; ( h ) multiplication and profuse shoot formation on the 
MS medium containing 1.0 μM BAP; ( i ) hardened plantlets under greenhouse conditions, 4 months 
after ex vitro growth; ( j ) culture of excised embryos on the MS medium supplemented with BAP 
and IAA; ( k ) multiple shoot induction on the MS medium supplemented with BAP and IAA (1.0 
μM each) and ( l ) induction of roots on shoots after transfer to the MS medium containing 0.5 μM 
IAA       
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under aseptic conditions in the culture room. These fl asks were then shifted to the 
greenhouse (25 °C, RH 65 %) at Kosi-Katarmal and the plantlets transferred to plas-
tic cups containing soil rite. Following 2 months of hardening (regular watering 
with one-half MS salts), the plants were transferred to a mixture of soil and FYM 
(1:1) and allowed to grow for another 2 months before transportation to their natural 
habitat. This substantially improved the ex vitro survival during hardening, and the 
roots were also found to proliferate (increase in number as well as in length) during 
this period of hardening. The survival of these plants was found to be 50 %, and 
20 % of such plants formed normal tuberous roots within a year (Pandey et al.  2004 ). 

 Using the above-mentioned protocol, a callus lump (approx. size 9 × 8 × 5 mm, 
l × w × h) derived originally through a leaf explant (size 5 × 5 mm, l × w) of  A. balfou-
rii  can produce up to six shoots directly through organogenesis, and each shoot can 
in turn provide four additional shoots per subculture, thus resulting in a total of 24 
shoots within 9 weeks. Although  an      earlier study on this species (Singh et al.  1998 ) 
reported formation of embryos, adventitious shoots and roots, quantitative data on 
these aspects were not reported. 

 Quantitative analysis of diterpenoids by thin-layer chromatography followed by 
HPLC, in tubers of  A. balfourii  derived from seedlings and tissue culture-raised 
(TCR) plants showed that both aconitine and pseudaconitine (% of dry wt) were 
almost similar; aconitine content was 0.01 % in both types of plants, while pseud-
aconitine was 0.40 % in seedlings and 0.41 % in the TCR plants (Pandey et al.  2004 ). 
The results of the above study indicate that TCR plants compared favourably with 
the seed-raised plants of  A. balfourii . More recently in vitro multiplication of this 
species was reported using both leaf and root explants taken from plant and passing 
through a callus phase; following shoot multiplication, root induction and harden-
ing about 95 % of plantlet survival was observed in pots  placed      under greenhouse 
conditions (Bist et al.  2011 ; Sharma et al.  2012a ). It would be important to add that 
the above-mentioned studies must be substantiated with DNA-based markers like 
RAPD, ISSR, etc. to confi rm the genetic fi delity of these TCR plants. 

 In vitro studies in other species of  Aconitum  have also been carried out. As 
observed by Pandey et al. ( 2004 ), BAP has also been found to be effective in axil-
lary bud proliferation and shoot multiplication in  A. noveboracense  and  A. napellus  
(Cervelli  1987 ; Watad et al.  1995 ). Application of higher concentration of NAA 
with lower concentration of BAP has been reported to result in callus induction in 
 A. heterophyllum  (Giri et al.  1993 ). In  A. carmichaeli , 22.1 μM BAP was extremely 
effective in stimulating the growth of shoot tip explants leading to formation of 
multiple shoots (Hatano et al.  1988 ), whereas a lower concentration (4.5 μM) of 
BAP produced greatest number of usable rosettes from the nodal explants in  A. 
napellus  and  A .   n    oveboracense  (Cervelli  1987 ). Herbaceous species generally 
demand greater care, and therefore, during the initial phase of hardening, gradual 
removal of sucrose and salts helps the TCR plants to shift to autotrophic mode of 
nutrition (Bhojwani and Razdan  1996 ). 

 It should be mentioned that the electrophoretic pattern of storage proteins of 
TCR microtubers of potato was also found to be identical to that of fi eld-produced 
tubers (Dodds et al.  1992 ). Similarly, it has been demonstrated that micropropagated 
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plants of  A. carmichaeli  showed less variation in alkaloids content when compared 
to those of fi eld-grown plants (Hatano et al.  1988 ; Shiping et al.  1998 ). 

 The potential of using plant callus,       cell and suspension cultures for long-term 
and sustainable production of active principles has been realized (Petersen and 
Alfermann  2001 ; Collin  2001 , and references therein). Cell cultures have also been 
used extensively for biotransformation of various molecules to produce a variety of 
compounds of interest (Giri et al.  2001b ). Recently, higher aconitine accumulation 
was reported in the presence of precursor acetyl-CoA (compared to control) when 
roots of  A. balfourii  were cultured in vitro (Sharma et al.  2014 ). Higher aconitine 
content (0.024 %) was also reported in roots of TCR plants when grown in hydro-
ponics compared to TCR plants (0.012 %, Sharma and Gaur  2012 ). Besides, hairy 
root cultures induced by  Agrobacterium rhizogenes  have the ability of continued 
growth on plant growth substance-free medium and are known to produce elevated 
levels of active ingredients in several medicinal species (Giri et al.  1997 ,  2001a ; 
Baiza et al.  1998 ). Studies on cell and hairy root culture in  A. balfourii  have not 
been reported so far.  

2.3.2      Aconitum heterophyllum  

 Seeds of  A .   heterophyllum       were collected from Kedarnath area (3300 m; District 
Rudraprayag, Uttarakhand) and stored at 4 °C (dark, 2 months). These were washed, 
surface disinfected, and inoculated (25 seeds/petri dish) onto the MS basal medium 
containing agar (0.8 %, w/v) and sucrose (2.0 %, w/v). Seeds were found to germi-
nate within 5–6 weeks, and after another 3 weeks, the cotyledons were found to 
fully emerge (Fig.  2.2d ). To initiate cultures, the cotyledons were separated from the 
seedlings and divided into two groups: the middle portion (where cotyledons unite 
in a sheathing base) and the outer portion (surrounding the middle region, Pandey 
 2002 ). Excised explants (middle/outer portions) were placed on the MS medium 
supplemented with NAA (5.0–25.0 μM) and BAP (5.0 μM) for callus induction. 
Pale-green calli were formed after 6 weeks of culture; in general, both types of 
 cotyledon segments (middle and outer portions) exhibited similar performance. 
Maximum proliferation, i.e. 73 and 67 %, was observed in middle and outer  portions, 
respectively, on the MS medium supplemented with 25.0 μM NAA and 5.0 μM 
BAP.  Such      callus maintained on this medium was later transferred to the medium 
containing 5.0 μM BAP and very low amounts of NAA (0.1–1.0 μM) for shoot 
initiation. The MS medium supplemented with 1.0 μM NAA and 5.0 μM BAP 
resulted in the formation of shoot budlike structures (Fig.  2.2e ). These shoots did 
not last long and dried up within 3–4 weeks (Pandey  2002 ). 

 Germinated seedlings (radicle portion excised) containing cotyledons, hypocot-
yls, and hypocotyl sheath with apical meristem at the base were cultured on the MS 
medium containing BAP or thidiazuron (TDZ) for shoot proliferation. When the 
seedlings (without radicle) were cultured on the medium containing BAP (0.01, 0.1 
and 1.0 μM), best response (80 %) was obtained on a medium containing 1.0 μM 
BAP with maximum shoot formation (six shoots/explant) after 8 weeks (Fig.  2.2f ). 
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These shoots were excised from the clumps, and individual shoots were then cul-
tured on the medium containing 1.0 μM BAP for multiplication. On the other 
hand when the seedlings (without radicle) were cultured on the medium containing 
TDZ (0.1, 1.0, and 10.0 μM), it resulted in early emergence of leaves. The use of 0.1 
μM TDZ resulted in the emergence of the fi rst leaf after 9 days of incubation in 
comparison to 32 days in control; the second leaf was found to emerge within 16 
days in comparison to 42 days in control. However, the shoots thus formed could 
not survive for long and died within 2–3 weeks (Pandey  2002 ). 

 Although attempts were made in this investigation to obtain microshoots for fur-
ther growth and multiplication, success could not be achieved. Further attempts are 
underway to obtain improved growth of such microshoots. The cytokinin, BAP, has 
been found to be quite useful for shoot bud proliferation and shoot multiplication in 
several species of  Aconitum , including  A. heterophyllum  and  A. balfourii  (as men-
tioned above). It is worth mentioning that in vitro propagation  of       A. heterophyllum  
has been reported (Giri et al.  1993 ; Jabeen et al.  2006 ), and these workers have also 
used BAP to obtain shoot formation; mass scale propagation of plants has, however, 
not been reported. 

 The establishment of hairy root cultures in  A. heterophyllum  and the production 
of active ingredients were successfully demonstrated (Giri et al.  1997 ). They 
reported that the total aconitine content of transformed roots was 3.75-fold higher 
than that of non-transformed roots. However, further reports on the production of 
active compounds either by hairy roots or through cell culture have not appeared. 
Recently, the protocol for in vitro plant regeneration in  A. violaceum ,       another 
Himalayan medicinal herb, has been demonstrated ( Mishra-Rawat et al. 2013 a ,  b ).  

2.3.3      Picrorhiza kurrooa  

 Seeds of  P .   kurrooa       were collected from Pindari area (3400 m; District Bageshwar, 
Uttarakhand; 30 o 6ʹ to 39 o 15ʹ N and 70 o 55ʹ to 80 o 5ʹ E); these were removed from the 
spikes, air dried, and stored at 4 °C (dark, 3 months). Seeds were then washed, sur-
face disinfected and inoculated (25 seeds/petri dish) on the MS basal medium con-
taining agar (0.8 %, w/v) as described earlier (Chandra et al.  2004 ,  2006 ). Germinated 
seeds were used for obtaining ‘cotyledonary node’ or ‘shoot tip’ explants. 

 Two weeks following seed germination under in vitro conditions, the radicle, 
cotyledons and a part of the hypocotyl (3.0–5.0 mm below the cotyledonary node) 
were removed from the seedlings, and the remaining portions of the explants con-
taining a small part of the hypocotyl and the cotyledonary node (cotyledonary node 
explant) were cultured on the MS medium supplemented with BAP or kinetin (Kn, 
1.0–10.0 μM). The other set of germinated seeds were allowed to germinate in vitro 
and grown (avg. height of seedlings 2.5 cm) till the fi rst leaf emerged. ‘Shoot tip’ 
portions (0.5 cm) were carefully excised from seedlings, under aseptic conditions, 
and further subcultured on the MS medium supplemented with BAP or Kn (0.1–10 
μM). 
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 The response of  cotyledonary       node on the medium supplemented with various 
levels of cytokinins (BAP or Kn) resulted in multiple shoot formation within 3–4 
weeks on the medium containing 1.0 μM BAP or 2.5 μM Kn (Fig.  2.2g ). The maxi-
mum (66.7 %) proportion of explants were found to form healthy shoots (4.8 shoots 
per explant) on the MS medium containing 1.0 μM BAP, while the maximum num-
ber of shoots (5.5 per explant) was observed on the medium with 1.0 μM Kn. 
Subculturing was carried out at 4–6 weeks interval on the medium containing 1.0 
μM BAP in order to obtain good and steady supply of shoots, devoid of any callus 
formation at the base of the shoots. 

 Shoot tip explants also proliferated and formed multiple shoots (within 4 weeks) 
on the MS medium irrespective of the concentration of BAP or Kn (up to 2.5 μM) 
used; higher concentrations (5.0 and 10.0 μM) of these cytokinins were, however, 
ineffective. All the explants (100 %) cultured on the medium supplemented with 1.0 
μM BAP developed multiple shoots, while 53.3 % explants were found to form 
multiple shoots using the same concentrations of Kn. The maximum number of 
shoots (ca. 12 per explant) was obtained on the medium containing 1.0 μM BAP 
(Fig.  2.2h ). The average length of shoots was also higher (4.0 cm) on this medium. 
The minimum shoot formation (average <1.0) was found when 0.1 μM Kn was used 
(Chandra et al.  2004 ). 

 Transfer of individual shoots (3.0–5.0 cm height) to PGR-free medium resulted 
in over 60 % rooting (without callus formation) after 11 days of inoculation. 
However, the rooting effi ciency could be improved (up to 100 %) by addition of any 
of the three auxins, namely, NAA, IBA or IAA (0.1, 0.5, 2.5 μM) added to the MS 
medium. The mean number of  roots       formed per shoot was highest (8.3) when 
0.5 μM NAA was used. The rooted plants were transferred to thermocole trays or 
cups containing a mixture of soil and sand (2:1, v/v) and placed for hardening in a 
greenhouse (25 °C; RH, 90 %) at Kosi-Katarmal (1150 m). The plantlets (Fig.  2.2i ) 
were found to grow normally after 4 months, under greenhouse conditions; these 
were then transferred to high-altitude experimental site in village Khaljhuni (2450 
m), hardened for a week in a polyhouse and fi eld transplanted in plots for assessing 
growth and performance (Chandra et al.  2004 ). 

 In this study multiplication of  P. kurrooa  has been achieved using both cotyle-
donary nodes and shoot tips as explants taken from in vitro-raised seedlings. 
Cotyledonary node explants from in vitro-grown seedlings, like in the present study, 
have exhibited organogenic competence in several herbaceous species (Mallick and 
Rashid  1989 ; Jackson and Hobbs  1990 ). Cytokinins like BAP or Kn, at lower con-
centrations, proved to be extremely effective for induction of multiple shoots and 
subsequent shoot multiplication in both the types of explants used. In previous 
reports on in vitro propagation of  P. kurrooa , these two cytokinins were also found 
to induce shoot multiplication in explants taken from a mature plant (Lal et al.  1988 ; 
Upadhyay et al.  1989 ). In the present study, shoot tips were found to be superior for 
obtaining multiple shoots; the maximum number of shoots was found on the 
medium containing BAP. Moreover, the higher concentration of BAP resulted in 
hyperhydric (vitrifi ed) shoots during subsequent subcultures. Lowering the cytoki-
nin concentration in the medium resulted in regenerating normal shoots from the 
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base of vitrifi ed shoots. Vitrifi cation of the shoot in cytokinin-supplemented medium 
has also been reported earlier in  P. kurrooa  (Upadhyay et al.  1989 ). 

 Rooting of microshoots has been reported  in        P. kurrooa  by incorporation of vari-
ous auxins, namely, NAA, IBA and IAA into the rooting medium (Lal et al.  1988 ; 
Upadhyay et al.  1989 ). While the report by Lal et al. ( 1988 ) did not indicate rooting 
percentage, 89 % rooting was achieved in a subsequent study using the MS medium 
supplemented with 1.0 μM NAA, with root initiation taking place after 20 days 
(Upadhyay et al.  1989 ). In the present investigation, auxins were found to induce 
cent per cent rooting in microshoots. Furthermore, the time required for root initia-
tion was also reduced (8 days) when a lower concentration (0.1 μM) of NAA or IBA 
was used; this also resulted in minimizing or avoiding callus formation at the base 
of the shoots. 

 It is important to mention that following in vitro multiplication, microshoots of 
 P. kurrooa  could also be encapsulated; assessment of genetic fi delity of proliferating 
microshoots indicated true-to-type nature and compared well with the mother plant 
(Mishra et al.  2011a ). This technology will be useful for storage and transport of 
microshoots for plantation at a later period when the climatic conditions become 
congenial at higher altitudes. In another study, Sood and Chauhan ( 2009 ) reported 
high-frequency callus induction and subsequent plant regeneration from various 
explants of  P. kurrooa . 

 A rapid and effi cient tissue culture protocol was developed (Bantawa et al.  2010 ) 
for an elite clone of another important Himalayan species of  Picrorhiza , i.e.  P. 
scrophulariifl ora  using explants taken from rhizome explants on woody plant 
medium supplemented with BAP and Kn. About 90 % of the regenerated micro-
shoots could be rooted using NAA, without basal callus formation. Subsequently 
more than 1000 plants were hardened and fi eld planted under natural conditions 
(Bantawa et al.  2010 ). 

 In addition  to       the above studies, it has been successfully demonstrated that hairy 
root lines of  P. kurrooa  produced elevated levels of active ingredients (Verma et al. 
 2007 ; Anonymous  2010 ; Mishra et al.  2011b ). Such studies would offer possibilities 
for in vitro commercial production of important metabolites and assist in the con-
servation of important and/or endangered Himalayan medicinal plants.  

2.3.4      Podophyllum hexandrum  

 Seeds of  P. hexandrum  Royle were collected from the Pindari region (3260 m; 
District Bageshwar, Uttarakhand) and stored at 4 °C (2 months). These were then 
washed with water, surface disinfected and allowed to imbibe in sterile distilled 
water (overnight) as described earlier (Nadeem et al.  2000 ). The embryos were 
carefully excised and transferred onto the MS medium containing 3.0 % (w/v) 
sucrose and 0.8 % (w/v) agar and supplemented with various concentrations of 
 PGSs   [BAP (0.5–5.0 μM), IAA (1.0–4.0 μM) or NAA (0.5–5.0 μM)] and activated 
charcoal (0.4–1.0 %, w/v). Excised embryos germinated within 7 days of inocula-
tion on the basal medium or on the medium supplemented with BAP (0.5–4.0 μM); 
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a prominent cotyledonary tube with cotyledonary leaves and a distinct radicular 
portion were observed (Fig.  2.2j ). 

 When the excised embryos were placed on the medium supplemented with 1.0–
4.0 μM IAA and 1.0 μM BAP, multiple shoots were formed.  The   highest shoot 
multiplication rate (5.0 shoots/embryo) was observed on the medium containing 
both IAA and BAP (1.0 μM each, Fig.  2.2k ). The base of the cotyledonary leaf in 
the embryos swelled to give rise to multiple shoots in about 4–5 weeks. These 
shoots were then separated and cultured individually for root induction. While the 
basal medium did not induce rooting, reducing its strength by half resulted in root-
ing of 16.6 % shoots. However, rooting increased only slightly (25 %) when the 
medium was supplemented with 0.5 μM IAA (Fig.  2.2l , Nadeem et al.  2000 ). 

 The well-rooted microshoots were transferred into the 250 ml fl asks containing 
sterilized vermiculite, moistened with one-half    MS salts, and allowed to harden for 
15 days under aseptic conditions in the culture room. The plantlets were then trans-
ferred to polybags containing vermiculite and kept in a polyhouse (25–30 °C, 50 % 
shading with green/black net) for 30–35 days; the polybags were covered with poly-
thene from the top to maintain high humidity (>90 % RH). Subsequently the plants 
were transferred to polybags containing soil and kept in the same polyhouse for 
another 3 months; during this period all the hardened plants showed new shoot 
emergence and behaved like normal fi eld-grown plants (Nadeem et al.  2000 ). 

 The radicular, cotyledonary tube and cotyledonary leaves of germinated embryos 
were dissected and also cultured separately on the MS medium containing  varying 
  combinations and concentrations of NAA, BAP and GA 3 . Callusing was induced 
from the basal end of embryos in most combinations. The calli so obtained remained 
greenish to creamish white up to the time of the fi rst subculture; some calli, how-
ever, turned yellow and friable following the second subculture. Subsequently, 
somatic embryogenesis was recorded when the callus was subcultured on the 
medium supplemented with 5.0 μM NAA and 0.5 μM BAP. For maturation of 
somatic embryos, calli bearing different stages of embryos were transferred to vari-
ous media combinations (MS, one-half MS, MS + charcoal and MS + 0.5 μM NAA). 
Irrespective of various combinations tried, nearly all somatic embryos were found 
to mature. Although somatic embryos of different sizes were obtained, the smaller 
ones turned green after a week on the MS medium supplemented with 0.5 μM 
NAA. The radicular portions elongated on the medium containing activated char-
coal in 2–3 weeks, and these could be made into ‘synthetic seeds’ by encapsulation 
in sodium alginate beads. Subsequently, these could be germinated to  for  m com-
plete plants on a medium containing 1.0 μM BAP and 2.5 μM GA 3  (Nadeem et al. 
 2000 ). The plants were then hardened as mentioned above. 

 Tissue culture studies on  P. hexandrum  have been reported earlier (Arumugam 
and Bhojwani  1990 ); while multiple shoot  for  mation from zygotic embryos was 
demonstrated, rooting of these shoots was not reported by these authors. The study 
by Nadeem et al. ( 2000 ) outlined above seems to be the fi rst report of in vitro propa-
gation of this species via multiple shoot formation and subsequent rooting. Addition 
of 0.5 μM IAA to the MS medium enhanced the rooting process. Somatic embryo-
genesis followed by subsequent germination is also benefi cial for propagation, 
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because it eliminates the additional step of root induction that is required in propa-
gation through multiple shoot formation (also see Nadeem et al.  2000 ). The TCR 
plants have been successfully grown and maintained in pots; these plants exhibited 
winter dormancy behaviour similar to that of fi eld-raised plants and remained 
healthy. In a later study also using rhizome explants, in vitro plantlet regeneration in 
 P. hexandrum  was achieved via direct organogenesis (Chakraborty et al.  2010 ). 
These workers used the MS medium supplemented with NAA and BAP for shoot 
regeneration, and after multiple shoot formation in a medium containing IAA, the 
microshoots were rooted on one-half MS liquid medium containing IBA 
(Chakraborty et al.  2010 ). However, subsequent fi eld transfer of these TCR plantlets 
was not reported. In spite of the efforts on the development of TC protocols for  P. 
hexandrum  (above-mentioned studies) and  P. peltatum  (Sadowska et al.  1997 ; 
Moraes-Cerdeira et al.  1998 ; Kim et al.  2007 ), large-scale propagation and cultiva-
tion trials of such plants have not been reported. Efforts must,  th  erefore, be made to 
undertake large-scale multiplication of elite clones as well as conduct cultivation 
trials of these two species. 

 Production of podophyllotoxin by callus, root, suspension and hairy root cultures 
has also been demonstrated. Kadkade ( 1981 ,  1982 )  reported   podophyllotoxin pro-
duction (up to 0.65 %) from callus cultures of  P. peltatum . Moreover, cell lines of 
the same species with the capacity to produce podophyllotoxin were also reported 
(Kutney et al.  1991 ). Subsequently embryogenic cell and adventitious root culture 
systems in  P. peltatum  were reported to produce podophyllotoxin, the later produc-
ing higher levels (Anbazhagan et al.  2008 ). Callus and suspension cultures derived 
from  P. hexandrum  were shown to produce podophyllotoxin (Van Uden et al.  1989 , 
 1990 ; Woerdenberg et al.  1990 ; Chattopadhyay et al.  2001 ,  2002 ). Later Li et al. 
( 2009 ) demonstrated an improved and effective method of podophyllotoxin produc-
tion by root cultures of  P. hexandrum . Hairy roots of  P. hexandrum  were also dem-
onstrated to produce podophyllotoxin (Giri and Narsu  2000 ; Giri et al.  2001a ); 
however, the levels reported were low. This alternate and continuous method has the 
potential for commercial production of high-value podophyllotoxin. 

 Another alternative approach for  the   production of podophyllotoxin through 
endophytic fungi is being vigorously perused nowadays. Ever since reports on taxol 
production by endophytic fungi isolated from yew species (Stierle et al.  1993 ; 
Strobel et al.  1996 ), there has been a growing interest in the biosynthetic capabilities 
of endophytes which are considered to be rich and diverse source of natural products. 
An endophyte isolated from  Nothapodytes foetida  was reported to produce campto-
thecin (Puri et al.  2005 ). Later the same group isolated an endophytic fungus 
 Trametes hirsuta  from  P. hexandrum , as a novel alternative source of podophyllo-
toxin and related aryl tetralin lignans (Puri et al.  2006 ). Further, two strains (PPE5 
and PPE7) of the fungus  Phialocephala fortinii  Wang and Wilox capable  of   podo-
phyllotoxin production were isolated from  P. peltatum  (Eyberger et al.  2006 ). More 
recently, isolation of an endophytic fungus,  Fusarium solani , from  P. hexandrum  
collected from Kumaun region of Indian Himalaya, and podophyllotoxin produc-
tion were reported (Nadeem et al.  2012 ). It is interesting to mention that isolation 
and identifi cation of an endophytic strain of  Fusarium oxysporum  producing 
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podophyllotoxin were reported from  Juniperus recurva  (Kour et al.  2008 ). In view 
of the low amount of  podophylloto  xin production by endophytes, their role needs 
further investigation. Moreover, optimization of conditions and isolation of high-
yielding strains are essentially necessary to improve production.   

2.4     Field Plantations and Performance 

 Field plantation and further assessment of plant performance (raised by tissue culture 
as well as conventional methods) were carried out at a high-altitude experimental 
site in village Khaljhuni (District Bageshwar, Uttarakhand; 2450 m; 30 o 6ʹ12ʹʹN, 
79 o 58ʹ29ʹʹ E; Fig.  2.3a–c ).

2.4.1       Soil and Climate Condition 

  Soil   in the plantation site was found to be acidic (pH 5.7) with average soil moisture 
content of 23 % (April to June). Nitrogen, phosphorus and carbon contents were 
recorded as 0.39, 0.006 and 3.0 % (dry weight basis), respectively. The mean maxi-
mum temperature during winter months (October 2003 to March 2004) was 
14.3 ± 2.8 °C and the minimum was 7.2 ± 1.2 °C, whereas during summer months 
(April 2003 to September 2003), these were 25.9 ± 0.4 °C and 16.0 ± 1.5 °C, 
respectively.  

2.4.2     Field Preparation and Plantation 

 Field plantation  to   assess growth and biomass production was conducted in the 
cultivated land of a local farmer at village Khaljhuni (2450 m). Keeping in mind the 
land topography and small size of plots, separate plots were used for each species. 
The land was ploughed, levelled and raised and plain beds were prepared (Pandey 
 2002 ; Chandra  2002 ).  

2.4.3     Plantation in the Field 

2.4.3.1      Aconitum balfourii  
 Plants [TCR and  seed   raised (SR); grown in Kosi-Katarmal, Almora, transported 
and hardened at Khaljhuni] were planted in raised beds of 5 × 4 m (length x width). 
The spacing between rows as well as between plants was 15 cm. The growth of TCR 
plants was slow with 50 % survival in the fi rst 3–4 months; subsequently the remain-
ing plants also failed to survive. The growth and survival rate of seed-raised (SR) 
plants was 80 % till the end of the growing season (Fig.  2.3e , Pandey  2002 ). 

 In addition, tubers from fi eld-grown plants were cut transversally into three seg-
ments of equal length, i.e. top, middle and basal, and planted in fi eld plots of 
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  Fig. 2.3    Field plantation of selected medicinal herbs in a high-altitude fi eld station located at 
Khaljhuni (2450 m). ( a ) A view of village Khaljhuni; ( b ) view of a polyhouse in the nearby area used 
for raising and hardening of plants; ( c ) fenced area of demonstration plots; ( d ) seedlings of  P. hexan-
drum  raised in the greenhouse at Kosi-Katarmal (1150 m); ( e – h ) demonstration plots of different 
herbs; ( e )  Aconitum balfourii  (seed-raised plants); ( f )  A. heterophyllum  (seed-raised plants); ( g ) 
 Picrorhiza kurrooa  (in vitro-raised plants) and ( h )  Podophyllum hexandrum  (seed-raised plants)       
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15 × 7 m (length × width). The spacing between rows was 30 cm whereas between 
plants was 15 cm. The plants exhibited satisfactory growth during the season; 
however, tuber formation was hampered at the  en  d of the season and the tubers 
could not be located during the next year (April, Pandey  2002 ).  

2.4.3.2      Aconitum heterophyllum  
 Since TCR plants of  A. heterophyllum  were not  avai  lable, SR plants (raised at Kosi- 
Katarmal and hardened at Khaljhuni as in  A. balfourii ) and tuber segments (taken 
from natural population) were planted in plots of 5 × 4 m (length × width). Tubers 
were cut into uniform-sized segments and planted with spacing as in the case of  A. 
balfourii  seedlings and tubers. Like  A. balfourii , the plants exhibited 80 % survival 
during the fi rst 3–4 months followed by satisfactory growth till the end of the grow-
ing season (Fig.  2.3f ); however, tuber formation was hampered at the end of the 
season and the tubers could not be located during the next year (April, Pandey 
 2002 ).  

2.4.3.3      Picrorhiza kurrooa  
 Plants (TCR and SR) of  P. kurrooa  (raised in Kosi-Katarmal and then hardened in 
Khaljhuni) were planted in plain and raised beds of 6 m  len  gth and 4 m width. The 
spacing between rows as well as between plants was 15 cm. Nine-month-old 
(4 months in the greenhouse and 5 months in the experimental fi eld) SR and TCR 
plants were compared for growth in terms of plant height, number of leaves, runner 
biomass, etc. (Chandra  2002 ). It was observed that the average plant height was 
higher (7.1 cm) in TCR plants (Fig.  2.3g ) in comparison to SR plants (5.5 cm), but 
the runner diameter was higher in SR plants (2.0 mm as compared to 1.7 mm in 
TCR plants). The total biomass (dry weight of runners) per plant was also higher for 
SR plants (3.5 g as compared to 2.4 g in TCR plants). The leaf parameters were also 
recorded, and thicker leaves were found in TCR plants. Higher leaf area and specifi c 
leaf mass were recorded in SR plants (3.7 cm 2  and 3.5 mg/cm 2 , respectively, as 
compared to 2.2 cm 2  and 2.9 mg/cm 2  for TCR plants). Among other parameters 
studied, chlorophyll ‘a’ content was found to be higher for seedlings (0.82 mg/g FW 
as compared to 0.69 mg/g FW in TCR plants), while chlorophyll ‘b’ content was 
slightly higher in TCR plants. Per cent relative water content (RWC) of leaves was 
essentially similar for both sets of plants (Chandra et al.  2004 ). 

 In addition, runner segments obtained vegetatively from the fi eld-grown plants 
(containing three nodes, 5.0–6.0 cm long) were planted in plain and raised beds of 
30 m length and 16 m width. Similarly, seedlings that were raised in trays or in beds 
under  p  olyhouse conditions were transplanted to fi eld beds containing farm yard 
manure during the month of March in plain and raised beds. The spacing during 
planting was kept as mentioned above. Runner cuttings were more successful for 
multiplication as well as for higher biomass production within a short period than 
cultivation through seeds. Both types of plants showed satisfactory growth and mul-
tiplication in the fi eld. In the following year (April), new shoots developed from 
these runners and plants were found to grow well during the second year (Chandra 
 2002 ).  
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2.4.3.4      Podophyllum hexandrum  
 Plants (TCR and SR) grown in  K  osi-Katarmal (Fig.  2.3d ) and then hardened at high 
altitude (Khaljhuni) were planted in plots of 7 × 4 m (length × width). The spacing 
between rows as well as between plants was 15 cm. It was observed that the growth 
of TCR plants was slow with only 30 % survival up to the fi rst 3 months; subse-
quently there was no survival. The survival rate of SR plants (Fig.  2.3h ) was also 
very low (20 %) till the end of the growing season, and rhizome formation was not 
observed in the next growing season (Pandey  2002 ). 

 Rhizome segments of (4.0–5.0 cm long transverse segments containing axillary 
buds in each segment) were planted in nursery beds of 5 m length and 8 m width. 
The spacing between rows was 20 cm, whereas the spacing between plants was 
15 cm. One-year-old seed-raised plants were also planted in plots of 4 m length and 
2 m width with  similar   spacing as for the rhizome segments. The growth and sur-
vival of these segments/plants was unsatisfactory and rhizome formation was not 
observed during the next growing season (Pandey  2002 ).   

2.4.4     Weeding, Irrigation and Fungicide Treatment 

 Manual weeding was carried out at  re  gular intervals, following weed growth. 
Irrigation, particularly in peak summer months (May), was done as and when 
required according to the species and the status of soil moisture content (Chandra 
 2002 ). In general, no infection occurred, but in plots of  P. kurrooa , infection with 
powdery mildew was observed at the time of pre-senescence (July–August). These 
plots were treated with a systemic fungicide, Bavistin (1 %, w/v), by manual spray-
ing at 48 h interval (thrice).  

2.4.5     Harvesting 

 After completion of the  reproducti  ve phase,  P. kurrooa  plants were found to be 
mature for harvesting (during September). The TCR as well as the SR plants did not 
fl ower in the fi rst season. Thinning of runners was done in the fi eld itself; the roots 
along with runners were dug and excised with a sharp knife. The excised runners 
were planted in separate plots to get another crop (Chandra  2002 ). 

 Efforts were made to grow TCR plants along with SR plants of the target species 
on the farmer’s fi eld located at a higher altitude and assess their growth and perfor-
mance. This is possibly the fi rst report wherein attempt has been made to assess the 
fi eld performance of TCR plants. Although TCR plants were subjected to suffi cient 
hardening in the greenhouse and then further acclimatized at the high-altitude fi eld 
station prior to plantation, among the four species tried, performance of only  P. kur-
rooa  was satisfactory; survival of the other three species was poor. It must be  men-
ti  oned that during hardening under the greenhouse, TCR plants of  P. kurrooa  were 
inoculated with some bacterial isolates (e.g.  Bacillus subtilis ) having antagonistic 
properties against pathogenic fungi (Chandra et al.  2004 ). This step is important as 
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maximum mortality is generally caused by fungal infection during early weeks of 
transfer of rooted plants to the soil. The survival rate of plants (both TCR as well as 
SR) in the fi eld can perhaps be improved if the time taken during transport of plants 
from the greenhouse to the fi eld planting is reduced. Since the fi eld is located in a 
distant and diffi cult-to-reach place in the subalpine Himalayan zone, a major cli-
matic shift, in addition to transport shock, may have affected the fi nal survival of 
plants in the fi eld. 

 It needs to be mentioned that due to shortage of TCR plants, further fi eld trials 
could not be carried out in the next season (second year). While in vitro (tissue cul-
ture) technology has potential for large-scale production for subsequent commercial 
cultivation, and based on the success recorded with  P. kurrooa , concerted efforts are 
required for  the   remaining three species. The four target species are listed under 
‘vulnerable’, ‘endangered’ or ‘critically endangered’ category and their export is 
regulated. All these four species are currently in the ‘List of medicinal plants pro-
hibited’ of the Ministry of Commerce, Government of India (Lakhanpal  1998 ). In 
spite of this, only limited attempts have been made to develop agrotechnologies to 
promote their cultivation. Agrotechnologies for some medicinal herbs, including  A. 
heterophyllum ,  A. balfourii  and  P. kurrooa , have been reported using seed, tubers 
and runners as propagules (Purohit  1997 ; Maikhuri et al.  1998 ). Thus, tissue culture 
propagation protocols reported in this communication, along with the conventional 
methods, would be useful in initiating programmes on systematic cultivation with 
proper coordination and linkages between the government,    state forest departments, 
State Biodiversity Boards, state medicinal plant boards, researchers and farmers; 
the efforts should be directed towards ensuring long-term benefi ts to the local com-
munity, as well as providing protection to wild populations of such important plants.   

2.5     Conclusions 

 Medicinal and aromatic plants form an integral and essential part of the lives of hill 
communities, and the inhabitants depend on these plants for use in healthcare. These 
plants are well-known source of active principles in Ayurvedic, Unani and other 
traditional systems of medicines. At present these plants are major sources of many 
high-value drugs. Concomitant with the ever-increasing global demand for the ‘nat-
urals’, these species are being subjected to reckless, often illegal harvesting, well 
beyond their natural regeneration capacity. The medicinal/pharmaceutical proper-
ties are mainly attributed to secondary metabolites. Various investigations have indi-
cated a wide variation in active ingredient content in plant parts among the 
populations of the same species, and hence exact knowledge of its content is 
extremely important. Our fi ndings clearly support this for all the species described 
above. Besides the known source of ingredients, i.e. underground parts, other plant 
parts (i.e. stem and leaf) and alternative means (callus, cell and suspension culture 
and hairy roots) of obtaining these compounds must be exploited. The above inves-
tigations suggest that besides rhizomes/roots, leaves of  P. hexandrum  can be 
harvested and thus the plants can be a renewable source of podophyllotoxin. It is 
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well known that in vitro (tissue culture) techniques are an alternate and effective 
means of propagation. These are being used not only in forestry, horticulture, land 
rehabilitation and other afforestation programmes but can facilitate the recovery of 
rare and endangered plant species (Bajaj  1989 ; Palni et al.  1998 ; Nadeem et al. 
 2000 ; Nandi et al.  2002 ; Pandey et al.  2002 ; Chandra et al.  2006 ; Purohit et al. 
 2015 ). However, it must be emphasized that tissue culture-raised plants need to be 
carefully hardened and acclimatized. The overall success would depend upon effi -
cient fi eld transfer, following proper hardening (using both physical and biological 
means), continued monitoring of growth, regeneration ability of rhizomes and peri-
odic estimation of active ingredients. Since in vitro techniques are known to induce 
variability, the plants so raised should be screened for useful somaclonal variants, 
which may be exploited for obtaining plants or cultures with high secondary metab-
olite content. Moreover, this technique is used for rapid supply of large number of 
desired quality planting material (clone) which is phenotypically uniform and 
genetically akin to the mother plants. Thus determination of genetic fi delity of TCR 
plants is extremely important for validating true-to-type or variant nature of clones. 
Molecular markers have been routinely applied to detect genetic integrity among 
TCR plants and have been successfully carried out in tea (Devarumath et al.  2002 ; 
Mondal and Chand  2002 ; Bag et al.  2008 ), bamboo (Das and Pal  2005 ; Agnihotri 
et al.  2009 ), medicinal plants of IHR (Mishra et al.  2011a ; Giri et al.  2011 ; Purohit 
et al.  2015 ) and several other species. 

 As most alpine medicinal plants require several years to reach optimal harvest-
able size, in vitro techniques can be effectively applied for rapid and clonal propaga-
tion and thus pave the way for conservation along with economic exploitation. Data 
on morphological and some physiological parameters of fi eld-planted TCR  P. kur-
rooa  plants showed comparable results like those of seedlings/mother plants (this 
study). Similar results have also been reported for a temperate bamboo, 
 Thamnocalamus spathifl orus  (Bag et al.  2000 ) and ‘maggar’ bamboo,  Dendrocalamus 
hamiltonii  (Agnihotri et al.  2008 ,  2009 ; Bag et al.  2012 ). Moreover, reports of 
occurrence of podophyllotoxin in leaves and stems of  P. hexandrum  from various 
populations of Indian Central Himalaya in our laboratory (Pandey  2002 ; Pandey 
et al.  2013 ) are signifi cant as leaves can be a renewable source of podophyllotoxin 
and can be exploited instead of harvesting the entire plant. The outcome of the 
above-mentioned studies is likely to result in the development of technology pack-
ages for mass scale propagation and cultivation of these species following proper 
fi eld trials. This will not only help in restoration of degraded lands but also result in 
deriving economic benefi ts by the local communities.     
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 3      In Vitro Approaches for Conservation 
and Sustainable Utilization 
of  Podophyllum hexandrum  
and  Picrorhiza kurroa : Endangered 
Medicinal Herbs of Western Himalaya                     
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    Abstract 
   The western Himalaya is a rich repository of unique plants that are valued for 
their medicinal properties. Many of these plants are extensively utilized in phar-
maceutical industries, and there is a huge global demand for them. Since most of 
these plants have become either rare, threatened, or endangered, there is an 
urgent need to conserve them.  Podophyllum hexandrum  and  Picrorhiza kurroa  
are two endangered medicinal herbs that are being ruthlessly uprooted for their 
active principles, i.e., podophyllotoxins and picrosides, respectively. Hence, dif-
ferent plant tissue culture approaches have been employed for their conservation 
and sustainable utilization. The successes achieved till date in these approaches 
have been reviewed in the present article.  
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3.1        Introduction 

 The entire stretch of mountainous terrains extending from southwest Afghanistan, 
northern Pakistan, northwestern India, and western parts of Nepal constitutes the 
“Western Himalayas.” In India, the region spans through the states of Jammu and 
Kashmir, Himachal Pradesh, and Uttarakhand. The region is characterized by 
remarkable altitudinal gradients and distinct climatic zones that range from tropical 
at the base of the mountains to permanently snow clad alpine regions beyond the 
tree line. The life forms that inhabit each of these altitudinal gradients differ mark-
edly and contribute toward the amazing natural wealth of the western Himalayan 
biodiversity. The region being comparatively drier than the eastern parts of 
Himalayas supports various fl ora and fauna that are distinctively different from their 
eastern counterparts. These serve as rich repositories of medicinal bioresources. 
Many of these medicinally important plants are specifi cally confi ned to unique eco-
geographical niches and suffer from the risks of habitat degradation and climate 
change. As a result, several valuable plant species have been depleted from nature. 
With increasing popularity of  herbal medicines   in developed countries (British 
Medical Association  1993 ; Najar and Agnihotri  2012 ), the plants are also suffering 
from tremendous overexploitation. Thus, many plants of western Himalaya are 
becoming rare, threatened, endangered or critically endangered and fi gure promi-
nently in the IUCN Red List (Verma et al.  2012 ).  Podophyllum hexandrum  Royle 
(Indian mayapple or Bankakdi) of family Berberidaceae (Fujii  1991 ; Giri and 
Narasu  2000 ; Kushwaha et al.  2007 ) and  Picrorhiza kurroa  Royle ex Benth. (Kutki) 
of family Scrophulariaceae are two such endangered medicinal herbs of western 
Himalaya (Nayar and Sastry  1990 ; Kushwaha et al.  2007 ; CITES  2007 ). 

 Of the two plants,  P. hexandrum  is acclaimed for  podophyllotoxins   or aryltetralin 
lignans present in the roots and rhizomes of the plant (Jackson and Dewick  1984 ; 
Liu et al.  2015 ). The compounds are known for their anticancer, antifungal, and 
immunomodulatory properties (Kamil and Dewick  1986 ; Broomhead and Dewick 
 1990 ; Canel et al.  2000 ; Lerndal and Svensson  2000 ; Ganie et al.  2010 ; Kushwaha 
et al.  2010 ). Podophyllotoxins and their derivatives are extensively used as precur-
sors for the synthesis of commercial anticancer drugs such as VP-16-213 (etoposide 
Vumon®), VM-26 (teniposide) and etopophos®, Pod-Ben-25, Condofi l, Verrusol, 
Warticon, GL331, Top 53, NK 611, and CPH 82 (Uden et al.  1989 ; Huang et al. 
 1996 ; Pagani et al.  1996 ; Gordaliza et al.  2004 ; Liu et al.  2004 ; Kharkwal et al. 
 2008 ; Nagar et al.  2011 ; Bhattacharyya et al.  2012 ; Kumar et al.  2015 ). These are 
approved drugs for treating lung and testicular cancers, leukemia, psoriasis, and 
rheumatoid arthritis (Staheliin and Von Warburg  1991 ; Liu et al.  2004 ; Chen et al. 
 2007 ).  Podophyllotoxins   are also used for the treatment of venereal warts (Yanofsky 
et al.  2012 ). These usages have led to ruthless uprooting and overharvesting of the 
underground parts of the plant to the extent that it has become endangered (Gupta 
and Sethi  1983 ; Nayar and Sastry  1990 ; Airi et al.  1997 ). Hence, the plant now fi g-
ures prominently in the IUCN Red List and demands immediate and urgent 
conservation. 
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 On the other hand,  P. kurroa  is known for its hepatoprotective (Chander et al. 
 1990 ; Sinha et al.  2011 ), anticancer, antidiabetic, cardioprotective, anticholestatic, 
antiulcerogenic, antiasthmatic, anti-infl ammatory, and antidepressant properties 
(Singh et al.  1993 ; Joy et al.  2000 ; Ram  2001 ; Chauhan et al.  2008 ; Husain et al. 
 2009 ; Patani et al.  2012 ; Navade et al.  2013 ). These properties are primarily due to 
“kutkin,” the main active constituent that accumulates predominantly in the roots 
and rhizomes of the plant.  Kutkin   is a mixture of two major C-9-iridoid glycosides, 
picroside I (6-O-trans cinnamoyl catalpol) and picroside II (6-vanilloyl catalpol) 
(Jia et al.  1999 ; Mondal et al.  2013 ). The detailed chemical structures of both picro-
side I and picroside II were elucidated by Kitagawa et al. ( 1971 ) and Weinges et al. 
( 1972 ).  P. kurroa  is highly sought by Indian herbal industries wherein 5000 tonnes 
of the plant constitute the annual demand. This is in sharp contrast to the annual 
supply of  P. kurroa , which is less than 100 tonnes (Kumar  2006 ). Thus, the plant is 
suffering from ruthless and illegal overharvesting from its natural habitats. Natural 
populations of the plant is also rapidly dwindling due to habitat specifi city, restricted 
distribution, overgrazing, landslides, poor natural regeneration, and anthropogenic 
activities (Chandra et al.  2006 ; Bantawa et al.  2009 ). Presently, the plant is catego-
rized as “endangered” in the Appendix II of the “Convention on International Trade 
in Endangered Species of Wild Fauna and Flora” (CITES  2000 ) and the “International 
Union for Conservation of Nature and Natural Resources” (Leaman  2007 ). Hence, 
there is an urgent need to conserve the plant. 

 While there are various methods of plant conservation, tissue culture is popularly 
used in case of valuable but rare, endangered, and  threatened   (RET) plants. The 
method has been extensively used as an alternative route for rapid clonal multiplica-
tion of valuable germplasm and their reintroduction in nature (Basavaraju  2005 ; 
Narula et al.  2007 ; Srivastava et al.  2010 ; Pant  2013 ). Tissue culture has also been 
used to produce secondary metabolites in root, callus, and cell suspension cultures. 
However, these approaches require extensive optimization, and the success rates are 
often limited. In this regard, the efforts made towards the conservation and sustain-
able utilization of  Podophyllum hexandrum  and  Picrorhiza kurroa  are reviewed in 
the present article.  

3.2      Podophyllum hexandrum  

 The major focus of  P. hexandrum  tissue culture has been the development of in vitro 
systems for podophyllotoxins production. However,  mass propagation   of the plant 
through shoot multiplication, somatic embryogenesis, and caulogenesis has also 
been attempted by a few workers (Table 3 .1 ).

3.2.1       Micropropagation 

 Till date, only seedlings generated  from   zygotic embryos were used for shoot mul-
tiplication (Nadeem et al.  2000 ). Germination of excised embryos on Murashige 
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and Skoog (MS) medium, supplemented with 1 μM each of IAA (Indole-3- acetic 
acid) and BA (6-Benzyl adenine), and the use of seedlings for multiple shoot forma-
tion was reported by Nadeem et al. ( 2000 ). Although different concentrations of 
IAA were combined with 1 μM BA for rooting of the micro-shoots, only MS 
medium supplemented with 0.5 uM IAA evoked the best response. The rooted 
plantlets were fi nally transferred to pots containing vermiculite and hardened suc-
cessfully. Another group reported the employment of “excised embryo culture” for 
extraction and germination of zygotic embryos on B5 medium (Gamborg et al. 
 1968 ) supplemented with GA 3  (gibberellic acid). The workers achieved 89.14 % 
germination from both mature as well as immature zygotic embryos but these were 
not utilized for in vitro shoot multiplication. Rather, seedling-raised plants were 
generated en masse and transferred to soil under green house conditions (Kharkwal 
et al.  2004 ). 

 On the other hand, somatic embryogenesis has been the focus of different groups 
working on  P. hexandrum  tissue culture. In this regard, Arumugam and Bhojwani 
( 1990 ) were the fi rst to report indirect somatic embryogenesis from excised zygotic 
embryos. The workers achieved both callusing followed by somatic embryogenesis 
on half strength MS medium supplemented with 2 μM BA and 0.5 μM IAA. The 
differentiated globular somatic embryos were multiplied on the same medium but 
these failed to mature further. Therefore, 6 % sucrose or 2.5 μM NAA (naphthalene 
acetic acid) was used in MS medium to support the normal development and matu-
ration of zygotic embryos. However, basal MS medium was required for somatic 
embryo germination. Optimal somatic embryogenesis at 25 °C but  the  ir suppression 
under light and higher temperatures was also reported. In a separate study, the 
researchers maintained the embryogenic calli for 3 years on basal MS medium con-
taining 10 μM 2,4-D (2,4-dichlorophenoxy acetic acid) and 1 μM BA or 0.5 μM 
2,4-D (Arumugam and Bhojwani  1994 ). However, the calli had to be subcultured on 
MS medium containing 2.5 μM NAA for further development into somatic embryos 
and their germination on basal MS medium. Another group used radicals and coty-
ledonary leaves of germinated somatic embryos for callus initiation on basal MS 
medium supplemented with different concentrations of NAA, BA, and GA 3.  Somatic 
embryogenesis was initiated only when the calli were transferred to MS medium 
containing 5.0 μM each of NAA and BA (Nadeem et al.  2000 ). After a long gap of 
14 years, Rajesh et al. ( 2014a ) achieved both direct and indirect somatic embryo-
genesis, wherein the indirect or callus-mediated pathway led to induction of high 
frequency of somatic embryos on basal MS medium.  Howe  ver, supplementation of 
5.0 mg l −1  GA 3  was required for 79 % normal somatic embryo germination. When 
direct somatic embryos were further cultured on MS medium supplemented with 
1.5 mg l −1  2, 4-D in dark, callus development occurred and 1.8 mg g −1  dry weight 
podophyllotoxins were produced per 1.2 g of callus. The amount recorded was 
higher than that of fi eld grown plants. In a parallel study, Rajesh et al. ( 2014b ) 
developed an effi cient method of indirect somatic embryogenesis and plantlet 
regeneration from zygotic embryos cultured on three fourth strength MS medium 
supplemented with 3.0 g l −1  polyvinylpyrrolidone (PVP) and 4 % sucrose in dark. 
The somatic embryos matured in the presence of 1.0 mg l −1  ABA (abscisic acid), 3.0 
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g l −1  PVP, and 4 % sucrose but highest germination (91.1 %) occurred when 1.0 mg 
l −1  GA 3  was present. Accumulation of podophyllotoxins (2.8 mg l −1 ) in the somatic 
embryos was highest when sucrose was increased to 8 %. The plantlets were also 
hardened in growth chamber. 

 Besides somatic embryogenesis, caulogenesis was attempted by a few workers. 
In this regard, Sultan et al. ( 2006 ) employed root segments of in vitro - grown seed-
lings for initiation and proliferation of callus on B5 medium. Supplementation of 
MS medium with 0.5–5.0 mg l −1  BAP and 0.5–3.0 mg l −1  IAA resulted in indirect 
shoot regeneration. The shoots developed further on MS medium containing 
0.5 mg l −1  BAP (6-benzylaminopurine) and 1.0 mg l −1  IAA, but high percentage of 
rooting was achieved only when 0.5 mg l −1  NAA and 1.0 mg l −1  IAA were used 
along with activated charcoal. The rooted plantlets showed healthy growth and sur-
vival upon transfer to jiffy pots containing sand, soil, and vermiculite in 1:1:1 ratio 
under poly house conditions. However, the exact survival percentage of plants was 
not mentioned. Later, the same group cultured germinated excised embryos on MS 
medium supplemented with 0.5–3.0 mg l −1  IAA, 0.5–2.0 mg l −1  NAA, 1.0–2.0 mg 
l −1  2,4-D, 0.5–4.0 mg l −1  BAP, and 0.5–1.0 mg l −1  kinetin (Kn). The workers achieved 
maximum plantlet growth on MS medium supplemented with 1.0 mg l −1  IAA, 
0.5 mg l −1  BA, and 1 % activated charcoal (Sultan et al.  2009 ). In the following year, 
Chakraborty et al. ( 2010 ) claimed the development of an effi cient  protoco  l for direct 
regeneration of  P. hexandrum  plants from rhizome explants. They reported the use 
of different PGR combinations, but the highest rate of multiple shoot formation was 
recorded on MS medium supplemented with 11.42 μM IAA and activated charcoal 
within 3 months from culture initiation. The next best combination was reported to 
be 2.68 μM NAA and 11.1 μM BAP. Rooting of in vitro shoots was reported only 
on half strength liquid MS medium containing 100 μM IBA (indole-3-butyric acid). 
However, when leaf explants were used, only callus formation but no shoot regen-
eration was reported. Guo et al. ( 2012 ) was the only group who used WPM or 
woody plant medium (Lloyd and McCown  1980 ) for shoot cultures followed by 
their rooting on medium containing 1.5 mg l −1  IAA and 0.5 mg l −1  NAA. When these 
shoots were transferred to jiffy pots containing turfy soil and perlite (2:1), 98.1 % 
survival was recorded. The plants were also reinstated in nature under open shady 
places at an altitude of 1700 m.  

3.2.2     Root Cultures of  Podophyllum hexandrum  

 Large-scale cultivation of  adventitious   roots offers a great opportunity for in vitro 
podophyllotoxins production. Roots derived from 2 months old in vitro raised seed-
lings were cultured on both B5 and MS media but higher growth with enhanced 
production of podophyllotoxins was achieved only on the former (Sagar and Zafar 
 2005 ). Similarly, Li et al. ( 2009 ) used mature embryos and rhizomes to establish 
root cultures on MS medium supplemented with different concentrations of IBA, 
GA 3 , hydroquinone, and activated charcoal. Of these, only hydroquinone promoted 
increased length of rhizomes after 40 days, whereas activated charcoal hastened 

N. Dhiman et al.



55

optimal root biomass and podophyllotoxins accumulation. Another group, Rajesh 
et al. ( 2014c ) developed adventitious roots from root segments and explored the 
possibilities of producing podophyllotoxins in them. The workers tested the effects 
of different parameters such as carbon sources, media strength, pH of initial medium, 
and the ratios of ammonium, nitrate, and phosphate in the culture medium. Finally, 
half strength MS medium containing 3.0 mg l −1  IBA with initial pH of 6.0 was opti-
mized. The study also revealed that 2 % sucrose was most effective in maximizing 
the biomass, whereas 6 % sucrose was required for maximum podophyllotoxins 
accumulation. In addition,  am  monium at 10 mM, nitrate at 20 mM, and phosphate 
at 2.25 mM were optimized. The optimized conditions led to a maximum podophyl-
lotoxin accumulation up to 6.4 mg g −1 . However, 1.25 mM phosphate supported the 
highest growth.  

3.2.3     Callus and Cell Cultures of  Podophyllum hexandrum  
for the Production of Podophyllotoxins 

 Several studies have shown that secondary metabolites produced in tissue cultures 
are often higher than that in the parent plants. Hence, the technique  be  came an 
attractive route for commercial-scale production of plant metabolites. Of the differ-
ent techniques used in in vitro secondary metabolite production, suspension cul-
tures being fast growing is considered to be the most effective. Moreover, it can also 
be manipulated easily. 

 In this regard, Uden et al. ( 1989 ) was the fi rst person to report the production of 
podophyllotoxins in the cell cultures derived from root explants of in vitro raised 
plantlets. Suspension cultures were raised from callus developed on B5 medium 
supplemented with 2 % coconut water, 4 % sucrose, and 4.0 mg l −1  NAA. When 
these cultures were maintained under dark or light conditions at 26 °C, higher 
amounts of podophyllotoxins accumulation up to 0.3 % on dry weight basis were 
recorded only in dark. In the following year, Uden et al. ( 1990 ) fed cell suspension 
cultures obtained from rhizomes with seven types of precursors such as phenylala-
nine, coniferin, tyrosine, cinnamic acid, caffeic acid, coumaric acid, and ferulic acid 
based on the phenylpropanoid pathway for enhanced production of podophyllotox-
ins. They also used a related compound, i.e., methylenedioxy cinnamic acid at 2.5 
mM. Of these, only coniferin affected a 12.8-fold increase in podophyllotoxins. In 
a parallel work, Woerdenbag et al. ( 1990 ) used the same system for producing podo-
phyllotoxins in cell  suspension cultures obtai  ned from root calli. However, when the 
cultures were fed with 3 mM of β-cyclodextrin-complexed coniferyl alcohol, higher 
accumulation of podophyllotoxins was recorded as in case of water-soluble conif-
erin (β-D-glucoside of coniferyl alcohol) fed cultures as compared to the poorly 
water-soluble  nonco  mplexed coniferyl alcohol. In the same year, Heyenga et al. 
( 1990 ) reported the production of tumor-inhibitory lignans in the callus cultures 
derived from root explants of in vitro raised seedlings. Callus was initiated and 
multiplied on B5 medium supplemented with 0.1–1.2 mg l −1  2,4-D, 0.2–2.0 mg l −1  
GA 3 , and 0.05–1.0 mg l −1  BA. The cultures produced anticancerous lignans, 
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podophyllotoxin, 4′-demethylpodophyllotoxin, and podophyllotoxin-4-O- glucoside 
at levels similar to the original explants used for callus initiation. High levels of 
podophyllotoxins were recorded, particularly, when there was tissue differentiation. 
Moreover, the presence of plant growth regulators in the medium affected the rela-
tive proportions of podophyllotoxin and 4′-demethylpodophyllotoxin signifi cantly. 

 In another study, Uden et al. ( 1995 )  developed   cell cultures of  Linum fl avum  and 
 P. hexandrum  for the bioconversion of cyclodextrin-complexed deoxypodophyllo-
toxin into podophyllotoxin and its 5-methoxy derivative. After developing callus 
cultures as per their earlier report of 1989, Uden et al. further studied the effect of 
cyclodextrin and its deoxypodophyllotoxin complex on the growth of cell suspen-
sion cultures. They found that the growth of the cultures was not affected by the 
presence of either of the compounds. Rather, maximum accumulation of podophyl-
lotoxin and β-D-glucoside of podophyllotoxin (2.87 % on a dry weight basis) was 
recorded in deoxypodophyllotoxin-fed cultures after 9 days. This was the time 
when the highest bioconversion (33.2 %) occurred and corresponded with 192 mg l −1  
of suspension cultures. 

 Chattopadhyay et al. ( 2001 ) developed suspension cultures on MS medium sup-
plemented with 2.0 mg l −1  IAA, 10 g l −1  PVP, and 1.5 mg l −1  pectinase. PVP at 
10 g l −1  was  usef  ul in eliminating problems such as browning of culture medium, 
clumping of cells, and reduction of pH in the medium. It also supported higher cell 
viability, biomass, and podophyllotoxin yield. Similarly, MS medium supplemented 
with 2.0 mg l −1  IAA and 5.0 g l −1  activated charcoal supported friable callus devel-
opment. In the following year, the group used the same medium to develop calli 
from root explants after 3 weeks of culture at 20 °C (Chattopadhyay et al.  2002a ). 
The workers also modulated the major media components such as carbon source, 
NH 4  +  to NO 3  –  ratio, PO 4  − , and IAA for optimization of podophyllotoxin yield in the 
suspension cultures. They observed that glucose, inoculum, IAA, and pH were cul-
ture parameters that affected the podophyllotoxin yield signifi cantly. However, pro-
duction of podophyllotoxins was optimal only after the specifi c replacement of 
sucrose by glucose. Furthermore, the workers attempted submerged culturing in a 
3 L stirred-tank bioreactor fi tted with a low-shear, steric impeller for upscaling of 
podophyllotoxins (Chattopadhyay et al.  2002b ). Podophyllotoxin accumulation was 
higher when the cells were gown  in   shake cultures at 100 rpm in dark. Upon screen-
ing B5, Eriksson, MS, Nitsch, Street, and White media, comparatively better growth 
and podophyllotoxin accumulation was supported on MS medium (Chattopadhyay 
et al.  2003a ). Successful culturing in a 3 L stirred-tank bioreactor under low-shear 
condition in batch and fed batch modes of operation was also reported (Chattopadhyay 
et al.  2003b ). Podophyllotoxin accumulation in batch mode was 21.4 g l −1  and 
13.8 mg l −1  after 24 and 26 days, respectively. The nutrient feeding rate of 150 ml 
d −1  and substrate uptake rate of 105 g l −1  from incoming feed at non-limiting and 
non-inhibitory glucose concentrations were selected for cell retention bioreactors. 
After 60 days, there was an overall enhancement in the biomass (48.0 g l −1  dry cell 
weight) as well as podophyllotoxins (43.2 mg l −1 ). However, when the bioreactor 
was optimized in the cell retention cultivated mode, the biomass and intracellular 
podophyllotoxin accumulation were 53.0 g l −1  and 48.8 mg l −1 , respectively 
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(Chattopadhyay et al.  2003c ). When the podophyllotoxins produced in the cell cul-
tures were studied for their cytotoxicity using human breast cancer cell line (MCF- 
7), there was 50 % inhibition by 1 nM podophyllotoxin, provided it was applied 
during the beginning of cell growth (Chattopadhyay et al.  2004 ). 

 Although other workers such as Ahmad et al. ( 2007 ) established callus cultures 
from excised embryo segments, no attempts were made by them to develop cell 
suspensions from these cultures. Majumder and Jha ( 2007 ,  2009 ) also  established 
  callus cultures from roots of in vitro raised seedlings but developed suspension cul-
tures of only selected cell lines in B5 medium. When the cell lines were character-
ized using RAPD markers and podophyllotoxins, the podophyllotoxins content 
became stable after the fourth year of culture initiation. 

 Majumder ( 2012 ) also studied the effect of 100, 250, and 500 mg l −1  tryptophan, 
an indirect precursor of lignan biosynthesis on podophyllotoxins production in cell 
suspension cultures maintained in half strength liquid B5 medium containing 1 % 
(w/v) sucrose, 1.0 mg l −1  2,4-D, 1.0 mg l −1  GA 3 , and 0.1 mg l −1  BAP. Podophyllotoxin 
accumulation up to 2.7 times with no effect on biomass was observed as compared 
to control. In the same year, Bhattacharyya et al. ( 2012 ) initiated callus cultures 
from leaves in MS medium supplemented with 2.68 μM NAA and 8.88 μM 
BAP. However,    cell suspension cultures developed in MS medium containing 60 
mM nitrogen, 1.25 mM potassium dihydrogen phosphate, 6 % glucose, and 11.41 
μM IAA. A seven to eight fold increase in podophyllotoxin accumulation was 
observed provided they were elicited with 100 μM methyl jasmonate after 9 days. 
MALDI TOF/TOF MS/MS analysis of the suspension cultures were also done to 
identify regulatory proteins. 

 In the present laboratory also, attempts were made to initiate callus cultures from 
leaves of plants growing in different locales of western Himalaya. MS medium con-
taining 2 % sucrose, 5 μM IBA, and 10 μM BAP at pH 5.7 supported callus induction 
in leaves collected from  Kukumseri region  . After 1 month of callus induction, the 
medium had to be supplemented with 200 mg l −1  ascorbic acid to avoid polyphenol 
oxidation and browning of tissues. The calli proliferated further on the same medium 
(Fig.  3.1a–c ). In contrast, the leaf explants collected from Parashar Lake at Mandi 
failed to respond. Hence, the response was considered to be region specifi c.

3.2.4        Secondary Metabolite Production 
Through  Agrobacterium -Mediated Genetic Transformation 
of  Podophyllum hexandrum  

 For the fi rst time, Giri et al. ( 2001 ) attempted  to   enhance the production of podo-
phyllotoxins through genetic transformation of  P. hexandrum . The workers used the 
  Agrobacterium rhizogenes    strains A4, K599, and 15834 for transformation of callus 
derived from root explants. The transformed calli growing on half strength MS 
medium supplemented with 1.0 mg l −1  2,4-D, 0.1 mg l −1  BAP, and 1.0 mg l −1  GA 3  
showed a threefold increase in podophyllotoxins as compared to untransformed 
controls. Suspension cultures of the transformed calli were also initiated and 
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established on MS medium containing 1.0 mg l −1  2,4-D and 0.1 mg l −1  BAP. In a 
separate strategy, Lin et al. ( 2003a ,  b ) used the  A. rhizogenes  strains LBA9402 and 
TR105 for production of hairy roots from leaf disks of  Linum fl avum . Signifi cant 
variation in coniferin accumulation was observed between hairy root lines originat-
ing from different  L. fl avum  seedlings and/or  A. rhizogenes  strains. When roots were 
cultured on Linsmaier and Skoog (LS) medium with 2,4-D and NAA, coniferin 
accumulation was 58 mg g −1  dry weight. These hairy roots being a natural source of 
coniferin were further cocultured with  P. hexandrum  cell suspensions and main-
tained in dual shake fl asks containing Linsmaier and Skoog (LS) medium in dual 
bioreactors. Increase in podophyllotoxins content was recorded. Earlier, availability 
and stability of coniferin in the medium were  con  sidered to be the key factors for 
podophyllotoxin synthesis during coculture. Therefore, podophyllotoxins in 
 P. hexandrum  cell suspensions was effectively increased through coniferin feeding 
(Lin et al.  2003a ,  b ). Much later in 2013, Rajesh et al. used callus derived from 
zygotic embryos of  P. hexandrum  for  A. tumefaciens -mediated genetic transforma-
tion. Different parameters governing genetic transformation such as acetosyringone 
concentration, time of cocultivation, and different strains of  A. tumefaciens  were 
tested. It was found that EHA105 harboring pCAMBIA2301 with  npt II and  gus A as 
selection marker and reporter genes, respectively, was the  mos  t effective as 

  Fig. 3.1    Callusing in  P. hexandrum   plant   collected from Kukumseri and maintained under poly-
house conditions, ( a ) 2-year-old plant, ( b ) initiation of callus on leaf segments, ( c ) callus prolifera-
tion. Bars = 1 cm       
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compared to LBA4404 and EHA101 strains. While there was no effect of aceto-
syringone, the optimum time for cocultivation was 3 days on MS medium contain-
ing 1.5 mg l −1  2,4-D. While complete elimination of residual  Agrobacterium  
required the use of 200 mg l −1  timentin, kanamycin was used for the selection of the 
transformed somatic embryos. The putatively transformed plantlets were fi nally 
raised on basal MS medium and confi rmed using GUS histochemical assay, PCR, 
and southern blotting. A transformation effi ciency of 29.64 % was achieved.   

3.3      Picrorhiza kurroa  

3.3.1     In Vitro Regeneration 

  Clonal propagation   of  P. kurroa  was fi rst attempted by Lal et al. ( 1988 ) who used 
shoot tips for rapid proliferation of multiple shoots in basal MS medium supple-
mented with 3.0–5.0 mg l −1  Kn (kinetin). The workers found that medium contain-
ing 5.0 mg l −1  Kn evoked the best response of 50.6 ± 1.24 shoots per explant but 
concentrations beyond 7.0 mg l −1  promoted vitrifi cation. Addition of 1.0 mg l −1  IAA 
improved shoot growth, leaf size, and stem thickness. Further, when the shoots were 
rooted and hardened in sterilized sand, soil, and manure at 1:1:1 ratio, survival of 
87.7 % plants was recorded. Thereafter, several workers attempted micropropaga-
tion of  P. kurroa  and different explants were used by them (Mondal et al.  2013 ). 
Upadhyay et al. ( 1989 ) cultured terminal and single nodes on MS medium contain-
ing 0.11–2.25 mg l −1  BAP and 0.02–0.2 mg l −1  IAA or 0.03–0.35 mg l −1  GA 3 . Of 
these, only 0.2 mg l −1  BAP was most effective. Again in 1996, Lal and Ahuja induced 
callusing on leaf explants by using MS medium containing 2.0 mg l −1  2,4-D but 
supplementation of 4.0 mg l −1  NAA and 1.0 mg l −1  Kn was required for further 
growth and proliferation. Induction of shoot bud primordia occurred only when the 
calli were transferred to MS medium containing 0.25 mg l −1  BAP. Shoot growth and 
multiplication was however supported when nitrogen in MS medium was reduced 
to half strength and 0.12 mg l −1   BAP   was added. Another group used axillary shoot 
buds and cotyledonary nodes of seedlings for shoot multiplication on MS medium 
containing 1.0 μM BAP or Kn (Chandra et al.  2004 ,  2006 ). For hardening the plants, 
the rooted shoots were transferred to a mixture of soil and sand at 2:1 ratio and also 
fortifi ed with  Bacillus subtilis  and  Pseudomonas corrugate . As a result, they 
achieved 92.5 and 85.0 % plantlet survival, respectively, after 2 months. However, 
when the same group hardened the plantlets in soil and sand (1:1) under high rela-
tive humidity (80.0 ± 5.0 %), only 65 % survival was recorded after 6 months 
(Chandra et al.  2006 ). Later in 2009a, Sood and Chauhan cultured axillary shoot 
tips on medium containing both Kn and IBA for shoot multiplication. The workers 
also developed a low-cost medium by replacing sucrose with table sugar and omit-
ting agar-agar completely. In an attempt to develop a protocol for  large-scale propa-
gation   of  P. kurroa , liquid MS medium supplemented with 2.0 mg l −1  IBA, 3.0 mg l −1  
Kn, and 3 % table sugar was tested (Sood and Chauhan  2009a ). However, the num-
ber of shoots per explant was reduced to 27 only. The workers also cultured leaf 
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disks, nodal, and root segments on MS medium supplemented with 2.0 mg l −1  2,4-D 
and 0.5 mg l −1  IBA and achieved callusing in 56.3, 38.8, and 70 % explants, respec-
tively. Multiple shoot formation on these calli was also recorded on MS medium 
containing 0.5–2.0 mg l −1  BAP, 1.0–3.0 mg l −1  Kn, and 0.5–2.0 mg l −1  IBA. Of these, 
2.0 mg l −1  BAP and 3.0 mg l −1  Kn was reported to be the best for shoot multiplica-
tion (Sood and Chauhan  2009b ). The workers also hardened the rooted shoots in 
sterile mixture of sand, soil, and vermiculite (1:1:1). In the following year, Jan et al. 
( 2010 ) optimized the process of indirect shoot regeneration from nodal explants. 
Although different concentrations of 2,4-D and BAP were used in MS medium, 
only 0.25 mg l −1  each of 2,4-D and BAP supported callus induction in 20 % explants. 
Indirect shoot regeneration followed by their elongation and multiplication was 
however evoked only when 0.2–1.0 mg l −1  NAA was used along with 0.1–0.5 mg l −1  
each of  IAA and IBA  . As a result, there was a maximum of 18.5 ± 1.10 shoots per 
explant on 0.2 mg l −1  NAA as compared to 18.3 ± 0.57 shoots per explant in 
0.6 mg l −1  NAA in 80 and 95 % of explants, respectively. As in case of earlier report, 
the workers used autoclaved mixture of sand, soil, and vermiculite at 1:1:1 ratio for 
hardening of rooted shoots and achieved 81.5 % plantlet survival. In the same year, 
Sharma et al. ( 2010 ) employed 2.0 mg l −1  Kn for shoot proliferation from leaf 
explants, axillary buds, and nodal explants. Maximum shoot regeneration was 
achieved by these workers on medium containing 2.0 mg l −1  Kn alone as well as in 
combination with 0.50 mg l −1  IBA. The workers also considered “ synthetic seeds  ” 
as an effective system for ex situ conservation of  P. kurroa  and their large-scale 
plantations in degraded habitats (Sharma et al.  2010 ). However, the usefulness of 
the “ synthetic seeds technique  ” was actually demonstrated by Mishra et al. ( 2011a ). 
Hence, the workers developed alginate beads of somatic embryos and in vitro- 
grown shoots of  P. kurroa . They also evaluated their revival potential after different 
durations of storage. The encapsulated micro-shoots showed 89.33 % revival after 3 
months of storage at 4 °C with 42.66 % multiple shoot formation as well as 21.43 % 
shoot and root formation. However, transfer to half strength MS medium containing 
0.2 mg l −1  NAA was necessary for healthy root formation. When these plantlets 
were transferred to greenhouse conditions, their survival was 95 %. Another group, 
i.e., Patial and coworkers, showed the benefi ts of 15-day pulse treatment of TDZ. The 
researchers used leaf explants from in vitro raised plants (derived from the leaves of 
fi eld grown plants). They found that when the abaxial surfaces of leaf segments 
touched the culture medium (i.e., MS containing 2.32 μM Kn), there was maximum 
regeneration of indirect shoots (42.0) from the middle portion of about 94 % 
explants. Direct regeneration of shoot buds on plant growth regulator-free MS 
medium was also recorded.  Shoots   obtained either via direct or indirect method 
were further multiplied on MS medium containing 2.32 μM Kn (Patial et al.  2012 ) 
(Fig.  3.2a–g ). Later, Sharma et al. ( 2015 ) attempted to culture 0.5–1.0 cm long 
shoot apices on MS medium supplemented with seaweed extracts. After 1 month, 
several fold enhancements in total biomass, length, and number of shoots as well as 
roots was recorded as compared to control. The plants also showed 80 % survival 
under greenhouse conditions.
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   Overall, various explants such as shoot tips, nodal segments, roots, and even leaf 
explants were used by researchers working on in vitro regeneration of  P. kurroa . 
The percentage usage of these explants was found to range between 12 and 23 % 
(Fig.  3.3 ).

   The step involving  acclimatization   of tissue culture-raised plants is crucial in 
governing the success of plant conservation and improvement. In this regard, hard-
ening of tissue culture-raised  P. kurroa  plants has been a serious problem because of 
high percentage of plant mortality even after months of active and healthy growth. 
This is because of their high susceptibility to fungal diseases that cause rotting of 

  Fig. 3.2    Shoot regeneration from leaf explants of  P. kurroa  ( a ) shoot bud regeneration from ex 
vitro leaves, ( b ) direct shoot bud initiation from leaves of in vitro raised plant, ( c ) regeneration 
response of abaxial (on  left side ) and adaxial (on  right side ) surfaces of leaf explant, ( d – e ) maxi-
mum regeneration from middle portion of leaf explant ( encircled ), ( f ) histological section of leaf 
callus showing emergence of shoot bud ( encircled ), ( g ) shoot multiplication on MS medium con-
taining Kn, ( h ) root formation on MS basal medium, ( i ) shoots at 15 °C, ( j ) hardened plants in 
polyhouse. Bars = 1 cm       
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the aerial and underground parts. Therefore, different workers attempted biological 
hardening of tissue culture-raised plants of  P. kurroa . Trivedi and Pandey ( 2007 ) 
used  Bacillus megaterium ,  B. subtilis , and  Pseudomonas corrugate  for hardening 
in vitro raised shoots after rooting on MS medium supplemented with 0.22 mg l −1  
IBA. The plants maintained for 8 weeks under greenhouse conditions at >80 % 
humidity showed 94 % survival as compared to control (38.5 %) upon transfer to 
larger pots. Patial et al. ( 2012 ), on the other hand, cultured rooted shoots (derived 
indirectly from leaf explants) at 15 °C for 10 days and achieved higher survival of 
the plants (80 %) as compared to controls (50.0 %) kept at 25 °C (Fig.  3.2g–j ). The 
treated plants were found to have healthier leaves with thick cuticles and well- 
differentiated palisade and spongy parenchyma. These attributes were considered 
responsible for helping the plants to cope with stress imposed by the hardening 
process. In the following year, Thakur et al. ( 2013 ) attempted to optimize the root 
yield of  P. kurroa  by treating the plants with biofertilizers singly or in combination 
with farm yard manure and/or vermicompost.    Farm yard manure or vermicompost 
in combination with  Azotobacter , a phosphate-solubilizing bacteria (strain B or F), 
and vascular-arbuscular mycorrhizae resulted in 947 kg ha −1  root yield in 3-year-old 
plants. The fungal endophyte  Piriformospora indica  was also used for biological 
hardening (Das et al.  2015 ) and a 1.3-fold increase in the survival of tissue culture- 
raised plants was recorded under greenhouse conditions. Recently, Helena et al. 
( 2015 ) developed an indirect system of regeneration from leaf and stem segments. 
MS medium containing 0.5 mg l −1  TDZ (thidiazuron) in combination with 0.3 and 
0.5 mg l −1  IBA evoked callus induction from leaves and stem segments, respectively. 
 However  , shoot regeneration of about 89 % was evoked on MS medium containing 
1.0 mg l −1  BA and 0.75 mg l −1  Kn in case of leaves, whereas 1.0 mg l −1  BA and 
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1.0 mg l −1  Kn for stem segments. When these shoots were transferred to half strength 
MS medium containing 0.5 mg l −1  2–4, D and 0.4 mg l −1 NAA, there was 100 % root 
induction.  

3.3.2     Genetic Transformation 

 Hairy root cultures of  P. kurroa  from leaf and stem explants was fi rst reported by 
Verma et al. ( 2007 ). The researchers  o  btained 66.7 % relative transformation fre-
quency after 3 weeks of transformation with  Agrobacterium rhizogenes  strain, 
LBA9402. They also evaluated nine independent opine and TL-positive hairy root 
somaclones or rhizoclones for their ability to produce kutkoside and picroside I dur-
ing different phases of growth. Based on the inter-clonal variations in the contents 
of these compounds in the rhizoclones, the hairy root rhizoclone 14-P was selected 
for the highest biomass and kutkoside and picroside I contents. Four years later, 
Mishra et al. ( 2011b ) used the  A. rhizogenes  strains, A4, and PAT405 for induction 
of hairy root cultures from leaf, internodal segments, and shoot tips. The hairy roots 
were evaluated after 8 weeks. The A4 strain was found to yield higher contents of 
both picrotin and picrotoxinin (8.8 and 47.1 μg l −1  on dry weight basis, respec-
tively). In contrast, the PAT405 strain yielded 4.45 μg l −1  picrotin on dry weight 
basis as compared untransformed control (0.64 μg l −1  picrotin on dry weight basis). 
In the following year, Praveena and Rao ( 2012 ) employed  Agrobacterium 
rhizogenes-  mediated transformation as well as physical (UV radiation) and chemi-
cal (acridine dyes) mutagenesis approach for enhanced production of picrosides and 
kutkosides in in vitro roots. The kutkin content in the transformed roots was the 
highest (0.62 μg ml −1 ) as compared to control (0.53 μg ml −1 ) or roots subjected to 
UV radiation (0.58 μg ml −1 ) and acridine dyes (0.24 μg ml −1 ). In the same year, Bhat 
et al. ( 2012 ) attempted to  tran  sform the leaf explants of  P. kurroa  with the binary 
vector pCAMBIA1302 harboring the hygromycin phosphotransferase and green 
fl uorescent protein ( gfp ) encoding genes in the strain GV3101 of  A. tumefaciens . 
Their study revealed that in vitro-grown explants pre-cultured for 2 days on regen-
eration medium prior to cocultivation in presence of 200 μM acetosyringone was 
the most effective. Finally, putative transformants selected on 15 mg l −1  hygromycin 
were found to test positive in PCR (56 %)  and also   showed  gfp  expression in fl uo-
rescence microscopy.   

3.4     Conclusions 

 In conclusion, the review is a compiled information on various in vitro approaches 
employed for the conservation and secondary metabolites production in  Podophyllum 
hexandrum  and  Picrorhiza kurroa . The article offers a base line information from 
which various gaps can be identifi ed and addressed for future research in these 
endangered medicinal herbs of western Himalaya.     
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 4      Effect of Plant Growth Regulators 
and Additives on Indirect Organogenesis 
of  Simarouba glauca  DC                     

     A.  R.     Lavanya    ,     M.     Muthukumar    ,     S.     Muthukrishnan    , 
    V.     Kumaresan    ,     T.     Senthil Kumar    ,     M.     Vijaya Venkatesh    , 
and     M.  V.     Rao    

    Abstract 
   A protocol of in vitro propagation of  Simarouba glauca  DC (Simaroubaceae) by 
indirect organogenesis under the infl uence of different combinations of plant 
growth regulators (PGRs) was standardized. Indole-3-butyric acid 1.0 mg/l pro-
duced the highest callusing response: 100 % in cotyledon and 95 % in internode 
explant. One hundred percent of shoot bud induction response with shoot num-
ber 18.0 for cotyledon and 85 % response of shoot bud induction with shoot 
number 12.5 for internode were observed in 6-benzyl adenine (BA) 3.0 mg/l, 
6-furfuryl amino purine 0.5 mg/l, and GA 3 1.0 mg/l. Organic additive coconut 
water that resulted in 95 % response with average 25.0 shoot number for cotyledon 
and 80 % response with average shoot number of 18.2 for internode was observed 
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in the medium containing CW (15 %). GA 3  promoted only shoot multiplication 
with no shoot elongation. High concentration of GA 3  directly involved in shoot 
elongation rather multiplication, but it caused some irreversible root inhibition. 
α-Naphthalene acetic acid 2.0 mg/l showed 95 % and 80 % of rooting response 
with root numbers 8.5 and 7.2 in cotyledon and internode explants, respectively. 
The microshoots with the lengthy roots were transferred to paper cups for accli-
matization. After a period of 12 weeks, acclimatized plants were successfully 
transferred to the fi eld. The 56.8 % plants survived in the fi eld.  

  Keywords 
   Paradise tree   •    Simarouba glauca  DC   •   Organogenesis   •   Microshoots   •   GA 3    • 
  Coconut water  

4.1       Introduction 

  Simarouba glauca  DC (Simaroubaceae), commonly known as  paradise tree  , is a 
fast-growing, multipurpose, medium-sized tree that grows up to 20 m high, with a 
trunk 50–80 cm in diameter. It is indigenous to the Amazon rain forest and other 
tropical areas in Mexico, Cuba, Haiti, Jamaica, and Central America (Cronquist 
 1944 ; Armour  1959 ). It can grow at elevations from sea level to 1000 m. It was fi rst 
introduced to India by National Bureau of Plant Genetic Resources in the research 
station at Amravati, Maharashtra, in 1966 (Rath  1987 ; Bhagmal  1994 ). 

 It bears edible oil seeds containing 65 % oil (Armour  1959 ). It can also be used 
for industrial purposes in the manufacture of biofuels, soaps, detergents, lubricants, 
varnishes, cosmetics, pharmaceuticals, etc. (Govindarajuet al.  2009 ). The oil cake is 
a good organic manure and fruit pulp, leaf litter, and waste wood can be used to 
generate biogas. The shell and waste wood are used in thermal power station. The 
shells can be used in the manufacture of particle board and activated charcoal or as 
a fuel. Fruit pulp is used in beverage preparations (Rath et al.  1987 ). The pulp along 
with leaf litter can be used in the manufacture of vermicompost. The wood is gener-
ally insect resistant and used in the preparation of quality furniture, toys, and match 
industry and also as pulp in paper industry (Joshi and Joshi  2002 ). 

 The leaves and bark of  S. glauca  are used in the  treatment   of fevers, malaria, dys-
entery, diarrhea, astringent, digestive, anthelmintic, emmenagogue, colitis, intestinal 
parasites, dyspepsia, anemia, haemostatic, antiprotozoal, antiviral, anticancerous, 
skin depigmentation, snake bite, and a tonic (Grenand et al.  1987 ; Roig  1988 ; Rutter 
 1990 ; Girón et al.  1991 ; Cruz  1995 ; Bonte et al.  1996 ; Franssen et al.  1997 ; Joshi and 
Joshi  2002 ; Patil and Gaikwad  2011 ). The main active group of chemicals in 
 Simarouba  is called quassinoids which belong to the triterpene chemical family (Joshi 
and Joshi  2002 ). The various plant secondary substances in  Simarouba  include ailan-
thinone, dehydroglaucarubinone, glaucarubine, glaucarubolone, glaucarubinone, hol-
acanthone, benzoquinone, canthin, sitosterol, melianone, tirucalla, simaroubidin, 
simarolide, simarubin, and simarubolide (Assendift et al.  1956 ; Kupchan et al.  1976 ; 
Polonsky et al.  1978 ; Franssen et al.  1997 ; Valeriote et al.  1998 ). 
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 To overcome demand for supply of  edible oil  ,  S. glauca  can be cultivated with 
advanced tool like plant tissue culture. Recent biotechnological approaches tend to 
help improving the in vitro raised plants’ quality as well as yield. Regeneration of 
plants from callus, individual cells, and protoplasts has involved organogenic or 
embryogenic differentiation. These techniques have been useful in providing both 
spontaneous (Scowcroft et al.  1987 ) and mutagen-induced genetic variation. This 
could be used as an adjunct to traditional breeding methods for the modifi cation and 
improvement of plants. Many of the changes observed in in vitro regenerated plants 
have potential agricultural and horticultural signifi cance (Ahmed et al.  2001 ). In 
fact indirect organogenesis techniques have been quite useful for producing differ-
ent tree cultivars of high quality and valuable genotypes. Indirect organogenesis is 
one such an important approach in producing variable cultivars and mass produc-
tion, through which we can select such a good yielding plants. Variability might be 
an induced cause by exogenously applied plant growth regulators that trigger mor-
phogenesis via cell-cycle disturbances (Peschke and Phillips  1992 ). 

 Previous  reports   had recorded only 5.83 shoots as their maximum yield per 
explant by micropropagation (Rout and Das  1995 ). One of the driving forces behind 
this growing interest is the challenging attempt to increase the number of plants 
produced while decreasing the interval of plant production time. The aim of this 
study was to establish a protocol for inducing indirect organogenesis of  S. glauca  
under the infl uence of different combinations of plant growth regulators (PGRs).  

4.2     Materials and Methods 

4.2.1     Plant Material Collection 

  S. glauca  seeds were procured from  the   Institute of Forest Genetics and Tree 
Breeding, Coimbatore, Tamil Nadu, India. Seeds were treated with con. H 2 SO 4  for 
1 h. Then the seed coat was softened by scrubbing the surface and washed thor-
oughly in running tap water. The seeds were rinsed with sterilized distilled water 
and placed in rotary shaker for uniform imbibitions using sterile distilled water for 
3 days. On the fourth day, seeds were thoroughly washed with sterile distilled water, 
then sowed in the plastic bags containing soil and sand (1:1). Later, raised seedlings 
were transferred to earthen pots with the same soil and  sand   and maintained in the 
garden. The explants were collected from 2-month-old seedlings.  

4.2.2     Selection of Explants and Sterilization 

  Cotyledon and internode explants      (2–3 cm) were initially washed with few drops of 
liquid detergent (Teepol) for 5 min followed by rinsing in tap water for 10–15 min. 
The washed explants were treated with 70 % alcohol for 1 min followed by sterile 
distilled water, then with 0.1 % (w/v) mercuric chloride for 3 min. Finally the 
explants were rinsed 4–5 times with sterile distilled water and cut into small pieces 
each 0.5–1.0 cm long.  
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4.2.3     Callus Induction, Shoot Regeneration, and Rooting 

 The sterilized explants were cultured on Murashige and Skoog (MS) medium 
(Murashige and Skoog  1962 ) supplemented with different concentrations of auxins 
[indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and α-naphthalene acetic 
acid (NAA) (0.5–4.0 mg/l)]. The  callus   derived from all explants was cultured on shoot 
regeneration medium containing 6-benzyl adenine (BA), 6-furfuryl amino purine (KN) 
(0.05–4.0 mg/l), and gibberellic acid (GA 3 ) (0.1–2.0 mg/l) individually and in combi-
nation for shoot regeneration. Callus was subcultured on  shoot regeneration   (SR) 
medium (BA 3.0 mg/l, KN 0.5 mg/l, GA 3 1.0 mg/l.) along with various concentrations 
of sodium citrate, glutamine (5–20 mg/l), and coconut water (CW) (5–20 %) to enhance 
the shoot quality. The regenerated multiple microshoots were excised and subcultured 
on MS medium containing IAA, IBA, and NAA (0.1–3.0 mg/l) for root induction.  

4.2.4     Acclimatization and Hardening 

 Four-week-old in vitro raised  plantlets   with well-developed roots were removed 
from the culture medium, and roots were washed thoroughly under tap water. 
Plantlets were transformed to paper cups and earthen pots containing mixture of 
sand and soil (1:2) maintained inside a culture room at 25 ± 2 °C and 35μΣ m −2 S −1  
light intensity provided by cool white fl uorescent tubes, and 70–80 % relative 
humidity was maintained by covering the plant with polythene bags to avoid con-
tamination. Plantlets were watered with one fourth strength  MS   basal solution 
devoid of sucrose and mesoinositol at 3-day intervals for a period of 4 weeks. The 
acclimatized plantlets were then transferred to earthen pots containing soil and kept 
under shade for another 8 weeks before transferring to the fi eld.  

4.2.5     Culture Conditions 

 All media were  supplemented   with 30 g/l sucrose (Hi-Media) and solidifi ed with 
8 g/l agar-agar type II (Hi-Media). The pH of all media was adjusted to 5.6–5.8 
before autoclaving. The cultures were incubated in culture room maintained at 
25 ± 2 °C, under a 16 h photoperiod with a light intensity of 35μΣ m −2 S −1  from 
Philips cool white fl uorescent tubes with 55–60 % relative humidity.  

4.2.6     Statistical Analysis 

 A minimum of 25  replicates   were taken for each treatment and all the experiments 
were repeated thrice. The cultures were examined periodically and the morphologi-
cal changes were recorded on the basis of visual observations. The experimental 
design was random and factorial. The data pertaining to shoot proliferation frequen-
cies and shoot number, shoot elongation, and rooting were subjected to mean and 
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mean separation analysis by using Duncan’s multiple range test (DMRT). All the 
above calculations and analysis were carried out using IBM SPSS Statistics V.20 for 
Windows (Software Package from SPSS Inc., 1989–2012;   www.spss.com    ).   

4.3     Results 

4.3.1     Callus Induction 

 The callus was developed at  the   cut surfaces in all concentrations of auxins within 
20–25 days of inoculation, and subsequently callus covered the entire surface of the 
explants within 15 days of culture. Green compact nodular callus was developed in 
all types of regulators but the percentage of response only varied. IBA 1.0 mg/l 
produced the highest callusing response 100 % in cotyledon (Figs.  4.1  and  4.3a ) and 
95 % in internode (Figs.  4.2  and  4.3b ).

4.3.2          Shoot Regeneration 

 Green nodular  callus   was transferred to the MS medium supplemented with cytoki-
nins (BA and KN (0.5–4.0 mg/l)) individually and in combination with fi xed con-
centration of BA (3.0 mg/l) and varying concentrations of KN (0.05–1.0 mg/l) for 
shoot bud induction. BA (3.0 mg/l) induced the maximum shoot buds 80 % in coty-
ledon and 75 % in internode followed by KN (0.5 mg/l) that responds 70 % in coty-
ledon and 60 % in internode (Table 4 .1 ).
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  Fig. 4.1    Callus induction from cotyledon explants, after 35 days       
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   The synergistic effect of the two cytokinins BA (3.0 mg/l) and KN (0.5 mg/l) showed 
the highest response 95 % and 80 % of shoot bud induction and the shoot numbers 15 
and 9.3 in cotyledon and internode explants, respectively (Table 4 .1  and Fig. 4 .3c ). 

 For further regeneration of shoots, the callus was transferred to BA (3.0 mg/l) 
and KN (0.5 mg/l) with various concentrations of GA 3  (0.1–2.0 mg/l). One hundred 
percent of shoot bud induction response with shoot  number   18.0 for cotyledon (Fig. 
4 .3d ) and 85 % response of shoot bud induction with shoot number 12.5 for inter-
node were observed in GA 3  (1.0 mg/l) within 25 days (Table 4 .1 ). All the treatments 
except GA 3  (2.0 mg/l) induced only the microshoots. At GA 3  (2.0 mg/l), the shoot 
length was increased with the reduction in multiplication rate (Fig. 4 .3f ).  

4.3.3     Effect of Additives on Shoot Regeneration 

 To increase the further regeneration ability of the callus, the callus was transferred 
to the SR medium along with the additives like sodium citrate, glutamine, and 
CW. The ninety-fi ve percent of response of the shoot bud induction  with   shoot num-
ber 25 (Fig. 4 .3e ) for cotyledon and 80 % of the shoot bud induction response with 
shoot number of 18.2 for internode were observed in the medium containing CW 
(15 %) followed by sodium citrate (10 mg/l), recording signifi cant results compared 
to SR medium. The additives increased both the shoot number and the quality of the 
regenerated shoots (Table 4 .2 ).
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  Fig. 4.2    Callus induction from internode explants, after 35 days       

 

A.R. Lavanya et al.



77

  Fig. 4.3    Steps involved in indirect organogenesis of  Simarouba glauca . ( a ,  b)  Callus induction 
and proliferation from cotyledon explant (MS + IBA 1.0 mg/l) (2.0×). ( c ) Green compact callus 
with shoot initiation on MS + BA (3.0 mg/l) + KN (0.5 mg/l) (2.0×). ( d ) Multiple shoots of coty-
ledon explant in SR medium, after 6 weeks (2.5×). ( e ) Multiple shoots on SR medium + CW 15 %, 
after 6 weeks (1.5×). ( f ) Elongated shoots (MS + BA 3.0 mg/l + KN 0.5 mg/l + GA 3  2.0 mg/l), after 
45 days (1.0×). ( g ) Microshoots with well-developed roots (2.0×). ( h ) Acclimatized plantlet sur-
vived on paper cup, after 12 weeks in glass house (1.0×)       
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4.3.4        Rooting and Acclimatization 

 The regenerated  microshoots   and elongated shoots were transferred to the medium 
containing auxins [NAA, IBA, and IAA (0.1–3.0 mg/l)]. NAA (2.0 mg/l) showed 
95 % and 80 % of rooting response with root numbers 8.5 and 7.2 in cotyledon and 
internode explants, respectively, after 25 days (Table 4 .3 ). IAA and IBA in all con-
centrations had no effect in producing roots (data not shown). The elongated shoots 
on transfer for rooting failed to produce roots. The microshoots with the lengthy 
roots (Fig. 4 .3g ) were transferred to plastic containers containing mixture of steril-
ized soil and sand (2:1) and covered with transparent plastic papers punctured for 
holes to lower down the high atmospheric humidity gradually. After 4 weeks of 
acclimatization, the plantlets were then shifted to plastic or earthen pots containing 
soil (Fig. 4 .3h ) and kept under shade condition for 8 weeks before successfully 
transplanted to the fi eld; 56.8 % plants survived.

     Table 4.1    Shoot regeneration response of callus from  Simarouba glauca  grown on MS medium 
supplemented with BA, KN, and GA 3 , after 25 days   

 Plant growth regulators 
(mg/l) 

 Cotyledon  Internode 

 Shoot bud 
induction (%)  Shoot number *  

 Shoot bud 
induction (%) 

 Shoot 
number *  

  BA    KN     GA  3  

 0.5  64.0 lm   5.8 ± 0.34 hi   58.6 hi   3.5 ± 0.27 hi  

 1.0  69.3 jk   7.0 ± 0.21 h   64.0 g   4.1 ± 0.26 ghi  

 2.0  77.0 h   8.5 ± 0.36 f   72.0 e   4.9 ± 0.50 fgh  

 3.0  80.0 g   10.4 ± 0.34 d   75.0 d   6.0 ± 0.65 ef  

 4.0  74.6 hi   9.3 ± 0.18 de   69.3 f   5.3 ± 0.42 fg  

 0.5  70.0 j   6.0 ± 0.21 hi   60.0 h   4.0 ± 0.57 hi  

 1.0  65.3 l   5.0 ± 0.30 ij   57.3 i   3.5 ± 0.29 hi  

 2.0  62.6 m   3.8 ± 0.26 jk   49.3 j   2.9 ± 0.26 ij  

 3.0  57.3 n   3.1 ± 0.55 k   42.6 k   2.3 ± 0.18 j  

 4.0  50.0 o   2.8 ± 0.50 k   38.0 l   1.9 ± 0.14 j  

 3.0  0.05  84.0 f   7.8 ± 0.40 fg   70.0 ef   6.5 ± 0.57 e  

 3.0  0.1  90.0 d   9.5 ± 0.29 de   77.3 cd   8.0 ± 0.65 d  

 3.0  0.5  95.0 b   15.0 ± 0.69 b   80.0 bc   9.3 ± 0.42 bc  

 3.0  1.0  89.3 de   10.4 ± 0.57 d   74.6 de   7.8 ± 0.26 d  

 3.0  0.5  0.1  89.3 de   9.5 ± 0.36 de   74.6 de   8.3 ± 0.35 cd  

 3.0  0.5  0.5  94.6 bc   14.8 ± 0.50 b   81.3 b   10.0 ± 0.43 b  

 3.0  0.5  1.0  100.0 a   18.0 ± 0.42 a   85.0 a   12.5 ± 0.29 a  

 3.0  0.5  2.0  97.3 ab   12.5 ± 0.42 c   78.6 c   9.8 ± 0.34 b  

   * Values are mean of 25 replicates per treatment and repeated thrice. Values with the same super-
script are not signifi cantly different at 5 % probability level according to DMRT  
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4.4         Discussion 

 Seedling-derived explants are found suitable for tissue culturing tree species. These 
explants are found juvenile and result in less contamination rate. When the explants 
were taken from tree source, many perspectives will interfere with results, such as 
explant age and environmental conditions. Possibility of active explant availability 

   Table 4.2    Shoot regeneration response of callus from  Simarouba glauca  grown on SR medium 
supplemented with additives, after 25 days   

 Additives (mg/l) 

 Cotyledon  Internode 

 Shoot bud induction 
(%)  Shoot number *  

 Shoot bud induction 
(%) 

 Shoot 
number *  

 Sodium citrate 

 5  85.0 cd   18.3 ± 0.52 c   68.0 d   10.4 ± 0.57 d  

 10  90.0 b   20.0 ± 0.48 b   70.0 c   13.2 ± 0.28 c  

 15  81.3 e   17.3 ± 0.28 c   65.3 e   9.8 ± 0.26 d  

 20  78.6 f   15.4 ± 0.71 d   58.6 fg   7.5 ± 0.36 fg  

 Glutamine 

 5  80.0 ef   14.3 ± 0.52 de   60.0 f   8.4 ± 0.52 ef  

 10  85.0 cd   18.0 ± 0.69 c   65.3 e   9.1 ± 0.34 de  

 15  76.0 g   12.4 ± 0.48 f   57.3 g   7.8 ± 0.50 efg  

 20  69.3 h   9.8 ± 0.59 g   53.0 h   6.5 ± 0.36 g  

 CW (%) 

 5  81.3 e   13.6 ± 0.42 ef   69.3 cd   10.0 ± 0.43 d  

 10  86.6 c   18.6 ± 0.36 bc   74.6 b   14.3 ± 0.42 c  

 15  95.0 a   25.0 ± 0.87 a   80.0 a   18.2 ± 0.60 a  

 20  90.0 b   19.8 ± 0.67 b   77.3 b   15.8 ± 0.50 b  

   * Values are mean of 25 replicates per treatment and repeated thrice. Values with the same super-
script are not signifi cantly different at 5 % probability level according to DMRT  

   Table 4.3    Rooting response of in vitro raised microshoots from organogenic callus of  Simarouba 
glauca  grown on MS medium supplemented with auxins, after 25 days   

 Plant growth 
regulators 
(mg/l) 

 Cotyledon  Internode 

 Percentage of 
response 

 Number of 
roots *  

 Root length 
(cm) *  

 Percentage of 
response 

 Number of 
roots *  

 Root 
length 
(cm) *  

  NAA  

 0.1  77.0 cd   4.7 ± 0.28 d   2.8 ± 0.26 e   61.3 d   4.5 ± 0.20 d   2.3 ± 0.18 d  

 0.5  81.3 c   5.8 ± 0.26 c   3.4 ± 0.29 cd   68.0 c   5.0 ± 0.43 cd   3.0 ± 0.30 c  

 1.0  92.0 ab   6.3 ± 0.28 bc   4.0 ± 0.00 bc   73.3 b   5.8 ± 0.26 c   3.8 ± 0.14 ab  

 2.0  95.0 a   8.5 ± 0.36 a   5.2 ± 0.38 a   80.0 a   7.2 ± 0.35 a   4.7 ± 0.28 a  

 3.0  89.3 b   7.0 ± 0.43 b   4.9 ± 0.45 ab   77.3 ab   6.5 ± 0.42 ab   4.0 ± 0.48 ab  

   * Values are mean of 25 replicates per treatment and repeated thrice. Values with the same super-
script are not signifi cantly different at 5 % probability level according to DMRT  
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is diffi cult throughout the year, due to that of seasonal changes and plant reactions 
related to it. During inoculation 70 % alcohol and 0.1 % HgCl 2  result in greater 
effect on controlling pathogens. 

 All three  auxins   (IAA, IBA, and NAA) were found potential in callus induction, 
but callus morphology varied with different plant growth regulators used. Above all 
IBA 1.0 mg/l produced maximum frequencies of green compact callus, which is 
very suitable for caulogenesis. Shoot regeneration was obtained at many levels of 
treatments, starting from single cytokinins to combined treatments of cytokinins 
also along with gibberellins. At every level of treatment, regeneration capacity of 
explants increases signifi cantly. Two cytokinins (BA 3.0 mg/l + KN 0.5 mg/l) along 
with GA 3 1.0 mg/l recorded better results. Generally gibberellins tend to help in 
shoot elongation; surprisingly here we had shoot-promoting results, which are sup-
ported by many authors. Many reports found GA 3  as conducive for in vitro shoot 
regeneration (Chakraborty et al.  2000 ) or for promotion of growth, biomass produc-
tion, and xylem fi ber length (Ericksson et al.  2000 ). Furthermore, GA 3  can act as a 
replacement for auxin in shoot induction, and thus, a ratio of cytokinin-GA 3  may be 
decisive for differentiation in certain plant tissues (Sekioka and Tanaka  1981 ). 

  Organic additives   are good enhancers of shoot regeneration when combined with 
plant growth regulators. Here CW produced the highest shoot number with high 
percentage in both explants. CW consists of various growth-promoting compounds 
such as amino acids, organic acids, inorganic compounds, nitrogenous compounds, 
carbon sources, vitamins, and growth regulators like auxins and cytokinins (George 
 1993 ;   Yong     et al.  2009 ). The molecular mechanism of CW’s compatibility with 
endogenous and exogenous growth-promoting agents is still unknown. At many 
cases CW showed inspiring results with shoot regeneration in many species (Boase 
et al.  1993 ; Nasib et al.  2008 ; Daud et al.  2011 ). All the above results showed only 
microshoots, whereas GA 3  2.0 mg/l alone produced elongated shoots with reduced 
shoot numbers. Heidge ( 1969 ) reported that higher concentrations of GA 3  tend to 
inhibit the bud breaking. Elongated shoots from high concentration of GA 3  2.0 mg/l 
caused some irreversible root inhibition. Antagonistic effect of any auxin or cytoki-
nin was unable to restore the root initiation. It had been clearly demonstrated that 
the inability of auxin, cytokinin,  abscisic   acid, and growth retardants CCC and 
phosfon to counteract or reverse the gibberellin-induced inhibition of adventitious 
root formation. So the microshoots itself treated for rooting got results with only 
NAA. Well-rooted plantlets were successfully acclimatized. 

 This study was undertaken to establish indirect shoot organogenesis using coty-
ledon and internode explants. Both the explants were standardized for indirect 
organogenesis, but the cotyledon was found more responsive (25 shoots per explant) 
than internode (18.2 shoots per explant). GA 3  and CW played a vital role in multiple 
shoot induction. Exogenous supply of GA 3  can induce endogenous production of 
auxins. These endogenously produced auxins can combine with cytokinins present 
in culture medium to produce more number of shoots, whereas high concentration 
of GA 3  directly involved in shoot elongation rather than multiplication, but it caused 
some irreversible root inhibition. Other GA 3  treatments resulted with only micro-
shoots, which were later produced suffi cient roots upon auxin treatment. Well- 
rooted plantlets were acclimatized to fi eld condition.     
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 5      Biotechnological Applications 
for Characterisation, Mass Production 
and Improvement of a Nonconventional 
Tree Legume [ Parkia timoriana  (DC.) 
Merr.]                     

     Robert     Thangjam    

    Abstract 
   The loss of global bioresources has been occurring due to increased population 
accompanied with reduction of agricultural lands, rapid urbanisation, neglect of 
natural habitats and climate change. Loss of biodiversity and food security are 
the two of the major worries throughout the world in recent times. Major focus 
of studies in recent times has been towards the inventorisation of potential plants 
and plant-based products as sources of food security. Tree bean ( Parkia timori-
ana ), a nonconventional tree legume widely used as vegetable in the northeast 
Indian region, is a highly nutrient-rich plant. However, the tree has been facing 
several issues related to its diseases of biotic and abiotic origin. This leads to 
serious socio-economic problems and decline in its production. The use of bio-
technological tools provides one of the most viable means for addressing the 
issues related to this plant. This chapter reviews some of the applications of 
biotechnological tools for the genetic characterisation, sustainable production 
and improvement in tree beans.  

  Keywords 
   Tree bean   •    Parkia timoriana    •   Biotechnological tools   •   Genetic diversity   •   In 
vitro mass production   •   Genetic transformation  
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5.1       Introduction 

 The northeast region of India is known for its huge reserve of diverse fl ora and 
fauna genetic resources including the microbes. Several nonconventional plants and 
vegetables are also consumed as food in the India among which a tree bearing long 
and tender pods, commonly known as tree bean or scientifi cally known as  Parkia 
timoriana  (DC.) Merr., is consumed as a favourite vegetable by the natives in north-
east India. It is a member of the Leguminosae family belonging to the subfamily 
 Mimosoideae . 

  P. timoriana  is a widely distributed species and recorded from a variety of forest 
types on various soils, up to 1300 m (Hopkins  1994 ). It is usually propagated by 
seed or cutting. According to Salam and Singh ( 1997 ), it requires a well-drained soil 
for its healthy growth and economic production. The tree is non-deciduous but is 
without a leaf for a brief period before fl owering (Fig. 5 .1a ). The yellowish 
drumhead- like infl orescence is a combination of miniature fl owers and is found 
hanging in clusters from branches during the month of September–October. Fruiting 
starts from November–December onwards. The young fruits are very soft, tender 
and green in colour which later turns black when fully matured by the end of 
March–April (Fig. 5 .1b, c ).

  Fig. 5.1     Parkia timoriana  (DC.) Merr., a multipurpose nonconventional tree legume, commonly 
known as tree bean. ( a ) Tree bean. ( b ) Green pods in local market in Manipur state of India. ( c ) 
Variations of pod morphology and characteristics       
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    Parkia , named in the memory of the celebrated African traveller Mungo Park 
(1771–1805), is a genus of approximately 31 species of leguminous trees distrib-
uted through both the New World and the Old World tropics. The genus is taxo-
nomically most diverse in the rainforests of the Amazon basin (Hopkins  1986 ), but 
four species are found in Africa and Madagascar (Hopkins  1983 ) and about ten in 
the Indo-Pacifi c region (Hopkins  1994 ).  P. timoriana  is the most widely distributed 
species of  Parkia  in the Indo-Pacifi c region extending from northeast India up to 
Irian Jaya (Hopkins  1994 ). It is well adapted to the different agroclimatic regions 
from colder hilly regions to the hotter plains exhibiting a high degree of morpho-
logical variations (Thangjam et al.  2003c ). 

5.1.1     Economic Uses 

 The infl orescence and seeds of  tree   beans are consumed with great delicacy in the 
northeast Indian region.  P. timoriana  usually fl owers during the months of July-
August after the monsoon which are used for various local vegetable preparations 
while the green pods, available from October to March, are scrapped off the outer 
skin and consumed in all its developing stages till fully matured. When fully 
matured, the black kernels are also stored for consumption as well as for planting 
purposes. It is a multipurpose tree, commonly grown in the garden of houses,  jhums  
and forests throughout the states of northeast India (Kanjilal et al.  1982 ). It is also 
relished as one of the favourite vegetable items among the locals in northeast India 
for its special smell, taste and fl avour. The pungent smell is associated with the pres-
ence of thiazolidine-4- carboxylic acid (TCA, thioproline), a cyclic sulphur-contain-
ing amino acid, and its consumption in the southern part of Thailand contributes to 
the lower incidence of stomach cancer (Suvachittanont et al.  1996 ). Thioproline is 
associated with the inhibition of the formation of squamous cell carcinomas in the 
fore-stomach of rats and anti-carcinogenic (Tahira et al.  1984 ,  1988 ). Consumption 
of tender pods is more healthy as the biochemical and nutritional values are superior 
to other stages (Salam et al.  1992 ). Longvah and Deosthale ( 1998 ) reported that the 
plant can serve as a potential source of protein and fat to meet the ever-increasing 
requirements with its 29 % protein content of the kernel and 13–19 % in the pods 
and 34 % and 1–16 % of fats in the kernel and pods. Unsaturated fatty acids, oleic, 
linoleic and linolenic acid, make up 63–68 % of the total fat in the pods as well as 
the kernels.  Essential   amino acid patterns of the kernel are comparable to FAO/
WHO/UNU ( 1985 ) amino acid requirement for preschoolers (Longvah and 
Deosthale  1998 ). Tree beans are also used in various ethnomedicinal preparations. 
The seed and tender pods are used for curing of stomach disorders and regulation of 
liver function, skin remedies, etc. (Burkill  1966 ; Quisumbing  1951 ). The oil extract 
of the plant also possesses insecticidal properties (Salam et al.  1995 ). The wood of 
the tree beans can be used as a source of paper pulp (CSIR  1966 ).  
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5.1.2     Problems in Production and Utilisation 

 For sustainable large-scale production  and   utilisation of tree beans, it is essential to 
understand the proper genetic resource, means of propagation and improvement 
techniques. Proper identifi cation and classifi cation of  Parkia  has been associated 
with problems caused by the confusion of names arising out of various local dia-
lects, diffi cult geographical location of the habitats, diffi cult interior regions, etc. 
Morphological variations such as the characteristics of leaves, capitula and fruit 
pattern are diffi cult to ascertain the identity and classifi cation of tree beans (Hopkins 
 1994 ). In the northeast Indian state of Manipur, tree beans bearing narrow and 
uniform- looking light green pods are considered as superior in fl avour and form the 
basis for the identifi cation of 13 cultivars (Meitei and Singh  1990 ). Salam and Singh 
( 1997 ) also identifi ed nine varieties of tree beans from different localities in Manipur 
based on the organoleptic and palatability tests. For a large-scale cultivation and 
their sustainable production, it is necessary to understand the basis of their evolu-
tion, population density, mating system and mechanisms of gene fl ow that will 
determine the level and structure of genetic status within and among populations. 
These informations will be for the effective utilisation and conservation of the tree 
beans. 

 The conventional propagation of tree beans is through seeds though in rare 
instances vegetative cuttings are also used but not popular due to  low   rooting per-
centage. On the other hand, the use of seeds for planting is associated with large- 
scale fungal and pest infestations. The large-scale death of tree beans in the northeast 
Indian region during the recent years has been associated with the die-back symp-
toms leading to serious economical problems of the growers (data not published). 
Infestation by pest like  Cadra cautella  both on the pods and storage has been well 
reported (Thangjam et al.  2003a ).  Anoplophora glabripennis  (Motchulsky) com-
monly known as Asian long-horned beetle have been found to be associated with 
the die-back symptoms of tree beans, and a large number of the larvae have been 
found from the trees across the northeast Indian region (data not shown). Thus, 
large-scale plantation and sustainable commercial cultivation of tree beans are 
affected by diseases and other factors such as climatic and diminishing areas of 
cultivation lands. In order to overcome these problems, it is now a priority to iden-
tify the proper genotype for mass production of disease-free planting materials and 
also use modern biotechnological and conventional breeding techniques for genetic 
improvement of this important tree species.   

5.2     Scope and Application of Biotechnology 
for Characterisation, Mass Production 
and Improvement of Tree Beans 

 In recent times with the advancement of biotechnological tools and techniques, 
various applications are used for the evaluation, characterisation, mass production 
and genetic improvement of crops including trees. The scope and application of 
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biotechnological tools to understand the phytochemical for its pungency, level of 
genetic diversity of tree beans, in vitro regeneration for mass production of quality 
planting materials and genetic transformation techniques for improvement are high-
lighted as follows. 

5.2.1     Thioproline Content 

 Tree beans are associated with a  characteristic   pungent smell, and its aroma from 
the fresh pods and seeds is relished by the consumers. Rahnema et al. ( 1996 ) identi-
fi ed that the distinctive sulphur aroma in this plant is associated with a principal 
agent known as thioproline (C 4 H 7 NO 2 S, thiazolidine-4-carboxylic acid) which is a 
cyclic sulphur-containing amino acid. Thioproline is the condensation product of 
formaldehyde and cysteine (Schubert  1936 ) and is a natural metabolite which can 
act as intracellular sulphhydryl antioxidant and free radical scavenger, protecting 
cellular membranes from damage due to oxygen-derived reactions (Ratner and 
Clarke  1937 ; Cavallini et al.  1956 ). The presence of endogenous formation of thio-
proline in biological systems such as plant and plant products is considered as a 
detoxifi cation pathway of formaldehyde (Peres and Dumas  1972 ). Various reports 
(Strubelt et al.  1974 ; Siegers et al.  1978 ; Brugarolas and Gosalvez  1980 ) on the 
importance of thioproline in the protection of the liver against various toxic agents, 
clinical antitumour effects in cancer patients and anti-ageing properties in drosoph-
ila are available widely.  Thioproline   also showed stimulation of lymphocyte and 
natural killer (NK) functions in old mice as well as the macrophage functions 
in vitro when administered in the diet by acting as an effective nitrite-trapping agent 
in the human body, thereby inhibiting the carcinogenic  N -nitroso compounds (Tsuda 
et al.  1988 ). Various natural sources of thioproline have also been identifi ed such as 
in cod fi sh, shiitake mushroom and many kinds of vegetables (Kurashima et al. 
 1990 ). It is observed that the level of formaldehyde and thiol contents in the differ-
ent developmental stages of  P. timoriana  increases with advancing maturity stages 
of the pod with the maximum concentration detected within fully matured seeds 
which corresponds to the presence of thioproline content (Thangjam and Maibam 
 2012 ). Similarly the thiol groups, i.e. total, nonprotein- and protein-bound composi-
tion, in  P. timoriana  increased with the maturity of the pods and decreased upon 
boiling. Various in vitro assay systems have shown that endogenous formaldehyde 
formation is genotoxic to the body and their subsequent reduction in content on 
boiling is due to the volatilisation of formaldehyde and the formation of thioproline 
endogenously (Takahashi et al.  1985 ; Frankenberg-Schwager et al.  1980 ). Thus 
endogenous  formation   of thioproline is useful and considered as a detoxifi cation 
pathway of formaldehyde (Kurashima et al.  1990 ). The sulphhydryl or thiol groups 
play an important role for the activities of cellular enzymes as well as keeping the 
membrane intact (Saez et al.  1990 ; Vladimirov  1986 ; Halliwell and Gutteridge 
 1999 ). Cellular sulphhydryl groups are the sum of cellular nonprotein SH (NP-SH) 
and protein-bound SH (P-SH) groups. Cellular NP-SH groups consist of glutathi-
one, L-cysteine, coenzyme A and dipeptides. Protein-bound SH groups are found in 
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the biomembranes, soluble enzymes and structural proteins. They are important 
groups having catalytic functions and structural properties. Sulphhydryl groups are 
the sites of radiation damage. The modulation of thioproline for its sulphur free 
radical reactivity has been assayed through the determination of its absorbance pat-
terns, using curcumin as a reference material (Thangjam and Maibam  2012 ). The 
presence of  thioproline   in the solution contributed to considerable depletion of cur-
cumin upon gamma irradiation, while the addition of ascorbic acid in the solution 
containing thioproline and curcumin showed a marked reduction in the depletion 
level of curcumin (Thangjam and Maibam  2012 ). Overall the depletion factors of 
curcumin in the three different experimental conditions are in the order of the fol-
lowing solutions: curcumin + thioproline > curcumin > curcumin + thioproline + 
ascorbic acid. The characteristic chrome orange-yellow colour of curcumin is due to 
the presence of two olefi nic side chains, which are conjugated to the aromatic ring. 
Its conjugated systems can be destroyed by thiyl free radicals, and in doing so, it 
loses its characteristic visible spectrum, i.e. bleaching. Thus, the destruction of cur-
cumin in the presence of thioproline, along with its relatively very low destruction 
in its absence, clearly indicates the generation and reactivity of thiyl free radicals. 
In vitro protection of DNA observed in the presence of thioproline against destruc-
tion by gamma irradiation also provides a new lead for investigations into protection 
against radiotherapy and reduction of risk for exposed individuals (Thangjam and 
Maibam  2012 ). With increasing doses of gamma radiation, the destruction increased. 
In the presence of thioproline,  considerable   protection of DNA depletion from 
gamma radiation was observed. The radioprotection of DNA by the thiol com-
pounds takes place due to its reaction with the free radicals thereby competing and 
blocking the free radical-oxygen reaction (Frankenberg et al.  1980 ). It has been 
reported that with increasing radiation dose, an increased number of DNA double-
strand breaks per cell remain unpaired and that the rate of repair diminishes with 
increasing radiation dose. It was shown that thioproline, which contains cysteine 
(sulphhydryl compound), exhibits considerable protection of DNA from gamma 
radiation. Its protective effect therefore stems from its ability to scavenge free radi-
cals, facilitating the chemical restitution of the original target molecule (DNA).  

5.2.2     Status of Genetic Diversity and Population 

5.2.2.1     Standardisation of DNA Isolation Protocol 
 For the use and application of  molecular   biology techniques, it is a must to isolate 
and obtain a pure and intact DNA for any downstream purposes such as PCR, 
sequencing, cloning, etc. However, the available DNA isolation protocols are not 
always suitable or applicable to all the species or the samples (Porebski et al.  1997 ). 
Tree beans contain a high level of polysaccharides and polyphenols; therefore it can 
hamper the DNA isolation procedures and reactions such as in PCR amplifi cation 
by inhibiting  Taq  polymerase activity, and DNA also gets degraded in the presence 
of endonucleases and co-isolation of viscous polysaccharides (Fang et al.  1992 ; 
Khanuja et al.  1999 ). Polyphenols not only inhibit enzymatic reactions (Weishing 
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et al.  1995 ) but also reduce the yield and purity of extracted DNA (Loomis  1974 ; 
Porebski et al.  1997 ). Thus a new DNA extraction protocol using imbibed embryos 
of  P. timoriana  has been  standardised  which allowed easy and rapid extraction of 
 DNA   and also minimised the risk of cross-contamination (Thangjam et al.  2003b ). 
This standardised method has been successfully used in various downstream appli-
cations using PCR and other techniques (Fig. 5 .2 ).

5.2.2.2        Genetic Diversity 
 Tree bean ( P. timoriana ) is a  diverse   species with complex patterns of morphologi-
cal and evolutionary patterns. Cultivar or varietal identifi cation has been carried out 
on the pod basis of pod morphology and taste of the individual trees. Since tree bean 
is an outcrossing species, it is highly heterozygous and morphologically diverse. 
Morphological traits are infl uenced by environmental factors, age of the plant and 
phenology; thus identifi cation and characterisation of genotypes based on these 
characters are not always reliable. Molecular markers such as RFLP, randomly 
amplifi ed polymorphic DNA (RAPD), amplifi ed fragment length polymorphism 
(AFLP), inter-simple sequence repeat (ISSR), etc., are some of the important tools 
used for the proper identifi cation and characterisation of crops (Botstein et al.  1980 ; 
Beckman and Soller  1983 ; Tanksley et al.  1989 ). Using the RAPD technique, con-
siderable genetic variations were detected in the eight tree bean genotypes from 
Manipur (Thangjam et al.  2003c ). The techniques employed are explained using a 
schematic fl ow chart (Fig. 5 .3 ).

5.2.2.3        Population Genetic Status 
 A sound knowledge and understanding of the basis of intraspecifi c genetic diversity 
is required to evolve and implement effective conservation  strategies  . Intraspecies 
genetic diversity within and among populations is essential for long-term adaptation 
and future survivability of tree bean. This plays a critical role in the ability of popu-
lations to respond to specifi c adaptations such as resistance to disease or insect, 
tolerance to certain soil conditions or other attributes that may be of current or 
future value in tree breeding programmes (Rogers and Ledig  1996 ). Thus, the con-
servation of genetic resources involves not only preventing extinction but also 
ensuring the availability of resources for future use through adaptation to the chang-
ing environments (Namkoong  1997 ). 

 The use of morphological  characters   and agronomic traits of  P. timoriana  cannot 
alone describe the existing level of genetic variations within the species since they 
represent only a small portion of the plant genome and are also infl uenced by envi-
ronmental factors, thus limiting their utility in describing the potentially complex 
genetic structures (Avise  1976 ). Molecular markers such as randomly amplifi ed 
polymorphic DNA (RAPD), amplifi ed fragment length polymorphism (AFLP), 
simple sequence repeats (SSRs) and inter-simple sequence repeats (ISSRs) have 
been widely used for the detection of genetic variation in many crops (Gupta and 
Varshney  2000 ). The advantages of these molecular markers are that they are inde-
pendent of environmental factors and more numerous than phenotypic characters, 
thereby providing a clearer indication of the underlying variation in the genome of 
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an organism (Avise et al.  1989 ). In  P. timoriana  successful use of RAPD technique 
in describing the genetic diversity has been reported by Thangjam et al. ( 2003c ) and 
Suwannarat and Nualsri ( 2008 ). However, the use of ISSR markers is effective to 
describe the complex genetic patterns and therefore more advantageous than the 
RAPD for studying closely related taxa (Parsons et al.  1997 ; Chowdhury et al. 

  Fig. 5.2    Schematic diagram for extraction of genomic DNA from  P. timoriana  using modifi ed 
CTAB method (Thangjam et al.  2003b )       
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1. Extract genomic
DNA using CTAB

method of Thangjam et
al. (2003)

2. Perform RAPD-PCR
using random primers

3. Separate the PCR
products on 2%

agarose by
electrophoresis

4. Detect and
photograph the gel

using gel
documentation system

5. Score the presence
and absence of PCR

products

6. Analyse the data
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  Fig. 5.3    Schematic 
diagram for the evaluation 
of genetic diversity in  P. 
timoriana  using RAPD 
(Thangjam et al.  2003c )       
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 2002 ). Goulao and Oliveira ( 2001 ) described that ISSR markers are more reproduc-
ible than RAPD markers as the ISSR primers. It is also effi ciently used for studying 
genetic diversity and population genetic structure of various plant species 
(Zietkiewicz et al.  1994 ; Kantety et al.  1995 ; Godwin et al.  1997 ; Archak et al. 
 2003 ). Genetic variation in three populations of  P. timoriana  (DC.) Merr. grown in 
the Manipur was analysed  using   inter-simple sequence repeat (ISSR) markers 
(Thangjam  2014 ). A total of 30 individual trees representing three populations were 
sampled and studied using ISSR markers which revealed the total genetic variance; 
70.04 % were attributed to within-population diversity, while 4.72 % differences to 
the among populations. The schematic fl ow chart (Fig. 5 .4 ) shows the procedure 
and steps involved in the study.

5.2.3         In Vitro Regeneration and Mass Production of Tree Beans 

5.2.3.1     Callus Induction and Somatic Embryogenesis 
 For a large commercial cultivation of  tree      beans, it would require large amount of 
superior quality clonal planting materials which are free of diseases which would be 
diffi cult to obtain by conventional methods of propagation through seeds and veg-
etative cuttings. Vegetative propagation by means of in vitro techniques such as cell 
and tissue culture techniques provides a viable option for plant germplasm conser-
vation and rapid clonal multiplication as well as application in the genetic improve-
ment programmes. The development of somatic embryogenesis techniques has 
several advantages over organogenesis for propagation as it bypasses the necessity 
of timely and costly manipulations of individual explants to obtain organogenesis. 
It does not require the time-consuming subculture steps to increase clonal stock and 
may overcome diffi culties with micropropagation of diffi cult root species. Somatic 
embryogenesis may accelerate the introduction of improved clones into commercial 
production as somatic embryos can be encapsulated and handled as seeds. It may 
provide a regeneration system amenable to gene transfer techniques. 

 The basic procedures for the establishment of callus culture were established and 
described in Fig. 5 .5 . In this study the ability of callus induction was found to be 
superior in MS medium than in B 5  medium. Based on this fi nding, we studied the 
effect of MS medium supplemented with combinations of different concentrations 
of 2,4-D (1.0 and 2.0 mg l −1 ) and BAP (1.0 and 2.0 mg l −1 ) on  P. timoriana  cotyledon 
explants, and 100 % callus induction was achieved in the fi rst week. The calli  gener-
ated      turned friable and more nodular in all the treatments by the second week of 
culture, and then small globular protuberances appeared at the top of these nodular 
calli by the third week of culture. It was the fi rst report on the collagenic capacity of 
cotyledon explants of  P. timoriana  and the possibility of inducing somatic embryo-
genesis from the induced calli (Thangjam and Maibam  2006 ).
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5.2.3.2        In Vitro Regeneration and Genetic Transformation 
of Tree Bean 

 As described earlier for a  sustainable      commercial cultivation of  P. timoriana  tree, it 
would require large amount of superior quality and genetically improved planting 
materials that may be diffi cult to obtain by conventional methods of propagation. 
The application of tissue culture techniques for mass production of quality planting 
materials and genetic improvement through genetic transformation using gene(s) 
coding desired trait/character is the most practical option for any crop. To start with 

1. Extract genomic
DNA using CTAB

method of Thangjam et
al. (2003)

2. Perform PCR with
ISSR primers

3. Separate the PCR
products on 2%

agarose by
electrophoresis

4. Score the presence
and absence of PCR

products

5. Calculate the percentage of
polymorphic bands, gene diversity,
Shanon’s information index, genetic

differentiation, gene flow

6. Analyse molecular
variance

7. Generate
dendrogram and

principal component

  Fig. 5.4    Schematic 
diagram for the 
 P. timoriana  population 
analysis using ISSR 
markers (Thangjam  2014 )       
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any genetic improvement programme of a plant requires the development of an 
effi cient transformation and regeneration procedure for further transfer of gene of 
interest. The conditions for establishing an effective in vitro regeneration and 
 Agrobacterium tumefaciens -based transformation through direct multiple shoot 
organogenesis from cotyledonary node explants without cotyledons and the estab-
lishment of an optimal selection system in  P. timoriana  have been successfully 
established (Thangjam and Sahoo  2012 ). The schematic fl ow chart explained the 
techniques involved (Fig. 5 .6 ).

   In vitro regeneration and  Agrobacterium tumefaciens -mediated genetic transfor-
mation of tree bean were achieved using cotyledonary node explants. The  explants      
cultured in MS medium supplemented with combinations of 2.7 μM NAA and 11 

1. Extract seeds from matured black
pods and wash with sterile distilled
water with a few drops of detergent

then rinse 3X with sterile water

2. Surface sterilize with 70% ethanol for
5 min then rinse 3X with sterile water
then treat with 0.1% mercuric chloride

for 15 min followed by water rinse

3. Excise the softened black seed coats
with a sterile blade and germinate on

1% agar water medium

4. From the10-day old seedlings excise
the cotyledons and injure in all

directions with sterile blade and cut
into 10 mm2 pieces then culture on MS

basal medium (MSB) supplemented
with 2 mg/L 2,4-D & observe for calli

induction

5. Sub culture the 2-week old calli to
a fresh MSB supplemented with 2
mg/L 2,4-D and 1 mg/L BAP and

observe for friable calli development
and somatic embryos

  Fig. 5.5    Schematic 
diagram for the induction 
of callus and somatic 
embryos from 
cotyledonary explants of 
 P. timoriana  (Thangjam 
and Maibam  2006 )       

 

R. Thangjam



95

μM BA showed the maximum frequency of multiple shoot (96.66 %) formation and 
number of shoots per explants (6.60), respectively. For rooting full and half-strength 
MS medium supplemented with various concentrations of indole-3-butyric acid 
(IBA) and NAA was studied, and the highest number of root formation was observed 

1. Surface sterilize the
mature black pods as given

in Figure.. and germinate the
seeds

2. From the 10-day old
seedlings excise the

cotyledonary node explants
of 10 mm size

3. Culture the explants
vertically on MS basal

medium (MSB)
supplemented with 0.5 mg/L

NAA + 2.5 mg/LBA

4. Maintain the culture till
multiple shoot development

and leaf induction by
subculturing every 3 weeks

5. Transfer the 8-week old
regenerated shoots
individually to MSB

supplemented with 2 mg/L
IBA for rooting

6. After 8 weeks of culture
take out the fully rooted

plantlets, wash and plant in
plastic pots containing

soaked soil, vermiculite and
vermicompost (1:1:1)

7. Cover the potted plants
with transparent

polyethylene bags and
maintain at adequate
moisture for a week

8. Transfer the potted plants to
the green house (28°C day; 20°C

night; 16h day-length; 70%
relative humidity) until

transplantation to the nursery

1. Inoculate single colony of 
the bacterial strain in 25 mL
liquid AB minimal medium

(Chilton et al. 1974)
containing 10 mg/L

rifampcin and 50 mg/L
kanamycin and grow

overnight at 28°C until OD600
reached 0.8

2. Collect the cells by
centrifuging at 5000 rpmfor
5 min and resuspend the

pellet in liquid co-cultivation
medium (LCM) containing

MSB supplemented with 0.5
mg/L NAA + 2.5 mg/LBA+

100µMacetosyringone

3. Collect the cotyledonary
explants as described in
Fig... and gently stab 4-5

times using a sterile needle
at the nodal region in few

drops of LCM and immerse
in bacterial suspension for

30 min with occasional
shaking

4. Remove excess medium
by blot-drying on a sterile
filter paper and co-culture
on petri dishes lined with

filter paper moistened with
LCM for 3 days at 25±2°C

16/8 h  photoperiod

5. Remove the co-
cultivated explants
and wash 3-4 times
with LCM and blot
dry on sterile filter

paper

6. Culture the explants on
shoot regeneration medium

(SRM) containing MSB
supplemented with 0.5 mg/L

NAA + 2.5 mg/LBA + 100
mg/L kanamycin + 500 mg/L

cefotaxime

7. Transfer into fresh SRM
every 2 weeks for 8-10

weeks till shoot attains a
height of 3-4 cm

8. Separate the individual
shoots from the explant and

transfer into the rooting
medium (RM) containing

MSB supplemented with 2
mg/L IBA + 7.5 mg/L

kanamycin + 500 mg/L
cefotaxime

9. Analyse for GUS activity
on the 10% of the

regenerated shoots (2 mm
basal section) for putative

transformation

10. Perform molecular
screening of the putative

transformants by
isolating genomic DNA

from the leaves and
PCR-screening for the
nptll gene and also
Southern analysis

  Fig. 5.6    Schematic diagram for the in vitro regeneration and  Agrobacterium -mediated genetic 
transformation of  P. timoriana  (Thangjam and Sahoo  2012 )       
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in full-strength MS supplemented with 9.8 μM IBA. Using  A. tumefaciens  strain 
EHA105 pCAMBIA2301, various optimum conditions for effi cient transformation 
were determined by recording the percentage of GUS +  explants. Following the opti-
mised conditions, the cocultured explants were cultured on semi-solid shoot regen-
eration medium (SRM) containing MS medium + 2.7 μM NAA + 11 μM BA + 100 
mg/l kanamycin + 500 mg/l cefotaxime. After 8 weeks of culture, the regenerated 
shoots were rooted in rooting medium (RM) containing MS medium + 9.8 μM 
indole-3-butyric acid (IBA), 3 % sucrose, 7.5 mg/l kanamycin and 500 mg/l cefo-
taxime. Successful transformation was confi rmed by histochemical GUS activity of 
the regenerated shoots,  npt II gene PCR analyses of the regenerated kanamycin- 
resistant plantlets and Southern analysis of putative transgenic PCR +  plants.    

5.3     Conclusion 

 Food security has been a challenge for feeding the population globally. This issue 
has taken more prominence with the worldwide large-scale reduction of agricultural 
and natural forest due to rapid increase in population and climatic changes. Future 
food and nutritional requirements can be achieved by integrating and popularising 
many nonconventional highly nutrient-rich crops like tree beans. Most of these non-
conventional crops remained only with the local users limited to the habitats. 
However many of these plants remain neglected, underutilised and under-researched 
which leads to their decline or loss. Realising the importance and prospects of such 
nonconventional crops in supplementing the nutritional and food requirements of 
the world, the chapter described the application of biotechnological tools for char-
acterisation, mass production and improvement of a nonconventional tree legume 
[ Parkia timoriana  (DC.) Merr.], which is used as a multipurpose tree vegetable in 
Southeast Asia.     
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  6      A to Z on Banana Micropropagation 
and Field Practices                     

     Norzulaani     Khalid      and     Boon     Chin     Tan   

    Abstract 
   In order to stay competitive in the global banana production, it is important to 
ensure that the planting materials used have consistent superior agronomic traits 
and are disease-free and grown in farms with good agricultural practice. The use 
of suckers from fi eld-grown plants as planting materials may increase the risk in 
the spread of diseases and inconsistent quality. Hence, the adoption of plant tis-
sue culture technique for mass propagation of banana planting materials has been 
widely used. Micropropagation of bananas has been successfully established 
through the use of shoot or meristem cultures and infl orescence either through 
direct plant regeneration or establishment of regenerable cell suspension cul-
tures. From the cell suspension cultures, single-celled protoplasts have also been 
isolated and regenerated. Not only the in vitro systems developed through tissue 
culture provide effi cient plant production but also a platform for genetic engi-
neering for agronomic traits improvement. In this chapter, we highlight studies 
on banana micropropagation and fi eld practices of this important crop.  

  Keywords 
   Banana   •   Biotechnology   •   Crop improvement   •   Tissue culture   •   Pests and 
diseases  
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6.1       Introduction 

 Bananas and plantains belong to the family of Musaceae. They are monocotyledon-
ous and perennial herbs that have been cultivated in nearly 120 countries of the 
humid and subhumid tropical regions. Bananas and plantains are one of the impor-
tant staple fruit crops in many developing countries as its nutritional status is higher 
than other common tropical fruits (Sultan et al.  2011 ; Chin et al.  2014 ). Global 
annual production of bananas and plantains is now exceeding 100 million tonnes 
(  faostat.fao.org    ). They are mainly grown by local farmers for local consumption and 
only about 10 % are exported (Čížková et al.  2015 ). Currently, Cavendish subgroup 
(AAA) is the most popular commercial cultivar of banana in the international trade 
(Robinson and Saúco  2010 ). Banana is traditionally propagated using fi eld- collected 
suckers or corms (Msogoya et al.  2011 ). This method is slow as only fi ve to ten 
suckers are produced per year (Makara et al.  2010 ) due to its long natural life cycle, 
sterility, and polyploidy characteristics. Moreover, it is easy to transmit diseases 
from old to new banana plantations along the generation route (Msogoya et al. 
 2011 ; Chin et al.  2014 ). Bananas and plantains are prone to many pests and diseases 
such as fungi, viruses, bacteria, insects, and nematodes. Thus, developing an effi -
cient and less labor-intensive method for large-scale production of good quality and 
disease-resistant banana through biotechnological approaches and good agricultural 
practices is critical.  

6.2     Banana Cultivars 

 The genus  Musa  is classifi ed into four sections:  Callimusa and Australimusa   (chro-
mosome number: 2n = 2× = 20) and Eumusa and Rhodochlamys ( n  = 11) 
(Arvanitoyannis et al.  2008 ). Bananas and plantains are classifi ed in the Eumusa 
section of the genus  Musa . Simmonds and Shepherd ( 1955 ) classifi ed the edible 
clones into (AA), (BB), (AB), (AAA), (AAB), (ABB), (AAAA), and (ABBB) 
based on their ploidy level and genomic origins in relation to two diploid wild spe-
cies  M. acuminata  (AA genome) and  M. balbisiana  (BB genome) characteristics. 
 M. balbisiana  is more drought and disease resistant compared to  M. acuminata , and 
such characteristics are often found in cultivars containing a “B” genome 
(Arvanitoyannis and Mavromatis  2009 ). Most important grown cultivars such as 
“Gros Michel” and “Cavendish” types (dessert bananas), which constitute most of 
the world’s banana trade, are triploid (2n = 3× = 33) (Ortiz et al.  1995 ; Osuji et al. 
 1997 ; Pillay and Tripathi  2007 ). In Southeast Asia, most of these triploids have now 
replaced the original AA diploids due to their vigorous growth and larger fruit 
(Nasution  1991 ). To date, the total number of  Musa  cultivars is still uncertain. There 
are about 300  Musa  accessions that have been collected and maintained by the 
 Plantain   and Banana Improvement Program of the International Institute of Tropical 
Agriculture (IITA) in a fi eld gene bank located at Onne, Nigeria (Vuylsteke et al. 
 1993 ; Arvanitoyannis and Mavromatis  2009 ).  
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6.3     Banana Propagation 

 Banana plants are  propagated   through vegetative suckers at the base of mother 
plant. These suckers have a strong vascular connection to the mother, but they can 
be removed and planted separately to allow rapid vegetative propagation and multi-
plication (Heslop-Harrison and Schwarzacher  2007 ). Banana plants propagated 
through suckers normally remain true to type.  

6.4     Tissue Culture-Based Technologies 

 In vitro culture is an important biotechnological tool to exploit the totipotency 
nature of plant cells. It can be used to mass propagate uniform and disease-free 
clones and ideal for gene pool conservation (Rout et al.  2006 ). This technique has 
been applied to banana, including shoot regeneration from cultured tissues by 
organogenesis, somatic embryogenesis, and protoplast culture. 

6.4.1     Organogenesis 

 In vitro  propagation   via meristem culture is a powerful tool that can produce a large 
number of disease-free plants in a short span of time (Rout et al.  2006 ). In banana, 
various explants such as apical meristems, shoot tips, fl oral explants, and immature 
fruits have been used for in vitro propagation (Harirah and Khalid  2006 ; Tripathi 
et al.  2008a ; Sultan et al.  2011 ; Ngomuo et al.  2014a ). Shoot tip and suckers have 
been the most commonly used to initiate shoots through direct organogenesis, but 
cell suspension cultures (indirect regeneration) are also being developed. Most 
 investigators   reported cytokinin-dependent shoot multiplication (Table  6.1 ).

6.4.2        Embryogenic Cell Suspension Culture 

 Establishment of  embryogenic cell suspension culture   has become an important 
step for the banana regeneration through somatic embryogenesis. There have been 
few explants used to initiate embryogenic callus, such as proliferating meristems 
(Sholi et al.  2009 ), immature male and female fl owers (Jalil et al.  2003 ; Husin et al. 
 2014 ; Namanya et al.  2014 ), immature zygotic embryos (Escalant and Teisson 
 1989 ), corm tissues, and leaf bases (Novak et al.  1989 ). Low embryogenic response 
and long initiation period remain signifi cant limitations as only a few studies 
reported on somatic embryogenesis from banana and plantain (Table  6.2 ).

6.4.3        Somatic Embryogenesis 

  Somatic embryogenesis   is the development of embryos from somatic cells. It offers 
a great potential for large-scale propagation, mainly due to its possibility to scale up 
the propagation using bioreactor, and serves as a platform for gene transformation 
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   Table 6.1    The recent literatures on the explants and culture medium used to induce in vitro shoot 
organogenesis   

 Cultivar  Explant  Culture medium  Reference 

  Musa beccarii   Suckers and male 
buds 

 MS + sucrose, BAP, 
coconut water, charcoal 

 Rashid et al. ( 2012 ) 

  Musa  spp. cv. 
Mzuzu 

 Suckers  MS + sucrose, BAP, 
ascorbic acid 

 Ngomuo et al. ( 2014b ) 

  Musa paradisiaca  
L. (var. Poovan 
and Monthan) 

 Suckers  Macro and micro mixed 
nutrients + sugar, BAP, 
IAA 

 Dhanalakshmi and 
Stephan ( 2014 ) 

  Musa acuminata  
(AAA) cv. 
Vaibalhla 

 Immature male 
fl owers 

 MS + Kin, NAA  Hrahsel et al. ( 2014 ) 

  Musa acuminata  
cv. Berangan 

 Suckers  MS + sucrose, ascorbic 
acid, BAP, IAA 

 Jafari et al. ( 2011 ) 

  Musa paradisiaca  
L. 

 Suckers and male 
infl orescences 

 MS + BAP, NAA  Ahirwar et al. ( 2012 ) 

  Musa  spp. cv. 
Grand Nain 

 Shoot meristem 
with leaf primordial 

 MS + sucrose, pineapple/
coconut milk 

 Beshir et al. ( 2012 ) 

  Musa  sp. cv. 
Berangan, 
Rastali, Nangka, 
and Abu 

 Male infl orescence 
fl owers 

 MS + TDZ, BAP, Kin, 
Zea, 2-ip, sucrose 

 Darvari et al. ( 2010 ) 

  Musa sapientum  
cv. Anupam and 
Chini champa 

 Pseudostems from 
suckers 

 MS + BAP, Kin, IAA, 
IBA, sucrose 

 Mahdi et al. ( 2014 ) 

  Musa  spp. cv. 
Grand Nain 

 Meristematic shoot 
tips 

 MS + BAP, IBA, 
thiamine, sucrose 

 Wilken et al. ( 2014 ) 

  Musa  cv. 
Yangambi 

 Suckers  MS + BAP, IAA, sucrose  Ngomuo et al. ( 2013 ) 

  Musa  sp. cv. 
Agnishwar 

 Suckers  MS + BAP, Kin, 2-ip, 
IBA, NAA 

 Rahman et al. ( 2013 ) 

  Musa  spp. cv. 
Virupakshi and 
Sirumalai 

 Immature male 
fl owers 

 MS + BAP, coconut water  Mahadev et al. ( 2011 ) 

  Musa  spp. cv. 
Grand Nain 

 Shoot tips  MS + picloram, BAP  Remakanthan et al. 
( 2014 ) 

  Musa sapientum  
L. 

 Shoot meristem 
from sucker 

 MS + BAP, IAA, coconut 
water 

 Iqbal et al. ( 2013 ) 

  Musa balbisiana  
cv. Kluai Hin 

 Suckers  MS + BAP, coconut water 
followed by MS + BAP 

 Kanchanapoom and 
Promsom ( 2012 ) 

  Musa  sp. cv. 
Awak, Berangan, 
Rastali, and Raja 

 Suckers  MS + BAP  Hui et al. ( 2012 ) 

  Musa  sp. cv. Mas, 
Nangka, 
Berangan, and 
Awak 

 Suckers  MS + BAP, IAA  Sipen and Davey 
( 2012 ) 

  Musa  sp. cv. 
Grand Nain 

 Suckers  MS + BAP, Kin  Shankar et al. ( 2014 ) 

   2 - ip  2-isopentenyladenine,  MS  Murashige and Skoog,  BAP  6-benzylaminopurine,  IAA  indole- 3- 
acetic acid,  IBA  indole-3-butyric acid,  Kin  kinetin,  NAA  1-naphthylacetic acid,  TDZ  thidiazuron, 
 Zea  zeatin  
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    Table 6.2    Recent examples of explants and culture media used for the establishment of somatic 
embryos   

 Cultivar  Explant  Culture medium  Reference 

  Musa sapientum  cv. 
Anupam 

 Leaf and stem 
segments 

 MS + 2,4-D, NAA  Pervin et al. 
( 2013 ) 

  Musa  spp. cv. French 
Sombre 

 Immature male 
fl owers 

 MS + biotin, IAA, 2,4-D, 
NAA, sucrose (callus 
induction) 

 Grapin et al. 
( 1996 ) 

 Hybrid cultivar 
FHIA-18 

 MS + biotin, glutamine, 
malt extract, proline, NAA, 
zeatin, kinetin, adenine, 
sucrose, lactose 
(embryogenic callus) 

 Kosky et al. 
( 2002 ) 

  Musa  spp. cv. Grand 
Nain 

 Vishnevetsky et al. 
( 2011 ) 

  Musa acuminata  cv. 
Berangan 

 Male 
infl orescences 

 MS + Dhed’a vitamins, 
myoinositol, biotin, IAA, 
NAA, 2,4-D, ascorbic acid, 
sucrose 

 Chin et al. ( 2014 ) 

 MS + vitamins, BAP, 
sucrose 

 Pisang Jajee  Embryo from seed  MS + BAP, NAA  Uma et al. ( 2011 ) 

  Musa acuminata  cv. 
Culcutta 4 

 Meristematic 
domes of axillary 
sprouted buds 

 ½ MS + ascorbic acid, 
2,4-D, zeatin, malt extract, 
glutamine, biotin, casein 
hydrolysate, proline, 
sucrose 

 Torres et al. 
( 2012 ) 

  Musa  spp. cv. Gonja 
manjaya 

 Apical shoot tips  MS + sucrose, ascorbic 
acid, 2,4-D, zeatin (callus 
induction) 

 Tripathi et al. 
( 2012 ) 

 SH salts, MS vitamins, 
glutamine, malt extract, 
proline, sucrose, lactose, 
zeatin, kinetin, NAA, 2-ip 
(embryo development) 

 MS + myoinositol, sucrose, 
ascorbic acid (embryo 
maturation) 

 MS salts, Morelc vitamins, 
sucrose, IAA, BAP (embryo 
germination) 

  Musa  sp. cv. Dwarf  Immature male 
fl owers 

 MS + 2,4-D, IAA, NAA, 
biotin, sucrose 
(embryogenic callus 
initiation) 

 Perez et al. ( 2012 ) 

 Cavendish 

 ½ MS, ascorbic acid, 
sucrose (embryogenic cell 
suspension culture) 

 MS + biotin, BAP, IAA, 
sucrose (embryo 
maturation) 

(continued)
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Table 6.2 (continued)

 Cultivar  Explant  Culture medium  Reference 

  Musa acuminata  cv. 
Matti, Chingan, and 
Njalipoovan 

 Immature male 
fl owers 

 MS + TDZ, sucrose 
(embryogenic callus 
initiation) 

 Divakaran and 
Nair ( 2011 ) 

 MS + biotin (embryo 
development) 

  Musa acuminata  cv. 
Sannachenkadali 

 Immature male 
fl owers 

 MS + TDZ, sucrose 
(embryogenic callus 
initiation) 

 Divakaran and 
Nair ( 2011 ) 

 MS + glutamine (embryo 
development) 

  Musa  spp. cv. Grand 
Nain 

 Shoot tips  MS + NAA, BAP/TDZ, 
glutamine 

 Remakanthan 
et al. ( 2014 ) 

  Musa acuminata  cv. 
Berangan 

 Male 
infl orescence 

 MS + Dhed’a vitamins, 
biotin, IAA, NAA, 2,4-D, 
ascorbic acid, sucrose 
(embryogenic callus 
initiation) 

 Husin et al. ( 2014 ) 

 MS + glutamine, sucrose 
(embryo development) 

  Musa acuminata  spp. 
 burmannica  

 Embryo from seed  MS + 2,4-D  Uma et al. ( 2012 ) 

  Musa -AAA-EA  Immature male 
fl owers 

 MS + biotin, IAA, 2,4-D, 
NAA, ascorbic acid, sucrose 
(embryogenic callus 
initiation) 

 Namanya et al. 
( 2014 ) 

 cv. Nakyetengu  MS + 2,4-D, glutamine, 
malt extract, sucrose 
(embryogenic cell 
suspension) 

  Musa acuminata  cv. 
Berangan 

 Immature male 
fl owers 

 MS + biotin, glutamine, 
ascorbic acid, sucrose, 
2,4-D then transfer to MS + 
biotin, ascorbic acid, 
indole-3-acetic acid, NAA, 
2,4-D, sucrose 
(embryogenic callus 
initiation); liquid MS biotin, 
ascorbic acid, glutamine, 
malt extract, 2,4-D, zeatin, 
sucrose (embryogenic cell 
suspension); MS + biotin, 
glutamine, malt extract, 
proline, sucrose (embryo 
development) 

 Jafari et al. ( 2015 ) 

   2 - ip  2-isopentenyladenine,  2 , 4 - D  2,4-dichlorophenoxyacetic acid,  MS  Murashige and Skoog,  BAP  
6-benzylaminopurine,  IAA  indole-3-acetic acid,  IBA  indole-3-butyric acid,  Kin  kinetin,  NAA  
1-naphthylacetic acid,  TDZ  thidiazuron,  Zea  zeatin  
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(George et al.  2008 ). In banana, in vitro regeneration can be derived from meriste-
matic tissues via direct organogenesis and from embryogenic cell suspension cul-
tures via somatic embryogenesis (Remakanthan et al.  2014 ). However, direct 
organogenesis from a pre-existing meristem is not suitable for transformation as it 
can lead to the formation of chimeras. This has made somatic embryogenesis as an 
important prerequisite for genetic engineering. 

 Somatic embryogenesis in Musaceae was fi rst reported by Cronauer and 
Krikorian ( 1983 ), who produced cell suspension-derived somatic embryos using 
apices as explants. Although their shoot tips were poorly developed, morphological 
examination showed that the small cell clusters were competent. In the latter reports, 
somatic embryos were induced from young male fl ower buds (Jalil et al.  2003 ; 
Kulkarni et al.  2006 ; Ghosh et al.  2009 ; Dai et al.  2010 ; Kulkarni and Bapat  2013 ), 
female fl owers (Grapin et al.  2000 ), bracts (Divakaran and Nair  2011 ), and scalps 
(Strosse et al.  2006 ; Sadik et al.  2007 ; Sholi et al.  2009 ). Despite the many options, 
immature male fl owers are still the most widely used starting material. Furthermore, 
the  contamination   rate of using immature male fl owers is generally lower compared 
to suckers. In our laboratory, we produced cell suspension-derived somatic embryos 
for Mas and Berangan cultivars using immature male infl orescences (Jalil et al. 
 2003 ,  2008 ; Chin et al.  2014 ; Husin et al.  2014 ; Jafari et al.  2015 ). We developed 
complete plant regeneration from embryogenic cell suspension and characterized 
stages of somatic embryogenesis in Mas cultivar through morphological examina-
tion to discriminate somatic embryogenesis-specifi c cellular structures from those 
emerging through an organogenic route (Fig.  6.1 ).

   The success of somatic embryo formation is largely dependent on factors associ-
ated with the donor plant, the culture medium, and the physical culture conditions. 
Table  6.2  shows the culture media and conditions used by several researchers to 

  Fig. 6.1    Morphohistological changes in somatic embryogenesis. ( a ) Non-embryogenic callus 
(bar: 1 mm). ( b ) Histology of non-embryogenic callus (bar: 25 μm). ( c ) Embryogenic callus from 
male infl orescence (bar: 200 μm). ( d ) Histology of embryogenic callus (bar: 50 μm). ( e ) Cells with 
indistinct nuclei and poor protein storage when cultured in M2b medium (bar: 50 μm). ( f ) 
Meristematic cells with distinct nuclei when cultured in M2a medium (bar: 50 μm). ( g ) Globular 
embryo (bar: 250 μm). ( h ) Histology of globular embryo (bar: 100 μm). ( i ) Mature torpedo stage 
(bar: 500 μm). ( j ) Histology of mature torpedo embryo (bar: 200 μm). ( k ) Germinated embryo 
(bar: 1 mm). ( l ) Histology of germinated embryo (bar: 500 μm). ( m ) Irregular protodermal layer 
(bar: 100 μm). ( n ): Germinated embryo (bar: 1 mm). ( o ) Rooted plantlets derived from somatic 
embryos (bar: 1 cm).  vc  vacuolated cells,  w  wall,  n  nucleus,  ps  procambial strand,  s  shoot pole,  r  
root pole (Reproduced from Jafari et al.  2015 )       
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induce somatic embryos in banana. The current practices for plant regeneration 
through somatic embryogenesis using embryogenic cell suspension cultures, how-
ever, are limited by low rates of embryo germination and long  culture   duration (18–
24 months) in culture medium containing high concentrations of plant growth 
regulators (Remakanthan et al.  2014 ). Owing to the strong genotypic infl uence, the 
strategy to develop “genotype-independent” embryogenic cell culture is still chal-
lenging (Kulkarni et al.  2007 ; Kulkarni and Bapat  2013 ). It is thus essential to dem-
onstrate the regeneration of cell suspension cultures in commercially important 
banana cultivars.  

6.4.4     Protoplast Culture 

  Protoplasts   are naked cells where the cell wall has been completely or partially 
removed either enzymatically or mechanically (Eeckhaut et al.  2013 ). In principle, 
each individual protoplast is totipotent and has the potential to reform a cell wall 
and later proliferate or regenerate into various organs under appropriate chemical 
and physical stimuli (Khatri et al.  2010 ). Protoplast is a useful biological system 
that has been widely used to investigate the mechanism of cell wall formation, cell 
division, and proliferation (Aoyagi  2011 ). It facilitates plant genetic improvement 
technologies, such as somatic hybridization, electroporation, microprotoplast- 
mediated chromosome transfer, and DNA microinjection (Rezazadeh and Niedz 
 2015 ). Protoplast isolation and regeneration have been reported in many fruit spe-
cies, such as banana (Haïcour et al.  2009 ), mango (Rezazadeh et al.  2011 ), grape 
(Yu et al.  2013 ), and guava (Rezazadeh and Niedz  2015 ). 

 In banana, successful isolation of viable protoplasts was fi rst reported by Bakry 
( 1984 ). Since then, much work has been  reported   on banana protoplast culture 
(Assani et al.  2006 ; Xiao et al.  2007 ). Numerous banana cultivars have been suc-
cessfully regenerated from protoplast. These include banana cv. Bluggoe (Megia 
et al.  1993 ; Panis et al.  1993 ); Brazilian dessert banana (Matsumoto and Oka  1998 ); 
Grand Nain (Assani et al.  2001 ,  2002 ,  2006 ); Gros Michel, Currare Enano and 
Dominico, SF265, IRFA903, and Col49 (Assani et al.  2002 ); and Mas (Xiao et al. 
 2007 ). Despite the tremendous progress made in generating banana protoplast cul-
ture, the successes rate for banana protoplast culture is still low, mainly due to its 
recalcitrant characteristic. Banana plant regeneration from protoplast is also not yet 
routine for many cultivars. There is no universal method for the isolation and culture 
of protoplasts. Therefore, developing a simple and effi cient protoplast isolation and 
regeneration protocol is essential. Several factors including cultivars, protoplast iso-
lation, plating density, culture methods, types of digestion enzymes, nurse cells, and 
media addenda, such as plant growth regulators, must be considered carefully to 
ensure high success rate (Xiao et al.  2007 ; Zhou et al.  2008 ). 

 Different cultivars and  source   of materials infl uence the development of proto-
plasts. In the past years, Bakry ( 1984 ) reported that leaf material was not suitable 
for protoplast isolation. However, Chen and Ku ( 1985 ) successfully generated pro-
toplast from the base tissue of the youngest leaf, but the generated protoplast did not 
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regenerate cell wall and undergo cell division. Matsumoto et al. ( 1988 ) produced 
protoplast with the ability to form cell wall and undergo cell division using bract 
tissues. However, the authors did not report any further development of the dividing 
protoplasts. Megia et al. ( 1992 ) reported protoplast regeneration and subsequent 
callus formation from embryogenic cell suspension cultures of  Musa acuminata  
ssp.  burmannica  cv. Long Tavoy. Since then, cell suspension cultures have been 
used as a source for protoplast isolation (Megia et al.  1992 ,  1993 ; Panis et al.  1993 ; 
Assani et al.  2002 ,  2006 ; Xiao et al.  2007 ). 

 The composition,  concentration  , and incubation period of enzyme mixture have 
signifi cant effect on the protoplast yield. The enzymes used must be able to degrade 
cellulose, hemicellulose, pectin, and, in some cases, callose (Bengochea and Dodds 
 1986 ). Cellulases, pectolyase, and macerozyme in different combinations and con-
centrations are commonly used for banana protoplast isolation (Assani et al.  2006 ; 
Xiao et al.  2007 ). The  isolated   protoplast is subject to osmotic stress after cell wall 
digestion. Different osmotic stabilizing agents, such as mannitol and sorbitol or 
combinations of both, are required to adjust the osmotic potential in the bathing 
incubation medium. For the development of protoplast, calli, and shoot regenera-
tion, both auxins (2,4-dichlorophenoxyacetic acid, 1-naphthylacetic acid, and 
indole-3-acetic acid) and cytokinins (6-benzylaminopurine and zeatin) are widely 
included in culture media (Haïcour et al.  2009 ). 

 It is now over 120 years since the fi rst crude preparations of plant protoplasts 
have been made (Klercker  1892 ). Despite the signifi cant progress that has been 
achieved in refi ning the methodologies, several important challenges remain. With 
the continuing breakthrough in devising regeneration protocols, we anticipate these 
challenges may fi nally be resolved especially in the recalcitrant species like banana.  

6.4.5     Micropropagation Using Bioreactor 

 Mass propagation of  banana   cell suspension cultures is usually carried out in shake 
fl asks. Using modern bioreactors, such as stirred tank reactor, bubble column reac-
tor, balloon-type bubble reactor, and air lift reactor, large-scale propagation of cells, 
tissues, somatic embryos, and plantlets in liquid suspension in short time is possible 
(Lee et al.  2011 ). However, several critical parameters and conditions, such as mix-
ing, gaseous composition, effi cient oxygen transfer, pH, and hydrodynamic forces, 
need to be optimized (Dong et al.  2013 ). Only a few studies have been reported on 
propagating banana cell cultures using bioreactor (Chin et al.  2014 ). For example, 
Kosky et al. ( 2002 ) successfully produced phenotypically normal tetraploid banana 
hybrid (FHIA-18) using 2 l CMF-100 bioreactor. Recently, we used 5 l balloon-type 
bubble column bioreactor (BTBCB) to propagate banana cell suspension cultures. 
We found that the cells incubated in the BTBCB with pH maintained at 5.7 showed 
higher cell growth rate (7.9 × 10 −2  day −1 ) compared to cells grown in BTBCB system 
without pH control (6.5 × 10 −2  day −1 ) and shake fl asks (5.3 × 10 −2  day −1 ). Furthermore, 
the yield of cell cultures was increased to 210 % when inoculated in BTBCB over 
14 days of culture (Chin et al.  2014 ). If all necessary culture  conditions   and physical 
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parameters are properly controlled, bioreactor may offer good potential for produc-
ing high-quality fi eld-ready plants in a one-step process.   

6.5     Pests and Diseases 

 Bananas and plantains are seriously threatened by  pests and diseases  , including 
 Fusarium  wilt, black Sigatoka, yellow Sigatoka, Moko disease,  Xanthomonas  wilt, 
banana bunchy top disease (BBTV), banana streak virus (BSV), weevils, and nema-
todes (Ploetz et al.  2015 ; reviewed in Ploetz and Evans  2015 ; Table  6.3 ).

    Fusarium  wilt (Panama disease) is one of the most destructive diseases in banana 
industry due to its impact on the variety “Gros Michel”-based export trades (Ploetz 
 2015 ). This disease was fi rst reported in Australia in 1874. It spread to nearly all 
banana-growing regions and destroyed the variety “Gros Michel,” leading to the 
replacement of the race 1-resistant “Cavendish” (AAA) cultivars in the 1950s and 
1960s. However, in the past years, an extremely lethal pathogen known as “tropical 
race 4” has been spreading and causing substantial losses to “Cavendish” (Heslop- 
Harrison and Schwarzacher  2007 ). At present, there are limited options to protect 
susceptible cultivars from  Fusarium  wilt. Innumerable control methods have been 
tested, such as soil fumigation, application of fungicides, crop rotation or soil 
amendment, and fl ood fallowing (Ghag et al.  2015 ).  Questionable   effi cacy and cost 
ineffectiveness of these methods have been reported. Furthermore, most of the 
reported control measures have not been tested in real fi eld environments (Ploetz 
 2015 ). As there is no resistant variety available against “tropical race 4,” the only 
option is to develop  Fusarium  wilt-resistant banana by genetic engineering. Efforts 
have been made to develop resistant cultivars against  Fusarium  using single 

   Table 6.3    The major diseases and pests of banana   

 Constraint  Caused by 

 Moko disease  Phylotypes IIA-6, IIB-3, and IIB-4 of  Ralstonia 
solanacearum  

  Xanthomonas  wilt (BXW)   Xanthomonas campestris  pv. musacearum 

 Blood disease   Ralstonia haywardii  subspecies celebensis 

  Fusarium  wilt   Fusarium oxysporum  F. sp. cubense 

 Anthracnose   Colletotrichum musae  

 Black leaf streak disease (BLSD)   Mycosphaerella fi jiensis  

 Eumusae leaf spot   Mycosphaerella eumusae  

 Sigatoka leaf spot   Mycosphaerella musicola  

 Banana bunchy top disease (BBTV)  Banana bunchy top virus 

 Banana streak disease (BSV)  Banana streak virus 

 Weevil   Cosmopolites sordidus  

 Burrowing nematode   Radopholus similis  

 Lesion nematodes   Pratylenchus coffeae  and  Pratylenchus goodeyi  
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exogenous gene in banana (Ghag et al.  2015 ). Several candidate genes used for the 
development of  Fusarium  wilt-resistant banana are listed in Table  6.4 .

   Black sigatoka (black leaf streak disease), another fungal disease, has been 
reported to affect subsistence production of various banana cultivars and has become 
the most pathogenic and of greatest concern to banana growers. It causes premature 
ripening, alters fl avor, and shortens the postharvest green life of fruits (Ploetz and 
Evans  2015 ). Black leaf streak disease was fi rst observed in Fiji in the early 1960s 
(Rhodes  1964 ) and has spread rapidly to new banana-growing areas. Yield losses 
due to black leaf streak disease gradually increased to more than 50 % (Kovács et al. 
 2013 ), while chemical control of the disease increased production costs to 25–30 % 
(Marín et al.  2003 ). Development of resistant, agronomically acceptable cultivars 
and genomic studies of the pathogen are underway. The banana  Xanthomonas  wilt 
disease is spreading  rapidly   and threatens the livelihood of millions of farmers in 
East Africa (Tripathi et al.  2008b ). Affected banana plants usually displayed yellow-
ing and wilting leaves, uneven and premature ripen fruit with yellowish blotches in 
the pulp, and dark brown placental scars (Tushemereirwe et al.  2004 ). Although 
several controls such as cultural practices have been attempted, a long-term solution 
may again overcome by development of genetic resistance plants. Other viral dis-
eases such as BBTV, BSV, and bract mosaic (caused by banana bract mosaic virus) 
also constrain banana production. Losses due to nematodes are severe when storms 
cause toppling of plants that have previously damaged by them (Tripathi et al. 
 2015 ). In banana plantations, nematodes are often controlled by periodic applica-
tion of pesticides. Weevils have been considered as an another important pest for 
bananas and plantains which can reduce the yield up to 40 % (Tripathi et al.  2015 ).  

6.6     Agricultural Practices 

 A good cultural practice is  necessary   to ensure a good crop. One of the recom-
mended practices is pruning or thinning. Pruning the banana mat is essential to 
ensure best vegetative growth and increase fruit production. This activity is to prune 

   Table 6.4    Candidate genes used to develop  Fusarium -resistant transgenic banana   

 Protein  Candidate gene  Reference 

 Defensin   MsDef1   Abdallah et al. ( 2010 ) 

  Sm - AMP - D1   Ghag et al. ( 2014 ) 

 Non-expressor of pathogenesis-related proteins-1   NPR1   Endah et al. ( 2008 ) 

 Glycosyltransferase   SsGT1   Lorenc-Kukuła et al. 
( 2009 ) 

 Thionin   Thi2.1   Epple et al. ( 1997 ) 

 Antimicrobial peptide   CaAMP1   Lee et al. ( 2008 ) 

  Ace - AMP1   Mohandas et al. ( 2013 ) 

 Thaumatin-like protein   tlp   Mahdavi et al. ( 2012 ) 

 Xylem sap protein (silencing)   XSP10   Krasikov et al. ( 2011 ) 
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unnecessary suckers to keep each production unit to only to the mother plant and 
two or possibly three suckers (Arvanitoyannis and Mavromatis  2009 ). Pruning is 
done periodically by removing excess sprouts and old, dried, and sick leaves. 
Allowing numerous pseudostems to grow besides the mother plant may lead to 
small bunches of low-quality fruit as well as encourage disease development. 
Leaving some ample space between plants is important to avoid crowding and com-
petition for water, light, and nutrients. Different ranges of spacing have been 
reported throughout the world. Common plant spacings range from 2.4 × 2.4 m to 
3.4 × 3.4 m which result in 360–680 plants per acre (Arvanitoyannis and Mavromatis 
 2009 ). 

 Bananas are usually grown in a nutrient-rich, well-drained, and slightly acidic 
soil. Similar to other crops, bananas also require a considerable  amount   of water but 
are sensitive to waterlogged situations. Protection of fruits against pests is another 
farm practice to ensure high quality and free of unsightly insect blemishes in banana 
fruits on arrival. This can be done by placing a perforated polyethylene bag over the 
fruit bunch when it is approximately 2 weeks old. Besides using chemicals, biologi-
cal control and the use of natural plant extract that has insecticide and fungicide 
properties have also been attempted. For instance, farmers in the Dominican 
Republic found that spraying a solution prepared from the plant extract of anamu 
( Petiveria alliacea  L.) is effi cient to control bugs and thrips. Tan et al. ( 2015 ) 
reported that the endophytic bacterial strain  Serratia marcescens  ITBB B5-1 iso-
lated from the rubber tree exhibited a high potential for biological control against 
the  Fusarium  disease in banana. Recent study by Cavero et al. ( 2015 ) showed that 
 Trichoderma atroviride  is a potential biological control agent that was able to reduce 
severity of black sigatoka as effective as the fungicide, azoxystrobin.  

6.7     Conclusion and Future Prospects 

 Sustainable banana production and agricultural practices are critical to ensure a 
constant supply of banana fruit to meet the world demand. Strategies that exploit 
both conventional and biotechnological approaches, such as in vitro culture-based 
technologies and genetic transformation, are useful in ensuring sustained fruit pro-
duction for food security.     
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 7      In Vitro Plant Regeneration in Dainty 
Spur [ Rhinacanthus nasutus  (L.) Kurz.] 
by Organogenesis                     

     T.     Gouthaman    ,     T.     Senthil Kumar    ,     A.  S.     Rao    , and     M.  V.     Rao    

    Abstract 
   A profi cient organogenesis protocol was standardised for  Rhinacanthus nasutus , 
a potential medicinal plant. MS medium supplemented with NAA (2.0 mg/l) + 
ascorbic acid (30 mg/l) was found to be more effective for callus induction. The 
highest number of 140.7 shoots/explant with shoot length of 15.5 cm from the 
callus derived from internode explant and 122.3 shoots/explant with shoot length 
of 11.0 cm from leaf explant-derived callus were observed on MS medium con-
taining 2.0 mg/l BA + 2.0 mg/l KN + 2.0 mg/l NAA. IAA (1.0 mg/l) has showed 
effective rooting.  

  Keywords 
    Rhinacanthus nasutus    •   Internode   •   Leaf explant   •   Callus   •   Organogenesis   •   Plant 
growth regulators  
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7.1       Introduction 

  Rhinacanthus nasutus  (L.) Kurz., commonly known as dainty spur, is a potential 
medicinal plant belonging to the family Acanthaceae. It has been reported to be 
distributed from the Southeast Asian countries including China, Thailand, Sri Lanka 
and India (Farnsworth and Bunypraphatasara  1992 ; Cramer  1998 ). Several parts of 
this plant have been used as traditional medicines to cure various ailments such as 
eczema, herpes, pulmonary tuberculosis, hepatitis, diabetes, hypertension, skin dis-
eases, tinea versicolor, ringworm, itching, fungal infection, allergies, cancers and 
infl ammation and as an antidote to snake venom (Rao et al.  2013 ; Kodama et al. 
 1993 ; Tewtrakul et al.  2009 ; Farnsworth and Bunypraphatasara  1992 ; Brimson and 
Tencomnao  2011 ). Various bioactive phytochemicals such as anthraquinones, ste-
rols, triterpenes, fl avonoids and naphthoquinones have been isolated from  R. nasu-
tus  (Wu et al.  1995 ,  1998a ,  b ; Sendl et al.  1996 ). 

 This plant grows during the rainy season, whereas in summer its aerial parts dry 
up and the underground root survives. Conventional propagation of  R. nasutus  is 
done by seeds, roots and cuttings (Cheruvathur and Thomas  2014 ), in which propa-
gation through seeds is challenging due to higher susceptibility of the seeds to cli-
matic variations. The high medicinal value and indiscriminate harvesting of this 
plant in the wild lead to loss of natural population at an alarming rate. Hence, there 
is an imperative need to develop a new approach for mass propagation and conser-
vation of  R. nasutus . The present study was focused to develop an in vitro protocol 
for the mass propagation of  R. nasutus  by organogenesis.  

7.2     Materials and Methods 

7.2.1     Plant Material 

  Rhinacanthus nasutus  plants  were   collected from the banks of river Kollidam, 
Tiruchirappalli, Tamil Nadu, India. Internode and leaf explants were collected in a 
wetted polythene bag; thereafter, explants were washed under running tap water for 
10 min to remove debris and further treated with commercial Teepol (detergent) for 
2–3 min and thoroughly washed with sterile distilled water under laboratory condi-
tion. Surface sterilisation was done with 70 % v/v ethanol for 1 min, 0.1 % w/v 
HgCl 2  for 5 min and a fi nal wash fi ve times with sterile distilled water.  

7.2.2     Medium and Culture Condition 

 The sterilised internode and leaf explants were cultured on  callus induction medium  : 
Murashige and Skoog (MS) medium (Murashige and Skoog  1962 ) supplemented 
with 0.5–5.0 mg/l indole-3- acetic acid (IAA), indole-3-butyric acid (IBA), 
α-naphthalene acetic acid (NAA) and 2–4-dichlorophenoxyacetic acid (2,4-D) 
(HiMedia, Bengaluru, India) either alone or combination with 2.0 mg/l NAA and 
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10–50 mg/l ascorbic acid (ASA) or citric acid (CA) (HiMedia, Bengaluru, India) or 
2.0 mg/l NAA + 10–50 % coconut water (CW) or 2.0 mg/l NAA + 5–25 mg/l ade-
nine sulphate (ADS) or glutamine (GLU) (HiMedia, Bengaluru, India). Green com-
pact nodular callus derived from both explants was cultured on shoot regeneration 
medium: MS medium with various concentrations (1.0–5.0 mg/l) and combinations 
of 6-benzyl adenine (BA), 6-furfuryl amino purine (KN) and N-isopentenyl amino 
purine (2ip) (HiMedia, Bengaluru, India) and NAA (2.0 mg/l). In vitro-raised elon-
gated shoots were transferred to rooting medium: MS medium with IAA, IBA and 
NAA (0.5–5.0 mg/l). All the cultures were maintained at 25 ± 2 ° C with 16 h pho-
toperiod under white cool fl uorescent light (Philips, India) with 35 μE M −2  S −1  light 
intensity and subcultured at 2-week intervals. 

  Regenerated plantlets   were transferred to sterilised earthen pots (6 × 8 cm) con-
taining sterile soil/sand/compost (150 g/pot) (3:1:1 v/v/v) and irrigated with 50 ml 
of tap water. The potted shoots were covered with transparent polythene bags to 
prevent desiccation and they were maintained in the culture room conditions. The 
relative humidity was reduced gradually, and after 1 month, plants were transferred 
to earthen pots (16 × 16 cm) fi lled with 2:1 (v/v) mixture of soil and organic manure 
(750 g/pot) and maintained in a greenhouse, subsequently planted in the fi eld.  

7.2.3     Statistical Analysis 

 Each experiment  was   repeated thrice with 20 replications each. The experimental 
design was random and factorial. The data were presented as mean ± S.E. and mean 
separation was performed using one-way analysis of variance (ANOVA) followed 
by Duncan’s new multiple range test (DMRT). All the above calculations and analy-
sis were carried out using SPSS statistical software ver. 11.5.0 (2002) for Windows 
(software package from SPSS Inc., 1989–2002;   www.spss.com    ).   

7.3     Results 

7.3.1     Callus Induction 

 Auxin-induced callus  from   internode as well as leaf explants after 4 weeks of cul-
ture on MS medium (Figs.  7.4a  and  7.5a ). Among four auxins, NAA was the most 
effective for callus induction followed by 2, 4-D, IAA and IBA. Compact green 
nodular callus was obtained after the fi rst subculture (Fig.  7.1 ).

   Green compact callus was formed and initiated from the cut ends of the explants. 
MS medium with 2.0 mg/l NAA showed best response of 70.4 % of callus (dark 
green and compact) in internode explant and 66.5 % in leaf explant; 2, 4-D at 3.0 
mg/l showed 45.6 % callus induction in internode explant and 39.2 % in leaf explant; 
IAA 2.0 mg/l induced 24.8 % white, loose or friable callus in internode explant with 
limited proliferation, followed by 22.6 % in leaf explant and IBA 2.0 mg/l showed 
15.8 % brownish callus with minimal proliferation rate, followed by leaf explant 
(14.1 %) (Fig. 7 .1 ). 
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 The explants exude phenolic compounds in the culture medium during callus 
induction. The exudation was reduced by ASA and CA (10–50 mg/l). ASA 30 mg/l 
and CA 20 mg/l showed better callus induction with no phenolic exudation. The 
callus was greenish, compact and nodular with 86.4 % response from internode on 
ASA and 78.4 % response on CA (Fig.  7.5b, c ) followed by 75.5 % from in ASA 
(Fig.  7.4b ) and 72.6 % in CA from leaf explants (Figs.  7.2  and  7.3 ).

    Coconut water (10–50 %) was  supplemented   to the medium towards improving callus 
induction and proliferation. Coconut water at 20 % showed 70.0 % green colour callus in 
internode explant, followed by 66.3 % brown callus in leaf explant (Figs.  7.2  and  7.3 ). 

 Along with the optimal concentration of NAA (2.0 mg/l), ADS (5–25 mg/l) and 
GLU (5–25 mg/l) presented improved callus induction and proliferation than 
CW. ADS at 15 mg/l showed the second-best response of 80.4 % callus in internode 
and 74.4 % in leaf explant (Figs.  7.2  and  7.3 ).  

7.3.2     Shoot Regeneration 

 Shoot bud  regeneration   from primary callus (27 days old) of both explants was 
observed on MS medium fortifi ed with various plant growth regulators, after 2 
weeks of culture. The callus with and without tiny shoot buds were subcultured onto 
the medium with same treatment for further shoot proliferation, till a maximum 
number of shoots were obtained. The multiple shoots were subcultured at a 2-week 
interval for further proliferation. All the calluses obtained from internode and leaf 
explants produced maximum number of shoots in 8 weeks of culture. The rate of 
shoot multiplication was high in the initial subculture on the fresh medium, but later 
there was a gradual decline. 

 The mean number of shoot production was increased with the increase in cytoki-
nin concentrations. BA played a key role in inducing regeneration of shoot buds and 

  Fig. 7.1    Callus induction from internode and leaf explants of  Rhinacanthus nasutus  on 
MS-supplemented auxins, after 4 weeks. IN- Internode       
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proved essential for multiple shoot induction and proliferation. The number of shoot 
formation varied with the concentrations of BA supplemented in the medium. BA 
treatments suppressed callus formation and rooting and produced the maximum 
number of shoot buds. BA 2.0 mg/l showed the best shoot regeneration from both 
explants within 8 weeks of culture (Figs.  7.4c  and  7.5d ). Maximum shoot regenera-
tion (69 %) with 64.5 shoots and shoot length of 5.7 cm was observed in the callus 
elicited from internode explant, followed by leaf explant-derived callus (59.3 

  Fig. 7.2    Callus induction from internode explants of  Rhinacanthus nasutus  cultured in MS 
medium + 2.0 mg/l NAA and organic additives, after 4 weeks. ASA and CA concentrations of A–E 
were 10, 20, 30, 40 and 50 mg/l respectively; CW concentrations of A–E were 10, 20, 30, 40 and 
50 % respectively; ADS and GLU concentrations of A–E were 5, 10, 15, 20 and 25 mg/l       

  Fig. 7.3    Callus induction from leaf explants of  Rhinacanthus nasutus  cultured in MS medium +
2.0 mg/l NAA and organic additives, after 4 weeks. ASA and CA concentrations of A–E were 10, 
20, 30, 40 and 50 mg/l respectively; CW concentrations of A–E were 10, 20, 30, 40 and 50 % 
respectively; ADS and GLU concentrations of A–E were 5, 10, 15, 20 and 25 mg/l       
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  Fig. 7.4    Indirect organogenesis of  Rhinacanthus nasutus  via leaf explant. ( a ) Leaf. ( b ) Green 
compact callus. ( c ) Regeneration of shoots. ( d ) Multiple shoots induction. ( e ) Shoot elongation. ( f ) 
Rooting. ( g ) In vitro acclimatisation using polybags. ( h, i)  In vitro acclimatisation. ( j ) Hardened 
plantlets in the greenhouse       

shoots/callus with shoot length 5.5 cm) (Table 7 .1 ). KN treatments showed less 
number of shoots compared to BA, while 2iP treatment showed callus proliferation 
along with the multiple shoot induction.

     Combinational treatments of BA and KN resulted in an increase in shoot produc-
tion. The highest shoot bud regeneration (78 %) with 98.3 shoots and shoot length 
of 13.3 cm was observed on 2.0 mg/l BA and 2.0 mg/l KN from callus induced from 
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internode followed by leaf explant-derived callus (69 %; 81.6 shoots/callus; shoot 
length 9.4 cm), within 8 weeks of culture (Table 7 .2 ). Increase in concentration of 
BA along with KN enhanced shoot regeneration 60 %.

   Synergistic  treatment   of NAA (2.0 mg/l) with BA and KN combinations enhanced 
the shoot bud production, compared to BA + KN and BA alone treatments. In these 
treatments, the secondary multiple shoots produced on subcultures showed little 

  Fig. 7.5    Indirect organogenesis of  Rhinacanthus nasutus  via internode explant. ( a ) Internode. ( b, 
c)  Green compact callus. ( d ) Regeneration of shoots. ( e ) Multiple shoots. ( f ) Shoot elongation and 
Rooting. ( g, h)  In vitro acclimatisation. ( i ) Field-established plant       
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basal callus. Initially, both the explants swelled to enlarge in size and then green 
compact callus initials formed at the margins. The highest percentage of regenera-
tion (92 %) was observed in 2.0 mg/l BA + 2.0 mg/l KN + 2.0 mg/l NAA from the 
callus induced from internode explant, followed by leaf explant-derived callus 
80 %. At these treatments, the highest number of 140.7 shoots with shoot length 

   Table 7.1    Multiple shoot induction from the callus derived from internode and leaf explants of 
 Rhinacanthus nasutus  on MS medium supplemented with cytokinins, after 8 weeks   

 Cytokinin (mg/l) 

 Multiple shoots/explant  Shoot length (cm) 

 Internode  Leaf  Internode  Leaf 

 BA 

 1.0  59.5 ± 0.80 c   48.4 ± 0.67 c   5.4 ± 0.72 ab   5.4 ± 0.72 ab  

 2.0  64.5 ± 0.78 a   59.3 ± 0.52 a   5.7 ± 0.56 a   5.5 ± 0.69 a  

 3.0  60.5 ± 0.54 b   57.4 ± 0.78 b   5.2 ± 0.61 b   4.5 ± 0.64 b  

 4.0  55.3 ± 0.40 d   52.4 ± 0.77 d   4.3 ± 0.56 cd   4.3 ± 0.66 c  

 5.0  52.4 ± 0.72 e   49.4 ± 0.78 e   4.2 ± 0.70 d   4.2 ± 0.70 bc  

 KN 

 1.0  40.4 ± 0.36 g   39.6 ± 0.96 h   3.3 ± 0.70 f   3.3 ± 0.61 e  

 2.0  44.6 ± 0.75 f   43.4 ± 0.65 f   3.4 ± 0.65 ef   3.6 ± 0.56 de  

 3.0  36.4 ± 0.62 h   40.4 ± 0.62 g   3.5 ± 0.72 e   3.6 ± 0.55 de  

 4.0  32.1 ± 0.58 i   33.3 ± 0.60 i   3.3 ± 0.69 f   3.3 ± 0.66 e  

 5.0  26.5 ± 0.79 j   24.3 ± 0.56 j   3.0 ± 0.60 g   3.2 ± 0.63 ef  

 2iP 

 1.0  18.4 ± 0.75 m   15.4 ± 0.67 m   3.1 ± 0.60 fg   3.3 ± 0.78 e  

 2.0  19.4 ± 0.65 l   18.6 ± 0.66 l   4.2 ± 0.47 d   3.7 ± 0.66 d  

 3.0  25.6 ± 0.52 k   23.5 ± 0.56 k   4.5 ± 0.55 c   4.2 ± 0.72 bc  

 4.0  18.4 ± 0.65 m   18.4 ± 0.69 l   3.4 ± 0.43 ef   3.2 ± 0.66 ef  

 5.0  16.3 ± 0.76 n   15.4 ± 0.77 m   1.8 ± 0.40 h   2.5 ± 0.58 f  

  Each value represents the mean ± S.E. of 20 replicates per treatment for stem and leaf explants and 
repeated three times. Values with the same superscript are not signifi cantly different at 5 % level 
probability level according to Duncan’s new multiple range test  

   Table 7.2    Multiple shoot formation from the callus derived from internode and leaf explants of 
 Rhinacanthus nasutus  on MS medium supplemented with BA and KN, after 8 weeks   

 Cytokinin (mg/l) 

 Multiple shoots/explant  Shoot length (cm) 

 Internode  Leaf  Internode  Leaf 

 BA  KN 

 1.0  1.0  60.2 ± 0.64 d   55.4 ± 0.78 e   11.1 ± 0.46 b   7.4 ± 0.68 b  

 2.0  2.0  98.3 ± 0.62 a   81.6 ± 0.55 a   13.3 ± 0.64 a   9.4 ± 0.76 a  

 3.0  3.0  73.5 ± 0.34 b   65.5 ± 0.70 b   9.3 ± 0.84 a   8.3 ± 0.63 c  

 4.0  4.0  56.3 ± 0.63 c   52.4 ± 0.75 c   7.4 ± 0.72 c   6.4 ± 0.78 bc  

 5.0  5.0  48.3 ± 0.64 e   46.4 ± 0.80 d   5.4 ± 0.83 c   4.8 ± 0.53 d  

  Each value represents the mean ± S.E. of 20 replicates per treatment for stem and leaf explants and 
repeated three times. Values with the same superscript are not signifi cantly different at 5 % level 
probability level according to Duncan’s new multiple range test  
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15.5 cm was recorded from internode-derived callus and 122.3 shoots with shoot 
length 11.0 cm was recorded from leaf-derived callus, within 8 weeks of culture 
(Table  7.3 ; Figs.  7.5e  and  7.4d ). This combination was so effective to get a quick 
response in inducing the shoot formation. The regenerated shoots were subcultured 
on the same medium for further shoot growth. The shoot elongation was  de novo  in 
the respective concentrations and combinations of the medium. It was observed that 
the maximum shoot length (15.5 cm) was also obtained on the above treatment, 
after 8 weeks of culture period (Table  7.3 ; Fig.  7.4e  and  7.5f ).

7.3.3        Rooting 

 In vitro-raised  shoots   were transferred to rooting medium – MS medium supple-
mented with auxins: IAA, IBA and NAA (0.5–5.0 mg/l). The rooting response was 
varied with auxin type and their concentrations. The highest number of 8.6 roots/
shoot with an average length of 15.5 cm was recorded on IAA 1.0 mg/l (Table  7.4 ; 
Figs.  7.5f  and  7.4f ) followed by IBA 2.0 mg/l (6.2 roots/shoot with root length 4.8 
cm) and NAA 2.5 mg/l (5.8 roots/shoot with root length 3.9 cm) (Table  7.4 ).

7.3.4        Hardening 

 Regenerated plantlets  transferred   to the sterilised earthen pots for hardening accli-
matised well under in vitro and green house conditions (Figs.  7.4g–j  and  7.5g –i). 
The survival rate of hardened plantlets under fi led transformation was 85 %.   

    Table 7.3    Multiple shoot formation of callus derived from internode and leaf explants of 
 Rhinacanthus nasutus  on MS medium + 2.0 mg/l NAA and BA + KN, after 8 weeks   

 PGR (mg/l) 

 Multiple shoots/explant  Shoot length (cm) 

 Internode  Leaf  Internode  Leaf 

 BA  KN 

 1.0  1.0  93.2 ± 0.74 d   79.7 ± 0.67 d   12.1 ± 0.66 ab   9.1 ± 0.42 b  

 2.0  2.0  140.7 ± 0.52 a   122.3 ± 0.42 a   15.5 ± 0.34 a   11.0 ± 0.66 a  

 3.0  3.0  87.5 ± 0.37 b   73.4 ± 0.68 b   13.7 ± 0.44 b   8.9 ± 0.45 c  

 4.0  4.0  66.5 ± 0.57 c   60.2 ± 0.67 c   9.4 ± 0.82 bc   7.5 ± 0.62 cd  

 5.0  5.0  51.2 ± 0.70 e   49.1 ± 0.55 e   8.9 ± 0.37 c   5.0 ± 0.52 d  

  Each value represents the mean ± S.E. of 20 replicates per treatment for stem and leaf explants and 
repeated three times. Values with the same superscript are not signifi cantly different at 5 % level 
probability level according to Duncan’s new multiple range test 
  PGR  plant growth regulator  
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7.4     Discussion 

7.4.1     Callus Induction 

 From the results, it was inferred that NAA induced maximum callus in both explants 
followed by 2, 4-D, IAA and IBA. The internode  explants   showed better callus 
induction followed by leaf explants. The effect of auxin and their concentration 

    Table 7.4    Root induction of shoots raised by organogenesis of internode and leaf explants of 
 Rhinacanthus nasutus  on MS medium supplemented with auxins, after 8 weeks   

 Auxin (mg/l)  Roots/shoot  Root length (cm) 

 IAA  0.5  6.2 ± 0.62 cd   12.3 ± 0.67 ef  

 1.0  8.6 ± 0.59 a   15.5 ± 0.72 d  

 1.5  8.0 ± 0.48 b   13.4 ± 0.87 b  

 2.0  7.2 ± 0.55 c   10.5 ± 0.54 a  

 2.5  6.0 ± 0.67 de   9.0 ± 0.72 

 3.0  5.4 ± 0.44 e   8.8 ± 0.66 de  

 3.5  4.0 ± 0.72 fg   7.2 ± 0.35 e  

 4.0  4.0 ± 0.49 gh   6.7 ± 0.57 f  

 4.5  2.8 ± 0.57 i   5.4 ± 0.68 g  

 5.0  1.5 ± 0.61 lm   4.3 ± 0.47 hi  

 NAA  0.5  2.0 ± 0.37 ij   2.2 ± 0.24 j  

 1.0  3.6 ± 0.42 h   2.8 ± 0.28 jk  

 1.5  4.2 ± 0.48 i   3.0 ± 0.32 l  

 2.0  4.4 ± 0.57 j   3.4 ± 0.37 lm  

 2.5  5.8 ± 0.70 jk   3.9 ± 0.24  m  

 3.0  5.0 ± 0.63 kl   3.5 ± 0.28 mn  

 3.5  4.6 ± 0.54 kl   2.7 ± 0.36 no  

 4.0  3.9 ± 0.50 lm   2.2 ± 0.37 o  

 4.5  2.5 ± 0.44 m   1.8 ± 0.22 p  

 5.0  2.0 ± 0.32 mn   1.1 ± 0.29 pq  

 IBA  0.5  4.8 ± 0.66 ij   3.7 ± 0.43 j  

 1.0  5.0 ± 0.58 h   3.9 ± 0.36 jk  

 1.5  5.7 ± 0.44 i   4.3 ± 0.48 l  

 2.0  6.2 ± 0.36 j   4.8 ± 0.42 m  

 2.5  5.9 ± 0.39 k   4.5 ± 0.38 m  

 3.0  5.3 ± 0.45 kl   4.0 ± 0.47 mn  

 3.5  4.0 ± 0.51 kl   3.6 ± 0.33  no  

 4.0  3.6 ± 0.37 lm   3.0 ± 0.26 o  

 4.5  2.4 ± 0.38 m   2.8 ± 0.20 p  

 5.0  1.7 ± 0.27 mn   2.0 ± 0.23 pq  

  Each value represents the mean ± S.E. of 20 replicates per treatment for stem and leaf explants and 
repeated three times. Values with the same superscript are not signifi cantly different at 5 % level 
probability level according to Duncan’s new multiple range test  
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have a signifi cant role for callus initiation using various explants. The effective 
response of NAA followed by 2, 4-D was also reported by Famelaer et al. ( 1996 ) in 
 Tulipa gesneriana . Sudhakar et al. ( 2006 ) observed callus induction from leaf and 
nodal explants of  R. nasutus  on MS media supplemented with 0.5 mg/l 2, 4-D, 
whereas Meena and Dennis ( 2014 ) observed from root explant of  R. nasutus  on MS 
medium supplemented with 3.0 μM KN and 0.4 μM IBA. We observed maximum 
callus induction in NAA followed by 2, 4-D. Liu et al. ( 1997 ) also reported that the 
exogenous NAA caused the accumulation of endogenous IAA through reducing the 
activity of IAA oxidase and vice versa in soybean. The infl uence of NAA on callus 
growth may be due to regulation of polyamine metabolic enzymes through activa-
tion of the genes coded for these enzymes (McClure and Guilfoyle  1989 ) or through 
regulating these enzymes’ activities. 

 To increase the effi ciency of callus formation and to control the phenolic exuda-
tion, MS medium was supplemented with ASA (10–50 mg/l), CA (10–50 mg/l), 
coconut water (10–50 %) and ADS and GLU (5–25 mg/l) in combination with 2.0 
mg/l NAA. Among all the treatments, 30.0 mg/l ASA showed the best response of 
86.4 % of callus induction and proliferation. However, there are only very few 
reports supporting the role of ASA and CA in morphogenesis (Dhar and Upreti 
 1999 ). Importance of ASA in plant cells has long been recognised initially in con-
trolling the redox system of cells and such processes as seed germination, growth, 
oxidative  photophosphorylation  , stimulation of RNA synthesis, bud development 
and prevention of senescence (Sweet and Guruprasad  1997 ). Organic acids and 
their potassium and sodium salts stabilise the pH of hydroponic solution (George 
and Sherrington  1984 ) or in vitro media (Arnow et al.  1953 ). Murashige and Tucker 
( 1969 ) observed pronounced growth stimulation in CA treatment. CA is an absolute 
prerequisite for respiration and biological oxidation. The major fate of citrate in 
plant tissues appears to be metabolism via TCA cycle or via glyoxylate cycle. The 
benefi cial effect of CA may be due to its antioxidant property due to the increase in 
morphogene-specifi c storage proteins by organic acids (Nichol et al.  1991 ). ADS 
was effective in organogenesis from callus in suspension cultures in garlic (Cid 
et al.  1999 ). Benefi cial effects from adenine addition are found in media containing 
both ammonium nitrate and cytokinins (Nickerson  1978 ; Pyott and Converse  1981 ). 
Adenine can serve as a precursor for zeatin synthesis, but the rate is low (Dickinson 
et al.  1986 ). Addition of coconut milk improved regeneration of garlic callus (Ayabe 
et al.  1995 ). Komalavalli and Rao ( 2000 ) observed that  the   nature of the explant, 
seedling age, medium type, plant growth regulators, complex extracts (casein 
hydrolysate, coconut milk, malt extract and yeast extract) and antioxidants (acti-
vated charcoal, ASA, CA and polyvinylpyrrolidone) markedly infl uenced in vitro 
propagation of  Gymnema sylvestre .  

7.4.2     Shoot Regeneration 

 Green, compact nodular callus  induced   shoot buds rather than other types. The bal-
ance between auxin and cytokinins is necessary for callus initiation and growth. A 
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high cytokinin-to-auxin ratio is generally required (George  1993 ). BA was the most 
effective cytokinin for induction of shoots in  Ophiorrhiza prostrata  from leaf and 
internode explants via shoot organogenesis (Beegum et al.  2007 ). Multiple shoot 
regeneration from other medicinal plant species such as  Coleus forskohlii  (Reddy 
et al.  2001 ),  Echinacea purpurea  (Koroch et al.  2002 ), Roman chamomile 
(Echeverrigaray et al.  2000 ),  Silene vulgaris  (Jack et al.  2005 ) and  Thapsia gar-
ganica  on MS medium supplemented with different concentrations of NAA, IAA, 
2,4-D and BA, KN (Makunga et al.  2005 ). In  Phaseolus lunatus  callus induction 
and shoot regeneration was achieved using epicotyl, cotyledon and hypocotyl 
explants on MS medium supplemented with TDZ (0.5 mg/l), IAA (0.05 mg/l) for 
callus formation and BA (1.0 mg/l) for shoots induction (Kanchiswamy and Maffei 
 2008 ). 

 A combination of two or more growth regulators is required for organogenesis, 
either applied simultaneously or sequentially (Evans et al.  1981 ). A balanced ratio 
of growth regulators plays an important role in differentiation of shoot buds (Wilson 
et al.  1996 ). The results obtained were similar with the abovesaid references. The 
shoots produced were grown luxuriantly in combination with cytokinin and auxin 
treatments. Similar results were reported by Bhati et al. ( 1992 ) who observed 
enhanced production of shoots per explant with incorporation of auxins with opti-
mal concentrations of cytokinins. Depending on the concentration of BA, KN and 
NAA either inhibited, stimulated or did not affect shoot multiplication, which also 
depended on the cytokinin level (Al-Bahrany  2002 ). 

 For the induction of shoot  buds  , BA is superior to other cytokinins, which may 
be due to the plant tissues which readily metabolise than the other synthetic growth 
regulators, and also BA has the ability to produce zeatin endogenously (Barna and 
Wakhlu  1993 ). In the present study, BA and KN combination showed better response 
than individual cytokinin treatment. Synergistic effect of auxin along with cytoki-
nins improved shoot regeneration potential. BA and KN in combination with NAA 
produced maximum number of shoots. 

 Sudhakar et al. ( 2006 ) reported only 34.1 shoots/explant from the callus induced 
from nodal explant of  R. nasutus  on MS medium with 1.5 mg/l KN, wherein GA 3  
0.4 mg/l showed maximum shoot length of 8.0 cm. Whereas, Meena and Dennis 
( 2014 ) reported 28.3 shoots on MS medium with 5.0 μM BA and 0.7 μM NAA. Our 
study showed improved shoot development of 140 shoots/explant from internode 
explant followed by 122.3 shoots/explant from leaf explant. This clearly indicates 
the auxin-cytokinin combination is superior in the shoot regeneration. Shoot num-
ber per explant was strongly infl uenced by genotype, culture medium and applica-
tion of growth regulators (Burbulis et al.  2005 ).  

7.4.3     Rooting 

 Auxins (IAA, IBA and NAA) were tested for in vitro  rooting  . IAA and IBA were 
found to be more effective for root induction. Roots were greenish in colour and 
longer with numerous branches with secondary hairs on IAA containing medium, 
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whereas on IBA and NAA treatments, the roots were light greenish and white with 
lesser secondary hairs. Rooting usually follows treatment with auxin alone, or with 
mixtures containing more auxin than cytokinin, exogenous cytokinins are more 
inhibitory. Auxin-induced root formation is thought to require, or induce, the pro-
motion of polyamine synthesis (George  1993 ) was of the opinion that auxin pro-
motes polyamine synthesis which leads further to root formation. Sudhakar et al. 
( 2006 ) reported best rooting of shoots induced from the callus of nodal explants of 
 R. nasutus  on half-strength MS medium containing 1.0 mg/l IBA. Meena and 
Dennis ( 2014 ) reported maximum  rooting (3.4 roots/ shoot) in shoots   derived from 
the callus of root explants of  R. nasutus  on MS medium with 4.0 μM IBA. In the 
present study, the best root induction was achieved in IAA 1.0 mg/l. The rooted 
plantlets appeared to be phenotypically normal.  

7.4.4     Acclimatisation 

 Since in vitro-raised plantlets  lack   epicuticular wax and ineffective stomata function 
(Sutter  1985 ), they have to be transferred to acclimatisation process (Murali and 
Duncan  1995 ). Hence, the plantlets were potted and kept in the same microenviron-
ment (culture room) by covering it with polybags and subsequently removed and 
continued in the same environment. The physical and environmental condition of 
culture and the medium composition and the timing of treatment applications are 
also important for obtaining shoot multiplication from tissues of species exhibiting 
low competence (Vasil and Thorpe  1994 ). The survival rate was 85 % in the present 
study.   

7.5     Conclusion 

 The present study reported an effi cient and improved organogenesis protocol for  R. 
nasutus . Internodal explant yielded 140.7 shoots/explant with shoot length of 
15.5 cm from the callus, whereas leaf explant showed 122.3 shoots/explant with 
shoot length of 11.0 cm on MS medium with 2.0 mg/l BA + 2.0 mg/l KN + 2.0 mg/l 
NAA. Effective rooting was observed on IAA (1.0 mg/l). This protocol can be help-
ful for conservation strategies and phytochemical studies of  Rhinacanthus nasutus .     
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 8      Application of Tissue Culture 
for  Laburnum anagyroides  Medik. 
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and     V.  S.     Tyrnov   

    Abstract 
    Laburnum anagyroides , a small tree or shrub from the Fabaceae family, is a 
promising object for its use in decorative landscaping and as a source of pharma-
ceuticals. The conventional propagation methods are not always successful for  L. 
anagyroides . Herein, we describe an approach involving the application of tissue 
culture techniques for its micropropagation. This approach is based on activation 
of the pre-existing meristems from the axillary buds taken from a mature tree or 
seedling explants and includes the following phases: (1) preparation of primary 
explants and their cultivation on the Murashige and Skoog (MS) medium supple-
mented with 2.22 μM 6-benzylaminopurine (BAP), hot water pretreatment with 
subsequent cultivation of the seeds on a MS medium used to overcome the physi-
cal dormancy of seeds, (2) proliferation of the initiated explants on the full- 
strength (for seedling explants) or ½ MS medium (for axillary buds) with 2.22 
μM BAP, (3) rooting of individual shoots on the ¼ MS medium supplemented 
with 2.68 μM α-naphthaleneacetic acid, and (4) acclimatization of the plants by 
spraying with the Emistim ®  elicitor. It was found that the explanting season also 
affected the initiation frequency from axillary buds but did not infl uence the 
culture initiation from seedling explants. In the tissue culture of both buds and 
seedlings, BAP not only stimulated higher number of shoots but also ensured the 
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development of normal shoots compared with the thidiazuron-containing 
medium. The results of our study can be used for the mass propagation of  L. 
anagyroides  and for obtaining good-quality seedlings suitable for gardening and 
for pharmaceutical industry.  

  Keywords 
    Laburnum anagyroides    •   Micropropagation   •   Plant growth regulators   • 
  Acclimatization   •   Seed dormancy  

8.1       Introduction 

  Laburnum anagyroides  Medik. is a large shrub or small tree from the Fabaceae family. 
It is native to the Central and Southern Europe mountains and is well adapted to tem-
perate climates. The total life span of the tree is about 20 years; it is fast growing and 
comes into fruition in 3–5 years. It can fi x atmospheric nitrogen within its specialized 
root nodules. It is quite demanding to the growing conditions (light, soil composition, 
moisture) and grows on a range of soils provided the soil is well drained and does 
not dry out for extended periods. In the sharply continental climate conditions (the 
Lower Volga region of Russia), it freezes in the winter, but recovers quickly. 

  L. anagyroides  is a very beautiful ornamental shrub, especially during fl owering 
period, when its golden-yellow fl owers gathered into graceful, pendulous-fl owered 
brushes up to 30 cm, creating the illusion of “golden rain” for which it has received 
a second title of Golden Chain Tree. Owing to its attractive appearance, it is used as 
a popular ornamental plant in parks and gardens throughout Europe (Szentesi and 
Wink  1991 ; Hewood  1993 ). 

  L. anagyroides  is well known as a poisonous plant. Various parts of the plant 
contain an alkaloid cytisine, which is especially abundant in mature seeds (up to 
5 %). In small doses, cytisine causes respiration excitation, raises blood pressure, 
and slows down the heart rate. In toxic doses, cytisine causes loss of consciousness 
and respiratory arrest. In addition, cytisine being a nicotinic receptor is used in the 
medicinal product Tabex® for smoking cessation (Tutka and Zatonski  2006 ; 
Tzancova and Danchev  2007 ). 

 Traditionally, the tree has been propagated through seeds and also by layering or 
grafting (Hartmann et al.  2010 ). However, conventional propagation methods are 
not always successful for the tree, and therefore, clonal propagation through tissue 
culture can be a reliable alternative to the traditional methods of propagation. 
Stimulation of the pre-existing meristems of the axillary bud has already been rec-
ommended as a most successful clonal technique for the in vitro plant regeneration 
of trees and shrubs (Harry and Thorpe  1994 ). 

 There are numerous reports on  micropropagation   of the species belonging to 
Leguminosae family such as various  Acacia  species (Beck and Dunlop  2001 ; 
Vengadesan et al.  2002 ),  Ceratonia siliqua  (Romano et al.  2002 ), the tropical tree 
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legumes (Hong and Bhatnagar  2007 ),  Robinia pseudoacacia  (Kanwar et al.  2007 ), 
 Vitex negundo  (Ahmad and Anis  2007 ),  Albizia odoratissima  (Rajeswari and Paliwal 
 2008 ), and  Cassia siamea  (Parveen et al.  2010 ). The purpose of our study was to 
elaborate a technology for  L. anagyroides  propagation by activation and prolifera-
tion of the pre-existing meristems from axillary buds taken from a mature tree or 
seedling explants. In the present study, we summarize the results of our experiments 
on the development of in vitro culture protocols for  L. anagyroides  
micropropagation.  

8.2     Micropropagation Using Axillary Buds 

 A single 12-year-old tree of  L. anagyroides   grown   in the Botanical Garden of 
Saratov State University, Russian Federation (latitude 51°32′26″ north, longitude 
46°00′30″ east), was used as a donor plant. Defoliated branches were washed under 
running tap water, cut to 2–3 cm long segments, and then immersed into 1 % (w/v) 
solution of commercial washing powder for 15–20 min. After that, the twigs were 
washed in running tap water for 20 min, surface disinfected with 0.1 % (w/v) mer-
curic chloride solution for 15 min, and washed with sterile distilled water (three to 
fi ve changes at least). 

8.2.1     Culture Initiation 

8.2.1.1     Primary Explants 
 One-year-old shoots were used  as   explant source. Two types of primary explants 
were dissected from the shoots: single axillary buds and nodal explants (5–7 mm) 
consisting of a dormant axillary bud and a stem segment. 

 After inoculation into the initiation medium, the axillary buds (Fig. 8 .1a ) started 
to grow and elongated, whereas the nodal segments turned brown and died. After 4 
weeks, the number of survived and initiated explants was signifi cantly ( P  ≤ 0.01) 
higher for axillary buds than for nodal explants (72.5 % and 9.1 %, respectively). 
Perhaps, the survival of the nodal explants was less effective because they produced 
higher amounts of phenolic compounds which inhibited tissue proliferation. This 
problem is a common phenomenon in mature tree micropropagation to signifi cantly 
reduce the effi ciency of initiation and proliferation of axillary buds and shoots 
(Minocha and Jain  2000 ; Hong and Bhatnagar  2007 ). In contrast, the axillary buds 
cultured concurrently produced no phenolic compounds, thus being preferred for 
the establishment of aseptic cultures. Other factors could be possibly involved, 
since nodal segments in some species are preferred explants for the micropropaga-
tion of woody plants (Ahuja  1993 ), including Leguminosae species (Vengadesan 
et al.  2002 ).
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  Fig. 8.1    In vitro propagation of  L. anagyroides  through axillary bud explants. ( a ) Axillary buds after 
inoculation in the MS medium; ( b ) shoot developed from an axillary bud after 4 weeks of cultivation 
in the media supplemented with 2.22 μM BAP (left, the MS medium; right, WPM); ( c ) shoots devel-
oped after 8-week cultivation in the ½ MS ( left ), MS ( center ), and WPM media ( right ), each medium 
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8.2.1.2        Initiation Medium 
 The MS (Murashige and Skoog  1962 ) (full or half strength) and WPM, Woody Plant 
Medium (Lloyd and McCown  1980 ),  media   were used for culture initiation. All the 
media contained vitamins according to the corresponding medium protocol, 20 g 
L −1  sucrose, and 7 g L −1  agar (Panreac) and were supplemented with 2.22 μM of 
6-benzylaminopurine (BAP). The medium pH was adjusted to 5.9 before autoclav-
ing at 121 °C for 20 min. The primary explants were cultured in Petri dishes (dia. 10 
cm) containing 25 mL of the induction medium. Further, cultivation phases were 
performed in glass jars (100 or 200 mL) containing 25 mL of the medium, capped 
with aluminum foil, and sealed with Parafi lm™. The cultures were incubated in the 
growth room at 24 ± 2 °C under a 14 h photoperiod from Osram Fluora lamps (2 
klux). 

 After inoculation into the initiation medium, the axillary buds started to grow 
and elongated. The number of the responding axillary buds was recorded after 14 
days of inoculation. The relative number of initiated buds on the media with a dif-
ferent mineral composition ranged from 61.5 % to 80.0 %. Although no signifi cant 
effect of the medium on the initiation frequency was revealed, the MS medium was 
more favorable for bud development than the WPM one (Fig. 8 .1b ). 

 To test the effect of  phytohormones   on the axillary bud response, the MS medium 
supplemented with various cytokinins in several concentrations was used. BAP 
(2.22 and 8.88 μM), 6-furfuryl-aminopurine (kinetin) (2.32 and 4.64 μM), and thidi-
azuron (TDZ) (2.25 μM) were used. Initial response of the buds was noticed in all 
experiments irrespective of the cytokinin type (BAP, kinetin, or TDZ). However, the 
subsequent axillary shoot formation as well as shoot elongation was observed only 
in the explants derived from the BAP-containing media (2.22 μM). Similar results 
were observed in  Tylophora indica  (Faisal et al.  2007 ) and  Eclipta alba  (Ray and 
Bhattacharya  2008 ), in which the explants from a BAP-containing medium had bet-
ter potential for shoot regeneration than those from media with kinetin or TDZ. 

 The proliferation rate of  responsive   buds was low. After 6–8 weeks of cultiva-
tion, small primary shoots with lengths of 8–10 mm developed.  

8.2.1.3     Season 
 Our experimental material was  collected   from April to November, three times, in 
total, in two replications, containing 15–20 samples each. The frequency of 
responded buds in the spring and autumn experiments (77.8 and 72.5 %, respec-
tively) was signifi cantly ( P  ≤ 0.001) higher than that in our summer experiments 
(18.6 %) (Fig. 8 .2 ). The explants initiated in the summer had greatly delayed the 

supplemented with 2.22 μM BAP; ( d ) shoots developed after 8-week cultivation in ½ MS supple-
mented with 2.22 μM BAP ( left ) and 8.88 μM BAP ( right ); ( e ) shoots developed after8-week cultiva-
tion in ½ MS supplemented with 2.22 μM BAP ( left ) and 2.25 μM TDZ ( right ); ( f ) shoots developed 
from tip segments ( upper row ) and nodal segments ( lower row ) cultured on the MS basal medium 
supplemented with 2.22 μM BAP; ( g ) rooted shoots after 4-week cultivation in the ¼ MS medium 
supplemented with 2.68 μM NAA; ( h ) plantlets in pots after 1.5 months in a greenhouse       

8 Application of Tissue Culture for Laburnum anagyroides Medik. Propagation



140

pace of development and eventually died. At the same time, there were no signifi -
cant differences observed between the numbers of explants initiated in the spring 
and autumn (75.3 % and 70.7 %, respectively).

   The infl uence of the explanting season on the establishment of aseptic cultures is 
a common phenomenon in woody species. A good amount of data on the best 
explanting season among woody species is described in the literature. For example, 
in  Ceratonia siliqua  (Romano et al.  2002 ),  Holarrhena antidysenterica  (Kumar 
et al.  2005 ),  Robinia pseudoacacia  (Kanwar et al.  2007 ), and  Populus tremula  
(Peternel et al.  2009 ), spring is the best explanting season. For  Morus australis  
(Pattnaik et al.  1996 ),  Gymnema sylvestre  (Komalavalli and Rao  2000 ), and  Crateva 
adansonii  (Sharma et al.  2003 ), autumn is the best season. In contrast to these 
reports, the aseptic  L. anagyroides  cultures were equally successful in initiating dur-
ing both the spring and autumn seasons. 

 It is generally accepted that the  effect   of explanting season on the establishment 
of aseptic cultures depends upon (1) the physiological, morphological, and physical 
states of the donor tissue tree, (2) changes in these states in different seasons, (3) the 
environmental conditions required for these changes to occur, and (4) the environ-
mental conditions occurring in the habitat between the time of maturation and ger-
mination (Baskin and Baskin  1998 ). During the annual ontogenetic tree cycle, after 
the end of the dormancy period, various phenological events were observed, such as 
leaf unfolding, fl owering, juvenile vegetative growth, adult vegetative growth, seed 
maturation, leaf fall, and, fi nally, the dormancy period (Kramer and Haännine 
 2009 ). The selection of explants at a specifi c responsive stage of the mature tree’s 
life cycle is a most important factor in the establishment of aseptic cultures. The 
importance of the physiological status of donor plants for in vitro culture initiation 
was reported and disputed in numerous papers (Benson  2000 ; Minocha and Jain 
 2000 ; Giri et al.  2004 ). 

  Fig. 8.2    Effect of the explanting season on the frequency of  L. anagyroides  responded explants of 
axillary bud or seedling cultures on the MS medium supplemented with 2.22 μM BAP. Data for 
axillary buds followed by different letters are signifi cantly different at  P  ≤ 0.05 (one-way ANOVA, 
Duncan’s Multiple Range Test,  F  = 82.37,  P  ≤ 0.001);  ns  nonsignifi cant ( F  = 1.27)       
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 It is clear that the  composition  , ratio, and levels of endogenous plant growth 
regulators, as well as the primary and secondary metabolites in these stages of tree 
vegetation, are different and variable. Evidently, such season-dependent metabo-
lism takes place both before and during in vitro culture induction. There are several 
examples in the literature supporting this supposition. For example, comparison of 
the antioxidants in dormant and sprouting buds has shown that the activity of anti-
oxidant enzymes like SOD and glutathione reductase is lower in the sprouting buds 
than in the dormant ones (Polle and Rennenberg  1994 ). The antioxidant status of the 
buds may play an important role in their ability to sprout under tissue culture condi-
tions. Thakar and Bhargava ( 1999 ) reported seasonal changes in the antioxidant 
enzyme activities, namely, ascorbate peroxidase, superoxide dismutase, and 
guaiacol- dependent peroxidase before and after the in vitro bud growth induction of 
 Gmelina arborea . Label et al. ( 1988 ) showed that hormonal changes in the endog-
enous levels of abscisic acid, indole-3-acetic acid, and benzyladenine take place 
both before and during the in vitro bud growth induction of  Prunus avium . Hohtola 
( 1988 ) found that the season-dependent metabolism in  Pinus sylvestris  is retained 
in the tissue culture conditions. 

 At the same time, the reduced  frequency   of summer initiation in our experiments 
may be explained by environmental conditions. In summer, the donor tree was sub-
jected to stressful environmental conditions (extreme atmospheric temperatures and 
soil moisture defi cit). As a general rule, plants have a lot of typical physiological, 
biochemical, and metabolic adaptive responses to abiotic stress. Among them are 
accumulation of protein, enzymes, amino acids, and hormones, modulation of sugar 
metabolism, and a lowered photosynthetic activity. In addition, drought stress inhib-
its cell division leading to decreased plant growth (Thakar and Bhargava  1999 ; 
Kramer and Haännine  2009 ; Thara et al.  2011 ). 

 In our case, the reduced frequency of summer initiation may be explained by the 
physiological status of shoot tissues of the donor tree, which may be caused both by 
the effect of drought stress upon the donor tree and by changes of the phenological 
event.   

8.2.2     Multiplication Phase 

 After 6–8 weeks of primary cultivation, the axillary buds developed a single shoot 
with few small leaves. During subsequent subculturing of the responded explants to 
a fresh medium, alongside the development and growth of the primary shoot, the 
stimulation of axillary pre-existing meristems also took place. As a result of this 
process, shoot clusters with several shoots (3–10 mm length) were developed. 

 At the same time, a small pale-yellow callus is formed from the basal part of the 
explants. To reduce the genetic instability of regenerated shoots, the callus was dis-
carded during subsequent multiplication cycles. 
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8.2.2.1     Proliferation Medium 
 For shoot multiplication, three  different   media were compared, namely, MS, half- 
strength MS medium salts (½ MS), and WPM. Each medium contained vitamins 
according to its protocol, 20 g L −1  sucrose, and 7 g L −1  agar (Panreac) and was 
supplemented with 2.22 μM of BAP. 

 The best results of shoot proliferation and elongation were observed on the ½ MS 
medium which produced 3.0 shoots per explant in 85.9 % of cultures (Table 8 .1 ). 
No signifi cant difference was observed in the shoot length between MS, ½ MS, and 
WPM media, but dwarf shoots were noted on the WPM (Fig. 8 .1c ).

   The ½ MS medium was used to  study   the effect of the plant growth regulators on 
shoot multiplication and elongation. Different plant growth regulators were tested, 
namely, BAP (2.22, 4.44, 8.88, and 17.76 μM), BAP together with kinetin (2.22 μM 
and 2.32 μM, respectively), kinetin (2.32 μM), thidiazuron (2.25 and 9.00 μM), and 
zeatin (2.28 μM). The shoot sprouting frequency, shoot number, and shoot length 
varied according to the type and concentration of the cytokinin used (Table 8 .2 ). 
Kinetin and zeatin alone showed poor regeneration, inducing the formation of 1–1.2 
shoots with lengths of 6–7 mm. The best response of shoot regeneration was 
observed for the BAP-containing media. The effectiveness of BAP relative to axil-
lary shoot regeneration has been reported for other woody species such as  Ximenia 
americana  (Aloufa et al.  2003 ),  Holarrhena antidysenterica  (Kumar et al.  2005 ), 
 Vitex trifolia  (Hiregoudar et al.  2006 ), and  Tylophora indica  (Faisal et al.  2007 ). The 
maximum number of shoots per explant was observed for the BAP-containing 
media (2.22 and 8.88 μM) (3.0 each), in ~86 % of cultures. The newly regenerated 
shoots were well developed and had normal appearance (Fig. 8 .1d ). However, pro-
longed subculturing on the medium with 8.88 μM BAP caused symptoms of vitrifi -
cation and hyperhydricity of the tissues. In addition, the shoots developed on this 
medium were rooted less successfully than those from the medium with 2.22 μM 
BAP (data not shown).

   In our experiments, TDZ in 2. 25   and 9.00 μM produced fewer numbers of shoots 
per explants (1.6 and 2.3, respectively) than BAP did in 2.22 and 8.88 μM (3.0 

   Table 8.1    Effect of the basal media on shoot multiplication of  L. anagyroides  after 60 days of 
culturing   

 Medium 
 Shoot sprouting frequency 
(%) 

 Mean no. of shoots per 
explant  Shoot length (mm) 

 MS  45.0 b  1.1a  9.7 a 

 ½ MS  85.9 c  3.0 b  9.5 a 

 WPM  26.9 a  1.1 a  8.3 a 

  F   93.5**  10.6*  1.9  ns  

  Each medium was supplemented with 2.22 μM BAP 
 Values are the mean of two replications, each consisting of ten explants. Data followed by different 
letters are signifi cantly different at  P  ≤ 0.05 (one-way ANOVA, Duncan’s Multiple Range Test) 
  ns  no signifi cant differences 
 * P  ≤ 0.05; ** P  ≤ 0.01  
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each), although TDZ for other woody species from the Leguminosae family was 
shown to be more effi cient for shoot formation than other growth regulators (Hong 
and Bhatnagar  2007 ). Besides, in the case of  L. anagyroides  micropropagation, the 
TDZ-containing media produced morphologically stunted shoots with abnormally 
developed leaves (Fig. 8 .1e ). Similar inhibitory effects of TDZ on the growth and 
elongation of shoots were also observed for other woody trees such as  Albizia 
chinensis  (Sinha et al.  2000 ),  Vitex negundo  (Ahmad and Anis  2007 ),  Balanites 
aegyptiaca  (Anis et al.  2010 ), and  Cassia siamea  (Parveen et al.  2010 ). The formation 
of stunted shoots or the inhibition of internode elongation may be due to the high 
cytokinin activity of TDZ (Huetteman and Preece  1993 ).  

8.2.2.2     Explant Effects 
 In the course of our preliminary  analysis  , differences in the multiplication rate 
between different explant types were noticed. Detailed analysis revealed that the 
shoot tips produced a signifi cantly ( P  ≤ 0.01) higher number of axillary shoots per 
explant (3.9) than the nodal explants (2.1) (Table 8 .3  and Fig. 8 .1f ).

   The superiority of shoot tips in comparison with nodal explants was also observed 
in the micropropagation of some other woody species, such as  Sorbus domestica  
(Arrilaga et al.  1991 ),  Acacia catechu  (Kaur and Kant  2000 ),  Ulmus minor  (Conde 
et al.  2008 ), and  Arbutus unedo  (Gomes and Canhoto  2008 ). 

 Thus, optimum shoot multiplication and elongation were achieved when shoot 
tip explants were subcultured on the ½ MS medium supplemented with 2.22 μM 
BAP. These cultures maintained shoot regeneration ability for 2 years without any 
signifi cant loss of viability.   

   Table 8.2    Effect of various cytokinins on shoot multiplication of  L. anagyroides  after 60 days of 
culturing on the ½ MS medium   

 Cytokinin (μM) 
 Shoot sprouting 
frequency (%) 

 No. of shoots per 
explant 

 Shoot length 
(mm) 

 BAP, 2.22  85.9  3.0 f  9.5 de 

 BAP, 4.44  81.8  1.7 abcd  9.1 cd 

 BAP, 8.88  85.8  3.0 ef  9.2 cde 

 BAP, 17.76  80.3  2.0 bcd  11.5 f 

 BAP, 2.22 + kinetin, 2.32  54.4  2.5 def  7.8 bc 

 Kinetin, 2.32  65.9  1.2 ab  6.0 a 

 Zeatin, 2.28  34.8  1.0 a  6.9 ab 

 TDZ, 2.25  62.0  1.6 abc  8.5 cd 

 TDZ, 9.00  72.3  2.3 cdef  10.7 ef 

  F   1.3  ns   7.0*  11.1* 

  Values are the means of three replications, each consisting of ten explants 
 Data followed by different letters in the same column are signifi cantly different at  P  ≤ 0.05 (one- 
way ANOVA, Duncan’s Multiple Range Test) 
  ns  no signifi cant difference 

 * P  ≤ 0.05  
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8.2.3     In Vitro Rooting 

 In vitro derived shoots (10–15 mm in length)  were   isolated from shoot clusters and 
transferred onto the MS medium (½ or ¼ strength) supplemented with 10 g L −1  
sucrose. Adventitious rooting of woody plants is usually induced by auxin. Among 
the auxins, IAA and IBA are the most frequently applied for rooting (Harry and 
Thrope  1994 ). We have studied the effects of different auxins (IAA, NAA, and IBA) 
on rhizogenesis. For root induction in media, various auxins were added in several 
concentrations, namely, IAA (2.85 μM), IBA (2.45 and 9.80 μM), and NAA (2.68 
and 10.74 μM). The medium without auxins was used as a control. The rooting 
frequency, the number, and the length of developed roots were counted after 1 
month of cultivation. 

 Shoot cultivation in the ½ or ¼ MS medium without auxins resulted in discolor-
ation of the shoots and the absence of their subsequent development. Addition of 
various auxins (IAA, IBA, and NAA) in different concentrations to the ½ MS 
medium also did not stimulate rhizogenesis. The root development was observed 
only in the media containing ¼ MS mineral salts, supplemented with the abovemen-
tioned auxins. Similar data were obtained by Kaur and Kant ( 2000 ) for  Acacia cat-
echu  micro-shoots, who also reported that the best results among rooting media 
were registered in the ¼ MS in comparison with the full or half-strength MS media. 

   Table 8.3    Effect of the explant type and BAP concentration on shoot multiplication of  L. anagy-
roides  after 60 days of culturing on ½ MS   

 Type of 
explants 

 Concentration of 
BAP (μM) 

 Shoot sprouting 
frequency (%) 

 No. of shoots 
per explant 

 Shoot length 
(mm) 

 Tip segments  2.22  100.0 b  4.0 c  12.1 e 

 8.88  100.0 b  3.5 bc  10.1 b 

 Nodal segments  2.22  69.4 a  2.0 a  7.3 a 

 8.88  72.8 a  1.9 a  8.2 ab 

  Average for explant type (factor A)  

 Tip segments  100.0 b  3.9 b  11.1 b 

 Nodal segments  72.3 a  2.1 a  7.5 a 

  F   13.8*  77.8**  42.0** 

  Average for BAP concentration (factor B)  

 2.22  84.7 a  3.1 a  9.7 a 

 8.88  87.6 a  2.8 a  8.9 a 

  F   0.1  ns   1.8  ns   2.2  ns  

  Values are the mean of three replications, each consisting of 5–7 explants taken from 2-year-old 
cultures 
 Data followed by different letters in the same column are signifi cantly different at  P  ≤ 0.05 (one- 
way ANOVA, Duncan’s Multiple Range Test) 
  ns  no signifi cant differences 
 * P  ≤ 0.05; ** P  ≤ 0.01  
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 IBA and NAA at high  concentration   (9.80 μM and 10.74 μM, respectively) stim-
ulated abundant callus development from the basal end of the shoots. Similar results 
were observed in other Leguminosae species (Parveen et al.  2010 ). Apparently, in 
Leguminosae, high concentrations of exogenous auxins in the medium stimulate 
callus development, which results in a poor vascular connection between the shoot 
and roots, thus reducing the survival percentage of plants. 

 A lower level of IAA (2.85 μM) or IBA (2.45 μM) or NAA (2.68 μM) resulted in 
normal root formation. Among the tested auxins, NAA in 2.68 μM induced the 
highest percent of rooted shoots (61.3 %), 5.4 roots per shoot with a root length of 
21.3 mm (Table  8.4  and Fig.  8.1g ).

   The growth and development of  adventitious   roots stimulated shoot elongation 
and the formation of new leaves; and the plantlets were ready for transferring into 
non-sterile conditions after 30–45 days of cultivation on the rooting medium.  

8.2.4     Acclimatization 

 This phase was most diffi cult and  labor   consuming. Regenerated plants with their 
fully expanded leaves and well-developed root systems were transplanted into pots 
with a soil mixture consisting of three peats/two leaf grounds/one sand (v/v/v) and 
were transferred to a greenhouse. Unfortunately, the majority of our plantlets died 
after 7–10 days. 

 In order to increase their survival rate, we used a combination of the following 
approaches: incubation of plantlets in tubes with non-sterile water for 10–14 days 
before their transferring into the soil, shading of plantlets during 2 weeks after pot-
ting into the soil, and covering the hotbed with a transparent polythene membrane 
to ensure high humidity. In order to acclimatize our plants to the greenhouse condi-
tions, the polythene membrane was opened for 10–15 min every day. After 1 month, 
the polythene membrane was completely removed. 

 Additional positive infl uence was caused  by   spraying of the plantlets by the com-
mercial elicitor Emistim ®  (two drops per 100 ml of distilled water). In such a case, 
the survival rate of the plants was approximately 60 %; the regenerated plants exhib-
ited normal growth and did not show any noticeable signs of abnormal phenotypic 
variation (Fig. 8 .1h ).   

   Table 8.4    Effect of various auxins on the root formation of  L. anagyroides  after 30 days of cultur-
ing on ¼ MS   

 Auxin (μM)  Rooting (%)  No. of roots per shoot  Root length (mm) 

 IAA, 2.85  24.7 a  1.5 a  8.0 a 

 IBA, 2.45  29.7 a  5.8 b  21.6 b 

 NAA, 2.68  61.3 b  5.4 b  21.3 b 

  F   11.2*  7.0*  19.8** 

  Values are the means of three replications, each consisting of ten shoots 
 Data followed by different letters in the same column are signifi cantly different at  P  ≤ 0.05 (one- 
way ANOVA, Duncan’s Multiple Range Test) 
 * P  ≤ 0.05; ** P  ≤ 0.01  
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8.3     Micropropagation Using Seedling Explants 

 Seedling tissues are  generally   considered as a reliable alternative to vegetative tis-
sues of mature plants (Benson  2000 ). Therefore, we developed a technique for 
micropropagation of  L. anagyroides  by using seedlings as a starting material. 

 Seed pods appeared in June and mature by the end of August. These pods are 
dehiscent and remain on the plant for some time. Some pods opened in late 
September, but many open in the following spring. Seeds either fall out of the open 
pods or remain in the pods for a year or longer (Szentesi and Wink  1991 ). The seeds 
have a large embryo, surrounded by a fairly thick (especially from the cotyledon) 
layer of the endosperm. They have a hard, impermeable coat. 

 The pods were shelled and shrunken and contained hard-coated seeds. These 
were collected at the end of September and stored at room temperature in darkness 
until used. The dark-colored seeds were discarded. Only plump light-yellow seeds 
were used in the laboratory germination and further establishment of experiments. 

8.3.1     Seed Germination 

 In our preliminary experiment,  seed germination   was low and did not exceed 10 %. 
One of the causes of this poor seed germination is the hard seed coat that may be a 
physical barrier to water uptake and/or gas exchange. The phenomenon is some-
times referred to as “seed coat hardiness” because the seed coats remain hard and 
impenetrable during exposure to normal germination conditions (Nikolaeva et al. 
 1985 ; Baskin and Baskin  2004 ). Seeds may be dormant upon release from their 
mother plant (primary or innate dormancy), and dormancy can also be induced in 
seeds after they have become nondormant (secondary or induced dormancy), if the 
conditions become unfavorable for germination (Lambers et al.  2008 ). 

 The Leguminosae family exhibits some of the most advanced morphological 
structures of the seed coat to regulate physical dormancy. The seed coat consists of 
four distinct layers, namely, (1) the outermost layer which is the cuticle, which has 
a waxy  and   water-repellent character; (2) the macrosclereids or palisade layer, 
which consists of long, narrow, tightly packed, vertical cells; (3) the osteosclereids, 
which is a layer of more loosely packed cells; and (4) the parenchyma layer, which 
is made up of a layer of little differentiated cells. Impermeability is caused by the 
cuticle and the palisade layer; scarifi cation through the cuticle and halfway through 
the palisade layer is suffi cient to overcome this impermeability, and the seeds start 
to absorb water (Lambers et al.  2008 ). 

8.3.1.1     Pretreatment to Overcome Dormancy 
 There are few reports available on the removal of  L. anagyroides  seeds out of  dor-
mancy   by pretreatment with concentrated H 2 SO 4  for 0.5–2 h (Nikolaeva et al.  1985 ; 
Hartmann et al.  2010 ). Stratifi cation is another method used to break dormancy; the 
positive effect is caused by both low and high temperatures, as well as alternating 
low and high temperatures. Stimulation of dormant seed germination by culturing 
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them on nutrient media under sterile conditions is also used (Nikolaeva et al.  1985 ). 
Plant growth regulators (such as kinetin, BAP, gibberellic acid) and various nitrog-
enous compounds (such as potassium nitrate) are known to have a stimulating effect 
on breaking dormancy and promote the germination process of forest tree seeds 
(Leadem  1987 ). 

 We have tested a range of temperature pretreatments for stimulation of seed ger-
mination on a particular media. 

 Seeds were stratifi ed by three regimes, namely, (1) cold stratifi cation (seeds were 
kept at −18 °C for 1 month), (2) warm pretreatment (seeds were soaked in hot water 
(≈90 ° C) for 20–30 min), (3) an alternate temperature regime (cold stratifi cation for 
1 month; thereafter, the seeds were soaked in hot water for 20–30 min). After the 
pretreatment, the seeds were surface disinfected with 0.1 % (w/v) mercuric chloride 
solution for 15–20 min, washed with at least three changes of sterile distilled water, 
and cultured in different media in a growth chamber at 24 °C for 1 month. 

 The media used for seed germination were the full-strength PGR-free MS 
medium, MS supplemented with 2.22 μM BAP, and WPM supplemented with 
2.22 μM BAP. All media contained vitamins according to the corresponding medium 
protocol, 20 g L −1  sucrose, and 7 g L −1  agar (Panreac). pH was set at 5.8–6.0 before 
autoclaving at 120 °C for 20 min. 

 The seeds began to germinate  after   10–14 days of cultivation on a nutrient 
medium, and after 3–4 weeks, the seedlings had normal appearance. 

 The seeds not subjected to temperature pretreatment (control) had a low germina-
tion ability, 11–13 % (Table 8 .5 ). The temperature pretreatments had a signifi cant 

    Table 8.5    Effect of temperature pretreatment and culture media on in vitro germination of  L. 
anagyroides  seeds after 30 days of culturing   

 Medium (factor 
A) 

 Temperature pretreatment of dry seeds (factor B), number of 
germinated seeds (%) 

 Mean  Control 
 Cold 
stratifi cation 

 Warm 
pretreatment 

 Alternate 
temperature 

 MS PGR-free  13.5 a  26.0 a  70.0 bcdefg  80.7 defg  47.5 a 

 MS + 2.22 μM 
BAP 

 12.5 a  24.2 a  82.3 g  79.8 cdefg  49.0 a 

 WPM + 2.22 
μM BAP 

 11.2 a  27.2 a  80.8 efg  82.1 fg  50.3 a 

 Mean  12.4 a  24.9 b  77.7 c  80.8 c 

  F  ( A )   0.2  ns  

  F   ( B )   118.0** 

  F   ( A × B )   0.92  ns  

  Values are the means of two replications, each consisting of ten explants. The number of germi-
nated seeds was counted after 1 month of cultivation 
 Data followed by different letters in the same column are signifi cantly different at  P  ≤ 0.05 (one- 
way ANOVA, Duncan’s Multiple Range Test) 
 ** P  ≤ 0.01  
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effect on the evaluations of germinated percentage ( P  ≤ 0.01). The cold stratifi cation 
of seeds at –18° resulted in increasing of their germination percentage up to 24–27 %. 
However, the seeds subjected to cold stratifi cation produced about 10–15 % abnor-
mal seedlings with morphological deviations in their leaf and shoot development. A 
signifi cant increase of the germination frequency was observed after the hot water 
pretreatment of dry seeds (70.0–82.3 %) (Fig. 8 .3a ). The highest germination per-
centage (77.8–88.9 %) was observed after the alternate temperature regime, but this 
method of pretreatment delayed obtaining sterile seedlings for 2 months, whereas the 
period of stratifi cation by hot water was signifi cantly shorter, 3–4 weeks.

    The mean germination percentage on various media varied within 47–50 % and 
did not depend on the nutrient medium composition (Table 8 .5 ).  However  , we 
noticed that the seedlings developed in the PGR-free MS medium were thin, elon-
gated, and prone to vitrifi cation as compared to the seedlings in other media (MS 
and WPM) supplemented with 2.22 μM BAP. Moreover, after transfer to a medium 
for micropropagation, the PGR-free MS-derived seedlings produced fewer shoots. 
Therefore, only the seedlings initiated on the MS medium supplemented with 2.22 
μM BAP were used as explants for further multiplication. 

  Fig. 8.3    In vitro propagation of  L. anagyroides  through seedling explants. ( a ) Germination of 
seeds after 3 weeks of cultivation on the MS medium supplemented with 2.22 μM BAP (seeds after 
hot water pretreatment ( left ) and control ( right )); ( b ) multiple shoot regeneration in the MS ( left ), 
½ MS ( center ), and WPM media ( right ), each medium supplemented with 2.22 μM BAP; ( c ) shoot 
clusters developed after 8 weeks of cultivation in the MS medium supplemented with 2.22 μM 
( left ) and 17.76 μM BAP ( right ); ( d ) rooted shoots after 4 weeks of cultivation in the ¼ MS 
medium supplemented with 2.68 μM NAA ( left ) and 2.45 μM IBA ( right ); ( e ) plantlet in a pot after 
1 month in a greenhouse       
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 Remarkably, contrary to axillary bud cultures, where the frequency of responded 
explants initiated in summer was signifi cantly low, we observed no signifi cant dif-
ferences between the frequencies of seed germination in our experiments conducted 
in spring, summer, and autumn (87.4, 84.8, and 88.6 %, respectively) (Fig. 8 .2 ).  

8.3.1.2     Comparison of In Vitro and In Vivo Germination 
 It was also found that seed pretreatment yielded high germination frequency only in 
in  vitro      conditions, after germination on the nutrient medium. The seeds subjected 
to hot water pretreatment and sown in the soil had a low germination frequency 
(19 % as compared to 74 %, Table 8 .6 ). The cause of such a difference is unclear yet. 
Clearly, the components of the nutrient medium (vitamins and sucrose) and hor-
mones provide advantageous conditions for the growth and development of seed-
lings at the early stages of development. Such additives are apparently missing in 
the composition of the soil substrate.

   In fact, the use of in vitro culture conditions was to intensify the process of 
obtaining aseptic seedlings. Well-developed seedlings can be obtained with a high 
frequency within 3–4 weeks. In addition, such seedlings further showed the best 
growth and development in non-sterile conditions as compared to those obtained 
through germination directly in the soil.   

   Table 8.6    Effect of pretreatment and growing conditions on the seed germination of  L. 
anagyroides    

 Growing conditions (factor A) 

 Pretreatment of dry seeds (factor B), number of 
germinated seeds (%) 

 Mean 
 Without pretreatment 
(control)  Warm pretreatment 

 In vivo (soil substrate)  2.1 a  18.9 b  8.4 a 

 In vitro (MS+2.22 μM BAP)  14.8 b  73.6 c  46.2 b 

 Mean  10.5 a  44.2 b 

  F   A    433.8*** 

  F   B    344.2*** 

  F   A × B    133.7** 

   L. anagyroides  seeds were germinated with or without hot water pretreatment under in vivo condi-
tions (a soil mixture consisting of three peats/two leaf grounds/one sand) and under in vitro condi-
tions (the MS medium supplemented with 2.22 μM BAP). Germination frequency was counted 
after 1 month. Values are the means of three replications, each consisting of 10–15 seeds 
 Data followed by different letters in the same column are signifi cantly different at  P  ≤ 0.05 (one- 
way ANOVA, Duncan’s Multiple Range Test) 
 *** P  ≤ 0.001; ** P  ≤ 0.01  
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8.3.2     Multiplication of Axillary Shoots 

 After 4 weeks, elongation of the  hypocotyl   and root and full expansion of the coty-
ledonary leaves were observed for the in vitro germinated seedlings. After the 
appearance and unfolding of the fi rst true leaf, the seedling roots were cut off, and 
explants, consisting of the hypocotyl, cotyledon, and epicotyl, were transferred to a 
medium for propagation. Three different media were tested, namely, MS, ½ MS, 
and WPM; two concentrations of BAP were tested in each variant of the nutrient 
medium, namely, 2.22 and 8.88 μM. All tested media contained 20 g L −1  sucrose and 
7 g L −1  agar (Panreac). 

 The seedling-derived cultures grew fast. Unlike axillary bud-derived cultures, 
where growth and development were slowed down, in the seedling-derived cultures, 
the bunch of shoots with various lengths was developed already in primary cultures 
after 6–8 weeks of cultivation as a result of activation of the axillary meristems. The 
shoot cultures in different media looked differently, showing changes in the number 
of emerging shoots and their length (Table 8 .7  and Fig. 8 .3b ).

   The shoot sprouting frequency on all tested media reached 100 %. The best 
results of shoot proliferation (6.0–6.4 shoots per explant) and shoot elongation 
(21.5–29.8 mm) were observed on the MS medium with addition of 2.22 and 8.88 
μM BAP (Table 8 .7 ). It was interesting to note that half-strength MS medium is 
optimal for shoot proliferation in axillary bud-derived cultures, whereas the full- 
strength MS medium is good for seedling-derived cultures. The superiority of the 
MS medium over other ones, such as WPM or B5, for shoot proliferation was also 
reported for other seedling-derived cultures of other woody species such as  Sterculia 
urens  (Hussain et al.  2008 ) and  Arbutus andrachne  (Mostafa et al.  2010 ). 

 Therefore, the MS medium was used to  study   the effect of plant growth regula-
tors on shoot multiplication and elongation. In this study, various cytokinins were 
added to the MS basal medium, namely, BAP (2.22, 8.88, and 17.76 μM), TDZ 
(2.25, 9.00, and 18.00 μM), and two combinations of BAP and TDZ (1.11 + 1.12 and 
2.22 + 2.25, respectively). 

    Table 8.7    Effect of the basal media on the shoot multiplication of  L. anagyroides    

 Medium  BAP (μM)  Mean no. of shoots per explant  Shoot length (mm) 

 MS  2.22  6.0 c  23.4 d 

 8.88  6.4 c  17.7 c 

 ½ MS  2.22  3.5 a  16.8 bc 

 8.88  3.2 a  16.9 c 

 WPM  2.22  5.4 a  10.1 a 

 8.88  4.8 abc  11.5 a 

  F   6.7*  36.5* 

  Values are the means of two replications, each consisting of ten explants 
 Data followed by different letters in the same column are signifi cantly different at  P  ≤ 0.05 (one- 
way ANOVA, Duncan’s Multiple Range Test) 
 * P  ≤ 0.05; ** P  ≤ 0.01  
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 The maximum number of shoots per explant was observed both on the 2.22 μM 
BAP-containing media (4.7) and 2.25 μM TDZ (4.4). An increased concentration of 
BAP (8.88 and 17.76 μM) and TDZ (9.00 and 18.00 μM) in the MS medium did not 
stimulate the development of increased number of shoots as compared to 2.22 μM 
BAP or 2.25 μM TDZ. Moreover, higher concentrations of both BAP and TDZ 
reduced the shoot number as well as the shoot length (Table 8 .8  and Fig. 8 .3c ). A 
similar observation was made with in vitro cultured hypocotyl explants of  Feronia 
limonia  (Hiregoudar et al.  2005 ). It was noticeable that higher concentrations of 
BAP (5.0 μM) in the MS medium are not benefi cial in producing more adventitious 
shoots as compared to 2.0 μM BAP. Stevens and Pijut ( 2012 ) also reported TDZ 
concentrations higher than 4.5 μM to have a deleterious effect on  Fraxinus profunda  
adventitious shoot formation.

   In our study, the combination of two  active   cytokinins, BAP and TDZ, did not 
stimulate the development of a higher number of shoots as compared to both BAP 
and TDZ alone. Addition of TDZ to the BAP-containing medium signifi cantly 
reduced the length of the developing shoots, while morphologically stunted shoots 
with abnormally developed leaves were developed on the TDZ-containing medium. 

 Like in axillary bud cultures, the seedling tips used as secondary explants had 
higher ability to form new shoots than the nodal explants (data not shown). In all 
variants, a compact pale-yellow callus was developed from the basal part of the 
explants (Fig. 8 .4a ).

   Table 8.8    Effect of various cytokinins on the shoot multiplication of  L. anagyroides  after 60 days 
culturing on the MS medium   

 Cytokinin (μM) 

 No. of shoots per explant  Shoot length (mm)  BAP  TDZ 

 2.22  –  4.7 c  21.5 b 

 8.88  –  3.1 a  29.8 c 

 17.76  –  3.4 ab  14.5 a 

 –  0.90  4.4 bc  16.7 a 

 –  3.60  3.1 a  15.9 a 

 –  7.20  3.2 a  15.5 a 

 1.11  1.12  4.0 abc  13.3 a 

 2.22  2.25  4.2 abc  13.3 a 

  F   3.9*  24.3* 

  Values are the means of three replications, each consisting from ten explants 
 Data followed by different letters in the same column are signifi cantly different at  P  ≤ 0.05 (one- 
way ANOVA, Duncan’s Multiple Range Test) 
 * P  ≤ 0.05  
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  Fig. 8.4    Shoot regeneration from the callus of  L. anagyroides . ( a ) A callus formed from the basal 
part of the shoots on the proliferation medium; ( b ) a shoot developed from the individual globular 
structures; ( c ) the histological structure of the callus after 4 weeks of cultivation ( u  undifferentiated 
tissue,  p  parenchyma tissue,  v  vascular bundle,  f  fellema,  fd  felloderma); ( d ) the zones of meriste-
matic activity ( arrows ) formed in the vascular bundle;  e  a shoot bud ( arrow ); ( f ) the zones of meri-
stematic activity and an adventitious shoot ( arrow ) in the 3-month-old callus. All  scale bars : 1 mm       
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8.3.3        Rooting and Acclimatization 

 The shoots longer than 10 mm  were      isolated from the shoot bunch and used in fur-
ther experiments on rooting. It was found that the rooting processes were almost 
identical as in the regenerants obtained from axillary bud-derived cultures (Sect. 
  1.3    ). The roots started emerging on 10–14 days after transfer to the rooting medium, 
and 5–7 roots with a length of 15–20 mm were formed after 1 month (Fig. 8 .3d ). 
Root development was observed only on the ¼ MS supplemented with auxins, and 
NAA was more effi cient as compared to IBA. 

 It was noticed that the rooting frequency on the ¼ MS supplemented with 2.68 
μM NAA varied widely from 0 to ~70 %. Our detailed analysis has revealed that 
root formation depends not only on the composition of the rooting medium but also 
on the multiplication medium for shoot development. The shoots developed on the 
½ MS supplemented with a low level of BAP (2.22 μM) or TDZ (2.25 μM) had the 
maximum frequency of rooting, while the shoots developed on the media with a 
higher level of cytokinins showed a lower frequency of rhizogenesis. 

 For example, the maximum rooting frequency (63.3 %) was observed in the 
shoots transferred from MS with 2.22 μM BAP, while the shoots transferred from 
the medium with 17.76 μM BAP developed no root system (Table 8 .9 ). In addition 
to the differences in the rooting frequency, noticeable differences were observed in 
the root system morphology. The root  system      of the shoots taken from the 2.22 μM 

   Table 8.9    Effect of the multiplication media on the rooting frequency (%) and acclimatization of 
 L. anagyroides  after 30 days   

 Multiplication medium 

 Rooting (%) a   Acclimatization b   Medium 

 Cytokinin (μM) 

 BAP  TDZ 

 MS  2.22  −  63.3 d  + 

 8.88  −  34.3 b  ± 

 17.76  −  0.0 a  − 

 −  2.25  59.1 cd  + 

 −  9.00  21.1 ab  ± 

 −  18.0  18.3 ab  − 

 1.11  1.12  32.5 b  ± 

 2.22  2.25  16.1 ab  − 

 WPM  2.22  −  16.6 ab  − 

 8.88  −  11.1 ab  − 

  F   9.3* 

  Values are the means of two replications, each consisting of ten shoots 
 Data followed by different letters in the same column are signifi cantly different at  P  ≤ 0.05 (one- 
way ANOVA, Duncan’s Multiple Range Test) 
 * P  ≤ 0.05 
  a Rooting medium: ¼ MS supplemented with 2.68 μM NAA 
  b +, survived more than 50.0 % regenerants; ±, survived less than ≤50.0 % regenerants; – , all regen-
erants died  

8 Application of Tissue Culture for Laburnum anagyroides Medik. Propagation

http://dx.doi.org/10.1007/978-981-10-1917-3


154

BAP apparently looked normal, whereas the shoots taken from the 8.88 μM BAP 
produced small thickened roots. It is likely that during in vitro cultivation, the exog-
enous cytokinin used in high concentration is not fully utilized and accumulates in 
the shoot tissues, which complicates the rooting process.

   Acclimatization of rooted plants was performed according to some methods 
described in Sect.   1.4    . The regenerants derived from seedling cultures tolerated to 
acclimatization stress better than the plants derived from axillary bud-derived cul-
tures, and they were characterized by higher adaptive potentials. After 6–8 weeks of 
adaptation to non-sterile conditions, the regenerants looked normal and were ready 
to transfer into fi eld conditions (Fig. 8 .3e ).   

8.4     Shoot Regeneration from Callus 

 Micropropagation of woody plants  using   callus cultures is a common practice. 
Basal callus was a source of adventitious shoot production in  Ceratonia siliqua  
propagation (Romano et al.  2002 ). Moreover, as in the case of the European aspen 
( Populus tremula  L.) propagation, shoot regeneration from callus outnumbered the 
direct shoot formation from apical meristems; therefore, it was used to increase the 
effi ciency of micropropagation (Peternel et al.  2009 ). 

 In our experiments with  L. anagyroides , concomitantly with shoot development, 
a small pale-yellow callus was formed from the basal part of the shoots on the pro-
liferation medium (Figs.  8.4a  and  8.5 ). This callus had a globular compact appear-
ance, and at the end of each passage (8 weeks of cultivation), shoots were developed 
from the individual globular structures (Fig.  8.4b ).

   As far as the basic prerequisite for the application of tissue culture technology 
for the clonal propagation of plants is maintaining their genetic identity, we per-
formed a histological study to reveal whether these shoots develop from the pre- 
existed meristems of explants or they form from the apical meristems developing de 
novo in this callus. 

  Fig. 8.5    Schematic development of shoot formation in callus cultures of  L. anagyroides ;  ex  
explant,  c  callus,  ad  adventitious shoots       
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 Histological preparations were  performed   according to our method based on a 
clearing technique of plant tissues (Herr  1971 ). Explants were fi xed in aceto-alcohol 
(3:1) temporarily in 4, 5, 6, 7, and 8 weeks, after 3 months from the beginning of 
cultivation on the MS medium supplemented with 2.22 μM BAP. The fi xed material 
was rinsed with water for 24 h and then incubated in glycerin for 5 weeks. Its sec-
tions (with a thickness of about 0.5 mm) were placed on a slide in a drop of the Herr 
clearance solution (Herr  1971 ) for 3–5 days. 

 It was found that the callus developed in the base of the shoots after 4 weeks of 
cultivation had a heterogeneous structure. The upper part (distal to the medium 
surface) of the callus consisted from undifferentiated tissue (Fig. 8 .4c ,  u ). The cen-
tral area of the callus consisted of the overgrown basal part of the shoot. It consisted 
of the core parenchyma tissue (Fig. 8 .4c ,  p ) and vascular bundles (Fig. 8 .4c ,  v ). The 
lower part of the callus consisted of the dark-colored cells of fellema and the light- 
colored cells of felloderma. 

 After 6–7 weeks of cultivation, zones of  meristematic   activity got formed on the 
vascular bundles (Fig. 8 .4d ). Subsequently, shoot buds got differentiated from these 
zones (Fig. 8 .4e ). After 3 months of cultivation, the number of the zones with 
meristematic activity increased, and some of them gave rise to adventitious shoots 
(Fig. 8 .4f ). 

 These results testify to the following sequence of developmental events. The 
proliferative activity of the meristematic tissues of the primary shoot led to the for-
mation of callus tissue. During cultivation, zones of high proliferative activity were 
formed on the vascular bundles of the initial shoot, from which adventitious shoots 
developed. In histological sections, in the area of the formation of an adventitious 
shoot, the connection of the vascular bundles of the adventitious shoot with the 
vascular bundles of the primary shoot was clearly visible. 

 Thus, the shoots regenerated from the  callus   developed on the basal part of the 
primary shoot arose as a result of proliferation of the meristematic tissues of the 
original explant. It can serve as one of the evidences of genetic identity between the 
shoots which developed by direct organogenesis from epicotyl meristems and 
adventitious shoots appeared “within” the callus tissue. These fi ndings allow using 
such shoots in the technology of micropropagation of  L. anagyroides  to improve its 
effectiveness.  

8.5     Conclusion 

 Woody plants are perennial and complex organisms, whose reproductive potentials 
decline with age. Clonal propagation through tissue culture is a reliable alternative 
to the traditional methods of propagation of adult plants. The results of our experi-
ments on the application of tissue culture techniques for the propagation of  L. ana-
gyroides , a shrub, showed that the mass and reliable plant regeneration in this 
species can be achieved by careful observance of the known regularities specifi c to 
the tissue culture of woody species. In our work, we used the basic strategy for 
woody tree micropropagation, i.e., direct regeneration by activation and 
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proliferation of the pre-existing meristems from axillary bud explants taken from a 
mature tree. 

 Choosing of the explant type and the explanting season mainly determines the 
effi ciency of micropropagation of woody species. The axillary bud explants taken 
from a mature tree were more preferable for the establishment of aseptic cultures 
than nodal explants. The juvenile tissues of seedlings were more responsive starting 
material than explants taken from a mature tree. However, seeds are characterized 
by physical dormancy. Hot water pretreatment with subsequent cultivation of seeds 
on the MS medium allowed overcoming this phenomenon and signifi cantly 
increased the seed germination (up to 70–82 %) in comparison to non-treated seeds 
(11–13 %). 

 The explanting season caused effect on the initiation of regenerable aseptic cul-
tures from the mature tree explants in contrast to those from the juvenile tissue of 
seedlings. The physiological status of the donor plants is evidently the main cause 
of seasonal variations of the initiation frequency in axillary bud cultures. 

 The mineral composition of the basal medium is another important factor of the 
effectiveness of micropropagation. During the initiation phase of micropropagation, 
both in the axillary bud culture and in the seedling culture, the mineral composition 
of the culture medium caused no considerable effect on the initiation frequency. 
However, at the multiplication phase, signifi cant differences have been revealed. 
The MS medium was found to be more effi cient for shoot proliferation as compared 
to WPM. It should be noted that the full-strength MS medium is more favorable for 
the proliferation of seedling-derived cultures, whereas the ½ MS medium is more 
suitable for axillary bud-derived cultures. Perhaps, this is due to the higher regen-
eration and adaptive capacity of juvenile tissues as compared to adults with their 
higher demand for nutrients. 

 Cytokinins are known to be one of the key factors of woody plants during their 
in vitro propagation. In our experiments, BAP had better potential for shoot regen-
eration than kinetin or TDZ. Both in the tissue culture of buds and seedlings, BAP 
not only stimulated a higher effi ciency of proliferation of shoot cultures but also 
ensured the development of normal shoots as compared with the TDZ-containing 
medium. 

 The results showed that the reduced content of mineral salts in the basal medium 
(¼ MS) and low level of auxin were are key factors for successful rooting of regen-
erated shoots. NAA was a more effi cient inducer of root development as compared 
to IAA and IBA. It should be noted that the shoots developed on the 2.22 μM BAP- 
containing or 2.25 μM TDZ-containing medium were rooted and acclimatized sig-
nifi cantly better than those taken from their proliferation media with a high cytokinin 
level. 

 Although no signifi cant differences in the effi ciency of micropropagation were 
recorded between the cultures derived from buds and seedlings, in general, micro-
propagation via seedling-derived cultures was a more affordable, fast, and effective 
method. 

 The histological study has showed that newly formed shoots were linked with the 
primary explants by a common vascular system and, therefore, arose as a result of 
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proliferation of the meristematic tissues of the explant. It can serve as one of the 
evidences of genetic identity among the shoots and the original shoot and could be 
used to increase the effi ciency of micropropagation. 

 The results of our investigation can be used for the mass propagation of  L. ana-
gyroides  and for obtaining seedlings for decorative landscaping and as a source of 
pharmaceuticals.     
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 9      Recent Advances in Asteraceae Tissue 
Culture                     

     Jyothi     Abraham     and     T.     Dennis     Thomas    

9.1          Introduction 

 Asteraceae (earlier known as Compositae) family has several other names such as 
sunfl ower family, thistle family or daisy family. The name Asteraceae originated 
from the term ‘Aster’ means ‘composite’, and it refers to the characteristic infl ores-
cence of this family. The head or capitellum infl orescence in Asteraceae has fl ower 
heads composed of many small fl owers, called fl orets, that are surrounded by bracts 
(Bisht and Purohit  2010 ). This is one of the most evolved and largest families of 
fl owering plants representing approximately 10 % of all fl owering plants worldwide 
(Funk et al.  2009 ). The family Asteraceae comprises 43 tribes, 1600–1700 genera 
and about 24,000–30,000 species (Funk et al.  2005 ). The members of this family are 
distributed worldwide and show rich diversity of habit and habitat. Asteraceae 
members occupy almost every environment and continent including in the temper-
ate regions and tropical mountains except Antarctica (Bayer et al.  2007 ). In India 
this family is represented by nearly 177 genera and 1052 species (Rao et al.  1988 ). 
The various taxa that come under Asteraceae exhibit a spectrum of life forms such 
as annual, biennial or perennial herbs, undershrubs, shrubs, trees, scramblers and 
aquatic plants (Bisht and Purohit  2010 ). In addition to the above categories, peren-
nial species which are adapted to survive in cold or dry seasons with underground 
storage organs and spiny and succulent plants with milky saps are also present in 
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this family (Bisht and Purohit  2010 ). The members of this family include edible, 
noxious, medicinal, endangered and invasive species (Heywood et al.  2007 ).  Senecio  
is the largest genera (1500 species) in this family, followed by  Vernonia  (1000 spe-
cies),  Cousinia  (600 species) and  Centaurea  (600 species). Several members of 
Asteraceae are famous for their  medicinal properties   and are used against a variety 
of diseases. Medicinal plants such as calendula, tansy, camomile, wormwood, 
arnica, coltsfoot, echinacea, elecampane, milk thistle and chicory are routinely used 
for various medicinal purposes.   

 Traditionally, Asteraceae members are used for the  treatment   of wounds, bleed-
ings, headache, pains, spasmodic diseases, fl atulence, dyspepsia, dysentery, lum-
bago, leucorrhoea, haemorrhoids, gangrenous ulcer and disorders causing cachexia 
(Achika et al.  2014 ). Moreover, the astringent, antipyretic, anti-infl ammatory, hepa-
toprotective, diaphoretic (in fevers), smooth muscle relaxant, nerve tonic and laxa-
tive properties of various members of this family have been reported (Achika et al. 
 2014 ). Phytochemical investigations of the Asteraceae family have revealed that 
many components from this family are highly bioactive. Asteraceae members are 
also well known for their beautiful fl owers and are often seen in most of the botani-
cal gardens. The familiar ornamental plants of Asteraceae include dahlia, zinnia, 
cosmos, aster, sunfl ower, marigold and chrysanthemum. 

  Plant tissue culture   is the science of growing plant cells, tissues or organs iso-
lated from the mother plant, on artifi cial media in aseptic condition (Thorpe  2007 ). 
Plant tissue culture technology has been widely employed for the rapid multiplica-
tion and micropropagation of several endemic, endangered and threatened plants 
(Thomas and Sankar  2009 ; Thomas and Hoshino  2010 ; Cheruvathur et al.  2010 ; 
Abraham et al.  2012 ). The other applications of this technique include plant regen-
eration via somatic embryogenesis (Kumar and Thomas  2012 ; Cheruvathur et al. 
 2013a ,  b ), shoot organogenesis from callus (Cheruvathur and Thomas  2011 ; Jose 
and Thomas  2015 ), haploid plant production through androgenesis (Bajaj  1990 ) or 
gynogenesis (Bhojwani and Thomas  2001 ), triploid plant production via endosperm 
culture (Thomas et al.  2000 ; Thomas and Chaturvedi  2008 ; Hoshino et al.  2011 ), 
production of secondary metabolites (Cheruvathur and Thomas  2014 ) and proto-
plast isolation, culture and plant regeneration (Thomas  2009 ). Medicinal and aro-
matic plants of this family are widely overexploited for various purposes, and hence 
there is an urgent need for standardizing in vitro micropropagation protocols for 
important members of this family. Researchers have already developed micropropa-
gation protocols for a number of taxa in this family (Table 9 .1 ). In this review we 
examine the application of in vitro technology and production of large number of 
plants in various Asteraceae members.

9.2         Elephantopus scaber  

  E. scaber  is an  important   medicinal herb which is distributed in the tropical regions 
of Southeast Asia and Latin America (Cabrera and Klein  1980 ). It is well known as 
a Chinese folk medicine since the whole plant is used for the treatment of various 
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   Table 9.1    A summarized account of some selected reports on recent tissue culture works in 
Asteraceae members   

 Name of the plant  Explant 

 Type of medium 
and plant growth 
regulators  Response  References 

  Senecio 
candicans  

 L  MS + BA (2.0 mg/l) 
+ IAA (2.0 mg/l) + 
NAA (3.0 mg/l) 

 MT  Hariprasath et al. ( 2015 ) 

  Spilanthes 
acmella  

 N  MS + BA (2.0 mg/l) 
+ Kn (2.0 mg/l) +I 
BA (2.0 mg/l) 

 MT  Kurian and Thomas ( 2015 ) 

  Spilanthes 
acmella  

 N  MS + BA (0.5 mg/l) 
+ Kn (1.0 mg/l) + 
IBA (1.0 mg/l) 

 MT  Joshi et al. ( 2015 ) 

  Elephantopus 
scaber  

 Seed, L  MS + 2,4-D (1.1 
mg/l) + Kn (0.1 
mg/l) + NAA (0.3 
mg/l) + IBA (1.2 
mg/l) 

 MT  Abraham and Thomas 
( 2015b ) 

  Elephantopus 
scaber  

 CN  MS + TDZ (1.5 
mg/l) + NAA (0.5 
mg/l) + IBA (1.0 
mg/l) 

 MT  Abraham and Thomas 
( 2015a ) 

  Plectranthus 
barbatus  

 L  MS + NAA (1.0 
mg/l) + Kn 1.5 
mg/l) + BA(2.0 
mg/l) + GA 3  (0.6 
mg/l) + IBA (1.5 
mg/l) 

 MT  Thangavel et al. ( 2014 ) 

  Leuzea 
carthamoides  

 L  MS + BA (0.5 mg/l) 
+ IAA (0.5 mg/l) + 
IBA (1.0 mg/l) + 
NAA (1.0 mg/l) + 
2,4-D (1.0 mg/l) 

 MT  Zand et al. ( 2014 ) 

  Matricaria 
chamomilla  

 L, AB, 
stem 

 MS + Kn (1.0 mg/l) 
+ NAA (1.0 mg/l) 

 MT  Sayadi et al. ( 2014 ) 

  Pluchea 
lanceolata  

 N  MS + BA (2.5 mg/l) 
+ Kn (2.5 mg/l) + 
TDZ (0.5 mg/l) + 
IBA (0.5 mg/l) + 
2iP (2.5 mg/l) 

 MT  Kher et al. ( 2014 ) 

  Achillea 
millefolium  

 Seed  MS + BA (0.9 mg/l) 
+ Kn (0.6 mg/l) + 
IAA (1.2 mg/l) + 
IBA (1.2 mg/l) + 
NAA (0.3 mg/l) + 
Zt (0.3 mg/l) 

 MT  Shatnawi ( 2013 ) 

(continued)
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Table 9.1 (continued)

 Name of the plant  Explant 

 Type of medium 
and plant growth 
regulators  Response  References 

  Artemisia annua   Seed  MS + BA (0.1 mg/l) 
+ NAA (0.1 mg/l) + 
GA 3  (0.5 mg/l) 

 MT  Tahir et al. ( 2014 ) 

  Blumea mollis   N  MS + BA (1.0 mg/l) 
+ NAA (1.0 mg/l) + 
Kn (1.0 mg/l) 

 MT  Tamilarasi and 
Thirugnanasmpandan 
( 2013 ) 

  Gerbera 
jamesonii  

 SA  MS + BA (2.0 mg/l) 
+ IAA (0.5 mg/l) + 
IBA (2.0 mg/l) + 
2,4-D (2.0 mg/l) + 
Kn (2.0 mg/l) 

 MT  Minerva and Kumar 
( 2013 ) 

  Arnica montana   L, P  MS + BA (1.mg/l) + 
Kn (1.0 mg/l) + 
IAA (0.1 mg/l) + 
IBA (0.5 mg/l) + 
2,4-D (0.1 mg/l) + 
zeatin (1.0 mg/l) + 
2iP (1.0 mg/l) 

 MT  Petrova et al. ( 2011 ) 

  Eupatorium 
triplinerve  

 N  MS + BA (1.0 mg/l)  MT  Janarthanam et al. ( 2011 ) 

  Vernonia 
anthelmintica  

 CN  MS + BA (1.1 mg/l) 
+ Kn (1.1 mg/l) + 
NAA (1.1 mg/l) + 
2,4-D (0.2 mg/l) 

 MT  Subhan and Agrawal 
( 2011 ) 

  Senecio 
macrophyllus  

 ST  MS + BA (1.0 mg/l) 
+ Kn (2.5 mg/l) + 
ZEA (2.5 mg/l) + 
NAA (0.11 mg/l) 

 MT  Trejgell et al. ( 2010 ) 

  Sphaeranthus 
indicus  

 L  MS + BA (1.0 mg/l) 
+ IAA (0.3 mg/l) + 
IBA (0.5 mg/l) + 
Kn (0.5 mg/l) 

 MT  Yarra et al. ( 2010 ) 

  Echinacea 
angustifolia  

 FS  MS + BA (3.0 mg/l) 
+ IBA (0.5 mg/l) 

 MT  Lucchesini et al. ( 2009 ) 

  Leontopodium 
nivale  

 C  MS + BA (2.0 mg/l)  MT  Pace et al. ( 2009 ) 

  Anthemis nobilis   ST  MS + BA (0.5 mg/l) 
+ IAA (0.1 mg/l) + 
IBA (0.1 mg/l) 

 MT  Echeverrigaray et al. 
( 2008 ) 

  Sphaeranthus 
amaranthoides  

 ST, AB  MS + BA (4.0 mg/l) 
+ Kn (4.0 mg/l) + 
IBA (2.0 mg/l) 

 MT  Ravipaul et al. ( 2008 ) 

  Lychnophora 
pinaster  

 Seed, E  MS + BA (1.1 mg/l) 
+ GA 3  (2.5 mg/l) + 
NAA (2.0 mg/l) 

 MT  De Souza et al. ( 2007 ) 

(continued)
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Table 9.1 (continued)

 Name of the plant  Explant 

 Type of medium 
and plant growth 
regulators  Response  References 

  Pentanema 
indicum  

 ST, N  MS + BA (2.0 mg/l) 
+ IBA (2.0 mg/l) + 
IAA (1.0 mg/l) 

 MT  Sivanesan and Jeong 
( 2007 ) 

  Vernonia 
amygdalina  

 N  MS + BA (0.5 mg/l) 
+ NAA (2.0 mg/l) + 
Kn (4.0 mg/l) + 
2,4-D (0.5 mg/l) 

 MT  Khalafalla et al.  2007  

  Eclipta alba   CN  MS + BA (1.0 mg/l) 
+ Kn (1.0 mg/l) + 
GA 3  (0.5 mg/l) + 
IBA (2.0 mg/l) + 
isopentenyl adenine 
(0.9 mg/l) 

 MT  Baskaran and Jayabalan 
( 2005 ) 

  Achillea 
fi lipendulina  

 Meristem, 
N 

 MS + BA (2.0 mg/l) 
+ TDZ + IAA (1.0 
mg/l) + NAA (0.1 
mg/l) + IBA (0.12 
mg/l) 

 MT  Evenor and Reuveni 
( 2004 ) 

  Spilanthes 
acmella  

 AB  MS + BA (2.0 mg/l) 
+ IBA (0.6 mg/l) 

 MT  Haw and Keng ( 2003 ) 

  Artemisia 
judaica  

 Seeds, 
hypocotyl 

 MS + BA + TDZ 
(0.2 mg/l) + IBA 
(0.15 mg/l) + NAA 
(0.1 mg/l) 

 MT  Liu et al. ( 2003 ) 

  Echinacea 
pallida  

 L  MS + BA (1.0 mg/l) 
+ NAA (0.01 mg/l) 
+ IBA (0.1 mg/l) 

 MT  Koroch et al. ( 2003 ) 

  Hymenoxys 
acaulis  

 ST, stem  MS + BA (0.45 
mg/l) + IBA (0.1 
mg/l) 

 MT  Ault ( 2002 ) 

  Santolina 
canescens  

 ST  MS + BA (0.25 
mg/l) + Kn (0.3 
mg/l) + IBA (0.5 
mg/l) + IAA (1.0 
mg/l) + NAA (0.5 
mg/l) 

 MT  Casado et al. ( 2002 ) 

  Arnica montana   N  MS + 2iP (1.4 mg/l) 
+ zeatin (1.0 mg/l) 
+ NAA (1.0 mg/l) 

 MT  Keul and Deliu ( 2001 ) 

  Tagetes erecta   L  MS + GA 3  (4.0 
mg/l) + BA(1.0 
mg/l) + NAA (0.5 
mg/l) 

 MT  Misra and Datta ( 2001 ) 

   AB  axillary bud,  C  cotyledon,  CN  cotyledonary node,  FS  fl ower stalk,  L  leaf,  MT  multiple shoot, 
 N  node,  P  petiole,  SA  stem apices,  ST  shoot tip  
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diseases. It is also used to cure diabetes, enteritis, fl atulence and diuresis and is 
adopted as an analgesic, astringent and antiemetic agent (Hiradeve and Rangari 
 2014 ; Daisy et al.  2007 ; Lee et al.  2008 ). It is used against cardiovascular diseases, 
bronchitis and smallpox (Kiritikar and Basu  1991 ). The healing properties of roots 
of this plant are useful for heart as well as liver problems, and the hot water extract 
of roots is used to combat fi lariasis and diarrhoea (Hammer and Johns  1993 ). The 
aqueous extract of leaves is applied externally to treat eczema and ulcers (Chopra 
et al.  1956 ). The whole plant is macerated and applied on the surface of wounds to 
promote wound-healing activity (Vaidya  1999 ). It is reported that this species is also 
used for its antitumour, hepatoprotective, wound-healing and anti-infl ammatory 
activity (Rajesh and Latha  2001 ; Sankar et al.  2001 ; Rajkapoor et al.  2002 ; Singh 
et al.  2005 ; Xu et al.  2006 ). 

 The seeds of  E. scaber  were  aseptically   cultured on half-strength Murashige and 
Skoog ( 1962 ) medium without any plant growth regulators (Rout and Sahoo  2013 ). 
The germinated seeds were transferred to callus induction medium fortifi ed with 
different concentrations (0.25–2.0 mg/l) of 2,4-dichlorophenoxyacetic acid (2,4-D) 
or 6-benzyladenine (BA) alone and in combination with kinetin (Kn; 0.25–2.0 
mg/l). The proliferated calli were transferred to shoot regeneration medium. A com-
bination of 2.0 mg/l BA and 1.0 mg/l α-naphthalene acetic acid (NAA) was the most 
effective hormone for shoot regeneration from callus (13.7 shoots/callus). The elon-
gated shoots transferred to half-strength MS medium supplemented with different 
concentrations of auxins like NAA, indole-3-acetic acid (IAA) and indole-3-butyric 
acid (IBA) for root induction. NAA was most suitable for root induction (6.2 roots/
shoot) when compared to IAA (3.5 roots/shoot) and IBA (3.7 shoots/callus). The 
in vitro regenerated plantlets were transplanted to greenhouse for acclimatization. 
The survival of the plantlets  was   recorded as 77 %. The antioxidant activity of  E. 
scaber  was analysed from in vitro and in vivo grown leaf and root samples, and 
result showed that antioxidant enzymes like superoxide dismutase (SOD) and guai-
acol peroxidase (GPX) were extensively more concentrated in the leaf and root 
samples of in vitro grown plants, whereas the catalase (CAT) concentration was 
maximum recorded in leaf samples of in vivo plants (Rout and Sahoo  2013 ). 

 Abraham and Thomas ( 2015a ) standardized an effi cient protocol for the rapid 
micropropagation of  E. scaber  using cotyledonary node explants. Direct multiple 
shoot induction from cotyledonary node explants at various age groups was induced 
on MS medium fortifi ed with different plant growth regulators. The optimum shoot 
induction was observed  when   20-day-old cotyledonary node explants were inocu-
lated on MS medium fortifi ed with 1.5 mg/l thidiazuron (TDZ) and 0.5 mg/l 
NAA. Here, 98 % of the cultures produced shoots, with a mean number of 33.7 
shoots per explant. The maximum frequency of rooting (100 %) and average num-
ber of roots (3.3 per shoot) were obtained on MS medium supplemented with 1.0 
mg/l IBA. The plantlets were acclimatized and transferred to soil with 92 % suc-
cess (Fig. 9 .1 ). 
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  Fig. 9.1    Various stages of micropropagation in E. scaber. ( a ) Multiple shoot induction from nodal 
segments of E. scaber 3 weeks after culture on MS medium supplemented with 3 mg/l BA. ( b ) 
Same as in Fig. 9.1a 6 weeks after culture. ( c ) Shoot elongation on MS medium supplemented with 
1.0 mg/l BA. ( d ) Rooting of shoots on ½ MS medium with 1.5 mg/l IBA. ( e ) An 8-month-old 
transplanted plant during fl owering period       

 In another report, a plant regeneration procedure via callus organogenesis has 
been developed for  E. scaber  by Abraham and Thomas ( 2015b ). The calli were 
induced from seeds and leaf segments. The optimum callus induction (89 %) was 
observed on MS supplemented with 1.1 mg/l 2,4-D and 0.1 mg/l Kn from seed 
explant. Further, the highest callus regenerating frequency (91 %) and number of 

 

9 Recent Advances in Asteraceae Tissue Culture



168

shoots (56) per culture were noted on MS medium supplemented with 1.4 mg/l BA 
and 0.25 mg/l NAA. Optimum rooting of regenerated shoots was observed on half- 
strength MS medium supplemented with 1.1 mg/l IBA. On this medium, 100 % 
shoots produced roots with a mean number of 3.2 roots per shoot. The use of vesicu-
lar arbuscular mycorrhizae (VAM) during acclimatization along with potting mix 
has  been   confi rmed in this study, and the highest response of 100 % plant survival 
was obtained in a mixture of autoclaved garden soil and sand (2:1) and VAM was 
utilized as potting mix. Molecular studies (inter-simple sequence repeats (ISSR) 
analysis) have confi rmed the true-to-type nature of regenerated plants.  

9.3      Anthemis xylopoda  

  A. xylopoda  is an endemic  plant   which falls in the critically endangered category in 
the  Red Data Book  of Turkey (Ekim et al.  2000 ). Uzel et al. ( 2004 ) have recently 
reported the chemical composition of the essential oils isolated from air-dried leaves 
and fl owers of  A. xylopoda . According to Uzel et al. ( 2004 ), the phytochemical 
components of  A. xylopoda  include borneol, 1,8-cineole, 2,5,5-trimethyl-3,6- 
heptadien- 2-ol, α,β-thujone and carvacrol from fl owers and leaves, of which bor-
neol was the major constituent. Further, their results showed that the oil extracted 
from  A. xylopoda  exhibited signifi cant antimicrobial activity. 

 A protocol was optimized in  A. xylopoda  for the direct adventitious shoot induc-
tion from in vitro leaf explants (Erdag and Emek  2009 ). MS medium supplemented 
with BA, Kn and TDZ was employed for regeneration experiments. BA at 0.5 mg/l 
was chosen because it yielded the highest number of adventitious shoots (6.70 
shoots/explant). However, the highest mean shoot length was noted on MS medium 
containing 0.2 mg/l BA (4.30 cm). The MS medium with 0.5 mg/l IBA was opti-
mum for rooting of regenerated plantlets. Another interesting observation noticed 
during the study was the induction of fl ower buds during rooting. IBA was found to 
be inducing more fl ower buds than IAA. The  maximum   fl owering percentage was 
recorded on MS medium containing 1.0 mg/l IBA. The yellow fl owers produced 
in vitro were morphologically normal and similar to fi eld-grown plants.  

9.4      Dendranthema grandiflorum  

 Chrysanthemum ( D. grandifl orum ) is one of the  most   popular ornamental plants in 
the world and it includes about 40 species. Despite its ornamental value, these plants 
have both aesthetic and medicinal uses in many countries. Chrysanthemum is also a 
reservoir of various useful secondary metabolites including essential oils which are 
biologically active (Schwinn et al.  1994 ). 

  D. grandifl orum  garden cultivars ‘Yes Morning’ and ‘Hi-Maya’ and pot cultivar 
‘Peace Pink’ were used for anther culture by Khandakar et al. ( 2014 ). Callus induc-
tion rate among these cultivars did not show much variation on MS medium supple-
mented with 1.0 mg/l of 2,4-D, 2.0 mg/l of BA, 250 mg/l of casein hydrolysate and 
45.0 g/l of sucrose, solidifi ed by 2.75 g/l gelrite (Khandakar et al.  2014 ). The 
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pretreatment of anther at 4 °C for 48 h had signifi cantly enhanced the callus induc-
tion as well as shoot regeneration rate. The highest shoot induction frequency (79 % 
callus inducing shoots) was obtained when androgenic calli were differentiated on 
MS medium supplemented with 2.0 mg/l of BA and 0.1 mg/l of NAA. The elon-
gated shoots were rooted on MS medium supplemented with 0.1 mg/l of NAA. The 
plantlets were acclimatized and transferred to soil. The haploid nature of the plants 
was  confi rmed   by ploidy analysis using cytology.  

9.5      Echinacea purpurea  

 The phytochemistry of  Echinacea   species   is well studied and caffeic acid deriva-
tives, fl avonoids, polyacetylenes, alkamides, pyrrolizidine alkaloids, polysaccha-
rides and glycoproteins were isolated and characterized from this plant (Bauer and 
Foster  1991 ; Bauer and Wagner  1991 ; Bauer and Reminger  1989 ; Bauer et al.  1988 , 
 1989 ). In the last few years, there is an increased demand for natural remedies, and 
therefore, the value of this medicinal plant has increased. 

  E. purpurea  is the most widespread (McGregor  1968 ) and extensively cultivated 
medicinal species of the genus  Echinacea  (McKeown  1999 ). In America and 
Canada, this plant is traditionally used for the treatment of respiratory ailments, 
sores, wounds and a variety of other ailments (Tyler  1993 ; Hobbs  1994 ). Additionally, 
this plant is also used for the treatment of cold, infl uenza, wound and candidiasis 
(Bauer  1999 ). 

 Koroch et al. ( 2002 )  optimized   an effi cient plant regeneration protocol via organo-
genesis from callus derived from leaf tissue of  E. purpurea . BA alone produced green 
organogenic callus. The highest shoot organogenesis from callus was obtained on MS 
medium supplemented with BA (1.0 mg/l) and NAA (0.01 mg/l). This medium gave 
the highest shoot regeneration frequency (100 %) associated with a high number of 
shoots (7.7 shoots/explant). An increase in NAA concentration resulted in increased 
callus production and low shoot initiation. The optimum rooting of shoots was 
observed on MS medium supplemented with 0.4 or 1.0 mg/l IBA. The  rooted   plantlets 
were successfully transplanted to the fi eld after acclimatization.  

9.6      Eclipta alba  and  Eupatorium adenophorum  

  Eclipta alba  is a  small     , annual herb distributed in the tropical and subtropical 
regions of the world. This plant is used as tonic and diuretic in hepatic and spleen 
enlargement and in jaundice and skin diseases (Anonymous  1952 ). Wedelolactone 
and dimethyl wedelolactone are the two important active phytochemicals present in 
 E. alba , and both these constituents have antihepatotoxic activity (Wagner et al. 
 1986 ; Franca et al.  1995 ). The emetic and purgative properties of roots are reported, 
and the root is applied externally as an antiseptic to ulcers and wounds of cattle 
(Anonymous  1952 ). The antibiotic activity of shoot extract against  Staphylococcus 
aureus  and  Escherichia coli  was reported (Anonymous  1952 ). Conventionally,  E. 
alba  is propagated by seeds.  Eupatorium adenophorum  is a herb usually distributed 

9 Recent Advances in Asteraceae Tissue Culture



170

in higher elevations (1000–2000 m above mean sea level) and is used in the treat-
ment of stomach ache and to prevent bleeding (Uniyal  1980 ).  E. adenophorum  is 
traditionally propagated by vegetative cuttings. 

 Nodal segment culture was effectively used to micropropagate  E. alba  and  E. 
adenophorum  by Bothakur et al. ( 2000 ). Proliferated microshoots were obtained 
through axillary branching from cultured nodal segments on modifi ed MS and half- 
strength of MS medium supplemented with BA and Kn. The highest shoot induction 
frequency (16.0 shoots/explant)  and      root growth was obtained on MS medium sup-
plemented with 0.05 mg/l Kn. However, only satisfactory result (6.0 shoots/explant) 
was obtained with BA 0.05 mg/l. Regenerated shoots were rooted and successfully 
acclimatized in soil. The in vitro raised plants grew normally and did not show any 
morphological variations. 

 Singh et al. ( 2012 ) standardized a protocol for the effi cient in vitro regeneration 
of  E. alba  through transverse thin cell layer (tTCL) culture. Nodal segments were 
transversely cut and were used as tTCL explants for plant regeneration. BA plays a 
crucial role in inducing multiple shoots and its interaction with Kn or NAA infl u-
enced the shoot yield. The most effective media combination for multiple shoot 
induction was 3.0 mg/l BA and 1.0 mg/l Kn. Here, 100 % explants  responded      with a 
mean number of 32.6 shoot buds per tTCL nodal explant. The regenerated shoots 
were rooted on MS basal medium. The rooted plantlets were acclimatized and trans-
planted to soil with a survival frequency of 90–100 %. Genetic fi delity of regenerated 
plants was assessed by using random amplifi ed polymorphic DNA (RAPD) markers 
and confi rmed the genetic similarity of regenerated plants with the mother plants.  

9.7      Carthamus tinctorius  

 The common name of  C. tinctorius  is  saffl ower   or false saffron. It produces the 
characteristic red/orange pigment which is used for colouring rice and bread and for 
dyeing cloths (Wang and Li  1985 ). Due to the rich content and high nutritional value 
of its edible oil, it has become an important crop in some parts of the world includ-
ing Turkey and Iran (Kumar and Kumari  2011 ).  C. tinctorius  is a good purgative, 
antipyretic, analgesic and an antidote to poisoning (Weiss  1983 ). Its use in haemor-
rhage, whooping cough, chronic bronchitis, rheumatism and sciatica is well estab-
lished (Bae et al.  2002 ). 

 Walia et al. ( 2007 ) studied the morphogenic response of endosperm of  C. tincto-
rius  cv. HUS-305. The endosperm was isolated from seeds of plant at globular to 
heart-shaped stages of zygotic embryo development. The excised endosperm was 
cultured on MS medium containing various concentrations of BA, Kn, TDZ, 2,4-D 
or NAA. Although callusing was optimum on 2,4-D medium, there was no shoot 
regeneration. Endosperm embryos were formed only from calli developed on media 
supplemented with BA, Kn or TDZ with the last eliciting highest response. The 
addition of  adenine   sulphate (100 mg/l) to the medium further improved the induc-
tion of endosperm embryos. For embryo elongation and plantlet production, MS 
basal medium or 0.2 mg/l gibberellic acid (GA 3 ) was employed. 
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 Ghasempour et al. ( 2014 ) was successful in inducing callus from various explant 
types such as shoot, root and leaf segments of in vitro grown seedlings. The steril-
ized seeds were germinated on MS medium. The various explants were then iso-
lated and cultured on MS medium supplemented with different concentrations of 
BA, Kn, NAA and 2,4-D. The leaf  explant   was producing the highest calli (97.79 %) 
on MS medium fortifi ed with 1.0 mg/l BA. The calli were transferred to regenera-
tion medium containing various concentrations of BA and NAA after 4 weeks. The 
highest shoot regeneration from calli was obtained on MS medium supplemented 
with 0.1 mg/l NAA and 1.0 mg/l BA.  

9.8      Centaurea  spp. 

9.8.1      Centaurea ultreiae  

  Centaurea  is one of the  largest   genera in the family Asteraceae.  C. ultreiae  is a criti-
cally endangered species in Spain (Banares et al.  2003 ). A protocol was developed 
for the effi cient shoot regeneration from leaves and roots of  C. ultreiae  (Mallon 
et al.  2011 ). Direct shoot induction from leaf and root explants was obtained when 
the explants were cultured on half-strength MS medium in the presence of BA, 
zeatin, Kn or N6-(2-isopentenyl)adenine (2iP), each provided at fi ve different lev-
els. On the MS medium supplemented with 0.1 mg/l IBA, 90 % leaf explants pro-
duced a mean number of 2.48 shoots per explant, whereas 94.3 % of root explants 
produced an average number of 5.60 shoots per explant, on a medium supplemented 
with 0.1 mg/l BA. Further, histological analysis confi rmed the connection between 
vascular tissues of regenerated shoots and cambial cells of leaf explants. The origin 
of adventitious shoots was found to be from pericycle cells of root explants.  

9.8.2      Centaurea arifolia  

  C. arifolia  is a data  defi cient   (DD) plant according to IUCN category (Ekim et al. 
 2000 ; IUCN  2001 ). A successful in vitro micropropagation technique via callus- 
mediated shoot organogenesis was developed for  C. arifolia  (Yuzbasioglu et al. 
 2012 ). The leaf explants were obtained from germinated seedlings on growth 
regulator- free half-strength MS medium. Leaf explants excised from 6-week-old 
seedlings were cultured on MS medium supplemented with 1.0 mg/l BA, 0.1 mg/l 
NAA and 2.0 mg/l BA and 0.2 mg/l NAA for callus induction and shoot organogen-
esis. Adventitious shoot induction from calli was obtained within 3 weeks of cul-
ture. The callus-derived shoots were rooted on MS medium with 1.0 mg/l IBA. This 
protocol provides a  successful   propagation technique through indirect in vitro 
organogenesis from leaf segments of  C. arifolia .  
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9.8.3      Centaurea cyanus  and  Centaurea montana  

 European traditional  medicine      uses the  C. cyanus  fl ower heads in the treatment of 
minor ocular infl ammation (Bruneton  1995 ). Anti-infl ammatory and immunologi-
cal properties of fl ower extracts of this plant have been experimentally demonstrated 
by Garbacki et al. ( 1999 ). It also contains major fl avonoid glycosides that could be 
used in various pharmacomedicinal assays (Gonnet  1996 ). An important dimeric 
indole alkaloid called montamine is extracted from the seeds of  C. montana , and it 
exhibited cytotoxic activity against Caco-2 colon cancer cells (Shoeb et al.  2006 ). 

 In vitro regeneration and fl owering in  C. cyanus  had been reported (Alaiwi et al. 
 2012 ). Young leaf explants were used as explants. The explant was cultured on MS 
medium supplemented with 2.0 mg/l BA and 0.1 mg/l IAA for 4 weeks regenerated 
50–60 shoots per explant. The shoots produced in vitro fl owering and seed set when 
incubated on MS basal medium supplemented with B5 vitamins, 100 mg/l myo- 
inositol and 30 g/l sucrose for 4 weeks under 16 h photoperiod. The  callus      was 
induced when young leaves of  C. montana  are inoculated on MS medium with 
1.0–6.0 mg/l 2,4-D alone or in combination with 0.5 mg/l BA. Greater fresh weight 
(FW), dry weight (DW) and packed cell volume (PCV) were observed when liquid 
MS medium amended with 2.0 mg/l 2,4-D compared to MS semisolid medium. The 
authors concluded that MS medium supplemented with proper phytohormones 
could be used to obtain  effective      shoot regeneration and in vitro fl owering in  C. 
cyanus .  

9.8.4      Centaurea cineraria  

 This species is endemic and the  distribution   is limited to Circeo Mountain (Lazio, 
Italy). The plant population was estimated to be very low (Valletta et al.  2015 ). An 
ex situ conservation strategy was developed for  C. cineraria  subspecies  circae  
which include achene collection and in vitro plant propagation in order to carry out 
restoration programmes. The study showed that 5.5 % of achenes were morphologi-
cally healthy (Valletta et al.  2015 ). There was no seed dormancy since most of the 
fresh seeds germinated and didn’t need any treatments. Under a photoperiod of 
12/12 h (light/dark) and temperature regime +20/+10 °C, higher seed germination 
rate (67.5 %) was achieved. In vitro micropropagation studies including shoot 
induction, rooting, acclimatization and fi eld transfer were achieved. On MS medium 
containing 0.5 mg/l benzylaminopurine and 2 mg/l Kn, 74 % of shoot explants 
formed multiple shoots. On MS medium supplemented with 0.5 mg/l IBA, 100 % 
shoots rooted and over 90 % survived the acclimatization phase. After fi eld transfer, 
the in vitro derived plants bloomed and showed no morphological differences from 
wild plants. Similarly, preliminary phytochemical analysis indicated a comparable 
profi le for in vitro propagated and wild plants (Valletta et al.  2015 ).   
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9.9      Lactuca sativa  

 The leafy vegetable  lettuce   ( L. sativa ) is grown on all continents. The whole plant 
has been utilized in the treatment of stomach problems, to stimulate digestion, to 
enhance appetite and to relieve infl ammation (Sayyah et al.  2004 ). The triterpene 
lactones isolated from this plant showed anti-infl ammatory activities (Araruna and 
Carlos  2010 ).  L. sativa  gives protection against D-galactose-induced oxidative 
stress and reduces accumulation of lipofuscin granules (Deshmukh et al.  2007 ). 
This plant is a rich source of antioxidants such as quercetin, caffeic acid, vitamin C 
(Brunk and Terman  2002 ), carotenoids (Kim et al.  2007 ) and phytols (Bang et al. 
 2002 ). The antioxidant activity of  L. sativa  has been reported to prevent chronic 
diseases related to oxidative stress such as cancer (Chu et al.  2002 ). 

 A reproducible protocol for the  production   of uniform shoots in a wide range of 
lettuce ( L. sativa ) genotypes was reported (Hunter and Burritt  2002 ). This study 
indicated a strong infl uence of genotype on regeneration capacity. The per cent 
explants producing shoots and mean number of shoots varied with the genotype, 
and it can be doubled by culturing cotyledon explants on MS medium supplemented 
with 0.54 mg/l NAA and 0.44 mg/l BA. It was believed that in this plant, the loss of 
regeneration ability occurs in cotyledons due to its age. However, in this study it 
was confi rmed that this regeneration ability is highly genotype depended and not 
related to cotyledon age. In most studies cotyledon explants were isolated 2–4 days 
after germination, whereas in this study for many cultivars, the cotyledons were 
isolated 14 days after germination and it still showed regeneration ability and pro-
duced shoots.  

9.10      Stevia rebaudiana  

  S. rebaudiana  is a  perennial   herb of Asteraceae family. This natural sweetener is 
indigenous from higher elevations of northern Paraguay (Soejarto et al.  1983 ; Lewis 
 1992 ). However, it could be found growing in other habitats like semi-arid environ-
ment, ranging from grassland to scrub forest to mountain terrain. The leaves of 
stevia yield several phytochemicals mainly diterpene glycosides, such as stevioside 
and rebaudiosides, which are estimated to be about 300 times sweeter than sucrose 
(Tanaka  1982 ). In China, Taiwan, Thailand, Korea, Japan, India and Malaysia, this 
plant is commercially cultivated (Jain et al.  2009 ). Stevia is also important as a natu-
ral non-caloric sweetener since its leaves contain stevioside. It has been widely 
employed in a wide range of processed foods as a substitute for conventional sugars 
or artifi cial dietetics especially in Japan (Handro and Ferreira  1989 ). 

 El-Zaidy et al. ( 2010 ) established an effi cient shoot regeneration protocol in  S. 
rebaudiana  using adult leaf explants. Both MS medium and Linsmaier and Skoog 
(LS; Linsmaier and Skoog  1965 ) medium were suitable for callus induction. The 
 most   suitable combination for callus induction includes 1.0 mg/l 2,4-D, 0.5 mg/l BA 
and 1.0 mg/l GA 3 , and the genotype 4 produced the highest frequency of callus. The 
calli were developed into embryos, and the green embryo development was highest 
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in genotype 4 on MS medium supplemented with 2.0 mg/l BA. High-frequency 
plant multiplication and elongation of shoots were achieved in genotypes 5 and 3 on 
MS medium supplemented with 0.1 mg/l BA. Comparatively MS medium was 
superior over LS medium for root differentiation. 

 Das et al. ( 2011 ) reported micropropagation of  S. rebaudiana  via shoot tip cul-
ture. MS medium containing 2 mg/l Kn was found to be most suitable for multiple 
shoot induction from shoot tip culture. By using this medium, more than 11 shoots 
were obtained from a single shoot tip within 35 days of culture. The roots were 
induced from shoots on MS basal medium, whereas it has a negative impact when 
it was fortifi ed with IAA and BA. They also performed peroxidase assay and ISSR 
fi ngerprinting to confi rm the clonal fi delity of in vitro derived plantlets. This result 
showed that Kn plays a crucial  role   in shoot induction from shoot tip explants. 

 Hwang ( 2006 ) reported high-frequency multiple shoot induction from nodal seg-
ments of fi eld-grown  S. rebaudiana  on four basal media containing various combi-
nations and concentrations of auxins and cytokinins. The highest shoot induction 
(23.4 shoots per explant) was observed on MS medium fortifi ed with 2 mg/l IAA 
and 0.5 mg/l Kn. The medium suitable for root induction was MS medium supple-
mented with 2 mg/l IBA. The rooted plants were transplanted to soil and acclima-
tized successfully with 98.4 % survival rate. Stevioside contents were analysed in 
the in vitro derived fi eld-grown plants and were estimated to be 10.68 mg/g dry 
weight (DW) which was comparable to that of mother plants (12.01 mg/g DW). 

 Ahmed et al. ( 2007 ) reported  in   vitro shoot induction from nodal segments of  S. 
rebaudiana  through enhanced axillary branching. The nodal explants were inocu-
lated on MS medium fortifi ed with different combinations of BA and Kn. The high-
est axillary shoot proliferation (8.75 shoots per explant) was achieved on MS 
medium containing 1.5 mg/l BA and 0.5 mg/l Kn. For rooting of the various concen-
trations of three auxins employed (IBA, NAA and IAA), IAA at 0.1 mg/l was opti-
mum producing the highest rooting percentage (97.66 %). 

 A method for micropropagation of  S. rebaudiana  through nodular stem sections 
had been reported by Rafi q et al. ( 2007 ). Optimum shooting response was observed 
on MS medium supplemented with 2.0 mg/l BA. The highest rooting of shoots was 
obtained on MS medium supplemented with 0.5 mg/l NAA. The survival rate of 
in vitro derived plants was 92 and 83 % during hardening and transfer to green-
house, respectively. Various biochemical attributes including carbohydrates and 
proteins were analysed in the leaves and compared with leaf extract of Egyptian 
cultivar to assess its quality. 

 By using 2-year-old stem node segments, Alhady ( 2011 ) developed a protocol 
for micropropagation in  S. rebaudiana . According to the  author  , cytokinin plays a 
crucial role in inducing shoot multiplication. The effect of BA individually or in 
combination with Kn at varying levels was investigated. The optimum shoot induc-
tion frequency was obtained on MS medium amended with BA. An increasing con-
centration of BA enhanced shoot multiplication. The highest shoot induction was 
observed on MS medium supplemented with 2.0 mg/l BA and 0.5 mg/l Kn. However, 
the presence of Kn in the medium promoted shoot elongation. Of the various auxins 
like IBA and NAA used for rooting, IBA was superior over NAA. The optimum 
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rooting response (100 %) was observed on MS medium containing 1.0 or 2.0 mg/l 
IBA. The authors concluded that the presence of cytokinins BA and Kn in the 
medium enhanced axillary shoot proliferation from stem node explants. 

 Uddin et al. ( 2006 ) reported callus induction from various explants like leaf, 
internode and node in  S. rebaudiana . The explants were inoculated on MS  medium   
supplemented with various concentrations (2.0, 3.0, 4.0 and 5.0 mg/l) of 2,4-D. The 
results showed that internodal segments initiated callus earlier than node and leaf. 
The maximum intensity of callusing was observed on MS medium supplemented 
with 3.0 mg/l 2,4-D. 

 In another report on callus induction and multiplication, Gupta et al. ( 2010 ) cul-
tured nodal, leaf and root explants on MS medium supplemented with various levels 
of plant growth regulators like IBA, Kn, NAA and NAA in combination with 2,4- 
D. The highest response (100 %) was observed from leaf explants when cultured on 
MS medium supplemented with NAA and 2,4-D after 3 weeks, whereas with 2,4-D 
alone it induced only 10 % callusing. The morphological analysis of the calli derived 
from various explants showed variations. The calli formed from leaf and root 
explants were shiny green, while that of nodal explants was hard and brown. The 
investigators concluded that leaf explants  could   serve as the best planting material 
for callus production, and 0.75 mg/l NAA with 1 mg/l 2,4-D could produce maxi-
mum amount of callus within a short span of time. 

 Patel and Shah ( 2009 ) reported callus induction and shoot organogenesis in  S. 
rebaudiana . For callus induction, nodal and leaf explants were cultured on MS 
medium supplemented with different concentrations of BA and NAA. Among the 
various combinations tried, 2.0 mg/l BA and 2.0 mg/l NAA produced the highest 
callus induction. The highest shoot organogenesis was also obtained on the same 
medium. On ¼ MS medium supplemented with 0.1 mg/l IBA, the regenerated 
shoots were rooted. The rooted shoots were hardened successfully with 63 % sur-
vival rate. 

 Callus induction from leaf explants and subsequent shoot organogenesis were 
reported in  S. rebaudiana  (Moktaduzzaman and Rahman  2009 ). Further, the analy-
sis of somaclonal variation among regenerated plants was studied by RAPD analy-
sis for the identifi cation of possible somaclonal variants which are useful for quality 
control in plant tissue culture and in the  introduction   of new variants. The leaf seg-
ments were cultured on MS medium supplemented with various concentrations of 
NAA, BA and 2,4-D. They observed the highest callus induction frequency 
(91.67 %), fresh weight (621.7 mg) and dry weight (79.00 mg) on MS medium 
supplemented with 1.5 mg/l NAA and 1.0 mg/l BA. The multiplied calli showed 
best regeneration ability on MS medium fortifi ed with different concentrations and 
combinations of BA and NAA. The highest shoot number (2.17) and the mean shoot 
length (3.22 cm) per culture were observed at 1.8 mg/l of BA with 0.12 mg/l of 
NAA. The rooting of in vitro derived shoots was obtained on IBA- and NAA- 
containing media. The highest number of roots and length of roots per culture were 
 observed   on 1.0 mg/l NAA. The in vitro derived plants were transferred to soil in 
75 % soil and 25 % sand mixture, hardened and fi nally transferred to the fi eld. Bands 
generated through RAPD analysis confi rmed that some in vitro plants showed 
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100 % similarity, whereas others showed 71, 57 or 14 % similarity to the mother 
plants. 

 In another report on callus induction and shoot organogenesis in  S. rebaudiana , 
Sairkar et al. ( 2009 ) cultured nodal segments on MS medium supplemented with 0.1 
mg/l BA for shoot initiation. For callus induction, a combination of 2.0 mg/l 2,4-D 
and 1.0 mg/l Kn was suffi cient to give best result. Higher regeneration ability of 
plantlets (3.8 plantlets/calli) was achieved on MS medium supplemented with 5.0 
mg/l BA and 1.0 mg/l NAA. The optimum number of plantlets (83.2) was obtained 
on MS medium fortifi ed with 3.5 mg/l BA at multiplication stage. The optimum 
 rooting   (11.1 roots/shoot) was recorded on ½ MS medium with 100 mg/l activated 
charcoal. The rooted plantlets were acclimatized in 1:1:1 ratio of sand/soil/vermi-
compost and successfully transferred to soil. 

 Anbazhagan et al. ( 2010 ) standardized a protocol for the mass propagation of  S. 
rebaudiana . Shoot tip, nodal segment and leaf explants were cultured on MS 
medium supplemented with various concentrations of BA, Kn and IAA both indi-
vidually and in combination for inducing direct shoots. The optimum shoot induc-
tion was obtained on MS medium containing BA and IAA at the concentrations of 
1.0 and 0.5 mg/l, respectively. Among the various explants employed for shoot 
induction, shoot tip gave the highest response. Half-strength Nitsch (N6) medium 
containing 1.0 mg/l IAA produced the optimum rooting. The plantlets developed 
were transferred to pots and fi nally planted in the open fi eld.  About   82 % of accli-
matized plants survived and established in natural fi eld conditions. 

 Singh et al. ( 2011 ) successfully induced callus and shoot induction from leaf 
explants in  S. rebaudiana . The optimum callusing was observed on MS medium 
supplemented with 1.0 mg/l 2,4-D and 1.0 mg/l Kn. The best shoot differentiation 
was obtained on MS medium supplemented with 0.5 mg/l BA and 0.1 mg/l 
NAA. The authors further studied the metabolic changes during differentiation in 
callus cultures and found that metabolites like starch, total soluble sugars and total 
phenols showed a decline, while total soluble proteins increased in callus culture. 

 In order to meet the growing  demand  , an effi cient protocol for  S. rebaudiana  
micropropagation has been developed by Thiyagarajan and Venkatachalam ( 2012 ). 
Nodal explants were cultured on MS supplemented with various concentrations of 
BA (0.5–3.0 mg/l) and Kn (0.5–3.0 mg/l) for multiple shoot induction. Similarly, 
in vitro derived buds were cultured on MS medium fortifi ed with various concentra-
tions of BA (0.5–3.0 mg/l) in combination with 0.5 mg/l IAA or IBA or NAA for 
shoot bud multiplication. The optimum frequency (94.50 %) of multiple shoot 
induction with the highest number of shoots (15.69 shoots/explant) was observed on 
MS medium with 1.0 mg/l BA. In vitro derived nodal bud explants when cultured 
on MS medium supplemented with BA (1.0 mg/l) produced a mean number of 12.3 
shoots/explant after three subcultures on the same media composition. Elongated 
shoots were rooted on half-strength MS medium supplemented with different con-
centrations of NAA (0.1–0.5 mg/l) and/or MS medium with different concentrations 
(0.5–2.0 mg/l) of auxins (NAA, IAA and IBA). The optimum rooting (96 %) was 
observed on half-strength MS medium supplemented with 0.4 mg/l NAA. The 
plantlets were transplanted to plastic cups containing sand and soil (1:2) and  subse-
quently   established in the fi eld.  
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9.11      Artemisia  spp. 

9.11.1      Artemisia petrosa  

  A. petrosa   usually   grow in rocky regions at an altitude above 2200 m. It usually 
appears on top of limestone slopes exposed to cold winds. Plants growing in shady 
areas fl ourish well and produce taller fl oral axis than more exposed ones. The phy-
totherapeutical properties of this plant are comparable to those of other  Artemisia  
species. The phytochemical thujone [4-methyl-1-(1-methylethyl)bicyclo(3.1.0)-
hexan-3-one] isolated from the fl owers is an important drug. For isolating the drug, 
the fl owers are cut at the beginning of the blooming season (from July to September), 
5–8 cm above the ground (Bellomaria et al.  1981 ; Bicchi et al.  1982 ; Caligari and 
Hind  1996 ). Since  A. petrosa  is an endangered species, it is protected by an Italian 
regional law, and its survival is threatened due to indiscriminate collection for com-
mercial purposes, mainly liqueur production by local people and tourists (Conti 
et al.  1992 ,  2005 ). 

 An effi cient protocol for in vitro micropropagation of  A. petrosa  ssp.  eriantha  
has been developed by Pace et al. ( 2004 ). The explants were collected from in vitro 
grown seedlings. The addition of CaCO 3  to the medium signifi cantly infl uenced the 
rate of propagation. The best callusing was obtained on MS medium supplemented 
with 1.0 mg/l 2,4-D. Similarly, the maximum shoot induction was observed on MS 
medium augmented with 2.0 mg/l BA. Under this optimal condition, the shoot num-
ber has reached an average of 30–35 shoots/explant. After in vitro rooting and  trans-
plantation  , the plants were reintroduction in natural conditions.  

9.11.2      Artemisia chamaemelifolia  

 A.  chamaemelifolia  is a  perennial  , aromatic plant. This plant comes under the criti-
cally endangered category from the  Red Data Book  of Bulgaria. The effect of vari-
ous BA concentrations (0.1–1.0 mg/l) on in vitro propagation was investigated by 
Hristova et al. ( 2013 ). Although an increase in concentration of BA enhanced the 
shoot induction, it reduced the shoot length. The shoots grew well on concentrations 
of 0.5, 0.6 and 0.7 mg/l BA. However, these BA concentrations enhanced abnor-
malities like vitrifi cation and necrosis. More than 50 % of the explants induced a 
mean number of 10 new shoots per explant at concentrations of 0.2, 0.3 and 0.9 mg/l 
BA. The presence of BA prevented the root formation.  

9.11.3      Artemisia annua  

  A. annua  is an important annual  medicinal   herb native to China. This plant contains 
several phytochemicals, essential oils and aromatic wreaths. An important antima-
larial agent artemisinin has been detected and isolated from  A. annua  which is effec-
tive against  Plasmodium falciparum  (Bailey and Bailey  1976 ; Bennett et al.  1982 ; 

9 Recent Advances in Asteraceae Tissue Culture



178

McVaugh  1984 ; Elhaq et al.  1991 ; Klayman  1993 ; Teixeira da Silva  2003 ). The 
characteristic feature of  A. annua  is that all the plant parts have extreme bitterness 
(Tripathi et al.  2000 ,  2001 ; Ferreira and Janck  2009 ). This plant has been found 
effective in the treatment of skin diseases. It is also well known as a successful non- 
selective herbicide such as glyphosate (Duke et al.  1987 ; Paniego and Giulietti 
 1994 ). 

 Gopinath et al. ( 2014 ) utilized axillary buds to induce in vitro multiple shoots in 
 A. annua . The axillary buds were cultured on MS medium supplemented with dif-
ferent concentrations of BA (0.5–2.5 mg/l) alone or in combination with NAA (0.1–
0.5 mg/l). The most suitable plant growth regulator combination for shoot induction 
was 1.5 mg/l BA and 0.5 mg/l NAA. On this medium an average number of 27.5 
shoots/explant was obtained. The multiplied shoots were transferred to MS  medium   
amended with various concentrations of IBA for rooting. The best rooting (10.75 
roots/shoot) was noticed on medium supplemented with 1.0 mg/l of IBA. The well- 
rooted plantlets were transferred to soil, acclimatized and established in natural 
conditions with 85 % survival rate.  

9.11.4      Artemisia vulgaris  

 As an alternative to seed  propagation  , an effi cient micropropagation system and 
subsequent rooting were developed for the medicinal plant  A. vulgaris  (Sujatha and 
Kumari  2008 ). From nodal segments a maximum of 32.8 shoots were produced on 
MS medium supplemented with 1.0 mg/l 2iP. The role of various types and concen-
trations of carbohydrates was investigated for multiple shoot induction and found 
that 3 % sucrose concentration resulted in optimum response. Healthy plantlets 
were transplanted to garden soil/farmyard soil/sand (2:1:1) mixture for acclimatiza-
tion, and further maturity was achieved under fi eld conditions. In vitro nodal seg-
ments were isolated from shoot cultures and encapsulated in high-density sodium 
alginate solidifi ed by 50 mM CaCl 2 . Sodium alginate at a concentration of 2.0 % 
produced the best quality beads. When encapsulated nodal segments kept at 5 °C 
did not germinate in light or dark conditions. All encapsulated nodal segments 
stored at 5 °C survived 20 weeks. In fact, 85 % of encapsulated nodal segments 
survived refrigerated storage for 60 weeks. According to authors this method is 
considered as a cost-effective cold storage protocol for alginate-encapsulated  nodal   
explants for the germplasm preservation of  A. vulgaris .   

9.12      Leontopodium nivale  

  L. nivale  is an endemic  species   in Italy due to indiscriminate harvest (Pace et al. 
 2009 ). It grows in rock crevices and on gravel slopes at altitudes between 2000 and 
2800 m.  L. nivale  is seen in various locations in Italy and in the Balkan region 
(Conti et al.  1992 ). The extracts of this plant are utilized in European folk medicine 
especially in the treatment of abdominal aches, cancer, diarrhoea, angina, dysentery, 
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bronchitis and fever in humans as well as livestock (Kiene  1992 ; Knechtl  1992 ; 
Pickl-Herck  1995 ; Wieser  1995 ). Despite its high medicinal value, it also showed 
high anti-infl ammatory activity mainly due to the presence of β-sitosterol (Hook 
 1994 ). In addition to this phytosterol, other phytochemicals like tannins, fl avonoids 
and phenylpropanoids, which are of interest as constituents of both drugs and cos-
metics, were also isolated from this plant (Dobner et al.  2003 ; Dweck  2004 ). An 
effective micropropagation protocol was developed for  L. nivale  (Pace et al.  2009 ). 
The cultured cotyledon explants induced callus on MS medium supplemented with 
1.0 mg/l 2,4-D. The callus was multiplied and maintained on MS medium supple-
mented with NAA 0.1 mg/l and BA 0.4 mg/l. The callus organogenesis was achieved 
using BA at concentrations ranging from 0.5 to 2.0 mg/l. The regenerated  shoots   
were multiplied, rooted and transplanted to soil successfully.  

9.13      Saussurea obvallata  

  S. obvallata  is a perennial herb  commonly   called ‘Brahma Kamal’, growing wild in 
the Indian Himalayan Region (IHR) at an elevation ranging from 3800 to 4800 m 
(Kirtikar and Basu  1984 ). This species comes under rare and endangered category 
(Samant et al.  1998 ). This plant is characterized by its beautiful fl owers and is con-
sidered as one of the most exploited wild fl owers of the region. The fl owers are 
collected primarily due to its ethno-religious purposes as they are regarded as being 
sacred and are offered to the local deities of holy shrines.  S. obvallata  fl ower is the 
state fl ower of Uttaranchal, India (Saklani and Rao  2000 ). Further, this plant is used 
by local people in the preparation of several traditional medicines and treatment of 
intestinal ailments, coughs, bone ache and urinary track problems (Negi et al.  1999 ). 
The antiseptic and healing properties of this plant are well known and are used for 
healing cuts and bruises (Kirtikar and Basu  1984 ). 

 Joshi and Dhar ( 2003 ) developed a micropropagation protocol for  S. obvallata . 
Multiple shoots were successfully induced from epicotyl explants on MS medium 
augmented with 0.2 mg/l Kn and 0.05 mg/l NAA. A mean number of 5.0 shoots were 
obtained within 75 days of culture. The effect of subsequent subcultures on shoot 
formation was also investigated in this study. On half- strength   MS medium amended 
with 0.5 mg/l IBA, 100 % shoots produced roots. The plantlets were transplanted to ex 
vitro conditions and 66.7 % of the plants had been eventually established in the fi eld.  

9.14      Senecio candicans  

  S. candicans  is a rare and endemic  climbing   shrub distributed in the Western Ghats, 
India. The people in various parts of Nilgiris use the leaf decoction of this plant for 
the treatment of gastric ulcer, and the gastroprotective properties of this plant have 
also been reported (Hariprasath et al.  2012 ). 

 Hariprasath et al. ( 2015 ) developed a protocol for in vitro micropropagation of  S. 
candicans  from leaf explants and compared the antioxidant activities of aqueous 
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extracts of in vitro calli and in vivo leaves. The leaf explants cultured on MS medium 
augmented with various concentrations (0.5–2.0 mg/l) of auxins and cytokinins 
under dark conditions produced callus. The highest callus induction (87 %) was 
obtained on MS medium supplemented with 2.0 mg/l BA and 2.0 mg/l IAA. The 
callus was subcultured on MS medium supplemented with different growth regula-
tors (BA, Kn, IAA, NAA) after 28 days for shoot organogenesis. The highest per 
cent response (81 %) and shoot length (4.28 cm) were observed on MS medium 
supplemented with 2.0 mg/l BA and 1.0 mg/l IAA. The optimum root induction 
(90 %) from shoots was noticed on half-strength MS medium supplemented with 
3.0 mg/l NAA. The antioxidant activity of in vivo leaf was signifi cantly high com-
pared to the in vitro callus in all three antioxidant assays. A linear correlation 
between antioxidant activity and the total phenolic content was observed. 

9.14.1      Spilanthes acmella  

  S. acmella  is commonly called as ‘antitoothache plant’, of the  family   Asteraceae. It 
holds an important place in Indian and global scenario owing to its medicinal prop-
erties.  S. acmella  is a perennial fl owering herb and widely distributed in tropics and 
subtropics. The recent increase in interest in this plant is mainly owing to the amaz-
ing properties of ingredients found in the plant, which has been widely used to treat 
stammering, stomatitis, mouth ailments, toothache, fl u, cough, rabies, tuberculosis 
and throat complaints (Akah and Ekekwe  1995 ; Singh  1995 ; Storey and Salem 
 1997 ; Ramsewak et al.  1999 ). The anti-infl ammatory, antiseptic, analgesic, antioxi-
dant, antibacterial, antifungal, antimalarial and cytotoxic properties of  S. acmella  
had been reported (Burkill  1966 ; Oliver-Bever  1986 ; Di Stasi et al.  1994 ; Jondiko 
 1986 ; Saritha et al.  2002 ; Rai et al.  2004 ; Wu et al.  2008 ; Prachayasittikul et al. 
 2009 ). This plant is an essential ingredient in beauty care cosmetics such as muscle 
relaxant to accelerate repair of functional wrinkles (Belfer  2007 ). Furthermore, it is 
famous for its larvicidal and insecticidal properties (Ramsewak et al.  1999 ; Saraf 
and Dixit  2002 ; Pandey et al.  2007 ). 

 Prasad and Seenayya ( 2000 ) reported  the   excellent antimicrobial properties of  S. 
acmella  against red halophilic cocci from salt-cured fi sh. The alkaloids present in 
this plant have the potential to act as an insecticide (Krishnaswamy et al.  1975 ; 
Castillo et al.  1984 ) and were found to be effective against  Aedes aegypti  (Jondiko 
 1986 ). The juice of  S. acmella  is used to grind medicinal pills and to prevent bleed-
ing from the mouth and nose of patients bitten by viper (Ramsewak et al.  1999 ). The 
fresh leaves are used as vegetables and as an additive to salads. The leaves are com-
bined with chillies to offset the burn (Pandey et al.  2007 ). 

 An effective  micropropagation   method for  S. acmella  has been developed by 
Kurian and Thomas ( 2015 ) via repeated subculture of nodal segments. MS medium 
augmented with various concentrations of BA (0.5–4.0 mg/l) or Kn (0.5–4.0 mg/l) 
has been employed for nodal segment culture. High multiplication rate was achieved 
by repeated subculture on MS medium supplemented with 2.0 mg/l BA. The opti-
mum multiplication rate (100 % response with a mean number of 11.6 shoots/
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explant) was achieved during the second subculture cycle after 40 days. The best 
medium for rooting was MS medium fortifi ed with 2.0 mg/l IBA. Here, 95 % cul-
tures responded with a mean number of 3.2 roots per shoot. The plantlets were 
transplanted to soil, hardened with 91 % success. No morphological or phenotypic 
variations were noticed among the transplanted plants (Fig. 9 .2 ). 

  Fig. 9.2    Micropropagation of  Spilanthes acmella  (After Kurian and Thomas  2015 ). ( a ) Nodal 
segment culture on MS medium supplemented with 2.0 mg/l BA 20 days after culture. ( b ) 
Induction of multiple shoots on MS medium supplemented with 2.0 mg/l BA from nodal segments 
during second serial subculture after 40 days of culture. ( c ) Root induction from shoots on half- 
strength MS medium amended with 2 mg/l IBA 40 days after culture. ( d ) A 6-week-old acclima-
tized in vitro plant after transfer to soil       
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 Singh and Chaturvedi ( 2010 ) standardized a micropropagation protocol and esti-
mated the scopoletin, a phytoalexin in the leaves of  S. acmella . The cultures initi-
ated during the spring (January–April) season produced the highest shoot 
proliferation. MS  medium   amended with 1.15 mg/l BA resulted in 100 % bud break 
with maximum shoot proliferation. The in vitro developed single nodes were cul-
tured on MS medium supplemented with 1.15 mg/l BA produced a 20.3-fold shoot 
multiplication rate. Half-strength MS medium promoted 100 % rooting of shoots. 
Further, the estimation of scopoletin in in vitro leaves (0.10 μg/g dry weight) by 
HPLC method is comparable to that of fi eld-grown plants. 

 A method for the mass propagation of three species of  Spilanthes , i.e.  S. acmella  
L. var.  oleraceae ,  S. calva  and  S. paniculata , for conservation purpose has been 
developed by Pandey et al. ( 2014 ) using seedling leaf explants. The leaf explants 
were cultured on MS medium fortifi ed with a variety of plant growth regulators 
such as BA, Kn, 2iP, 2,4-D, NAA and IBA in various concentrations either alone or 
in combination. The best medium for shoot induction was MS supplemented with 
1.15 mg/l BA for  S. calva , with a mean number of 4.17 shoots per explant, whereas 
the optimum response for  S. acmella  var.  oleraceae  and  S. paniculata  was observed 
on MS medium supplemented with 0.2 mg/l NAA and 1.15 mg/l BA differentiating 
an average of 4.46 and 6.50 shoots per explant, respectively. The  shoots   were rooted 
on half-strength MS medium augmented with NAA or IBA. This method could be 
utilized for the ex situ conservation of these three  Spilanthes  species. 

 An effective micropropagation method for  S. calva  was developed via nodal seg-
ment culture (Razaq et al.  2013 ).  S. calva  is an important source of spilanthol, an 
antimalarial larvicidal compound. The nodal segments were cultured on MS 
medium amended with different cytokinins (BA, 2iP and Kn) for inducing multiple 
shoots. MS medium supplemented with 2.5 mg/l BA found optimum for shoot mul-
tiplication. On this medium, 91.6 % cultures responded with a mean number of 7.12 
shoots per explant after 6 weeks. The maximum rooting of shoots was observed on 
 MS   medium augmented with 0.02 mg/l IBA. The in vitro micropropagated plants 
were acclimatized and transplanted to fi eld, where 95 % plants survived. RAPD 
analysis confi rmed the true-to-type nature of in vitro derived plants to fi eld-grown 
mother plants.  

9.14.2      Spilanthes mauritiana  

  S. mauritiana  is an  endangered   East African medicinal herb (Watt and Brayer- 
Brandwijk  1962 ). It is used against stomach ache and diarrhoea (Kokwaro  1976 ). 
The local people in Cameroon employ this plant as a remedy for snakebite and in 
articular rheumatism (Dalziel  1937 ). It is used as a remedy for kidney stones and 
kidney infections in India (Dragendorff  1898 ). 

 A method for micropropagation of  S. mauritiana  using juvenile plant was stan-
dardized (Bais et al.  2002 ). The presence of 0.25 mg/ BA and 0.1 mg/l NAA in the 
medium yielded the highest shoot induction with minimum callusing. The optimum 
rooting was observed on MS medium amended with 0.2 mg/l IAA. The rooted 
shoots were transplanted to soil and acclimatized and kept in the greenhouse.   
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9.15      Brachylaena huillensis  

 Silver oak ( B. huillensis ) is a  resourceful   timber tree belonging to the family 
Asteraceae (Chonge  2002 ; WCMC  2008 ). This tree is native to Central, East and 
Southern Africa. Due to the high demand for its wood and associated products, this 
tree has been overexploited. The population of this plant is very low and is a threat-
ened tree species (Ruffo and Malcondo  1990 ; IUCN  2008 ). The species of this tree 
is used for timber and carving artefacts (Mbuya et al.  1994 ), fl ooring blocks, sleep-
ers, charcoal, essential oil, furniture and turnery (Mbuya et al.  1994 ; Cunningham 
 1998 ; Bryce and Chihongo  1999 ). Since the wood is highly durable, it is utilized as 
building poles, fence posts and transmission poles. It is also used as an ornamental 
plant.  B. huillensis  is also used for medicinal purposes for schistosomiasis and 
leaves are used for diabetes (Cunningham  1998 ). 

 Conventionally,  B. huillensis  propagates only through seeds and poor seed ger-
mination rate and viability are the limiting factors of conventional propagation. 
Developing an effi cient micropropagation protocol is a viable option for large-scale 
propagation of this plant. Ndakidemi et al. ( 2014 ) investigated the role of antioxi-
dant ascorbic acid in reducing lethal browning caused by the exudation of oxidized 
phenols during in vitro nodal segment culture of  B. huillensis .  Different   concentra-
tions of ascorbic acid (0, 50, 100, 150, 200 and 250 mg/l) were supplied along with 
basal woody plant medium (WPM; Lloyd and Mc Cown  1980 ) containing BA. They 
noted a reducing trend of browning with an increase in concentration of ascorbic 
acid. The optimum control was achieved by adding 200–250 mg/l of ascorbic acid 
in the WPM, augmented with BA.  

9.16      Rhaponticoides mykalea  

  R. mykalea  is an endemic plant of Turkey. This species has  already   been on the 
verge of extinction, and it is necessary to develop certain conservation measures 
including in vitro conservation to save this plant from extinction. Micropropagation 
via direct shoot induction from various explants and determination of secondary 
metabolites were studied in  R. mykalea  (Hayta et al.  2015 ). Seeds were germinated 
after damaging the seed coat, and embryos were excised and cultured on WPM, to 
achieve a maximum germination (40 %). The epicotyl and cotyledonary petiole 
were excised from germinating embryos and cultured on WPM containing 0.5 mg/l 
BA. The addition of 1.0 mg/l IBA along with 0.5 mg/l BA signifi cantly improved 
the direct shoot induction, resulting in a mean number of 5.6 shoots per explant. A 
combination of 4.0 mg/l IBA with 990 μM putrescine produced the highest root 
induction from shoots (35.6 %). Plantlets with well-developed roots were trans-
planted to soil and acclimatized in a plant growth chamber. Acclimatized plants 
exhibited 100 % survival rate. The content of  secondary   metabolites in three tissue 
culture regenerated lines were also analysed by HPLC method. The analysis indi-
cated that chlorogenic acid, quercetin and scutellarin are the chief secondary metab-
olites present in  R. mykalea .  
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9.17      Farfugium japonicum  

  F. japonicum  is   native     to streams and  seashores   of Japan. It grows to about 60 cm 
tall spreading by rhizomes. It is characterized by its yellow fl owers borne in loose 
clusters in autumn and winter. The leaves of this plant are used as an antidote and 
are taken internally to treat fi sh poisoning and externally to treat lacquer poisoning 
(Duke and Ayensu  1984 ). 

 A method for direct or indirect somatic embryogenesis was developed for  F. 
japonicum  (Lee  2006 ). For somatic embryo induction, the leaf and petiole segment 
explants were cultured on MS or N 6  media (Chu et al.  1975 ) supplemented with 
2,4-D alone or in combination with auxins and cytokinins. Yellowish embryogenic 
callus was induced from petiole explants within 7 weeks on MS medium augmented 
with 2,4-D. Comparatively, petiole explants produced better callusing than leaf 
explants. On MS medium supplemented with 2,4-D (0.4–22.5 mg/l), the frequency 
of embryogenic callus and number of somatic embryos per explant were signifi -
cantly improved compared to other plant growth regulator combinations. However, 
on N 6  medium supplemented with 1.0 mg/l NAA and 2.0 mg/l Kn, direct induction 
of somatic embryos was obtained from petiole explants. Secondary somatic embryos 
were induced abundantly on the base of the primary somatic embryos when petiole 
segments with embryos were transferred to MS medium supplemented with 0.2 
mg/l NAA and 0.45 mg/l Kn. The somatic  embryos   were converted into plantlets on 
MS basal medium. The transplantation success of the regenerated plants was 97 % 
after 1 month of transfer and was morphologically similar to the parental plant.  

9.18      Bellis perennis  

  B. perennis  (common daisy) is a medicinal  plant   utilized in the treatment of wounds, 
infl ammation, common cold and rheumatism in traditional system of medicine 
(Hansel et al.  1992 ). An effective and quick regeneration system was standardized 
for  B. perennis  via indirect organogenesis (Karakas and Turker  2013 ). Leaf, pedicel 
and root explants from fi eld-grown plants and leaf, petiole and root explants obtained 
from in vitro grown plantlets were used for in vitro regeneration experiments. The 
explants were cultured on MS medium supplemented with various plant growth 
regulator combinations. The fi eld-grown plants responded better than in vitro grown 
plantlets. The optimum shoot induction was observed with pedicel explants on 
medium containing 0.5 mg/l TDZ and 0.5 mg/l IAA. The regenerated shoots were 
rooted on MS medium fortifi ed with IAA (1.0 mg/l). Rooted plantlets were trans-
ferred to vermiculite for acclimatization. After 2 weeks, the plants were transferred 
to small plastic pots containing soil, and after 3 months the fl owering of the in vitro 
derived plants was observed.  
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9.19      Vernonia herbacea  

  V. herbacea  is a plant native to Brazil that  gathers   about 80 % of inulin-type fructans 
in the underground reserve organs, the rhizophores. It is employed in the study of 
fructan metabolism in relation to the effects of abiotic stresses such as low tempera-
ture (Asega et al.  2011 ), drought (Garcia et al.  2011 ), high CO 2  atmosphere concen-
tration (Oliveira et al.  2010 ) and low nutrient availability (Cuzzuol et al.  2005 ). 
Trevisan et al. ( 2014 ) established an in vitro propagation protocol for  V. herbacea  
using seeds and leaf disc explants. The stem nodes excised from 6-month-old ger-
minating seeds were isolated and cultured on MS basal medium for shoot induction 
and rhizophore formation. Estimation of fructan content was estimated in leaves, 
stems, roots and rhizophores from in vitro and greenhouse plants. Fructan contents 
of aerial organs and roots from in vitro plants were higher, compared with green-
house plants. The leaf disc  cultured   on MS medium augmented with IBA (0.05, 0.1 
mg/l) produced roots. The leaf disc induced friable callus on MS medium fortifi ed 
with IBA (0.5 mg/l), whereas BA (1.0 mg/l) induced compact callus. There was no 
shoot induction.  

9.20      Achillea occulta  

  A. occulta  is a threatened mountain species in Greece which has no other close rela-
tives and its habitats are threatened by wild fi res and overgrazing (Constantinidis 
and Kalpoutzakis  2009 ). A micropropagation protocol using shoot tip explants was 
standardized for  A. occulta  by Grigoriadou et al. ( 2011 ). Shoot tips from wild plants 
were used for initiating cultures on MS medium supplemented with 1.0 mg/l BA 
and 0.1 mg/l IBA. A  combination   of BA with NAA or IBA was also studied. The 
maximum response (3.5 microshoots/explant with 0.93 cm shoot height) was 
observed on MS medium supplemented with 1.1 mg/l BA and 0.5 mg/l IBA. The 
rooting of shoots was diffi cult and the optimum rooting was obtained on MS 
medium amended with 4.0 mg/l IBA. On this medium 12.5 % rooting percentage 
was achieved. The rooted young plantlets were transplanted to  soil   after acclimati-
zation and produced fl owers and seeds in the fi rst year.  

9.21      Pentanema indicum  

  P. indicum  is an erect herb with hard woody roots and variable leaves. It is a female 
antifertility drug employed by the tribal people in Bihar state of India. This  annual   
plant is distributed all over India, ascending up to an altitude of 1800 m. Several 
phytochemicals were isolated from this plant including sesquiterpene–vicolides, 
monoterpenediol–vicodiol and thymol esters (Vasanth et al.  1990 ; Mossa et al. 
 1997 ), cis–cis germacranolide (Sawaiker et al.  1998 ) and 4,5,6-trihydroxy-4-7-di-
methoxy fl avone (Krishnaveni et al.  1997 ). The phytochemical vicolide D isolated 
from this plant showed abortifacient and antifertility activities (Alam et al.  1989 ). 
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Antiviral activity of hexane soluble fraction of  P. indicum  against Ranikhet virus 
had been reported (Chowdhury et al.  1990 ). 

 Micropropagation and in vitro fl owering of  P. indicum  had been studied by 
Sivanesan and Jeong ( 2007 ). For callus induction from leaf and stem explants, MS 
medium augmented with 2.0 mg/l BA and 1.0 mg/l IBA was optimum. The highest 
shoot organogenesis (19.0 shoots per explant) was observed on MS medium supple-
mented with 4.0 mg/l BA and 1.0 mg/l IAA after 5 weeks. When shoot tip and nodal 
explants were cultured on MS medium amended with BA and IAA, direct shoot 
induction was noticed. Shoot multiplication rate was enhanced by adding adenine 
sulphate (1.0 mg/l) to the regeneration medium. The highest rooting of shoots was 
obtained on MS medium fortifi ed with 2.0 mg/l IBA. About 90 % of in vitro derived 
plants fl owered on MS medium supplemented with 2.0 mg/l IBA. The  plants   derived 
from various explants were acclimatized and transplanted to soil with 96 % 
success.     
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  10      Plant Tissue Culture Approach 
for Cloning and Conservation of Some 
Important RET Medicinal Plants                     

     A.  K.     Sharma     ,     M.     Sharma    ,     M.     Jain    ,     K.     Arora    ,     S.  K.     Rai    , 
and     D.  K.     Purshottam   

    Abstract 
   In vitro protocol for rapid micropropagation/cloning in case of four medicinally 
important rare, endangered and threatened (RET) plants of Indo-Gangetic Plain, 
namely,  Clerodendrum serratum ,  Uraria picta ,  Operculina petaloidea  and 
 Embelia tsjeriam - cottam , employing nodal stem segments of fi eld-grown plant, 
was developed for the purpose of ex situ conservation. In all the four plants, sus-
tained proliferation of shoots as well as 100 % induction of rooting in isolated 
shoots could be maintained even in long-term culture, and complete plantlets 
were produced, which grew luxuriantly and came to fl owering under fi eld condi-
tions. The genetic fi delity of plants raised through tissue culture was assured by 
random amplifi ed polymorphic DNA (RAPD) analysis in case of  C. serratum ,  U. 
picta  and  E. tsjeriam - cottam . In  U. picta , quantitative estimation of two isofl avo-
nones, isolated from the roots of mother plant and from the tissue culture-raised 
plants, revealed no signifi cant difference in their concentrations which further 
strengthened true-to-type nature of in vitro cloned plants. Another process was 
developed for rapid micropropagation of a medicinally important wild, endemic, 
primitive and endangered monoembryonic  Citrus  species, viz.  C. indica , grow-
ing in thin population in Garo Hills in Northeastern Himalayan region of the 
country. Such in vitro developed processes may be utilized for the supply of 
enough raw materials to various pharmaceutical companies and for providing 
large number of cloned plants to re-establish them in their natural habitats for in 
situ conservation and sustainable utilization. In case of  Azadirachta indica , a 
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medicinally important tree, a process for in vitro clonal multiplication of a 
40-year-old mature tree through nodal stem segments was standardized. Further 
multiplication rate was augmented by inducing differentiation of multiple shoots 
from leafl et segments excised from in vitro raised proliferating shoots. In order 
to preserve the germplasm of highly heterozygous elite neem trees, an innovative 
method of long-term regenerative excised root culture was developed. The 
genetic fi delity of fi eld-grown plants raised through nodal stem segments of a 
40-year-old mature tree and through root segments, taken from long-term excised 
root cultures, was ascertained by RAPD markers as well as through chemical 
analysis in respect of azadirachtin content.  

10.1       Introduction 

 The science of plant tissue culture means aseptic cultivation of plant protoplasts, 
cells, tissues, organs or complete plantlets in vitro in certain culture media and their 
incubation under controlled physical conditions, like light, temperature and humid-
ity. To be precise, in plant tissue culture, one studies in vitro morphogenesis to 
understand the process of chemical regulation of growth and differentiation – both 
morphological and biochemical – with the aim of unravelling the underlying causal 
processes and mechanisms, the least understood aspect of development. In fact, 
morphogenesis is the science that treats the cause and origin of forms, i.e. inception 
and development of morphological characters, both normal and abnormal during 
growth and differentiation in the process of development of an individual. As such, 
for understanding the discipline of morphogenesis, knowledge of such other 
branches of science as morphology, anatomy, embryology, cytology, genetics, 
pathology, physiology, biochemistry, molecular biology, etc. is required. 

 The classic demonstration of hormonal regulation of organogenesis in tobacco 
pith tissue cultures by Skoog and Miller ( 1957 ) and demonstration of totipotency of 
carrot phloem cells by Steward et al. ( 1958 ) formed the basis of morphogenesis in 
tissue culture, which has actually given birth to the most useful and applied aspect 
of tissue culture, i.e. micropropagation. The fi rst successful application of micro-
propagation was demonstrated by Morel ( 1964 ) in an important orchid,  Cymbidium , 
using meristem culture. However, during the course of most of the further studies on 
multiplication of plants through tissue culture, the very basis of micropropagation, 
i.e. morphogenesis, has often been ignored, with the results that many a times are 
either not reproducible at all or to the same extent as they have been reported earlier. 
On the other hand, if the principles of morphogenesis are suffi ciently taken into 
account in regeneration studies, the results are invaluable, which may lead to the 
development of methods of germplasm preservation resulting into establishment of 
‘tissue or gene banks’. 

 At CSIR-NBRI, plant tissue culture research was initiated on lower plants during 
the 1960s, which later on shifted to economically important higher plants belonging 
to the categories of ornamentals, medicinal plants and fruit and forest trees, mainly 
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towards developing regeneration and multiplication protocols for rapid production 
of cloned and clean stocks of intractable-to-multiply elite plants; creation of soma-
clonal variants; conservation of phytodiversity, including establishment of ‘germ-
plasm repositories’ or ‘gene banks’; and production of high-value active principles 
in case of some medicinal and herbal plants (Chaturvedi  1979 ; Chaturvedi and 
Sharma  2004 ). 

 This article highlights the main fi ndings of tissue culture work accomplished 
mainly on four medicinally important RET plants of Indo-Gangetic Plain, namely, 
 Clerodendrum serratum  (Linn.) Moon (barangi; an endangered medicinal shrub), 
 Uraria picta  (Jacq.) DC (dabra; a rare medicinal herb),  Embelia tsjeriam - cottam  
(baibidang; a vulnerable straggling shrub) and  Operculina petaloidea  (Choisy) 
Oost. (vidhara; a rare perennial climber), a wild endemic and endangered species of 
 Citrus , viz.  C. indica  and a medicinal tree,  Azadirachta indica  A. Juss. (neem), pri-
marily to develop in vitro protocols for cloning and germplasm preservation.  

10.2     Materials and Methods 

10.2.1     Collection of Plant Material 

 Twigs from fresh fl ush of growing shoots of RET  plants  , namely,  C. serratum  
(Linn.) Moon,  U. picta  (Jacq.) DC,  E. tsjeriam - cottam  (Roem. & Schult.) DC and 
 O. petaloidea  (Choisy) Oost., were collected from plants growing in the herbal 
garden of Deendayal Research Institute, Chitrakoot, Madhya Pradesh. Fruits and 
twigs of  C. indica  Tanaka were collected from Garo Hills in Northeastern Himalaya, 
where as in case of  A. indica  A. Juss., twigs from fresh growing shoots were col-
lected from a mature (40-year-old) elite tree growing in Lucknow.  

10.2.2     Surface Sterilization of Explants 

 Aseptic cultures of aforesaid plants were  raised   using shoot tips/nodal stem seg-
ments having axillary buds and seeds (in  C. indica  only) as explants. Initially, 
explants were thoroughly washed for 30 min under running tap water through 
bacteria- free fi lter (zero-B), then treated for 10 min with 5 % (v/v) labolene solution 
(GlaxoSmithKline Pharmaceuticals Ltd., Mumbai, India) and rinsed with single 
distilled water. In case of neem, washed explants were pretreated for 2 h at 4 °C with 
sterilized chilled antioxidant solution, comprising four antioxidants, namely, poly-
vinylpyrrolidone (PVP), citric acid, ascorbic acid and glutathione reduced. Mercuric 
chloride (0.1 % HgCl 2 ) solution was used for surface sterilization of the pretreated 
explants for 10/15 min. Prior to surface sterilization, a quick dip of explants in etha-
nol (95 %, v/v) was given which is essential for wetting the explants. Finally, traces 
of disinfectant  from   surface-sterilized explants were removed by washing them four 
to fi ve times with sterilized single distilled water. Explants were kept in sterilized 
antioxidant solution till inoculation for checking browning in case of neem only.  
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10.2.3     Proliferation of Shoots 

 Shoots regenerated from  different   explants were cultured in derived respective agar-
ifi ed nutrient medium containing growth hormones in particular concentrations/
combinations for their proliferation.  

10.2.4     Root Induction in Isolated Shoots 

 Shoots of about 3–4 cm in size were  excised   from the cultures of proliferating 
shoots of all the aforesaid plants and were cultured in respective rooting medium 
supplemented with standardized concentrations and/or combinations of auxins/phe-
nolic acid.  

10.2.5     Plantlet Production and Their Transplantation in Field 

 The in vitro raised plantlets were  transplanted   to pots containing a potting mix [mix-
ture of soil and manure] after being acclimatized in an inorganic salt solution com-
prising half-strength Knop’s solution (Knop  1865 ) fortifi ed with trace elements and 
Na-Fe-EDTA solution of Murashige and Skoog’s ( 1962 ) medium (MS medium) for 
about 30 days. The potted plants were grown in glasshouse for about 4–6 months, 
and fi nally the hardened in vitro raised plants were  transferred   to fi eld in the proper 
season for better transplantation success.  

10.2.6     Establishment of Excised Root Cultures 

 For establishing  excised root cultures  , roots measuring about 3 cm in length, excised 
from in vitro grown plantlets, were used as explants and cultured in White ( 1943 ) 
liquid medium in dark.  

10.2.7     Regenerant Differentiation from Root Segments Taken 
from Excised Root Cultures 

 Initially, for inducing regenerant differentiation in  root segments  , taken from excised 
root cultures, standardized nutrient medium supplemented with cytokinin(s) was 
employed. After regenerant differentiation, shoots were cut and subcultured in the 
proliferation medium.  

10.2.8     Significance and Importance of R&D 

 The in vitro processes  developed   for rapid multiplication of cloned plants of valu-
able RET medicinal plants, namely,  C. serratum ,  U. picta ,  O. petaloidea ,  E. 
tsjeriam -  cottam  and  C. indica , even in long-term culture, are effi cient, simple and 
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reproducible. Further, such developed processes can be exploited for raising enough 
raw material for various pharmaceutical companies and also for providing large 
number of cloned plants of these plant species for the re-establishment in their natu-
ral habitats for in situ conservation and sustainable utilization. 

 Process developed for in vitro cloning of a 40-year-old mature neem tree has a 
great practical signifi cance, as it may be utilized for rapid production of a large 
number of cloned plants of selected elite individuals taking into account the con-
straints in its conventional methods of propagation. 

 Cultures of proliferating shoots of the above-mentioned four RET plants of Indo- 
Gangetic Plain,  C. indica  and  A. indica , kept regenerative in their respective bal-
anced nutrient medium, in long-term culture, under normal culture room conditions 
maintaining genetic stability and maximum structural organization due to minimum 
stress in culture, which provides a moderately good system for germplasm 
preservation. 

 The innovative method of germplasm  preservation   of  A. indica  through regenera-
tive excised root cultures is of immense importance, as it may lead to development 
of ‘in vitro gene banks’/‘germplasm repositories’ of even highly heterozygous tree.   

10.3     Results and Discussion 

10.3.1     RET Plants of Indo-Gangetic Plain 

10.3.1.1      Clerodendrum serratum  (Linn.) Moon (An Endangered 
Shrub) 

 Overexploitation and  unsustainable   extraction of wild plants of  C. serratum  for 
medicine and trade coupled with low seed viability are the major causes for the 
constant decrease in its natural population in India. The leaf and root of this plant 
have great medicinal value. Root bark contains mainly sapogenins (Rangaswami 
and Sarangan  1969 ) and has been traditionally used in Ayurveda and Siddha sys-
tems of medicine for treatment of chronic bronchial asthma and other respiratory 
diseases, different types of fevers and skin infections. Apart from roots, leaves also 
contain important fl avonoids and phenolic acids (Rastogi  1999 ). It is one of the 
ingredients of the ayurvedic drug, ‘Kasadamana’, an effective expectorant and anti-
tussive remedy (CSIR  2001 ). Therefore, development of an in vitro protocol for 
rapid clonal production of  C. serratum  was warranted for providing consistent and 
uniform raw material for medicinal purposes as well as for its conservation. 

 For the fi rst time, an in vitro process for rapid clonal propagation of  C. serratum  
using nodal stem segments has been developed by Sharma et al. ( 2009 ). Nodal stem 
segments having axillary bud, taken from fi eld-grown plants, showed bud-break 
within 15 days of culture on modifi ed MS medium supplemented with 0.25 mg l −1  
each of 6-benzylaminopurine (BAP) and indole-3-acetic acid (IAA) along with 
15 mg l −1  adenine sulphate (AdS). Regenerated shoots could be multiplied further 
on the same agarifi ed morphogenetic medium in the presence of 0.5 mg l −1  
2- chloroethyltrimethyl ammonium chloride (CCC) but supplemented with increased 
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concentration of AdS, i.e. 30 mg l −1 . The  inoculum   used for subculture was a group 
of fi ve shoots, which produced on an average 4.98 new shoots per original shoot 
after 4 weeks of subculture. The shoots of about 3 cm were isolated from cultures of 
proliferating shoots and induced to root 100 % by culturing them in half-strength 
MS medium supplemented with 1 mg l −1  indole-3-propionic acid (IPA). The in vitro 
rooted shoots – plantlets – grew luxuriantly in fi eld after transplantation and came 
to fl owering after about 10 months of transplantation. The genetic fi delity of these 
transplanted fi eld-grown plants and their mother plant was assured by random 
amplifi ed polymorphic DNA (RAPD) analysis (Fig.  10.1a–e ). The protocol stan-
dardized holds good for in vitro cloning of  C. serratum .

10.3.1.2         Uraria picta  (Jacq.) DC (A Rare Medicinal Herb) 
 In India,   Uraria picta    is well known for its medicinal properties. The whole plant is 
medicinally important and is utilized by certain Adivasi and native tribes (Jain and 
Defi lipps  1991 ). The fruits are effectively used against oral sores in children, and 
the roots are used against cough, chills and fever (Yusuf et al.  1994 ). Two isofl avo-
nones isolated from  U. picta  have antimicrobial activity (Rahman et al.  2007 ). The 
species is rapidly attaining a status of rare due to ruthless extraction coupled with 
overexploitation by various pharmaceutical companies as well as local tribes for 
medicine and trade and also because of poor seed viability (Anand et al. 1998 ). In 
the present scenario, there was an immediate need to develop in vitro methods for 
rapid clanal production of  U. picta  which may provide uniform raw material for 
medicinal purposes as well as for its re-establishment in natural habitat for in situ 
conservation and sustainable utilization. 

 For the fi rst time, an effi cient in vitro process for rapid propagation of cloned 
plants of  U. picta  using nodal stem segments was developed (Rai et al.  2010 ). 
Explants of nodal stem segments, taken from fi eld-grown plants, showed bud-break 
followed by regeneration of shoots with restricted growth within 12 days on modi-
fi ed MS medium supplemented with 0.25 mg l −1  each of BAP and IAA and 25 mg l −1  
AdS. Normal growth of shoots with good proliferation rate was achieved by reduc-
ing the concentrations of BAP and IAA to 0.1 mg l −1  each and incorporating 0.5 mg 
l −1  gibberellic acid (GA) in the medium, in which, on an average, 19.6 shoots per 
explant were produced. Further, during successive subcultures, increased concen-
trations of AdS (50 mg l −1 ) and GA (2 mg l −1 ) along with addition of 20 mg l −1  
DL-tryptophan were found conducive to control the problem of necrosis of shoots. 
In this treatment, several ‘crops’ of shoots were obtained from a single culture by 
repeated subculturing of basal portion of stalk even in the long term. Hundred per-
cent rooting was induced in the isolated shoots with the addition of 0.25 mg l −1  
indole-3-butyric acid (IBA) in the culture medium. The in vitro  raised   plants after 
hardening in inorganic salt solution grew normally in soil and came to fl owering. 
Genetic fi delity of the in vitro raised plants was assured by RAPD markers 
(Fig.  10.2a–e ). Quantitative estimation of two isofl avonones in the root extracts of 
in vitro cloned plants and that of mother plant further confi rmed true-to- type nature 
of plantlets having comparable concentrations.
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  Fig. 10.1    ( a – e ) In vitro cloning of  Clerodendrum serratum . ( a ) Bud-break resulting into shoot 
formation in nodal stem segment, taken from fi eld-grown plant. ( b ) Proliferation of shoots. ( c ) 
Rooting of isolated shoots. ( d ) Transplantation of in vitro raised plants in fi eld. ( e ) RAPD analysis 
of in vitro raised fi eld-grown plants and mother plant; lane  M  500-bp DNA size markers, lane  Mo  
DNA from mother plant, lanes 1–17 DNA from randomly selected regenerated plantlets       
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10.3.1.3         Operculina petaloidea  (Choisy) Oost, (A Rare Perennial 
Climber) 

  Operculina petaloidea  is a  medicinally   important rare perennial climber, found in 
Madhya Pradesh. Its roots are used in the treatment of stomach disorders, gout and 
rheumatism. The ruthless extraction of plants by pharmaceutical companies and 
destruction of natural forests are the main reasons for its declining status, which 

  Fig. 10.2    ( a – e ) Cultures of  Uraria picta . ( a ) Proliferating shoots as seen after 5 years of culture. 
( b ) Rooting of isolated shoots. ( c ) Acclimatization of in vitro raised plantlets in liquid culture. ( d ) 
In vitro raised potted plants. ( e ) RAPD analysis of in vitro raised fi eld-grown plants and mother 
plant; lane  M , 500 bp DNA size markers,  Mo , DNA from mother plant; lanes 1–8, DNA from 
randomly selected regenerated plantlets       
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warrants development of in vitro strategies for rapid production of cloned plants of 
this species for re-establishment in its natural habitat for in situ conservation and 
sustainable utilization. 

 The aseptic cultures of  O. petaloidea  were established using shoot tips and nodal 
stem segments taken from fi eld-grown plants. Mostly tender explants, particularly 
shoot tips, turned brown within a week, and only slightly thicker nodal explants 
showed bud-break after 15–20 days’ incubation in the morphogenetic medium. For 
augmenting the rate of shoot proliferation, a modifi cation of Schenk and Heldebrandt 
( 1972 ) medium supplemented with BAP, IAA and AdS was found conducive, in 
which sustained proliferation of shoots with good branching and foliage develop-
ment was achieved even in long-term culture. The isolated shoots could be induced 
to root 100 % in a low salt concentration medium fortifi ed with an auxin (IBA). 
After proper acclimatization in an inorganic salt solution for 30 days, the plantlets 
raised in vitro were transferred to potted soil and subsequently to fi eld, where they 
exhibited uniform luxuriant growth and came to fl owering after about 6 months of 
transplantation (Fig.  10.3a–d ).

  Fig. 10.3    ( a – d ) In vitro cloning of  Operculina petaloidea . ( a ) Proliferation of shoots. ( b ) Rooting 
of isolated shoots. ( c ) Hardening of in vitro raised plants in liquid culture. ( d ) In vitro raised plants 
in fi eld       
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10.3.1.4         Embelia tsjeriam - cottam  (Roem. & Schult.) DC (A 
Vulnerable Straggling Shrub) 

  Embelia tsjeriam - cottam  is popularly  known   for its medicinal properties as its 
seeds, root and bark have great medicinal value. Though this species was widely 
distributed, it is becoming critically endangered due to poor viability of seeds and 
lack of conventional methods of vegetative propagation. Hence, there was a great 
need to develop an effi cient in vitro process for rapid micropropagation of  E. 
tsjeriam- cottam  to facilitate conservation and re-establishment in its natural habitat 
for sustained utilization. 

 The aseptic cultures of  E. tsjeriam - cottam  were raised through nodal stem seg-
ments of fi eld-grown plants. However, the initial establishment of this plant was 
found to be a diffi cult proposition. For induction of growth in shoots regenerated 
from the nodal explants, a pulse treatment of GA for 20 days was found essential, 
and to induce multiplication in growing shoot, a different morphogenetic medium 
was derived, in which proliferation of shoots could be achieved. On an average, four 
to seven shoots were formed per explant of single node stem segment during initial 
two to three subcultures, but the number of shoots in subsequent subcultures 
increased up to 14. The isolated shoots of about 4 cm were excised from cultures of 
proliferating shoots and after root induction in the presence of 0.25 mg l −1  IBA 
developed into plantlets with good growth and leaf development. The in vitro raised 
plants were hardened directly in potted soil without passing through a phase of 
acclimatization in an inorganic salt solution and grew luxuriantly on transplantation 
to fi eld. The genetic fi delity of in vitro raised fi eld-grown plants was assured by 
RAPD analysis (Fig.  10.4a–f ).

10.3.1.5         Citrus indica  Tanaka 
   Citrus indica    is a medicinally important endemic, primitive, endangered and mono-
embryonic wild  Citrus  species found in thin population size at Garo Hills in 
Northeastern Himalayan region of the country. Narrow distributional range, high 
habitat specifi city, jhoom cultivation, deforestation, low natural regeneration and 
extraction of fruits from wild for local use are the main constraints associated with 
its in situ germplasm conservation and management. In addition, fruit setting per-
centage as well as the number of seeds per fruit is quite low. Generally, two to six 
seeds per fruit are formed that too are recalcitrant having very poor viability. Hence, 
there was an urgent need of intervention of in vitro strategies for developing meth-
ods for rapid multiplication of this important wild species of  Citrus  for rehabilita-
tion in its natural habitat to promote in situ conservation. 

 Seeds extracted from ripe fruits of  C. indica  after removing the seed coat asepti-
cally germinated 100 % in vitro and produced full-fl edged seedlings within 8 days 
of culture in the modifi ed White ( 1943 ) medium. Amongst various vegetative 
explants, nodal stem segments showed the maximum regenerative potentiality fol-
lowed by shoot tips and leaf segments in a decreasing order, when cultured in mor-
phogenetic medium containing various concentrations (0.1, 0.2 and 0.5 mg l −1 ) of 
BAP, N 6 -2-isopentenyladenine (2iP), kinetin (Kn) and zeatin (Z) in combination 
with 0.1 mg l −1  IAA and 15 mg l −1 AdS. Amongst different cytokinins used, BAP 
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was more effective than 2iP, kinetin (Kn) and zeatin (Z). The regenerated shoots did 
not proliferate further upon subculturing in the same  morphogenetic   medium. In 
order to enhance the rate of proliferation of shoots with normal growth, effect of 
different concentrations of GA and BAP along with 0.1 mg l −1  IAA and 15 mg l −1  
AdS was assessed. In the optimum treatment, comprising 0.2 mg l −1  BAP, 0.1 mg l −1  
IAA, 15 mg l −1  AdS and 0.1 mg l −1  GA, the shoot proliferation rate was increased to 
three times, i.e. 15 adventitious shoots per explant in place of 5 were regenerated 
with normal growth and good foliage. It is important to mention that the cultures of 

  Fig. 10.4    ( a – f ) In vitro cloning of  Embelia tsjeriam - cottam . ( a ) Bud-break resulting into shoot 
formation in nodal stem segment, taken from fi eld-grown plant. ( b ) Proliferation of shoots. ( c ) 
Rooting of isolated shoots. ( d ) In vitro raised hardened plants in pots. ( e ) In vitro raised plants in 
fi eld. ( f ) RAPD analysis of in vitro raised fi eld-grown plants and mother plant; lane  M  Lambda 
DNA/Hind III digest size markers, lane  Mo  DNA from mother plant, lanes 1–11 DNA from ran-
domly selected regenerated plantlets       
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proliferating shoots are being maintained for 8 years, providing continuous enor-
mous supply of clonal planting material. It was also observed that during this long 
span of time, proliferating shoots did not lose the regenerative potentiality as also 
the shoots, excised from such cultures, and showed no decline in their rooting 
potentiality. Thus, a stock of these cultures comprised a ‘tissue bank’ – a means of 
in vitro germplasm preservation. The well-developed shoots, isolated from cultures 
of proliferating shoots, were induced to root in the presence of 0.25 mg l −1  IBA and 
1 mg l −1  chlorogenic acid. The in vitro raised potted plants grew well under glass-
house conditions. The genetic fi delity of in vitro raised plants was assured by RAPD 
analysis (Fig.  10.5a–e ).

10.3.1.6         Azadirachta indica  A. Juss. 
   Azadirachta indica    in nature is represented by a large number of genotypes differing 
in contents of their active principles, including two commercially most important 
constituents, that is, azadirachtin and neem oil (Ermel et al.  1987 ; Schmutterer 
 1995 ). The conventional methods of propagation of  A. indica , both sexual and veg-
etative, are beset with constraints that restrict large-scale multiplication of selected 
trees and its commercial exploitation (Schmutterer  1995 ). The main limitations in 
sexual propagation are the recalcitrant nature of seed with short period of viability 
and high heterozygosity (Ezumah  1986 ; Sacande et al.  2001 ). In case of vegetative 
propagation by cuttings, availability of cuttings of right maturity, problems of root-
ing, favourable season of the year and the presence of endogenous infection within 
the material are the main constraints (Dogra and Thapliyal  1996 ). As a result, clon-
ing as well as preservation of its diverse genotypes under fi eld conditions is virtually 
impossible. All these limitations make it imperative to develop in vitro processes for 
cloning of mature neem trees of proven traits. 

 An effi cient in vitro process for  rapid   clonal propagation of a mature (40-year- 
old) tree of  A. indica , employing nodal stem segments, was developed (Arora et al. 
 2010 ). Season of collection and maturity of explants was found to have a direct 
infl uence on bud-break. Nodal stem segments collected during the month of April 
showed best response. Bud-break was maximized (78.6–81 %) when middle-order 
nodes (third or fourth node from apex) were taken. Amongst various cytokinins 
used, BAP at the concentration of 0.25 mg l −1  was found to be most effective in 
inducing multiple shoots, whereas growth and general condition of proliferating 
shoots were infl uenced by inorganic and organic constituents of the medium. On an 
average, 3.1 shoots per explant were regenerated in a modifi ed MS medium supple-
mented with 0.25 mg l −1  BAP, 0.25 mg l −1  IAA and 15 mg l −1 AdS. The isolated 
shoots could be rooted in the presence of 0.5 mg l −1  IBA. Hundred percent root 
induction took place within 8–10 days of culture. The in vitro raised plantlets were 
successfully transplanted in potted soil, and fi nally they were grown under fi eld 
conditions with 100 % survival. The genetic stability of in vitro raised fi eld-grown 
plants was assured by RAPD markers (Fig.  10.6a–g ). Furthermore, chemical analy-
sis showed azadirachtin content of the in vitro cloned plants comparable to that of 
mother tree, which proved their chemical stability also.
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  Fig. 10.5    ( a – e ) Clonal propagation of  Citrus indica . ( a ) Sustained proliferation of shoots. ( b ) In 
vitro regenerated shoots showing uniform rooting. ( c ) In vitro raised potted plants. ( d ) RAPD 
profi le of ten in vitro raised plants amplifi ed with RAPD primer OPB 06. ( e ) RAPD profi le of ten 
in vitro raised plants amplifi ed with RAPD primer OPB 10       
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  Fig. 10.6    ( a – g ) In vitro cloning of a 40-year-old tree of  Azadirachta indica . ( a ) Difference in 
axillary bud-break in the nodal stem segment explants in respect of their relative position on a 
growing twig. Segment with fi rst node, immediately below the shoot tip, turned brown without any 
bud-break (Lt.). Segment having fourth positioned node from shoot tip remained green with bud- 
break leading to regeneration of healthy, leafy shoot (Rt.). ( b ) Proliferation of shoots. ( c ) Rooting 
of isolated shoots. ( d ) Acclimatization of in vitro rooted shoots – plantlets – in inorganic salt solu-
tion. ( e ) A group of in vitro regenerated plants in potted soil. ( f ) Field cultivation of nodal stem 
segment-regenerated plants after 2 years of transplantation. ( g ) RAPD profi le of fi eld-grown plants 
of neem regenerated from nodal stem segments using primer OPU-20. Lanes from left are marker 
( M ) containing low-range DNA ruler followed by lanes with DNA of the mother plant ( A ) and 
nodal stem segment-regenerated plants ( B - H ), respectively       
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   In addition, a process with  controlled   pattern of regenerant differentiation from 
leafl et segments, excised from in vitro cultures of proliferating shoots of a mature 
(40-year-old) neem tree, leading to production of cloned plants was also developed 
(Arora et al.  2009 ). Depending upon the culture conditions, two types of morphoge-
netic structures, i.e. shoot buds (potential regenerants) and meristematic nodules 
(having very low potentiality of producing plantlets), were formed simultaneously. 
On subculture, the differentiated shoot buds developed into shoots, whereas the 
variation in response was observed in case of meristematic nodules which either 
budded into similar nodular structures or produced three kinds of organized struc-
tures: shoot buds, roots and a shoot and root on opposite poles resulting into plant-
lets that too are in varied proportions. Through this process, the rate of production 
of cloned  plants   of elite neem trees was augmented.   

10.3.2     Germplasm Preservation of Neem Through Excised Root 
Cultures 

 The need for developing an effi cient method for  germplasm preservation   of neem 
trees cannot be overemphasized as also the role of tissue culture to this effect, as 
being a highly heterozygous tree, the preservation of its diverse elite genotypes 
requiring different agroclimates under fi eld conditions, is virtually impossible. 

 For the purpose of germplasm preservation of elite neem trees, an innovative 
process has been developed by inducing multiple shoot bud differentiation in seg-
ments of roots, taken from 5-year-old excised root cultures, established by employ-
ing explants of a 40-year-old tree (Arora et al.  2011 ). The root-regenerated shoot 
buds developed into vigorously growing normal green shoots leading to develop-
ment of complete plants. The root-regenerated plants have been transferred to fi eld 
with 100 % survival exhibiting luxuriant growth. Genetic fi delity of the fi eld-grown 
plants has been ascertained by histological studies as well as by molecular analysis 
using RAPD markers. Histological studies revealed that the regenerants have been 
developed from the pericycle cells of the root, which are known to be genetically 
stable. Also, RAPD analysis of mother tree and its progenies showed monomorphic 
banding pattern of bands in RAPD profi les (Fig.  10.7a–g ). The process developed is 
invaluable for establishing ‘gene banks’ of this tree of immense medicinal/insecti-
cidal value by conserving its different genotypes growing world over in terms of 
regenerative excised root cultures.
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  Fig. 10.7    ( a – g ) Excised root culture and germplasm preservation of  Azadirachta indica . ( a ) 
Sustained growth of excised roots in prolonged culture. ( b ) Direct differentiation of more number 
of shoot buds ( sb )/shoots ( sh ) and lesser number of aberrant regenerants ( ab ) in root segment taken 
from a 2-year-old excised root culture. ( c ) A magnifi ed view of longitudinal section (LS) of 
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10.4         Conclusions Highlighting the Salient Achievements 

     1.    For developing a model ex situ conservation programme for RET plant species 
of Indo-Gangetic Plain, effi cient in vitro cloning protocols in case of  C. serra-
tum ,  U. picta ,  O. petaloidea  and  Embelia tsjeriam - cottam  as well as for a wild, 
endemic, endangered and monoembryonic species of  Citrus , viz.  C. indica , were 
developed having immense signifi cance.   

   2.    The in vitro process developed for rapid clonal multiplication of a mature 
(40-year-old) tree of  A. indica  is of great practical importance, as most of the 
desirable characteristics appeared only at maturity. Besides in vitro cloning 
through nodal stem segments, augmentation of rate of clonal multiplication by 
inducing differentiation of multiple shoots from segments of leafl ets deserves 
special mention in raising ‘clonal neem orchards’.   

   3.    Cultures of proliferating shoots of all the above-mentioned plants, maintaining 
sustained rate of multiplication as well as potential for root induction in isolated 
shoots, even in long-term culture, by incubating them in respective balanced 
nutrient medium through periodic subculturing, provide a moderately good sys-
tem of germplasm preservation/ex situ conservation.   

   4.    Development of an innovative method for germplasm preservation of neem 
through long-term regenerative excised root cultures is of immense practical 
value for establishing ‘in vitro germplasm repositories’ or ‘gene banks’ of elite 
neem trees requiring diverse agroclimates, which otherwise may not be possible 
through any conventional approach.      

10.5     Prospects for Future Research 

     1.    Under the mandate of CSIR-NBRI on conservation and sustainable utilization of 
wild and non-crop economic plants through conventional and biotechnological 
interventions, in vitro protocols developed for clonal propagation of  C. serratum , 
 U. picta ,  O. petaloidea ,  Embelia tsjeriam - cottam  and  C. indica  may be exploited 
for large-scale production of cloned plants for raising enough raw material for 
various pharmaceutical companies and also facilitate rehabilitation of these 
plants in their natural habitats for in situ conservation and sustainable 
utilization.   

 Fig. 10.7 (continued)  responded root explant showing endogenous differentiation of meriste-
moids from the pericycle ( p ) juxtaposed to the vascular tissue of explant beneath the cortical tissue. 
( d ) Proliferation of shoots regenerated from root segments, taken from a 2-year-old excised root 
culture. ( e ) Rooting of isolated shoots obtained from cultures of proliferating shoots raised from 
segments of roots of a 2-year-old excised root culture. ( f ) In vitro raised plants, regenerated from 
root segments of a 2-year-old excised root cultures, as seen after 2 years of transplantation under 
fi eld conditions. ( g ) RAPD profi le of fi eld-grown plants of neem regenerated from root segments, 
taken from a 2-year- old excised root culture obtained with primer OPF-04. Lanes from left are 
marker containing low- range DNA ruler (lane 1) followed by lanes with DNA of the mother plant 
(lane 2) and 12 root-regenerated plants (lanes 3–14), respectively       
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   2.    Heterozygous nature of neem coupled with very limited conventional methods 
of vegetative propagation makes cloning and preservation of its different geno-
types under fi eld conditions virtually impossible. In vitro protocols developed 
for cloning and germplasm preservation of mature neem tree may be utilized for 
large-scale production of cloned plants of proven qualities and for preservation 
of its diverse genotypes growing in varied agroclimates at one place in the form 
of their regenerative excised root cultures, an innovative approach, leading to 
development of ‘gene repositories’/‘gene banks’, respectively.         
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    Abstract 
   Forest trees have received relatively little attention as compared to crop species, 
even though biotechnological strategies could potentially have a greater impact 
on forestry and forest products.  Eucalyptus  is among the fastest-growing woody 
plants in the world and widely accepted for plantation forestry throughout the 
world due to its wide adaptability, extremely fast-growing nature, and most 
importantly excellent wood and fi ber properties. Improvement of  Eucalyptus  by 
conventional breeding is constrained by long reproductive cycles, complex 
genetic characteristics, self-incompatibility, and a high degree of heterozygosity. 
Therefore, there is a requirement of developing faster methods of vegetative prop-
agation for rapid cloning of superior germplasm and trait-based genetic improve-
ment of selected clones for qualitative and quantitative tree improvement to suit 
the needs of end users. Over the last few years, considerable success has been 
achieved in the area of in vitro propagation as well as the genetic transformation 
of  Eucalyptus . Furthermore, sequencing of the complete genome of  Eucalyptus  
will strengthen various genomic approaches for the improvement of  Eucalyptus . 
The present review presents a comprehensive account of the various in vitro prop-
agation and genetic transformation techniques for the improvement of  Eucalyptus .  
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   Agrobacterium tumefaciens    •   Clonal fi delity  

mailto:adatta@thapar.edu


220

11.1       Introduction 

  Eucalyptus  (family Myrtaceae) is among the most widely planted hardwoods in the 
world (Doughty  2000 ). These are generally long-lived, evergreen species (Ladiges 
et al.  2003 ).  Eucalyptus  is widely planted in the tropical and subtropical part of the 
world because of its superior growth, broader adaptability, and multipurpose wood 
properties. Native to Australia,  Eucalyptus  includes over 700 species (Brooker 
 2000 ), and these fast-growing trees were introduced into India, France, Chile, 
Brazil, South Africa, and Portugal in the fi rst quarter of the nineteenth century 
(Doughty  2000 ) and were rapidly adopted for plantation forestry. The great eco-
nomic interest in  Eucalyptus  species is due to the versatility of their wood (Eldridge 
et al.  1993 ). Its timber has applications for many different purposes such as pulp and 
paper production, electric poles, charcoal, timber, and furniture.  Eucalyptus  being a 
hardwood tree produces shorter fi bers than softwoods like pines. Short fi bers of this 
genus make it more reliable for use in paper and furniture industries due to its desir-
able surface characteristics, smoothness, brightness, and low tensile strength (Lal 
et al.  1993 ). The global area under its plantation is estimated at 20 million ha (GIT 
Forestry  2008 ), spreading over 37 countries and accounting for 16 % of worldwide 
forest area (FAO  2000 ). India has the largest area under  Eucalyptus  plantation (8 
million ha), followed by Brazil (3 million ha) (Junghans et al.  2003 ).  Eucalyptus  
plantations contribute 25 % of the total wood consumed in the developed countries 
and mainly used as a source of wood and fi ber for pulp and paper industry (Zhou 
 2005 ). The average annual yield from ordinary seed-raised agroforestry plantations 
of  Eucalyptus  is in the range of 5–6 m 3  ha −1  year −1  by the third year and 10–15 m 3  
ha −1  year −1  by the seventh year of plant growth (Lal et al.  1993 ). Some selected 
clones recorded much higher annual productivity ranging between 16 and 20 m 3  
ha −1  year −1  by the third year and 20 and 25 m 3  ha −1  year −1  by the seventh year of the 
plantation (Lal et al.  1993 ).  Eucalyptus  is traditionally propagated by seeds, and 
interspecifi c hybrids are common in nature. In such genetically diverse stocks, trees 
with the better qualities, such as a straight clear bole, disease and pest resistance, 
drought tolerance, high productivity, fast growth, etc., occur at low frequencies. 
Due to extensive cross-pollination, seed progeny of superior trees fails to maintain 
their superior characteristics (Sankara Rao  1988 ). Thus, there is a felt need to 
develop faster methods of vegetative propagation of these promising elite clones. 
This will also be useful for undertaking the clonal forestry program. 

  Micropropagation   is an attractive alternative to conventional vegetative propa-
gation with the advantage of enhancing the rate of multiplication of valuable clones 
from limited explant material (Beck and Dunlop  2001 ). Various in vitro propagation 
techniques, such as axillary and adventitious shoot multiplication, shoot organogen-
esis, and somatic embryogenesis, are currently employed in plantation forestry pro-
grams for the large-scale multiplication of important tree species (Vengadesan and 
Pijut  2009 ; Tzfi ra et al.  1998 ; Haines and Martin  1997 ). Micropropagation exploits 
the regeneration potential of the selected tissue and is the preferred choice for the 
multiplication of diffi cult-to-root but economically or industrially important geno-
types. It has been successfully used for rejuvenation and mass multiplication of 
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many tree species (Yasodha et al.  2004 ) including  Eucalyptus  (Aggarwal et al. 
 2012 ; Sharma and Ramamurthy  2000 ). Moreover, higher yield was reported from 
plantations raised from micropropagated plants as compared to seedling-derived 
plants (Khuspe et al.  1987 ). Thus, the potential impact of micropropagation on for-
est productivity, forest-based industry, and global timber supplies is now well real-
ized (Yanchuk  2001 ). 

 In addition to  micropropagation  , there is a need to undertake the trait-specifi c 
improvement program for elite clones using various biotechnological tools. There 
have been rapid developments in the area of plant biotechnology in recent years; 
powerful tools that can enhance productivity and utilization are becoming available 
(Merkle and Dean  2000 ). Relevant methods include genetic manipulations to intro-
duce exotic genes conferring resistance to biotic and abiotic stress including trait- 
specifi c genetic modifi cations and marker-assisted breeding program (Teasdale 
 1995 ). Improvement of plants through transgenic technology enables introduction/
improvement of the specifi c trait(s) of interest in a selected genotype. The prerequi-
sites for plant genetic transformation are (a) gene constructs carrying the polynucle-
otide sequences coding for desired proteins, (b) effi cient methods to transform the 
explants, (c) procedures for selection of plant tissue harboring transgene, and (d) an 
effi cient plant regeneration protocol form desired explants. In conventional breed-
ing approach, the traits of interest have to reside within the same species. On the 
other hand, genetic transformation technology enables the scientists to transfer 
genes for selected traits across genera and kingdoms (Brunner et al.  2007 ). The 
transfer of selected genes is more important for tree species, as their improvement 
by the conventional breeding program is limited by long breeding cycles, high lev-
els of heterozygosity, and incompatibility barriers (Machado et al.  1997 ). However, 
due to herbaceous nature and ease of genetic transformation and  subsequent   regen-
eration of transformed tissue till now, the major focus of genetic manipulations has 
been on crop species, and there are many reports of the successful introduction of 
foreign genes into crop plants (Girijashankar and Swathisree  2009 ). Due to the dif-
fi culties in regeneration and genetic transformation, forests trees still remain a chal-
lenge to genetic manipulations. During the last two decades, in vitro propagation 
and genetic transformation of tree species with the goal to modify wood quality for 
end use are important areas of research (Shani et al.  2004 ; Halpin and Boerjan  2003 ; 
Fenning and Gershezon  2002 ).  

11.2     In Vitro Propagation Studies 

 Although most of the  Eucalyptus  species can be propagated vegetatively using tra-
ditional stem-cutting techniques, it has several constraints such as poor rooting of 
 stem cuttings   and graft incompatibility problems (Vengadesan and Pijut  2009 ; 
Bennett et al.  1994 ) and is further limited by the availability of propagules and sea-
son. Therefore, micropropagation is becoming increasingly popular for the estab-
lishment of clonal plantations because of the prospects of rapid cloning. The 
importance of in vitro clonal propagation of  Eucalyptus  is evident from the amount 
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of work carried out on the genus using various micropropagation techniques 
(Aggarwal et al.  2012 ,  2010 ; Dibax et al.  2010 ; Pinto et al.  2008 ; Prakash and 
Gurumuthi  2005 ; Sharma and Ramamurthy  2000 ; Termignoni et al.  1996 ; Subbaiah 
and Minocha  1990 ; Das and Mitra  1990 ; McComb and Bennett  1986 ). Success has 
been achieved in raising micropropagated plants from different species of  Eucalyptus  
through various methods (Aggarwal et al.  2012 ; Dibax et al.  2005 ; Mullins et al. 
 1997 ; Chang et al.  1992 ; Subbaiah and Minocha  1990 ); this opened up the possibil-
ity for the large-scale clonal propagation of elite clones. Moreover, the  establish-
ment   of a good regeneration system is fundamental for genetic transformation, 
which can only be achieved through in vitro propagation (Kumar et al.  2004 ). 

11.2.1     Explants for Culture Establishment 

 For the establishment of  aseptic cultures  , various plant parts such as cotyledons, 
hypocotyls, and leaf fragments excised from in vitro - raised seedling have been used 
as explant (Prakash and Gurumuthi  2005 ; Sharma and Ramamurthy  2000 ; 
Termignoni et al.  1996 ; Subbaiah and Minocha  1990 ). In some cases, aseptic cul-
tures were also initiated from zygotic embryos (Serrano et al.  1996 ). Besides taking 
explants from these in vitro-grown plantlets, explants such as coppiced shoots 
(Aggarwal et al.  2012 ; Burger  1987 ), scion shoots (Franclet and Boulay  1982 ; 
Gonocalves  1980 ), epicormic shoots (Ikemori  1987 ), and young, vigorously grow-
ing shoots from mature trees (Aggarwal et al.  2010 ,  2012 ; Sankara Rao  1988 ; 
Defossard et al.  1977 ) have also been used as explant materials. Disinfection of 
mature, fi eld-grown material has proved diffi cult because of endogenous microbial 
contamination (Defossard et al.  1977 ). Age of material and season are important 
factors determining success in establishing aseptic cultures (Sharma and 
Ramamurthy  2000 ; Grewal et al.  1980 ). Sometimes it is impossible to disinfect 
mature, fi eld-grown shoots without severely damaging the tissues. But the best 
sources of explants for the culture establishment are generally juvenile or rejuve-
nated tissues (Jones and Van Staden  1997 ). In general, it has been reported that the 
organogenic response from juvenile tissues is better (George  1996 ).  

11.2.2     Shoot Multiplication and Elongation 

 There are many reports on micropropagation of  Eucalyptus , including shoot  organ-
ogenesis   and somatic embryogenesis (Aggarwal et al.  2010 ,  2012 ; Dibax et al. 
 2010 ; Pinto et al.  2008 ; Mullins et al.  1997 ; Gupta et al.  1983 ). Gupta et al. ( 1983 ) 
have reported the protocol for micropropagation of  E. torelliana  and  E. camaldulen-
sis  taking explants from 12- to 15-year-old trees. Multiple shoots were induced 
from nodal segments of  E. camaldulensis  on liquid MS (Murashige and Skoog 
 1962 ) medium supplemented with different concentrations of kinetin (Kn), 6- benzyl 
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adenine (BA), calcium pantothenate, and biotin and incubated at 15 °C with con-
tinuous illumination. In  E. torelliana , culture in agitated liquid media alone was 
suffi cient for induction of shoots. Das and Mitra ( 1990 ) were able to achieve shoot 
multiplication on MS medium supplemented with 0.5 μM NAA and 4.4 μM BA 
using shoot tips as explants collected after coppicing of mature trees of  E. tereticor-
nis . These authors reported that the addition of charcoal and gibberellic acid (GA 3 ) 
to the medium was benefi cial for shoot multiplication. Sharma and Ramamurthy 
( 2000 ) reported micropropagation of the elite clones of  E. tereticornis  using nodal 
segments taken from 4-year-old trees. It was reported that March-April months 
were the best periods for culture establishment as maximum explants showed shoot 
induction during this  period  . Shoot induction was successfully achieved on MS 
medium supplemented with 4.4 μM each of BA and NAA. Shoots were further 
elongated by lowering the concentration of both BA and NAA. The Phytagel was 
reported as a better gelling agent than agar for shoot elongation but caused hyper-
hydricity, which was controlled by increasing the concentration of calcium chloride 
to double. Glocke et al. ( 2006 ) reported micropropagation of ornamental  Eucalyptus  
hybrid ( Eucalyptus erythronema  var.  erythronema  x  Eucalyptus stricklandii  cv. 
 ‘urrbrae gem ’) through enhanced axillary shoot proliferation. Shoot proliferation 
was higher on WPM and QL (Quoirin and Lepoivre  1977 ) media supplemented 
with BA, NAA, and GA 3  as compared to MS, B5, AP (Almehdli and Parfi tt  1986 ), 
and TK (Tabachnik and Kester  1977 ) media supplemented with the same composi-
tion of plant growth regulators (PGRs). In this study, WPM and QL were shown to 
provide better shoot growth than MS, AP, B5, and TK media. GA 3  was required for 
shoot elongation. Pulse treatment with 20 μM IBA for 7 days induced roots and 
rooting frequency further improved by lowering WPM medium strength to half. 
Aggarwal et al. ( 2012 ) have investigated the several factors infl uencing microprop-
agation of a selected elite clone of  E. tereticornis  (Fig.  11.1 ). Among the different 
cytokinins tested, 6-benzyl adenine proved to be the most effective cytokinin for 
shoot multiplication and elongation. The initial size of the shoot clump (inoculum) 
also infl uenced shoot  multiplication   and elongation. The number of shoots prolifer-
ated per culture vessel was signifi cantly higher (342 shoots per culture vessel) when 
larger shoot clumps (15–20 shoots) were inoculated, compared to smaller shoot 
clumps (4–5 shoots), which resulted in a reduced shoot proliferation rates (245 
shoots per culture vessel). However, the number of elongated shoots (65 per culture 
vessel) and shoot length (5.23 cm) were higher in cultures which were inoculated 
with smaller shoot clumps in comparison to those cultures which were inoculated 
with larger shoot clumps (54 shoots per culture vessel with shoot length of 4.17 
cm). The number of shoots proliferated and elongated was higher in cultures incu-
bated under photosynthetically active radiation (PAR) compared to those incubated 
under cool fl uorescent lights (CFLs). Osmotic potential of the sap and chlorophyll 
content of cultures incubated under PAR were also higher than those incubated 
under CFL.
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  Fig. 11.1    Micropropagation of elite plants of  E. tereticornis.  ( a ) Elite plants of  E. tereticornis  
growing at Thapar Technology Campus. ( b ) Shoot multiplication on MS medium supplemented 
with 2.5 μM BA and 0.5 μM NAA. ( c ) Shoot elongation on MS medium supplemented with 0.1 
μM BA and 0.5 μM NAA. ( d ) Microshoots rooted on one fourth-strength MS medium supple-
mented with 5.0 μM IBA. ( e ) Acclimatized plantlets under greenhouse conditions. ( f ) 1-year-old 
tissue culture-raised plants growing in the fi eld       

11.2.3        Rooting and Acclimatization 

 Rooting of microshoots is the fi rst  step   during hardening of plantlets before prepara-
tion for transplanting to the fi eld. Auxins are widely used for induction of roots in 
microshoots. For rooting of  Eucalyptus  microshoots also, auxins have been widely 
used (Aggarwal et al.  2012 ; Sharma and Ramamurthy  2000 ; Bennett et al.  1994 ; 
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Gupta et al.  1983 ). Out of the various auxins tested, the effi cacy of IBA for induc-
tion of roots in microshoots of various plant species has been described in detail by 
Kato ( 1985 ) and proved more potent than other auxins like NAA and IAA. But the 
concentration and mode of application of IBA vary with different plant species (Jha 
and Sen  1992 ; Kato  1985 ). Further, lowering of nutrient salt concentration was also 
reported to be benefi cial for rooting of microshoots in  Eucalyptus  (Aggarwal et al. 
 2012 ; Bennett et al.  1994 ). Gupta et al. ( 1983 ) were able to induce rooting in micro-
shoots of  E. torelliana  by treatment with α-naphthalene acetic acid (NAA), whereas 
treatment with a mixture of indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), 
indole-3-propionic acid (IPA), and NAA in the dark for different time intervals was 
essential for induction of roots in microshoots of  E. camaldulensis . After auxin 
treatment, transfer of shoots to a charcoal-containing medium and incubation under 
the light were benefi cial for root induction. Rooting occurred within 15–20 days in 
70 % of the shoots of  E. torelliana  treated with NAA for 48 h. On the other hand, 
50 % of  E. camaldulensis  microshoots treated in the dark for 72 h with a mixture of 
auxins containing IBA, IPA, IAA, and NAA rooted within 20–25 days. Rooted 
plantlets thus obtained were successfully transferred to pots and fi eld. Similarly, 
Das and Mitra ( 1990 ) reported that the key factor for root induction in  E. tereticor-
nis  was incubation in the  dark   for a short period. Further, these authors have reported 
that during culture, genotypically different populations responded differently in 
spite of optimal growth conditions. Subbaiah and Minocha ( 1990 ) achieved 100 % 
rooting on mWPM supplemented with 2.4 μM IBA in the case of  E. tereticornis . 
Further, Aggarwal et al. ( 2012 ) have reported that PAR light was more effective for 
effi cient rooting than CFL in  E. tereticornis . These authors reported the increase in 
rooting effi ciency under PAR light which may be due to the involvement of blue 
light responding cryptochromes and red/far-red light responding phytochromes as 
reported by Lin ( 2002 ). Light quality has been shown to promote rooting effi ciency 
in some plant species (Kumar et al.  2003 ; Rossi et al.  1993 ). 

 A major limitation in large-scale application of plant tissue culture technology is 
high mortality experienced by tissue culture-raised plants during or following labo-
ratory to land transfer, mainly due to the extreme differences between the in vitro 
and ex vitro environment, and it was also reported that plants produced under 
in vitro conditions are reported to develop poor photosynthetic apparatus (Sharma 
et al.  1999 ; Brainerd and Fuchigami  1982 ; Kozai  1991 ). Several methods have been 
tried for acclimatization of tissue culture-raised plants for successful fi eld establish-
ment of  Eucalyptus  (Aggarwal et al.  2012 ; Girijashankar  2012 ; Machado et al. 
 1997 ; Macrae and Van Staden  1993 ,  1999 ). Aggarwal et al. ( 2012 ) reported that 
plants produced under PAR showed higher survival rates and subsequently more 
vigorous growth following transfer to soil, which commensurate with higher chlo-
rophyll contents. 

 Further, they reported that inoculation of  plantlets   with bacterial isolates during 
acclimatization was found to be benefi cial for the survival and subsequent growth 
of plants. Grijashankar ( 2012 ) reported the use of different soil compositions for 
successful acclimatization of the micropropagated plantlets of  E. camaldulensis . 
Further, in order to enhance the survival rate, covering of micropropagated plantlets 
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with a transparent polythene cover proved benefi cial. Macrae and Van Staden 
( 1993 ) and Machando et al. ( 1997 ) highlighted the role of  A. rhizogenes  strains in 
inducing rooting in diffi cult-to-root plants.  

11.2.4     Shoot Organogenesis and Somatic Embryogenesis 

 Subbaiah and Minocha ( 1990 ) were the fi rst to report  shoot   organogenesis from 
various explants of  E. tereticornis . They reported the regeneration of adventitious 
shoots from leaf and stem callus. Callus was induced from leaf or stem segments 
taken from seedlings on B5 medium (Gamborg et al.  1968 ) supplemented with 0.44 
μM BA and 15–20 μM NAA in the dark. Multiple shoots were regenerated directly 
from hypocotyl segments of 4- to 6-week-old seedlings on B5 medium supple-
mented with 2.2 μM BA. Shoot regeneration protocol for  E. camaldulensis  using 
leaf explants taken from seedlings grown in culture has been reported (Mullins et al. 
 1997 ) on woody plant medium (Lloyd and McCown  1981 ) containing 1.0 g/l casein 
hydrolysate, 50 g/l sucrose, and 0.5 % (w/v) phytagar and supplemented with 16.1 
μM NAA and 0.45 μM BA for the regeneration of shoots from leaf explants. Out of 
24 clones used in the study, only 13 clones regenerated shoots. Subsequently, the 
same protocol was used for the successful shoot regeneration of other species like 
 E. microtheca ,  E. ochrophloia ,  E. grandis , and  E. marginata . 

 However, the frequency of regeneration varied from species to species and clone 
to clone within the same species. The major fi nding of this study was the emphasis 
on the need to develop clone-specifi c protocols. 

 Ho et al. ( 1998 ) were able to  regenerate   shoots from hypocotyl explants taken 
from aseptically grown 1-month-old seedlings of  E. camaldulensis . The B5 medium 
supplemented with 100 ml/l coconut milk, 200 mg/l glutamine, and 100 mg/l casein 
hydrolysate was used as a basal medium in this study. Successful shoot organogen-
esis and multiplication of shoots were achieved on this modifi ed B5 medium sup-
plemented with 4.4 μM BA and 15 μM NAA via callus phase. Microshoots were 
successfully rooted on MS medium containing half-strength macronutrients and 
supplemented with 4.9 μM IBA. 

 Barrueto Cid et al. ( 1999 ) have achieved shoot organogenesis from  E. grandis  x 
 E. urophylla  using hypocotyls, cotyledons, cotyledonary nodes, and primary leaves 
as explants obtained from 14- to 50-day-old seedlings. These seedling-derived 
explants were cultured on modifi ed MS medium, supplemented with 2.0 μM thidi-
azuron (TDZ). The callus obtained on TDZ-supplemented medium was transferred 
to modifi ed MS medium supplemented with different concentrations of BA and 
NAA or zeatin. Shoots were induced from these calli at a high frequency on medium 
supplemented with 5.0 μM BA and 0.5 μM NAA. Shoot elongation was then 
achieved on medium supplemented with 1.0 μM BA, 0.5 μM NAA and 2.0 μM GA 3 . 
Rooting was induced in 50 mm long microshoots cultured on medium containing 
2.5 μM IBA followed by transfer to the basal medium for 30 days within 5–15 days. 
Plantlets were then successfully transplanted to the greenhouse conditions. 
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 Prakash and Gurumurthi ( 2005 ) were able  to   induce indirect somatic embryo-
genesis from mature zygotic embryos of  E. tereticornis . The basal MS and B5 
media containing different concentrations of NAA, 2,4-dichlorophenoxyacetic acid 
(2,4-D), and BA were evaluated for callus induction and somatic embryogenesis. 
Higher frequency of both callus induction and somatic embryogenesis was observed 
on MS medium as compared to B5. The maximum frequency of friable callus 
(embryogenic callus) was obtained on MS medium supplemented with 10.74 μM 
NAA. When the callus was transferred to MS media containing various concentra-
tions of BA, somatic embryos developed after 1–2 weeks with the highest frequency 
(54 %) on medium supplemented with 2.22 μM BA. The embryos were successfully 
germinated on basal MS medium. 

 Dibax et al. ( 2005 ) also reported shoot organogenesis from cotyledonary leaves 
of  E. camaldulensis  cultured on MS medium supplemented with various combina-
tions of NAA and BA. The best shoot organogenesis frequency was observed on 
 medium   supplemented with 2.7 μM NAA and 4.44 μM BA. Inoculation of explants 
in the dark during the fi rst 30 days increased percentage explants forming callus 
increased and reduced explant necrosis. Regeneration frequency from callus further 
increased to 54 % from 47 % when the basal medium was reduced to half strength. 
Shoot elongation was obtained on the modifi ed basal medium by lowering the 
strength of ammonium nitrate and potassium nitrate to half. The addition of 0.2 % 
activated charcoal to above-modifi ed basal medium induced roots in microshoots 
after 1 month of culture. 

 Pinto et al. ( 2008 ) have described the factors affecting maintenance, prolifera-
tion, and germination of somatic embryos in  E. globulus . Somatic embryogenesis 
was recorded on MS medium supplemented with 15 μM NAA. Embryos were 
maintained on the same medium up to 2 years. The infl uence of basal medium (MS 
and B5), plant growth regulators (auxins and cytokinins), and light on induction of 
somatic embryos was studied. The MS medium without growth regulators was 
found to be more effi cient for embryo formation and germination than the B5 
medium. Reducing auxin levels increased the proliferation of globular somatic 
embryos. The addition of two cytokinins (BA and KIN) to the MS medium did not 
improve proliferation of globular secondary embryos. 

 Aggarwal et al. ( 2010 )  developed   an effi cient shoot organogenesis system from 
mature plants of selected elite clones of  E. tereticornis  (Fig.  11.2 a, b). Cultures were 
established using nodal explants taken from freshly coppice shoots. Shoot organo-
genesis was achieved from leaf segments cultured on MS medium supplemented 
with 5.0 μM BA and 1.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The addition 
of cefotaxime to the medium promoted shoot differentiation, whereas carbenicillin 
and cephalexin inhibited shoot differentiation.

   Leaf maturity was also found to infl uence shoot regeneration; the fi fth leaf (14–
16 days old) from the top of microshoot was found to be the best for shoot 
organogenesis. 

 Dibax et al. ( 2010 ) have reported the regeneration of cotyledonary leaves from 
 E. camaldulensis . The leaves were cultured on MS, WPM, and JADS medium 
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supplemented with 2.7 μM NAA and 4.44 μM BA. They have also reported the 
anatomy of the tissue during various stages of shoot regeneration. 

 Recently, Oberschelp et al. ( 2015 ) have reported in vitro organogenesis of  E. 
dunnii  from cotyledons and hypocotyl explants. Several combinations of 
6- benzylaminopurine (BAP) plus α-naphthalene acetic acid (NAA) or indole-3- 
acetic acid (IAA) were added to a specifi cally developed basal medium. They have 

  Fig. 11.2    Shoot organogenesis, Clonal Fidelity and  Agrobacterium  mediated genetic transforma-
tion of  E. tereticornis . ( a — b ) Shoot organogenesis from leaf explants of  E. tereticornis  on MS 
medium supplemented with 5.0 μMBA and 1.0 μM 2,4-D; ( c ) Gel picture showing RAPD profi le 
(Clonal fi delity) of mother plant and micropropagated plants of E. tereticornis. ( d ). Transformed 
 E. tereticornis  call us showing GUS activity. ( e — f ) Transformed  E. tereticornis  shoots showing 
Stable GUS activity after eight cycles of subculture       
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also studied the effect of the hypocotyl segment’s  position   (distal and proximal) on 
bud and callus regeneration. Histological analyses suggested that pluripotent cells 
give rise to buds and shoots. 

 It has been documented that shoot regeneration or somatic embryogenesis is dif-
fi cult from mature plants as compared to juvenile tissue (Liu and Pijut  2008 ). 
However, it is important to develop direct regeneration protocol, which will help in 
taking up genetic manipulation work. Moreover, many  Eucalyptus  species are still 
considered recalcitrant to tissue  culture   and genetic engineering. Further, reports 
exist on the variable regeneration ability of the different species and also among 
clones of the same species (Mullins et al.  1997 ). Therefore, there is a felt need to 
develop clone-specifi c micropropagation and regeneration protocols (Table 11 .1 ).

11.3         Clonal Fidelity of In Vitro-Propagated Plants 

 Clonal fi delity is one of the  most   important aspects of micropropagation industry. 
One of the problems encountered with the in vitro cultures is a generation of soma-
clonal variation arising as a direct consequence of in vitro culture of plant cells, 
tissues, or organs (Kumar et al.  2010 ; Rani et al.  1995 ; Schoofs  1992 ; Swartz  1990 ). 
The extent of somaclonal variation depends upon the media concentration and 
length of culture. Regeneration through adventitious shoot organogenesis is more 
prone to genetic variations as compared to axillary branching (Shenoy and Vasil 
 1992 ). Further, the extent of instability depends upon the mode of regeneration, 
whether it is direct organogenesis from explants or indirect organogenesis through 
callus phase (Rani et al.  1995 ). Moreover, the selection of the explant source is also 
known to infl uence the genetic variations in regenerated plants (Kawiak and 
Lojkowska  2004 ). 

 Molecular markers suitable for generating DNA profi les have proved to be an 
effective tool in assessing the genetic stability of regenerated plants (Martins et al. 
 2004 ). These markers are not infl uenced by environmental factors and generate reli-
able, reproducible results (Li et al.  2011 ). DNA-based markers most frequently in 
use include restriction fragment length polymorphism (RFLP), amplifi ed fragment 
length polymorphism (AFLP), random amplifi ed polymorphic DNA (RAPD, 
Williams et al.  1990 ), and inter-simple sequence repeat (ISSR, Zietjiewicz et al. 
 1994 ). The RAPD and ISSR markers have proven to be effi cient in establishing 
 clonal fi delity   of regenerated plants. Both RAPD and ISSR markers have been suc-
cessfully applied to detect the genetic similarities or dissimilarities in micropropa-
gated material in many studies (Martin et al.  2006 ; Carvalho et al.  2004 ; Martins 
et al.  2004 ; Ramage et al.  2004 ; Sanchez et al.  2003 ). There are many reports high-
lighting the use of a combination of two markers amplifying different regions of the 
genome to study the genetic uniformity of in vitro-propagated plantlets (Lattoo 
et al.  2006 ; Martin et al.  2006 ; Ray et al.  2006 ; Dhiman and Singh  2003 ; Palombi 
and Damiano  2002 ). 
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 A perusal of literature shows that no serious attempt has been made so far in this 
direction although thousands of tissue culture-derived  Eucalyptus  plants have been 
produced for reforestation programs and other economic benefi ts (Anonymous 
 1994 ; Keil and Griffi n  1994 ; Rockwood and Warrag  1994 ; McComb and Bennett 
 1986 ). There are few reports on a genetic analysis of  Eucalyptus , using RAPD and 
ISSR markers  to   establish clonal fi delity of in vitro-raised plants (Aggarwal et al. 
 2010 ,  2012 ; Rani and Raina  1998 ) (Fig.  11.2 c). Tripathi et al. ( 2006 ) have reported 
the  use   of these markers to distinguish  Eucalyptus  plants raised through tissue 
culture.  

11.4     Genetic Transformation Studies 

 The basic approach of genetic modifi cation in plants involves the modifi cation of its 
genomic DNA by incorporation of new genes. Various transformation  techniques   
have been developed to assist the transfer of DNA into recipient plant cells (Hansen 
and Durham  2000 ). These transformation techniques involve the insertion of DNA 
fragment containing one or more genes into a chromosome/genome of an organism. 
In plants, it can be mediated either by a biological agent such as  Agrobacterium 
tumefaciens  (a common gram-negative soil bacterium that has the ability to transfer 
DNA fragment to host) (Tzfi ra and Citovsky  2006 ; Gelvin  2003 ) or by a direct gene 
delivery system (such as gene gun, electroporation, microinjection, lasers, polyeth-
ylene glycol (PEG), silicon carbide fi bers) that utilizes physical, electrical, or chem-
ical means to deliver gene of interest to a target cell (Torney et al.  2007 ; Weir et al. 
 1998 ; Nehra et al.  1994 ). 

 The transfer of selected genes through transgenic technology is especially impor-
tant for  Eucalyptus , as its improvement by conventional breeding approach is  lim-
ited   by long breeding cycles, high levels of heterozygosity, and incompatibility 
barriers (Machado et al.  1997 ). Literature review indicates that various methods 
tried for delivering foreign DNA into  Eucalyptus  are electroporation, biolistic gun, 
and  Agrobacterium -mediated transformations (Girijashankar  2011 ). But only a few 
studies report successful development of genetic transformation protocol in 
 Eucalyptus  (Aggarwal et al.  2011 ; Tournier et al.  2003 ; Ho et al.  1998 ). These stud-
ies mainly focused on the development of genetic transformation protocol using 
juvenile tissues of seed origin (Prakash and Gurumurthi  2009 ; Tournier et al.  2003 ; 
Ho et al.  1998 ). 

11.4.1     Biolistic Gun-Based Genetic Transformation 

 The fi rst attempt to optimize biological and physical parameters for particle gun- 
 mediated   genetic transformation of  E. globulus  was carried by Rochange et al. 
( 1995 ). Cultured zygotic embryos were used as the starting material for genetic 
transformation. Based on transient GUS expression assay, these authors observed 
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that both gunpowder apparatus and compressed-helium system exhibited similar 
transformation effi ciency and reported that 6-day-old cultured embryos are the best 
explants for genetic transformation. These authors also highlighted the role of high 
osmotic potential before the bombardment and were able to obtain up to 130 GUS 
expression events per embryo with a good distribution all over the tissue (Fig. 11 .2 ). 

 Serrano et al. ( 1996 ) were the fi rst to report successful regeneration from  E. 
globulus  following biolistic transformation of zygotic embryos. Histochemical 
GUS assay was used to confi rm the presence of transgene, and molecular analyses 
based on polymerase chain reaction and Southern blot were used to confi rm the 
integration of the target DNA into the nuclear genome. The biolistic transformation 
was also carried on hypocotyls and cotyledons of  E. grandis  ×  E. urophylla  hybrids 
(Alcantara et al.  2011 ; Sartoretto et al.  2002 ). All the abovementioned reports were 
able to obtain GUS-expressing callus, but regeneration of transformed shoots from 
such callus could not be achieved. However, shoots were regenerated successfully 
in the control plants that were used for the biolistic-based transformation but with-
out a bombardment of the tissue. Unfortunately, there are no reports of biolistic 
gun-based transformation work on  Eucalyptus  where special efforts have been 
made for optimization of parameters for the successful genetic transformation.  

11.4.2      Agrobacterium -Mediated Genetic Transformation 

 So far,   Agrobacterium -mediated transformation   is the most successful method for 
genetic transformation of  Eucalyptus . According to Mullins et al. ( 1997 ), this indi-
rect gene transfer approach is preferred over biolistic-mediated direct genetic trans-
formation as it is known to reduce the insertion of multiple copies of the transgene, 
which can lead to a multicopy gene silencing. Machado et al. ( 1997 ) evaluated the 
susceptibility of  E. grandis  ×  E. urophylla  hybrids to 12 wild strains of  A. tumefa-
ciens  and 5 strains of  A. rhizogenes . Different degrees of virulence have been 
recorded using these strains, indicating the possibility of transforming  Eucalyptus  
and its hybrids using  Agrobacterium . Tumors obtained after infection showed 
autonomous growth when cultured on plant growth regulator-free medium, and 
some tumors lead to the formation of shoots. This study suggested that  Agrobacterium  
can be successfully used to transform  Eucalyptus  species. Further, Krimi et al. 
( 2006 ) reported that  E. occidentalis  was more susceptible to  Agrobacterium  than  E. 
camaldulensis  and  E. cladocalyx . The ability of  A. tumefaciens  to infect  Eucalyptus  
was found to vary across species and genotypes, thus suggesting the need to develop 
clone-specifi c genetic transformation protocol. 

 Literature survey reveals that  E. camaldulensis  was a  favorite   species for  A. 
tumefaciens -mediated genetic transformation (Chen et al.  2001 ; Ho et al.  1998 ; 
Azmi et al.  1997 ; Mullins et al.  1997 ; Kawazu et al.  2003 ). The choice of this spe-
cies is due to its good regeneration potential following genetic transformations. 
There are reports on the genetic transformation of other  Eucalyptus  species like  E. 
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globulus ,  E. gunnii , and  E. tereticornis  (Aggarwal et al.  2011 ,  2015 ; Torre et al. 
 2014 ; Serrano et al.  1996 ; Nugent et al.  2001a ,  b ; Chriqui et al.  1992 ). 

 Mullins et al. ( 1997 ) have reported the genetic transformation protocol for  E. 
camaldulensis  using cotyledonary leaves as explants. Five disarmed strains of  A. 
tumefaciens  (A6, LBA4404, GV3111, AGLI, and GV3850) containing the same 
binary vector were used in the study. These authors also studied the transformation 
effi ciencies of different clones belonging to different species of  Eucalyptus . 
Although they were able to obtain transformed tissues from fi ve clones of  E. camal-
dulensis , the regeneration of transformed plants was achieved from one clone only. 
This report also highlighted the differences in transformation effi ciencies among 
clones. Ho et al. ( 1998 ) were perhaps the fi rst to report the recovery of transgenic 
 Eucalyptus  plants using  A. tumefaciens . Hypocotyl segments obtained from 
1-month-old seedlings of  E. camaldulensis  were used as explant materials. The 
transformation was accomplished by using  A. tumefaciens  (CIB542 derived from 
EHA101 containing binary vector pBI121). Harcourt et al. ( 2000 ) developed the 
insect- and herbicide-resistant  E. camaldulensis  plants. These authors successfully 
transformed the seedling explants (cotyledons and hypocotyls) with  cry3A  gene 
from  Bacillus thruringiensis  and  bar   gene   (conferring tolerance to herbicide glufos-
inate ammonium) using  A. tumefaciens  strain AGL-1. The integration of transgene 
in the genome of transformed plants was confi rmed through PCR amplifi cations and 
Southern blot analysis and the expression of the transgene by Western blot analysis. 
Transgenic plants thus obtained showed resistance toward “chrysomelid beetles” 
and tolerance toward herbicide glufosinate ammonium. 

 Chen et al. ( 2001 ) were the fi rst to report the production of transgenic  E. camal-
dulensis  plants carrying cinnamate 4-hydroxylase (C4H) gene from  Populus tremu-
loides , a key enzyme involved in lignin biosynthesis. First, C4H gene was cloned in 
both sense and antisense orientation in binary vector pBI121 which was moved into 
 A. tumefaciens  strain CIB542 for the transformation of plants. PCR-based analysis 
of the genomic DNA performed to confi rm the integration of the foreign gene. Both 
Tournier et al. ( 2003 ) and Valerio et al. ( 2003 ) have reported  the   transformation of 
 E. grandis  x  E. urophylla  and  E. camaldulensis , respectively, with a construct car-
rying cinnamyl alcohol dehydrogenase (CAD) in antisense orientation. In both 
studies a strong inhibition of CAD activity was recorded. The CAD is a key enzyme 
involved in the lignin biosynthesis whose downregulation may result in lower lignin 
content in wood. 

 Sonication-assisted  Agrobacterium  transformation (SAAT) system was used for 
the development of transgenic plants of  E. grandis  ×  E. urophylla  hybrid (Gonzalez 
et al.  2002 ). The report indicated the higher percentage of transient GUS expression 
when explants were sonicated for 30 s, and pre-sonication greatly enhanced the 
transformation effi ciency of seedlings. Using this method, four stable transformants 
were generated and confi rmed with Southern blotting. Prakash and Gurumurthi 
( 2009 ) have reported  A. tumefaciens- mediated genetic transformation of  E. tereti-
cornis  using cotyledon and hypocotyl as explants. Pre-cultured explants were 
cocultured with  A. tumefaciens  strain LBA 4404 harboring binary vector pBI121. 
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Explants after infection were transferred to a selection cum regeneration medium 
containing 2.2 μM BA, 0.5 μM NAA, 40 mg/l kanamycin, and 300 mg/l 
cefotaxime. 

 Aggarwal et al. ( 2011 ) developed a procedure for  A. tumefaciens -mediated 
T-DNA delivery into the elite clone(s) of  E. tereticornis  using leaf  explants   from 
microshoots (Fig.  11.2d–f ). This is the only report where various parameters like 
 Agrobacterium  strain, pre-culturing of tissue, cocultivation period, bacterial den-
sity, method of injury, etc. infl uencing transformation effi ciency were investigated. 
Varied transformation effi ciency was reported among the different clones of  E. 
tereticornis . Regeneration of transformed shoots was achieved on modifi ed MS 
medium (potassium nitrate was replaced with 990 mg/l potassium sulfate and 
ammonium nitrate with 392 mg/l ammonium sulfate, and mesoinositol concentra-
tion was increased to 200 mg/l). Stable transformation was confi rmed on the basis 
of GUS activity and PCR amplifi cation of DNA fragments specifi c to  uidA  and  nptII  
genes (Table  11.2 ).

   Torre et al. ( 2014 ) have reported the genetic transformation of  E. globulus  with 
the  EgCCR  promoter instead of CaMV 35S promoter. Cinnamoyl-CoA reductase 
(CCR), a key enzyme of the lignin biosynthetic pathway, was shown to be preferen-
tially expressed in vascular tissues. The  EgCCR  that transformed plantlets exhibited 
high GUS expression levels associated with the vascular tissues, opening the pos-
sibility of targeting vascular-associated traits such as lignin content or vascular 
pathogen resistance in adult elite plants of  Eucalyptus . Recently, for the fi rst time, 
Aggarwal et al. ( 2015 ) have reported the genetic transformation of an elite clone of 
 E. tereticornis  with Korrigan ( KOR ), an important gene involved in cellulose bio-
synthesis. Transgenic plants showed overexpression of the  PdeKOR , and the maxi-
mum expression of the gene was observed in the tissues of stem compared to leaves 
and shoot tips. 

 The transformation of selected clones will  prove   to be a powerful tool for trait- 
specifi c modifi cation of existing clones with desirable traits, such as insect and her-
bicide resistance, male sterility, and reduction of lignin content.   

11.5     Conclusion 

 During the past two decades, considerable progress has been made for the improve-
ment of  Eucalyptus  through biotechnological interventions. Optimized protocols 
for micropropagation have been developed, but unfortunately not used commer-
cially may be due to the higher cost of micropropagation. A lot of progress has also 
been made toward the development of effi cient and reliable shoot regeneration/
organogenesis protocols for different species of  Eucalyptus . Somatic embryogene-
sis has been achieved for different species of  Eucalyptus  and can be used for com-
mercial scale production of elite clones of  Eucalyptus . Despite the fact that 
transgenic technology holds a great promise for the improvement of  Eucalyptus , 
still progress is slow which may be due to the recalcitrant nature of the plant, and 
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   Table 11.2    Summary of some of the genetic transformation studies on  Eucalyptus    

 Sr. 
No  Species  Explant used  Method used 

 Gene(s) 
transferred if 
any  Reference 

  1.   E. tereticornis   In vitro leaves   Agrobacterium 
tumefaciens  
(EHA 105) 

 Endo-β-1,4- 
glucanase 
(Korrigan) 

 Aggarwal 
et al. ( 2015 ) 

  2.   E. globulus   Shoots with at 
least two leaves 
and one 
axillary/apical 
bud 

 Sonication- 
assisted  A. 
tumefaciens  
mediated 
(AGL-1) 

 EgCCR- E. 
globulus  
cinnamoyl 

 Torre et al. 
( 2014 ) 

 CoA 
reductase 
promoter 

  3.   E. camaldulensis   Cotyledons, 
hypocotyls 

  A. tumefaciens  
(LBA4404) 

  UidA ,  nptll   Ahad et al. 
( 2014 ) 

  4.   E. globulus   Hypocotyls   A. tumefaciens  
(EHA 105) 

 Bacterial 
choline 
oxidase gene 
(codA) 

 Matsunaga 
et al. ( 2012 ) 

  5.   E. saligna   Shoot tip   A. tumefaciens  
(EHA 105) 

 P5CSF129A 
mutant gene 

 Lopes da 
silva et al. 
( 2011 ) 

  6.   E. tereticornis   In vitro leaves   Agrobacterium 
tumefaciens  
(EHA 105) 

  UidA  and 
 nptll  

 Aggarwal 
et al. ( 2011 ) 

  7.   E. urophylla  × 
 E. grandis  

 Leaves from 
micro cuttings 

  A. tumefaciens  
(AGL1) 

 Egu CBF 1a 
and 
Egu CBF 1b 

 Navarro et al. 
( 2011 ) 

  8.   E. saligna   Cotyledons   A. tumefaciens  
(EHA 105) 

 P5CSF129A 
gene 

 Dibax et al. 
( 2010 ) 

  9.   E. tereticornis   Cotyledons, 
hypocotyls 

  A. tumefaciens  
(LBA4404) 

  UidA  and 
 nptll  

 Prakash and 
Gurumurthi 
( 2009 ) 

 10.   E. globulus   Stems of a 
2-year-old 
plant 

  A. tumefaciens   Eni TUB1 
and Eni 
FLA1 

 Taylor et al. 
( 2007 ) 

 11.   E. globulus   Stem of trees   A. tumefaciens   EnTUB1  Spokevicius 
et al. ( 2005 ) 

 12.   E. urophylla   Leaves, 
petioles, and 
stem internodes 

  A. tumefaciens   UidA, nptll, 
ALS 

 Cheng ( 2006 ) 

 13.   E. camaldulensis   Cotyledons, 
hypocotyls 

  A. tumefaciens   Cbd, cel1  Shani et al. 
( 2003 ) 

 14.   E. camaldulensis   Cotyledons, 
hypocotyls 

  A. tumefaciens    CodA  choline 
oxidase 

 Yamada- 
Watanabe 
et al. ( 2003 ) 

 15.   E. camaldulensis   Cotyledons, 
hypocotyls 

  A. tumefaciens   CAD 
antisense 

 Valerio et al. 
( 2003 ) 

(continued)
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there is a lack of large-scale cultivation of transgenic  Eucalyptus  plants till date. 
Among the different techniques known for gene transfer,  A. tumefaciens -mediated 
genetic transformation has been the most successful. Nevertheless, a good amount 
of work has been conducted on the development of various in vitro propagation 
techniques and development of  shoot   organogenesis and genetic transformation 
protocols of various  Eucalyptus  species; still they are exploited to their full extent.     

  Acknowledgements     Authors are thankful to CSIR, New Delhi for fi nancial support.  

Table 11.2 (continued)

 Sr. 
No  Species  Explant used  Method used 

 Gene(s) 
transferred if 
any  Reference 

 16.   E. grandis x E. 
urophylla  

 Seedling leaves   A. tumefaciens  
sonication and 
vacuum 
infi ltration 
assisted 

  CAD  
antisense, 
 UidA ,  nptll  

 Tournier et al. 
( 2003 ) 

 17.   E. grandis x E. 
urophylla  

 Seedlings   A. tumefaciens , 
sonication 
assisted 

  Lhcbl2 ,  UidA , 
 nptll  

 Gonzalez 
et al. ( 2002 ) 

 18.   E. grandis x E. 
urophylla  

 Cotyledons, 
hypocotyl calli 

 Biolistic gun   UidA ,  nptll   Sartoretto 
et al. ( 2002 ) 

 19.   E. camaldulensis   Leaves   A. tumefaciens    PtreC4H , 
 UidA ,  nptll  

 Chen et al. 
( 2001 ) 

 20.   E. camaldulensis   Cotyledons, 
hypocotyls 

  A. tumefaciens    cry3A ,  bar   Harcourt 
et al. ( 2000 ) 

 21.   E. camaldulensis   Cotyledons, 
hypocotyls 

  A. tumefaciens    UidA   Ho et al. 
( 1998 ) 

 22.   E. grandis x E. 
urophylla  

 Seedlings   A. tumefaciens ,  A. 
rhizogenes  

  Ti - nos ,  Ri 
plasmid  

 Machado 
et al. ( 1997 ) 

 23.   E. globulus   Seedlings   A. tumefaciens    UidA ,  nptll   Moralejo 
et al. ( 1998 ) 

 24.   E. globulus   Zygotic 
embryo 

 Biolistic gun   CAD   Serrano et al. 
( 1996 ) 

 25.   E. camaldulensis   Cotyledons, 
hypocotyls 

  A. tumefaciens    UidA ,  nptll   Chen et al. 
( 1996 ) 

 26.   E. globulus   Zygotic 
embryo, 
cotyledons, 
hypocotyls 

 Biolistic gun, 
particle in fl oe 
gum 

  UidA   Rochange 
et al. ( 1995 ) 

 27.   E. citriodora   Protoplast  Electroporation   UidA   Manders 
et al. ( 1992 ) 

 28.   E. gunnii   Protoplast  Electroporation   UidA   Teulieres 
et al. ( 1991 ) 
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 12      Biotechnology of Tropical Tree Crops                     

     Yan     Hong     ,     Somika     Bhatnagar     , 
and     Smitha     Chandrasekharan    

12.1          Introduction 

12.1.1     Tropical Tree Crops 

 Tropical tree crops can be defi ned as  trees   planted in a tropical region for commer-
cial purpose/scale. A plantation is a densely planted stand of trees, managed to max-
imize output of specifi c products – wood (for wood chips, paper manufacturing, 
furniture, and construction), fruits, nuts, secondary metabolites, biofuels, and ser-
vices such as carbon sequestration, watershed protection, and holding back deserti-
fi cation. Tropical plantations are found between 23.5° south latitude and 23.5° north 
latitude at elevations below 1000 m and divided into four major regions (Neotropical, 
Afrotropical, Indomalayan tropical, and Australian tropical) (Duery and Vlosky 
 2006 ):

    (a)     The    Neotropical    – The Amazon river basin covers 40 % of the South American 
natural forests. Four-fi fths of the Amazon forest is still intact and healthy. Other 
areas have been subjected to heavy logging and converted into plantations. 
Main plantation trees are  Swietenia macrophylla  (mahogany),  Hevea brasilien-
sis  (rubber),  Eucalyptus grandis  (eucalyptus), and  Elaeis oleifera  (American oil 
palm).   

   (b)      The Afrotropical    – Most of the tropical rainforests of Africa exist in the Congo 
(Zaire) river basin. Due to frequent and continuing dry spells, these forests are 
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fast converting into deserts. Plantation trees commonly found in this region are 
rubber,  Tectona grandis  (teak),  Acacia mangium  (acacia),  Dalbergia melanoxy-
lon  (African blackwood),  Cola acuminata  (kola tree),  Theobroma cacao  
(cocoa), and  Elaeis guineensis  (African oil palm).   

   (c)     The Indomalayan tropical  – This region includes Indonesia, the Malay 
Peninsula, India, and China. Southeast  Asi  a’s rainforests are some of the oldest 
in the world, and they have existed for over 100 Ma. There has been uncon-
trolled deforestation and the virgin forest is reducing at an alarming rate. Main 
plantation trees are oil palm, mahogany, rubber, acacia, teak,  Dalbergia sissoo  
(rosewood),  Gmelina arborea  (gmelina),  Paraserianthes falcataria  (sengon), 
and  Cocos nucifera  (coconut).   

   (d)      The Australian tropical    – Most of this rainforest is located in Papua New Guinea 
and a part in the Northeast of Australia. It is pretty much unaffected and 
untouched and is slowly expanding. Main plantation trees in this region are 
eucalyptus, acacia,  Santalum spicatum  (sandalwood), and  Paulownia tomen-
tosa ( princess tree).    

12.1.2       Demands for Tropical Tree Crops 

 With the increase in population, globalization, and economic development, the 
 demand for   tree products has been constantly increasing. In the last 50 years, for-
estry has changed from being a foraging operation to becoming what is increasingly 
a cropping operation. It was postulated that if the global plantation forest were to 
increase at 2.4 % per annum between 2010 and 2050, plantation forests could 
replace natural forests as the source for timber and fi ber (WWF and IIASA  2012 ). 
Good progress has been made toward that direction. In 2013, 49 % of the world 
wood production came from plantation forest, and this contribution would increase 
to 69 % by 2050. Among the tropical subregions, contributions from plantation for-
est in South America, Central America, and Southeast Asia in 2013 were 77 %, 
34 %, and 39 %, and these numbers would increase to 86 %, 63 %, and 62 % by 2050 
(d’Annunzio et al.  2015 ).  

12.1.3     Need for Sustainable Plantations 

 To meet the high demand for  t  ropical tree crops, forest plantations in the tropics are 
expanding rapidly. Planting fast-growing and short-rotation trees is the fi rst step to 
accelerate plantations and reduce pressure on natural stands. With the application of 
biotechnology, the cost of plantation forestry can be lowered and thus provide fi nan-
cial incentive for the industry to continue its shift away from higher-cost natural 
forestry. This will also help to preserve biodiversity, to protect native species, and 
to reduce rate of deforestation. Plantations help in sequestering carbon and releasing 
oxygen. It is equally important to select species which can grow on marginal land 
so that the agricultural land is not converted into plantations. With the rapidly 
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changing climate, the trees are also required to withstand harsh environmental con-
ditions such as severe cold, drought, fl ood, salinity, etc. and grow sustainably with-
out additional pressure on the soil and water resources. Thus economics and 
environmental concerns are the two major driving forces  towar  d sustainable tree 
plantation (Sedjo  1999 ).  

12.1.4     Conventional Tree Propagation: Methods and Their 
Limitations 

     (a)     Propagation by seeds  – Often the seeds are produced via open pollination; 
hence, they are  he  terozygous in nature and do not contain the true-to-type char-
acteristics of mother plants. Seed production is a seasonal process, usually once 
or twice a year. In many species the seeds remain viable only for few months, 
and the germination percentage in nursery is often low. Improvement strategy 
is to select superior trees in the seed orchard and only harvest seeds from these 
trees. This takes time as trees have long juvenile phase. Most tropical tree spe-
cies reach the sexual maturity and produce substantial quantities of seeds at 
around 3–6 years of age.   

   (b)     Propagation by stem cuttings  – Stem cuttings have been used to propagate true- 
to- type clones of elite trees, but they have limited success and face the technical 
challenges of rejuvenation and rooting. Mature tree material is mostly diffi cult 
to root or often produces poor-quality roots. Successful rooting depends on 
environmental factors and physiological state of the stem cuttings. The percent-
age of the stem cuttings surviving the time period between pruning, transporta-
tion, and fi nal transplantation is often low.   

   (c)     Propagation by grafting  – The success of grafting depends on internal factors 
like scion/rootstock compatibility, nutrient and water content, activity of the 
cambium, as well as environmental factors like soil moisture and atmospheric 
temperature.   

   (d)     Diffi culty in breeding tree species  – Domestication of forest trees based on con-
trolled crosses and fi eld trials started in the 1950s, and many breeding programs 
are only in their infancy. Breeding efforts have been largely confi ned to the 
 Pinus ,  Picea , and  Eucalyptus  genera. Their speed of reproduction (as long as 20 
years for one reproduction cycle for spruce) is one major limiting factor to tree 
domestication. Controlled pollination is diffi cult to conduct and sometimes fails 
to produce seeds. It also requires large parcel of land and other resources to 
screen for the most desirable plants for multiple years. Hybrids are often sterile 
and fail to produce seeds, and vegetative propagation  tec  hniques are needed for 
producing enough seedlings for plantation. Growth, disease resistance, stem 
form, and wood quality have been the major traits improved by tree breeders 
(Isik et al.  2015 ).       
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12.2     Tree Biotechnology: An Overview 

  Tree biotechnology   is about making use of biotechnological and molecular tools for 
improvement of tree physiology and genetics. It consists of four components: 
micropropagation from preexisting meristems, regeneration through  de novo  meri-
stems, genetic engineering, and DNA marker-assisted breeding. Micropropagation 
and regeneration are two tissue culture techniques that have been extensively 
exploited for the conservation of germplasm (including cryopreservation, synthetic 
seeds, and genebanks), creation of new varieties (such as somaclonal variants, hap-
loids, mutagenized, and somatic hybrids), and mass propagation of trees like gme-
lina, acacia, sengon, and mulberry for plantation. Tissue culture is also used for the 
production of secondary metabolites (e.g., agarofuran in agarwood,  Aquilaria 
malaccensis ), industrial enzymes, and nutritional and therapeutic compounds (e.g., 
eugenol in clove,  Syzygium aromaticum ). With the advent of recombinant DNA 
technology (genetic modifi cation, or GM), it is possible to transfer genes across the 
species barrier. GM provides precision and allows a wider range of outcomes com-
pared to traditional breeding where selection is based on phenotypic variations 
within genetically compatible individuals. Recent advances in forest tree molecular 
biology, including gene discovery; functional characterization through various 
molecular tools like transcriptomics, epigenomics, proteomics, and metabolomics; 
and whole-genome sequencing, all have contributed to genetic engineering of tropi-
cal tree like rubber. It becomes an important avenue to accelerate the domestication 
of forest trees with the main advantage of adding commercially important traits to 
elite clones, exemplifi ed by GM  Jatropha curcas  (jatropha) with high oleic acid, 
high oil content, and insect tolerance. Other traits under development include patho-
gen tolerance, herbicide tolerance, enhanced root development, fl owering control, 
lignin modifi cations, latex improvement, and phytoremediation of environmental 
pollutants. On the other hand, genetic mapping and association between genetic 
markers and traits expedite breeding through markers-assisted breeding, which 
reduces time, space, and other resources in progeny screening. The fi nancial incen-
tives for the utilization of biotechnology in  tropical tree crops appear to   be strong. 
When the yields can be increased or/and costs can be reduced, net benefi ts of tree 
biotechnology can be achieved.  

12.3     Micropropagation 

 Micropropagation can be defi ned as an  in vitro  clonal propagation technique of 
using the preexisting meristems in shoot tips or nodal explants to propagate the 
mother plants via tissue culture. In tropical timber trees, it is the fastest way to 
achieve desirable clones of superior trees in large numbers; seedlings are true to 
type to mother plants and pathogen-free. 

 Micropropagation can be divided into four stages – establishment, multiplica-
tion, rooting, and acclimatization:
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    (a)     Establishment  – Nodal explants and shoot tips are collected and sterilized with 
surface-sterilizing reagents,  a  nd  in vitro  cultures are established which are free 
of pathogens. Commonly used surface-sterilizing reagents are ethanol, mercu-
ric chloride, hydrogen peroxide, benomyl, bavistin, carbendazim, PPM (Plant 
Preservative Mixture), and sodium hypochlorite. In an aseptic environment and 
following the aseptic techniques, the sterilized explants are cultured on suitable 
plant growth basal media like Murashige and Skoog (MS) medium (Murashige 
and Skoog  1962 ), Woody Plant Medium (WPM) (McCown and Lloyd  1981 ), 
and Gamborg B5 medium (B5) (Gamborg et al.  1976 ). These basal media are 
supplemented with auxins and cytokinins to promote new shoot formation and 
propagation either on the same medium or different ones.   

   (b)      Multiplication  – Shoots   obtained from a single explant are separated into indi-
vidual shoots that can be either cultured in the same propagation medium for 
continuous production of large number of shoots or cultured on a shoot elonga-
tion medium for shoot elongation before transfer onto a rooting medium.   

   (c)     Rooting  – Seedlings are transferred into the medium supplemented with auxin 
to promote root formation.    In some trees like  Acacia senegal , of which shoots 
show low direct root induction (25 %) in the medium, micrografting them on 
rootstocks of  in vitro  germinated seedlings can be used as an additional step to 
produce rooted plants (100 %) (Khalafalla and Daffalla  2008 ).   

   (d)     Acclimatization  – Rooted plantlets are gradually exposed to the open environ-
ment (acclimatization or hardening)    before transfer into soil in nursery. It is a 
very critical step, and the success of survival rate in soil largely depends on how 
well the plants are acclimatized to physical (light, temperature, humidity, day 
length), chemical (mineral composition of soil), and biological (soil-microfl ora) 
environment. The transition from tissue culture bottles to soil in pots should be 
performed gradually by exposing the plants to lower humidity and higher tem-
perature and light conditions on a daily basis, over a period of time (7–15 days). 
During the hardening stage in nursery, the plants can be supplied with anti-
transpirants (e.g., Folicote), growth retardant (e.g., Paclobutrazol), plant stress 
hormone (e.g., abscisic acid), fungicides (e.g., Captan), and useful microbes 
(e.g., bacterial endophytes and mycorrhiza) to increase survival percentage 
(Chandra et al.  2010 ).     

 Micropropagation  protocols   have been successfully developed for many tropical 
tree crops (see Table 12 .1  for a summary).

   Compared with other vegetative propagation methods, micropropagation can 
produce larger quantities of good-quality seedlings for each propagation cycle 
(higher propagation ratio), in small areas within a short span of time, irrespective of 
the weather and season. The micropropagated plants are disease-free, have good 
rooting system, and show uniform growth. They are true to type and possess all 
qualities of the selected mother plants. Sometimes  in vitro  propagation is combined 
with nursery cuttings to further increase propagation ratio and reduce costs. 
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     Table 12.1    Tropical tree  cr   op   propagation/regeneration   

 Scientifi c name 
(common name)  Country of origin 

 Plantations in 
countries  Uses 

 Propagation 
method  References 

  Acacia mangium  
(acacia) 

 Australia, Papua 
New Guinea, 
Eastern 
Indonesia 

 Malaysia, 
Indonesia, 
Bangladesh, 
Philippines, 
Puerto Rico, 
Brazil 

 Wood, 
livestock 
feed 

 MP, OR, SE  Bon et al. ( 1998 ), 
Beck and Dunlop 
( 2001 ), Xie and 
Hong ( 2001a ,  b , 
 2002 ), Monteuuis 
et al. ( 2013 ), 
Hong and 
Bhatanagar 
( 2007 ), and 
Bhatnagar and 
Hong ( 2008 ) 

  Anthocephalus 
cadamba  (jabon) 

 India, Australia, 
China, 
Indonesia, 
Malaysia, Papua 
New Guinea, 
Philippines, 
Singapore, 
Vietnam 

 India, 
Malaysia, 
Indonesia 
(Java), Costa 
Rica, Puerto 
Rico, 
Venezuela, 
South Africa, 
Suriname, 
Taiwan, China 

 Wood, 
industrial 
raw 
material 

 MP, SE  Kavitha et al. 
( 2009 ) and 
Apurva and 
Thakur ( 2009 ) 

  Aquilaria 
agallocha  
(agarwood) 

 Northeast Asia  India, Iran, 
Bangladesh, 
Bhutan, Laos, 
Vietnam, 
Thailand, 
Malaysia, 
Indonesia 

 Industrial 
raw 
material 

 MP  Chung ( 2015 ) 
and Meng-Ling 
et al. ( 2005 ) 

  Azadirachta 
indica  (neem) 

 India  India, 
Australia, 
Africa 

 Wood, 
industrial 
raw 
material, 
livestock 
feed 

 MP, OR, 
SE, AC 

 Akula et al. 
( 2003 ), Arora 
et al. ( 2010 ), 
Biswas and Gupta 
( 2007 ), Gautam 
et al. ( 1993 ), 
Houllou et al. 
( 2015 ), Murthy 
and Saxena 
( 1998 ), Rafi q and 
Dahot ( 2010 ), 
and Salvi et al. 
( 2001 ) 

  Calophyllum 
brasiliense  
(Brazilian cedar) 

 Brazil  Central 
America, South 
America, 
Caribbean 

 Wood, 
industrial 
raw 
material, 
medicine 

 MP  Silveira ( 2014 ) 

(continued)
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Table 12.1 (continued)

 Scientifi c name 
(common name)  Country of origin 

 Plantations in 
countries  Uses 

 Propagation 
method  References 

  Carica papaya  
(papaya) 

 Mexico, Central 
America 

 India, Brazil, 
Indonesia, 
Nigeria, 
Mexico 

 Fruit  MP, OR, 
PC, SE 

 Hossain et al. 
( 1993 ), Vilasini 
et al. ( 2000 ), 
Bhattacharya et al. 
( 2003 ), Anandan 
et al. ( 2011 ), and 
Chen and Chen 
( 1992 ) 

  Cedrela odorata  
(American cedar) 

 Central America  Mexico, 
Argentina 

 Wood  MP, OR, SE  Peña-Ramírez 
et al. ( 2011 ), 
García-Gonzáles 
et al. ( 2011 ), 
Peña-Ramírez 
et al. ( 2010 ), 
Cameron ( 2010 ), 
and Pérez Flores 
et al. ( 2012 ) 

  Cinnamomum 
camphora  
(camphor) 

 South East and 
South central 
parts of China 

 Japan, Taiwan, 
Korea, Indo 
China, America 

 Industrial 
raw 
material, 
medicine 

 MP, OR, 
PC 

 Du and Bao 
( 2005 ), Govinden 
Soulange et al. 
( 2007 ), Babu 
et al. ( 2003 ), and 
Du et al. ( 2015 ) 

  Cinnamomum 
tamala  (Indian 
bay leaf) 

 Bhutan, China, 
Nepal, India 

 Asia and 
Australia 

 Spice  MP, OR  Deb et al. ( 2013 ) 
and Madhabi 
et al. ( 2014 ) 

  Cinnamomum 
verum  
(cinnamon) 

 Malabar Coast of 
India, 
Bangladesh, Sri 
Lanka, Myanmar 

 Seychelles, 
Madagascar, 
Sri Lanka, 
India, China, 
Vietnam 

 Spice  MP  Govinden 
Soulange et al. 
( 2007 ) and Mini 
et al. ( 1997 ) 

  Cocos nucifera  
(coconut) 

 India, Australia  Australia, Sri 
Lanka, India, 
Indonesia, 
Philippines, 
Maldives, USA, 
Middle East, 
Bermuda, 
Europe 

 Fruit, 
industrial 
raw 
material 

 AC, MP, SE  Perera et al. 
( 2007 ), Verdeil 
et al. ( 1999 ), Chan 
et al. ( 1998 ), and 
Verdeil et al. 
( 1994 ) 

  Coffea  spp. 
(coffee) 

 Ethiopia  North Central 
and South 
America, 
Caribbean, 
Africa, Middle 
East, India, 
Indonesia, 
Vietnam 

 Industrial 
raw 
material 

 AC, SE  Etienne ( 2005 ), 
Berthouly and 
Etienne ( 1999 ), van 
Boxtel and 
Berthouly ( 1996 ), 
Gatica-Arias et al. 
( 2008 ), 
Neuenschwander 
and Baumann 
( 1992 ), and 
Ascanio and Arcía 
( 1987 ) 

(continued)
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Table 12.1 (continued)

 Scientifi c name 
(common name)  Country of origin 

 Plantations in 
countries  Uses 

 Propagation 
method  References 

  Cola  spp. (kola 
tree) 

 West Africa  Jamaica, 
Brazil, Hawaii, 
Malaysia, India 

 Industrial 
raw 
material 

 MP  Fotso et al. 
( 2002 ) and Dossa 
et al. ( 1994 ) 

  Cordia alliodora  
(timber of laurel) 

 Mexico  Central and 
South America, 
South Brazil, 
Mexico, North 
Argentina 

 Wood  OR  Londoño-Giraldo 
and Gutiérrez- 
López ( 2013 ) 

  Dalbergia 
melanoxylon  
(African 
blackwood) 

 Africa  Tanzania- 
Africa 

 Wood  MP  Kiondo et al. 
( 2014 ) and Washa 
and Nyomora 
( 2014 ) 

  Dalbergia sisoo  
(Indian 
rosewood) 

 India  India  Wood, 
livestock 
feed 

 MP, OR, SE  Vibha et al. 
( 2014 ), Sahu 
et al. ( 2014 ), Ali 
et al. ( 2012 ), 
Chand and Singh 
( 2004 ), Singh and 
Chand ( 2003 ), 
Pattnaik et al. 
( 2000 ), and 
Pradhan et al. 
( 1998 ) 

  Elaeis 
guineensis  
(oil palm) 

 Africa-Angola 
and Gambia 

 Malaysia, 
Indonesia, 
Africa 

 Industrial 
raw 
material 

 MP, OR, SE  Wooi ( 1990 ), 
Teixeira et al. 
( 1993 ), Karun 
and Sajini ( 1996 ), 
Scherwinski- 
Pereira et al. 
( 2010 ), Marbun 
et al. ( 2015 ), and 
Muniran et al. 
( 2008 ) 

  Eucalyptus 
grandis  
(eucalyptus) 

 Australia  Throughout the 
tropical regions 
of the world 

 Wood, 
industrial 
raw 
material, 
medicine, 
livestock 
feed 

 MP, OR, 
PC, SE 

 MacRae and Van 
Staden ( 1990 ), 
Penchel and 
Kirby ( 1990 ), 
Warrag et al. 
( 1990 ), Watt et al. 
( 1991 ,  1999 ), Cid 
et al. ( 1999 ), Qiu 
et al. ( 2009 ), and 
Mycock and Watt 
( 2012 ) 

(continued)
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Table 12.1 (continued)

 Scientifi c name 
(common name)  Country of origin 

 Plantations in 
countries  Uses 

 Propagation 
method  References 

  Gmelina arborea  
(white teak) 

 India, Myanmar, 
Thailand, Laos, 
Cambodia, 
Vietnam, 

 India, 
Malaysia, 
Indonesia, 
Myanmar, 
Thailand, Laos, 
Cambodia, 
Vietnam, 
Philippines, 
Solomon 
Islands, Sierra 
Leone, Nigeria, 
Costa Rica, 
Brazil 

 Wood 
livestock 
feed 

 MP, OR, SE  Bhatnagar and 
Hong  2008 , 
Kannan and 
Jasrai ( 1996 ), 
Naik et al. 
( 2003 ), Valverde- 
Cerdas et al. 
( 2004 ), 
Nakamura 
( 2006 ), Behera 
et al. ( 2008 ), 
Sukartiningsih. 
et al. ( 2012 ), and 
Madke et al. 
( 2014 ) 

  Hevea 
brasiliensis  
(rubber) 

 Amazon 
rainforest 
Bolivia, Brazil, 
Colombia, Peru, 
Venezuela 

 Brunei, 
Cambodia, 
China, 
Ethiopia, India, 
Indonesia, 
Laos, Liberia, 
Malaysia, 
Myanmar, 
Philippines, 
Singapore, Sri 
Lanka, 
Thailand, 
Uganda, 
Vietnam 

 Wood, 
industrial 
raw 
material 

 OR, SE, 
MP, AC 

 Cailloux et al. 
( 1996 ), Carron 
et al. ( 1995 ), Hua 
et al. ( 2010 ), 
Ighere et al. 
( 2011 ), Sirisom 
and Te-chato 
( 2013 ), 
Sushamakumari 
et al. ( 1999 ), 
Veisseire et al. 
( 1994 ), and 
Venkatachalam 
et al. ( 2007 ) 

  Jatropha curcas  
(jatropha) 

 Central America  All tropical and 
subtropical 
countries 

 Industrial 
raw 
material 

 MP, OR, SE  Sujatha and 
Mukta ( 1996 ), 
Sujatha et al. 
( 2005 ), Datta 
et al. ( 2007 ), 
Purkayastha et al. 
( 2010 ), Singh 
et al. ( 2010 ), and 
Nunes et al. 
( 2013 ) 

(continued)
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Table 12.1 (continued)

 Scientifi c name 
(common name)  Country of origin 

 Plantations in 
countries  Uses 

 Propagation 
method  References 

  Laurus nobilis  
(bay laurel) 

 Mediterranean 
Basin and 
Portugal 

 Europe and 
East Asia 

 Spice  SE, MP  Canhoto et al. 
( 1999 ) and 
Chourfi  et al. 
( 2014 ) 

  Mangifera indica  
(mango) 

 India, 
Philippines 

 India, Pakistan, 
Africa, Brazil, 
Australia 

 Wood 
fruit 

 MP, SE, PC  Krishna and 
Singh ( 2007 ), 
Xiao et al. 
( 2004 ), Pateña 
et al. ( 2002 ), and 
Ara et al. ( 2000 ) 

  Morus indica  
(mulberry) 

 China  Southern 
Europe, Middle 
East, Northern 
Africa, Indian 
subcontinent 

 Industrial 
raw 
material 

 MP, PC  Tewari et al. 
( 1999 ), Bhatnagar 
et al. ( 2001 , 
 2002 ), Kapur 
et al. ( 2003 ), 
Bhatnagar et al. 
( 2004 ), Umate 
( 2010 ), and 
Mehbooba Zaki 
( 2011 ) 

  Musa  spp. 
(banana) 

 India, South East 
Asia, Australia 

 All tropical 
countries 

 Fruit  MP, SE, 
PC, OR 

 Panis et al. 
( 1993 ), Escalant 
et al. ( 1994 ), 
Assani et al. 
( 2001 ), Khalil 
et al. ( 2002 ), 
Dahot ( 2007 ), 
Xiao et al. 
( 2007 ), and 
Remakanthan 
et al. ( 2014 ) 

  Paraserianthes 
falcataria  
(sengon) 

 Moluccas, New 
Guinea 

 Fiji, 
Philippines, 
East Java, 
Indonesia, 
India, 
Australia, parts 
of America 

 Timber  MP  Bhatnagar and 
Hong ( 2008 ), 
Bon et al. ( 1998 ), 
Chujo et al. 
( 2010 ), Hong and 
Bhatanagar 
( 2007 ), 
Ravindran 
( 1998 ), and 
Sasmitamihardja 
et al. ( 2005 ) 

(continued)
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Table 12.1 (continued)

 Scientifi c name 
(common name)  Country of origin 

 Plantations in 
countries  Uses 

 Propagation 
method  References 

  Persea 
americana  
(avocado) 

 Mexico, Central 
America 

 Morocco, 
South Africa, 
Spain, 
Portugal, 
Colombia, 
Peru, India, Sri 
Lanka, 
Indonesia, 
Australia, New 
Zealand, USA, 
Ecuador, 
Rwanda 

 Fruit, 
industrial 
raw 
material 

 MP, SE  Barceló-Muñoz 
et al. ( 1999 ), 
Witjaksono et al. 
( 1999 ), Perán- 
Quesada et al. 
( 2004 ), Márquez- 
Martín et al. 
( 2011 ), and 
Encina et al. 
( 2014 ) 

  Paulownia 
fortunei  
(paulownia) 

 China, Laos, 
Vietnam 

 China, Korea, 
Japan, 
Australia 

 Wood, 
industrial 
raw 
material, 
livestock 
fodder 

 MP  Bergmann 
( 1998 ), 
Bergmann and 
Whetten ( 1998 ), 
Venkateswarlu 
et al. ( 2001 ), 
Yadav et al. 
( 2013 ), Clapa 
et al. ( 2014 ), and 
Shtereva et al. 
( 2014 ) 

  Pongamia 
pinnata  (Indian 
beech tree) 

 India  India, 
Myanmar 

 Industrial 
raw 
material 

 MP, OP, SE  Sugla et al. 
( 2007 ), Sujatha 
and Hazra ( 2007 ), 
Shrivastava and 
Kant ( 2010 ), 
Sujatha ( 2011 ), 
Kesari et al. 
( 2012 ), and 
Mahmood ( 2013 ) 

  Pinus merkusii  
(Sumatran pine) 

 Sumatra 
(Indonesia) 

 Indonesia, 
Malaysia, 
Philippines 

 Wood, 
industrial 
raw 
material 

 MP  Noerhadi and 
Wirjodarmodjo 
( 1980 ) 

  Populus 
mexicana , 
 Populus 
euphratica  
(poplar) 

 Mexico  Southwest 
Asia, Mexico 

 Wood  AC, OR, 
PC, SE 

 Michler and 
Bauer ( 1991 ), 
Baldursson et al. 
( 1993 ), Gu et al. 
( 1999 ), Ferreira 
et al. ( 2009 ), Li 
et al. ( 2013 ), and 
Chupeau et al. 
( 1994 ) 

(continued)
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Table 12.1 (continued)

 Scientifi c name 
(common name)  Country of origin 

 Plantations in 
countries  Uses 

 Propagation 
method  References 

  Samanea saman  
(rain tree) 

 South America 
and Central 
America 

 Southeast Asia  Wood, 
livestock 
feed 

 MP  Kasthurirengan 
et al. ( 2013 ) 

  Santalum album , 
 Santalum 
spicatum  
(sandalwood) 

 India, Australia  India, Nepal, 
Bangladesh, Sri 
Lanka, 
Australia, 
Indonesia, and 
the Pacifi c 
Islands 

 Industrial 
raw 
material, 
medicine 

 MP, SE  Sankara Rao 
et al. ( 1996 ), 
Rugkhla and 
Jones ( 1998 ), Das 
et al. ( 2001 ), 
Sanjaya et al. 
( 2006 ), Bele et al. 
( 2012 ), and Singh 
et al. ( 2013a ) 

  Shorea 
roxburghii , 
 Shorea robusta  
(meranti) 

 Southeast Asia  Cambodia, 
Laos, Malaysia, 
Thailand, India, 
Myanmar, 
Vietnam 

 Wood  OR, MP  Scott et al. 
( 1988 ), 
Nakamura 
( 2006 ), and Singh 
et al. ( 2014 ) 

  Swietenia 
macrophylla  
(mahogany) 

 Tropical America  Fiji, 
Philippines, 
Africa 

 Wood  MP, SE  Astorga et al. 
( 1996 ), 
Maruyama and 
Ishii ( 1999 ), 
Maruyama 
( 2006 ), de Souza 
et al. ( 2007 ), and 
Pérez Flores et al. 
( 2012 ) 

  Syzygium 
aromaticum  
(clove) 

 Maluku Islands 
in Indonesia 

 Indonesia, 
India 

 Spice  SE, MP, OR  Mathew and 
Hariharan ( 1990 ), 
Rema et al. 
( 1997 ), and 
Nirmal Babu 
et al. ( 2015 ) 

  Tamarindus 
indica  (tamarind) 

 Africa, India  Indonesia, 
Malaysia, 
Philippines, 
Myanmar, the 
Pacifi c Islands 

 Wood 
industrial 
raw 
material 

 OR, MP  Kopp and 
Nataraja ( 1990 ), 
Jaiwal and Gulati 
( 1991 ), Sonia 
et al. ( 1998 ), and 
Mehta et al. 
( 2000 ) 
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Y. Hong et al.



257

Table 12.1 (continued)

 Scientifi c name 
(common name)  Country of origin 

 Plantations in 
countries  Uses 

 Propagation 
method  References 

  Taxus  spp. (yew 
tree) 

 Western, Central, 
and Southern 
Europe, 
Northwest 
Africa, Northern 
Iran, Southwest 
Asia 

 China, USA  Medicine  OR, MP  Chee ( 1994 ), 
Majada et al. 
( 2000 ), Datta 
et al. ( 2006 ), 
Ewald ( 2007 ), 
and Abbasin et al. 
( 2010 ) 

  Tectona grandis  
(teak) 

 Originated from 
Costa Rica, 
Indonesia 

 India, 
Indonesia, 
Myanmar, 
Philippines 

 Wood  MP, OR, SE  Baghel et al. 
( 2008 ), De Gyves 
et al. ( 2007 ), 
Gangopadhyay 
et al. ( 2003 ), 
Kozgar and 
Shahzad ( 2012 ), 
Kushalkar and 
Sharon ( 1996 ), 
Sunitibala Devi 
et al. ( 1994 ), and 
Widiyanto et al. 
( 2001 ) 

  Theobroma 
cacao  (cocoa) 

 South America  Ivory Coast, 
Ghana, 
Indonesia, 
Nigeria, Brazil, 
Cameroon 

 Industrial 
raw 
material 

 MP, SE  Esan ( 1992 ), Li 
et al. ( 1998 ), 
Silva and 
Debergh ( 2001 ), 
Quainoo and 
Dwomo ( 2012 ), 
Traore et al. 
( 2003 ), and 
Florez et al. 
( 2015 ) 

   AC  Anther culture,  OR  Organogenesis,  MP  Micropropagation,  PC  Protoplast cultures,  SE  Somatic 
embryogenesis  
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12.3.1     Selection Elite Plants for Propagation 

     (a)     Species    selection    – The very critical fi rst step for micropropagation is to select 
elite material to clone. Firstly, a tree species suitable for a particular climate and 
soil conditions is chosen. For wood harvest, fast-growing tree species with 
straight trunks, sparse thin branches, and good-quality wood are preferred. For 
fruits, trees producing higher number and larger size fruits at a younger age are 
desirable.   

   (b)     Accession evaluation  – Typically, a small number of trees of different acces-
sions or progeny population derived from elite mother trees are planted in the 
target region for evaluation of suitability and matching with local environment, 
also providing mother plants for propagation. Accessions from as wide as pos-
sible sources are planted in the target region. Observation and evaluation are 
conducted over a period of time. Certain plot design like random block design 
is usually practiced to ensure a fair and nonbiased evaluation. For each trial, 
plants of different entries are grown under the same environmental and soil 
conditions and subjected to the same silviculture and plantation management 
practices.   

   (c)     Selection of best trees  – Elite trees are selected from these plantations or seed 
orchards based on their phenotypical traits such as growth rate, yield, quality, 
tolerance to abiotic stress, or resistance to  pathog  en attacks. These trees are 
selected as “mother plants” for propagation.      

12.3.2     Technical Challenges in Micropropagation 

  In vitro  shoot culture is greatly infl uenced by many internal and external factors. 
Optimal protocol is often plant species specifi c, even genotype specifi c.

    (a)     Explant  – Apical shoots and axillary buds respond differently to  in vitro  cultur-
ing. Typically,  apical   shoot is preferred due to its younger age and ease of root-
ing, while axillary buds are preferred when a large number of explants are 
required to start the culture. In some tree species, axillary buds obtained from 
mature trees need to be rejuvenated in tissue culture before using them for mul-
tiplication purposes. For example, in acacia, the mature buds give rise to shoots 
with phyllodes. Only after a few rounds of subculture, shoots with pinnate 
leaves are obtained; this is an indication of rejuvenation.   

   (b)     Sterilization  – Nodal segments taken from mature trees are generally diffi cult to 
sterilize with high rate  of   contamination. The fresh growths and young shoots 
respond better to sterilization procedures. There is also seasonal variation in the 
percentage of contamination. Axillary buds collected in winter months are in 
dormant stage and have less chances of contamination. Explants collected dur-
ing hot and humid weather have a fl ourishing microfl ora on them which is dif-
fi cult to remove during sterilization procedure.   
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   (c)     Media and hormone  – Optimization of the nutrient and hormone levels in the 
media is of the highest  i  mportance in developing a tissue culture protocol. The 
media composition makes signifi cant differences in culture responses,  including 
the percentage of explants producing shoots, growth of axillary shoots, rooting 
effi ciency, and number and length of roots.    

12.3.3       Research and Development Activities at Temasek Life 
Sciences Laboratory (  www.tll.org.sg    ) and Bioforest 
(  www.bio-forest.com    ) in Singapore 

 For the past few years, we have conducted research and development activities 
toward commercial production of eight important tropical tree crops, namely,  gme-
lina  , acacia, sengon, agarwood, clove, rubber, mulberry, and jatropha:

    (a)     Gmelina  – Commonly named white teak is valued for good-quality wood for 
furniture, frames, and plywood industry. It is a popular choice for plantations 
across the tropics. A cost-effective and time-effi cient propagation protocol from 
nodal explants of elite trees was developed. The micropropagation system 
leverages on the reuse of mother plant (up to six times over a period of 1 year). 
One  in vitro  established mother plant can produce 1,000,000 plants in 1 year. 
The plantlets obtained readily acclimatize with over 95 % success rate when 
transferred to nursery. These nursery plants can be further multiplied via a spe-
cial stem-cutting technique into up to 16 plants within 4 months. Two- to three- 
month- old seedlings from nursery can be planted out in an open fi eld with 
>95 % survival rate. At 5 years of age, the tissue culture trees of elite mother 
plants showed uniform and higher growth (in terms for height and diameter) 
than the seed-grown trees of same age and under the same soil and climate 
conditions. Similar protocols were developed for mass propagation of two 
highly sought-after tropical timber trees, sengon (for plywood) and acacia (for 
pulp and paper) (Bhatnagar and Hong  2008 ; Hong and Bhatanagar  2007 ).   

   (b)     Clove  – Dry buds are used as a whole spice, and its oil is widely popular as an 
essential oil  with   analgesic, antioxidant, and anti-infl ammatory properties. 
Kretek, a widely smoked form of cigarettes in Indonesia is a blend of tobacco 
with clove buds. We have cloned and multiplied elite trees with desirable traits 
for plantations. Research is in progress on production of aromatic terpenes in 
tissue culture of clove (unpublished data).   

   (c)     Rubber  – It is of major economic importance because milky latex extracted 
from its tree trunk is the primary source of natural rubber. It is generally recal-
citrant to micropropagation owning to high  amount   of latex content. We devel-
oped a special formulation with additives in hormonal media to overcome the 
bottle neck of latex exudes in the tissue culture and now can micropropagate 
rubber plants on a routine basis (unpublished data).    
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12.4        Regeneration 

12.4.1     Organogenesis 

 Regeneration refers to the formation of new organs through  de novo  formed meri-
stems.  In vitro  propagation by  organogenesis   involves induction of adventitious 
meristems with or without formation of callus from various somatic explants such 
as leaves, anthers, cotyledons, hypocotyls, ovaries, stem/internodes, and root seg-
ments. Many woody plant species are recalcitrant to adventitious generation with 
the formation of callus (McCown et al.  1991 ). For the purpose of propagation, direct 
shoot organogenesis is preferred than regeneration through callus because of less 
chances of somaclonal variation and genetic instability than propagation via callus. 
It is achieved by exposure to a pulse of higher concentration of cytokinin that pro-
motes cell division. Direct shoot organogenesis is successful in many trees like 
 Leucaena leucocephala  (Sirisha et al.  2008 ),  Acacia mangium  (Shahinozzaman 
et al.  2013 ),  Pongamia pinnata , and  Citrus jambhiri  (Saini et al.  2010 ). On the other 
hand, callus-mediated organogenesis is the preferred method for genetic transfor-
mation due to amenability to  Agrobacterium  infection and the ability to regenerate 
single cell-derived transgenic plants. The developmental fate of cultured callus cells 
to regenerate shoots and corresponding roots is highly dependent on the concentra-
tion and ratio of auxins and cytokinins present in the media. Among the various 
hormones,  thidiazuron   (TDZ) stands out as a potent growth regulator especially for 
tropical tree crops. TDZ has been proven to mimic both auxin and cytokinin 
responses. Low concentration of TDZ enhances micropropagation, and higher con-
centrations induce shoot organogenesis and somatic embryogenesis. It also helps in 
the hardening of transgenic plants. Application of TDZ has resulted in turning many 
woody plants more amenable to propagation and regeneration (Khurana et al.  2005 ). 
High activity and stability coupled with requirement in low concentration and for 
short-duration application makes TDZ the most potent growth  regula  tor for woody 
plant tissue cultures. 

  Protocols   for regeneration via organogenesis have been successfully developed 
for many tropical tree crops (see Table 12 .1 ). 

 Agarwood – The wood of the Gods is highly priced and very unique, as upon 
microbial infection the tree produces a fragrant and resinous wood called as  agar-
wood  . Besides wood, the oil extracted from this wood is also very valuable in fra-
grance, cosmetic, and pharmaceutical industry. However, indiscriminate and 
excessive harvest of this highly sought-after tree has led to its listing as a critically 
endangered species under CITES. We have developed protocols of micropropaga-
tion (using shoot tips and nodal explants) and regeneration via direct organogenesis 
(using cotyledon and leaf explants) for three species:  A. crassna  (popular in 
Thailand, Laos, Cambodia, Australia, and Vietnam),  A. malaccensis  (Indonesia, 
Malaysia, and India), and  A. sinensis  (China). The protocols are very effi cient and 
ready for large-scale commercial propagation of agarwood trees.  A  garwood tree 
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plantation will not only save the endangered tree but also provide sustainable source 
for agarwood-derived high-valued products (unpublished data).  

12.4.2     Somatic Embryogenesis 

  Somatic embryogenesis   is an asexual form of plant propagation where an embryo 
or plant is derived from a single somatic cell. The potential of species/genotypes to 
form somatic embryos mainly depends on the genetic component. The developmen-
tal and physiological stage of the explant defi nes embryogenic competence at the 
cellular level (Fehér  2006 ). There are typically four stages of somatic 
embryogenesis:

    (a)     Initiation  –  In vitro  germinated seed is the preferred source of zygotic embryo 
or cotyledon/hypocotyl explants. These explants are cultured on a nutritive 
medium rich in auxins for  initiation   of embryogenic callus, which later gives 
rise to meristematic cells.   

   (b)      Proliferation    – Upon periodical subcultures, the embryos grow prolifi cally. 
Globular, heart, and torpedo stages are seen progressively.   

   (c)      Maturation  – Cotyl  edonary somatic embryos appear in this stage. They are 
bipolar and not attached to the explant by vascular tissue.   

   (d)      Germination  – The s  omatic embryos germinate to develop root and shoot. At 
this stage they can also be preserved as artifi cial seeds.    

  The epidermal single-cell origin of  soma  tic embryos makes  somatic embryogen-
esis a   good cloning technique, where an unlimited number of identical embryos can 
be produced for mass propagation. It also makes somatic embryogenesis suitable 
for genetic transformation. 

 There are several reports on regeneration of tropical tree crops using somatic 
embryogenesis (see Table 12 .1  for a summary). 

 However application of somatic embryogenesis on industrial scale has been 
restricted by genetic effect (many species fail in obtaining embryogenic tissue), 
somaclonal variation, lack of reproducibility and lower effi ciency of initial embryo 
production.

    (a)     Rubber  – Four decades of  w  ork on rubber propagation at CIRAD, France, has 
resulted in the production of true-to-type rejuvenated plants via primary somatic 
embryogenesis technology. To reduce somaclonal variation due to long periods 
of maintenance and storage, an alternative system using a combination of 
embryogenic callus cryopreservation and indirect secondary somatic embryo-
genesis has been  d  eveloped. It reduces the number of proliferation cycles and 
the length of time calli are exposed to hormones.  In vitro  regenerated plants of 
11 rubber tree clones have been established in the rejuvenated budwood gar-
dens, and trials are in progress on an 80 ha trial plot with Michelin (Montoro 
et al.  2012 ).   
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   (b)     Oil palm  – The tree is the most important oil-producing crop in the world due 
to its highest productivity compared with  othe  r oil crops. Somatic embryogen-
esis was induced from meristematic tissues from six  in vitro -grown clones of 
fi eld-proven elite trees. Commercial-scale production was achieved through 
secondary somatic embryogenesis. The use of mixer to separate cells from 
embryogenic mass allowed the cell suspension culture system in bioreactor. 
Mass production of plantlets from the selected lines of cell cultures was 
achieved within 6 months by using the above system. Field test was conducted 
to verify the relationship between  in vitro  abnormalities and  ex vitro  growth 
(Kang et al.  2010 ). ASD’s (Agricultural Services and Development, Costa Rica) 
tissue culture lab has produced about three million plantlets of 100 lines.   

   (c)     Coffee  – Since 1970s, various institutes have researched and reported somatic 
embryogenesis in coffee. Two technical  innovatio  ns –  m  ass production of 
somatic embryos in temporary immersion bioreactors and sowing them directly 
in nursery – made the technology economically feasible. The production capac-
ity of  Coffea arabica  somatic embryos at ECOM plantation Central America 
reached around fi ve million plants per year in 2011. It takes a total of 17 months 
in the lab and 8 months in nursery, before the plants can reach the fi eld (Etienne 
et al.  2011 ). Using a similar technology at Nestle, millions of somatic embryos 
of  Coffea camephora  have been produced  an  d planted in Thailand (Ducos et al. 
 2011 ).      

12.4.3     Other Methods 

     (a)     Haploid production  –  Haploids   are plants with a haploid chromosome number. 
Of the three  in vitro  methods of haploid production (gynogenesis, androgenesis, 
and bulbosum method), androgenesis is considered the most effi cient technique 
because of the presence of thousands of haploid cells per anther, as compared to 
gynogenesis where, at the most, seven cells per ovule are available. The last 
bulbosum method is applicable to a few cereals only. Homozygosity can be eas-
ily achieved through haploids in a single step by diploidization with colchicine, 
and this is especially useful for the highly heterozygous species. The applica-
tions of  haploid production   include development of homozygous diploid plants 
which can be high-yielding lines, chemical-induced pure elite mutant inbred 
lines, and transgenic line obtained via microinjection in pollens (Mishra et al. 
 2010 ). Haploids are of great importance in tree species where breeding is usu-
ally complicated and time consuming due to their long reproductive cycle, 
complex reproductive biology, and high degree of heterozygosity. Tree species 
with haploid and double-haploid plants developed include  Citrus ,  Malus 
domestica ,  Pyrus communis ,  Pyrus pyrifolia ,  Prunus persica ,  Prunus avium , 
 Prunus domestica ,  Prunus armeniaca ,  Olea europaea , mulberry, papaya, 
 Annona squamosa ,  Feijoa sellowiana ,  Opuntia fi cus-indica , and  Eriobotrya 
japonica  (Germanà  2009 ).   
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   (b)     Triploid production  – In diploid plants, the endosperm is a triploid (i.e., having 
three sets of chromosomes) tissue as a result  of   double fertilization.  In vitro  
culture of endosperm has been used for the production of triploids. Triploids are 
sterile and thus carry no risk of gene fl ow. Many of the triploid plants are found 
to be superior to their diploid counterparts in terms of yield and size of fruits. 
Triploids are useful in cases where seedless is desirable like in banana, apple, 
citrus, and papaya. Triploid plants may prove to be more useful for timber trees 
as generally they have more vigorous vegetative growth in comparison to their 
diploid counterparts. The fi rst direct shoot formation from cultured mature 
endosperm was demonstrated by Johri and Bhojwani in  Exocarpos cupressifor-
mis  (Johri and Bhojwani  1965 ). This led the way for more studies on endosperm- 
derived plantlets in several systems including  Pyrus communis , coffee 
(Raghuramulu  1989 ),  Citrus  spp. (Gmitter et al.  1990 ),   Aca    cia nilotica  (Garg 
et al.  1996 ),  Mallotus philippensis  (Sehgal and Abbas  1996 ), mulberry (Thomas 
et al.  2000 ) and  Azadirachta indica  (Chaturvedi et al.  2003 ).   

   (c)     Somatic hybrids  – Somatic hybridization or transformation by manipulating 
protoplast holds potential for  cro  p improvement. However, plant regeneration 
from protoplast is usually diffi cult but a prerequisite for the utilization of proto-
plast technology. Success in regeneration via protoplast culture was achieved 
for mulberry (Wei et al.  1994 ). Chupeau et al. ( 1994 ) reported recovery of trans-
genic trees after electroporation of poplar protoplast with pABD1, carrying the 
 nptII  gene for resistance to neomycin; pGH1, carrying a mutant acetolactate 
synthase gene,  als , for resistance to sulfonylurea; and pGSFR781A, carrying a 
synthetic phosphinothricin acetyltransferase ( pat ) for resistance to  phosphi-
nothri  cin (Basta).       

12.5     Tissue Culture for Production of Secondary Metabolites 

 In trees,  secondary metabolites   are accumulated at a certain age or maturity of the 
plant. They are produced in specialized differentiated tissue like resin ducts, latici-
fers, or secondary xylem. They accumulate at a slow rate and it is diffi cult to increase 
their production within tree. Many compounds are diffi cult to produce through 
chemical synthesis due to complex structure and high cost. Thus plant tissue culture 
offers an alternative method for production of secondary metabolites such as ter-
penes and fl avonoids independent of climate, soil, and tree growth conditions. 
Suspension cell, callus, shoot, and hairy root cultures have been tried for production 
of bioactive compounds. Production of the anticancer compound paclitaxel via sus-
pension cell culture is the most successful example. The largest player, Phyton 
(  www.phytonbiotech.com    ), has the capacity of producing 500 kg annually. The 
company uses a unique plant cell fermentation technology to produce paclitaxel 
with suspension cell cultures of  Taxus baccata  (European yew). Some other exam-
ples are production of caffeine in suspension cultures of  Coffea dewevrei  (Sartor 
and Mazzafera  2000 ), anthraquinones in  Morinda citrifolia  (Deshmukh et al.  2011 ), 
azadirachtin-related limonoids in neem (Rafi q and Dahot  2010 ), agarwood 
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fragrance-related compounds in agarwood, and eugenol production in clove (unpub-
lished data). The many plants tissue culture systems for secondary  metabolit  e pro-
duction were reviewed by Linden ( 2006 ). However, plant tissue culture systems 
face completion from  E. coli , yeast, and endophytic fungal systems in production of 
useful compounds.  

12.6     Cryopreservation 

  Cryopreservation   is a method of long-term storage of plant cells or tissue in liquid 
nitrogen (−196 °C), keeping it viable, with no metabolic deterioration and no cell 
division, free of germs, and revivable upon thawing. A typical cryopreservation 
cycle consists of stages of selection of material, preparation of material, freezing, 
storage in liquid nitrogen, thawing, washing, reculturing, and fi nally regeneration of 
plantlets. Commonly used protocols include controlled rate cooling, vitrifi cation, 
and encapsulation-dehydration, which vary mostly in preparation of material and 
freezing steps (Reed  2008 ). Cryopreservation requires less space and less labor than 
maintaining plants via tissue culture methods (Kaczmarczyk et al.  2012 ). However, 
each step in cryopreservation protocol has the potential to induce stress, and there is 
especially the risk of damage due to ice formation. The restoration of tissue function 
is also critical to successful cryoconservation. For trees of which seeds are not pro-
duced in suffi cient numbers or are viable for a short period of time, shoot tips and 
axillary buds are the preferred material for cryopreservation as they contain the 
preexisting meristem which can directly develop into shoot upon rewarming. Other 
 in vitro  plant tissue for cryopreservation includes cell suspension, embryogenic cal-
lus, pollen, embryo axe, and somatic embryo. Some of the trees cryopreserved using 
vitrifi cation method are  Artocarpus heterophyllus  (jackfruit, embryonic axis), citrus 
(embryonic axis, shoot tip, somatic embryo, callus), poplar (shoot tip),  Prunus  spp. 
(shoot tip) (Sakai and Engelmann  2007 ), and rubber (anther culture) (Zhou et al. 
 2014 ). Pritchard et al. ( 2014 ) summarized innovative approaches to the preservation 
of forest trees combining both  in situ  and  ex situ  approaches. 

 Another important method for cryopreservation is the encapsulation-dehydration 
method. Explants such as shoot tips and somatic embryos are encapsulated in algi-
nate beads (containing mineral salts, organics, and sugar) to form synthetic seeds or 
artifi cial seeds. After revival, these can be used for direct germination. Artifi cial 
seeds have been developed for many tropical tree crops like acacia hybrids (axillary 
buds), papaya (somatic embryo),  Cedrela odorata  (shoot tip),  Citrus reticulate  
(somatic embryo), coffee (shoot bud), oil palm (somatic embryo),  Eucalyptus citri-
odora  (somatic embryo),  Malus  species (various explants),  Mangifera indica  
(somatic embryo), mulberry (axillary buds),  sandalwood   (somatic embryo), and 
cocoa (somatic embryo) with germination rate in soil ranging from 50 % to 100 % 
(Reddy et al.  2012 ). Artifi cial seeds stay viable for months at 4 °C. 

 Cryopreserved germplasm collections are stored at various cryobanks like IRD, 
France (oil palm); the National Bureau of Plant Genetic Resources (NBPGR),  I  ndia 
(citrus, jackfruit,  Prunus amygdalus , mango, banana, neem, mulberry, etc.); and the 
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National Citrus Repository, China (citrus), for conservation and future 
propagation.  

12.7     Companies Involved in Tropical Tree Crop 
Biotechnology 

 The following is a non-exhaustive list of  indu  stry players in the area of tree crop 
plant biotechnology. All provide elite tissue culture clones of one or a few plantation 
tree species. Some companies liaise with plant tissue culture research institutes for 
assistance in developing protocols, while some emerged as spin-offs from public 
research institutes. Some even move into plantation by their own (Table 12 .2 ).

12.8        Genomics 

 Advancements in the molecular biology of trees such as gene discovery, transcript 
profi ling, genome sequencing, and genetic mapping have led to an increase in num-
ber of tree species being genetically engineered. Whole-genome sequencing allows 
better understanding of species-specifi c biology, provides clues on evolutionary 
events, identifi es key genes associated with traits of interest, and generates other 
valuable genomic resources for the improvement of a tree species. 

12.8.1     An Update of Tree Genome Sequencing and Gene 
Discovery 

     (a)     Poplar  – Plant genetics has gone through a revolution during the last 15 years. 
Started with the complete sequencing of  Arabidopsis  and rice,  poplar   ( Populus 
trichocarpa ) was the fi rst tree whose genome has been sequenced completely 
(Tuskan et al.  2006 ) through integration of shotgun sequencing with genetic 
mapping. Poplar is taken as a model tree due to its fast growth, easy vegetative 
propagation, interspecifi c hybridization, amenability to tissue culture and 
genetic transformation, and a small genome (~500 Mb). The genome was origi-
nally sequenced to a coverage of 7.5× using shotgun Sanger sequencing. Based 
on the most recent version of the poplar genome ( Popular trichocarpa  v3.0 
available on Phytozome), the main genome assembly is approximately 
422.9 Mb arranged in 1446 scaffolds, Scaffold N50 (L50) = 19.5 Mb and Contig 
N50 (L50) = 552.8 Kb. 181 scaffolds are >50 Kb in size, representing approxi-
mately 97.3 % of the genome. There are 41,335 loci containing 73,013 protein-
coding transcripts, a higher number than that for  Arabidopsis . Most genes 
encoding biosynthesis enzymes for wood components (cellulose, xylan, gluco-
mannan, and lignin) have been identifi ed in poplar, and a few have been func-
tionally characterized. Many tree crops had their genome sequenced after that. 
The key success factor was the use of next-generation sequencing (NGS) tech-

12 Biotechnology of Tropical Tree Crops



266

   Ta
b

le
 1

2
.2

  
   C

om
pa

ni
es

   in
vo

lv
ed

 in
 tr

op
ic

al
 tr

ee
 c

ro
p 

bi
ot

ec
hn

ol
og

y   

 T
re

e 
sp

ec
ie

s 

 C
om

m
er

ci
al

 ti
ss

ue
 

cu
ltu

re
/p

la
nt

at
io

n 
co

m
pa

ny
 

 L
oc

at
io

n 
 Pl

an
ta

tio
n 

re
gi

on
s/

ex
po

rt
 

co
un

tr
ie

s 
 W

eb
pa

ge
 

  A
ca

ci
a 

m
an

gi
um

  
 A

di
ty

a 
B

io
te

ch
 

 In
di

a 
 In

di
a 

   ht
tp

://
ad

ity
ab

io
te

ch
.tr

ad
ei

nd
ia

.c
om

/     

 B
io

fo
re

st
 P

te
 L

td
 

 Si
ng

ap
or

e,
 

In
do

ne
si

a 
 In

do
ne

si
a 

   ht
tp

://
w

w
w

.b
io

-f
or

es
t.c

om
     

 C
lo

na
l S

ol
ut

io
ns

 
A

us
tr

al
ia

 P
ty

. L
td

 
 A

us
tr

al
ia

 
 A

us
tr

al
ia

 
   ht

tp
://

w
w

w
.c

lo
na

l-
so

lu
tio

ns
.c

om
.a

u     

 Sa
m

lin
g 

 M
al

ay
si

a 
 N

ew
 Z

ea
la

nd
 M

al
ay

si
a 

   ht
tp

://
w

w
w

.s
am

lin
g.

co
m

/it
p.

ph
p     

  A
qu

il
ar

ia
  s

pp
. 

 A
si

a 
Pl

an
ta

tio
n 

C
ap

ita
l 

 Si
ng

ap
or

e 
 T

ha
ila

nd
, M

al
ay

si
a 

   ht
tp

s:
//w

w
w

.a
si

ap
la

nt
at

io
nc

ap
ita

l.c
om

/     

 W
es

co
rp

 A
ga

rw
oo

d 
 A

us
tr

al
ia

 
 A

us
tr

al
ia

 
   ht

tp
://

w
w

w
.w

es
co

rp
.c

om
.a

u/
ag

ar
w

oo
d.

ht
m

     

  A
za

di
ra

ch
ta

 
in

di
ca

  
 A

di
ty

a 
B

io
te

ch
 

 In
di

a 
 In

di
a 

   ht
tp

://
ad

ity
ab

io
te

ch
.tr

ad
ei

nd
ia

.c
om

/     

 Ir
ib

ov
 S

B
W

 
 N

et
he

rl
an

ds
 

   ht
tp

://
w

w
w

.ir
ib

ov
.c

om
     

  C
of

fe
a 

ro
bu

st
a  

 N
es

tle
 R

 &
 D

 C
en

tr
e 

To
ur

s 
 Fr

an
ce

 
 T

ha
ila

nd
 

   ht
tp

://
w

w
w

.n
es

tle
.c

om
/r

an
dd

/e
nv

ir
on

m
en

ta
l-

su
st

ai
na

bi
lit

y/
pl

an
t-

sc
ie

nc
e     

  E
la

ei
s 

gu
in

en
si

s  
 N

ew
 B

ri
ta

in
 O

il 
Pa

lm
 O

il 
L

td
 

  S
in

ga
po

re
 

 Pa
pu

a 
N

ew
 G

ui
ne

a,
 

So
lo

m
on

 I
sl

an
ds

 
   ht

tp
://

w
w

w
.n

bp
ol

.c
om

.p
g/

     

 G
le

ne
al

y 
Pl

an
ta

tio
ns

 
SD

N
 B

hd
 

 M
al

ay
si

a 
 M

al
ay

si
a,

 I
nd

on
es

ia
, P

ap
ua

 
N

ew
 G

ui
ne

a 
   ht

tp
://

w
w

w
.g

le
ne

al
y.

co
m

.m
y/

     

 A
gr

ic
ul

tu
ra

l S
er

vi
ce

s 
an

d 
D

ev
el

op
m

en
t 

C
os

ta
 R

ic
a 

 C
os

ta
 R

ic
a 

 C
os

ta
 R

ic
a,

 E
cu

ad
or

, 
N

ic
ar

ag
ua

, G
ua

te
m

al
a,

 
C

ol
om

bi
a,

 T
ha

ila
nd

 

   ht
tp

://
w

w
w

.a
sd

-c
r.c

om
     

 T
SH

 R
es

ou
rc

es
 

B
er

ha
d 

 M
al

ay
si

a 
 M

al
ay

si
a 

   ht
tp

://
w

w
w

.ts
h.

co
m

.m
y/

     

Y. Hong et al.

http://adityabiotech.tradeindia.com/
http://www.bio-forest.com/
http://www.clonal-solutions.com.au/
http://www.samling.com/itp.php
https://www.asiaplantationcapital.com/
http://www.wescorp.com.au/agarwood.htm
http://adityabiotech.tradeindia.com/
http://www.iribov.com/
http://www.nestle.com/randd/environmental-sustainability/plant-science
http://www.nestle.com/randd/environmental-sustainability/plant-science
http://www.nbpol.com.pg/
http://www.glenealy.com.my/
http://www.asd-cr.com/
http://www.tsh.com.my/


267
 T

re
e 

sp
ec

ie
s 

 C
om

m
er

ci
al

 ti
ss

ue
 

cu
ltu

re
/p

la
nt

at
io

n 
co

m
pa

ny
 

 L
oc

at
io

n 
 Pl

an
ta

tio
n 

re
gi

on
s/

ex
po

rt
 

co
un

tr
ie

s 
 W

eb
pa

ge
 

  E
uc

al
yp

tu
s 

gr
an

di
s  

 A
rb

or
ge

n 
 U

SA
, B

ra
zi

l, 
A

us
tr

al
ia

 
 U

SA
, B

ra
zi

l 
   ht

tp
://

w
w

w
.a

rb
or

ge
n.

us
/     

 B
ir

la
 L

ao
 P

ul
p 

an
d 

Pl
an

ta
tio

ns
 

C
om

pa
ny

 L
td

 

 L
ao

 
 L

ao
s 

   ht
tp

://
w

w
w

.a
di

ty
ab

ir
la

.c
om

/b
us

in
es

se
s/

Pr
ofi

 le
/B

ir
la

-L
ao

-P
ul

p     

 C
lo

na
l S

ol
ut

io
ns

 
A

us
tr

al
ia

 P
ty

. L
td

 
 A

us
tr

al
ia

 
 A

us
tr

al
ia

 
   ht

tp
://

w
w

w
.c

lo
na

l-
so

lu
tio

ns
.c

om
.a

u     

 Ir
ib

ov
 S

B
W

 
 N

et
he

rl
an

ds
 

   ht
tp

://
w

w
w

.ir
ib

ov
.c

om
     

 G
al

ilt
ec

 B
ey

on
d 

Te
ch

no
lo

gi
es

 
 H

on
du

ra
s 

 H
on

du
ra

s,
 G

ua
te

m
al

a,
 U

SA
 

   ht
tp

://
w

w
w

.g
al

ilt
ec

be
yo

nd
te

ch
no

lo
gi

es
.c

om
/     

 Sa
m

lin
g 

 M
al

ay
si

a 
 N

ew
 Z

ea
la

nd
, M

al
ay

si
a 

   ht
tp

://
w

w
w

.s
am

lin
g.

co
m

/it
p.

ph
p     

 T
he

 F
or

es
t C

om
pa

ny
 

 G
ue

rn
se

y 
 B

ra
zi

l, 
C

ol
um

bi
a 

   ht
tp

://
th

ef
or

es
tc

om
pa

ny
.s

e/
ab

ou
t-

us
     

  G
m

el
in

a 
ar

bo
re

a  
 B

io
fo

re
st

 P
te

 L
td

 
 Si

ng
ap

or
e,

 
In

do
ne

si
a 

 In
do

ne
si

a 
   ht

tp
://

w
w

w
.b

io
-f

or
es

t.c
om

     

 Sa
m

lin
g 

 M
al

ay
si

a 
 N

ew
 Z

ea
la

nd
, M

al
ay

si
a 

   ht
tp

://
w

w
w

.s
am

lin
g.

co
m

/it
p.

ph
p     

  Ja
tr

op
ha

 c
ur

ca
s  

 A
di

ty
a 

B
io

te
ch

 
 In

di
a 

 In
di

a 
   ht

tp
://

ad
ity

ab
io

te
ch

.tr
ad

ei
nd

ia
.c

om
/     

 Ir
ib

ov
 S

B
W

 
 N

et
he

rl
an

ds
 

   ht
tp

://
w

w
w

.ir
ib

ov
.c

om
     

 Jo
il 

Pt
e 

L
td

 
 Si

ng
ap

or
e 

 In
di

a,
 I

nd
on

es
ia

, A
fr

ic
a 

   ht
tp

://
w

w
w

.jo
il.

co
m

.s
g     

  K
ha

ya
 

se
ne

ga
le

ns
is

  
 C

lo
na

l S
ol

ut
io

ns
 

A
us

tr
al

ia
 P

ty
. L

td
 

 A
us

tr
al

ia
 

   ht
tp

://
w

w
w

.c
lo

na
l-

so
lu

tio
ns

.c
om

.a
u     

  M
us

a  
sp

p.
 

 A
di

ty
a 

B
io

te
ch

 
 In

di
a 

 In
di

a 
   ht

tp
://

ad
ity

ab
io

te
ch

.tr
ad

ei
nd

ia
.c

om
/     

 G
al

ilt
ec

 B
ey

on
d 

Te
ch

no
lo

gi
es

 
 H

on
du

ra
s 

 H
on

du
ra

s,
 G

ua
te

m
al

a,
 U

SA
 

   ht
tp

://
w

w
w

.g
al

ilt
ec

be
yo

nd
te

ch
no

lo
gi

es
.c

om
/     

 C
lo

na
l S

ol
ut

io
ns

 
A

us
tr

al
ia

 P
ty

. L
td

 
 A

us
tr

al
ia

 
   ht

tp
://

w
w

w
.c

lo
na

l-
so

lu
tio

ns
.c

om
.a

u     

(c
on

tin
ue

d)

12 Biotechnology of Tropical Tree Crops

http://www.arborgen.us/
http://www.adityabirla.com/businesses/Profile/Birla-Lao-Pulp
http://www.clonal-solutions.com.au/
http://www.iribov.com/
http://www.galiltecbeyondtechnologies.com/
http://www.samling.com/itp.php
http://theforestcompany.se/about-us
http://www.bio-forest.com/
http://www.samling.com/itp.php
http://adityabiotech.tradeindia.com/
http://www.iribov.com/
http://www.joil.com.sg/
http://www.clonal-solutions.com.au/
http://adityabiotech.tradeindia.com/
http://www.galiltecbeyondtechnologies.com/
http://www.clonal-solutions.com.au/


268

Ta
b

le
 1

2
.2

 
(c

on
tin

ue
d)

 T
re

e 
sp

ec
ie

s 

 C
om

m
er

ci
al

 ti
ss

ue
 

cu
ltu

re
/p

la
nt

at
io

n 
co

m
pa

ny
 

 L
oc

at
io

n 
 Pl

an
ta

tio
n 

re
gi

on
s/

ex
po

rt
 

co
un

tr
ie

s 
 W

eb
pa

ge
 

  Pa
ul

ow
ni

a  
sp

p .
  

 E
nv

ir
on

m
en

ta
l 

Te
ch

no
lo

gi
es

 
Fo

un
da

tio
n 

In
c.

 

 U
SA

 
 SE

 A
si

a,
 S

. A
m

er
ic

a,
 A

fr
ic

a,
 

U
SA

 
   ht

tp
://

w
w

w
.e

tf
-i

nc
.c

om
     

  Pa
ra

se
ri

an
th

es
 

fa
lc

at
ar

ia
  

 B
io

fo
re

st
 P

te
. L

td
 

 Si
ng

ap
or

e,
 

In
do

ne
si

a 
 In

do
ne

si
a 

   ht
tp

://
w

w
w

.b
io

-f
or

es
t.c

om
     

 Sa
m

lin
g 

 M
al

ay
si

a 
 N

ew
 Z

ea
la

nd
, M

al
ay

si
a 

   ht
tp

://
w

w
w

.s
am

lin
g.

co
m

/it
p.

ph
p     

  Po
ng

am
ia

 
pi

nn
at

a  
 B

io
E

ne
rg

y 
Pl

an
ta

tio
ns

 
 A

us
tr

al
ia

 
 A

us
tr

al
ia

 
   ht

tp
://

w
w

w
.y

sg
bi

ot
ec

h.
co

m
/     

 C
lo

na
l S

ol
ut

io
ns

 
A

us
tr

al
ia

 P
ty

. L
td

 
 A

us
tr

al
ia

 
 A

us
tr

al
ia

 
   ht

tp
://

w
w

w
.c

lo
na

l-
so

lu
tio

ns
.c

om
.a

u     

  Sa
nt

al
um

 a
lb

um
  

 W
es

co
rp

 
Sa

nd
al

w
oo

d 
Pt

y 
L

td
 

 A
us

tr
al

ia
 

 A
us

tr
al

ia
 

   ht
tp

://
w

w
w

.w
es

co
rp

.c
om

.a
u/

sa
nd

al
w

oo
d.

ht
m

     

 A
di

ty
a 

B
io

te
ch

 
 In

di
a 

 In
di

a 
   ht

tp
://

ad
ity

ab
io

te
ch

.tr
ad

ei
nd

ia
.c

om
/     

 A
G

B
io

te
k 

 In
di

a 
 In

di
a 

   ht
tp

://
w

w
w

.a
gb

io
te

k.
co

m
     

 C
lo

na
l S

ol
ut

io
ns

 
A

us
tr

al
ia

 P
ty

. L
td

 
 A

us
tr

al
ia

 
 A

us
tr

al
ia

 
   ht

tp
://

w
w

w
.c

lo
na

l-
so

lu
tio

ns
.c

om
.a

u     

  Te
ct

on
a 

gr
an

di
s  

 G
al

ilt
ec

 B
ey

on
d 

Te
ch

no
lo

gi
es

 
 H

on
du

ra
s 

 H
on

du
ra

s,
 G

ua
te

m
al

a,
 U

SA
 

   ht
tp

://
w

w
w

.g
al

ilt
ec

be
yo

nd
te

ch
no

lo
gi

es
.c

om
/     

 C
lo

na
l S

ol
ut

io
ns

 
A

us
tr

al
ia

 P
ty

. L
td

 
 A

us
tr

al
ia

 
 A

us
tr

al
ia

 
   ht

tp
://

w
w

w
.c

lo
na

l-
so

lu
tio

ns
.c

om
.a

u     

 Ir
ib

ov
 S

B
W

 
 N

et
he

rl
an

ds
 

   ht
tp

://
w

w
w

.ir
ib

ov
.c

om
     

 Y
SG

 (
Y

ay
as

an
 

Sa
ba

h 
G

ro
up

) 
B

io
te

ch
 S

dn
 B

hd
 

 Ta
w

au
, 

Sa
ba

h,
 

M
al

ay
si

a 

 M
al

ay
si

a,
 A

us
tr

al
ia

, B
ra

zi
l, 

So
ut

h 
A

m
er

ic
a,

 A
fr

ic
a 

   ht
tp

://
w

w
w

.y
sg

bi
ot

ec
h.

co
m

/     

  Ta
xu

s  
sp

p.
 

 Ir
ib

ov
 S

B
W

 
 N

et
he

rl
an

ds
 

   ht
tp

://
w

w
w

.ir
ib

ov
.c

om
     

 Y
ew

 B
io

-P
ha

rm
 G

ro
up

 
 C

hi
na

 
 C

hi
na

 
   ht

tp
://

w
w

w
.y

ew
bi

op
ha

rm
.c

om
/o

pe
ra

tio
ns

/y
ew

-t
re

es
/     

Y. Hong et al.

http://www.etf-inc.com/
http://www.bio-forest.com/
http://www.samling.com/itp.php
http://www.ysgbiotech.com/
http://www.clonal-solutions.com.au/
http://www.wescorp.com.au/sandalwood.htm
http://adityabiotech.tradeindia.com/
http://www.agbiotek.com/
http://www.clonal-solutions.com.au/
http://www.galiltecbeyondtechnologies.com/
http://www.clonal-solutions.com.au/
http://www.iribov.com/
http://www.ysgbiotech.com/
http://www.iribov.com/
http://www.yewbiopharm.com/operations/yew-trees/


269

nologies (Metzker  2010 ), which rapidly generates massive amount of sequenc-
ing data at a fraction of the cost for the rice sequencing project that was 
accomplished with earlier technologies.   

   (b)     Amborella  –  Amborella   trichopoda  holds great importance as this tropical tree 
endemic to New Caledonia (South Pacifi c) is the oldest fl owering species on 
Earth. The  Amborella  genome  seque  ncing was accomplished in 2013 by using 
NGS, fl uorescence  in situ  hybridization, and whole-genome mapping (Project 
 2013 ). It provides evidence for the evolutionary processes that paved the way 
for more than 300,000 fl owering plant species. An ancient genome duplication 
predating angiosperm diversifi cation was identifi ed. There were also new gene 
families, gene duplications, and fl oral protein-protein interactions fi rst appeared 
in the ancestral angiosperm. Transposable elements in  Amborella  are ancient 
and highly divergent, with no recent transposon radiations. It is an exceptional 
reference for inferring features of the fi rst fl owering plants.   

   (c)     Jatropha  – A combination of conventional Sanger method and the new- 
generation multiplex methods was used to sequence the genome of this promis-
ing oil-bearing tree crop (Sato et al.  2011 ). The  tot  al length of the non-redundant 
sequences thus obtained was 285.9 million bp consisting of 120,586 contigs 
and 29,831 singlets. They accounted for ~95 % of the gene-containing regions. 
A total of 40,929 complete and partial structures of protein-encoding genes 
have been deduced. Comparison with genes of other plant species indicated that 
1529 (4 %) of the putative protein-encoding genes are specifi c to the 
Euphorbiaceae family. A high degree of microsynteny was observed with the 
genome of castor bean, another Euphorbiaceae family member. Polymorphism 
analysis using microsatellite markers developed from the genomic sequence 
data obtained was performed with 12 jatropha lines collected from various parts 
of the world to estimate their genetic diversity.   

   (d)     Oil palm  – It is the most productive oil-bearing crop. Although it is planted on 
only 5 % of the  total   world vegetable oil acreage, palm oil accounts for 33 % of 
vegetable oil and 45 % of edible oil globally. Its 1.8-gigabase (Gb) genome 
sequence was reported (Singh et al.  2013b ). A total of 1.535 Gb of assembled 
sequence and transcriptome data from 30 tissue types were used to predict at 
least 34,802 genes, including oil biosynthesis genes and homologues of 
WRINKLED1 (WRI1) and other transcriptional regulators, which are highly 
expressed in the kernel.   

   (e)     Rubber  – Rahman et al. ( 2013 ) reported the draft genome sequence of rubber 
tree, the major  co  mmercial source of natural rubber. The assembly spans 
~1.1 Gb of the estimated 2.15 Gb haploid genome. Overall, ~78 % of the 
genome was identifi ed as repetitive DNA. Gene prediction shows 68,955 gene 
models, of which 12.7 % are unique to rubber. Most of the key genes associated 
with rubber biosynthesis, rubber wood formation, disease resistance, and aller-
genicity have been identifi ed.   

   (f)     Agarwood  – The fi rst draft genome of agarwood and a putative pathway for 
cucurbitacin E and I, the two compounds with  know  n medicinal value, is 
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derived from  in vitro  agarwood cultures (Chen et al.  2014 ).  In vitro  materials 
were used to perform this study due to the lengthy growth period of resinous 
material in tree as well as to avoid contamination from microorganisms. 
Importantly, this propagation process is applicable to plant factories for large-
scale production in the future. DNA and RNA data were utilized to annotate 
many genes and protein functions in the draft genome. The changes for cucur-
bitacin E and I were shown to be consistent with known responses of  A. agal-
locha  to biotic stress, and expression of a set of homologous genes in  Arabidopsis 
thaliana  related to cucurbitacin biosynthesis was validated through qRT-PCR.     

 Genomes of many tropical fruit trees have been sequenced such as those of 
papaya (Ming et al.  2008 ) and cocoa (Argout et al.  2011 ). The Global Musa 
Genomics Consortium published the fi rst genomic sequence for a triploid tropical 
crop banana (D’Hont et al.  2012 ). Recently, a tropical oil tree crop jujube was also 
fully sequenced (Liu et al.  2014 ). Macadamia nut genome was recently fully 
sequenced (Nock et al.  2014 ) as well. A draft genome assembly was developed for 
the double-haploid coffee accession (Denoeud et al.  2014 ).  

12.8.2     Implications of Whole-Genome Sequencing to Tree Crop 
Improvement 

 With the availability of  genome   sequences of tree species of both gymnosperms and 
angiosperms, the identifi cation of a suite of wood-associated genes, and also the 
good process in function characterization of many of these genes, now we have bet-
ter tools and a much deeper understanding of the molecular mechanism for wood 
development. Firstly, hormonal signaling plays critical roles in vascular cambium 
cell proliferation, and a peptide-receptor-transcription factor regulatory mechanism 
is proposed to be involved in the maintenance of vascular cambium activity. The 
differentiation of vascular cambium into xylem mother cells is regulated by coordi-
nation between plant hormones and HD-ZIP III transcription factors. A transcription 
network involving secondary wall NAC and MYB master switches and their down-
stream transcription factors would activate secondary wall biosynthesis genes dur-
ing wood formation (Ye and Zhong  2015 ). 

 Secondly, genome analysis of tree species has expanded our knowledge on par-
ticular gene families that may confi rm unique biological features of the species. In 
coffee, an expansion in the number of N-methyltransferase genes that might involve 
in caffeine biosynthesis was observed. In date palm and jatropha, the late 
embryogenesis- abundant genes are higher in numbers, which may relate to their 
role in conferring resistance to arid conditions. On the other hand, comparative 
analysis identifi es synteny among species, the conservation of gene order over long 
stretches of chromosomal regions. The analysis of the number of synteny segments 
is useful for the  detec  tion of whole-genome duplication (WGD). 

 Thirdly, high-quality genome assemblies greatly facilitate the complete inven-
tory of DNA variations in a species, including point mutations, copy number 
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variations (CNVs), insertion and deletions (INDELs), and epigenetic variations like 
DNA methylation. Comparison between cultivated varieties and wild species can 
create linkage between the genotype and phenotype for a wide range of traits. 

 Nowadays there are many public resources for plant genomic sequences and 
other genome resources. One example is Gramene (  http://gramene.org    ), a curated, 
open-source integrated data resource for comparative functional genomics in crops 
and model plant species. With the objective of facilitating the study of cross species 
comparison, Gramene currently hosts annotated whole genomes in over two dozen 
plant species and partial assemblies for almost a dozen wild rice species in the 
Ensemble browser, genetic and physical maps with genes, EST and QTL locations, 
genetic diversity data sets, structure-function analysis of proteins, plant pathway 
databases, and descriptions of phenotypic traits and mutations. It is an integrated 
web resource for visualizing and  compar  ing plant genomes and biological path-
ways. Genome features with community-based gene annotations from primary 
sources are included, to which supplementary annotations, functional classifi cation, 
and comparative phylogenomics analysis are added (Monaco et al.  2014 ).   

12.9     Marker-Assisted Breeding 

 Breeding tree species is a long process. One breeding cycle for hardwood tree spe-
cies typically takes 5–10 years. Information about genes or  alle  les associated with 
desirable traits is valuable for the possibility of shortening the breeding cycle or 
decreasing the size of progeny trial. If juvenile plants can be genotyped and accu-
rately predicted on their future performance, attention and resources can be focused 
on a small numbers of selected trees. By doing so, breeding becomes more predict-
able and more effi cient. 

 DNA markers have been developed for many forest species.  Expressed sequence 
tags (ESTs)   are mRNA sequences derived through single sequencing reactions on 
random clones from cDNA libraries. They are a good source for DNA markers. 
Recently, whole-genome sequencing also uncovers a wealth of new DNA markers, 
particularly simple sequence repeat (SSR, also known as microsatellite) markers 
and single-nucleotide polymorphisms (SNPs). SNPs are more numerous and they 
are more suitable for association genetics (Neale and Savolainen  2004 ). 

 High-density and genome-wide markers enable us to develop an understanding 
of the genetic control of key horticultural traits. After genotyping large sets of indi-
viduals from either germplasm collections or segregating populations, a high- 
density genetic mapping and genome-wide association study (GWAS) enable 
linkage creation between genetic loci and trait variability. Once a region linked to a 
trait is located, it is then possible to scan the genome assemblies within the region 
for positional candidate genes. Further studies need to be conducted to validate the 
relationship between candidate genes and trait variability. Putative function can be 
elucidated on the basis of sequence homology with genes from model systems such 
as  Arabidopsis ; the differential gene expression between individuals carrying the 
allele or not can be examined; knocking out or complementing the allele in 
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accessions that carry or do  no  t carry the desired allele, respectively, will give the 
strongest evidence for a cause-effect relationship between a candidate gene and a 
trait. One good example is the location of a mutation coding for the pillar trait (br 
locus) in fruit tree peach (Dardick et al.  2013 ). Two DNA pools consisting of pillar 
and standard phenotype individuals from an F2 segregating population were 
sequenced using Illumina NGS. The resulting sequences were mapped to a refer-
ence genome, and SNPs linked to the br locus were identifi ed at the distal end of 
chromosome 2. Further fi ne mapping using high-resolution melting SNP markers 
and a search for structural variants pointed toward Ppa10082 as the potential gene 
that might be mutated in the pillar phenotype. Further gene expression analysis and 
transformation in  Arabidopsis  indicated that Ppa10082, which encodes for a homo-
logue of rice OsTAC1, is responsible for control of the pillar trait by the br locus. 

 Genetic markers associated with desirable traits can be useful for improving the 
effi ciency of breeding through marker-assisted selection (MAS). Briefl y, genetic 
markers associated with the trait of interest are used to select parents and seedlings 
carrying the desired allele. A remarkable example is the development and use of SNP 
markers for selecting disease-resistant seedlings in  a  pple breeding populations 
(Jänsch et al.  2015 ). In this report, markers fl anking eight major loci controlling 
apple scab, fi re blight, and powdery mildew resistances were searched in the inbreed-
ing founders carrying the resistance alleles as well as in susceptible cultivars pos-
sessing high fruit quality that are widely used as breeding parents. This enabled the 
authors to choose a set of markers that are highly effi cient for MAS across a range of 
breeding germplasm to achieve both pathogen resistance and high fruit quality. 

 In addition to MAS, the availability of high-density genome-wide marker screen-
ing systems has enabled the implementation of a further new method for improving 
the effi ciency of tree breeding: genomic selection (GS). It is a new approach for 
improving quantitative traits in large plant breeding populations that combines 
whole-genome molecular marker (high-density markers and high-throughput geno-
typing) data with phenotypic and pedigree data for genomic prediction. The fi rst 
proof of concept genomic selection in tree was carried out for loblolly pine (Zapata- 
Valenzuela et al.  2012 ). The genomic breeding values of 149 cloned progenies from 
13 crosses were estimated by fi tting 3406 polymorphic  SN  P markers simultaneously. 
The accuracy of genomic estimated breeding values ranged from 0.61 to 0.83 for 
wood lignin and cellulose content and from 0.30 to 0.68 for height and volume traits.  

12.10     Improvement of Tropical Tree Crops Through Genetic 
Transformation 

12.10.1     Introduction to Genetic Transformation 

 Plant genetic transformation or genetic modifi cation (GM) refers to the develop-
ment of plants with genetic material altered in a way that is unlikely to occur natu-
rally through cross-pollination. It is a process by which genes from nongenetic 
compatible sources like microbes, other plant species, or animals can be introduced 
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into selected plants for additional desirable traits. It has the advantages of breaking 
up the genetic barriers and the ability to introduce short and well-defi ned DNA 
sequence into a recipient organism. The prerequisites for  plant transformation 
approach   are as follows: (a) an effi cient plant regeneration protocol (via either 
organogenesis or somatic embryogenesis) through which a single transformed cell 
can regenerate into a whole plant, (b) gene constructs carrying the gene(s) confer-
ring for trait(s) of interest, (c) a reliable and effi cient transformation technique to 
deliver the gene of interest into the nuclear genome of the host cell, and (d) a suit-
able agent to select regenerated plants derived from transformed cells. Success in 
genetic transformation started from model plants tobacco and  Arabidopsis  and fi eld 
crops like rice,  m  aize, and soybean and are gradually achieved in tree crops like 
poplar, eucalyptus, papaya, acacia, jatropha, and banana.  

12.10.2      Agrobacterium- Mediated Transformation 

 The most successful technique used to transfer foreign DNA into plant cells employs 
the natural genetic engineer,  Agrobacterium tumefaciens  ( Agrobacterium ), a soil 
phytopathogenic bacterium causing crown gall diseases in many plants. Wild-type 
  Agrobacterium    contains a circular and double-stranded plasmid (the tumor- inducing 
or Ti plasmid) with one part of it (T-DNA or transfer DNA) transferred to the host 
cell nuclear genome. T-DNA has two border sequences (right and left borders) 
defi ning sequences to be translocated. To harness this natural genetic transforma-
tion, the two border sequences were cloned into a plasmid vector and the tumor 
causing auxin-, cytokinin-, and nopaline-/octopine-producing elements were 
deleted together with original border sequences from Ti plasmid, resulting in a dis-
armed  Agrobacterium . A simple vector (binary vector) with border sequences is 
commonly used to clone expression cassettes of target genes and a selection marker 
within the border sequences, which will be translocated into host cell genome. In 
 Agrobacterium -medicated genetic transformation, the vector with desirable gene 
cassettes is transformed into a disarmed  Agrobacterium , which is used to infect 
plant cells (explant). Infected plant cells are allowed to regenerate into whole plants 
in the presence of a selection agent.  Agrobacterium -medicated transformation has 
the advantage of integration into host genome a well-defi ned DNA fragment within 
the border sequences in single copy or low copy numbers, making it much easier for 
stable transgenic trait and regulatory approval.  

12.10.3     Other Genetic Transformation Techniques 

  Particle bombardment   is another technique for genetic transformation through 
which foreign DNAs coated onto particles are delivered into the host cell by com-
pressed air or gunpowder projection. Foreign DNAs delivered have the chance to be 
integrated into the host genome. Compared to  Agrobacterium -mediated transforma-
tion, particle bombardment is a convenient and easy method since it requires mini-
mum pre- and post-bombardment manipulation. There are other techniques such as 
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microinjections, pollen tube-mediated transformation, and chloroplast transforma-
tion. They are used less often mainly due to integration of multiple copies into a 
target genome over multiple locations, which may affect the stability of a transgenic 
trait and complicate regulatory approval.  

12.10.4     Technical Challenges in Tree Transformation 

 Generally speaking, developing GM perennial woody species is more  challenging   
than for annual crops mainly due to the diffi culty of regeneration, many being recal-
citrant to  Agrobacterium  transformation, diffi culty in establishing fi eld trials, the 
long time needed for evaluation of transgenic trait, and possible transgenic instabil-
ity during the long lifespan of forest trees.   

12.11     The Road Map and Costs in Developing a Commercial 
GM Tree 

 Typically, transgenic trees are fi rstly grown in confi nement in green houses fol-
lowed by fi eld trials under close monitoring. Data from these small-scale, multilo-
cation trials under different environments is collected and analyzed over a period of 
time for assessment of stability of a GM trait. The environmental and human safety 
of the product is also analyzed before submission to regulatory bodies to assess and 
approve for growing these transgenic trees in plantations. 

 Harfouche et al. ( 2011 ) mapped the passage from basic research in lab to com-
mercial plantation of a transgenic tree into fi ve  phases  :

    (a)    Discovery and FTO (freedom to operate): to identify genes with potentially 
valuable traits in trees and identify the tree genotypes to transform, also to 
obtain freedom of operation through licensing agreements.   

   (b)    Phase I Proof of concept: to generate transgenic plants, verify the desirable 
traits, select the best transgenic events, and also discuss with regulatory bodies 
to plan necessary studies to generate adequate data.   

   (c)    Phase II Early development: to conduct preliminary fi eld tests, on small scale, 
at different locations, and under different environmental conditions, to select 
successful candidates for commercial production,    and to generate data for regu-
latory approval process.   

   (d)    Phase III Advanced development: to demonstrate durability of the gene of inter-
est and generate data for regulatory approval process.   

   (e)    Phase IV Regulatory approval: to obtain regulatory approval and to commercial 
market launch.    

  It is estimated that a commercial GM tree event in the USA may take 10–13 
years and cost 70–100 million USD to develop, with the bulk of the time (>60 %), 
 and   most costs (>85 %) occur in the last three phases (Harfouche et al.  2011 ).  
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12.12     Various Traits in Genetically Modified (GM) Trees 

 The many desirable traits include disease resistance, resistance to insects and pests, 
bioremediation of polluted water and land, and tolerance to abiotic stresses like 
drought and salinity. For timber trees, fast growth and improved wood quality are 
on the top of the wish list. So far, a lot of tree transformation work has been con-
ducted in the temperate species of the genus   Populus   . Having a small genome and 
amenability to regeneration and genetic modifi cation made poplar a model plant for 
tree genetic engineering. Knowledge and experience from this model tree species 
can quickly spread to other tree species. 

12.12.1     Biomass 

 Increasing the tree growth rates and stem volumes and shortening their rotation 
times are of immediate and high importance to the  w  ood industry as this would 
yield more biomass per unit area. In addition to primary uses for furniture, plywood, 
paper, and pulp, tropical wood trees are gaining popularity as feedstocks for 
“second- generation biofuels” like cellulosic ethanol. The biomass can be increased 
by approaches such as plant hormone gene modifi cations, delaying fl owering time 
so that all the energy is utilized for vegetative growth, especially wood, and change 
in ploidy level, enhancing the rooting ability and increasing the nutrition levels 
(nitrogen and sulfur). Overexpression of a gibberellin 20-oxidase in hybrid aspen 
led to 20-fold higher active gibberellin levels and increase in dry shoot biomass by 
64 % (Eriksson et al.  2000 ). The overexpression of poplar cellulase gene,  PaPopCel1 , 
increased the length and width of stems with larger and greener leaves in 
 Agrobacterium -mediated transformed sengon (Hartati et al.  2008 ), a tropical legume 
timber tree species. It is a commendable achievement in extending our knowledge 
 fro  m temperate model tree species to a tropical timber species of signifi cant com-
mercial value.  

12.12.2     Lignin Modifications 

 Lignin is a complex  organi  c component of the cell walls which gives the tree strength 
by binding cellulose, hemicelluloses, and pectin together. Highly lignifi ed wood is 
hard and very desirable for furniture but diffi cult to produce paper and cellulosic 
ethanol since lignin needs to be separated from the cellulose at a very high fi nancial 
and environmental cost. It is desirable to genetically engineer trees for less amount 
of lignin for easy processing but suffi cient enough to provide strength to the tree 
without affecting conduction of water. Strategies like antisense inhibition or RNAi 
inhibition to manipulate the key enzymes in lignin biosynthetic pathways have led to 
reduced production of lignin in some trees. Overexpression of ferulate- 5- hydroxylase 
(F5H) in poplar resulted in less condensed lignin and improvements in lignin extract-
ability and bleaching, while fi ber quality remained the same (Huntley et al.  2003 ). 
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 Cinnamyl alcohol dehydrogenase (CAD)   is another key enzyme for lignin biosyn-
thesis. Downregulation of this enzyme improved wood quality for chemical pulping, 
as demonstrated with wood harvested from 4-year-old fi eld trials. Less chemical was 
used for a higher pulp yield (Pilate et al.  2002 ). Importantly, no adverse phenotypes 
on plant growth or health were noticed during the 4-year trial period. Co-transformation 
of poplar  wi  th two constructs was also successful in increasing of F5H expression 
while reducing of CAD at the same time. Together they resulted in reduced lignin, 
more cellulose, and less condensed lignin (Li et al.  2003 ). An alternative approach is 
to manipulate transcription factors. When a LIM domain transcription factor ( Ntlim1 ) 
was downregulated in transgenic eucalyptus plant, expression of several lignin bio-
synthesis genes such as  PAL ,  C4H , and 4-hydroxycinnamate CoA ligase ( 4CL ) were 
all decreased (Kawaoka et al.  2006 ) concurrently with reduction of lignin content by 
26 %. Genetically modifi ed poplar trees with cinnamoyl-CoA reductase (CCR) gene 
downregulated were found to yield up to 161 % more ethanol after wood fermenta-
tion (Van Acker et al.  2014 ).  

12.12.3     Tolerance to Environmental Stresses 

 Tropical timber trees face various  ty  pes of environmental stresses like excessive 
heat, fl ooding, drought, salinity, and acidity of soil. Such stresses can signifi cantly 
affect the tree at all stages of growth and cause severe loss of productivity. There are 
three general strategies to confer abiotic stress tolerance by genetic modifi cation: 
(1) expression of genes that are involved in signaling and regulatory pathways, (2) 
expression of genes that encode proteins conferring stress tolerance, and (3) expres-
sion of enzymes for synthesis of functional and structural metabolites (Hong and Bu 
 2013 ). The overexpression of choline oxidase (codA) in  Eucalyptus camaldulensis  
resulted in higher production of glycine betaine and increased salt stress tolerance 
(Yamada et al.  2003 ). When two cold-induced transcription factors were overex-
pressed in a cold-sensitive eucalyptus hybrid, the GM tree was found to be more 
cold tolerant with wax deposition on cuticle, with reduced leaf area, decreased cell 
size, retarded growth, and better water  re  tention capacity (Navarro et al.  2011 ).  

12.12.4     Resistance to Biotic Stress 

 Insects, pests, bacteria, fungus,  and   viral pathogens can affect the health of timber 
trees. In the hot and humid tropics, the disease can spread quickly and cause wide-
spread damage. Spraying insecticides and fungicides can only control infection for 
a limited time only. Moreover, spraying over large plantations is hazardous to sur-
rounding human, animals, soil, and water. Genetically engineered trees can produce 
self-protecting proteins/compounds continuously, thereby avoiding sensitivities to 
application timings. It is less expensive and possible to kill insects or pathogens that 
reside inside the wood or bark of the tree. Two strategies are used to modify plants 
for enhanced insect and pest resistance. The fi rst is to upregulate innate resistance 
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traits (endogenous traits) such as increase synthesis of phenolics, and the second is 
to introduce new traits (exogenous traits) such as the production of  Bacillus thuring-
iensis  (hereafter Bt) toxin proteins. Bt poplar was the fi rst stable transgenic tree crop 
reported (McCown et al.  1991 ), and it’s also the fi rst transgenic tree grown on com-
mercial scale in China (Tian et al.  1993 ). Bacterial attacks are less frequent, but 
some genus like  Xanthomonas  can cause severe damage to trees. Shao et al. devel-
oped transgenic eucalyptus ( E. urophylla ) events showing overexpression of the 
antimicrobial peptide cecropin D increased resistance by 35 % against the bacterial 
wilt disease caused by the pathogen,  Pseudomonas solanacearum  (Shao et al. 
 2002 ). To address the concern of pathogens developing  resi  stance against a single 
gene product, gene pyramiding or gene stacking can be used to combine multiple 
gene products.  

12.12.5     Phytoremediation 

 Phytoremediation is the  remov  al of environmental pollutants like heavy metals, 
pesticides, pharmaceuticals, petroleum compounds, polycyclic aromatic hydrocar-
bons from the industrial runoffs, municipal waste waters, and landfi lls using plants. 
There are various approaches. Pollutants in water and soil can be taken up inside the 
plant tissue (phytoextraction) or absorbed to the roots (rhizofi ltration); pollutants 
inside plant tissues can be transformed by plant enzymes (phytotransformation) or 
can volatile into the atmosphere (phytovolatization); pollutants in soil can be 
degraded by microbes in the root zone (root zone bioremediation) or incorporated 
in soil material (phytostabilization) (Hong and Bu  2013 ). Because of the huge bio-
mass, deep and widespread root network, and perennial nature, trees are better can-
didates than other plants. Transgenic trees have been created for enhanced 
biodegradation and phytoremediation of pollutants. Yellow poplar ( Liriodendron 
tulipifera ) was transformed with a mercuric reductase gene ( merA ) to covert toxic 
ionic mercury to much less toxic element mercury (Rugh et al.  1998 ). Another 
organomercurial lyase gene ( merB)  converts more toxic methylmercury (MeHg) to 
less toxic ionic mercury. It was found in  Arabidopsis  that combining both genes in 
the same plant could increase the ability to grow in the presence of organic mercury. 
When two genes were engineered to eastern cottonwood through retransformation 
 merB  into a GM tree already with  merA ,  in vitro -grown merA/merB plants were 
highly resistant to phenylmercuric acetate and detoxifi ed organic mercury com-
pounds two to three times more rapidly than controls did (Lyyra et al.  2007 ). The 
availability of metal transporters, translocators, and chelators and the ability to 
express membrane proteins could further enhance mercury phytoremediation capa-
bilities. Transgenic poplars overexpressing a bacterial gene encoding glutamylcys-
teine synthetase and elevated level of glutathione were found tolerant to zinc 
toxicity (Bittsanszky et al.  2005 ). One report described the development of trans-
genic poplars overexpressing a mammalian cytochrome P450, a family of enzymes 
commonly involved in the metabolism of toxic compounds. The transgenic plants 
showed enhanced metabolism of trichloroethylene and the ability of removing a 
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range of other toxic volatile organic pollutants  including   vinyl chloride, carbontet-
rachloride, chloroform, and benzene (Doty et al.  2007 ). Since timber trees are not 
used for human or animal consumption, hence chances of these chemicals reenter-
ing the food chain are minimal.  T  hese phytoremediating trees can provide beauty, 
do carbon sequestering, and check soil erosion at the same time.   

12.13     Regulatory Frameworks for Transgenic Trees 

 Field testing and approval for commercial release for transgenic plants in the USA 
are governed mainly by three federal regulatory agencies: the FDA (Food and Drug 
Administration) is responsible for biotechnologically derived medical products, the 
USDA (United States Department of Agriculture) for transgenic plants, and the EPA 
(Environmental Protection Agency) for pesticidal plants and genetically engineered 
microbial pesticides. Under USDA, the Animal and Plant Health Inspection Service 
(USDA APHIS) plays the key role in overseeing fi eld tests and eventual deregula-
tion of GM plants. The fundamental principle for US  regulatory framework   is “sub-
stantial equivalence”: if a GM plant is substantially equivalent with its non-GM 
counterpart, it can be deregulated and allowed to market. In comparison, EU has a 
much more strict and complicated system. On top of the needs to address concerns 
on toxicity, allergenicity, and possible impact on the environment, there are also the 
requirements for labeling and traceability for GM products. Regulatory frameworks 
in other countries are generally between US and EU regulatory frameworks. A com-
mon feature for all regulatory frameworks is the need for approval before a GM 
event is released into open environment for trial plantation, through which fi eld data 
are collected and submitted for the fi nal approval for commercial release.  

12.14     GM Tree Commercial Plantation and Field Trials 

     (a)     Poplars  – One of the fi rst reported fi eld trials with genetically modifi ed forest 
trees was  esta  blished in Belgium in 1988, and the GM trait evaluated was her-
bicide tolerance in poplar. From 1988 to 2002, there had been more than 200 
reported trials, involving at least 15 forest species, and the majority of them 
were carried out in the USA (64 %). More than 50 % of the fi eld trials were done 
with  Populus  species, and the main target traits were herbicide tolerance (31 %), 
marker genes (23 %), and insect resistance (14 %) (Valenzuela  2006 ). Another 
source estimated more than 700 fi eld trials with GM trees (Walter et al.  2010 ) 
by 2010. Until today, there are only two commercial-scale productions of 
 transgenic trees: The fi rst forest tree species  Populus nigra  with the Bt gene was 
released in China in 2002 (Valenzuela  2006 ). The second is GM papaya that has 
been planted in Hawaii since 1998. The GM papaya was resistant to PRSV 
(papaya ring spot virus) (Gonsalves  2004 ). FuturaGene (  www.futuragene.com    ) 
announced in April 2015 that it obtained regulatory approval to commercially 
deploy a yield-enhanced genetically modifi ed eucalyptus variety in Brazil. This 
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is the fi rst approval for commercial plantation of a GM tree after a long gap of 
13 years since Bt poplar approval in 2002.   

   (b)     Eucalyptus –  ArborGen  (  www.arborgen.us    )  is another forest biotechnology 
player that has conducted nearly 900 fi eld trials containing roughly a million 
trees. Its freeze-tolerant tropical eucalyptus product (AGEH427) is currently 
going through the government review process for deregulation in the USA. Other 
GM traits  ArborGen   develops include improved growth and wood quality, 
increased density and drought tolerance, as well as bioenergy possibilities, 
mostly achieved through collaboration  w  ith academic institutes including the 
BioEnergy Science Center (BESC), University of Georgia, and University of 
Florida.   

   (c)     Jatropha –  JOil  is a Singapore-based company (  www.joil.com.sg    ) specializing 
in the development of  Jatropha curcas  as a feedstock plant for biodiesel and 
bio-jet fuel. Through collaboration with its technology partner Temasek Life 
Sciences Laboratory, GM jatropha trees with insect tolerance, high oil content, 
high oleic acid, and virus tolerance were successfully developed (Ye et al.  2014 ; 
Qu et al.  2012 ; Kim et al.  2014 ; Gu et al.  2014 ). Recently, a GM jatropha tree 
with much lower phorbol ester toxin in seed was also achieved (Li et al.  2015 ). 
The company obtained permission  t  o conduct a fi eld trial on high-oleic acid 
jatropha, the fi rst GM fi eld trial for an oil production tree species.     

 Since the fi rst GM plant trial in 1988, a very large amount of performance and 
safety data related to GM crops and trees have been gathered, and none of them 
reported any substantive harm to biodiversity, human health, or environment. One 
example is the fi eld trials with GM poplars with modifi ed lignin composition to 
access ecological impacts on the environment. Field trials in the UK found no dif-
ferences between the GM trees and non-GM trees in growth and development, dam-
age by insects, and levels of carbon, nitrogen, and microbial biomass (Hopkins et al. 
 2007 ). The two commercially successful GM trees also support that GM trees can 
be safe. Approximately 1.4 million Bt poplars have been planted in China. These 
GM trees successfully established  a  nd conferred resistance to insect attacks. The 
oldest trees were 15 years in 2010 and no harm to the environment was observed 
(Walter et al.  2010 ). In 2001, 3 years after the release of the GM papaya in Hawaii 
in 1998, the total production of papaya was 60 % more than that in 1998 when 
PRSV devastated papaya plantations. Such increase of production was also contrib-
uted by non-GM papaya trees that were protected by GM papaya in the same area 
(Gonsalves  2004 ).  

12.15     New Technology Development to Address the Concern 
on Transgene Escape 

 Tree genetic engineering provides an opportunity for sustainable production of for-
est products. However, the commercial plantation of GM trees is hindered by regu-
latory and social hurdles. Concerns have been raised about the safety of the genes 
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used, the potential impact of transgenic outcrossing with sexually compatible wild 
relatives, and the possible impact on non-target organism.  Transgene   fl ow remains 
the major concern. There are the intensive efforts on transgene containment strate-
gies to address this gene fl ow concern for GM trees. 

 The many transgene containment technologies under development include:

    (a)     Plastid transformation  – Instead of nuclear genome transformation. Since plas-
tid genomes are inherited maternally, plastid transformation reduces the risk of 
gene fl ow. One example is the plastid transformation of poplar (Okumura et al. 
 2006 ).   

   (b)     Engineering fl ower sterility to prevent gene fl ow  – Flower-specifi c promoters 
have been used to drive a toxin to interfere fl ower development. One example 
is the use of PTLF:: barnase  to control fl ower in poplar (Wei et al.  2006 ). An 
alternative approach is to downregulate a gene critical to fl ower development 
such as  EgAGL1  and  EgAGL2 , two  AGAMOUS -like genes in eucalyptus.   

   (c)     Remove transgene from pollen  – One example is the use of site-specifi c recom-
bination systems to facilitate effi cient excision of transgenes from pollen of 
hybrid aspen (Fladung and Becker  2010 ).   

   (d)     Cisgenesis approach  – Genetic modifi cation of plants with cisgenes only. A 
cisgene is a natural gene coding for a desirable trait and from the crop plant 
itself or from a sexually compatible donor plant. The gene belongs to the con-
ventional breeder’s gene pool. The GM jatropha with higher oil content is one 
such  exam  ple (Kim et al.  2014 ). In this report, the RNAi approach was used to 
clone gene fragments of the endogenous gene  JcSDP1  under its own promoter 
to silence  JcSDP1  transcription, resulting in higher oil content in seed. With the 
marker gene excised, this GM jatropha contains no foreign DNA.   

   (e)     Site-specifi c genome editing  – CRISPR/Cas9, a modifi cation of the prokaryotic 
defense mechanism, becomes the preferred gene-editing technique for plant 
scientists. This system utilizes a single guide RNA to bind to its complementary 
sequence on the genome and recruit Cas9 enzyme for site-specifi c cleavage. In 
plants, the cleaved DNA ends are rejoined by NHEJ process through which 
insertion/deletion events can occur and result in a frameshift or introducing a 
premature stop codon. There have been many reports of CRISPR/Cas9- 
mediated gene editing for trait  i  mprovement (Schaeffer and Nakata  2015 ). 
Recently, this genome editing tool was successfully used in poplar, demonstrat-
ing its utility in tree species (Fan et al.  2015 ). The precise genome editing of 
endogenous genes without introducing any foreign genes is expected to  alle  vi-
ate concern for transgene escape.      

12.16     Summary 

 There is little doubt that tropical tree crops will play key roles in supplying sustain-
able wood, fi ber, food and feed, medicine, and renewable energy. It is envisaged that 
tree plantations will contribute more to the total harvest in the coming years. Plant 
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biotechnology will enable and facilitate this trend by accelerating breeding for more 
productive elite varieties suitable for local climate through combining the use of 
traditional breeding with genetic analysis to select best plants in a cost- and time- 
effective manner, thanks to our better understanding of plant genomes and develop-
ment of tools for high-throughput genetic diversity analysis.  In vitro  propagation 
technologies, which are increasingly adopted by the industry, would mass produce 
high-quality pathogen-free plantation materials for deployment to the fi eld.  In vitro  
culture also helps preserve natural biodiversity and keep breeding materials on a 
long-term basis. While domestication of trees and traditional breeding are gaining 
success in enhancing growth and productivity, genetic modifi cation gains traction 
as an important tool to introduce novel and desirable traits that are not present in 
natural pools. There have been many exciting developments of environment- 
friendly wood for paper and pulp industry and bioenergy industry through cellulose/
lignin biosynthesis control; trees that can resist environmental stresses or sequester/
decompose environmental contaminants and oil tree crop with less toxicity and high 
oil productivity. There are some safety issues of GM trees especially the long-term 
impact on the environment due to gene fl ow. Intensive technology development in 
this area is expected to address the concern soon. More efforts are needed to trans-
late new discoveries in tree biotechnology effectively and economically into com-
mercial plantations.     
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13In Vitro Regeneration of Salt-Tolerant 
Plants

Remya Mohanraj

Abstract
An increase in global population and the demand for food production have 
steered the direction of research toward production of plants that can give better 
yields even with adverse environmental conditions. One such is the generation of 
salt-resistant plant varieties that would grow on saline soil and holds the possibil-
ity of irrigation with seawater. An upsurge in soil pollution accompanied by 
depleting water reserves warrants the production of salt-resistant crops as the 
next step in meeting the global demand for food.

Plant tissue culture not only offers the advantage of culturing a large number 
of cells in a small space but also provides options for genetic transformation and 
selection. The present review attempts to summarize the various developments in 
the area of plant tissue culture for regeneration of salt-resistant varieties.

13.1  Introduction

Naturally saline soil hinders the production of crops in many parts of the world. 
Salinity affects plant growth by influencing water absorption and important bio-
chemical processes such as nitrogen assimilation and protein biosynthesis (Dubey 
1994). Plant cells exposed to salinity are subject to damage by oxidative stress 
(Queiros et al. 2007). An increase in soil salinity decreases soil water osmotic 
potential leading to reduced uptake of water and thus water shortage in plants. It 
affects the integrity of plant metabolites. Augmentation of Na+ and Cl− ions reduces 

mailto:remyam@gmail.com


300

the absorption of vital minerals and thereby imposes toxicity on plants (Tester and 
Devenport 2003; Karimia et al. 2009). Plant growth reduction by virtue of salt stress 
is also affiliated with decreased photosynthetic activities, like the electron transport 
(Greenway and Munns 1980). Other factors that inhibit photosynthesis under high 
salinity are reduction of chloroplast stromal volume and generation of reactive oxy-
gen species (Price and Hendry 1991).

Salinity poses limitations for producing different crops in several countries, par-
ticularly in the arid and semiarid areas of the world (Zaman et al. 2005). Almost 
25 % of the cultivable land all over the world has extreme quantities of salt, mostly 
NaCl (Sharry and Teixeira 2006). The constrained supply of good-quality water in 
many arid and semiarid regions of developing nations requires the adoption of 
saline water for irrigation, where available for crop production. Therefore, it is 
imperative to screen crop plant varieties for salt tolerance (Bekheet et al. 2006). 
Nevertheless, developing plants that can tolerate salt stress and yet provide desir-
able yield continues to pose a challenge for agricultural scientists across the globe. 
Studies on genetics have revealed that salinity tolerance in plants is a quantitative 
trait influenced by the operation of multiple genes. This has made it hard to attain 
salt tolerance in plants through traditional methods (Foolad and Lin 1997).

Cell and tissue culture techniques are evolving as possible advances toward the 
regeneration of plants with elevated tolerance to biotic and abiotic stresses, espe-
cially salt stress. In the recent past, various studies have been focused on the produc-
tion of plants with enhanced salt tolerance through selection of salt-tolerant cells 
from tissue culture. Cells and tissues in culture could be extremely useful in select-
ing salt-tolerant plants and in studying physiological and biochemical basis of salin-
ity tolerance (Chen et al. 1980; Umiel et al. 1980; Benderradji et al. 2012). 
Understanding physiological and biochemical basis of salt conflict in in vitro cul-
tures will provide means for the development of plants with enhanced resistance to 
salt stress (Niknam et al. 2004). Tissue culture systems allow us to impose rigorous 
nutritional and environmental controls on the experimental system and allow the 
selection of highly salt-tolerant cell lines from populations that are otherwise vul-
nerable to stress. Also, the regenerated plantlets are clones of the original starting 
material. This simplifies subsequent testing (Dix 1985).

This chapter attempts to highlight the various approaches in the production of 
salt-tolerant varieties using in vitro techniques. The current trends and future pros-
pects for the same have also been discussed.

13.2  Mechanisms Underlying Salt Tolerance

During the past few years, scientists have endeavored to understand the robust 
mechanisms and to identify the metabolic process critical in plants that tolerate salt 
stress. Institution of ion equilibrium has been found to be critical for plant survival 
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under salt stress settings. Cellular response to such conditions includes rising Na+ 
discharge and Na+ accumulation in the vacuole. Along with adaptation to Na+ toxic-
ity, the plants should devise a mechanism to uptake K+ since it is an important nutri-
ent. Hence, mechanisms that transport K+ preferentially over Na+ could act as 
imperative determinants of salt tolerance (Rodriguez-Navarro 2000).

A notable metabolic response to salt stress is the bioproduction of osmolytes that 
have the potential to mediate osmotic adjustment and protect subcellular structures 
and oxidative damage by their free radical scavenging capacity (Hare et al. 1998). 
Also, there is an increase in the accumulation of abscisic acid (ABA) (Taylor et al. 
2000) which could boost the free cytoplasmic Ca+2 (Wu et al. 1997). Studies on 
RD20 gene encoding for a Ca-binding protein for which ABA and salt stress are 
inducers propose a relationship between salt stress, accumulation of ABA, and path-
ways that signal Ca (Borsani et al. 2003).

Recognition of cellular processes and gene expression that is troubled by salt 
stress could be useful in determining mechanisms of salt tolerance. Since salt stress- 
regulated genes play a significant role during tolerance, studying such genes has 
paved way for a clear understanding of the complex mechanisms involved in confer-
ring salt tolerance to higher plants (Hasegawa et al. 2000). Genes could be identified 
through selection of varieties followed by characterization.

13.3  In Vitro Approaches for the Production of Salt-Tolerant 
Varieties

13.3.1  General Methodology

Numerous attempts have been made to apply in vitro techniques for the develop-
ment of salt-tolerant plants. In general, the following steps are followed:

Explants for callus regeneration are selected either from naturally growing or 
in vitro developed seedlings. The explants after surface sterilization are plated on 
MS medium supplemented with different combinations of growth regulators so as 
to find out the optimal concentration of growth regulators necessary for callus 
regeneration.

The calli obtained from the previous step are subcultured (repeatedly) on callus 
growth medium supplemented with various concentrations of salt mixture (Ibrahim 
and El-Kobbia 1986).

Salt tolerance ratio is calculated as follows Bekheet et al. (2006):

 
Salt tolerance ratio

Fresh weight on salt medium

Fresh weight on sal
=

tt free medium  

Calli that are able to regenerate under salinity conditions are transferred to shoot 
regeneration medium without salts. The regenerated shoots are subcultured on root-
ing medium. The rooted plantlets are then subjected to hardening.

13 In Vitro Regeneration of Salt-Tolerant Plants



302

 

R. Mohanraj



303

The effect of various salt concentrations on the growth and chemical composi-
tion of onion tissue cultures followed by in vitro selection for salt tolerance was 
studied by Bekheet et al. (2006). A protocol for in vitro selection of salt-tolerant 
somaclonal variations from cell suspension cultures of calli of triploid Bermuda 
grass was developed by Shayun Lu et al. (2007). Salt-tolerant lines of Nicotiana 
tabacum were developed in vitro by Rout et al. (2008). Shanthi et al. (2010) con-
ducted an experiment to study the performance of rice genotypes (Pokkali, CSR 10, 
TRY 1, and TRY2) for salt tolerance under in vitro condition. Srinath Rao and 
Prabhavathi Patil (2012) developed salt-tolerant varieties of Vigna radiata.

13.3.2  Selection of Salt-Tolerant Varieties

It is important to verify if the salt-tolerant trait is transferred to the progeny via 
seeds. Therefore, seeds from the regenerated plantlets should be allowed to germi-
nate and the seedlings tested for salt tolerance. Selection of salt-resistant cell lines 
has relied upon their capacity to grow on otherwise inhibitory levels of NaCl (Dix 
1985; Tal 1983). It has been reported that exposing the cells directly to sublethal salt 
concentrations is an efficient way to raise salt-tolerant varieties (Sumaryati et al. 
1992).

Isozyme analysis and SDS-PAGE profiles could indicate if the progenies derived 
from tolerant sources are tolerant to salt. Also, specific plant genes are overex-
pressed during salt stress. Screening for the presence of these genes could be an 
efficient method for the selection of stable variants. Bouharmont et al. (1993) 
devised a method for in vitro selection of salt-tolerant varieties at the cellular level. 
Selected cell lines were characterized by their ability to maintain a normal content 
of K+ and Ca++ in spite of increasing concentrations of Na+ in the medium.

Genotypic assessment of regenerants could be performed using RAPD finger-
printing. DNA is extracted from regenerants and PCR reactions are conducted. 
Random primers are used for the amplification, and products are resolved on an 
agarose gel and stained with ethidium bromide.

13.3.3  Transgenic Salt-Tolerant Plants

Genetic engineering offers tools for the molecular manipulation of genes that could 
confer salt tolerance. One of the methods is the identification of genes that are 
involved in processes that are critical for salt tolerance (osmolyte synthesis, ion 
homeostasis, etc.). Another way is the identification of genes whose expression is 
regulated by salt stress. Yet another relies on the identification of salt tolerance 
determinants based on functionality (Borsani et al. 2003).

In essence, in order to improve salt tolerance of crop plants, it is imperative that 
alterations be brought about at various cellular, physiological, and metabolic mech-
anisms that are controlled by expression of specific genes. These genes could 
encode proteins implicated in Na+ sequestration (H+-ATPase, NHX-type 
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transporters) (Zhang and Blumwald 2001), synthesis of specific osmolytes (proline, 
glycine betaine, polyols), detoxification of toxic compounds (reactive oxygen 
species- scavenging enzymes), signal perception and regulating factors, and other 
unknown functions (Yancy et al. 1982; McCue and Hanson 1990).

Genes necessary for imparting salt tolerance have been isolated from organisms 
ranging from prokaryotes to halophytes to glycophytes. These genes fall into five 
groups, namely, synthesis of osmolytes, protection of cell integrity, oxidative stress, 
ion homeostasis, and transcription factors. Some of these genes are betA (choline 
dehydrogenase), BADH (betaine dehydrogenase), CodA (choline oxidase), COX 
(choline oxidase), TUR1 (inositol synthase), MtlD (mannitol synthesis), ProDH 
(proline dehydrogenase), HVA1 (LEA protein), and GS (glutamine synthase) 
(Borsani et al. 2003).

In one of the very first successful experiments using genetic engineering for rais-
ing salt-tolerant lines, Tarczynski et al. (1993) introduced an E. coli gene (mtlD) 
into tobacco. Overexpression of a gene coding for P5CS from mung bean plants in 
transgenic tobacco resulted in the accumulation of proline up to 18-fold over control 
plants. This resulted in enhanced biomass under conditions of salt stress (Kishor 
et al. 1995). Transgenic tobacco plants harboring E. coli betA gene that codes for a 
choline dehydrogenase were more tolerant to salt conditions when compared to the 
wild type (Lilius et al. 1996). Transformation of A. thaliana with codA gene led to 
the accumulation of glycine betaine and enhanced its tolerance to salt stress (Hayashi 
et al. 1997). An Arthrobacter pascens gene encoding COX enzyme was used to 
generate transgenic plants in Arabidopsis sp., Brassica napus, and tobacco (Huang 
et al. 2000). Transgenic tobacco plants that expressed BADH gene accumulated a 
higher amount of glycine betaine in cytosol and chloroplasts and exhibited increased 
tolerance to production under salinity stress (Holmstrom et al. 2000). Improved salt 
tolerance was obtained in transgenic tobacco by expressing a yeast invertase gene in 
apoplast (Fukushima et al. 2001).

Recently, gamma ray-induced in vitro mutagenesis and selection for salt (NaCl) 
tolerance were investigated in sugarcane (Saccharum officinarum L.) by Nikam 
et al. (2015). Embryogenic calli that were irradiated (10–80 Gy) were subjected to 
in vitro selection by exposure to different concentrations of NaCl (0, 50, 100, 150, 
200, and 250 mmol L−1). It could therefore be inferred that radiation-induced muta-
genesis is an effective way to enhance genetic variation. However, success of in vitro 
mutagenesis programs will depend on evaluation of mutant clones under field con-
ditions to confirm their performance for the selected trait of interest.

13.4  Future Prospects

In spite of the fact that salt-tolerant lines could be easily selected, and successful 
regeneration of whole plants has been achieved, there have been only a few reports 
on the determination of salt tolerance of the regenerants or verification of its sexual 
inheritance. A survey of literature reveals that the main reasons behind the limited 
success of the in vitro approach include difference in the tolerance mechanisms 
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operating in vitro and in vivo, paucity in distinguishing adapted cells from true 
mutants, multigenic nature of salt tolerance, and inadequacy during selection of 
regeneration capacity (Tal 1993). This calls for approaches directed at combining 
the molecular, physiological, and metabolic aspects of abiotic stress tolerance which 
could narrow down the differences between short- and long-term effects of the 
genes and their products and between the expression of genes and the entire plant 
phenotype under stress (Bhatnagar-Mathur et al. 2008). Though transgenic technol-
ogy will assuredly continue to aid in the pursuit of molecular mechanisms that 
directionalize tolerance, the intricacy of the attributes suggests that engineering 
such tolerance into sensitive species might take a little longer (Flowers 2004).
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    Abstract 
   An ever-increasing demand of uniform plants of commercially valuable plant 
species needs their clonal propagation on a large scale using different strategies 
of tissue culture. We have reported a large number of plants which were propa-
gated in vitro using different plant parts. A number of problems were solved 
before large-scale propagation of these crops, like shoot organogenesis, multipli-
cation of shoots, rooting, acclimatization and hardening, control of shoot brown-
ing/necrosis and defoliation, etc. Besides, popularization of temperate climate 
crops, e.g., Asiatic hybrid lilies and gerbera, to subtropical climate of Lucknow, 
was achieved using tissue culture. New varieties of chrysanthemum differing in 
color and shape of the fl orets were developed using in vitro mutagenesis. 

 Transformation protocols using  Agrobacterium tumefaciens  have been opti-
mized in  Jatropha curcas —a plant important for biofuel and  Withania som-
nifera —an important Indian medicinal plant using leaf segments (LS).  W. 
somnifera  has some medicinally important sterol glycosyltransferases (SGT) 
which are the enzymes that glycosylate sterols and play an important role in 
providing tolerance to the plant against biotic and abiotic stresses. These genes 
were differentially expressed in different organs of the plant and also in response 
to biotic and abiotic stress. Functional characterization of  WsSGT  gene was done 
by its overexpression in homologous and heterologous expression systems of  N. 
tabacum  and  A. thaliana , whereas for suppression/gene silencing, RNAi and 
artifi cial miRNA technologies were used. The transgenic plants showed improved 
germination and tolerance to salt, heat, and cold stress when compared to WT 
plants. Increased enzyme activity and sterol glycosides could be demonstrated 
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through biochemical analysis. Stress-responsive elements were observed when 
the promoter of  WsSGTL1  gene of  W. somnifera  was cloned and sequenced.  

  Keywords 
   In vitro culture   •   In vitro mutagenesis   •   Genetic transformation   •   Functional 
characterization  

14.1       Introduction 

 Plant tissue culture is employed for rapid multiplication of stock plant material to 
produce a large number of uniform clonal plants. The micropropagated plants have a 
number of advantages over the usual conventional system of plant propagation, such 
as being clonal in nature and disease-free plants. Micropropagation is advantageous 
in producing rooted plantlets ready for transplantation and to grow. This saves the 
time of the grower when seeds or cuttings are diffi cult to grow and time consuming. 
The multiplication of plants through tissue culture is far more benefi cial to the tradi-
tional system through which seeds are produced in uneconomical amounts or some-
times plants are sterile and no longer produce viable seeds or when seeds can’t be 
stored. The majority of the orchids can only be grown from seeds using micropropa-
gation strategies. A large number of planting material could be produced per square 
meter and the propagules can be stored longer and in a smaller area. Moreover, aerial 
root tips and leaf tips of orchids could also be used as explants for the establishment 
of plant material. However, a practical evaluation exhibits that only few complete 
plants have been regenerated; still fewer have simply been grown in the soil, while 
their micropropagation on a large scale has hardly ever been possible. 

 Since most of the  ornamental crops   are highly heterozygous, their seed progeny 
is not true-to-type. Conventionally, to produce genetically similar plants, vegetative 
propagation is being done. But this could not meet the market demand due to slower 
rate of propagation. Therefore, most of the modern fl oriculturists follow the micro-
propagation techniques for large-scale propagation of ornamentals. A large number 
of ornamental crops are being commercially propagated through micropropagation. 
Rainbow caulifl owers rich in anthocyanins (purple colored), beta carotenes (orange 
colored), and chlorophylls (green colored) have been developed by European plant 
company Syngenta (  http://www.dailymail.co.uk/news/article-514799/The-orange- 
purple-green-caulifl owers-scientists-claim-healthier-you.html    ) through breeding. 
Tissue culture could be the only option to propagate them on a large scale so as to 
fulfi ll their market demand. 

 Tissue culture and molecular researches are always receiving a rousing welcome 
by the blooming fl oriculture industry. Crop improvement through in vitro mutagen-
esis develops many new fl ower color/shape of mutants in  ornamental fl oriculture  . 
Intervention of molecular research in ornamental plants and their potential of mass 
propagation provides the sought after value addition and real product differentia-
tion. This deliverable capability of molecular research has opened new and lucrative 
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vistas in fl oriculture. Thanks to GM longer vase life and lasting fragrance add value; 
while color and chimera variance continue to create its niche in the global fl oricul-
ture trade, the resultant benefi ts and profi ts in commercial fl oriculture attracts the 
molecular researches. Till now, only genetically modifi ed carnation has reached up 
to the market, while others are in their early days of molecular research. In conven-
tional vegetative propagation of ornamentals, rooted cuttings are given treatment of 
physical (gamma rays) and/or chemical mutagens before planting. In these plants, 
mutation seems as chimeras which remained the crucial bottleneck for mutation 
breeding. The chimeric tissue has the mutated cells which are present along with the 
normal cells. During further cell division, the mutated cells compete with the encir-
cling normal cells for their survival and this is called as diplontic selection. The 
surviving mutated cells are expressed in plants. The dimensions of the mutated sec-
tor can vary from a small slender streak on a petal to a complete fl ower head and 
from a portion on a branch to entire branch. The isolation of mutated tissue in pure 
form is possible when a portion of a branch or a complete branch is mutated. 
Nevertheless, a small sector of a mutated branch or fl ower cannot be isolated using 
the available conventional propagation tactics. Consequently, many new fl ower col-
ors/shapes of the mutants or spontaneously developed mutants induced by muta-
gens are lost because of the lack of microtechniques for the management of such 
chimeric tissues either in vivo or in vitro. The protocols for in vitro regeneration of 
many fl owers are now well established and available. Adventitious shoot regenera-
tion from fl oret explants of chrysanthemum is also available. However, in all the 
cases, shoots were produced from fl oret-derived callus, and there is invariably a 
lack of somatic/genetic homogeneity due to prolonged callus phase. In our labora-
tory, tissue culture techniques using different doses of gamma radiation have been 
optimized to regenerate shoots from stem internodes, stem nodes, shoot tips, and 
ray fl orets for in vitro management of chimera and in vitro mutagenesis.  Chimera 
isolation   is practically very useful not only for chrysanthemum but also for breeding 
of other ornamentals. Chimera isolation and establishment of solid mutant is a two-
step process—fi rst, in vivo mutagen treatment and, second, in vitro regeneration of 
viable plants from mutated sectors and to apply RAPD analysis for any genetic 
polymorphism among mutants and their parents. The present technique opens new 
vistas for isolating new fl ower color/shape of ornamental cultivars by means of 
retrieval of mutated cells. 

 Tissue culture knowledge is very important for the success of genetic transforma-
tion, because many times a well-defi ned regeneration system has been reported to be 
recalcitrant for regeneration during genetic transformation (Pandey et al.  2010 ). 
During the last three decades, momentous developments in plant transformation 
technologies have taken place by releasing a large number of transgenic crop plants 
for commercial production.   A. tumefaciens   , a gram-negative bacterium, allows the 
introduction of genetic information into cells. This has revolutionized the fi eld, 
improving cultivars by expressing traits that would not be possible to obtain by clas-
sical methods. Nowadays, various physical, chemical, biological, and  in planta  
methods are routinely used for transformation.  Agrobacterium  and virus-mediated 
transformations are mainly used under biological method of transformation. 
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Researches in plant transformation are mostly going on the problems related to stable 
integration and reliable DNA expression after integration rather than DNA introduc-
tion into plant cells. Different biotic and abiotic resistance, e.g., disease resistance, 
insect resistance, frost resistance, herbicide resistance, etc., are being developed 
using transformation technology. Basmati rice with carotene has been developed and 
named as golden rice which contains increased levels of pro- vitamin A with 37 mg/g 
of carotenoid, of which 84 % is β-carotene (Ye et al.  2000 ). This is under trial. 
Suntory Flowers developed blue color rose by introduction of genes responsible for 
delphidine pigments to ordinary roses where this pigment was lacking naturally. For 
the induction of anthocyanins, two genes from snapdragon fl owers had been trans-
ferred to tomato plants. In comparison to previous research, more accumulation of 
anthocyanins in tomatoes has been reported for metabolic engineering in both the 
peel and fl esh of the fruit. The fruits were dark purple in color. Eady et al. ( 2004 ) 
from New Zealand and his collaborators in Japan are trying to bring tearless onion in 
the market. Delivery of corn-based edible vaccines is being prepared in the form of 
transgenic corn kernels and corn snacks. In tomato, ripening control genes have been 
introduced which will be visualized by the color of the tomato. Besides this malarial 
antigens are also being transferred in tomato. A genetically stable expression of func-
tional miraculin protein, a new class of alternative sweetener which is not only sweet 
but also has an unusual property to turn sour taste (like lemon) into sweet, has been 
accumulated in high levels in tomato (Sun et al.  2007 ; Hiwasa-Tanase et al.  2011 ). 
Gene silencing (RNAi-technology) has  exte  nsively been used to develop virus resis-
tance in plants. Transgenic papaya has been developed by using this technology for 
resistance to papaya ring spot virus. In tobacco, resistance to  Phytophthora nicoti-
anae  could be established via gene silencing. 

 In the present chapter, a review is being presented for the use of plant tissue 
culture for the development of variations through in vitro mutagenesis, large-scale 
multiplication, and propagation of crops and its application for genetic improve-
ment of plants and functional studies of genes using genetic transformation.  

14.2     In Vitro Mutagenesis 

14.2.1     Chrysanthemum 

 For commercial fl oriculture, there is perpetual demand for new and novel varieties. 
Mutation breeding is a promising means for crop  improve  ment, in addition to the 
development of many new fl ower color/shape of the mutants in ornamental fl oricul-
ture. Conventionally, vegetatively propagated ornamentals, rooted cuttings, are 
being treated with gamma rays before planting. In these plants, mutation appears as 
chimeras, which remains the main bottleneck to isolate. In our laboratory, a protocol 
has been optimized for the management of such chimeras via direct shoot organo-
genesis from fl ower petals. 

 Total 17 small and mini varieties were cultured using ray fl orets after treatment 
with 500 and 1000 Gy gamma ray irradiation. Only ten varieties differentiated 
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shoots in the treated ray fl oret explants, which were grown, rooted, and transplanted 
in the fi eld (Fig.  14.1a, b ). In the fi eld, after fl owering, during the season only 
“Flirt,” “Lalima,” “Puja,” “Sunil,” and “Maghi white” showed variation in fl ower 
shape/color (Datta et al.  2005 ). In “Flirt” variety about three different combinations 
of red and yellow colors have been obtained, while in “Lalima” the original grayed 
red petals having yellow chimera, two pure yellow color mutants have been isolated 
differing in their spoon-shaped and fl at petals (Fig.  14.1c ; Misra et al.  2004 ). In 
“Maghi white,” a tubular variety has been isolated from the spoon-shaped fl orets 
(Fig.  14.1d ). In “Sunil” variety silver-colored fl owers on the basal side of the fl orets 
(Fig.  14.1e ) have been obtained while in “Puja,” dark-colored fl owers (Fig.  14.1f ). 
A large fl ower variety of Chrysanthemum cv. “Madam E. Roger” has been com-
mercially propagated on a large scale through tissue culture. In vitro mutagenesis 
could be obtained and a solid mutant of yellow fl ower color was obtained in the fi eld 
after treatment with 1 Gy γ-radiation dose (Fig.  14.1g, h ; Misra and Datta  2007 ). 
Data were recorded regarding their morphological characters.

   In vitro mutagenesis via direct regeneration helped in the development of solid 
mutants without diplontic selection in less duration.  The   mutants obtained with 

  Fig. 14.1     In vitro mutagenesis in   chrysanthemum cvs.; ( a ) shoot induction in ray fl orets; ( b ) 
multiplication of shoots; ( c ) Mutants of “Lalima” cv. showing different shapes and color of the 
fl orets; ( d ) “Maghi” mutant with tubular fl orets; ( e ) “Sunil” mutant with tubular silvery basal por-
tion; ( f ) Mutant of “Puja” cv. with dark-colored fl owers; ( g ,  h)  Mutant of “Madam E. Roger,” a 
large fl ower variety with yellow fl ower       
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different type of variations were clonally propagated through tissue culture and sold 
to the consumers.  

14.2.2      Polianthes tuberosa  L. (Tuberose) 

  Tuberose      is generally propagated through bulbs. The normal cv. has a very good 
rate of multiplication, but it has been observed that varieties developed through 
gamma radiation have very low rate of propagation. That is why gamma ray-induced 
chlorophyll-variegated mutants of tuberose, i.e., Rajat Rekha (having white streak 
along the midrib) and “Swarn Rekha” (having yellow streaks at the margins), origi-
nally developed in NBRI, had been clonally multiplied through axillary buds. These 
plants were having ornamental value even without fl ower or at their vegetative 
stage. To increase the rate of multiplication, tissue culture method was used, as the 
conventional rate of multiplication was very slow in both of these cultivars. The 
regenerated shoots were all true-to-mother type having similar streaks. There is 
very limited work done on micropropagation of tuberose. Little information is 
available on shoot regeneration from callus cultures of tuberose (Murlidhar and 
Mehta  1982 ; Waithaka  1986 ; Shen et al.  1991 ). 

 Leaf explants of tuberose were used for regeneration of shoots in the medium 
containing BAP, GA 3 , or AgNO 3  either alone or in combination. After 4 weeks of 
culture initiation, small nodular structures were differentiated from the cut ends of 
the lower segments of the leaf in the combination of 1.0 mg/l BAP with 15 mg/l GA 3  
or 5 mg/l AgNO 3 , but the number of shoots was small (3 and 2, respectively, 
Fig.  14.2a, b ), while the other combinations did not show any shoot formation. The 
nodular structures were yellowish green, rounded, shiny, and  smooth      in appearance 
(Figs.  14.2c ). The maximum number of nodular  st  ructures was formed when all 
these growth regulators were used in combination.

   The nodular structures ceased to differentiate further if they remained in the 
same high concentration of the growth regulators. Therefore, a lower concentration 
of BAP (0.05 mg/l) + abscisic acid (ABA, 0.1 mg/l) + GA 3  (5 mg/l) + IAA (0.5 
mg/l) was used. In this treatment, these nodular structures started differentiating 
into shoot buds (Fig.  14.6d, e ). Six to seven shoots differentiated from each segment 
in 4-week periods. Sanyal et al. ( 1998 ) reported shoot organogenesis from leaf cal-
lus in ordinary tuberose, whereas clonal propagation of  P. tuberosa  var. “Rajat 
Rekha” has been reported by Datta et al. ( 2002 ) where shoot buds were regenerated 
in two steps directly from  t     he leaf segments. Rooting was obtained in the presence 
of 0.5 mg/l NAA. After 7 days, rooting could be achieved in 90 % shoots. The 
rooted shoots were transplanted to pots and grown initially under glasshouse condi-
tions and later in the fi eld where they fl owered true-to-type.  
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14.2.3     Asiatic Hybrid Lilies 

 From aseptically proliferating shoots, basal leaf  portions   were used as the explants 
for in vitro mutagenesis. Three treatments of 0.25, 0.5, and 1.0 Gy γ-radiations were 
given to the explants under aseptic condition. It was found that 1.0 Gy treatment 
was lethal to the explants and they could not regenerate shoots, while the other two 
treatments regenerated shoots and developed two types of mutants, besides several 
abnormal regenerants. Among the desired ones, Mut 1 was having spotted petals 
and the other Mut 2 showed white variegation along the margins of leaf lamina. Mut 
1 regenerated similar fl owers in the next generation; however Mut 2 could not 
develop fl owering for the next two generations, but it was having ornamental value 
even without  fl   owering.   

  Fig. 14.2    Clonal  propagation    of       Polianthes tuberose        
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14.3     Tissue Culture of Some Economically Important Plant 
Species 

14.3.1      Jatropha curcas  

  Jatropha curcas  belonging to family Euphorbiaceae is a biodiesel plant, perennial, 
drought resistant, fast growing, and easy to propagate which can withstand with 
minimum inputs (Bush and Leach  2007 ). Its seeds produce oil, which can be com-
busted as fuel without being refi ned (Keith  2000 ; Li et al.  2007 ).  Oil yield   of 
 Jatropha  varieties ranges between 30 and 37 %. Therefore, the use of elite variety is 
very much necessary for planting material which can assure 20 % more biodiesel 
yield (Misra et al.  2010a ). In view of  Jatropha  plant’s life approximately 50 years, 
the quality of planting material is bound to have long-term effects. To meet the 
demand of elite  J. curcas  plant for its quality planting material, the development of 
a standardized protocol for its propagation through tissue culture was urgently 
required. Screening of four high-yielding elite accessions of  J. curcas  was done for 
shoot organogenesis from the leaf explants. Leaves were the preferred explants than 
shoot tips for direct shoot organogenesis as it is the prerequisite for genetic transfor-
mation with less chances of chimera development (Misra et al.  2010a ). However, 
indirect shoot organogenesis is likely to produce somaclonal variants. 

14.3.1.1     Shoot Organogenesis from Leaf Explants 
 Evaluation of leaf’s position on the plant was performed in terms of number of 
shoots regenerated, percentage of responding cultures,  and   condition of the explants 
in culture. It was observed that the second and third leaves were the best responsive 
by regenerating maximum number of shoots within 4–6 weeks of incubation, there-
fore selected as the best. From the cut surfaces of leaf lamina, direct differentiation 
of shoot buds occurred (Fig.  14.3a–c ) in a combination of IBA and BA, where a 
maximum of seven shoot buds regenerated from one leaf segment within 6 weeks 
of culture incubation (Table  14.1 ). TDZ is crucial for indirect differentiation of 
shoots. Formation of shoot buds was nonsynchronous, where new buds continued 
to form, while the older ones grew into shoots (Fig.  14.3f ) (Misra et al.  2010a ).

14.3.1.2         Use of Antibiotics to Control Endophytic Bacteria 
 The severe problem under in vitro culture of  J. curcas  was the presence of endo-
phytic bacteria that expressed itself in the medium after 2–3 subcultures. Firstly, 
these bacteria did not interfere in the formation and development of new shoots, but 
later  they   infl uenced the progress of newly developed shoots. These shoots turned 
yellowish brown and emerged as necrosed making it inconceivable to grow cultures 
beyond three subcultures. The intractable quandary of endophytic bacterial con-
tamination stands resolved by way of suitable antibiotics, and such cultures are 
being grown for a longtime period of over 2 years without any contamination (Misra 
et al.  2010a ). 
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 The bacterial colonies were identifi ed as   Enterobacter ludwigii   . The ring diam-
eter across the antibiotic stab was measured and antibiotics were selected as highly 
effective (+++), moderately effective (+), and resistant without ring (R, Figs.  14.4a, b  
and  15.5 ). Data was recorded on various parameters, such as control of bacterial 
contamination, number of cycles to control bacterial contamination, and the growth 
and regeneration of proliferating shoots (Table  14.2 ). It was observed that the entire 
tremendously potent antibiotics used were equipped to control the bacterial con-
tamination completely in the fi rst cycle itself; however, those didn’t help plant 
growth and regeneration of shoots. Only augmentin was effective at all the four 
concentrations used and did not adversely impact regeneration of shoots even at a 
higher concentration of 400 mg l −1  for one cycle. At the beginning, it was used at a 
higher concentration of 400 mg l −1 , where cultures remained fresh, green, and 
healthy. Later, its concentration was decreased from 300, 200, to 100 mg l −1  in sub-
sequent cycles/subcultures depending on the intensity of bacterial contamination. 
Further, it was observed that 50 mg l −1  augmentin was required for  maintenance   of 
long-term proliferating cultures. The proliferating shoots of  J. curcas  remained 
fresh, green, and regenerative in this optimized medium up to 45 days despite of 
subculture (Misra et al.  2010a ).

14.3.1.3          Effect of Antioxidants on Growth of Cultures 
 Despite the fact that shoot multiplication  a  nd their growth was not a problem in 
 J. curcas , the regenerating shoots became brown/necrosed within 15–20 days of 
culture incubation. Owing to browning of tissue in  Jatropha , it became intricate to 

  Fig. 14.3    Cultures of   Jatroph    a curcas ; ( a – c)  Direct shoot organogenesis from leaf lamina; ( a ) 
from basal portion of leaf having veins; ( b ) from margins/cut surfaces of segments of leaf lamina; 
( c ) from adaxial and abaxial surfaces of segments of leaf lamina; ( d – f)  Indirect shoot organogen-
esis in leaf callus; ( d ) shoot organogenesis from leaf callus; ( e ) different stages of developing shoot 
buds; ( f ) growing shoots       

 

14 Plant Tissue Culture for In Vitro Mutagenesis, Large-Scale Propagation…



318

continue long-term cultures. The addition of antioxidants in the medium individu-
ally and in combinations analyzing the antioxidant enzyme activity fi nally could 
control the browning/necrosis of growing shoots of  J. curcas  (Misra et al.  2010b ). 
We studied the activities and changes in antioxidant enzymes, concentrations of 
pigments (chlorophylls and carotenoids), and total phenolic compounds in relation 
to the growth and development of shoots (Misra et al.  2010b ). 

 These studies overcome the hitherto diffi culty of browning of in vitro cultures 
and achieved a foolproof robust protocol for large-scale propagation of tissue-raised 
plants of elite variety of  J. curcas . A set of different antioxidants, viz., reduced glu-
tathione, tocopherol, ascorbic acid, and cysteine, were used in the medium to solve 
the problem of tissue browning and necrosis. The addition of antioxidants proved 
invaluable for the progress of the shoots. Overall growth  of   shoots was observed 
better with the addition of antioxidants and the shoots remained fresh, green, and 

   Table 14.1    Infl uence of growth regulators on direct  s  hoot organogenesis from leaf lamina of  J. 
curcas  after 6 weeks of culture   

 Treatment (conc. 
mg l −1 ) 

 % of explants 
responding ± 
S.E. 

 Mean of 
regenerated shoot 
buds ± S.E. a  

 Associated 
callus 

 Health status of 
regenerated shoots 

 BA 0.25  IBA 
0.1 

 68.4 ± 1.08  4.6 ± 0.46  −  Shoots were fresh, 
green, and healthy  BA 0.5  83.6 ± 0.46  6.8 ± 0.60  − 

 BA 1.0  70.0 ± 1.52  5.8 ± 0.60  + 

 BA 0.25  IBA 
0.2 

 56.8 ± 0.96  4.2 ± 0.34  + 

 BA 0.5  63.8 ± 1.22  6.2 ± 0.52  + 

 BA 1.0  51.8 ± 1.15  3.8 ± 0.34  ++ 

 Kn 0.25  IBA 
0.1 

 −  −  +  Shoots were 
yellowish green  Kn 0.5  −  −  + 

 Kn 1.0  13.4 ± 0.73  2.6 ± 0.22  ++ 

 Kn 0.25  IBA 
0.2 

 −  −  + 

 Kn 0.5  −  −  ++ 

 Kn 1.0  14.6 ± 0.88  1.2 ± 0.34  ++ 

 TDZ 
0.25 

 IBA 
0.1 

 29.2 ± 1.31  3.6 ± 0.46  +  Shoots were 
vitrifi ed 

 TDZ 
0.5 

 42.0 ± 0.85  4.0 ± 0.63  ++ 

 TDZ 
1.0 

 35.4 ± 1.43  3.8 ± 0.52  +++ 

 TDZ 
0.25 

 IBA 
0.2 

 39.6 ± 1.29  2.2 ± 0.34  ++ 

 TDZ 
0.5 

 46.2 ± 0.96  3.4 ± 0.46  +++ 

 TDZ 
1.0 

 38.0 ± 1.00  3.2 ± 0.52  +++ 

  Culture incubation: 45 days 
 “+” sign denotes increasing amount of callus 
  a Mean of 5 replicate cultures  
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  Fig. 14.4    ( a ,  b)  Sensitivity  of   bacteria toward different antibiotics       

   Table 14.2    Effect of commonly used plant  a  ntibiotics on contaminated regenerating cultures of 
 J. curcas . Culture incubation: 30 days   

 Name of antibiotics 
(conc. mg l −1 ) 

 Removal of 
bacteria 

 Growth of the proliferating shoots 

 Associated 
callus 

 Mean number of 
regenerated shoots/
explant a  

 Health status of 
the shoots 

 Novamox  250  +++**  ++  0  Yellowish green 
shoots  500  +++*  ++  0 

 Augmentin  100  +++***  +++  4.2 ± 0.52  Green, healthy, 
and growing 
shoots 

 200  +++**  +++  7.2 ± 0.77 

 300  +++*  ++  4.6 ± 0.46 

 400  +++*  ++  3.8 ± 0.34 

 Pelox ®   250  +++**  −  0  Shoot necrosis 

 500  +++*  −  0 

 Gatiquin ®   250  +++**  −  2.7 ± 0.32  Shoot necrosis 

 500  +++*  −  0 

 Lomadey ®   250  +++**  −  0  Shoot necrosis 

 500  +++*  −  0 

 Genticin ®   250  +++**  +++  0  Shoots remained 
green and 
healthy 

 500  +++*  +++  0 

 Ciplox ®   250  +++**  +  1.4 ± 0.46  Shoots became 
yellowish green  500  +++*  −  0 

  “+” sign denotes positive response to some extent; “++” sign denotes positive response to moder-
ate extent; “+++” sign denotes complete positive response 
 “−” sign denotes no response 
 “*”sign denotes number of cycles 
  a Mean of 5 replicate cultures  
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healthy for a longer period as against the shoots devoid of antioxidants. Regeneration 
of shoots was not at all affected by the addition or lack of antioxidants in the 
medium. The treatment having 25 mg l −1  GSH + 10 mg l −1  AA was selected as the 
best for biomass accumulation, where shoots remained fresh, green, healthy, and 
regenerative up to 40 days (Misra et al.  2010b ).  

14.3.1.4     In Vitro Rooting and Acclimatization of Plantlets 
 By the addition of CW,  augme     ntin, and AdS in the multiplication medium, percent-
age of rooting and survival of acclimatized plants in the fi eld has been improved. 
Healthy shoots with broad leaves were produced by the addition of 15 mg l −1  CW 
from green coconut in the multiplication medium, which resulted in improved root-
ing of 85 % as against 52 % reported earlier (Fig.  14.5a ). The use of augmentin in 
the medium not only overcame bacterial contamination but additionally resulted in 
higher survival and growth of plants during the course of hardening (Fig.  14.5b ). 
The rooted shoots/plantlets were acclimatized in the soilrite with a 100 % transplant 
success. The plants grew vigorously under net-house conditions (Fig.  14.5c, d ).

   Even though shoot multiplication used to be just right in  J. Curcas , the progress 
of regenerating shoots, low rooting percentage, and problematic acclimatization of 
tissue-raised plantlets, restrict clonal propagation for quality planting material. Our 
research work improved the rooting percentage and maximized the survival of 
plants in the fi eld with the addition of coconut water (CW), augmentin, and adenine 
sulfate (AdS) in the multiplication  m     edium (Toppo et al.  2012 ).   

  Fig. 14.5    ( a ) Rooting in excised shoots,  with   augmentin (Lt) and without augmentin (Rt); ( b ) 
4-week-old potted plants with augmentin (Lt) and without augmentin (Rt); ( c ,  d)  8-week-old pot-
ted plants in the fi eld without augmentin ( c ) and with augmentin ( d )       
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14.3.2      Withania somnifera  

14.3.2.1     Selection of Maximum Regenerative Explants 
and Optimization of In Vitro Propagation 

  Withania somnifera  (Fam. Solanaceae) commonly known as ashwagandha, is a 
high-value medicinal plant since ancient times. Leaves  and   roots of this plant are 
widely utilized in preparations of various herbal drugs or home-made remedies for 
its biological activities as anticancerous, anti-proliferative, anti-oxidative, anti- 
infl ammatory, antiarthritic, antibacterial, and antidiabetic properties. It has different 
chemotypes varying in their regenerative potentiality. The regenerative potential of 
different chemotypes of  W. somnifera  was optimized and compared on the basis of 
shoot organogenesis in leaf segments and their further growth and multiplication. 

 Highly regenerative protocol for in vitro direct shoot regeneration from different 
explants of  Withania somnifera  was developed. Leaf, cotyledonary leaf, hypocotyl, 
and root explants were inoculated on MS medium fortifi ed with different concentra-
tions of BAP, GA 3 , and IAA. Regeneration of shoot buds was obtained on MS 
medium supplemented with BAP and IAA and elongation of shoots was obtained on 
MS medium supplemented with BAP, IAA, and GA 3.  Cotyledonary explants were 
found best responsive among all the explants. Rooting of excised shoots was 
obtained on MS medium supplemented with IBA. Thereafter, the in vitro- 
regenerated plantlets could be acclimatized successfully in soil with 98 % survival 
percentage. 

 Nodal explants of  W. somnifera  produced multiple shoots from both the ends of 
the explants in MS medium containing BAP, Kn, and TDZ within 3 weeks. 
Maximum number of shoots differentiated in MS medium having BAP. In vitro 
rooting was induced successfully on half MS medium supplemented with IBA. The 
plantlets with a well-developed root system were acclimatized and established in 
pots containing soil/leaf manure (3:1) and grown under greenhouse conditions with 
 s  urvival rate of 94 % (Saema et al.  2015a ).  

14.3.2.2     A Comparative Analysis of Antioxidant Protection System 
on Regeneration Potential of Different Chemotypes of  W. 
somnifera  

 The regenerative potentiality of four chemotypes of  W. somnifera  was compared 
using leaf explants. The study correlated that the chemotype (NIMTLI-130)  wit  h 
high total phenolic content (TPC), high H 2 O 2  concentration, and low proline content 
was less regenerative, whereas the chemotype (NIMTLI-101) with lesser TPC, 
lower H 2 O 2  concentration, and high proline content was more regenerative. In 
NIMTLI-130, although the activity of SOD, GPX, and APX was higher, CAT being 
lower in activity along with simultaneous lower proline content had a weak detoxi-
fi cation effect and might be one of the factors for lower regeneration as compared 
to NIMTLI-101 which has higher CAT activity. The study revealed that the differ-
ence in in vitro shoot organogenesis of different chemotypes largely depends on the 
antioxidant protection system of the plant involving nonenzymatic compounds and 
activities of antioxidant enzymes (Singh et al.  2015 ).  
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14.3.2.3     Monthly Evaluation of Different Withanolide Contents 
  W. somnifera  NMITLI-118 has been  propaga  ted on a large scale through tissue cul-
ture. About 500 tissue-raised plants were grown in the fi eld. Monthly evaluation of 
withanolide A, withaferin, and withanone was done for 12 complete months from 
these fi eld-grown plants. Different parts of plant, e.g., upper and lower leaves, 
stems, roots, fl ower buds, and fruit cover, were collected at fi fth day of every month 
from the fi eld for 1 year. For that month, average temperature and humidity was 
recorded. The plant materials were air dried at room temperature and subsequently 
chemically analyzed using high performance liquid chromatography. Concentration 
of different withanolides varied considerably in different plant parts with the varia-
tion in the season. Among different tissues, leaves were found to be superior to 
other plant parts with regard to withanolide production, which can be collected 
without any damage to the plants. Over the course of the growing season, we found 
a signifi cant increase in the withanolide contents. The effect of plant maturity on 
withanolide production was studied in 1-3 month old plant and the data was com-
pared with 1 year old plant. All the three withanolides were found in in vitro shoots, 
although their amount was far less than fi eld-grown plant material. The site of bio-
synthesis of withanolides seem to be the leaves, as the concentration of withano-
lides under in vitro condition remained very high in the leaves both before and after 
root induction. However, withanolides were in very low quantity in roots under 
in vitro condition. Total plant withanolide A content was highest (0.081 %) in the 
month of January, whereas withaferin and withanone (0.158 % each) were highest 
in the month of November (paper communicated). The present fi ndings might be 
useful to harvest  the   material with increased concentration of withanolides through-
out the year.   

14.3.3      Hemidesmus indicus  

  Hemidesmus indicus  R. Br. is a highly reputed plant for its medicinal value in the 
Indian system of medicine. Recently, this plant has been reported helpful in several 
free radical-mediated disease conditions. In addition, few antioxidants, lupeol, a 
triterpene; vanillin, a phenolic; and rutin, a fl avonoid, also occur in this plant. This 
further boosts the medicinal value of the plant. We have developed a regenerative 
protocol for propagation of this plant from shoot tips and nodal explants where we 
have observed that the regenerated plants have similar secondary  met  abolites to 
their parent plants (Mishra et al.  2003 ). Due to overexploitation, this plant is becom-
ing increasingly rare; therefore, tissue-raised plants and cultured tissues can be 
helpful for the extraction of important secondary metabolites. 

  H. indicus  could be established under aseptic culture through shoot tips and 
nodal stem segments. It has been investigated that defoliation of leaves could be 
checked with the addition of AdS in the proliferation medium. The plants of  H. 
indicus  have successfully been transplanted in the combination of sand + soil + leaf 
manure (1:1:1) (Mishra et al.  2003 ). The secondary metabolite contents of lupeol, 
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vanillin, and rutin in the in vitro-grown shoots and the mother plant of  H. indicus  
were estimated and found similar to their parents (Mishra et al.  2005 ). Besides opti-
mization of micropropagation protocol, the purpose of study was to explore whether 
in vitro production of antioxidants is possible from  H. indicus  cultures, and if so, at 
what levels of production. This is the fi rst report on in vitro production of antioxi-
dants from this plant to the best of our knowledge.  

14.3.4     Gerbera Tissue Culture 

 Gerbera is a temperate climate plant  t  hat grows in the gardens throughout the world. 
It produces one of the most well-liked ornamental fl owers and is used as cut fl ower 
and as a potted plant. Therefore it is of high economic importance. Only few culti-
vars of gerbera could grow in subtropical climate. For availability of this crop in 
north Indian plains, like Lucknow, tissue culture is the only alternative method that 
can be applied for commercial purposes. Tissue culture of gerbera has been accom-
plished, but the determination of compatible cultivars developing in hotter climates, 
their regeneration advantage, and the selection of proper explants to obtain highest 
number of shoots in minimal period are the principal concerns of gerbera growers. 
Different cultivars with their different explants were exploited for in vitro culture. 
In gerbera, the whole plant is rosette like with short stem which touches the soil. 
Therefore, it is diffi cult to establish contamination-free explants in vitro such as 
nodal segments or shoot tips because they carry soil particles. Infl orescence (young 
capitulum) and infl orescence stalk is the best material for establishment and regen-
eration of shoots in gerbera. We have established, regenerated, and grown seven 
different cultivars of gerbera under in vitro condition. We have done a comparative 
study of establishment of explants, the regeneration potential, and growth behavior 
of different cultivars so as to help the  g  rowers to select the best cultivar to grow 
under Lucknow climate (Misra et al.  2010c ). 

 Four cultivars of gerbera, namely, “Dana Ellen,” “Sunway,” “Salvador,” and 
“Rosaline,” were established easily in culture. “Silvester,” “Goliath,” and “Zingaro” 
took a long time (4–6 weeks) for establishment. This was caused by bacterial con-
tamination as well as browning of explants. Bacterial contamination was controlled 
if an unopened infl orescence was used as explant. Data of total phenolic content 
(Fig.  14.6a ) and H 2 O 2  concentration (Fig.  14.6b ) of seven cultivars revealed that 
these three cultivars had the higher amount of total phenolics as well as H 2 O 2  con-
centration. 15 mg l −1  ascorbic acid and cysteine proved benefi cial in controlling 
browning of explants in “Silvester,” “Goliath,” and “Zingaro.” Capitulum and 
peduncle both regenerated shoots. Shoot buds regenerated early in peduncle than in 
capitulum (Table 14.3 ). Upper end of peduncle, which is close to the receptacle, was 
more regenerative (Fig.  14.7a, b ). The purple hair called pappus bristles which 
cover the fl orets shed off before starting the developmental process of shoot primor-
dial (Fig.  14.7c ). Shoot development in the presence of TDZ was associated with 
callus formation (Fig.  14.7d ), while direct shoot regeneration occurred in presence 
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of BA (Fig.  14.7e ). Capitulum when inoculated as such, did not respond, while a 
good number of shoots  regen  erated when it was cut into 2–4 segments (Fig.  14.7f, g ). 
It is possible that cut surfaces absorb nutrients and growth regulators, which induced 
formation of shoots in the growing tissue of fl orets causing reversal of infl orescence 

   Table 14.3    Shoot bud differentiation in  di  fferent cultivars of gerbera   

 Name of 
cultivars 

 Response 1  

 Type of explant 

 Capitulum 2   Peduncle 3   Sepal 

 Avg. no of 
regenerated 
shoots ± SE 

 Time 
(d) 

 Avg. no of 
regenerated 
shoots ± SE 

 Time 
(d) 

 Avg. no of 
regenerated shoots 
± SE 

 Time 
(d) 

 Dana Ellen  8.8 ± 0.2 b*   30  11.2 ± 0.3 a   20  4.4 ± 0.1 a   40 

 Salvador  10.5 ± 0.3 a   20  9.8 ± 0.2 b   28  4.0 ± 0.2 a   42 

 Rosaline  6.0 ± 0.2 d   40  8.6 ± 0.4 c   30  3.2 ± 0.1 b   45 

 Silvester  5.2 ± 0.3 e   42  8.0 ± 0.2 c   32  – 

 Sunway  5.0 ± 0.2 e   45  7.0 ± 0.2 d   35  – 

 Goliath  8.0 ± 0.4 b   35  5.0 ± 0.3 e   42  – 

 Zingaro  7.2 ± 0.4 c   38  5.4 ± 0.2 e   44  – 

 Mean ± S.E.  7.243 ± 0.76  7.857 ± 0.85  1.657 ± 0.79 

 F value 
among the 
cultivars 

 36.717***  76.017***  516.463*** 

  Culture incubation: 45 days 
  1 Average of three repeated experiments 
  2 Capitulum cut into two to four segments 
  3 Longitudinal section of peduncle (ventral view) 
 *Values followed by the same letters are not signifi cantly different according to Turkey range test 
 ***Signifi cant at  p  ≤ 0.001  
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  Fig. 14.6    ( a ) Estimation of phenolic  c     ompounds in different cultivars of gerbera; ( b ) estimation 
of hydrogen peroxide in different cultivars of gerbera       
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axis into vegetative axis (Fig.  14.7h ). Differentiated shoots were multiplied, rooted, 
hardened, and fl owered (Fig.  14.7i–l ) (Misra et al.  2010c ).

14.3.5          Rosa clinophylla  

 Lots of  Rosa  species in India are  disco  vered in temperate Himalayan regions.  R. 
clinophylla  Thory. is the one species which grows gregariously but not often obvi-
ous along the base of the Himalaya eastward to west Bengal near marshy locations 
and streams. This species grows wildly, hence considered as the wild rose of tropi-
cal tracts of India. The species is being used in breeding especially for evolving 
tropical  Rosa  hybrids to cultivate in the north Indian plains, and that is why it is 
highly endangered. It provides heat tolerance and evergreen foliage to the breeding 
strains. A protocol for successful clonal propagation of this important and endan-
gered rose species has been developed. 

 The plants of  R. clinophylla  were propagated through their nodal segments 
(Fig.  14.8a ). Approximately four to six shoots differentiated from each node but the 
growth and general health of the regenerated shoots was not very good. However, 

  Fig. 14.7    In vitro culture  of   gerbera; ( a ) an infl orescence; ( b)  shoots differentiating from upper 
portion of peduncle; ( c – e)  conversion of disk fl oret to shoots; ( f ) A capitulum; ( g ,  h)  shoots dif-
ferentiating from capitulum;  i  multiplication of gerbera shoots; ( j ) rooting in isolated shoots; ( k ) 
growing plant in pot; ( l ) a gerbera plant in fl owering       
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with the addition of AgNO 3  in the proliferation medium, their growth improved to 
some extent (Fig.  14.8b ). The well-grown shoots were rooted with IBA in the pres-
ence of charcoal (Fig.  14.8c ). Activated charcoal played a major role in achieving 
hundred percent rooting. The rooted plantlets were growing well under fi eld condi-
tions and later fl owered also (Fig.  14.8d ; Misra and Chakrabarty et al.  2009 ).

   Because the plant species is important for breeding purposes and the planting 
material is also scarce and not available due to shortage of the plants, there is a 
necessity of clonal propagation of this plant on a large scale by way of tissue cul-
ture. So far, there was no publication reported on micropropagation and fi eld trans-
fer of this plant species; however, a lot more work has already been  rep  orted on 
different aspects of tissue culture of rose.  

  Fig. 14.8    Propagation  of    Rosa clinophylla ; ( a ) establishment from nodal segment; ( b ) multiplica-
tion of shoots; ( c ) in vitro rooting in isolated shoot; ( d ) in vitro-raised plant in pot       
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14.3.6     Asiatic Hybrid Lilies ( Lilium  sp.) 

 The temperate climate  fl ori     cultural crops are generally loved by all and always 
remain in great demand all over the world. The cultivators of subtropical climate, 
such as the fertile tracts of Gangetic basin, are unable to cash this opportunity. For 
this reason, a protocol for mass multiplication and acclimatization of this temperate 
climate Asiatic hybrid lily to the subtropical climate of Lucknow was developed 
using tissue culture (Misra and Datta  2001 ). 

 Asiatic hybrid  lily      was propagated through bulb scale segments. A good rate of 
proliferation has also been achieved by standardizing the nutrient formulation (Fig. 
 14.9a ). The shoots having well-developed roots were acclimatized initially under 
controlled conditions and later transferred in the fi eld where they grew well (Fig. 
 14.9b ). The plants fl owered with bright orange color in the month of late April to the 
middle of May 2001 (Fig.  14.9c, d ). After fl owering, there was a formation of a new 
bulb at the base of the older ones (Misra and Datta  2001 ), which could not be 
formed by conventional methods under Lucknow climate (Fig.  14.9e ). Flowering in 
tissue-raised Asiatic hybrid lily under normal fi eld conditions was achieved con-
tinuously under subtropical climate conditions, and after every fl owering a new 
bulb regenerated at the base of the older ones.

  Fig. 14.9    Large-scale  propagation      of Asiatic hybrid lily; ( a ) multiplication of shoots; ( b – d)  
in vitro-raised plants fl owering under open fi eld condition       
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   With gamma ray treatment, variegation could be developed in the leaves enhanc-
ing the ornamental value of the crop even if not fl owering (Fig. 14 .9f ). The control, 
in vitro-raised plants and their different parts showed differential up- and downregu-
lation of the activity of different antioxidant enzymes such as SOD, POX, CAT, 
APX, and their isoenzyme patterns. High and low molecular mass heat-shock pro-
teins were characterized using HSP70 and HSP 18.1 antibodies against pea ( Pisum 
sativum  L.), respectively. The level of high molecular mass proteins did not vary 
much and was analyzed to be of constitutive nature, whereas in TF plants, a new 
small molecular mass of 21 kDa was induced indicating a possible role of this stress 
protein during acclimatization and fl owering of Asiatic hybrid lily plants at higher 
temperature of 43 °C (Fig.  14.10 ). This protein was much higher in  amo     unt in petals 
as compared to stem and leaf (Misra and Kochhar  2008 ). The involvement of anti-
oxidant enzymes during the process of shoot and root  organog     enesis was also stud-
ied in callus of Asiatic hybrid lily (Misra et al.  2010d ).

14.3.7         Tagetes erecta  L. (Marigold) 

14.3.7.1     F 1  Hybrid of Marigold 
 In marigold  F 1  hybrid   varieties are commercially very much exploited. Cytoplasmic/
genetic male sterile lines have been developed and used for synthesizing F 1  hybrids 
of ornamental and horticultural crops. Breeders have to maintain the parents and 
every time crossing is being done to produce F 1  hybrid. In the same way, users also 
have to purchase seeds every year from the breeders as there is no seed setting in F 1  
hybrids (Misra and Datta  2000 ). Regeneration protocol has been developed in two 
cvs. of F 1  hybrids of yellow marigold ( Tagetes erecta  L.), “Pusa Basanti” and “Pusa 
Narangi.”  
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  Fig. 14.10     Characteriza     tion of ( a ) high and ( b ) low molecular mass heat-shock proteins in tissue- 
raised fl owering plants and control plants of Asiatic hybrid lily under high temperature 
conditions       
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14.3.7.2     Direct Differentiation from Leaf Segments 
 Experiments were conducted  to   directly differentiate shoots from leaf segments of 
both the cultivars of marigold. Leaves were excised from in vitro-proliferated 
shoots and cultured on MS medium supplemented with BA alone or with 
TIBA. TIBA has been used as an antiauxin and played a very crucial role in shoot 
organogenesis by suppressing root/callus formation. After 3 weeks of incubation, 
direct shoot bud formation was observed only from basal leaf segments of “Pusa 
Basanti.” Medium containing only BA failed to induce shoots, while all the combi-
nations with TIBA were effective in inducing direct differentiation of shoots (Datta 
et al.  2002 ). The maximum number of shoots (8) differentiated in 0.2 mg/l TIBA + 
0.25 mg/l BA within 4 weeks. All the responding explants were subcultured onto the 
same medium for further multiplication. Shoots of 2–3 cm length were excised and 
transferred to MS basal medium without any growth hormone for rooting. One hun-
dred percent rooting was observed within 1 week. After 2 weeks, rooted shoots were 
transferred to soil, kept in a hardening chamber for 2 weeks, and then fi nally moved 
to the fi eld conditions, where  they   fl owered true-to-type (Misra and Datta  2000 ).  

14.3.7.3     Direct Differentiation from Ray Florets 
 Surface-sterilized ray fl orets of both  the   cultivars of marigold have been grown on 
MS medium containing either BA + NAA or TDZ + NAA. In cultivar “Pusa 
Narangi,” direct shoot regeneration from the basal portion of the ray fl oret was 
observed after 10 days of inoculation in the presence of TDZ and NAA only, while 
other growth regulator combinations were ineffective (Datta et al.  2002 ). An aver-
age of six shoots per responding explants were differentiated.  

14.3.7.4     White Marigold 
 White marigold (Fam. Asteraceae (Compositae) is  a  mong the primary decorative 
crops, but as a result of nonavailability of planting material, it has not been com-
mercialized properly. Due to low seed viability and poor germination rate (30 %), 
availability of white marigold is not as much as that of the yellow one. Because of 
its tenderness, white marigold requires totally favorable climatic conditions for veg-
etative growth as well as for fl owering. It is tricky to keep pure line seeds due to its 
cross-pollinated nature. Tissue culture is the only method to hold genetically identi-
cal clones with snow white fl ower color and fast propagation rate as well as conser-
vation of germplasm for longer periods. The work has already been published for 
the propagation through shoot tips (Fig.  14.11a ) and nodal stem segments (Fig. 
 14.11b ) by Misra and Datta ( 1999 ) and through direct differentiation in leaf seg-
ments (Fig.  14.11c ) by Misra and Datta ( 2001 ).

   Leaf segments had been used from in vitro-established multiple shoots of white 
marigold. GA 3  plays an important role for the induction of shoot organogenesis as 
well as to suppress callus formation. Shoot buds (two to fi ve) could be differentiated 
from lower petiolar portion of leaf lamina within 4 weeks of incubation in the cul-
ture. Differentiated shoots could be grown well with the addition of AgNO 3  (Fig. 
 14.11d ). Well-grown shoots were rooted in the medium supplemented with NAA 
(Fig.  14.11e ) and transplanted in the soil. It was observed that all the desired 
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characters, such as plant height, number, and size of fl owers per plant, number of 
viable seeds per fl ower, and time taken to bloom and the F 1 -generation plants were 
signifi cantly better in tissue-raised plants as compared to control, hence  i  ncreasing 
the commercial value of the tissue culture-raised plants in successive generations 
(Fig.  14.11f, g ) (Misra and Datta  2001 ).   

14.3.8      Papaver somniferum  

 Embryos were germinated into plantlets which were later transferred in the fi eld 
after proper hardening. The plants fl owered and developed capsules in due course 
of time. Acclimatization and fi eld transfer of tissue-raised plants of opium is com-
paratively diffi cult and has not been reported earlier.   Papaver somniferum    is an 
important pharmaceutical plant containing several benzylisoquinoline alkaloids 
including the narcotic morphine which is analgesic and the codeine which is an 
antitussive drug. Breeding, selection, and other molecular practices have produced 
a number of different germplasm with modulated biosynthesis and accumulation of 
altered particular alkaloids. At present, there is need to modulate biosynthetic path-
ways of these alkaloids using transgenic technique, for which an effi cient regenera-
tion protocol is very much required in opium poppy. We have seen responses of 
vegetative explants of the seeds for somatic embryogenesis and developed an effi -
cient protocol for  P. somniferum  for regeneration as well as transplantation in the 
fi eld (Pandey et al.  2010 ). Root explants induced embryogenic callus in the 

  Fig. 14.11    Clonal propagation of  white   marigold through shoot tips ( a ) nodal segments ( b ) and 
leaf segments ( c )       
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presence of 2,4-D and kinetin, maturation in the presence of GA and ABA, and 
plantlet development into hormone-free 1/2 MS media. Effi cient somatic embryo-
genesis has been achieved but only from the root callus. Alkaloid content was also 
analyzed in callus and fi eld-grown plants concluding into developmental control of 
alkaloid biosynthesis (Pathak et al.  2012 ).   

14.4     Optimization of  Agrobacterium -Mediated Genetic 
Transformation 

14.4.1      Jatropha curcas  

  Genetic transformation   of  J. curcas  was already reported in the literature through 
cotyledon explants (Mazumdar et al.  2010 ; Pan et al.  2010 ), but due to origin from 
seedlings, cotyledons are supposed to be heterozygous in nature. Leaf explants are 
preferred for direct shoot organogenesis as it is prerequisite for genetic transforma-
tion. Moreover, the chances of development of chimeric plants after genetic trans-
formation are lesser when leaf is used as explant. Genetic transformation from 
in vitro-leaf explants and the hypocotyl segments of in vitro-grown seedlings of  J. 
curcas  have not been reported earlier. An effi cient transformation protocol was 
developed using these explants through  Agrobacterium tumefaciens  (Misra et al. 
 2012 ). Our protocol can be used for transfer of any oil biosynthetic pathway gene in 
an elite plant. 

 An effi cient transformation protocol has been optimized for  J. curcas  using LS 
and HS through  A. tumefaciens . It was demonstrated that the incubation time for the 
activation of  A. tumefaciens  was optimized to 40 min, while the infection time to 
30 min. The explants (both HS and LS) showed similar transient expression of  gus  
gene after 3 and 4 days of cocultivation (Fig.  14.12a–d ). The putative transformants 
were confi rmed with primary PCR using CaMV (F)-Tnos (R) primers, showed posi-
tive plants both from HS and LS which were further confi rmed for the presence of 
transgene by secondary PCR using gus (F) and (R) primers (Fig.  14.13a ). The  gus  
histochemical assay was also performed to confi rm transformants (Fig.  14.14i–l ). 
Expression of gene was checked by RT-PCR (Fig.  14.13a, b ). HS produces four 
transgenics, two highly expressed, one low expressed, and one with very low 
expression, while LS produced fi ve transgenic plants, two highly expressed, two 
low  expres  sed, and one with very low expression. Stable TE was more in LS (5 %) 
as compared to 4 % in HS (Misra et al.  2012 ).

14.4.2           Withania somnifera  

 An effi cient  genetic transformation   protocol of medicinal plants with unique meta-
bolic pathways is important to understand the molecular basis and secondary 
metabolism regulation in plants so as to engineer them as per requirement. However, 
plants with high secondary metabolite content and even with a well-defi ned 
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regeneration system have been observed as recalcitrant to regeneration after genetic 
transformation. In  W. somnifera , hairy roots were developed after transformation 
using  A. rhizogenes , but that results in the production of only those chemical com-
pounds which are being synthesized in the roots itself (Ray et al.  1996 ; Murthy et al. 
 2008 ). Also, development of transgenic plants in  W. somnifera  was not reported 

  Fig. 14.14    GUS  histochemical   assay of putative transformants       
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earlier. We have reported for the fi rst time a protocol for genetic transformation of 
 W. somnifera  through  A. tumefaciens  using pIG121Hm as vector harboring  gusA  as 
a reporter gene (Pandey et al.  2010 ). In addition, the plants developed normally and 
were fertile. The developed protocol of  W. somnifera  could be useful for the transfer 
of target genes for the production of phytosteroids. It provides a robust tool to study 
the function of genes of steroidal transformations precisely associated to this medic-
inal plant and their role in plant growth and development and for biochemical path-
way engineering in  W. somnifera . Moreover, the protocol developed can also be 
used for the development of stress-tolerant  W. somnifera . 

 We have observed the feasibility and effectiveness of the commonly used LBA 
4404 strain of  A. tumefaciens  strain, containing the binary vector with pIG121hm 
plasmid, for transformation of  W. somnifera  through LS. The super virulent strain 
EHA101 was not found effective for this transformation. Through this study, stable 
transgenic plants of  W. somnifera  were obtained. The three important aspects were 
observed crucial for getting stable transgenics. First was the selection of suitable 
explants, their position on the plant, age, and having high regeneration ability. The 
second aspect was the standardization of different parameters for transformation, 
such as the preparation of explants, type of  A. tumefaciens  strain, optical density, 
sonication, infection time and cocultivation time, etc. The third aspect was the 
selection of antibiotics and their concentration, selection  o  f transformed tissue, opti-
mization of minimum inhibitory concentration (MIC), regeneration after selection, 
and their growth, hardening, and acclimatization of the transformed plants to the 
soil. 

 An optimization of transformation parameters produced fertile plants and also 
the increased  transient transformation effi ciency (TTE)  . Glasshouse-grown leaves 
proved as much better explants as compared to the leaves from in vitro-grown plants 
in terms of shoot regeneration. The second leaf from the tip  W. somnifera  NMITLI 
130 was the most regenerative and effi cient in comparison to the youngest leaf. 
Acetosyringone at 100 μM enhanced the effi ciency of transformation. The presence 
and expression of the transgenes in T 1  progeny was confi rmed by RT-PCR (Fig. 
 14.15a, b ). Southern blot analysis was performed to confi rm  the   integration of  gusA  
gene (Fig.  14.15c ). The TE was 1.67 % (Pandey et al.  2010 ).

14.5         Functional Analysis of Sterol Glycosyltransferase Genes 
of  Withania somnifera  

 Sterol glycosyltransferases (SGTs) are the enzymes that catalyze glycosylation of 
sterols and play an important role in adaptation of the plant during  stres  s and hold 
medicinal value in plants like  W. somnifera .  Glucosylation   of sterols are catalyzed 
in the presence of SGTs by transferring sugar moieties to diverse sterol molecules, 
leading to cellular homeostasis. SGTs are the members of family 1 glycosyltransfer-
ases (Chaturvedi et al.  2011 ).  W. somnifera  is a medicinal plant known for its sec-
ondary metabolites and is a rich source of sterols, steroidal lactones, and sterol 
glycosides. Sterols and their modifi ed glycosides have different medicinal 
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importance and play a role in adaptation of the plant during stress. In response to 
external stimuli, the expression of these  sgt s was differentially modulated in differ-
ent parts of  W. somnifera . A family of  sgt  genes is expressed in  W. somnifera , and 
these are functionally recruited under stress conditions (Sharma et al.  2007 ; 
Chaturvedi et al.  2012 ). The genes involved in sterol modifi cation are important in 
view of medicinal value and understanding the stress. We worked on functional 
characterization of these  sgt  genes of  W. somnifera  in homologous and heterologous 
expression systems ( N. tabacum  and  A. thaliana ) developing overexpression as well 
as suppression lines using artifi cial miRNA and siRNA technology to do their func-
tional analysis. 

14.5.1     Overexpression of  WsSGTL1  Gene of  W. somnifera  
in  Arabidopsis  Plants 

  WsSGTL1  is one of the members of  SGT  gene family and has 66 % homology with 
 AtSGT  of  A. thaliana . Therefore, we have  init  ially transferred  WssgtL1  gene in the 
heterologous expression system of  Arabidopsis  to understand its role in plant’s 

  Fig. 14.15    Detection of 
 t  ransformants in W. 
somnifera RSS-30 plants. 
( a ) PCR for the detection 
of gusA gene in T0 
transformants. M 500-bp 
ladder, L1–L2 putative 
transformants, +C positive 
control, C nontransgenic 
control; ( b ) RT-PCR for 
the detection of gusA 
expression in T1 transgenic 
lines. L1–L2 putative 
transformants, C 
nontransgenic control; ( c ) 
Southern hybridization for 
the establishment of 
insertion events in stable 
T1 transgenic lines. L1–L2 
transgenic lines       
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responses to heat, cold, and salt stress and to analyze the phenotypic and physiologi-
cal changes. The activity of the transgene and the stress-responsive genes was ana-
lyzed using quantitative real-time PCR and semiquantitative RT-PCR. The promoter 
analysis of this gene showed potential cis-acting elements against salt, heat, and 
cold stress which suggested the regulation of  WssgtL1  gene during stress in  W. som-
nifera  (Mishra et al.  2013 ). 

 The  Agrobacterium -mediated transformation of  WsSGTL1  gene in  A. thaliana  
was done, using the binary vector pBI121 via fl oral dip method. Different parame-
ters, such as germination, shoot weight, root length, relative electrolyte conductiv-
ity, MDA content, relative electrolyte leakage, SOD levels, and chlorophyll 
measurements, were compared between transgenic and wild-type (WT)  Arabidopsis  
plants under different stresses – salt, heat, and cold. Biochemical profi ling was done 
by HPLC-TLC and radiolabeled enzyme assay. The  WsSGTL1  promoter was cloned 
and the 3-D structures have been predicted. 

 The transgenic plants transformed with  WsSGTL1  were confi rmed to be single 
copy with the aid of Southern and homozygous by segregation evaluation. The 
transgenic plants showed higher germination and better tolerance to salt, heat, and 
cold as compared to WT. The expression of  WsSGTL1  transgene was elevated dur-
ing heat, cold, and salt stress vis-a-vis other marker genes, such as HSP70, HSP90, 
SOS3, RD29, and LEA4-5. Biochemical analysis revealed the formation of sterol 
glycosides and increased enzymatic activity. It was observed that the promoter of 
 WsSGTL1  gene contained stress-responsive elements. Bioinformatic analysis of the 
3D structure of  WsSGTL1  protein  demon  strated its functional similarity with sterol 
glycosyltransferase (AtSGT) of  A. thaliana . 

 Transformation of  A .   thalia    na  with  WsSGTL1  gene conferred tolerance to abiotic 
stress. The promoter of  WsSGTL1  gene was having stress-responsive elements. The 
3D structure illustrated the functional similarity with sterol glycosyltransferases.  

14.5.2     Transformation of  WsSGTL1  Gene of  W. somnifera  in  N. 
tabacum  Plants 

  WsSGTL1  gene was overexpressed  and   functionally characterized in transgenic 
tobacco plants. Transgenic tobacco lines showed an adaptive mechanism by show-
ing late germination, yellowish green leaves, stunted growth, and enhanced antioxi-
dant system.  WsSGTL 1- Nt  plants were observed with reduced chlorophyll and 
chlorophyll fl uorescence with decreased photosynthetic parameters. These modifi -
cations were supposed to be due to the enhanced glycosylation by  WsSGTL1 , as 
chlorophyll biogenesis-related genes were not observed modulated in transgenic 
lines as compared to WT plants. More accumulation of major sterols in glycosyl-
ated forms, like campesterol, stigmasterol, and sitosterol, was observed in trans-
genic plants. In addition, other secondary metabolites in relation to plant’s 
antioxidant system were enhanced in  WsSGTL 1- Nt  along with activities of antioxi-
dant enzymes (SOD, CAT; two to fourfold) when compared to WT plants. It was 
observed that  WsSGTL 1- Nt  plants reduced larval weight of  Spodoptera litura  (biotic 
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stress) up to 27 % and improved survival capacity of leaf disks against salt stress 
showing a signifi cant resistance toward both biotic and abiotic stresses. This study 
signifi es that increased glycosylation of sterols and enhanced antioxidant system 
due to the overexpression of  WsSGTL 1 gene confer specifi c functions in plants  t  o 
adapt under different environmental stresses (Pandey et al.  2014 ).  

14.5.3     Overexpression of  SGTL1  Gene of  W. somnifera  
in Homologous Expression System 

  WsSGTL1  gene was also  expressed   in  W. somnifera  to further authenticate its func-
tional signifi cance.  A. tumefaciens -mediated transformation was performed for the 
development of transgenics of  W. somnifera  using cotyledonary leaf segments. 
Overexpressed  WsSGTL1 - W. somnifera  lines were confi rmed by Southern blot anal-
ysis followed by quantitative RT-PCR. The  WsGTL1  transgenic plants showed a 
number of variations at phenotypic and metabolic level when compared to WT 
plants. An early and enhanced growth was observed with expanded leaves and 
increase in number of stomata. An increase in production of glycowithanolide 
(majorly withanoside V) and glycosylated forms of campesterol, stigmasterol, and 
sitosterol with reduced accumulation of withanolides (withaferin A, withanolide A, 
and withanone) were observed. Tolerance toward biotic stress (100 % mortality of 
 Spodoptera litura ) and improved survival capacity under cold stress was also dem-
onstrated. In addition, transgenic plants showed enhanced recovery capacity after 
cold stress, as indicated by better performance of photosynthesis, chlorophyll, 
anthocyanin content, and better quenching regulation of PSI and PSII. Our studies 
revealed that overexpression of  WsSGTL1  gene was responsible for increased gly-
cosylated withanolide and sterols and conferred better  g  rowth and tolerance to 
plants against both biotic and abiotic stresses (Saema et al.  2015b ).  

14.5.4      WsSGTL1  Gene Silencing in  W. somnifera  

14.5.4.1     Effect of RNAi-Mediated Gene Silencing in  W. somnifera  
 Silencing of  WsSGTL1  gene via  RNAi d  emonstrated that  WsSGTL1  is responsible 
for glycosylation of withanolides and sterols in addition to growth and development 
of  W. somnifera . RNAi construct (pFGC1008- WsSGTL1 ) was prepared and  A. tume-
faciens -mediated genetic transformation was done in  W. somnifera . Biochemical 
analysis by HPLC observed the reduction of withanoside V (the glycowithanolide of 
 W. somnifera ), increased amount of withanolides (majorly withaferin A) contents, 
and also major decrease in the  level   of glycosylated sterols (Saema et al.  2015c ).  
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14.5.4.2     Functional Analysis of Members of  WsSGTLs  Using 
aMIR-VIGS 

 We have characterized the function  of    SGTs  by silencing  SGTL1 ,  SGTL2 , and 
 SGTL4  in  W. somnifera . Downregulation of  SGTs  leads to accumulation of witha-
nolide A, withaferin A, sitosterol, stigmasterol, and decreased content of withano-
side V in transgenic lines. This was further confi rmed by the increased expression 
of  WsHMGR ,  WsDXR ,  WsFPPS ,  WsCYP710A1 ,  WsSTE1 , and  WsDWF5  genes 
involved in withanolide biosynthesis. These variations of withanolide concentra-
tions in transgenic lines resulted in the pathogen susceptibility as compared to con-
trol plants. The infection of  Alternaria alternata  causes increased salicylic acid, 
callose deposition, superoxide dismutase, and H 2 O 2  in transgenic lines. The expres-
sion of biotic stress-related genes, namely,  WsPR1 ,  WsDFS ,  WsSPI , and  WsPR10 , 
were also enhanced in transgenic lines in a time-dependent manner showing that the 
defense system of the plant turns on the SAR-mediated pathway against the fungal 
stress. Taken together, our observations revealed that a positive feedback regulation 
of withanolide biosynthesis occurred by silencing of  SGTLs  which resulted in 
reduced biotic tolerance (Singh et al.  2015 ). After downregulation of  SGTL  gene 
family of  W. somnifera , the glycosylation of withanolide, intermediate phenolics of 
PP pathway, and the level of SA decreased which affect the defense system of the 
plants. After pathogen attack, these intermediate phenolics, salicylic acid, level of 
reactive oxygen species, and H 2 O 2  have signifi cantly increased in downregulated 
lines as compared to control plants. The expression of defense-related gene  WsPR1 , 
 WsDFS ,  WsSPI  and  WsPR10 , increased with the infection time showing that defense 
system of the plant turn on the SAR-mediated pathway against the fungal stress.    

14.6     Conclusion 

 In  J. curcas , the establishment of fi eld-grown plant material was very problematic 
because of dormant bacterial contamination, although most of the plant parts regen-
erated shoots very early. The endophytic bacterial contamination has been removed 
by adding antibiotics in the medium along with growth hormones after which shoots 
remained healthy and regenerative without any subculture for 45 days. Multiple 
shoots could be conserved for long term for over 2 years with no bacterial contami-
nation. Necrosis was also the main constraint for obtaining quality planting material 
for large-scale propagation of  J. curcas  during long-term culture. We have over-
come this problem of necrosis by using different antioxidants and their combina-
tions in the medium. Healthy shoots were observed in the presence of CW and 
augmentin with 100 % acclimatization success, whereas shoots grown in the 
absence of CW and augmentin have small leaves and were prone to different soil 
microbes leading to higher mortality of tissue-raised plants. 

 Tissue culture is an appropriate technique used to popularize/acclimatize ger-
beras and Asiatic hybrid lilies in adverse/subtropical climatic conditions of north 
Indian plains and also to obtain quality planting material on a large scale. An 
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evaluation has been done on the problems related with establishment, shoot multi-
plication, and propagation of some distinguished cultivars so as to obtain plants 
early and in large numbers to benefi t gerbera growers. It could be concluded that 
“Salvador,” “Dana Ellen,” and “Rosaline” are the best gerbera cultivars to grow in 
this climate, whereas “Silvester,” “Goliath,” and also “Sunway” are not performing 
well under fi eld conditions. 

 For commercial fl oriculture, we need novelty in fl ower color and shape. In vitro 
mutagenesis is an applied tool to generate different fl ower colors and shapes of the 
fl orets particularly in the case of chrysanthemums. We have developed several vari-
eties using this technique. Leaf color variegation could also be developed in chry-
santhemum, tuberose, and lilies. These plants after leaf variegation remained 
ornamental even without fl owering. 

 We have developed highly effi cient transformation protocols of  J. curcas  and  W. 
somnifera  through  A. tumefaciens  using leaf explants. Various parameters were 
optimized but the stable transformation effi ciency was found to be 1.67 % in  W. 
somnifera ; however, in  J. curcas  TE was 5 % in the case of LS and 4 % in HS. 

 The sterol glycosyltransferase ( sgt ) gene family was identifi ed in  W. somnifera , 
and  sgtL1  and  sgtL3.1  of this family were characterized in  E. coli . The expression 
of these genes was ubiquitous in all the plant parts. The deduced amino acid 
sequence showed the presence of putative transmembrane domains; however the 
selection for glucosylation of membrane sterols by  WssgtL1  suggests its membrane 
functionality. The recombinant Sgts from  W. somnifera  which were partially puri-
fi ed used to be specifi c to the sterols having hydroxyl group at C3 position. Members 
of the gene family were expressed to varying levels in different parts of the plant. 
Rapid increase in the transcript level of some members of  sgtL  gene family, follow-
ing MeJA or SA treatments, suggests their role in biotic and abiotic stresses. 
Functional characterization of this gene by its overexpression and suppression in 
homologous and heterologous expression system suggests that  WsSGTL  gene fam-
ily plays a very signifi cant role in the growth and development, metabolic balance, 
and defense mechanism of the plant system.  

14.7     Future Prospects 

•     Control of endophytic bacterial contamination, removal of browning, and con-
trol of necrosis in tissue culture is very important. The methods developed by us 
was followed and cited by many more researchers working on  J. curcas  as well 
as on other crops. Improvement of 80 % rooting and hardening of in vitro shoots 
can lead to successful large-scale propagation of any elite plant of  J. curcas  on 
commercial scale.  

•   Commercial growers of gerbera and Asiatic hybrid lilies could be benefi ted from 
our study for popularization of these crops. They can initiate gerbera and Asiatic 
hybrid lilies cultivation under subtropical climate of Lucknow by selecting rec-
ommended cultivars from our study.  
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•   Using in vitro mutagenesis, different novelties in fl ower color and shape of the 
fl orets could be developed in fl oricultural crops.  

•   Diffi cult-to-propagate crops like  R. clinophylla , very important for breeding pur-
poses, could be propagated on a large scale using tissue culture.  

•   The work on  W. somnifera  can further be used for isolation of withanolides, as 
the plants raised through tissue culture will be uniform.  

•   Genetic improvement of a plant requires a transformation protocol. We have 
developed a transformation protocol which can further be used for the transfer of 
gene of interest or any gene related to oil biosynthetic pathway to increase the oil 
yield of  J. curcas . In the case of  W. somnifera , the developed protocol could be 
used for transfer of any gene related to the production of phytosteroids or witha-
nolide pathway-related gene, e.g., sterol glycosyltransferase genes.  

•   The present work is the detailed knowledge base for the involvement of  WsSGTL1  
gene of  W. somnifera  in response to environmental stresses. But there is limited 
information on the multiple functions of  WsSGTL1  and the biological roles of 
plant  SGT s. These are the challenging aspects which need further investigation.  

•   Resolving the glycosylation steps and fi nally the entire withanolide biosynthetic 
pathway at molecular stage must be a major target for future WsSGT study.        

   References 

    Bush DR, Leach JE (2007) Translational genomics for bioenergy production: there’s room for 
more than one model. Plant Cell 19:2971–2973  

    Chaturvedi P, Misra P, Tuli R (2011) (Review) Sterol glycosyltransferases – the enzymes that 
modify sterols. Appl Biochem Biotechnol 165:47–68  

    Chaturvedi P, Mishra M, Akhtar N, Gupta P, Misra P et al (2012) Sterol glycosyltransferases- 
identifi cation of members of gene family and their role in stress in  Withania somnifera . Mol 
Biol Rep 39:9755–9764  

      Datta SK, Misra P, Mandal AKA, Deepti, Chakrabarty D (2002) Direct shoot organogenesis from 
different explants of chrysanthemum, marigold and tuberose. Isr J Plant Sci 50:287–291  

    Datta SK, Misra P, Mandal AKA (2005) Mutagenesis – a quick method for establishment of solid 
mutant in chrysanthemum. Curr Sci 88:155–158  

    Eady CC, Truman L, McCallum J, Shaw M, Pither-Joyce M, Davis S, Reader J (2004) Transgenic 
onions with reduced alliinase activity: biochemical and molecular assessment. Acta Hortic 
688:181–190  

    Hiwasa-Tanase K, Nyarubona M, Hirai T, Kata K, Ichikawa T, Ezura H (2011) High-level accumu-
lation of recombinant miraculin protein in transgenic tomatoes expressing a synthetic  miracu-
lin  gene with optimized codon usage terminated by the native miraculin terminator. Plant Cell 
Rep 30:113–124  

    Keith O (2000) A review of  Jatropha curcas : an oil plant of unfulfi lled promise. Biomass Bioenergy 
19:1–15  

    Li K, Yang W-Y, Li L, Zhang CH, Cui Y-Z, Sun Y-Y (2007) Distribution and development strategy 
for  Jatropha curcas  L. For Stud China 9:120–126  

    Mazumdar P, Basu A, Paul A, Mahanta C, Sahoo L (2010) Age and orientation of the cotyledonary 
leaf explants determine the effi ciency of  de novo  plant regeneration and  Agrobacterium 
tumefaciens - mediated transformation in  Jatropha curcas  L. S Afr J Bot 76:337–344  

P. Misra and S. Saema



341

     Mishra N, Misra P, Datta SK, Mehrotra S (2003) Improvement in clonal propagation of  Hemidesmus 
indicus  R.Br. through adenine sulphate. J Plant Biotechnol 5:239–244  

    Mishra N, Misra P, Datta SK, Mehrotra S (2005)  In vitro  biosynthesis of antioxidants from 
 Hemidesmus indicus  R.Br. cultures. In Vitro Cell Dev Biol-Plant 44:285–290  

    Mishra MK, Chaturvedi P, Singh R, Singh G, Sharma LK, Pandey V, Kumari N, Misra P (2013) 
Overexpression of  WsSGTL1  gene of  Withania somnifera  enhances salt tolerance, heat toler-
ance and cold acclimation ability in transgenic  Arabidopsis  plants. Plos One 8:1–16  

    Misra P, Chakrabarty D (2009) Clonal propagation of  Rosa clinophylla  Thory. through axillary bud 
culture. Sci Hortic 119:212–216  

    Misra P, Datta SK (1999)  In vitro  propagation of white marigold ( Tagetes erecta  L.) through shoot 
tip proliferation. Curr Sci 77:1138–1140  

     Misra P, Datta SK (2000)  In vitro  maintenance of F 1  hybrids. Curr Sci 78:383–384  
       Misra P, Datta SK (2001) Acclimatization of Asiatic hybrid lilies under stress conditions after 

propagation through tissue culture. Curr Sci 81:1530–1533  
    Misra P, Datta SK (2007) Standardization of  in vitro  protocol in  Chrysanthemum  cv. Madam 

E. Roger for development of quality planting material and to induce genetic variability using 
γ-radiation. Indian J Biotechnol 6:121–124  

    Misra P, Kochhar S (2008) Acclimatisation of  in vitro -raised plants of Asiatic hybrid lily in sub-
tropical climate and associated changes in stress proteins and antioxidant enzymes. J Plant 
Biochem Biotechnol 17:45–50  

    Misra P, Datta SK, Chakrabarty D (2004) Mutation in fl ower colour and shape of chrysanthemum 
by using γ-radiation. Biol Plant 47:153–156  

        Misra P, Gupta N, Toppo DD, Pandey V, Mishra MK, Tuli R (2010a) Establishment of long-term 
proliferating shoot cultures of elite  Jatropha curcas  L. by controlling endophytic bacterial con-
tamination. Plant Cell Tiss Org Cult 100:189–197  

      Misra P, Toppo DD, Gupta N, Chakrabarty D, Tuli R (2010b) Effect of antioxidants and associate 
changes in antioxidant enzymes in controlling browning and necrosis of proliferating shoots of 
elite  Jatropha curcas  L. Biomass Bioenergy 34:1861–1869  

     Misra P, Purshottam DK, Syed S, Jain MB, Toppo DD (2010c) A comparative study of  in vitro  
regeneration of shoots in different cultivars of  Gerbera jamesonii  h. Bolus ex hook. F. Propag 
Ornamental Plants 10:156–162  

    Misra P, Pandey V, Kochhar S (2010d) Study of antioxidant enzymes activity during organogenesis 
and  in vitro  propagation of Asiatic hybrid lily. J Plant Biochem Biotechnol 19:119–122  

     Misra P, Toppo DD, Mishra MK, Syed S, Singh G (2012)  Agrobacterium tumefaciens -mediated 
transformation protocol of  Jatropha curcas  L. using leaves and hypocotyl segments. J Plant 
Biochem Biotechnol 21:128–133  

    Murlidhar CE, Mehta AR (1982) Clonal production of three ornamental plants through tissue 
culture methods. Plant Tissue Cult 5 Meet:693–694  

    Murthy HN, Dijkstra C, Anthony P, White DA, Davey MR, Power JB, Hahn EJ, Paek KY (2008) 
Establishment of  Withania somnifera  hairy root cultures for the production of WithanolideA. J 
Integr Plant Biol 50:975–981  

    Pan J, Fu Q, Fu Xu Z (2010)  Agrobacterium tumefaciens -mediated transformation of biofuel plant 
 Jatropha curcas  using kanamycin selection. Afr J Biotechnol 9:6477–6481  

       Pandey V, Misra P, Chaturvedi P, Mishra MK, Trivedi PK, Tuli R (2010)  Agrobacterium 
tumefaciens - mediated transformation of  Withania somnifera  (L.) Dunal – an important medici-
nal plant. Plant Cell Rep 29:133–141  

    Pandey V, Atri N, Chandrashekhar K, Mishra MK, Trivedi PK, Misra P (2014)  WsSGTL 1 gene 
from  Withania somnifera , modulates glycosylation profi le, antioxidant system and confers 
biotic and salt stress tolerance in transgenic tobacco. Planta. doi:  10.1007/s00425-014-2046-x      

    Pathak S, Mishra BK, Misra P, Misra P, Joshi VK, Shukla S, Trivedi PK (2012) High frequency 
somatic embryogenesis, regeneration and correlation of alkaloid biosynthesis with gene 
expression in  Papaver somniferum . Plant Growth Regul 68:17–25.  doi:  10.1007/
s10725-012-9689-z      

14 Plant Tissue Culture for In Vitro Mutagenesis, Large-Scale Propagation…

http://dx.doi.org/10.1007/s00425-014-2046-x
http://dx.doi.org/10.1007/s10725-012-9689-z
http://dx.doi.org/10.1007/s10725-012-9689-z


342

    Ray S, Ghosh B, Jha S (1996) Withanolide production by root cultures of  Withania somnifera  
transformed with  Agrobacterium rhizogenes . Planta Med 62:571–573  

   Saema S, Ahmad IZ, Misra P (2015a) Rapid in Vitro Plant Regeneration from Nodal Explants of 
 Withania somnifera  (L.) Dunal: a valuable medicinal plant. Int J Sci Res:2319–7064  

   Saema S, Rahman LU, Singh R, Niranjan A, Ahmad IZ, Misra P (2015b) Ectopic overexpression 
of WsSGTL1, a sterol glucosyltransferase gene in Withania somnifera, promotes growth, 
enhances glycowithanolide and provides tolerance to abiotic and biotic stresses. Plant Cell 
Rep. doi:  10.1007/s00299-015-1879-5      

   Saema S, Rahman LU, Niranjan A, Ahmad IZ, Misra P (2015c) RNAi-mediated gene silencing of 
WsSGTL1 in W.somnifera affects growth and glycosylation pattern. Plant Signal Behav. doi:  1
0.1080/15592324.2015.1078064      

    Sanyal M, Dutta Gupta S, Jana MK, Kundu SC (1998) Shoot organogenesis and plant regeneration 
from leaf callus cultures of tuberose ( Polianthes tuberose  L.). Plant Tissue Cult Biotechnol 
4:81–86  

    Sharma LK, Madina BR, Chaturvedi P, Sangwan RS, Tuli R (2007) Molecular cloning and char-
acterization of one member of 3beta-hydroxy sterol glucosyltransferase gene family in 
 Withania somnifera . Arch Biochim Biophys 460:48–55  

    Shen TM, Cowen RD, Meyer MM Jr (1991)  In vitro  propagation of tuberose. Plant Cell Tiss Org 
Cult 1:33–38  

    Singh G, Saema S, Surendra Singh, Misra P (2015) Effect of antioxidant protection system on 
regeneration potential of different chemotypes of  Withania somnifera  – a comparative analysis. 
Indian J Exp Biol (in press)  

    Sun H-J, Kataoka H, Yano M, Ezura H (2007) Genetically stable expression of functional miracu-
lin, a new type of alternative sweetener, in transgenic tomato plants. Plant Biotechnol 
J 5:768–777  

    Toppo DD, Singh G, Purshottam DK, Misra P (2012) Improved  in vitro  rooting and acclimatiza-
tion of  Jatropha curcas  plantlets. Biomass Bioenergy 44:42–46  

    Waithaka K (1986) Micropropagation of tuberose by  in vitro  somatic organogenesis of leaf friable 
callus. Intl Congr Plant Tissue Cult 6 Meet:239  

    Ye X, Al-Babili S, Klo¨ti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provita-
min A (b-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 
287:303–305    

P. Misra and S. Saema

http://dx.doi.org/10.1007/s00299-015-1879-5
http://dx.doi.org/10.1080/15592324.2015.1078064
http://dx.doi.org/10.1080/15592324.2015.1078064


343© Springer Science+Business Media Singapore 2016
M. Anis, N. Ahmad (eds.), Plant Tissue Culture: Propagation, Conservation 
and Crop Improvement, DOI 10.1007/978-981-10-1917-3_15

        D.  K.   Srivastava      (*) •    P.   Kumar    •    S.   Sharma    •    A.   Gaur    •    G.   Gambhir    
  Department of Biotechnology ,  Dr Yashwant Singh Parmar University of Horticulture 
and Forestry ,   Solan   173230 ,  Himachal Pradesh ,  India   
 e-mail: dksuhf89@gmail.com  

 15      Genetic Engineering for Insect 
Resistance in Economically Important 
Vegetable Crops                     

     D.  K.     Srivastava     ,     P.     Kumar    ,     S.     Sharma    ,     A.     Gaur    , 
and     G.     Gambhir   

15.1          Introduction 

 Vegetables play a vital role in human nutrition and health by providing nutrients, 
vitamins, antioxidants, phytosterols, and dietary fi ber. In the developing world, veg-
etable farming is a considerable part of the agricultural economy of different nations. 
Vegetable crop quality and quantity are seriously affected by various biotic and 
abiotic stresses, which destabilize rural economies in many countries. In the last 
many decades, conventional breeding has contributed signifi cantly for the improve-
ment of vegetable quality, yields, biotic and abiotic stress resistance, and posthar-
vest management, but there are many constraints in conventional breeding, which 
can only be overcome by techniques of modern biology for genetic advancements. 

  Plant genetic engineering techniques   have enabled investigators to genetically 
transform various crop species by introducing desirable foreign gene(s) into plants. 
Insect pest management using plant genetic engineering techniques in crop plants 
has advantages of user-friendly, environment-friendly, and consumer-friendly 
method for crop protection to fulfi ll the demands of sustainable agriculture (Kumar 
and Srivastava  2016 ). Food and energy insecurities are currently two foremost 
global problems. Losses due to pests and diseases have been revealed around 37 % 
of the agricultural production worldwide, with 13 % due to insects. Engineering 
insect resistance in transgenic plants has been obtained through the use of insect 
control protein genes of   Bacillus thuringiensis   . Till date, researchers have focused 
on the introduction of genes for the expression of modifi ed  Bacillus thuringiensis  
( Bt ) toxins. Successful results on the control of  Bt -susceptible pests have been 
achieved, and  Bt  transgenic crops are being commercialized and used worldwide.  
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15.2     Sources of Insect Resistance Genes 

 Majority of economically important vegetable crops are severely infested by a num-
ber of insect pests.  Insect pest management   using chemical insecticides/pesticides 
is an effective strategy but often leads to deleterious effects on human health result-
ing in environmental contamination and ecological imbalances.  Plant transgenic 
technology   for insect resistance provides an effective environmentally safe and 
durable alternative. The various sources of insect resistance gene(s) are microbial, 
plant, and animal origin. These insect resistance genes have been isolated, cloned, 
and transferred to various economically important crops. 

  Insect resistance genes   of microbial origin include  insecticidal crystal protein  , 
 cry  gene(s),  and   vegetative insecticidal protein,   vip  gene(s)   (Kumar and Srivastava 
 2016 ).  Bacillus thuringiensis  ( Bt ) a common soil bacterium was fi rst isolated in 
Thuringia region of Germany.  Bt  produces insecticidal crystal protein   cry gene ( s )   
(Table  15.1 ) that paralyzes the larvae of some harmful insects, including the cotton 
bollworm and the Asian and European corn borers, all of which are common plant 
pests whose infestations produce devastating effects on important crops. Mode of 
action of  Bt  toxin is that when it is ingested by the larvae of target insect,  Bt  protein 
is activated in the insect midgut alkaline condition and punctures the midgut leaving 
the insect which is not able to feed to die. The cloning of genes expressing the insec-
ticidal proteins of   Bacillus thuringiensis    (Höfte and Whiteley  1989 ) has allowed the 

   Table 15.1    Insect  resistance   gene(s) of microbial origin ( Bacillus thuringiensis ) and crystal pro-
tein gene classifi cation   

 S. No.  Gene designation  Molecular weight (KD)  Toxicity 

 1.   cry IA  ( a )( b )( c )  131–133  Lepidoptera 

 2.   IB   137  Lepidoptera 

 3.   IC   134  Lepidoptera 

 4.   ID   133  Lepidoptera 

 5.   IE   137  Lepidoptera 

 6.   IF   134  Lepidoptera 

 7.   IG   130  Lepidoptera 

 8.   cry IIA   71  Lepidoptera, Diptera 

 9.   IIB   71  Lepidoptera, Diptera 

 10.   IIC   71  Lepidoptera, Diptera 

 11.   cry IIIA   73  Coleoptera 

 12.   IIIB   73  Coleoptera 

 13.   IIIC ( a )( b )  73  Coleoptera 

 14.   cry IVA   134  Diptera 

 15.   IVB   128  Diptera 

 16.   IVC   77  Diptera 

 17.   IVD   72  Diptera 

 18.   cry V   80  Lepidoptera, Coleoptera 

  Source: Höfte and Whiteley ( 1989 )  
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development of transgene strategies for incorporation of resistance to a variety of 
lepidopteran and coleopteran insect pests in many agriculturally important crops 
(Fischhoff et al.  1987 ;  Bottrell et al.  1992 ; Fujimoto et al.  1993 ; Fromm et al.  1994 ; 
Sharma and Srivastava  2014 ). Different researchers have isolated the  Bt  gene 
responsible for the production of the insecticidal protein from the bacterium and 
introduced it into the genome of plants. Thus, these transgenic plants provide mech-
anism of protection against targeted pests.     Sources   of  vip  gene(s) are  Bacillus 
thuringiensis  and  Bacillus cereus . A large number of vip (approx. 50) have been 
identifi ed. Ingestion of vip proteins causes swelling and disruption of midgut epi-
thelial cells by osmotic lysis in the target insect. The different types of  vip  proteins 
are  vip1  and  vip2  active against coleopteran insects and  vip3Aa1  ( vip3A ) and 
 vip3Bb1  active against lepidopteran insects.

    Insect resistance genes   of plant origin include   protease inhibitor  (PI) gene   and 
  lectin  gene  . Protease inhibitors act as antimetabolic proteins, which interfere with 
the digestive process of insects. They inhibit the activity of the gut protease of the 
insects and reduce the quantity of the proteins that can be digested and also cause 
hyperproduction of the digestive enzymes which enhances the loss of sulfur amino 
acids, as a result of which the insects become weak, with stunted growth, and ulti-
mately die (Table  15.2 ). The fi rst time use of a plant-derived PI gene was described 
and transformed tobacco plants with trypsin inhibitor gene ( CpTI ) from  Vigna 
unguiculata  were obtained (Hilder et al.  1987 ). Regenerated plants expressing   CpTI    
under the control of caulifl ower mosaic virus 35S promoter had signifi cantly 
enhanced resistance to  Heliothis virescens .   α - Amylase  gene   and  protein α-amylase 
inhibitors   have been isolated from a variety of plant species and microorganisms. 
α-Amylase inhibitors function in a similar manner as proteinase inhibitors, interfer-
ing with insect nutrient utilization. When tested in artifi cial diet, purifi ed α-amylase 
inhibitors from wheat showed insecticidal effect to coleopteran pests  Collosobruchus 
maculatus  and  Tribolium confusum  (Gatehouse et al.  1986 ).    Lectins are carbohydrate- 
 binding   proteins found in many plant tissues, but are often present in relatively large 
amounts (usually approximately 1 % of total protein, but in some species, e.g., 
 Phaseolus vulgaris , up to 30 %) in seeds and other storage tissues. The toxic effects 
of lectin are mediated through its binding to the midgut epithelial cell with conse-
quent disruption of the cell function. The bound lectins may inhibit nutrient absorp-
tion or disrupt midgut cells by stimulating endocytosis of the lectin and possibly 
other toxic metabolites present in the midgut. Most importantly, lectins can be used 
to control sapsucking insects belonging to the suborder Homoptera, which includes 
some of the most devastating pests spread worldwide. Various lectins have been 
proved toxic toward members of Coleoptera, Lepidoptera (Czalpa and Lang  1990 ), 
and Diptera (Eisemann et al.  1994 ).

    Insect resistance genes   of animal origin include  proteinase inhibitors  ( anti - 
 chymotrypsin  from  Manduca sexta ,  anti - elastase  from  Manduca sexta ),  α - antitrypsin  
( α   1   AT ) ( antitrypsin  from  Manduca sexta ,  bovine pancreatic trypsin inhibitor  
( BPTI )/ pancreatic ,  spleen inhibitor  ( SI )), and  chitinase  ( chitinase  from  Manduca 
sexta ) (Kumar and Srivastava  2016 ). It is reported that overexpression of protease 
inhibitors (PIs) provides protection against different insect species (Wolfson and 

15 Genetic Engineering for Insect Resistance in Economically Important Vegetable Crops



346

Murdock  1987 ).   Chitinase  expression   normally occurs in insects during molting 
when insects shed their old exoskeleton and peritrophic membrane (both contain 
chitin as major component) and resynthesize new ones. Thus, insect feedings on 
plants that constitutively express an insect chitinase gene might be adversely 
affected.  Avidin   is a glycoprotein from chicken ( Gallus gallus ) egg white that binds 
its ligand, biotin, with very high affi nity.  Biotin   is a coenzyme required for all forms 
of life, so feeding avidin to many insects causes a biotin defi ciency that leads to a 
stunted growth and mortality (Ding et al.  1998a ) (Table  15.3 ).

   The different approaches for transferring desirable genes into plant cells (mono-
cot or dicot) may be divided into direct and indirect techniques. Transgenic plants 

   Table 15.2    Insect resistance gene(s) of plant origin   

 S. No.  Gene source/genes  Effect evaluated on predators 

  A few protease inhibitor genes  

 1.  Cowpea trypsin inhibitor ( CpTI )  Coleoptera, Lepidoptera 

 2.  Tomato proteinase inhibitor-I  Lepidoptera 

 3.  Tomato proteinase inhibitor-I I  Lepidoptera 

 4.  Potato proteinase inhibitor-I 
( Pot - PT - I ) 

 Lepidoptera, Orthoptera 

 5.  Potato proteinase inhibitor – II 
( Pot - PT - II ) 

 Lepidoptera, Orthoptera 

 6.  Rice cysteine proteinase inhibitor 
( OC - 1 ) 

 Coleoptera, Homoptera 

 7.  Soybean Kunitz trypsin inhibitor 
( SKT - 1 ) 

 Lepidoptera 

 8.  Barley trypsin inhibitor ( CMe )  Lepidoptera 

 9.  Mustard serine proteinase inhibitor 
( MTI - 2 ) 

 Lepidoptera 

 10.  Soybean serine proteinase inhibitor 
( PI - IV ) 

 Lepidoptera 

 S. No  Plant gene  Encoded protein  Plant of origin 

  Examples of few α-amylase genes  

 1.   α - AI - Pv   α-Amylase  Common bean 

 2.   WMAI - 1   α-Amylase  Cereals 

 3.   14K - CI   Serine and α-amylase inhibitor  Cereals 

 S. No  Plant gene  Encoded protein  Plant of origin 

  Examples of few lectin genes  

 1.   GNA  ( Galanthus nivalis  agglutinin)  Lectin  Snowdrop 

 2.   p - lec   Lectin  Pea 

 3.   WGA Agglutinin  (wheat-germ agglutinin)  Lectin  Wheat germ 

 4.  Jacalin  Lectin  Jackfruit 

 5.  Rice lectin  Lectin  Rice 

D.K. Srivastava et al.
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have been produced in different agriculturally important crops by employing direct 
and indirect gene transfer techniques. These techniques include  Agrobacterium - 
mediated gene transfer and direct gene transfer. After delivery and integration of a 
gene in the genome, a plant cell can be regenerated into a fertile plant, whose germ 
cells are capable of transferring the gene to the progeny. The genes are stably inte-
grated into the plant genome and further inherited like dominant Mendelian genes. 

  Plant genetic engineering techniques   have tremendous potential for the improve-
ment of crop plants. Most of the transgenic plants produced to date were created 
through the use of  Agrobacterium  system (Gasser and Fraley  1989 ; Jain  1993 ; 
Singh and Sansavini  1998 ; Dunwell  2000 ; Ranjekar et al.  2003 ; Cardoza and 
Stewart  2004 ; Srivastava  1997 ,  1998 ,  2001 ,  2003 ,  2012a ,  b ).   Agrobacterium    is 
called as natural genetic engineer, a causative agent of crown gall disease fi rst rec-
ognized by Chilton et al. ( 1977 ), who demonstrated that the crown gall was actually 
produced as a result of the transfer and integration of genes from the  Agrobacterium  
(Ti plasmid) into the genome of plant cells. The fi rst transgenic plants expressing 
engineered foreign genes were tobacco plants produced by the use of  Agrobacterium 
tumefaciens  as a vector (Horsch et al.  1984 ; De Block et al.  1984 ). An effi cient 
method for introducing cloned gene(s) into plant cells was given by Fraley et al. 
( 1983 ), Herrera Estrella et al. ( 1983 ). The most widely used method of gene transfer 
is particle  gene gun method   and   Agrobacterium -mediated gene transfer method  . 

 Genetic transformation of plants to confer resistance to insect pests offers an 
eco-friendly method of crop protection (Kumar and Srivastava  2016 ). Signifi cant 
contributions have been made in developing transgenic crops with resistance to the 
target insect pests over the past two decades (Vaeck et al.  1987 ; Chakrabarty et al. 
 2002 ). Remarkable results have been reported with the expression of  Bt  ( cry ) genes, 
cowpea trypsin inhibitor gene, serine proteinase inhibitor gene, and cysteine pro-
teinase inhibitor genes in various crops (Gatehouse et al.  1980 ; Wolfson and 
Murdock  1987 ; Houseman et al.  1989 ; Johnson et al.  1989 ; Liang et al.  1991 ; Bai 
et al.  1992 ; Ding et al.  1998b ; Jin et al.  2000 ; Cho et al.  1994 ; Awasthi  2003 ; 
Chakrabarty et al.  2002 ; Zhang et al.  2004 ; Paul et al.  2005 ; Lingling et al.  2005 ; 
Zhao et al.  2006 ; Hua et al.  2009 ; Deng-Xia et al.  2011 ; Sharma and Srivastava 
 2013 ; Kumar and Srivastava  2016 ). Such transgenic plants have shown consider-
able promise in reducing insect damage. Conventionally to protect the crop plants 
from insect pest attack, a massive application of pesticides has been used which 

   Table 15.3        Insect resistance gene(s) of animal origin   

 S. No  Gene product  Target insect 

 1.  Anti-chymotrypsin from  Manduca sexta   Homoptera 

 2.  Anti-elastase from  Manduca sexta   Homoptera 

 3.   α -  1   AT (α-antitrypsin)  Lepidoptera 

 4.  Antitrypsin from  Manduca sexta   Homoptera 

 5.   BPTI  (bovine pancreatic trypsin inhibitor)  Lepidoptera, Orthoptera 

 6.   SI  (spleen inhibitor)  Lepidoptera 

 7.  Chitinase from  Manduca sexta   Lepidoptera 
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causes adverse effects on nontarget organisms and the environment. In this chapter, 
we summarize the genetic transformation studies for insect resistance gene(s) being 
carried out in economically important vegetable crops such as tomato ( Solanum 
lycopersicum ), potato ( Solanum tuberosum ), cabbage ( Brassica oleracea  L. var. 
 capitata ), caulifl ower ( Brassica oleracea  L. var.  botrytis ), broccoli ( Brassica olera-
cea  L. var.  italica ), brinjal or eggplant ( Solanum melongena  L.), pea ( Pisum sativum  
L. var. Lincoln), lettuce ( Lactuca sativa  L.), and bell pepper or  Capsicum  ( Capsicum 
annuum  L.). 

15.2.1     Tomato 

    Tomato   (new name   Solanum lycopersicum   , earlier known as   Lycopersicon esculen-
tum    Mill.) is one of the most  important   vegetable crops of Solanaceae family grown 
all over the world for its special nutritive value. It is a diploid plant with 2 n  = 24 
chromosomes. In India, it occupies an area of 845.574 mha with a production of 
18,304.54 million tonnes (National Horticulture Board  2014 –2015). The  Food and 
Agriculture Organization (FAO)   of the United Nations reported about 161.8 million 
tonnes world production of tomato, where China, the largest producer, accounted 
for about one quarter of the global output, followed by the United States and   India    . 
Tomatoes, eaten throughout the world, are a rich source of carotene and lycopene, 
one of the most powerful natural antioxidants, which prevents oxidative damage 
and has been shown to improve the skin’s ability to protect against harmful UV 
rays. Along with  lycopene  , tomato contains vitamin A, vitamin C, minerals, and a 
number of other antioxidants (Aggarwal and Rao  2000 ). Tomato plants produce the 
  plant peptide hormone       system, systemin    , after an insect attack so that tomato culti-
vars vary widely in their resistance to disease. Insect pests of tomato cultivar are 
  stink bugs    ,   cutworms    ,   tomato hornworms    ,   tobacco hornworms    ,   aphids    ,   cabbage 
loopers    ,   whitefl ies    ,   tomato fruitworms    ,   fl ea beetles    ,   red spider mite    ,   slugs    , and 
  Colorado potato beetles    . Systemin activates defensive mechanisms, such as the pro-
duction of   protease inhibitors     to slow the growth of insects (Garcia et al.  2015 ). 
However, the tomato crop is severely affected by the caterpillar of   Helicoverpa 
armigera   . Total yield loss caused by the direct insect pests on tomato is 5–55 % 
(Selvanarayanan and Narayanasamy  2006 ). To check this loss, a lot of pesticides/
insecticides are being used on tomato crop which have drawbacks such as damage 
to the ecological system and residual poisoning of humans and animals. Therefore, 
it is desirable to develop insect- resistant plants through the introduction of foreign 
insecticidal genes. A number of strategies including the use of genes for insect resis-
tance such as protease inhibitors, lectins, amylase inhibitors, and delta-endotoxin 
gene present in a soil bacterium  Bacillus thuringiensis  (Bt) assume major signifi -
cance (Johnson et al.  1989 ; Schroeder et al.  1995 ; Naimov et al.  2003 ; Lingling 
et al.  2005 ; Wang et al.  2005 ; Ignacimuthu and Prakash  2006 ; Tiwari et al.  2008 ; 
Yazdanpanah et al.  2009 ). Protease inhibitors have been used for genetic engineer-
ing in tomato (McGarvey et al.  1994 ; Dowd and Lagrimini  1997 ; Gatehouse  1995 ). 
Snowdrop lectin   Galanthus nivalis  agglutinin (GNA)   in artifi cial diet resulted in 
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insect resistance by controlling insect biomass (Gatehouse  1995 ). Genes encoding 
for the delta-endotoxins have been cloned since 1980s (Schnepf and Whitley  1981 ), 
and expression of fi rst introduced genes in tobacco and tomato provided the fi rst 
example of genetically modifi ed plants with resistance to insects (Barton et al. 
 1987 ; Vaeck et al.  1989 ). Tomato plants expressing  cry1A ( b ) and  cry1A ( c ) genes 
have been developed to control lepidopteran insects (Delannay et al.  1989 ; 
Mandaokar et al.  2000 ; Kumar and Kumar  2004 ; Zhang et al.  2006 ) (Table  15.4 ). A 
protocol for insect resistance gene transfer in tomato has been standardized in our 
laboratory using   Agrobacterium tumefaciens    strain containing  npt - II  and  cryIAa  
genes in binary vector pBin-1Aa. Putative transgenic plantlets of tomato have 
shown the amplifi cation of  cryIAa  gene thereby indicating the  presence/integration 
of  cryIAa  gene into the genome of transgenic tomato. The expression of  cryIAa  

   Table 15.4    Genetic engineering for insect resistance gene(s)    transfer studies in  tomato     

 Crystal proteins  Origin  Target insects  References 

  Insect resistance genes of microbial origin  

  Bt  gene  Bacterial  Lepidoptera and 
coleopteran 

 Fischhoff et al. ( 1987 ) 

  cry IAb   Bacterial  Lepidoptera  Delannay et al. ( 1989 ) 

  Bt  gene  Bacterial  Lepidoptera and 
coleopteran 

 Delannay et al. ( 1989 ) 

  Bt  gene  Bacterial  Lepidoptera and 
coleopteran 

 Liang et al. ( 1994 ) 

  Bt  gene  Bacterial  Lepidoptera and 
coleopteran 

 Rhim et al. ( 1995 ) 

  cry1Ac   Bacterial  Lepidoptera and 
coleopteran 

 Mandaokar et al. ( 2000 ) 

  cryIAb  gene  Bacterial  Lepidoptera and 
coleopteran 

 Kumar and Kumar 
( 2004 ) 

  cryIAc   Bacterial  Lepidoptera and 
coleopteran 

 Zhang et al. ( 2006 ) 

  cry6A   Bacterial  Lepidoptera and 
coleopteran 

 Li et al. ( 2007 ) 

  cry IAa   Bacterial  Lepidoptera  Sharma and Srivastava 
( 2013 ) 

  Insect resistance genes of plant origin  

 Tomato proteinase 
inhibitor-I 

 Plant  Lepidoptera  McGarvey et al. ( 1994 ) 

  CMV - CP   Plant  Lepidoptera  Liang et al. ( 1994 ) 

 Tomato proteinase 
inhibitor-II 

 Plant  Lepidoptera  McGarvey et al. ( 1994 ) 

  CpTI  (cowpea trypsin 
inhibitor) 

 Plant  Lepidoptera  Gatehouse ( 1995 ) 

  GNA (snowdrop lectin)  Plant  Lepidoptera  Gatehouse ( 1995 ) 

 Tobacco anionic 
peroxidase 

 Plant  Lepidoptera, Coleoptera  Dowd and Lagrimini 
( 1997 ) 
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(insect resistance) gene was studied at the transcriptional level using  reverse tran-
scriptase-polymerase chain reaction (RT-PCR) technique  . Out of the four samples, 
three have shown the synthesis and amplifi cation of cDNA thereby indicating that 
the gene is being expressed at the transcriptional level in these three transgenic 
tomato lines. A protocol for insect resistance gene transfer in tomato has been stan-
dardized (Sharma and Srivastava  2013 )   (Fig.  15.1 ).

15.2.2         Potato 

    Potato   (   Solanum        tuberosum    L.) is a   starchy    ,   tuberous       crop     from the    nightshade   fam-
ily    . It is the world’s fourth largest food crop, following   rice    ,   wheat    , and   maize    . 
Potato had its origin in southern   Peru     and extreme northwestern   Bolivia    , where they 
were domesticated 7000–10,000 years ago. The potato is best known for its 

  Fig. 15.1    ( a ) In vitro developed transgenic shoots of tomato cv. Solan vajr. ( b ) Root regeneration 
from in vitro  developed   shoots of tomato on selective media. ( c ) Young, healthy transgenic plant-
lets  s  uccessfully acclimatized on the planting substrate after 4 weeks of hardening and maintained 
in greenhouse. ( d ) PCR analysis showing amplifi cation of 1 kb of  cryIAa -specifi c DNA fragment 
in regenerated transgenic plantlets of tomato. 1 kb molecular weight marker (M), positive control 
(+ve C), negative control (-ve C), and (T 1 –T 9 ) independent lineages of putative transgenic plant-
lets. ( e ) cDNA synthesis by RT-PCR showing the expression of  cryIAa  gene at transcriptional level 
in the transgenic plantlets of tomato (1 kb molecular weight marker (M), T 1 –T 4  independent lin-
eages of transgenic plantlets (plantlets confi rmed by PCR using designed primers)) (Source: 
Sharma and Srivastava  2013 )       
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  carbohydrate     content (approximately 26 g in a medium potato). Potato is also a rich 
source of   vitamins     and   minerals    , as well as an assortment of   phytochemicals    , such 
as   carotenoids     and natural phenols.   Chlorogenic acid     constitutes up to 90 % of the 
potato tuber natural phenols. It provides protection against   colon cancer    , improves 
  glucose     tolerance and insulin sensitivity, lowers plasma cholesterol and   triglyceride     
concentrations, increases satiety, and possibly even reduces fat storage. In India, the 
total production of potatoes in 2014–2015 was 42,173.977 million tonnes in an area 
of 1990.053 mha (National Horticulture Board  2014 –2015). Due to lack of genetic 
diversity, the crop is vulnerable to disease. Insects that commonly transmit potato 
diseases or damage the plants include the   Colorado potato beetle    , the   potato tuber 
moth    , the green peach aphid (   Myzus persicae     ), the potato aphid, beet leaf hoppers, 
  thrips    , and   mites    . Various insect resistance strategies have been used by researcher 
to cope up with the heavy losses caused by insect pest. A gene encoding the man-
nose-specifi c lectin from snowdrop expressed in tomato enhanced resistance to 
potato aphids (Gatehouse et al.  1996 ,  1997 ; Shi et al.  1994 ; Down et al.  1996 ). 
Plant-specifi c protease inhibitors confer insect pest resistance when expressed in 
potato plants (Burgess and Gatehouse  1997 ; Lecardonnel et al.  1999 ). 
Commercialized GM potato varieties “New Leaf,”    owned by Monsanto Company, 
incorporate genes from     Bacillus thuringiensis       , which confers resistance to the 
  Colorado potato beetle    ; “New Leaf Plus”    and “New Leaf Y,”    approved by US regu-
latory agencies during the 1990s, also include resistance to viruses (Cornell 
University);  cryIAb  (Jansens et al.  1995 ),  cryIAc  (Estrada et al.  2007 ), and  cry3A  
(Douches et al.  1998 ; Thomas et al.  1997 ; Perlak et al.  1993 ) have been expressed 
in potato plants to provide resistance against insect diseases (Table  15.5   ).

15.2.3        Cabbage 

    Cabbage   (  Brassica oleracea    L. var.  capitata ) is an important nutritionally rich  cole 
  crop of the family Brassicaceae. It is a herbaceous leafy green vegetable crop and a 
biennial, dicotyledonous fl owering plant distinguished by a short stem upon which 
it is crowded a mass of leaves, usually green but in some varieties red or purplish, 
which while immature form a characteristic compact, globular cluster. The culti-
vated cabbage is derived from a leafy plant called the  wild mustard plant  , native to 
Eastern Mediterranean region as well as Asia Minor region, where it is common 
along the seacoast, also called  sea cabbage   and  wild cabbage   (Decoteau  2000 ). 
Cabbage is a nutritionally rich, good source of beta-carotene, vitamin C, and fi bers 
having anticarcinogenic activity due to the sulforaphane content.  Purple cabbage   
also contains anthocyanins, which in other vegetables have been proven to have 
anticarcinogenic properties. This vegetable is known for its medicinal properties, 
declaring that “it is the cabbage that surpasses all other vegetables.” This crop is 
grown in more than 90 countries throughout the world which include countries like 
China, Japan, Korea, India, and Poland. The  Food and Agriculture Organization 
(FAO)   of the United Nations reports that world production of cabbage and other 
brassicas (these plants being combined by the FAO for reporting purposes) for 
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calendar year 2011 was 68,840,531 metric tonnes and cultivated on 2,373,818 ha of 
land. This was primarily grown in China (43 %) and India (11 % with production of 
79,49,000 metric tonnes on 369,000 ha of land). In India, the total production of 
cabbage in 2014–2015 was 9086.363 million tonnes in an area of 401.481 mha 
(National Horticulture Board  2014 –2015). The cultivation of cabbage is severely 
infested by a large number of insect pests such as  Plutella xylostella  (diamondback 
moth, DBM),   cabbage looper    ,   imported cabbageworm    ,   cross-striped cabbageworm    , 
and   cabbage webworm    , which results in great loss of the yield and damage to the 
quality of cabbage production (Shelton et al.  1982 ; Gould et al.  1984 ; Theunissen 
et al.  1995 ). The conventional insect control method heavily relies on the intensive 
and extensive use of chemical pesticides which cause severe environmental 

   Table 15.5     Genetic   engineering for insect resistance gene(s) transfer studies in  potato     

 Target gene  Origin  Target insects  References 

  Insect resistance genes of microbial origin  

  cry IIIA   Bacterial  Coleoptera  Perlak et al. ( 1993 ) 

  cry IAb   Bacterial  Lepidoptera  Jansens et al. ( 1995 ) 

  Vip3A   Bacterial  Lepidoptera  Estruch et al. ( 1996 ) 

  Bt cry3A   Bacterial  Lepidoptera  Thomas et al. ( 1997 ) 

  Bt cry3A   Bacterial  Lepidoptera  Douches et al. ( 1998 ) 

  Vip1  and  Vip2   Bacterial  Coleoptera  Moellenbeck et al. 
( 2001 ) 

  cry1Ac   Bacterial  Lepidoptera  Estrada et al. ( 2007 ) 

  Insect resistance genes of plant origin  

  p - lec  (pea lectin)  Plant  Homoptera and 
Lepidoptera 

 Boulter et al. ( 1990 ) 

  GNA  (snowdrop lectin)  Plant  Lepidoptera  Gatehouse et al. ( 1996 ) 

 Shi et al. ( 1994 ) 

 Down et al. ( 1996 ) 

  BCH  (bean chitinase)  Plant  Homoptera and 
Lepidoptera 

 Gatehouse et al. ( 1996 , 
 1997 ) 

  CpTI  (cowpea trypsin 
inhibitor) 

 Plant  Lepidoptera  Burgess and Gatehouse 
( 1997 ) 

  C - II  (soybean potato serine 
proteinase inhibitor) 

 Plant  Lepidoptera  Marchetti et al. ( 1998 ) 

 Rice cysteine proteinase 
inhibitor 

 Plant  Lepidoptera  Lecardonnel et al. 
( 1999 ) 

  PI - IV  (soybean serine- 
proteinase inhibitor) 

 Plant  Lepidoptera  Marchetti et al. ( 2000 ) 

  KT1   3  ,  SKT1  (soybean Kunitz 
trypsin inhibitor) 

 Plant  Lepidoptera  Marchetti et al. ( 2000 ) 

  Insect resistance genes of animal origin  

  α -  1   AT  (α-antitrypsin)  Animal  Lepidoptera  Christeller et al. ( 1992 ) 

  SI  (spleen inhibitor)  Animal  Lepidoptera  Christeller et al. ( 1992 ) 

  BPTI  (bovine pancreatic 
trypsin inhibitor) 

 Animal  Orthoptera and 
Lepidoptera 

 Christeller and Shaw 
( 1989 ) 
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pollution having adverse effects on people and benefi cial insects. Moreover, DBM 
have evolved resistance to chemical insecticides (Hama  1992 ; Shelton et al.  1993 ). 
Genetic engineering has provided a promising method for breeders to obtain insect-
resistant plants (Qaim and Zilberman  2003 ). Various Cry proteins are highly toxic 
to lepidopterans, coleopterans, or dipterans, but do not harm people or the environ-
ment (Crickmore et al.  1998 ). 

  Agrobacterium tumefaciens -mediated transformation of cabbage has been 
reported with  cry1Ab ,  cry1Ac , and  cry1c  which provided resistance to DBM in 
tested bioassays of  Bt  cabbage plants (Metz et al.  1995a ; Jin et al.  2000 ; Bhattacharya 
et al.  2002 ). Liu et al. ( 2008 ) have transformed cabbage with  cry1Ab  gene by direct 
DNA transfer. Protease inhibitor gene is also effectively used for controlling insect 
and pest attack. Plant-derived protease inhibitors (PIs) exert lower selection pres-
sure on insect pests and are regarded as a viable alternative to  Bt  endotoxins in 
insect pest control. PIs have been used to enhance the resistance of transgenic plants 
to insect pests because of their small size, abundance, stability, and high specifi city 
for a particular class of insect digestive enzymes. Zhang et al. ( 2004 ) and Lei et al. 
( 2006 ) used protease inhibitors in transgenic cabbage. The application of genetic 
engineering in cabbage cultivation is of great signifi cance to generate new improved 
and desirable traits like insect- and disease-resistant varieties. Several systems of 
genetic transformation have been used, but   Agrobacterium tumefaciens    are most 
common.  Agrobacterium tumefaciens  has been used routinely to obtain transgenic 
plants, and this technology is now available for many crops (Gasser and Fraley 
 1989 ; Day and Lichtenstein  1992 ; Lindsey  1992 ; Jain  1993 ; Dunwell  2000 ; 
Srivastava  1997 ,  1998 ,  2001   2002 ,  2003 ,  2012a , 2012 b ; Ranjekar et al.  2003 ; 
Cardoza and Stewart  2004 ; Hua et al.  2005 ; Xing et al.  2008 ; McPherson and 
MacRae  2009 ; Ahmad et al.  2012 ; Awasthi and Srivastava  2013 ) (Table 15 .6 ). A 
protocol for insect resistance gene ( cryIAa ) transfer in cabbage ( Brassica oleracea  
L. var.  capitata  cv. Pride of India) has been standardized in our laboratory using 
 Agrobacterium tumefaciens  strain containing  npt - II  and  cryIAa  genes in binary vec-
tor pBin-1Aa. Putative transgenic plantlets of cabbage have shown the amplifi ca-
tion of  cryIAa  gene thereby indicating the presence/integration of  cryIAa  gene into 
the genome of transgenic cabbage. The Southern blot analysis has also been used to 
confi rm copy number of transgene into the genome of cabbage. The confi rmation of 
expression of the transgene  cryIAa  into the genome of cabbage at transcriptional 
level was confi rmed by reverse transcriptase-PCR and real-time PCR and at transla-
tional level by bioassay. A protocol for high-frequency plant regeneration and insect 
resistance gene transfer in cabbage ( Brassica oleracea  L. var.  capitata  cv. Pride of 
India) has been standardized (Gambhir  2014 ) (Fig.  15.2   ).

15.2.4         Cauliflower 

    Caulifl ower   (  Brassica oleracea    L. var.  botrytis ) is an  important   vegetable crop of 
family Brassicaceae grown for its edible infl orescence (curd).  Brassica  family dem-
onstrates extreme morphological diversity (caulifl ower, cabbage, broccoli, Brussels 
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sprouts, kohlrabi, and kales) in crop forms and therefore holds a great importance in 
the fi eld of molecular genetics. Most recently the genome sequence of  Brassica 
oleracea  has been completed by Liu et al. ( 2014 ) and reported a 630 Mb genome 
size with 45,758 protein-coding sequences. Caulifl ower is derived from two Latin 
words  caulos  which means cabbage and  fl oris  which means fl ower. Caulifl ower is a 
native of Southern Europe around the Mediterranean coast (Huxley et al.  1992 ). It 
was introduced in India by Britishers in the year 1822 (Chatterjee  1986 ). Cole  crop  s 
are generally rich in vitamins especially vitamin A and vitamin C. Caulifl ower is 
nutritionally rich in proteins and minerals such as potassium, sodium, iron, phos-
phorous, calcium, and magnesium (Chaudhary  1996 ) and low in fat and high in 
dietary fi ber and water content. It also has anticancer value (Zhang et al.  1992 ). 
Caulifl ower is also reported to have about 70 mg of vitamin A and 75 mg of vitamin 
C per 100 g of sample and is peculiar in stability of vitamin C after cooking (Singh 
 1997 ). India is the second largest producer of vegetables (90 million tonnes) con-
tributing to 9.7 % of the world’s vegetable production. Annual production of 

   Table 15.6    Genetic  engineering   for insect resistance gene(s) transfer studies in  cabbage     

 Plant species/cultivar  Technique of gene transfer  Gene transferred  References 

  Insect resistance genes of microbial origin  

  B. oleracea  L. var. 
 capitata  

  Agrobacterium tumefaciens -
mediated gene transfer 

  cryIA ( c )  Bai et al. ( 1992 ) 

  B. oleracea  L. var. 
 capitata  

  Agrobacterium tumefaciens -
mediated gene transfer 

  cryIA ( c )  Metz et al. ( 1995b ) 

  B. oleracea  L. var. 
 capitata  

  Agrobacterium tumefaciens -
mediated gene transfer 

  Bt  gene  Cai et al. 1999 

  B. oleracea  L. var. 
 capitata  

  Agrobacterium tumefaciens -
mediated gene transfer 

  cryIAb3 / cryI1a3   Jin et al. ( 2000 ) 

  B. oleracea  L. var. 
 capitata  

  Agrobacterium tumefaciens -
mediated gene transfer 

  cryIA ( b )  Bhattacharya et al. 
( 2002 ) 

  B. oleracea  L. var. 
 capitata  

  Agrobacterium tumefaciens -
mediated gene transfer 

  gus  and  cryIAc   Wang et al. ( 2003 ) 

  B. oleracea  L. var. 
 capitata  

  Agrobacterium tumefaciens -
mediated gene transfer 

  cryIB  and  cryIAb   Paul et al. ( 2005 ) 

  B. oleracea  L. var. 
 capitata  

  Agrobacterium tumefaciens -
mediated gene transfer 

  cryIAb   Venkatesh ( 2006 ) 

  B. oleracea  L. var. 
 capitata  

  Agrobacterium tumefaciens -
mediated gene transfer 

  cryIAb   Liu et al. ( 2008 ) 

  B. oleracea  L. var. 
 capitata  

  Agrobacterium tumefaciens -
mediated gene transfer 

  cryIa8   Lei et al. ( 2009 ) 

  B. oleracea  L. var. 
 capitata  

  Agrobacterium tumefaciens -
mediated gene transfer 

  cryIBa3   Deng-Xia et al. 
( 2011 ) 

  B. oleracea  L. var. 
 capitata  

  Agrobacterium tumefaciens -
mediated gene transfer 

  cryIAa   Gambhir ( 2014 ) 
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caulifl ower in India in 2014–2015 was 8685.302 million tones under the area of 
436.052 mha (National Horticulture Board India  2014 –2015). However caulifl ower 
is severely infested by a large number of insect pests like diamondback moth 
( Plutella xylostella ), cabbage butterfl y ( Pieris brassicae ), cabbage semilooper 
( Helicoverpa armigera ), cabbage aphid ( Brevicoryne brassicae ), cabbage borer 
( Hellula undalis ), cabbage looper ( Trichoplusia ni ), and tobacco caterpillar 
( Spodoptera litura ). It leads to economic as well as large yield losses to the nation. 
Among these insect pests, diamondback moth is responsible for the maximum yield 
losses in caulifl ower and other  Brassica  spp.  Plutella xylostella  (diamondback 
moth) larvae extensively feed on the leaves and curd of caulifl ower, leading to 
reduced yield and poor quality of produce. Economic yield losses by  Plutella xylo-
stella  may range from 52 to 80 % when the attack is severe. To check the losses 

  Fig. 15.2    ( a ) Transgenic plantlets of cabbage ( Brassica oleracea  L. var.  capitata  cv. Pride of 
India). ( b ) Acclimatization of in vitro regenerated putative transgenic plantlets of cabbage after 3 
weeks. ( c ) PCR analysis showing amplifi cation of 1 kb DNA fragment of  cryIAa  gene in regener-
ated transgenic plantlets of cabbage cv. Pride of India. ( d ) RT-PCR analysis showing amplifi cation 
of 1 kb DNA fragment of  cryIAa  gene in regenerated transgenic plantlets of cabbage. ( e ) Southern 
hybridization of  cryIAa  gene in regenerated transgenic plantlets of cabbage cv. Pride of India. ( f ) 
In vitro bioassay of non-transgenic (control), live larvae of diamondback moth (DBM) on dam-
aged non-transformed (control) leaves after 72 h. ( g ) In vitro bioassay of transgenic cabbage and 
dead larvae of diamondback moth (DBM) on damaged transformed leaves after 72 h (Source: 
Gambhir  2014 )       
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caused by these insects, a number of pesticides are being used, but unfortunately 
major insect pests are developing resistance to most of the applied chemical insec-
ticides; therefore it is important to introduce insect resistance ( cryIAa ) gene in cau-
lifl ower which is a natural insecticide. 

 The application of transgenic technology in caulifl ower cultivation is of great 
signifi cance to generate new improved and desirable traits like insect resistance and 
disease-resistant varieties. Among  Brassica oleracea , caulifl ower is reported to be 
the least amenable to genetic transformation (Puddephat et al.  1996 ; Passelegue and 
Kerlan  1996 ). Attempts have been made by various scientists to increase the yield 
and quality of caulifl ower via genetic transformation techniques (Ding et al.  1998a ; 
Ashokan  1999 ; Jin et al.  2000 ; Chakrabarty et al.  2002 ). The fi rst step toward the 
development of genetic transformation protocol includes the generation of a sound 
reproducible plant regeneration system. Different direct, indirect, and somatic 
embryogenesis regeneration systems have been developed by various researchers 
(Bhalla and Weered  1999 ; Chikkala et al.  2009 ; Siong et al.  2011 ) in caulifl ower as 
a fi rst step toward the genetic improvement of the crop. Several systems of genetic 
transformation have been used; both direct DNA transfer and  Agrobacterium - medi-
ated transformation of caulifl ower have been attempted. Electroporation and PEG- 
mediated DNA uptake have been demonstrated with protoplasts (Eimert and 
Siegemund  1992 ), but  Agrobacterium- mediated gene transfer is the most preferred 
(Dunwell  2000 ; Husaini  2010 ) as it results in higher transformation effi ciency and 
a more predictable pattern of foreign DNA integration rather than any other trans-
formation technique (Hiei et al.  1994 ; Chakrabarty et al.  2002 ). This technology is 
now available for many crops.  A. tumefaciens  has been used routinely to obtain 
transgenic plants (Srivastava  2003 ) (Table 15 .7 ). A protocol for insect resistance 
gene ( cryIAa ) and ( cryIAb ) transfer in caulifl ower ( Brassica oleracea  L. var.  botrytis  
cv. Pusa Snowball K1) has been standardized in our laboratory using   Agrobacterium 
tumefaciens    strain containing  npt - II  and  cryIAa  and ( cryIAb ) genes in binary vector 
pBin-1Aa. Putative transgenic plantlets of caulifl ower have shown the amplifi cation 
of  cryIAa  and  cryIAb  gene thereby indicating the presence/integration of  cryIAa  and 
 cryIAb  gene into the genome of transgenic caulifl ower. The confi rmation of expres-
sion of the transgenes  cryIAa  and  cryIAb  into the genome of caulifl ower at tran-
scriptional level was confi rmed by reverse transcriptase-PCR and real-time PCR 
and at translational level by bioassay. A protocol for high-frequency plant regenera-
tion and insect resistance gene transfer in caulifl ower ( Brassica oleracea  L. var. 
 botrytis  cv. Pusa Snowball K1) has been standardized (Awasthi  2003 ; Gaur  2015 ) 
(Fig.  15.3 ).  

15.2.5         Broccoli 

    Broccoli   ( Brassica oleracea  L. var.  italica ) is an  economically   important nutrition-
ally rich vegetable crop, especially in calcium, antioxidants, vitamin A, vitamin K, 
β-carotene, ribofl avin, and iron content (Vallejo et al.  2003 ; Abdel- Wahhab and 
Aly  2003 ), having anticancer properties which are contributed by sulforaphane 
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glucosinolate (Keck et al.  2003 ), quinone reductase, glutathione S-transferase 
(Zhang et al.  1992 ; Fahey et al.  1997 ), and high selenium content (Finley et al. 
 2001 ; Finley  2003 ). It belongs to the family Brassicaceae (2 n  = 18). In India, it is 
still cultivated on a limited scale, but its cultivation holds promise throughout the 
temperate and tropical regions. Various environmental stresses, pests, and diseases 
cause heavy yield losses, so genetic manipulation is necessary for broccoli improve-
ment. Classical breeding techniques alone are not suffi cient for the genetic improve-
ment. Sexual incompatibility barriers severely limit the possibilities for gene 
transfer between species, although some of the  Brassica  can be easily crossed using 
plant breeding techniques and through somatic hybridization (Puddephat et al. 
 1996 ). Thus, genetic engineering can be used to introduce desirable agronomically 
important characteristics to existing cultivars. However, a prerequisite for transfer-
ring genes into plants is the availability of highly effi cient, reproducible plant regen-
eration and genetic transformation standardized protocol. In vitro plant regeneration 
studies in broccoli were reported by various researchers using different types of 
explants such as the peduncle (Christey and Earle  1991 ), anther (Chang et al.  1996 ), 
protoplasts (Kaur et al.  2006 ), hypocotyl (Zhong and Li  1993 ; Puddephat et al. 
 2001 ; Kim and Botella  2002 ; Ravanfar et al.  2009 ; Huang et al.  2011 , Kumar and 
Srivastava  2015a ; Kumar et al.  2015a ), leaf tissue (Robertson and Earle  1986 ; Cao 

   Table 15.7     Genetic   engineering for insect resistance gene(s) transfer studies in  caulifl ower     

 Plant species/cultivar  Technique of gene transfer 
 Gene 
transferred  References 

  Insect resistance genes of microbial origin  

  B. oleracea  L. var. 
 botrytis  

  Agrobacterium - mediated 
gene transfer 

  cryIA ( b )  Chakrabarty et al. 
( 2002 ) 

  B. oleracea  L. var. 
 botrytis  

  Agrobacterium tumefaciens - 
mediated gene transfer 

  gus  and  cryIAc   Wang et al. ( 2003 ) 

  B. oleracea  L. var. 
 botrytis  

  Agrobacterium tumefaciens - 
mediated gene transfer 

  cryIc   Cao et al. ( 2003 ) 

  B. oleracea  L. var. 
 botrytis  

  Agrobacterium tumefaciens - 
mediated gene transfer 

  cry1a   Zhang et al. ( 2004 ) 

  B. oleracea  L. var. 
 botrytis  

  Agrobacterium tumefaciens - 
mediated gene transfer 

  cryIAb   Awasthi and 
Srivastava ( 2013 ) 

  B. oleracea  L. var. 
 botrytis  

  Agrobacterium tumefaciens - 
mediated gene transfer 

  cryIAa   Gaur ( 2015 ) 

  Insect resistance genes of plant origin  

  B. oleracea  L. var. 
 botrytis  

  Agrobacterium tumefaciens - 
mediated gene transfer 

  Ti  (trypsin 
inhibitor gene) 

 Ding et al. ( 1998b ) 

  B. oleracea  L. var. 
 botrytis  

  Agrobacterium tumefaciens - 
mediated gene transfer 

  CpTI   Lingling et al. ( 2005 ) 

15 Genetic Engineering for Insect Resistance in Economically Important Vegetable Crops



358

and Earle  2003 ; Farzinebrahimi et al.  2012 ; Kumar and Srivastava  2015a ), cotyle-
don (Qin et al.  2006 ; Ravanfar et al.  2011 ,  2014 , Kumar and Srivastava  2015a ,  b ), 
and petiole (Kumar et al.  2015a ,  b ). 

 Broccoli and  other   cole crops are highly susceptible to large numbers of insect 
pests and diseases (Kumar and Srivastava  2016 ). Insect pests of agricultural impor-
tance include the cabbage looper ( Trichoplusia ni ), cutworm ( Spodoptera littoralis ), 
cabbage fl y ( Delia brassicae ), cabbage aphid ( Brevicoryne brassicae ), imported 
cabbage worm ( Pieris rapae ), cabbage butterfl y ( Pieris canidia ), cabbage moth 
( Crocidolomia binotalis ), and the diamondback moth ( Plutella xylostella ). The 

  Fig. 15.3    ( a ) Regenerated transgenic shoots of caulifl ower ( Brassica oleracea  L. var.  botrytis  cv. 
Pusa Snowball K1). ( b ) Acclimatization of in vitro regenerated transgenic plantlets of caulifl ower 
cv. Pusa Snowball K1 after 3 weeks. ( c ) PCR analysis showing amplifi cation of 1 kb DNA frag-
ment of  cryIAa  gene in regenerated transgenic plantlets of caulifl ower. ( d ) RT-PCR analysis show-
ing amplifi cation of 1 kb DNA fragment of  cryIAa  gene in regenerated transgenic plantlets of 
caulifl ower ( Brassica oleracea  L. var.  botrytis  cv. Pusa Snowball K1). ( e ) PCR analysis showing 
amplifi cation of 1 kb DNA fragment of  cryIAb  gene in regenerated transgenic plantlets of cauli-
fl ower. ( f ) In vitro bioassay of non-transgenic (control), live larvae of diamondback moth (DBM) 
on damaged non-transformed (control) leaves after 72 h. ( g ) In vitro bioassay of transgenic cab-
bage and dead larvae of diamondback moth (DBM) on damaged transformed leaves after 72 h 
(Source: Awasthi  2003 ; Gaur  2015 )       
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diamondback moth is considered to be the major insect pest of the crucifers world-
wide (Kumar and Srivastava  2016 ) and has become resistant to all major categories 
of insecticides (Tabashnik et al.  1991 ). Metz et al. ( 1995b ) were the fi rst to report 
 Agrobacterium -mediated gene transfer studies in broccoli, followed by other work-
ers (Puddephat et al.  1996 ,  2001 ; Chen et al.  2004 ,  2007 ; Huang et al.  2005 ; Higgins 
et al.  2006 ; Bhalla and Singh  2008 ; Kumar and Srivastava  2016 ). High-frequency 
plant regeneration and genetic transformation of the broccoli are highly dependent 
on genotype and need to be standardized for each cultivar. Metz et al. ( 1995a ) have 
reported a large number of transgenic broccoli lines carrying the  cry1A ( c ) gene 
which provides 100 % mortality to fi rst instar larvae of the diamond moth, a major 
insect pest of crucifers in tested bioassay studies. Southern blots of some resistant 
transformants confi rmed the presence of  cry1A ( c ) gene. Cao et al. ( 1999 ) developed 
transgenic broccoli with high levels of  Bacillus thuringiensis cry1C  protein to con-
trol diamondback moth larvae resistant to  cry1A  or  cry1C . They reported that high 
production of  cry1C  protein can protect transgenic broccoli not only from suscep-
tible DBM larvae but also from DBM selected for moderate levels of resistance of 
 cry1C . Cao and Earle ( 2003 ) studied transgene expression in broccoli clones propa-
gated in vitro via leaf explants by using  cry1Ac  and  cry1C  genes from   Bacillus 
thuringiensis    associated with kanamycin and hygromycin selectable markers, 
respectively. Molecular analysis using polymerase chain reaction indicated that the 
 cry1Ac  and  cry1C  genes were both maintained. ELISA showed that all of the clones 
produced a high level of  cry1Ac  protein similar to the original transgenic plant; 
however, most clones had signifi cantly lower levels of  cry1C  protein than the origi-
nal plant. Viswakarma et al. ( 2004 ) studied insect resistance in transgenic broccoli 
cultivar Pusa Broccoli KTS-1 expressing a synthetic  cryIA ( b ) gene (Table 15 .8 ). A 
protocol for insect resistance gene ( cryIAa ) transfer in broccoli ( Brassica oleracea  
L. var.  italica  cv. Solan green head) has been standardized in our laboratory using 
 Agrobacterium tumefaciens  strain containing  npt - II  and  cryIAa  genes in binary vec-
tor pBin-1Aa. Putative transgenic plantlets of broccoli have shown the amplifi ca-
tion of  cryIAa  gene thereby indicating the presence/integration of  cryIAa  gene into 
the genome of transgenic broccoli. A protocol for high-frequency plant regeneration 
and insect resistance gene transfer in broccoli ( Brassica oleracea  L. var.  italica  cv. 
Solan green head) has been standardized (Kumar  2016 ) (Fig.  15.4 ).  

15.2.6         Brinjal 

    Brinjal   or  eggplant   (  Solanum melongena    L.) is an  agronomically   important solana-
ceous non-tuberous crop grown primarily for its large oval fruit. It is also known as 
eggplant, aubergine, baingan, mad apple, and brinjal. In India the total production 
of brinjal is 12986.583 million tonnes with the cultivation on an area of 680.398 
mha (National Horticulture Board  2014 –2015). Brinjal has a high nutritive value 
and medicinal value used for the treatment of several diseases, including diabetes, 
arthritis, asthma, and bronchitis. It is reported that brinjal extracts have a signifi cant 
effect in reducing blood and liver cholesterol rates in humans (Khan  1979 ) and adult 
rats (Silva et al.  1999 ).  Nasunin   is a major component of anthocyanin pigment of 
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brinjal, which has free radical scavenging and iron-chelating activities. Eggplant is 
also having antimutagenic activity (Yoshikawa et al.  1996 ). Major insect pests and 
diseases which cause crop yield losses in brinjal crops are particularly shoot and 
fruit borer ( Leucinodes orbonalis  Guenée), Colorado potato beetle ( Leptinotarsa 
decemlineata  Say), aphid ( Aphis gossypii  Glover),  Fusarium  wilt ( F. oxysporum  
f.sp.  melongenae ), nematodes ( Meloidogyne spp. ), etc.  Cry1ab  gene has been trans-
ferred in brinjal against fruit borer ( Leucinodes orbonalis ) and root-knot nematode 
( Meloidogyne incognita ) by Kumar et al. ( 1998 ) and Phap et al. ( 2010 ).  Cry 3 a  and 
 cry3b  genes have been transferred against Colorado potato beetle ( Leptinotarsa 
decemlineata ) by Iannacone et al. ( 1997 ), Arpaia et al. ( 1997 ), Acciarri et al. ( 2000 ), 
Hamilton et al. ( 1997 , Mennella et al. ( 2005 ), and Jelenkovic et al. ( 2000 ), whereas 
other genes which possess insect resistance against fruit and shoot borers have been 
transferred by Narendran et al. ( 2007 ) ( cry2Ab ), Pal et al. ( 2009 ) ( cry1Ac  gene), and 
Rai et al. ( 2013 ) ( Cry 1Ac ) (Table 15 .9 ). A protocol has been standardized for plant 
regeneration and genetic transformation of brinjal with  npt - II  and  gus  genes in our 
laboratory using genetically engineered   Agrobacterium tumefaciens    LBA4404 
strain containing reporter β-glucuronidase ( gus ) gene in binary system (pBI121) 
along with reporter kanamycin resistance gene, i.e., neomycin phosphotransferase 
( npt - II ), which can be further exploited to develop transgenic plantlets of brinjal 
with insect resistance gene(s) (Bardhan et al.  2013 ) (Fig.  15.5   ).

15.2.7         Pea 

   Pea (  Pisum sativum    L. var. Lincoln) is  a   cool season grain legume  and   economically 
important pulse crops in the world in an area of 2,241,318 ha with a production of 
1,697,4983 M tonnes (FAO). However, India, being the fourth largest producer of 
peas in the world, has a production of 3961.07 million tonnes with the cultivation 

   Table 15.8    Genetic engineering for insect resistance gene(s) transfer studies in  broccoli        

 Method  Crystal protein  Target insect  References 

  Insect resistance genes of microbial origin  

  Agrobacterium -mediated 
gene transfer 

  cryIA ( c ) ( c )   Plutella 
xylostella  

 Metz et al. ( 1995a , 
 b ) 

  Agrobacterium -mediated 
gene transfer 

  cry1C    Plutella 
xylostella  

 Cao et al. ( 1999 ) 

  Agrobacterium -mediated 
gene transfer 

  cry1A ,  cry1C    Plutella 
xylostella  

 Cao et al. ( 2003 ) 

  Agrobacterium- mediated 
gene transfer 

  cryIA (b)   Plutella 
xylostella  

 Viswakarma et al. 
( 2004 ) 

  Agrobacterium- mediated 
gene transfer 

  cryIA (a)   Plutella 
xylostella  

 Kumar et al. 
( 2015a ,  b ) 
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area of 432.84 mha (National Horticulture Board  2014 –2015). Pea belongs to family 
Leguminosae with chromosome number (2 n ) = 14 for cultivated pea. Being a legume 
it fi xes atmospheric nitrogen in the roots and increases the soil fertility. Pea is a rich 
source of proteins; carbohydrates; fats; vitamins A, B, and C; and minerals like cal-
cium and phosphorus (Cherian et al.  1995 ). It also contains high levels of essential 
amino acids lysine and tryptophan and hence plays an important role in the economy 
of growers (Pownall et al.  2010 ). Pea is susceptible to several biotic and abiotic 
stresses. Major biotic stresses are wilt/root rot, powdery mildew, ascochyta blight, 
and rust. Additionally, insects such as the pea leaf weevil ( Sitona lineatus ) and bru-
chid larvae cause damage to peas and other pod fruits. The weevil larvae feed on the 
root nodules of pea plants, which are essential to the plants’ supply of nitrogen and 
thus diminish leaf and stem growth. Bruchid larvae are reported to cause major losses 
of grain legume crops throughout the world. The most commonly available means to 
deal with the severity of pest damage is the use of insecticides, which are causing 
threat to environment. To deal with all these problems, many researchers have carried 

  Fig. 15.4    ( a ) In vitro regenerated plantlets of broccoli cv. Solan green head. ( b ) Root regeneration 
from in vitro  developed   shoots of  broccoli   cv. Solan green head. ( c ) Successful acclimatization of 
the plantlets on planting substrate after 4 weeks of hardening and maintained in greenhouse. ( d, e ) 
PCR analysis showing amplifi cation of 500 bp of  nptII  and 1 kb of  cry1Aa- specifi c DNA fragment 
in regenerated transgenic plantlets of broccoli ( M  marker (step-up ladder 100 bp–3 kb),  P  plasmid 
DNA,  C  non-transformed DNA (control DNA),  T   1   - T   5   DNA of putative transformed shoots) 
(Source: Kumar  2016 )       
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out gene transfer studies in  Pisum sativum  against lepidopteran and other classes of 
insects. α-Amylase inhibitor and proteinase inhibitor have been transferred to  Pisum 
sativum  against  Helicoverpa armigera , bruchid beetles, and pea weevil by Charity 
et al. ( 1999 ), Morton et al. ( 2000 ), Shade et al. ( 1994 ), Majer et al. ( 2007 ), and 
Schroeder et al. ( 1995 ). Attempts have been done for the transfer of  cry1Ac  gene by 
Negawo and coworkers in 2012 against various lepidopteran insects. Amylase inhib-
itors are reported to inhibit the α-amylase enzyme thus causing the death of the 
insects by carbohydrate starvation, while  cry  genes cause the death of the insect by 
the formation of pores in gut membrane leading to ion imbalance in the gut. 
Alemayehu et al. ( 2012 ) and Griga et al. ( 2009 ) developed insect-resistant transgenic 
pea plants using  Agrobacterium -mediated transformation. Griga et al. ( 2009 ) pro-
duced transgenic pea having improved tolerance to insect pests and fungal patho-
gens. Putative transformants containing protease inhibitor transgene  gmSPI2  were 
histochemically tested for  GUS  expression and were then further characterized using 
molecular/PCR analysis, while Alemayehu et al. ( 2012 ) produced insect-resistant 
transgenic pea using  Agrobacterium -mediated transformation containing  cry1Ac  
gene for insect resistance and  bar  gene for herbicide resistance. And the putative 
transgenic shoots were characterized using molecular and functional analysis (Table 
15 .10 ). A protocol has been standardized for plant regeneration and genetic transfor-
mation of pea ( Pisum sativum  L. var. Lincoln) with  npt - II  and  gus  genes in our 

   Table 15.9    Genetic  engineering   for insect resistance gene(s) transfer studies in  brinjal     

 Method 
 Gene 
transferred  Target insect  References 

  Insect resistance genes of microbial origin  

  Agrobacterium  -mediated 
gene transfer 

  cry3b  gene  Colorado potato beetle  Iannacone et al. 
( 1997 ) 

  Agrobacterium -mediated 
gene transfer 

  cryIIIB    Leptinotarsa decemlineata   Arpaia et al. 
( 1997 ) 

  Agrobacterium -mediated 
gene transfer 

  cryIIIA    Leptinotarsa decemlineata   Hamilton et al. 
( 1997 ) 

  Agrobacterium -mediated 
gene transfer 

  cry1Ab   Fruit borer ( Leucinodes 
orbonalis ) 

 Kumar et al. 
( 1998 ) 

  Agrobacterium -mediated 
gene transfer 

  cry3B   Colorado potato beetle  Acciarri et al. 
( 2000 ) 

  Agrobacterium -mediated 
gene transfer 

  cry3B   Colorado potato beetle  Mennella et al. 
( 2005 ) 

  Agrobacterium -mediated 
gene transfer 

  cry2Ab   Fruit and shoot borer 
( Leucinodes orbonalis ) 

 Narendran et al. 
( 2007 ) 

  Agrobacterium -mediated 
gene transfer 

  cry1Ac  
gene 

 Fruit borer larva  Pal et al. ( 2009 ) 

  Agrobacterium -mediated 
gene transfer 

  cryIAb  
gene 

 Root-knot nematode, 
 Meloidogyne incognita  

 Phap et al. ( 2010 ) 

  Agrobacterium -mediated 
gene transfer 

  cry1Ac   Fruit and shoot borer  Rai et al. ( 2013 ) 
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laboratory using genetically engineered  Agrobacterium tumefaciens  LBA4404 strain 
containing reporter β-glucuronidase ( gus ) gene in binary system (pBI121) along with 
reporter kanamycin resistance gene, i.e., neomycin phosphotransferase ( npt - II ), 
which can be further exploited to develop transgenic plantlets of pea with insect 
resistance gene(s) (Sharma  2013 ) (Fig.  15.6 ).  

15.2.8         Lettuce 

    Lettuce   (  Lactuca sativa    L.) belongs to family Asteraceae (Compositae).  There   are 
approximately 100 species of  Lactuca , although only  L. serriola ,  L. saligna , and  L. 
virosa  share any sexual compatibility with  L. sativa . The chromosome number of 
lettuce is most commonly  n  = 9, although  n  = 8 and  n  = 17 have been found (Ryder 
 1999 ). It is an annual, self-fertile species and major fresh leafy vegetable which is 
consumed raw. It is known as a  water plant   for its refreshing properties. Originating 
from the Mediterranean area, lettuce was fi rst introduced into America by 
Christopher Columbus when he sailed “the ocean blue” in 1492. The center of ori-
gin of lettuce is probably the Middle East and Southwest Asia, while today, the main 

  Fig. 15.5    ( a ,  b ) In vitro regenerated transgenic plantlets of brinjal ( Solanum melongena  L.) ( c ) 
Root regeneration from in vitro  developed   shoots of  brinjal   on selective media. ( d ,  e ) PCR analysis 
showing amplifi cation of 500 bp of  nptII  and 439 bp of  gus  gene in regenerated transgenic plantlets 
of brinjal. ( f ) Histochemical determination of GUS assay in the PCR-positive transgenic shoots of 
brinjal (Source: Bardhan et al.  2013 )       
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areas of production and consumption of lettuce are the USA and Europe (Ryder 
 1986 ). Lettuce is a good source of vitamin A, vitamin K, potassium, carbohydrates, 
protein, and some dietary fi bers. 

 Lettuce is a rich source of antioxidants such as quercetin and caffeic acid. Its stem 
and leaves contain many active ingredients such as mannitol (which takes effect on 
diuretic and blood circulation promotion) and lactucerin (which plays a role on hyp-
nosis, analgesia, and adjuvant treatment of neurasthenia). It is used in the production 
of nicotine-free cigarettes and the isolation of sesquiterpene lactones from the milky 
sap, for use in medicine (Ryder  1999 ). Nowadays, extracts from  Lactuca sativa  L. 
have been used for curing sunburn and rough skin in cream and latexes (Odu and 
Okomuda  2013 ). Lettuce generally suffers from viral and fungal diseases, but crowd-
ing in lettuce tends to attract pests and diseases. Some of the works in this fi eld 
include the use of plant protease inhibitors for protection against Lepidoptera and 
orthopteran insects (Gatehouse  1995 ; Burgess and Gatehouse  1997 ; Burgess et al. 
 1996 ) (Table 15 .11 ). A protocol has been standardized for plant regeneration and 
genetic transformation of lettuce ( Lactuca sativa  L. cv. Sol- Let-1) with  npt - II  and 
 gus  genes in our laboratory using genetically engineered  Agrobacterium tumefaciens  
LBA4404 strain containing reporter β-glucuronidase ( gus ) gene in binary system 
(pBI121) along with reporter kanamycin resistance gene, i.e., neomycin phos-
photransferase ( npt - II ), which can be further exploited to develop transgenic plant-
lets of lettuce with insect resistance gene(s) (Sharma  2014 ) (Fig.  15.7 ).  

15.2.9         Bell Pepper 

    Bell pepper   or  Capsicum  (  Capsicum annuum    L.) is the best-known domesticated 
species in the world belonging to  family   Solanaceae of the order Solanales. Also it 

   Table 15.10    Genetic  engineering   for insect resistance gene(s) transfer studies in  peas     

 Method  Gene transferred  Target insect  References 

  Insect resistance genes of microbial origin  

  Agrobacterium -mediated 
gene transfer 

  cry1Ac    Helicoverpa 
armigera  

 Griga et al. ( 2009 ) 

  Agrobacterium -mediated 
gene transfer 

  cry1Ac    Helicoverpa 
armigera  

 Alemayehu et al. 
( 2012 ) 

  Insect resistance genes of plant origin  

  Agrobacterium -mediated 
gene transfer 

 α-Amylase 
inhibitor 

 Bruchid beetles  Shade et al. ( 1994 ) 

  Agrobacterium -mediated 
gene transfer 

 α-Amylase 
inhibitor 

  Bruchus pisorum   Schroeder et al. 
( 1995 ) 

  Agrobacterium -mediated 
gene transfer 

 Proteinase 
inhibitor 

  Helicoverpa 
armigera  

 Charity et al. ( 1999 ) 

  Agrobacterium -mediated 
gene transfer 

 α-Amylase 
inhibitor 

  Bruchus pisorum   Morton et al. ( 2000 ) 

  Agrobacterium -mediated 
gene transfer 

 α-Amylase 
inhibitor 

 Pea weevil  Majer et al. ( 2007 ) 
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is the most economically important species (Greenleaf  1986 ; Bosland et al.  1988 ). 
This crop is widely consumed as fresh vegetable or condiment and is used for phar-
maceutical and cosmetic purposes. It became the dominant pepper globally in part 
because it was the fi rst pepper discovered by Columbus. Among the various culti-
vars, California Wonder is one of the oldest cultivars being in cultivation and typical 
of pod type. Peppers are grown in most of the countries of the world. California 
produces the most bell peppers in the world and bell group is the most economically 
important pod type. Bell pepper ( Capsicum annuum  L.) is a rich source of alkaloids 
(capsaicin), fatty acids, fl avonoids, volatile oils, and carotene pigment. It is rich in 
vitamin C (ascorbic acid) and zinc which are vital for strong and healthy immune 
system. It is high in vitamin A, reactin (a biofl avonoid), and β-carotene and also 
contains magnesium, phosphorus, vitamin B complex, sodium, and selenium. 

 In India, it occupies an area of 30.052 mha with a production of 171.079 million 
tonnes (National Horticulture Board  2014 –2015). Productivity of bell pepper in 

  Fig. 15.6    ( a ) In vitro regenerated transgenic plantlets of pea ( Pisum sativum  L. var. Lincoln). ( b ) 
Root regeneration from in  vitro   developed shoots of pea on selective media. ( c ) Acclimatization  of 
  transgenic plantlets successfully on the planting substrate after 3 weeks of hardening and main-
tained in greenhouse. ( d ,  e ) PCR analysis showing amplifi cation of 500 bp of  gus  and 320 bp of 
 nptII  gene in regenerated transgenic plantlets of pea. ( f ) Histochemical determination of GUS 
assay in the PCR-positive transgenic shoots of pea (Source: Sharma  2013 )       
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India is low as compared to western countries because it suffers from many dis-
eases, pests, and disorders that reduce fruit quality and yield. Damage can be caused 
by a wide range of biological agents including fungi, bacteria, viruses, insects, and 
nematodes. Bell pepper suffers great losses due to infection by various viruses and 
fungal pathogens. In India, attack by mites and thrips is the major handicap in cul-
tivation of bell pepper which is often followed by viral infection. Production in 
India is also affected by  pepper mottle virus (PeMV-1)   to a larger extent. Preliminary 
research in the area of genetic transformation of  Capsicum  has resulted in a few 
transformed sweet and hot pepper (Kim et al.  1997 ). Genetic engineering offers a 
direct method of plant breeding that selectively targets one or a few traits for 

   Table 15.11     Genetic   engineering for insect resistance gene(s) transfer studies in  lettuce     

 Gene transferred  Origin  Target insects  References 

  Insect resistance genes of plant origin  

  CpTI  (cowpea trypsin inhibitor)  Plant  Lepidoptera  Gatehouse ( 1995 ) 

  Pot-PT - II  (potato proteinase 
inhibitor-I) 

 Plant  Lepidoptera, 
Orthoptera 

 Burgess and Gatehouse 
( 1997 ) 

  BPTI  (bovine pancreatic trypsin 
inhibitor) 

 Plant  Lepidoptera, 
Orthoptera 

 Burgess et al. ( 1996 ) 

  Fig. 15.7    ( a ) In vitro regenerated transgenic shoots of  lettuce   ( Lactuca sativa  L. cv. Sol- Let-1). 
( b ) Root regeneration  from   in vitro developed shoots of lettuce on selective media. ( c ) 
Acclimatization of transgenic plantlets successfully on the planting substrate after 3 weeks of 
hardening and maintained in greenhouse. ( d ,  e ) PCR analysis showing amplifi cation of 500 bp of 
 gus  and 320 bp of  nptII  gene in regenerated transgenic plantlets of lettuce. ( f ) Histochemical deter-
mination of GUS assay in the PCR-positive transgenic shoots of lettuce (Source: Sharma  2014 )       
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introduction into the crop plant such as disease and insect resistance and is depen-
dent on an effi cient and reliable transformation and regeneration protocol. A proto-
col has been standardized for plant regeneration and genetic transformation of bell 
pepper ( Capsicum annuum  L.) with  npt - II  and  gus  genes in our laboratory using 
genetically engineered  Agrobacterium tumefaciens  LBA4404 strain containing 
reporter β-glucuronidase ( gus ) gene in binary system (pBI121) along with reporter 
kanamycin resistance gene, i.e., neomycin phosphotransferase ( npt - II ), which can 
be further exploited to develop transgenic plantlets of bell pepper with insect resis-
tance gene(s) (Verma et al.  2013 )   (Fig.  15.8 ).

  Fig. 15.8    ( a ) In vitro developed transgenic plantlets of bell pepper ( Capsicum annuum  L.) ( b ) 
Root regeneration from in vitro  regenerated   shoots of  bell pepper   on selective media. ( c ) 
Acclimatization of transgenic plantlets successfully on the planting substrate after 4 weeks of 
hardening and maintained in greenhouse. ( d ,  e ) PCR analysis showing amplifi cation of 1 kb of  gus  
and 700 bp of  nptII  gene in regenerated transgenic plantlets of bell pepper (Source: Verma et al. 
 2013 )       
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15.3         Conclusion 

 With changing global climate conditions and depleting natural resources, traditional 
farming practices alone are not suffi cient to sustain the quality and quantity of the 
produce. With the introduction of modern plant molecular biotechnological tools, 
which permit gene transfer across the species, transgenics opened an avenue for 
solving the serious threat regarding food and energy insecurity. Some of the limita-
tions in plant transgenic technology applications need to be resolved for its wider 
application and global acceptance. Various biosafety measures and ethical issues 
regarding environmental risks such as cross-pollination with closely related wild 
relatives of the crop plants and effect of transgene products on human health and 
environment need to be assessed carefully on a case-by-case basis. Globally, major 
concerns regarding the use of selectable markers such as antibiotic and herbicide 
resistance genes from the ecological and human safety point of view. Today major 
breakthrough in transgenic, to obtain marker-free transgenic plants which may 
enhance the public acceptance of transgenic crops. Development of binary vectors 
or mini-chromosomes for multiple gene transfer such as gene stacking and improve-
ment in transformation technology for vegetable crops may further increase our 
capability to introduce different agronomically important traits with long-lasting 
value. This chapter provides an insight into genetic engineering for insect resistance 
in economically important vegetable crops.     
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 16      RNA Interference (RNAi) and Its Role 
in Crop Improvement: A Review                     
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    Abstract 
   Genetic modifi cations using contemporary biotechnological tools hold immense 
potential for improvement of the quality of crops. The copious paraphernalia of 
genetic engineering has been adopted to identify functions of various genes with 
an eventual aim of crop improvement. Among these, RNA interference (RNAi), 
a double-stranded RNA (dsRNA)-based gene silencing technology, serves as an 
extending platform for genetic interventions intended at the improvement of 
crops, by modifying these for important agronomical traits. RNAi is a gene 
silencing process initiated by the presence of dsRNA molecules which are ulti-
mately responsible for complementary mRNA-specifi c degradation through a 
series of steps. Two important enzymatic complexes crucial in RNAi technol-
ogy are Dicer and RNA-induced silencing complex (RISC). Dicer is a multido-
main enzyme complex belonging to ribonuclease (RNase) III class. It plays an 
important role in the cleaving of dsRNA to produce small interfering RNA mol-
ecules. Another complex, RISC, is composed of Argonaute proteins, which uses 
interfering RNA as guide molecules for complementary mRNA degradation. 
This review focuses on the RNA interference (RNAi) technology and its impend-
ing role in the crop improvement.  

  Keywords 
   Argonaute proteins   •   Small interfering RNAs   •   RISC   •   Dicer   •   Functional genom-
ics   •   Reverse genetics  
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16.1       Introduction 

 Till the dawn of the twentieth century, the scientifi c history was witnessing RNA as 
sheer “transcriptional product.” Later on, the empirical and scientifi c observations 
led to the enlightening innovation that RNA could be used for gene-specifi c silenc-
ing. These annotations led to the revolutionary technology of antisense RNA, which 
further paved the path for miraculous RNA interference (RNAi). In plants, concepts 
of RNAi came into existence in 1990 in petunias, though at that time it was not 
recognized as RNAi but co-suppression. The following years were to witness the 
commotion in certain deliberate and chance discoveries, for instance, the year 1995 
witnessed RNAi in animals as a chance discovery during gene knockout experiment 
carried out on  Caenorhabditis elegans  (Guo and Kemphues  1995 ). Later on in 2000, 
effi cient RNA silencing with the help of RNAi construct was established in 
 Arabidopsis thaliana  (Chuang and Meyerowitz  2000 ). RNAi is reported to affect 
the central dogma by  disrupting genomic stability  , which further distorts the cellular 
metabolism (Kulinska et al.  2003 ; Hannon  2003 ). These reports unveil the facts that 
duplex RNA molecules are able to block translation (Nordstrom and Wagner  1994 ) 
and endorse sequence-specifi c mRNA degradation (Duan et al.  2012 ). Therefore, 
RNAi affects the overall echelon of gene expression (Hannon  2003 ). Among the 
plethora of necessary and suffi cient conditions for RNAi, triggers serve an indis-
pensable function. Triggers of the RNAi are small interfering RNA (siRNA) mole-
cules which are formed by cleavage of double-stranded RNA molecules by 
ribonuclease III-like enzyme, commonly known as Dicer (Blevins et al.  2006 ). The 
machinery of RNAi operates through targeting mRNA molecule by a protein com-
plex called RNA-induced silencing complex (RISC) carrying guide strand of 
double- stranded RNA (dsRNA) with sequence complementary to target mRNA. 
 RISC   is known to contain Argonaute family proteins, which are endonucleases and 
also possess slicing capabilities (Pratt and MacRae  2009 ). Once the target sequence 
is identifi ed then it is sliced into small fragments with the help of RNase activity of 
RISC (Blevins et al.  2006 ). This interfering response undergoes rapid amplifi cation 
through the involvement of RNA-dependent RNA polymerase (RdRp) (Forrest 
et al.  2004 ). RNAi occurs as a natural defense in plants against viruses by protecting 
the cell from inappropriate expression of viral genomes (Ding  2010 ), repetitive 
sequences, and transposons (Haasnoot et al.  2007 ). An adaptive immunity can also 
be achieved through siRNA introduction which helps plant in recognizing nucleic 
acids such as those derived or delivered from virus and inactivates them through 
RNA cleavage (Waterhouse et al.  2001 ). A large number of in-depth review articles 
are focused on functions and role of RNAi in plant growth, development, morpho-
genesis, stress tolerance, etc. leading to enhancement of our knowledge of gene 
function and regulation (Rao and Sockanathan  2005 ; Tomari and Zamore  2005 ; 
Artymovich  2009 ; Jagtap et al.  2011 ; Duan et al.  2012 ; Deng et al.  2012 ; Wang et al. 
 2014 ; Sanchez et al.  2014 ; Zhang et al.  2015 ). This  fascinating technique   has 
immense potential for various applications in crop sciences through development of 
improved varieties for pest and pathogen management (Ellendorff et al.  2009 ; 
Tabassum et al.  2011 ; Ogwok et al.  2012 ), improved nutritional value (Kumar et al. 
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 2006 ; Eck et al.  2007 ), establishment of host-parasite interactions (Younis et al. 
 2014 ), modifi cation of crop product for human benefi t (Ogita et al.  2003 ; Regina 
et al.  2006 ), and also to assign specifi c function to genes (Deng et al.  2012 ). 
Moreover, the role of RNAi in human therapeutics such as in the treatment of can-
cer, hepatitis B, HIV and genetic disorders makes the technique much more enliven-
ing (Kusov et al.  2006 ; Jia et al.  2006 ). 

16.1.1     Definition 

 “RNAi” is a natural  mechan  ism and can also be introduced through various molecu-
lar tools. Due to the ability of RNAi to determine functions of genes before its 
sequence is known, it is often referred as reverse genetics (Waterhouse et al.  2001 ). 
Moreover, this is a conserved regulatory mechanism for gene silencing, resulting 
either from inhibition of gene transcription or through degradation of transcriptional 
product (Mette et al.  2000 ). RNAi plays a crucial role in many biological activities 
such as gene expression regulation, maintaining genome stability, heterochromatin 
formation, and as a defense against the virus (Brodersen and Voinnet  2006 ; 
Vaucheret  2006 ).  

16.1.2     Discovery 

 Genetic manipulation for desirable  chara  cters in crops has always been important in 
plant sciences. Scientifi c crop improvement approaches are spread over a vast 
arena, from conventional breeding methods (Johnston and Rowberry  1981 ) to 
recently developed genetic engineering. A striking progress in genetic engineering, 
which revolutionized the scientifi c world, is a precisional biotechnological approach 
that offered crop improvement through manipulation of genes for desirable charac-
ters. In the era of functional genomics, gene silencing methods have received 
increased consideration (Zamecnik and Stephenson  1978 ). Prior to the discovery of 
RNAi, homologous recombination was used to generate knockout organisms 
(Smithies  1985 ,  1987 ; Capecchi  1987 ) with the purpose to understand the intricate 
mechanism of gene functioning in vivo, but this method was found ineffi cient due 
to prolonged time requirement, high fi nancial requirement, intensive labor require-
ment, weak suppression of gene expression (Guru  2000 ), and diffi cult oligonucle-
otide delivery (Caplen et al.  2001 ). However, its major drawback was that it 
sometimes remained non – informative due to death of embryo (Capecchi  1990 ; Li 
et al.  1992 ). Therefore, the necessity for an effi cient technology led to the develop-
ment of ribozyme technology (Cech et al.  1981 ; Kruger et al.  1982 ), but this tech-
nology was also limited due to the low frequency of homologous recombination and 
inaccurate integration (Morton and Hooykaas  1995 ). Furthermore, genetic methods 
raised the apprehensions about possible dangers in terms of human health and the 
environment through ecological disturbances, especially when gene transferred to 
an edible part of the plant holds its origin from non-plant species. These 
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unequivocal factors lead to convoluted research to ensure the safety of transgenic 
plant and hence shooting the expense. 

 Aforementioned drawbacks paved the way for the  d  iscovery of RNAi as a pow-
erful and effi cient approach in the fi eld of molecular biology, which stepped for-
ward as a phenomenon termed as “co-suppression” (Napoli et al.  1990 ). This 
technique evolved as serendipity in an experiment to enhance purple coloration of 
petunias by overproduction of chalcone synthase enzyme, which is a precursor in 
anthocyanin biosynthesis (Jorgensen et al.  1994 ). However, unexpected results 
were observed with the blooming of white or variegated fl owers. This observation 
led to a series of experiments, conducted by Fire and Mello, to conclude that double- 
stranded RNA molecules, which are homologous with the target  sequen  ce, play a 
vital role in gene silencing (Fire et al.  1998 ).  

16.1.3     Advantages of RNAi 

 RNA interference is a  targete  d approach of functional genomics to determine gene 
function. This approach has got following advantages:

•    It is a targeted approach to determine gene function.  
•   Silencing of a single gene or multiple genes could be achieved.  
•   Silencing effect generates a mobile signal (Mlotshwa et al.  2008 ) known as a 

systemic response that spreads from the site of initiation to neighboring cells 
through plasmodesmata (Molnar et al.  2007 ).  

•   RNAi avoids problems related with knockout techniques such as abnormalities 
or early embryonic death, which affects observation (Preuss and Pikaard  2003 ).  

•   RNAi eliminates the need for laborious transgenic knockout identifi cation and 
isolation.  

•   Silencing is systemic. Silencing travels through vascular system from few leaf 
cells to whole tissue and further to whole plant (Kalantidis et al.  2008 ).  

•   It is a highly effi cient  tec  hnique, which can be amplifi ed and obtained with the 
minimum trigger.      

16.2     Mechanism of RNA Silencing 

 Current technology of inducing  RN  Ai in plants derives its root from the observa-
tions of Waterhouse and coworkers to demonstrate silencing of the target gene as a 
result of expression of mRNA containing inverted repeats (Waterhouse et al.  1998 ). 
It is also observed that silencing effi ciency is increased by the addition of introns 
interposed between inverted fl anking target sequences within RNAi transgene 
(Smith et al.  2000 ). As shown in Fig.  16.1 , RNA-mediated silencing machinery 
performs through a set pattern of three descriptive steps which are detailed below 
along with their elements:
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     1.     Initiation : Double- stranded   RNA (dsRNA) once present inside the cell is auto-
matically recognized by an ATP-dependent enzyme complex called Dicer, which 
cleaves dsRNA into small fragments of 21–23 bp small interfering RNA mole-
cules, commonly known as siRNA. Under natural conditions, processing of 
short hairpin RNA or primary miRNA molecules is carried out in the nucleus by 
endonuclease called “Drosha,” which liberates stem-loop containing miRNA 
between 3′ and 5′ overhangs. Processed primary miRNA molecules are known as 
pre-miRNA which moves out to cytoplasm with the help of a protein called 
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  Fig. 16.1     Mechanism   of RNA interference (RNAi) ( A ) after transcription apart from mRNA, 
formation of hairpin structures such as primary miRNA (pri-miRNA), and several secondary struc-
tures are formed. ( B ) miRNAs and secondary structures are cleaved by nuclear RNase III endo-
nuclease enzyme, called Drosha, to liberate stem structures to form pre-miRNA. In plants, function 
of Drosha is also carried out by nuclear protein Dicer. ( C ) Pre-miRNA moves out of nucleus with 
the help of Exportin 5 protein. ( D ) Within cytoplasm, either pre-miRNA or in vitro introduced 
hairpin structures undergo cleavage to remove hairpin structures by a multidomain RNase III 
enzyme called Dicer to produce ( E ) miRNA, shRNA, and siRNA. They combine it with RNA- 
induced silencing complex, which at this stage is known as pre-RISC. ( F ) Helicase activity of 
pre-RISC unwinds siRNA retaining antisense strand with pre-RISC, and the complex is known as 
holo-RISC. ( G ) The antisense strand acts as guide strand for holo-RISC to target complementary 
RNA strand for cleavage.  (H)  Complementary strand is cleaved between 5' and 3' ends by holo- 
RISC. ( I ) Cleaved single-stranded RNA acts as template for RNA-dependent RNA poly-
merase (RdRp) and is again converted into double-stranded fragment for signal amplifi cation. ( J ) This 
double-stranded fragments are again processed by Dicer and hence enter in RNAi cycle causing 
amplifi cation of response       
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Exportin 5 (Meister et al.  2004 ; Blevins et al.  2006 ). Further, it has been cited 
that 3′ adenine 5–8 bp/thymine 5–8 bp overhangs enhance siRNA-mediated 
silencing up to tenfold by increasing complex stability (Bellemin et al.  2007 ). 
Elements of initiation include initiators and triggers as discussed below:
    1.1.     Initiator : Dicer or DCL (Dicer-like) protein is a large ATP-dependent mul-

tiprotein RNase III enzyme. Many  f  orms of Dicer protein have been identi-
fi ed and are classifi ed based on their activities (Table  16.1 ). The basic role 
of Dicer lies in processing and preparing small RNA molecules for activa-
tion of RNA-induced silencing complex. Dicer is expressed in different 
tissues at different stages of development or against various environmental 
stresses (Deleris et al.  2006 ). It is a multidomain ribonuclease generally 
containing six domains: DEAD box, helicase C, DUF283, PAZ, ribonucle-
ase III, and double-stranded RNA-binding domain (dsRBD) (Liu et al. 
 2009 ). Forms of  Di  cer protein vary from organism to organism, Dcr1 and 
Dcr2 exist in animals, and Dcl1, Dcl2, Dcl3, Dcl4, and Dcl5 exist in plants, 
out of which Dcl5 has evolved in monocots only (Marqis et al.  2006 ).

       1.2.     Triggers : Triggers include various RNA molecules like RNA virus, transpo-
son, exogenously introduced siRNA, and endogenous small noncoding 
miRNA and siRNA. Various types of triggers are discussed below:
    1.2.1.    MicroRNAs (miRNAs): These are  na  turally occurring small non-

coding RNA molecules which play a vital role in the regulation of 
transcriptional and posttranscriptional gene expression (Kevin and 
Nikolaus  2007 ). Biogenesis of miRNAs includes processing of pri-
mary miRNAs (pre-miRNAs) by various endonucleases such as 
Drosha, Serrate, Dicer, etc. with a purpose to generate duplex named 
as pre-miRNA. This duplex is transported to the cytoplasm where 
the RNAi response is elicited. Endonucleic protein “Drosha” is con-
served among eukaryotes (Tanzer and Stadler  2004 ; Molnar et al. 

   Table 16.1    Various  Dicer or   Dicer-like proteins reported   

 Initiator 
 Molecule 
formed 

 Length of 
molecule  Function  References 

 DCL 1  miRNA  21 
nucleotides 

 Release miRNA through 
processing of foldback 
precursor (tasiRNA) 

 Dong et al. ( 2008 ) 
and Grigg et al. 
( 2005 ) 

 DCL 2  siRNA  24 
nucleotides 

 Synthesize natural stress-related 
transcripts (nat-siRNA) 

 Bouche et al. ( 2006 ) 
and Mlotshwa et al. 
( 2008 ) 

 DCL 3  siRNA  24 
nucleotides 

 Heterochromatin formation  Pontes et al. ( 2006 ) 
and Wierbicki et al. 
( 2009 ) 

 DCL 4  siRNA  21 
nucleotides 

 Mediate posttranscriptional 
gene silencing for some genes. 
It also terminates transcription 
if normal mechanism fails 

 Gasiciolli et al. 
( 2005 ), Yoshikawa 
et al. ( 2005 ), and 
Liu et al. ( 2012 ) 
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 2007 ) with few variations in mode of target recognition (Brodersen 
et al.  2008 ; He and Hannon  2004 ; Lewis et al.  2003 ,  2005 ). miRNAs 
are known for its role in normal cell functioning (Mraz and 
Pospisilova  2012 ). Any mutation in miRNAs leads to diseases. For 
instance, a mutation in miR-96 of seed region causes hearing loss 
(Mencia et al.  2009 ). Many literary reviews also link miRNA muta-
tions with cancer (He et al.  2005 ; Mraz et al.  2009 ).   

   1.2.2.     Short hairpin RNAs (shRNAs)  :  The  se are artifi cial ribonucleic acid 
polymers, analogous to miRNAs. They are delivered to the nucleus 
with viral vectors and form a hairpin-like structure called pre-shRNA 
which is cleaved by an endonuclease, “Drosha,” along with double- 
stranded RNA-binding protein to relieve stem structures between 3′ 
and 5′ overhangs. This cleaved fragment is transported out to the 
cytoplasm where it enters RNAi pathway in a manner similar to 
miRNAs (Rao et al.  2009 ).   

   1.2.3.    Natural siRNAs (nat-siRNAs):  Biog  enesis of nat-siRNAs includes 
overlapping of transcriptional product from two genes (Borsani et al. 
 2005 ). They also move into similar RNAi pathway as of other siR-
NAs. One example of nat- siRNA biosynthesis cited in literature 
includes overlapping of salt stress-induced gene transcript (SRO5) 
with ∆1-pyroline-5-carboxylate dehydrogenase (P5CDH) for gen-
eration of 24-nucleotide-long nat-siRNA. 

 Four types of endogenous siRNA have been discovered: trans-
acting siRNA (tasiRNA) in  Arabidopsis thaliana , repeat-associated 
siRNA (rasiRNA) in  Schizosaccharomyces pombe  and  Arabidopsis 
thaliana , small-scan (scn)RNA in  Tetrahymena thermophila , and 
PIWI-interacting (pi)RNA in mammals (Rana  2007 ). tasiRNAs are 
among few recently found siRNAs. tasiRNAs are dsRNAs derived 
by synthesis of the second strand of the antisense strand of miRNA 
with the help of an enzyme, RNA-directed RNA polymerase 6, also 
known as RdRP6 (Allen et al.  2005 ). Double-   stranded tasiRNAs are 
protected from degradation by a suppressor of gene silencing 
(Yoshikawa et al.  2005 ) and are processed by analogs of RNase III 
enzyme called Dicer-like proteins 4 (DCL4). DCL4 works in asso-
ciation with dedicated double-stranded RNA-binding protein 4 
(DRB4) to form 21-nucleotide-long tasiRNA molecules. During acti-
vation of RNA-induced silencing complex, tasiRNAs act as sub-
strates for RISC (Adenot et al.  2006 ).    

          2.     Activation of RISC :  RNA-induced silencing complex (RISC)   or RNA-induced 
 transc  riptional silencing complex (RITS) plays a crucial role in the regulation of 
gene expression. RISC is an ATP-dependent multiprotein complex. The core of 
RISC is formed by Argonaute proteins, which bind to guide strand through 
N-terminal and C-terminal (Fig.  16.2 ). Argonaute proteins are present diffusely 
at the cellular level and are predominantly expressed in germ lines for transpo-
son silencing (Aravin et al.  2006 ). An Argonaute protein family consists of three 
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clades, and a largest clade of the family is called Argonaute and is present in the 
nucleus and cytoplasm of most of plants, animals, fungi, and protists. Argonaute 
proteins are also known as AGO against the name of plant “ Arabidopsis ,” in 
which it was reported initially. The second clade is called PIWI, named after 
PIWI protein found in  Drosophila . The third clade belongs to worms and hence 
named as worm Argonaute (Liu et al.  2004 ). Homology of prokaryotic Argonaute 
proteins to that of eukaryotes provides a platform to discover the functions of 
Argonaute proteins in RNA interference mechanism. Structurally, Argonaute 
proteins are bilobed structures, in which both the lobes are interconnected by a 
hinge composed of secondary proteins. Each lobe is capable of binding to ends 
of antisense strand which acts as a guide strand in RNAi mechanism (Pratt and 
MacRae  2009 ). N-terminal of protein contains single PAZ domain which is 
capable of binding at 3′ terminal of guide strand whereas C-terminal is able to 
bind to 5′ phosphate of the guide strand. Two domains of C-terminal lobe also 
bear some hydrolase activity and are capable of cleaving target RNA molecules. 
Through Argonaute proteins, RISC binds to siRNA to form a complex called 
pre-RISC (Nykanen et al.  2001 ). For activation of RNA-induced silencing com-
plex, pre-RISC is converted into holo-RISC through a series of reactions which 
include unwinding of siRNA and then holding of the antisense strand. Anchoring 
of guide strand through 5′ phosphate group with a pocket between middle and 
PIWI domain of C-terminal lobe of Argonaute protein acts as a checkpoint of 
RNAi pathway (Zhang et al.  2006 ; Carthew and Sontheimer  2009 ) and guides 
holo-RISC to the complementary target template. The fi rst nucleotide of guide 
strand also tucks in the pocket and hence does not contribute in target recogni-
tion (Batista et al.  2008 ). Rest nucleotide bases of strand interacts with the pro-
tein through their phosphodiester backbone and hence makes AGO non-sequence 
specifi c (Wang et al.  2008 ). Two bases at 3′ terminal get clamped into a hydro-
phobic cleft in PAZ domain, but 11–18 bases lie in disordered form to provide 
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  Fig. 16.2    Diagrammatic  representation   of Argonaute protein in RISC. Composition and working 
of RISC, the Argonaute protein forms the core of RISC. Interaction between silencing complex 
and target mRNA takes place through guide strand in RISC complex. Argonaute is composed of 
two terminals, held together by a hinge which adds fl exibility to protein. N-terminal includes a 
single domain called PAZ which harbors a cleft and is able to bind 3′ end of guide strand. C-terminal 
includes two domains, namely, middle domain and PIWI domain. 5′ phosphate of guide strand is 
able to bind in pocket of both domains. During binding of guide strand, its structure gets distorted, 
and 4–6 bases extrude out and can easily interact with target mRNA       
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mobility to guide and to make AGO non-length specifi c (Pratt and MacRae 
 2009 ). Moreover, the  hi  nge between C- and N-terminal of Argonaute proteins 
helps RNA-induced silencing complex to attach to target mRNA strand. 
Diagrammatic representation of the interaction of Argonaute protein present in 
RISC with target mRNA molecule is discussed in Fig.  16.2 .

       3.     Degradation of target mRNA : Well-established contact between Argonaute and 
guide strand enables recognition of target sequence from a pool  of   RNAs. Two 
to six bases of guide expose themselves fully to ease the formation of a double 
helix with a complementary region of target RNA molecule (Haley and Zamore 
 2004 ; Ameres et al.  2007 ) and are known as “seed region” (Lewis et al.  2003 ; 
Pratt and MacRae  2009 ). Protruding seed region is used as an initial probe by 
RISC to locate the target and hydrolyze it to break reading frame (Tolia and 
Joshua  2007 ). The cleaving ability of RISC is catalyzed by divalent ion- 
dependent RNase activity of PIWI domain of Argonaute protein. Target is sliced 
from the point where 10–11 bases of guide interact with it and thus two frag-
ments are produced (Forstemann et al.  2007 ; Eulalio et al.  2008 ). Besides degrad-
ing posttranscriptional product (mRNA), RISC is also able to target genome 
directly and is known as RNA-induced transcription silencing (RITS) complex 
which modifi es histones through methylation and also interacts with RNA- 
dependent RNA polymerase (RdRp) to convert RNA transcript to dsRNA (Buhler 
et al.  2006 ; Volpe et al.  2002 ; Moazed  2009 ).   

   4.     Amplifi cation of interference response : The RdRp is capable of synthesizing 
double-stranded RNA molecules by using single-stranded  antise  nse strand, also 
known as passenger strand. This strand is removed from sense strand through 
helicase activity of RNA-induced silencing complex (RISC) while activating 
pre-RISC to holo-RISC. This dsRNA once again becomes substrate for Dicer, 
and RNAi pathway is repeated leading to amplifi cation of response, also known 
as transitivity (Forrest et al.  2004 ; Smardon et al.  2000 ).    

16.3       Applications 

 A huge number of RNAi  applications in   agriculture biotechnology include crop 
improvement by enhancing the nutritional value of crop, reduction or modifi cation 
of undesirable component(s) present in the edible part of plant, enhancements of 
coloration in ornamentals, development of biotic and abiotic stress-tolerant plants, 
etc. Though, crop improvement holds major attention in the application due to 
potential benefi t in the attainment of food security. One good example cited in lit-
erature includes a reduction in the level of a terpenoid, that is,  gossypol   in cotton 
(Kumar et al.  2006 ). Gossypol is present throughout the cotton plant and provides 
protection from insects  a  nd pathogen (Kumar et al.  2006 ). However, cardio- and 
hepatotoxic nature of the terpenoid makes cotton seeds unsuitable for human and 
animal consumption. Biosynthesis of gossypol includes a key enzyme, delta- 
cadinene synthase. With a purpose to reduce gossypol levels in seeds, RNAi was 
implemented to silence delta-cadinene synthase gene during seed development. 
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 Early ripening of tomatoes is another challenge in the way of agroeconomy. 
Ripening of fruits is triggered by ethylene. With a fi nal objective to delay ripening 
of tomatoes, an enzyme involved in ethylene biosynthesis, 1-amino cyclopropane- 
1- 1carboxylate (ACC) synthase, was targeted and downregulated through RNAi. 
As an additional benefi t, the level of polyamines and ascorbic acid was increased, 
which in turn increases shelf life and improves juice quality (Gupta et al.  2013 ). 
Other instances of crop improvement through gene silencing include reduction of 
beta-carotene content in potato through silencing of beta-carotene hydroxylase gene 
(Eck et al.  2007 ) and production of non-stimulatory decaffeinated coffee through 
RNAi-mediated suppression of CaXMT1 gene encoding theobromine synthase 
enzyme, which catalyzes addition of methyl group to xanthosine and its conversion 
to caffeine in biosynthetic pathway (Ogita et al.  2003 ). 

 Another  application   of RNAi in functional genomics is to assign functions to 
unknown genes by reverse genetics and to throw light on various plant interactions. 
Last but not least, the antiviral role of RNA silencing cannot be left untouched. 
RNAi exists as a natural antiviral defense in plants. Most of the plant viruses have 
sense-stranded RNA (Schuck et al.  2013 ) which plays a role similar to mRNA and 
also acts as a template for the enzyme, RdRp in host cell cytoplasm and synthesize 
double-stranded virus RNA (Ortin and Parra  2006 ). Replicated RNA acts as key 
silencing inducers (Ding  2010 ; Pantaleo  2011 ) and helps in siRNA production 
(Wang et al.  2008 ) which gets accumulated throughout the plant and reduces virus 
titer (Szittya et al.  2002 ; Moissiard and Voinnet  2004 ). Various reports have demon-
strated the potential of exogenous small dsRNA molecules against various patho-
gens, e.g., reduction of Israeli acute paralysis virus (IAPV) disease in honeybees 
( Apis Mellifera ) (Hunter et al.  2010 ), defense against vascular fungi causing 
 Verticillium  wilt disease in  Arabidopsis  (Ellendorff et al.  2009 ), development of 
resistance to banana bract mosaic virus (BBrMV) in banana (Rodoni and Dale 
 1999 ), and development of resistance to barley  yellow   dwarf virus (BYDV) in bar-
ley (Wang et al.  2000 ). Many other examples of the use of RNAi in crop sciences 
have been enlisted in Table  16. 2 .

16.4        Conclusion 

 With the fi rst demonstration of double-stranded RNA-mediated silencing in 
 Arabidopsis thaliana , phenomena of RNAi have established itself as a most potent 
biotechnological tool for crop improvement through the decrease of disease pres-
sure and enhancement of important agronomic traits. A better understanding of trig-
gers, initiators, and pathways of RNA interference is continuously adding to the 
simplicity of the technique. Although various plants have been modifi ed for better 
resistance to diseases, still there is a long way to understand the technique for effi -
cient and effective use. The effi ciency of RNA silencing is a result of interactions 
between protein complexes and double-stranded RNA molecules, sequence similar-
ity between the target sequence and initiator, etc. Thus prior prediction of silencing 
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effi ciency is diffi cult. Moreover, the involvement of mixed pathogens in a disease 
outbreak presents another challenge to modify plants to resist infection outside 
polyhouse facilities. Therefore, much experimentation is still needed in the fi eld of 
RNA-mediated silencing for strengthening of a technique for its effective utilization 
for crop improvement.     
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  17      In Vitro Selection of Disease-Resistant 
Plants                     

     Srinath     Rao      and     H.     Sandhya   

17.1          Introduction 

 Worldwide crops are attacked by several diseases, and due to these diseases, heavy 
loss in the yield of crop plants is a common phenomenon. This is more common in 
tropical regions. Diseases affect plants during all stages of their life cycle and even 
during storage stage. Controlling the pathogens through chemical pesticides is a 
very costly affair and labor intensive (Bezier et al.  2002 ). In addition, they also pose 
environmental hazards as they are nonbiodegradable; they accumulate in the soil 
and reduce the production of crops. They also cause loss of local fl ora and fauna. 
Hence, it has become pertinent to fi nd alternative biotechnological methods to 
develop disease-resistant crop plants. An important step in the breeding of crops is 
to develop an effective strategy for selection of desirable traits (Roane  1973 ; Van 
den Bulk  1991 ; Novak and Brunner  1992 ; Lebeda and Savabova  2010 ). 
Conventionally, selection of traits of interest is carried out in the fi eld; this involves 
identifying resistant plants, crossing them with the superior yielding variety, and 
studying their inheritance pattern, which may require 12–15 years to release a new 
variety. Compared with the techniques of in vitro selection (Novak and Brunner 
 1992 ; Jin et al.  1996a ; Patade et al.  2008 ).  Genetic engineering   is another approach 
that can be utilized to develop disease-resistant plants, but limitations in the form of 
transgene silencing (Manners and Casu  2011 ) reduced gene expression, and fre-
quency of low transformation (Mondal et al.  1997 ) and tough legislations (Burnquist 
 2006 ) hampers the use of this approach (Table  17.1  and Plates  17.1 ,  17.2 , and  17.3 ).
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   Table 17.1    List of plants where  culture fi ltrate/toxin   has been used for in vitro selection of 
disease- resistant plants   

 Sl. 
No.  Name of the plant  Name of the pathogen 

 Selection 
agent  References 

 1.   Arachis hypogaea  
(groundnut) 

  Cercosporidium 
personatum  

 CF  Venkatachalam and 
Jayabalan ( 1996 ) 

 2.   Ananas comosus    Fusarium subglutinans   CF, FA  Borras et al. ( 2001 ) 
and Hidalgo et al. 
( 1998 ) 

 3.   Amaranthus hybridus    Fusarium oxysporum   CF  Chen and Swart 
( 2002 ) 

 4.   Allium sativum    Fusarium oxysporum  f. 
sp.  cepae  

 CF  Zill-e-Huma Aftab 
and Saira Banarus 
( 2013 ) 

 5.   Allium cepa    Alternaria pori   PCF  Tripathi et al. 
( 2008 ) 

 6.   Ananas comosus    Fusarium subglutinans   CF  Hidalgo and 
Bermudez ( 2010 ) 

 7.   Avena sativa    Helminthosporium 
victoriae  

 Toxin  Rines and Luke 
( 1985 ) 

 8.   Azadirachta indica    Phomopsis azadirachtae   PCF  Girish et al. ( 2009 ) 

 9.   Brassica oleracea    Phoma lingam   TMs  Sjodin et al. ( 1988 ) 

 10.   Brassica napus    Phoma lingam   PT  Sacristan ( 1985 ) 

 11.   Cajanus cajan    Fusarium odum  Butler  GF  Rao et al. ( 2006 ) 

 12.   Carthamus tinctorius  
(saffl ower) 

  Alternaria carthami   CF  Kumar et al. 
( 2008a ,  b ) 

 13.   Citrus limon  (lemon)   Phoma tracheiphila   CF  Gentile et al. ( 1992 ) 

 14.   Citrus jambhiri    Phytophthora parasitica   CF  Savita et al. ( 2011 ) 

 15.   Cucumis sativus    Fusarium oxysporum .  CF  Malepszy and 
El Kazzaz ( 1990 ) 

 16.   Curcuma longa  
(turmeric) 

  Pythium graminicolum   CF  Gayatri et al. ( 2005 ) 

 17.   Dendrobium  sonia-28   Fusarium proliferatum   CF  Dehgahi et al. 
( 2014 ) 

  D. grandifl orum    Dendranthema 
grandifl orum  

 CF  Kumar et al. 
( 2008a ,  b ) 

 18.   Dianthus 
caryophyllus  

  Fusarium oxysporum  
f.sp.  dianthi  

 CF  Mosquera et al. 
( 1999 ) 

  Alternaria dianthi   CF  Thakur et al. ( 2002 ) 
and Esmaiel et al. 
( 2012 ) 

  Rhizoctonia solani   CF  Metha et al. ( 2007 ) 
and Sharma et al. 
( 2009 ) 

 19.   Gladiolus 
grandifl orus  
(gladiolus) 

  Fusarium oxysporum   FA  Remotti et al. 
( 1997 ) 

(continued)
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Table 17.1 (continued)

 Sl. 
No.  Name of the plant  Name of the pathogen 

 Selection 
agent  References 

 20.   Glycine max    Fusarium solani  f. sp.  CF  Li et al. ( 1999 ) 

  Glycines  

  Septoria glycines   Song et al. ( 1994 ) 

  Fusarium solani   Jin et al. ( 1996a ,  b ) 

 Hashem et al. 
( 2008 ) 

 21.   Gossypium hirsutum  
(cotton) 

  Fusarium oxysporum ,  CF  Ganesan and 
Jayabalan ( 2006 )   Alternaria macrospora  

 22.   Helianthus annuus    Diaporthe helianthi   CF  Quaglia and 
Zazzerini ( 2007 ) 

  Alternaria helianthi   CF  Rao and Ramgopal 
( 2010 ) 

 23.   Hordeum vulgare  
(barley) 

  Fusarium  sp.  FA  Chawla and Wenzel 
( 1987 ) 

 24.   Humulus lupulus    Verticillium albo - atrum   CF  Connel et al. ( 1990 ) 

 25.   Linum usitatissimum  
(fl ax) 

 Fusarium oxysporum  CF  Krause et al. ( 2003 ) 

 26.   L ycopersicon 
 esculentum  

  Fusarium oxysporum   FA  Shahin and Spivey 
( 1986 ) 

  F. oxysporum  f. sp.  CF  Toyoda et al. ( 1984 ) 

  Lycopersici   FA  Fuime and Fuime 
( 2003 )  Pyrenochaeta lycopersici  CF 

  Verticillium albo - atrum   CF and cell 
wall 
components 

 Koike et al. ( 1993 b) 

  Alternaria alternata   Kodama et al. 
( 1991 ) 

 Arcioni et al. 
( 1987 ) 

 27.   Medicago sativa    Fusarium oxysporum  f. 
sp.  medicaginis  

 Toxins  Binarova et al. 
( 1990 ) 

  Fusarium  spp.  CF  Hartman et al. 
( 1984 )   Fusarium oxysporum   CF 

 28.   Musa textilis  nee   Fusarium oxysporum  
f.sp.  cubense  

 CF  Purwati et al. ( 2007 ) 

 29.   Musa  sp.   Fusarium  sp.  FA  Matsumoto et al. 
( 1995 ) 

  Fusarium oxysporum  f. 
sp.  cubense  

 CF  Matsumoto et al. 
( 2010 ) 

 30.   Nicotiana tabacum  
(tobacco) 

  Pseudomonas syringae , 
 Pseudomonas , and 
 Alternaria  TMV 

 Methionine 
sulfoximine/
CF 

 Carlson ( 1973 ) 

 Thanutong et al. 
( 1983 ) 

 Toyoda et al. 
( 1989 ) 

(continued)
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17.2           Use of Pathogens in Selection 

 In the 1980s new method of dual culture was developed in which in vitro developed 
callus tissue of the host and the disease-causing pathogen are cultivated together; 
Hrib and Rypacek ( 1983 ) and Johnson and Whitney ( 1988 ) were the fi rst to study 
the  pathogen  icity in dual cultures at the level of embryonic stage. Later on several 
reports appeared on this topic (Hendry et al.  1993 ; Sirrenberg et al.  1995 ; Hrib et al. 
 1995 ; Terho et al.  2000 ; Kvaalen and Solheim  2000 ; Kvaalen et al.  2001 ). The 
pathogen responsible for causing the disease can be used as the in vitro selection 
agent for resistance (Daub  1986 ; Van den Bulk  1991 ; Lebeda and Savabova  2010 . 
The concentration of the inoculums, temperature, and the composition of the 
medium are the important factors which infl uence the expression of resistance to the 
disease for which screening is done (Xue and Hall  1992 ; Bertetti et al.  2009 ), which 
may lead to inconsistent results being obtained (Daub  1986 ). Moreover, this option 
has limitations including (1) uneven exposure of the cells to the pathogen, (2) 
whether resistance can be expressed in in vitro cultured cells, and (3) the over-
growth of the pathogen on the cells and medium, which makes it diffi cult to make 

Table 17.1 (continued)

 Sl. 
No.  Name of the plant  Name of the pathogen 

 Selection 
agent  References 

 31.   Oryza sativa  (rice)   Helminthosporium 
oryzae  

 CF  Vidhyasekaran et al. 
( 1990 ) 

  Pyricularia oryzae   CF  El-Banna and 
Khatab ( 2012 ) 

 32.   Pelargonium 
graveolens  

  Alternaria alternata   CF  Saxena et al. ( 2008 ) 

 33.   Prunus persica  
(peach) 

  Xanthomonas 
campestris  

 CF  Hammerschlag 
( 1988 ) 

 34.   Saccharum  sp. 
(sugarcane) 

  Colletotrichum falcatum   CF  Sengar et al. ( 2009 ) 

 35.   Saccharum 
offi cinarum  

  Colletotrichum falcatum   PPT  Ali et al. ( 2007 ) 

 36.   Solanum melongena    Verticillium dahlia   CF  Koike et al. ( 1993 ) 

 37.   Solanum tuberosum    Phyrophthora infestans   CF  Behnke ( 1979 , 
 1980 ) 

 38.   Vitis vinifera    Botrytis cinerea   CF  Reustle and Matt 
( 2000 ) 

  Elsinoe ampelina   Jayashankar et al. 
( 2000 ) 

 39.   Zea mays  (maize)   Helminthosporium 
maydis  

 PT  Gengenbach et al. 
( 1977 ) 

 40.   Zingiber offi cinale    Fusarium solani   CF  Gupta et al. ( 2006 ) 

   CF  culture fi ltrate,  FA  fusaric acid,  TMs  toxic metabolites, and  PPT  partially purifi ed toxin  
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observations (Daub  1986 ). Fungal conidia can be inoculated onto shoot cultures, 
and these are visually monitored for resistance to the fungus, provided there is a 
correlation with the effect of the fungus in vivo (George  1993 ). Several successful 
experiments have been carried out in vitro with live inoculums, i.e., powdery mil-
dews ( Blumeria graminis ,  Erysiphe pisi ,  Sphaerotheca pannosa ,  Uncinula aceris ) 
(Webb and Gay  1980 ).  Plasmodiophora   brassicae  (Buczacki  1980 ),  Colletotrichum 
trifolii  (Cucuzza and Kao  1986 ),  Peronospora tabacina  (Tuzun and Kuc  1987 ), 
 Phytophthora cinnamomi  (McComb et al.  1987 ; Cahill et al.  1992 ),  Alternaria 
alternata  (Takahashi et al.  1992 ), and  Fusarium solani  (Huang and Hartman  1998 ). 
The in vitro conditions (higher humidity, reduced air velocity, media rich in 

  Plate 17.1    ( a ) Effect of increasing  conce  ntration of  Alternaria helianthi  culture fi ltrate on seed 
germination in sunfl ower.  1  Control seeds  2 ,  3 , and  4 . Seeds treated with 10, 20, and 30 % culture 
fi ltrate (CF). Note decrease in percent germination with increasing concentration of CF. ( b ) 
Seedlings raised from 0, 10, 20, to 30 % CF-treated seedlings. Note decreased seedling growth 
with an increase in concentration of CF. ( c ) Seedlings treated with increasing concentration of 
CF. Note increase in disease symptoms with an increase in the concentration of CF (Ramgopal 
 2003 ; Rao and Ramgopal  2010 )       
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nutrients) are very hospitable and favor growth of microorganisms in general. In a 
number of studies, different live pathogens were tested as agents for in vitro selec-
tion but were found to be too devastating for the plant tissues/organs  and  , therefore, 
of limited use. 

 Growing resistant varieties is the most effective control measure. As resistant 
varieties are not available, it is essential to generate variability and screen the vari-
ants. Genetic variation as a result of spontaneous mutations is noticed during 
culturing of plants in vitro. Larkin and Scowcroft ( 1981 ) named them as 

  Plate 17.2    ( a ) Callus grown on  medium   devoid of  A. helianthi  culture fi ltrate. ( b ) Callus grown 
on medium containing 40 % CF; note extensive browning and reduction in growth of callus. ( c ) 
Portion of resistant callus growing on 40 % CF. ( d ) Shoots from control callus ( e  and  f ) shoots initi-
ated from callus resistant to 40 % CF (Ramgopal  2003 ; Rao and Ramgopal  2010 )       
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somaclonal variations, and they realized its potential application in crop improve-
ment. Since then, somaclonal variation has been successfully used in crop 
improvement (Breiman et al.  1987 ; Van den Bulk  1991 ; Lakshmanan  2006 ; 
Snyman et al.  2011 ). Further, the exposure of cultured cells to physical or chemi-
cal mutagens can be used together with in vitro culture to increase mutation 

  Plate 17.3    ( a ) Callus of   Cajanus cajan  gro  wing on medium devoid of  Fusarium odum  culture 
fi ltrate. ( b ) Callus of  Cajanus cajan  growing on medium supplemented with 40 % CF; note exten-
sive browning and reduced growth of callus. ( c ) Surviving sector of callus showing resistance to 
40 % CF. ( d ) Regeneration of plantlet from CF-resistant callus (Basavaraj  1992 ; Rao et al.  2006 )       
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frequency, thus enhancing somaclonal variation (Maluszynski et al.  1995 ; Snyman 
et al.  2011 ). An in vitro screening protocol utilizing an appropriate selecting 
agent, such as toxins produced by the pathogen or culture fi ltrates of the pathogen, 
can then be used to obtain disease- tolerant plants (Van den Bulk  1991 ; Chandra 
et al.  2010 ). With this approach the screening of large numbers of plants in a lim-
ited space over a short period of time is possible (Ahloowalia and Maluszynski 
 2001 ; Patade et al.  2008 ; Suprasanna et al.  2009 ). The partially purifi ed or  purifi   ed 
toxins or culture fi ltrates of pathogen containing toxins involved in disease devel-
opment are suitable selection agents for use in vitro (Daub  1986 ; Svabova and 
Lebeda  2005 ).  How  ever, it is important to expose the plants selected in vitro to the 
pathogen in order to confi rm tolerance (Thakur et al.  2002 ; Tripathi et al.  2008 ; 
Sengar et al.  2009 ).  

17.3     Rational Behind Using Fungal Culture Filtrate/Toxins 
for In Vitro Selection 

 Fungal metabolites which are present in  the   culture fi ltrates are able to produce 
disease-like symptoms and trigger elicitation of defense responses. Wheeler and 
Luke ( 1955 ) fi rst used phytotoxin in resistance breeding. Several studies have 
confi rmed a correlation between tolerance of plants to toxins or culture fi ltrates 
and that obtained by inoculating with the pathogen (Gengenbach et al.  1977 ). It is 
reported that when calli of soybean susceptible to  Fusarium-caused  disease were 
exposed to elevated levels of culture fi ltrate of  Fusarium solani , it will show 
reduced growth and regeneration (Jin et al.  1996a ,  b ). Regenerated plants which 
are not affected by the toxin are also disease resistant.  Helminthosporium maydis , 
the casual agent of southern corn leaf blight, produces T-toxin, which acts specifi -
cally on mitochondria of susceptible cells (Miller and Koeppe  1971 ). In this seg-
regation for virulence but not for pathogenicity was observed from a cross between 
race T (producing toxin) and race 0 (not producing toxin), suggesting that the 
toxin is a virulence factor (Yoder and Gracen  1975 ). Toxin produced by  Alternaria 
alternata and A. mali  is considered to be pathogenicity factors; mutation eliminat-
ing toxin production genes resulted in loss of pathogenicity (Nishimura et al. 
 1974 ,  1979 ). Pathogenicity and toxin production could be restored by another 
mutation. The culture fi ltrate from nonpathogenic isolates of  P. gregata , which 
causes the brown stem rot of soybean, did not affect the growth of either suscep-
tible or resistant calli (Gray et al.  1986 ). The virulent isolates of  Helminthosporium 
oryzae  lost its ability to produce toxin because of repeated subculturing; hence it 
also becomes nonpathogenic (Vidhyasekaran et al.  1986 ). It is observed that the 
phytotoxicity of crude fi ltrates from  Fusarium subglutinans  is the causal agent of 
fusariose in pineapple (Borras et al.  1998 ); further he reported that the callus tis-
sue obtained from the disease- susceptible varieties was more affected by the dis-
ease than the calli obtained from resistant cultivars. They further reported that the 
growth of the callus was reduced, and browning  o  f the callus tissue was more 
when treated with the crude culture fi ltrate in susceptible cultivars. Macky et al. 
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( 1994 ) reported reduced callus growth of  Cucumis melo  exposed to toxins pro-
duced by  Myrothecium roridum . Hidalgo et al. ( 1998 ) reported that  F. subgluti-
nans  culture fi ltrate was toxic to pineapple calli and leaves. Similarly Hidalgo 
et al. ( 1998 ,  1999 ) observed in pineapple that the plantlets obtained from the calli 
resistant to culture fi ltrate of  Fusarium subglutinans  showed resistance to the dis-
ease. It is reported that if resistance is found in vivo, then toxin tolerance is also 
detected in the host cultures (Gentile et al.  1992 ). From the results it is obvious 
that these characteristics can be used for in vitro screening of germplasm for resis-
tant lines (Behnke  1979 ,  1980 ; Thanutong et al.  1983 ; Sacristan  1985 ; Ludwig 
et al.  1992 ; Song et al.  1994 ). Girish et al. ( 2009 ) reported that partially purifi ed 
culture fi ltrate of  Phomopsis azadirachtae  caused growth reduction and necrosis 
of neem callus. These reports show that phytotoxins produced by plant pathogens/
or their culture fi ltrate can contribute to  pathogen  icity and are important in symp-
tom development and can be used to screen for disease resistance/selecting toler-
ant cell lines (than regenerate plantlets from the resistant cell lines) using in vitro 
system.  

17.4     Advantages and Limitations of In Vitro Selection 

 In vitro selection for disease resistance is advantageous for several reasons: (1) 
Cultured cells get uniformly exposed to the selective agent; thus, the number of 
 e  scapes is highly reduced. (2) Small space is suffi cient to maintain the culture sys-
tems, thus eliminating the need of expensive green houses required for fi eld testing. 
(3) Spread of the disease-causing agent can be prevented and confi ned within the 
laboratory. In addition, the technique allows for the introduction of a pathogen in a 
controlled environment, negating the need for strict quarantine if carried out ex vitro 
(Chandra et al.  2010 ). In vitro selection can be applied regardless of the source of 
genetic variation (e.g., “somaclonal variation” or induced mutations). Also the dis-
tinction between monogenic and polygenic inheritance is rather irrelevant, since at 
the selection stage only the phenotype difference between susceptible and resistant 
is important. However, in vitro culture conditions must be suitable to screen for 
resistance to the various plant pathogens. It is important that such screening should 
be performed immediately after the generation of genetic variation, e.g., proto-
plasts/cells subjected to mutagens could subsequently be placed on toxin- containing 
media. The plants which have  surviv  ed the toxin pressure should also be tested for 
their resistance to pathogen under fi eld conditions. During in vitro selection, a 
selection pressure can be applied to in vitro cultured cells and/or to the regenerated 
plants in the culture medium and subsequently to the fi eld plants (Maluszynski et al. 
 1995 ; Chandra et al.  2010 ). This approach allows for selection of a large number of 
tolerant plants/cells in a limited space under specifi c environment that can be con-
trolled which is free from abiotic and biotic factors that might negatively infl uence 
selection (Chaleff  1983 ; Duncan and Widholm  1990 ). This strategy also allows uni-
form exposure of the cells to the selection pressure by culturing them on media 
containing the toxin (Daub  1986 ). For example, a potato breeder may screen in the 
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greenhouse or the fi eld perhaps 50,000–100,000 seedlings per year for disease resis-
tance. On the other hand, 20 million protoplasts obtained from only 1 g of leaf tissue 
could be easily cultured in a laboratory. If a given benefi cial mutation such as dis-
ease resistance has a probability of 10 −5 , then perhaps one such mutant would occur 
among the 100,000 seedlings. However, 200 mutant plants might be obtained from 
protoplast culture screening. Thus, a serious consideration of the potential of in vitro 
selection both with respect to various pathogen types and to various host plant mate-
rials is clearly warranted. 

 However, limitations of in vitro selection are that traits expressed at the cellular 
level might not be expressed at the plant level (Daub  1986 ). Furthermore, the 
technique cannot be used to select certain phenotypic traits (e.g., agronomic 
traits), which require cell  differentiation   and organization (Chaleff  1983 ). When 
the desired traits are dominant and homozygous recessive, resistant cells and 
plants can be selected immediately, but crossing is necessary in cases of heterozy-
gous plants in order to obtain plants with recessive traits (Van den Bulk  1991 ). 
The traits expressed in cells as a result of epigenetic variation may not be expressed 
in the progeny of the plants, as the  epigenetic   effects are reversed by meiosis dur-
ing sexual reproduction (Chaleff  1983 ; George  1993 ; Suprasanna et al.  2009 ).  

17.5     Requirements for the In Vitro Selection of Variant Cells 
and Plants 

 The tolerant plant can be generated if (1) there should be high variations in the cells 
available, (2) selection method can be easily applied, (3) the  t  olerant cells/tissue 
should easily regenerate into a complete plant, and (4) tolerance to toxins or culture 
fi ltrates expressed by somaclonal variants should correlate to tolerance to the patho-
gen (Van den Bulk,  1991 ; Svabova and Lebeda  2005 ). (5) According to Koch’s 
postulates (Parry  1990 ), plants susceptible to the pathogen should exhibit symptoms 
similar to those displayed by diseased plants from which the pathogen was initially 
isolated. The tolerant plants should display no or minimal symptoms in the presence 
of the pathogen in the plant tissue (Gengenbach et al.  1977 ; Arcioni et al.  1987 ; 
Botta et al.  1994 ). Cells should not be exposed to high levels of the toxin early in 
selection as this might affect the ability of resistant cells to regenerate (Gengenbach 
et al.  1977 ). (6) Inheritance of the desired character is an essential  comp  onent 
(Widodo and Sudarsono  2005 ).  

17.6     Studies on Selection for Disease Resistance 
Through In Vitro Technique 

 Carlson ( 1973 ), for the  fi r  st time, reported that it is possible to select plants for 
resistance through in vitro techniques. He used methionine sulfoximine (MSO) as 
an agent for selecting cells and protoplasts of tobacco. Since that time, several 
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researchers have used this technique which has yielded suffi cient data on in vitro 
selected disease-resistant plants and regeneration of plants from callus selected 
for resistant toward fungal culture fi ltrate or toxin produced by the pathogens. 
 Helminthosporium maydis  induces southern corn leaf blight in maize. Gengenbach 
et al. ( 1977 ) used the purifi ed toxin produced by this fungus to select for cells that 
were resistant to the corn leaf blight disease in maize. Hartman et al. ( 1984 ) 
reported selection of alfalfa cell lines which showed resistance to the toxin(s) 
produced by  Fusarium oxysporum  f. sp.  medicaginis  and regenerated plants from 
the selected cell line which showed resistance to the disease caused by this fun-
gus. Plants resistant to eyespot disease have been selected using a toxin produced 
by the  H. sacchari  in sugarcane (Chaleff  1983 ; Prasad and Naik  2000 ). Amusa 
( 1998 ) tested cassava plants for resistance to anthracnose disease using phyto-
toxic metabolites of  Colletotrichum gloeosporioides  f. sp.  manihotis  and reported 
that the plants are resistant to disease even in fi eld conditions. Ali et al. ( 2007 ) 
partially purifi ed a toxin produced by  Colletotrichum falcatum  and used it to 
select mutants resistant to red rot in sugarcane. Culture fi ltrates can be used when 
there is no reliable description of the toxins produced by the fungus. The fungal 
CF is prepared by passing the liquid culture through a series of fi lters in order to 
remove the mycelia and conidia (Sengar et al.  2009 ). Potato callus was selected 
showing resistance to culture fi ltrates of  Phytophthora infestans , and plants were 
regenerated from the resistant callus (Behnke  1979 ,  1980 ). Toyoda et al. ( 1984 ) 
selected  F. oxysporum  f. sp.  lycopersici  culture fi ltrate-resistant tomato cells after 
exposure to the mutagen N-methyl-N-nitro-N-nitrosoguanidine (MNNG). 
Hammerschlag ( 1988 ) selected peach cells resistant to culture fi ltrates of 
 Xanthomonas campestris  pv. pruni and regenerated plants which also showed 
resistance to disease caused by  Xanthomonas campestris  pv. pruni. Alfalfa plants 
resistant to  Fusarium oxysporum  f. sp.  medicaginis  were selected through in vitro 
techniques by Arcioni et al. ( 1987 ). Hidalgo et al. ( 1998 ,  1999 ) reported selection 
and regeneration of plantlets in pineapple from calli resistant to culture fi ltrate of 
 Fusarium subglutinans  and observed that the plantlets obtained from the resistant 
calli showed resistance to the disease. Ahmed et al. ( 1996 ) isolated  Fusarium-
resistant  somaclones in wheat using culture fi ltrate of  Fusarium . Krause et al. 
( 2003 ) reported fl ax plants ( Linum usitatissimum ) raised from another culture and 
callus tissue showing  resistance  to  Fusarium oxysporum. Vitis vinifera  plants 
showing resistant  to    Elsinoe ampelina  culture fi ltrate were obtained by Jayashankar 
et al. ( 2000 ) and further added that the plants thus obtained were resistant to the 
fungus. Somatic embryos of cotton ( Gossypium hirsutum  L. cv. SVPR 2) plants 
were screened with fungal culture fi ltrate, and disease-tolerant plants were 
obtained (Ganesan and Jayabalan  2006 ). 

 The above reports show that culture fi ltrates are potential for in vitro screening 
for disease resistance (Ludwig et al.  1992 ; Song et al.  1994 ). This is an easy and 
effective method as culture fi ltrates have been shown to  be   phytotoxic (Suprasanna 
et al.  2009 ; Chandra et al.  2010 ).  
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17.7     Phytotoxins from Plant Pathogens 

 A number of  plant   pathogens produce toxins (Wood et al.  1972 ; Dublin  1981 ) as 
a mode of protection against a host plant’s defenses, enabling them to kill host 
cells and in the process induce disease symptoms (Markham and Hille  2001 ). 
Toxic metabolites isolated from fungal species often cause symptoms similar to 
those caused by the live pathogens. Over 250 fungal and bacterial phytotoxins 
have been extracted and characterized (Lebeda and Savabova  2010 ). Such toxic 
metabolites include colletotin from  C. fuscum  (Goodman  1960 ; Lewis and 
Goodman  1962 ) and from  C. nicotianae  (Masatoshi et al.  1976 ,  1978 ), phomopsin 
A by  Phomopsis leptostromiformis  (Lanigan et al.  1979 ), cercosporin from 
 Cercospora  sps. (Daub  1982 ), enniatin from  Fusarium tricinctum  (Burmeister 
and Plattner  1987 ), dihydrofusarubin and isomarticin from  Fusarium solani  
(Nemic  1988 ), malseccin from  Phoma tracheiphila  (Gentile et al.  1992 ), colleto-
trichin and colletopyrone from  Colletotrichum gloeosporioides  (Jayasankar et al. 
 1999 ), solanopyrone A, B, and C from  Ascochyta rabiei  (Hamid and Strange 
 2000 ), phomalide from  Phoma lingam  (Pedras et al.  1999 ), destruxin B (Pedras 
and Biesenthal  2000 ), and AM toxin from  Alternaria alternata  (Saito et al.  2001 ). 
The phytotoxic metabolites  o  f most of these pathogens have been reported to play 
a signifi cant role in pathogenesis (Chandraskharan and Ramakrishnan  1973 ; 
Walker and Templeton  1978 ; Amusa  1991 ; Amusa et al.  1993 ). Some of these 
metabolites, also known as pathotoxins, are chemopathogens of biological origin 
that can be used to replace the pathogens in studies to investigate the nature and 
the development of pathogenesis (Wheeler and Luke  1963 ). This is because the 
pathotoxins play a causal role in the onset of diseases and produce symptom char-
acteristic of the disease in susceptible plants. These toxins cause wilting, necrosis, 
and chlorosis of plants (Chandra et al.  2010 ). They can, therefore, be used as 
in vitro selection agents (Chandra et al.  2010 ). Thus, phytotoxic metabolites have 
been  used   to screen crops for disease resistance (Wheeler and Luke  1955 ; Hartman 
et al.  1986 ; Amusa et al.  1994 ; Amusa  1998 ,  2000 ). 

 A prerequisite for the use of a toxin is to determine that it contributes to patho-
genesis, i.e., that it is a pathotoxin (Van den Bulk  1991 ). To determine this, vari-
ous approaches can be undertaken, viz.: (1) the phytotoxin can be extracted from 
the infected plant; (2) the phytotoxin’s presence at a crucial stage of the disease 
can be tested; and (3) the phytotoxin’s ability to induce disease symptoms on the 
plant can be assessed (Yoder  1980 ; Hamid and Strange  2000 ). Further, the gene(s) 
responsible for the synthesis of the toxin can be made dysfunctional, and patho-
genesis of the mutated fungus can then be assessed (Desjardins and Hohn  1997 ). 
In this strategy, it is postulated that cells resistant to the phytotoxins will also be 
resistant to the pathogen (Daub  1986 ; Van den Bulk  1991 ; Desjardins and Hohn 
 1997 ; Chandra et al.  2010 ). Consequently, initial tests should be conducted to 
establish the effect of the toxin or fi ltrate on the plant tissue cultures to  determin  e 
a suitable concentration of the toxin or fi ltrate that can be used in selection (Lebeda 
and Savabova  2010 ). The purifi ed toxins can be used in selection strategies 
(Remotti et al.  1997 ; Khan et al.  2004 ). They can be either host specifi c or nonhost 
specifi c (Markham and Hille  2001 ) and can be purifi ed from culture fi ltrates 
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(Mayama et al.  1990 ) or acquired from commercial suppliers (Desjardins and 
Hohn  1997 ; Remotti et al.  1997 ). Purifi cation of the culture fi ltrates can be done 
using ultrafi ltration and fast protein liquid chromatography (Bailey  1995 ). 
However, due to the conditions provided in vitro, the concentration of toxins pro-
duced is likely to be greater than that produced by the fungus in vivo (Yoder 
 1980 ). This might result in a weak correlation between the amount of toxin in vitro 
and virulence of the fungus in vivo (Yoder  1980 ; Tripathi et al.  2008 ). Hence, the 
toxin-tolerant plants should be inoculated with the pathogen to confi rm tolerance 
(Chen and Swart  2002 ). Since inoculation is usually carried out in non-sterile 
environments and there is, therefore, potential for secondary infection by other 
pathogens, it is important to confi rm that the inoculated pathogen is the causal 
agent of observed symptoms (Harris  1999 ). This can be  achieve  d by re-isolation 
of the pathogen onto appropriate culture media and identifi cation of the isolates 
(Chen and Swart  2002 ; Abdel-Monaim et al.  2011 ).  

17.8     Possible Mechanism of In Vitro Variability and Stability 

 Tissue culture- or mutation- induced   variations are manifested in three ways: (1) the 
tissue culture system itself acts as a mutagenic system because cells experience 
traumatic conditions during explant isolation and culture and may undergo a type of 
reprogramming during plant regeneration that is different to that under natural con-
ditions (Jain  2001 ), and thus, we get variation within cell cultures, in which indi-
vidual cells within a culture may vary in morphology and genetic makeup; (2) 
primary regenerants are showing a nonheritable phenotypic effect but that can be 
maintained as asexually propagated plants if the variation is somatically stable; and 
(3) heritable variation is sexually transmitted to the offspring in a seed-derived pop-
ulation (Kaeppler et al.  1998 ; Jain  2001 ).  

17.9     Methodology 

 A major problem  associated   with the evaluation of somaclonal variation for disease 
resistance is the availability of effi cient, reliable screening methods (Sebastiani et al. 
 1994 ). The effect of the selection agent (pathogen culture, culture fi ltrate, phytotox-
ins, etc.) must be demonstrated in a preliminary experiment, where a suitable con-
centration range allows for a comparison of the toxic effects on susceptible and 
tolerant/resistant germplasm. To apply a selection pressure in vitro, the concentration 
of the selection agent that kills or inhibits the growth of cells has to be established for 
incorporation into the selection medium (Suprasanna et al.  2009 ). Exposure of cells 
to the selection agent can either be single step with two to three times the lethal dose 
of the agent or multiple step where the concentration of the selection agent is gradu-
ally increased,  starti  ng at the lethal concentration (Suprasanna et al.  2009 ). 

 The outcome of such preliminary experiments is to ascertain the precise dosage 
of the selection agent that is optimal for screening resistant material while killing or 
drastically reducing growth of susceptible. 
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 In vitro cultures can be initiated by using various explants, viz., stems, leaves, 
apical tissues, fl oral parts, gametes, meristematic regions, lateral buds, shoot tips, 
immature cotyledons, zygotic embryos protoplasts, cell suspensions, and organo-
genic or embryogenic calli (Bhojwani and Razdan  1983 ). 

 Two types of selection agents, live pathogen/spores or culture fi ltrate and phyto-
toxin/pathotoxin, can be used incorporated in the selection medium (Svabova and 
Lebeda  2005 ; Lebeda and Savabova  2010 ). 

 When appropriate selection pressure is applied through a selection agent, plant 
organs/tissues/cells that survive the selection pressure are potential sources of toler-
ant/resistant subclones. The difference between the selected tolerant/resistant lines 
and the original plant  materia  l may originate from somaclonal variation or induced 
mutagenesis. 

17.9.1     In Vitro Selection 

 The perfect model of in vitro selection for disease resistance should comprise: (1) an 
explant culture able to generate genetic variation with high ability to regenerate resis-
tant/tolerant, genetically stable fertile plants; (2) a selection agent which induces simi-
lar biochemical reactions as the pathogen in vivo; (3) a verifi cation system of 
resistance/tolerance of in vitro lines to prove acquired character via cocultivation with 
the pathogen isolate, assessing parameters such as reduced growth of hyphae and 
reduced weight of mycelia as compared to control, and via greenhouse and fi eld tests; 
and (4) molecular tools to characterize the selected resistant lines at the DNA level. 

 These preliminary experiments must be performed for each combination of plant 
tissue culture and selection agent combination. 

 The general scheme for experiments which combines  biotechnological and phy-
topathological approaches   also has to include the following steps: (1) collection of 
pathogen isolates and their biological characterization; (2) establishment of patho-
gen culture; (3) derivation of an effective selection agent; (4) establishment of the 
plant tissue culture; (5) testing of the effect (phytotoxicity) of the selection agent on 
the cultures in vitro and a statement of the selection concentrations for a particular 
plant-pathogen model; (6) serial selection cycles in vitro; (7) regeneration of 
explants surviving selection pressure to plants; (8) testing in vitro, in vivo, and heri-
tability analysis; and (9) assessment in fi eld conditions under natural infection.   

17.10     General Scheme of In Vitro Screening for Disease 
Resistance and Selection 

•     Establishment of explant culture (stem, leaves, cells, protoplasts)  
•   Establishment of the  regener  ation protocol (organogenesis, embryogenesis)  
•   Treatment with various mutagens (for increasing the somatic variability) an 

optional step  
•   Establishment of the pathogen culture (purifi cation, propagation)  
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•   Biological characterization of isolates (virulence, pathogenicity)  
•   Isolation of the selection agents: inoculation, double layer, culture fi ltrate, crude 

× purifi ed, autoclaved × fi ltered through Millipore, phytotoxins/pathotoxins  
•   Establishment of the evaluation method for the assessment of the effect of selec-

tion agents on in vitro cultures: selection of suitable concentrations for a particu-
lar explant culture  

•   Several cycles of in vitro selection  
•   Regeneration of explants that survived the selection pressure  
•   Biochemical and molecular analyses of selected plant material  
•   Screening of selected plant material for resistance to pathogen in greenhouse 

and/or fi eld conditions  
•   Multiplication of the  lines   with improved resistance for further use in breeding 

programs or direct farming     

17.11     Concluding Remarks and Future Issues 

 In recent years, considerable progress has been made regarding the development 
and isolation of disease-tolerant cell/callus lines using in vitro technique. In vitro 
selection will save the time required for developing disease-resistant/tolerant lines 
of important plant species. 

 The basic advantages of using in vitro cultures as compared to natural conditions 
are that (1) unfavorable weather and climate conditions are avoided, which enable 
the assessment of quantitative differences in polygenic traits more easily and pre-
cisely; (2) a large number of individuals can be tested in a small space; (3) it is 
easier to manipulate mutants, haploids, and somaclones with higher variability in 
the genome; and (4) mass screening of mutants for resistance is facilitated. In vitro 
select variants should be fi nally fi eld-tested to confi rm the genetic stability of the 
selected trait. Major problem with in vitro selection is low frequency of selected 
explants; this can be overcome by the use of explants with high morphogenic poten-
tial which may ensure successful regeneration. 

 Although there are not many reports of cultivars whose resistance is based on 
in vitro selections, many resistant breeding lines were obtained; hence, interest in 
utilizing in vitro methods for improving resistance to plant pathogens remains 
(Upadhyay and Mukerji  1997 ). Thus, selection of resistance in vitro must be consid-
ered as one of the methods which, in combination with conventional resistance 
screening and plant breeding methods including biotechnological procedures, may 
offer plant breeders a new approach to accelerate the development of disease- 
resistant plants (Crino  1997 ). 

 These results suggest that the selection approach could have two major limita-
tions: (1) the lack of knowledge concerning the genotypic dependence of the char-
acterized toxins or extracellular metabolites that confer host-pathogen selectivity 
and (2) no assurance that the susceptibility and/or resistance of cultured tissues to 
the culture fi ltrate or toxins refl ect those of the whole plant.     
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18.1         Introduction 

 The art of  genetic engineering   not only complements conventional breeding strate-
gies by providing opportunities to incorporate foreign genes/enzymes but also 
serves as a wide platform to strategically manipulate the endogenous rate-limiting 
steps for desired or elite traits. The transgenic approaches have made possible to 
recuperate the genetic architecture in order to improve various biotic and abiotic 
aspects necessary for plant adaptation and survival.   Agrobacterium -mediated trans-
formation   is the viable approach that has been widely utilised as a convenient 
method for the improvement of particular trait through incorporation and functional 
characterisation of genes involved in biochemical, phenotypical and genotypic 
routes of the metabolic pathways. 

 In the past few years,   Agrobacterium rhizogenes -mediated hairy root culture 
technique   has been proven as an ideal platform to imitate the metabolite produc-
tion profi le of plant roots (Karuppusamy  2009 ; Palazon et al.  1997a ,  b ). HRs are 
differentiated root cultures that are characteristically highly stable, lacking 
geotropism, hormone independent, fast growing, lateral branching and produc-
tive in terms of metabolites. HRs are means of potentially active compounds 
which can be derived from crop with high risk of extinction, plants associated 
with limited geopolitical or climatic condition, etc. (Verpoorte et al.  2002 ). The 
growing demand for valuable pharmacologically bioactive compounds has led 
the researchers to search for an alternative which they have got a new  hairy root   
 technology  . Using  A. rhizogenes - mediated transformation (ARMT) method, 
large numbers of chemical compounds were successfully produced under 
in vitro condition (Guillon et al.  2006 ; Giri and Narasu  2000 ). Therefore, by 
applying  A. rhizogenes- mediated transformation, it is possible to introduce only 
gene of interest in the recipient’s body, while genetic architecture of the recipi-
ent’s plant remains the same. 

 The  hairy root    disease   is caused by  rol  genes which are considered as  the   
natural precursors for tumour formation (Riker et al.  1930 ; Cardarelli et al. 
 1987a ; Spena et al.  1987 ; White et al.  1985 ). Rol genes are oncogenic in nature, 
which are inherently present on the  TL-DNA region   of Ri plasmid. The TL-DNA 
 r  egion consists of 18 open reading frames (ORF1-ORF18) which correspond to 
different  rol  genes. ORF 10 corresponds to  rol A , ORF 11 to  rol B  and ORF 12 
to  rol C , and likewise ORF15 represents  rol D  (Slightom et al.  1986 ). During 
agrobacterial infection, the T-DNA region of the plasmid gets transferred and 
integrated in the host plant genome. The expression of  rol  genes interferes with 
hormonal balance and is able to alter the plant’s normal functioning, and in 
particular this alteration has been proven benefi cial to researchers in terms of 
improved traits, characters, varieties and production of important secondary 
metabolites. The existence of  rol  genes has additionally broadened the scope to 
 investigate    Agrobacterium rhizogenes -based transformation events that served 
as an extremely powerful and attractive tool for crop improvement. Besides 
facilitating the study of developmental biology and gene regulation in a wide 
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range of crops,  rol  genes have also proved useful in manipulating the metabolic 
pathways to enhance the accumulation of desired products of commercial inter-
est. The manipulation of  Rol  genes has fuelled the possibility to modify the 
plant to obtain desired trait/characters. 

 Based on the present knowledge, it will be of great interest to explore the poten-
tial of  rol  genes in relation to its transfer, integration and inheritance and its signifi -
cant concomitant result/alteration in the host plant. Over the decades many 
signifi cant roles of  rol  genes have been described (Bulgakov  2008 ; Binns and 
Costantiano  1998 ; Meyer et al.  2000 ; Nilsson and Olsson  1997 ). The application of 
 rol  genes in fl oriculture was also summarised by Casanova et al. ( 2005 ). 

 The modulation in the set of these  rol  genes will surely made the researchers 
capable of understanding the differentiation pattern of abundant roots in the pres-
ence or absence of an adequate plant growth regulator. The exploration and identi-
fi cation of similar genes ( rol A ,  B , and  C , aux, ORF8, ORF13) are capable of 
stimulating the state of responsiveness in particular to biotechnological aspect, and 
undoubtedly analysing/practising the selected group of  rol  genes will be of great 
help in understanding the physiology of root differentiation pattern and enhancing 
the quality and yield of the desired products. The chapter summarises and explores 
biochemical, physiological, morphological and inheritance pattern of both individ-
ual and constitutive expression of  rol  genes  in planta . 

18.1.1     The Saga of Genus  Agrobacterium  and Host Range 

 The genus  Agrobacterium  consists of three species, namely,     A. tumefaciens ,  A. rhi-
zogenes  and  A. radiobacter , out of which  A. tumefaciens  and  A. rhizogenes  are viru-
lent while  A. radiobacter  is an avirulent strain. The type of disease developed in any 
host species depends upon the type of plasmid available within a particular strain. 
Likewise, hairy  roo  t  disease   is caused by  A. rhizogenes , crown gall disease is caused 
by  A. tumefaciens  and  A. rubi , a new species, causes cane gall disease in plant sys-
tem.  Agrobacterium  has a broad spectrum infectivity ranging from human cells to 
sea urchin embryos, dicots and monocots plant species (Kunik et al.  2001 ; Bulgakov 
et al.  2006 ; Hohn et al.  1989 ). A wide range of monocotyledonous plants like sug-
arcane, wheat, rice and corn has been reported to be transformed by  Agrobacterium  
strains. Successful transformed plants like banana,  Alstroemeria  and  Typha latifolia  
(Matsumoto et al.  2009 ; Akutsu et al.  2004 ; Nandakumar et al.  2005 ) have been 
reported so far. 

   Agrobacterium rhizogenes    invokes phenotypic variations in infected host 
plant and lets the transformed host species tissue to grow in vitro in the absence 
of exogenous hormonal supply. The emerging hairy root from the site of infec-
tion is highly stable and can be regenerated into plants (depending upon the 
genotype of the host plant species), in many species, shown to have characteris-
tic phenotype like shortened internodes, stunted growth, wrinkled/necrotic 
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leaves, reduced apical dominance and altered fl ower phenotype with low fertil-
ity (Tepfer  1984 ). 

 As the Ti plasmid has a central role in crown gall tumorigenesis, few years later 
it was revealed that  A. rhizogenes  contains  a   Ri plasmid called  T-DNA region   which 
in turn translocates and integrates into host plant cell (White and Nester  1980a ,  b ; 
Moore et al.  1979 ; Chilton et al.  1982 ). The morphology of the  hairy root   closely 
mimics to  A. tumefaciens  tmr mutants, and therefore it was initially hypothesised 
that a defective Ti plasmid is present  in    A. rhizogenes . Studies like insertional muta-
genesis have revealed that pRiA4b (a root-inducing plasmid) contains a T-DNA 
region homologous to TR-DNA (called as tms) and a second  TL-DNA region   is also 
present. Likewise, in  Kalanchoe daigremontiana , transposon insertion and deletion 
study in the aux region and in  TL-DNA region   have shown to affect or even oppose 
the induction of  hairy root   (White et al.  1985 ). Initially, four oncogenes were 
 identifi ed  from    A. rhizogenes  TL-DNA and termed as rol A, B, C and D (root locus). 
In some plants, TR-DNA alone is suffi cient to induce  hairy root   formation, although 
the expression and phenotype of  hairy root   were not proper (Vilaine and Casse- 
Delbart  1987 ). Studies therefore suggested that TL-DNA may be involved in 
extending the host plant interaction  in    A. rhizogenes  strains having agropine-type 
binary T-DNAs (Nilsson and Olsson  1997 ; Porter  1991 ). The aux factor is thought 
to be linked with nongeotropic property of root (both transformed and non- 
transformed), as it was observed that geotropism characteristics of the roots are lost 
when IAA is supplied exogenously in the culture (Capone et al.  1989 a). 

 The Ri and Ti DNA oncogenes are thought to be homologues in nature and there-
fore appear to be descendants of a single ancestor. The TL-DNA  of    A. rhizogenes  
consists of eukaryotic 5ƍ and 3ƍ regulatory elements and left and right border 
sequences, and the oncogenes (rol A, B, C and D and ORFs 8, 13 and 14) were 
identifi ed and found to be located in T-DNA region. These include Ri genes rolB, 
rolB TR , rolC, ORF8, ORF13, ORF14 and ORF18 as well as Ti genes tms1/iaaM, 
ons, tml, 5, 6a and 6b (Otten and Helfer  2001 ; Levesque et al.  1988 ). Earlier, the 
plants were transformed with four rol gens, in combination and individually (Capone 
et al.  1989 a; Spena et al.  1987 ; Cardarelli et al.  1987a ). The variations in phenotypes 
totally depend on how the endogenous plant growth regulator may interact with rol 
gene product, also depending upon the genotype of the host plant species. Due to 
complexity of the interaction between Ri plasmid and the genes of the host plant 
species, the focus has been diverted to the interaction of individual or specifi c genes. 
The subsequent studies have been in queue in order to identify the interaction 
between endogenous and exogenous plant growth regulators at genotypic and phe-
notypic levels. Inducible and constitutive promoters (typically the caulifl ower 
mosaic virus 35S promoter) have also been used to determine specifi c phenotype in 
relation to particular hormonal levels. Nowadays, T-DNA promoters containing 
GUS and GFP reporter genes have widely been used to elucidate the gene expres-
sion and specifi city (localisation) at developmental and tissue stage. Researchers 
must have to focus on the T-DNA (ROl A, B, C) and their probable functions. In 
pRiA4 strain  of    A. rhizogenes , T-DNA consists of different TL-DNAs and TR- 
DNAs which are physically separated by DNA sequence of ca. 18 kb. TL-DNA and 
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TR-DNA regions get transferred either as complete T-DNA or may be separately 
during infection process (Christey  2001 ). The 18 open reading frames present in 
 TL-DNA region   found enough for induction and proliferation of HRs (Hong et al. 
 2006 ; Spena et al.  1987 ).  TL-DNA region   is solely responsible for the induction of 
 hairy root  . Other genes like mas1, mas2, aux1, aux2 and ags are located on TR- 
DNA region and known to encode products which stimulate the function of auxin 
and various opines (Bouchez and Tourneur  1991 ; Camilleri and Jouanin  1991 ). 
Taneja and coworkers showed that  HR   cultures, in the absence of TR-DNA region, 
have shown higher accumulation of transcripts and alkaloid level concentration also 
(Taneja et al.  2010 ) in concordance with earlier fi ndings by Moyano and coworkers 
(Moyano et al.  1999 ; Robin  1998 ). They have observed that when synthetic auxin is 
added exogenously to the cultures, an increase in biomass of callus was seen, 
although negative effect on alkaloid production was also observed. In   Nicotiana 
rustica    the capacity of nicotine metabolism was lost, when cultures were treated 
with exogenous auxin (Robins  1998 ). This could be the reason why TL-DNA region 
must be studied to get proper knowledge related to rol A, B, C and D in plant mor-
phogenesis and secondary metabolism. Ri plasmid consists of  rolA ,  rolB ,  rolC , orf8, 
orf13 and orf14 responsible to induce HR (Matveeva et al.  2015 ).   

18.2     Rol Genes: Expression and Mechanism of Action 

 There are four genes responsible for induction and proliferation of hairy roots. 
These are designated as  rol A ,  rol B ,  rol C  and r ol D . The rol genes (A, B, C and D) 
are restricted to Ri plasmid region, resulting in both positive and negative effects on 
 HR  . However, the regenerated plants via hairy roots, owing genes  rol A ,  B ,  C  and  D , 
may exhibit abnormalities (phenotypical, morphological and genotypical). 
Although, these abnormalities led researchers to take advantage and discover new 
probabilities of evolution, function during the course time. 

  Rol A : The open reading frame of   rol A  gene   is about 300 bp in length, which 
 encodes   100 amino acid protein (Nilsson and Olsson  1997 ). R ol A  gene, however, is 
found to cause functional impairment in phytohormonal level. Transgenic plants 
expressing  rol A  show reduced length of internode with curled and wrinkled small 
leaves (Sinkar et al.  1988 ). The promoter region of  rol A  gene is similar to the 
sequences of genes involved in auxin regulation (Carneiro and Vilaine  1993 ). R ol A  
gene is known to be expressed maximally during the stationary phase of growth, 
and therefore the bacteria is able to resist under nutrient-confi ned environment for 
their survival (Pandolfi ni et al.  2000 ). 

 Studies have suggested that the activity/expression of  rol A  could be diminished 
if any mutation occurs in the splice site 5′ UTR intron region;    however, no effect 
was observed in the transcript  level   of  rol A  (Magrelli et al.  1994 ).  Rol A  gene is said 
to be a non-integral membrane protein, as the  rol A  and GUS fusion protein are 
restricted to plasma membrane having no transmembrane motifs.  Rol A  gene is 
involved in the stabilisation of expression of GUS (Vilaine et al.  1998 ). However, 
 rol A  gene may also be involved in the protein degradation steps (Barros et al.  2003 ). 
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But, the exact function and insights of  rol A  gene/protein are still unknown and need 
to be surveyed more. 

 R ol A  protein has shown its signifi cant activity as transcription factor (TF) and is 
involved in the polyamine metabolism via interfering in  the   conjugation mechanism 
of polyamines.  Rol A  gene was also suggested  to   be involved in the metabolism of 
gibberellins resulting in the decrease of its content in  rol A -transformed tobacco 
plants (Dehio et al.  1993 ). This report is in concordance with an earlier study in 
which a similar kind of phenotype has been obtained by inhibiting gibberellin bio-
synthesis (Dehio et al.  1993 ). It has been well documented that the sequence of 
  ORF - 13    is highly conserved in  mannopine -,  mikimopine -,  agropine - and 
 cucumopine - type plasmids. However, in  Nicotiana  species, there are two counter-
parts found, i.e.  Ng ORF - 13  in  N. glauca  and  Nt ORF 13  in  N. tabacum  (Aoki et al. 
 1994 ; Fruendt et al.  1998 ).  ORF - 13  is involved in the phytohormone signalling 
pathways in plants that has interaction with cytokinin activities and thus known to 
encode plant growth regulators (Hansen et al.  1993 ). Recently, it has been observed 
that various ORFs have been involved in the regulation of cell cycle and can induce 
an ectopic expression in KNOX (KNOTTED 1-like homeobox) TF in transgenic 
tomato. Furthermore,  ORF - 13  is found to have retinoblastoma RB binding motif 
site and binds with retinoblastoma in vitro (Stieger et al.  2004 ). The expression of 
 ORF - 13  involved in the production of spikes in between the minor veins of petals 
and leaves in  Nicotiana . These kinds of similar structures and protuberations have 
been observed in overexpressed  KNOX genes   (KNOTTED 1-like homeobox) 
(Sinha et al.  1993 ; Chuck et al.  1996 ; Sentoku et al.  2000 ). Apart, accelerated cell 
divisions in vegetative phase of apical meristem and increased production of leaf 
primordia are the characteristics of plants expressing  rol A / ORF13 . In  A. rhizogenes - 
 infected   cells,  ORF - 13  binds to RB and hence results in promoting the transitions of 
cells from G1 to S phase, respectively (Stieger et al.  2004 ). 

  Rol B : This is the most essential and important gene for induction of HRs. Any 
alteration/mutation results in the loss of function rendering to avirulency (inactiva-
tion of vir genes) and ultimately results in the inhibition of  HR   formation. Hereby, 
 rol B  gene is known to encode a functional protein named  indoxyl-β- glucosidase   
(1259 amino acid), and  the    open reading frame   (ORF) for rol B gene is approx. 777 
bp in size (Estruch et al.  1991 a). Functionally,  rol A  and  rol B  are antagonistic in 
nature. Although, all other rol genes have been important for proper functioning and 
induction of HRs,  rol B  when introduced as a single  gene   has been found capable of 
 inducing   HR in the host plant. The plant owing  rol B  expressed advanced roots 
which seem to be phenotypically abnormal with heterozygosity in fl ower (Cardarelli 
et al.  1987a ,  b ; Spena et al.  1987 ). 

  Rol B  gene is involved in the regeneration of new apical meristems depending 
upon the local hormonal concentration, and these newly formed meristems subse-
quently showed organogenesis (Altamura  2004 ). This study can be correlated with 
the earlier experiment of tobacco TLC, in which  rol B  enhances adventitious fl ower-
ing and stimulates adventitious roots by interfering with developmental stage 
(Altamura et al.  1994 ). Based on the evidences, r ol B  has showed a strong relation-
ship between local hormonal balances with differentiation patterns (Altamura et al. 
 1998 ).  Rol B  is universally present in all  Ri  plasmid with 60 % similarity among the 
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strains (Meyer et al.  2000 ). Expression of  rol B  gene is restricted to phloem rays, 
root, pericycle, phloem parenchyma, shoots and fl owers (Altamura et al.  1991 ). The 
plants transformed with   rol B  gene   show formation of adventitious roots along with 
modifi ed shoot  architecture   such as altered leaf shape and heterostyly and increase 
in fl ower size and necrotic leaves (Schmülling et al.  1989 ). 

 R ol B  and  rol C  genes are present on opposite strands and both can be con-
trolled by a single bidirectional  promoter   although a close association between 
 rol B  and auxin gene has been suggested.    For example, in carrot, TR-DNA aux 
genes (to supply auxin in culture cell) are essential for inducing  HR   rather than 
 rol B  gene alone (Capone et al.  1989 a; Cardarelli et al.  1987b ). R ol B  and  rol C  
genes share an intergenic conserved region or sequence that was found to be 
essential for promoter activity; therefore it may be possible that some DNA-
binding proteins take part in the expression of both proteins (Leach and Aoyagi 
 1991 ). Apart, various endogenous nuclear proteins that could interact with rol C 
promoter were also found  in planta  (Matsuki and Uchimiya  1994 ; Fujii  1997 ; 
Suzuki et al.  1992 ). 

 Synergistic effects  of   auxin were determined in cultured tissues, where  the 
  expression of  rol B  and  rol C  genes was increased to a much higher fold ( rol B  
expression up to 20–100 and  rol C  expression up to fi vefold). However, the incre-
ment in  rol B  gene was observed  after    several   hours when auxin is added exoge-
nously to the culture medium (Maurel et al.  1994 ). The transcription factor 
  NtBBF1    ( Nicotiana tabacum  rol B domain B factor 1) is highly involved in the 
 regulation   of   rol B  gene,   and it appears that the expression of  rol B  and  NtBBF1  is 
much similar and unlike  rol B  the endogenous  TF NtBBF1  is found to be non-
sensitive to auxin (Baumann et al.  1999 ). One other protein, called   RBF1  (Rol 
binding factor 1)  ,  is    shown   to bind to  rol B  promoter domain and stimulates the 
expression pattern in various non-meristem root cells. De Paolis observed that for 
the induction of auxin- and meristem-specifi c expression, the binding between 
DNA binding with one fi nger (Dof) domain of endogenous transcription factor 
 NtBBF1  ( Nicotiana tabacum rol B  domain B factor 1) and cis regulatory element 
is important in  Nicotiana  (De Paolis et al.  1996 ). The binding site is found to be 
highly conserved between different  rol B  sequences and  Ri  plasmids (Handayani 
et al.  2005 ). In  Nicotiana , HRs and protoplasts have shown to have much sensitiv-
ity towards auxin than non- transformed cultured tissues (Spano et al.  1998 ; 
Maurel et al.  1994 ; Shen et al.  1988 ,  1990 ). 

 Apart, the domain of  rol B  promoter actively binds with a protein  RBF1  respon-
sible for the expression in various root cells; however, the concentrations of   RBF1    
protein are not found to be signifi cantly different in transgenic and non-transgenic 
plants (Filetici et al. 1997). The pRiA4 restricted to plasma membrane region hav-
ing  t   yrosine   phosphatase activity encodes  rol B  protein and can interfere in the 
auxin signalling pathway by altering the phosphatase/kinase cascade during signal-
ling (Filippini et al.  1996 ). However, it has been hypothesised that the  CX5R  , a 
conserved motif present in  pRiA4    rol B , is highly responsible for  tyrosine phospha-
tase activity   (Lemcke and Schmülling  1998 b). It may be possible that the rol B 
protein stimulates a signal via tyrosine phosphatase activity in auxin perception and 
leads to increase in the concentration of auxins in the cultured tissues. The 
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increment in the auxin concentrations to higher folds stimulates undifferentiated 
cells to differentiate and subsequently results in the organogenesis depending upon 
the local auxin present in the environment and most probably in root formation. On 
contrary,  rol B  gene in mikimopine strain 1724 is nuclear localised. It was observed 
that tobacco protein   Nt -14-3ωII   binds with the pRi1724  rol B  protein (Moriuchi 
et al.  2004 ), but no such nuclear localisation sequence is present on either  Nt -14-3- 
ωII or pRi1724  rol B  protein, suggesting that these may take part in the nuclear 
import of the protein. The ratio of endogenous versus exogenous level of plant 
growth regulators, physiological state of the host plant and competence of an indi-
vidual cell determine the overall fate of the organ to be produced and have said that 
roots are the most frequent adventitious organ, therefore resulted in root 
formation. 

  Rol C :  Rol C  has shown its signifi cant role in the formation of shoot and contains 
an open reading frame of 540 bp in size and has been involved in encoding a 
cytokinin-β-glucosidase. Among all other rol genes,  rol C  as a single gene  results   in 
the improvement of horticultural and ornamental traits in  host   plant and hence, most 
advantageous for fl oriculture technology. Insertion of  rol C  gene also results in the 
phenotypical changes, viz. altered leaf morphology and reduction in seed produc-
tion and in apical dominance also. In addition, plants with  rol C  gene display stunted 
growth with bushy branches of lateral shoot followed by more number of fl owers 
which are reduced in size; the plants have also shown to have better rooting 
capacity. 

 R ol C  protein affects the phenotype of the whole plant and these characteristics 
are almost common to all species. The altered architecture includes a small size of 
the regenerated plant along with reduced intermodal length,    decreased heights of 
stems, apical dominance and male sterility but increased  number   of fl owers with 
reduced size.  Rol C  gene also offers many advantageous prospects and may result in 
altered morphology with difference in colour, size and shape of leaves. Other phe-
notypical alterations have been observed like stunted growth with bushy appearance 
of lateral branches and wrinkled leaves as this characteristic affected the plant mor-
phology and overall texture and has increased its value in terms of ornamental/hor-
ticultural plant. The difference in the size, morphology and texture of leaves, 
fl owers, internodes, stems, etc. totally depends upon the integration and expression 
of  rol C  gene. It is not easy to control the integration of  rol C  gene and its site- 
specifi c localisation, copy number and change in the expression level throughout the 
complexed genome. But the expression could be managed by using specifi c 
promoters. 

 As stated earlier,  rol C  gene acts on the  cytokinin beta-glucosidase enzyme   that 
could lead to the enhanced level of cytokinin in the host plant and hence the altered 
morphology. Likewise,    gel permeation study has shown the enhanced activity of 
carbohydrate isoforms in  transformed   ginseng cells. Moreover, transformation by 
 rol C  gene has shown signifi cant increase in the bioactivity level of 1,3-p-D- 
glucanase and D- and P-galactosidase in transformed tissues when compared to 
non-transformed cells. These observations could be the resultant of high copy num-
ber, length of the promoter and the quantity of mRNA expression in transformed 
species. 
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  Rol D : R ol D  has an open reading frame of about 1032 bp and known to encode 
functional protein having sequence of approximately 344 amino acids. The functional 
protein encoded by the  rol D  gene is found to have sequence  homology   with an 
enzyme, i.e. ornithine cyclodeaminase. The   rol D  gene is also   known to be involved in 
the proline production at the stage of fl owering and sometimes also behaves as an 
osmoprotectant during stress in plants. Surprisingly,  rol D  strongly accelerates the 
induction  of   fl owering both in cultured tissues and tobacco plants. The role and con-
sequences of  rol D  have always been a topic of discussion (Table  18.1 ).

   Table 18.1    Rol  gene   functions, localisation and expression   

 Gene 
 Type of protein and 
localisation 

 Probable phenotypes 
and expression  Involvement/function 

 Rol 
A 

 Non-integral membrane 
associated 

 Expressed in plant as 
well as in bacteria 

 Involved in the reduction of 
hormonal concentration in the 
transgenic plants 

 Small protein with 
molecular mass of approx. 
11.4 kDa with high 
isoelectric point, i.e. 11.2 

 Expression may be 
regulated by auxin 

 Prevents cell elongation 
through diffusible factor 

 Enhanced rooting 
effi ciency of the plant, 
shortening of 
internodes, altered 
leave phenotype and 
causing wrinkling and 
curling of leaves 

 Transmit via grafting 
experiments may interfere with 
protein degradation metabolism 

 Can block gibberellin 
biosynthesis 

 Rol 
B 

 Restricted to plasma 
membrane but may transport 
to nucleus 

 Induced by auxin  Involved in the stimulation of 
newly formed meristems  Necrosis and callus, 

increased the level of 
IAA, hydrolyse 
indoxyl glucosides 

 Formation of 
adventitious roots 
along with modifi ed 
shoots 

 Can be inhibited by 
glyco-glucuronides 

 Resulted in necrosis 
and altered phenotype 
of leaves, i.e. shape 
and also increased in 
fl ower size 

 RBF1 and NtBBF1 
TF bind to the 
promoter region 

 Interacts with 
Nt14-3-3ωII 

 Alter auxin sensitivity/
perception via interference 
with signal transduction 
pathway 

 Tyrosine phosphatase 
activity 

(continued)
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18.2.1       Rol Genes: Individual and Synergistic Effect 
of Togetherness (Rol A + B + C + D) 

 An important aspect whether the Rol genes show synergistic or individual effect or 
results in the feedback inhibition and cause inhibitory effect on morphology and 
root induction of the host plant. 

Table 18.1 (continued)

 Gene 
 Type of protein and 
localisation 

 Probable phenotypes 
and expression  Involvement/function 

 Rol 
C 

 Cell autonomous cytosolic/
cytoplasmic 

 Variegated leaves with 
sharp edges, mosaics 
pattern 

 Auxin synthesis, conjugation 
of auxin to lysine/ornithine 

 Cleaves cytokinin 
oligosaccharin or glucosides  Reduction in size of 

epidermal cell of 
internodal region, thus 
resulted in dwarfi sm 

 Involves in formation of root 
and cell proliferation 

 Promotes cell division via 
sucrose 

 Induced by sucrose  Reduces size of leaf cells 

 Potential of inducing 
HRs is generally high 
in comparison to 
untransformed plants 

 Promoter interacts 
with plant nuclear 
proteins 

 Rol 
D 

 Incapable of inducing root 
formation on its own, i.e. 
individual rol D cannot 
induce HRs 

 Results in extensive 
fl owering and rooting 
effi ciency decreased 

 Causes alteration in the 
hormone balance in plant 
tissues and hence involved in 
induction of fl owering 

 Found in  TL-DNA region   of 
agropine Ri plasmid 

 Functionally 
associated with 
proline metabolism 
and as the proline 
functions as an 
osmoprotectant, it has 
shown to be involved 
in fl owering 

 Rol D is known to show 
sequence similarity with 
enzyme ornithine 
cyclodeaminase (OCD), which 
converts ornithine into proline, 
so it may have a role in the 
proline metabolism; proline is 
thought to be involved in the 
production of hydroxyproline- 
rich glycoproteins (involved in 
cell division) 

 The activity of rol D 
promoter decreases 
due to increase in the 
concentration of auxin 
levels above the 
threshold 

 Involved in stress conditions as 
it determines the fate of 
meristem also 

 Intensive production 
of proliferative 
axillary buds 

 Have well-documented role in 
later stages of meristem 
formation 
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  Rol A ,  B , and  C  genes (T-DNA) have  signifi cant   synergistic effect in root induc-
tion, because each Rol gene is regulated by its own promoter and expressed inde-
pendently in inducting  HRs. The HR   induced from CAMV35S- rol C  was found to 
be highly branched and abundant, while the HR under the expression of CAMV35S- 
 rol A  was poorly developed with wrinkled roots. Also, HRs induced from 
CAMV35S- rol B  were found to be much unbranched and have thick phenotype. It 
corroborates with the earlier results that  rol B  was found to be prominent in induc-
ing HRs followed by  rol A  and  rol C  in transgenic tobacco when inoculated on MS 0  
medium. 

 The Rol genes have  been   widely used to improve the fl oral traits like fl ower 
colour, plant shape, aroma, etc. Among all the rol genes,  rol C  has been extensively 
used by horticulturalists in order to improve the plant yield, fl ower trait and molecu-
lar regulation of fl owering pattern.  Rol C  has been considered as one of the promis-
ing genes to study the protein interactions and different physiological and 
morphological effects to improve fl oricultural traits (Casanova et al.  2005 ). The 
regenerated tobacco plant with  rol A ,  B ,  C , and  D  has shown to have altered apical 
dominance; as a result transgenic tobacco has bushy morphology with roots show-
ing plagiotropic effects.    However, the same plants also exhibited various abnormal 
phenotypes such as stunted growth, reduction in leaves size, reduced intermodal 
length and fl owers with longer pistils (Sinkar et al.  1988 ). Moreover, the transgenic 
tomato having  rol A ,  B , and  C  was found to produce normal fl owers with small size, 
but decreased pollen viability (Van Altvorst et al.  1992 ). Similarly, transgenic 
tomato owing  rol A ,  B , and  C  produced comparatively small-sized fl owers and less 
seed also (Schmülling et al.  1988 ). The signifi cant achievements  of   Rol genes (indi-
vidual or together) are shown in Table  18.2 .

18.2.2        Modulation of Metabolic Profiles and Accumulation 
of Pharmacologically Active Compounds 
with the Integration of  rol  Gene 

 Updating knowledge in the fi eld of  Agrobacterium  and plant interaction has gained 
much applause in recent years. Hairy root culture is found to exhibit the similar/
identical or often higher capability to synthesise secondary metabolite as compared 
to that of non-transformed roots.  HR   culture is often found to synthesise novel 
metabolites which are not found in untransformed tissues (Banerjee et al.  1995 ). 
The discovery and function of the rol genes are found to be specifi c and involved in 
biosynthesis of secondary metabolites in families like Araliaceae, Solanaceae, 
Rosaceae, Rubiaceae, Vitaceae, etc. (Kiselev et al.  2007 ; Bulgakov  2008 ). In many 
cases it has been found that the individual rol gene is enough to overcome the 
impotency of cultured plant tissue to produce the adequate amount of secondary 
metabolites (Kiselev et al.  2007 ). The characteristics related to the  rol  gene 
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    Table 18.2    Overview of studies  for   elucidation of functional role of Rol genes in HRs (individual 
or combined)   

 Rol 
gene 

 Species of the 
plant  Improved trait  References 

 Rol 
A, 
B, 
C 

  Ginkgo biloba   Terpenoid production in cell cultures  Ayadi and Guiller 
( 2003 ) 

  Vinca minor   Increase in alkaloid level and vincamine 
and overexpression of tryptophan 
decarboxylase and strictosidine synthase 

 Verma et al. ( 2014 ) 

  Papaver 
somniferum  

 Enhanced production of alkaloids 
(codeine, morphine and sanguinarine) 

 Bonhomme et al. 
( 2004 ) 

  Rubia cordifolia   Increased in Ca 2+ -dependent protein kinase 
activity in callus cultures 

 Veremeichik et al. 
( 2012 ) 

  Catharanthus 
roseus  

 Enhanced synthesis of terpenoid indole 
alkaloid 

 Hong et al. ( 2006 ) 

  Atropa belladonna   75-fold increase in production of tropane 
alkaloids 

 Bonhomme et al. 
( 2000b ) 

  Beta vulgaris   Higher biomass  Thimmaraju et al. 
( 2008 ) 

 Rol 
B, 
C 

  Rubia cordifolia   Enhances the synthesis of anthraquinone in 
callus cultures 

 Bulgakov et al. 
( 2003a ) 

  Trifolium 
alexandrinum L . 

 Infl uenced the growth capacity of  HR   
vigorously 

 Tanaka et al. ( 2001 ) 

  Catharanthus 
roseus  

 Higher indole alkaloid production  Palazon et al. 
( 1998b ) 

  Rubia cordifolia   Suppress the formation of ROS and 
enhancement of stress tolerance 

 Bulgakov et al. 
( 2008 a) 

 Rol 
C 

  Atropa belladonna   Enhancement in the production of tropane 
alkaloids 

 Bonhomme et al. 
( 2000a ) 

  Maackia amurensis   Resulted in higher accumulation of six 
fl avonoids (daidzein, calycosin, 
formononetin, 4′-O-β- 
glucopyranosyldaidzin, maackiain and 
6′-O-malonyl-3-O-β-D-
glucopyranosylmaackiain) 

 Grishchenko et al. 
( 2013 ) 

  R. cordifolia   Stable increase in anthraquinone content 
up to 1.3–4.3 times that of non- 
transformed cells 

 Bulgakov et al. 
( 2002 ) and Shkryl 
et al. ( 2008 ) 

  Vitis amurensis   Stimulates phenylalanine ammonia-lyase 
(PAL) and stilbene synthase STS gene 
resulted in accumulation of higher content 
of resveratrol 

 Dubrovina et al. 
( 2010 ) 

  Panax ginseng   Increased activity of CDPK gene was 
reported in somatic embryos of panax 
ginseng 

 Kiselev et al. 
( 2009b ) 

(continued)
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expression and its mechanism of action stimulated researchers to investigate the 
effect on secondary metabolism. The degree of production of secondary metabolites 
depends on  the   type of secondary metabolites and plant species which could vary 
from 2- to 300- fold (Bulgakov et al.  2013 ). 

 The effect and expression of  rol  genes were illustrated with different groups of 
secondary metabolites, viz. pyridine alkaloids, tropane alkaloids, etc.  in   plant sys-
tem. The role of  rol  genes involved in biosynthetic pathways seems to be highly 
effi cient and remarkably stable for a long time. Genetic transformation that pro-
ceeds via single   Agrobacterium rhizogenes -  derived  rol  gene could serve as an effi -
cient platform for modulation of biosynthetic pathways in plants as well as in 
cultured cells. However, it is well documented that  rol  genes are often involved in 
transcriptional activation of plant defence mechanisms, although the mechanism or 
underplaying actions are still in doubt.  Agrobacterium  oncogenes ( rol A ,  B ,  C ) have 
shown to be active modulators in plant’s biosynthetic pathways, cell differentiation, 

Table 18.2 (continued)

 Rol 
gene 

 Species of the 
plant  Improved trait  References 

  Cynara 
cardunculus  var. 
 altilis DC  

 Increased in the production of 
caffeoylquinic acid 

 Vereshchagina et al. 
( 2014 ) 

  Panax ginseng   Pg WUS expression in callus cultures  Kiselev et al. 
( 2009c ) 

  Panax ginseng   Increased concentrations of ginsenoside  Bulgakov et al. 
( 1998 ) 

  Beta vulgaris   Production of betalain in  HR    Thimmaraju et al. 
( 2008 ) 

  N. tabacum   Production of nicotine  Palazon et al. 
( 1998a ) 

  N. langsdorffi i   Confers high resistance to chromium (Cr 
VI), changes in sugar and phenolics 
content 

 Bubba et al. ( 2013 ) 

  R. cordifolia   Accumulation of anthraquinone up to 
15-fold increase in concentration than 
untransformed tissue 

 Shkryl et al. ( 2008 ) 

  Vitis amurensis   Production of resveratrol more than 
100-fold than untransformed tissue 

 Kiselev et al. ( 2007 ) 

 Rol 
B 

  N. tabacum   Accumulation of nicotine  Palazon et al. 
( 1998a ) 

  R. cordifolia   Accumulation of anthraquinone up to 2.8 
times higher in concentration than 
untransformed 

 Shkryl et al. ( 2008 ) 

 Rol 
A 

  Camptotheca 
acuminata  

 Camptothecin and 
10-hydroxycamptothecin accumulation 

 Lorence et al. ( 2004 ) 
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growth and development. Earlier reported studies have shown that  rol  genes ( A ,  B , 
 C ,  D ) are potential activators and capable to overexpress the content of important 
secondary metabolites individually.  Rol B  gene can stimulate the production of stil-
benes (Kiselev et al.  2009a ) and anthraquinone (Bulgakov et al.  2002 ,  2003a ,  b ) in 
transformed plant cell culture. The  rol C  gene alone increases the production of 
pyridine alkaloids (Palazon et al.  1998a ), indole alkaloids (Palazon et al.  1998b ), 
tropane alkaloids (Bonhomme et al.  2000a ),    anthraquinone (Bulgakov et al.  2002 , 
 2003a ,  b ) and ginsenosides (Bulgakov et al.  1998 ). Similarly, Palazon has observed 
the signifi cant effect of  rol A  gene on the production of nicotine (Palazon et al.  1997a , 
 b ). It was noticed that, when the  HR   from transgenic tobacco was assessed for auxin 
sensitivity test versus root induction, the  rol  genes ( rol A ,  B ,  C ,  D ) were shown to be 
highly sensitive to auxin. Protoplast of transformed tobacco and  L. japonicus  has 
been assessed for auxin sensitivity by measuring  membrane polarisation technique  , 
and it has been shown that Rol genes of transformed tobacco and  TL-DNA region   
of  L. japonicus  were highly sensitive, i.e. about 100–1000-fold to various auxin 
concentrations, respectively. Apart, it was also observed that the activity and  expres-
sion   of rol genes were highly infl uenced with the alteration in polyamine 
biosynthesis. 

 The infl uence of  rol  genes on secondary metabolite accumulation was also stud-
ied in  Rubia cordifolia . They investigated the infl uence of  rol genes in   combination 
and individually and have observed that rol genes act as positive regulators for syn-
thesis of anthraquinones. R ol A  genes have already proved its remarkable role as an 
activator of secondary metabolism. In addition,  rol B  gene appears to be the most 
authentic stimulator. The role of  rol C  gene varies with different aspects (Bulgakov 
et al.  2008 ). Earlier reports have established a healthy relation between the variation 
in production of secondary metabolites and insertion of  rol  genes via inducing  HR  . 
Furthermore the change in the content and phenotype of  HR   could be easily corre-
lated with the type of  rol  genes and the extent to which polypeptide encoded by  rol 
C  gene is activated (Palazon et al.  1998b ). Interestingly in  N. tabacum , the HR 
growth kinetics and the production of nicotine in HR/regenerants were much higher 
after the insertion of  rol A ,  B , and  C  genes than  rol C  gene alone. Also, the levels of 
polypeptide encoded by Rol C gene can easily be correlated with nicotine accumu-
lation, as observed by immunoassay studies Palazon et al. ( 1998b ). The effect of rol 
genes in the biosynthesis of secondary metabolites was also studied by Bonhomme 
and coworkers (Bonhomme et al.  2000b ). The experimentation was carried out in 
such a way that HRs were induced in duplicates in which the fi rst was transformed 
by  rol A ,  B , and  C  and  NPT - II  genes and the other transformed with  A. tumefaciens  
harbouring  NPT - II  and  rol C  gene in  Atropa belladonna  species. The content of two 
 pharmacological active ingredients   (scopolamine and hyoscyamine) was measured 
to evaluate the role of  rol C  gene in the biosynthesis of tropane alkaloids. After 3–4 
weeks of culture, the integration of  rol A ,  B , and  C  gene was found to be highly 
effi cient, i.e. 75-fold increment was observed in the HR growth kinetics. However, 
 rol C  gene alone has shown only 17-fold higher in HR growth rate in tropane 
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alkaloid production in  A. belladonna  HR cultures. The signifi cant correlation 
between tropane alkaloids and  rol C  was also observed by many workers so far 
(Bonhomme et al.  2000a ,  b ; Pinol et al.  1996 ), ginsenoside biosynthesis (Bulgakov 
et al.  1998 ) and  Catharanthus roseus  alkaloids (Palazon et al.  1998b ). The overall 
role of rol genes is illustrated in Table  18.2 .  

18.2.3     Expression and Effects of Rol Genes in Phenotype 
and Physiology of  HR  /Regenerated Plants 

   Agrobacterium rhizogenes  owing   rol genes integrated in  TL-DNA region   of  Ri  plas-
mid are potentially active to induce HRs in competent host plant. These transfor-
mants when regenerated into plants have been considered equally important too 
because of its economic value. However, a lot of work has been done but there are 
certain lacunas in relation to the role of action/activity and localisation of either 
individual or in group of rol genes ( A ,  B ,  C ). The regenerants via HRs owing TL- 
DNA are associated with the problems like delayed fl owering and relatively less 
accumulation of conjugated and free polyamines. This can be correlated with the 
study conducted in male sterile tobacco that expresses  rol A  along with decreased 
accumulation of polyamine conjugates (Sun et al.  1991 ).  

18.2.4     Expression of Rol A Gene 

 The presence of  rol A  gene is ubiquitous in on all Ri plasmid. However, the studies 
suggested that the N-terminal of the protein is highly conserved  in    A. rhizogenes  
strains.  Rol A  gene is supposed to be transcribed in the phloem cells and highly 
accumulated in the stems than roots and leaves (Carneiro and Vilaine  1993 ; Sinkar 
et al.  1988 ). 

 The expression of   rol A  genes   is found variable in different transformed plants. 
The Nicotiana plant expressing  rol A  gene was stunted and bushy in appearance 
having dark green wrinkled leaves and abnormal fl owers (Carneiro and Vilaine 
 1993 ; Schmülling et al.  1988 ). The expression of the  rol A  gene is interlinked with 
plant hormone like  rol A  which is responsible for reduction in the concentration of 
cytokinins, abscisic acid, auxins and gibberellins in transgenic tobacco, although 
the decrease in the concentrations of these PGRs strictly depends on the type of tis-
sue and different developmental stages of the host plant (Dehio et al.  1993 ). Similar 
kinds of phenotypes were also shown by inhibitors of GA formation; however, 
when these plants were treated with GA, the resultant does not show the restoration 
of  rol A  gene (Dehio et al.  1993 ). The blocked activity of GA-20 oxidase complex 
may be responsible for this type of phenotypes; likewise, the concentrations of pre-
cursors like GA-53 and GA-19 have increased with  simultaneous   decrease in the 
concentrations of GA-1 and GA-20 (Moritz and Schmulling  1998 ).  
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18.2.5     Expression of Rol B Gene 

 The  rol B  oncogene is  supposed   to be the most essential and suffi cient for the induc-
tion of HRs; however, it does not have  any   role in the biosynthesis of hormones 
(Britton et al.  2008 ).  Rol B  alone when integrated in the host plant produces highly 
branched and fast growing roots with ageotropic property (Altamura  2004 ). Earlier, 
the expression of  rol B  gene was specifi c to induce roots, but  rol B  induces the 
 production of new meristems and subsequently leads to organogenesis (Altamura 
 2004 ).  Rol B  is present in all parts with weaker expression in pericycle, shoot, root 
phloem parenchyma and fl ower meristems (Altamura et al.  1991 ). Expression of  rol 
B  gene is highly regulated in the transformants showing altered shoot phenotypes 
like variation in leaf structure, heterostyly, necrosis pattern on leaves, increased in 
size of fl ower, etc. (Schmülling et al.  1989 ). The  rol B  gene is found to be approxi-
mately 60 % similar in all Ri plasmids of different strains (Meyer et al.  2000 ). The 
expression of  rol B  gene is highly associated with the auxin biosynthesis as trans-
formed protoplast and  HR   in  Nicotiana  were shown to be highly sensitive than non- 
transformed tissues (Maurel et al.  1994 ; Shen et al.  1990 ; Spano et al.  1998 ).  Rol B  
is supposed to interfere in the auxin synthesis pathway and can alter the expression 
of auxin (Maurel et al.  1994 ). This hypothesis is supported by an experiment during 
which expression of auxin can be blocked by raising  the   antibodies  against   auxin- 
binding protein and observed that if  rol B  is expressed then a relatively higher con-
centration of antibodies is required to alter the auxin response. From these results it 
interpreted that the expression of the  rol B  gene either may enhance the auxin activ-
ity or may stimulate the response of auxin-binding proteins (Venis et al.  1992 ). 
Also,  Rol B  gene has been suggested in increasing the sensitivity of  rol B  to auxin 
in transformed carrot discs and kalanchoe leaves. The transformed tissues do not 
show any response to auxin, when it is incorporated exogenously in medium (White 
et al.  1985 ; Spena et al .   1987 ). Unlike in carrot, the presence of  rol B  gene alone is 
not suffi cient to produce root as the presence of auxin provided by T R  region of 
T-DNA of aux gene has shown to play a signifi cant role  in   inducing roots  other   than 
 rol B  gene alone (Cardarelli et al.  1987b ; Capone et al.  1989 a).  

18.2.6     Expression of Rol C Gene 

 The  rol C  gene is  found   on all  Ri  plasmids. However,  rol C  protein shares similarity 
of approximately 65 %  in   amino acid sequence (Meyer et al.  2000 ). The transformed 
plant owing  rol C  gene is phenotypically short with lanceolate leaves, showing 
reduced apical dominance and early fl owering having small fl owers with low pollen 
production (Schmülling et al.  1988 ). In addition, the transformants owing 35S: rol C  
display male sterility with pale green leaves (Schmülling et al.  1988 ). The pheno-
type of the regenerated plants owing 35S- rol C  gene has short internodal length with 
sterile male fl owers. However, the addition of GA 3  (exogenously) could store inter-
modal length, but no effect was observed in male sterility (Schmulling et al.  1993 ). 
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 Apart, the  transformants   with  rol C  gene display stunted height with reduction in 
size of epidermal  cell   inside the internodal region (Oono et al.  1990 ).  Rol C  alone is 
not found suffi cient to induce  HR  , but though produces more roots than untrans-
formed plant, but less number of roots, with the plants owing all  r  ol  ( A ,  B, C ) genes 
(Palazon et al.  1998a ,  b ). Also, the  rol C -positive seedlings were found to be highly 
sensitive to cytokinin, with higher tolerance to abscisic acid, gibberellins and auxins 
(Schmulling et al.  1993 ). In addition, enhancement in accumulation in water- soluble 
polyamine conjugates has been seen with concomitant reduction in the production 
of ethylene in the fl owers (Martin-Tanguy et al.  1993 ). 

 The role, function and  biochemical   activity of  rol C  is still a question till date 
with no authentic results. However,    many attempts have been made to reveal how 
the  rol C  gene can interfere with plant growth and development. Estruch et al. 
( 1991 a) have made an observation during an in vitro activity assay in which recom-
binant  rol C  was used and demonstrated that the protein has β-glycosidic activity 
and is able to cleave the inactive cytokinin glycosides that subsequently release 
active and free cytokinins (Estruch et al.  1991 a). In addition to measure the  level   of 
free cytokinins in various tobacco cultivars, it was observed that the decrease in 
level is a resultant of reduced metabolism in cytokinins synthesis (Nilsson et al. 
 1993 ). Unlike the results in which  rol C  gene expressed under a tetracycline- 
inducible promoter and was not able to release free cytokinins in the tissue due to 
non-hydrolysis cytokine glucosides (Faiss et al.  1996 ). However, these results are in 
accord with the facts that  rol C  is localised in cytoplasm and therefore is unavailable 
in the conjugated cytokinin glycosides present in the vacuole (Nilsson and Olsson 
 1997 ; Faiss et al.  1996 ). Apart from the hypothesised facts, it has also been sug-
gested that oligosaccharins are also thought to infl uence plant growth and develop-
ment (Faiss et al.  1996 ). The change in the gibberellin content has infl uenced on  rol  
  C    gene  in   transformed plants with increment and reduction in the concentrations of 
GA19 and GA1, respectively (Nilsson et al.  1993 ; Schmulling et al.  1993 ). The 
transformant with  rol C  along with  T L -DNA region   has shown its prominent expres-
sion in leaves. However, if the  rol C  gene is present alone in the host plant, then 
highest expression can be seen in roots (Leach and Aoyagi  1991 ; Oono et al.  1990 ; 
Sugaya et al.  1989 ). On contrary, higher expression was observed in leaves, while 
weaker expression was restricted to internodes (Nilsson et al.  1993 ).  The    rol C  gene 
is found to be highly expressed in root protophloem initial cells and followed by 
phloem companion cells (Guivarch et al.  1996 b). In addition, the sucrose metabo-
lism is found to be highly associated with  rol C , and the expression of  rol C  can be 
induced by supplementing sucrose in the cultured cells (Nilsson et al.  1996 ). The 
interlinking connection between  rol C  and sucrose metabolism is due to the overlap-
ping similarity in sucrose-responsive sequence in   rol C    promoter (Yokoyama et al. 
 1994 ). The overlapped sequence is able to control  rol C  expression in phloem cells 
(described and identifi ed by Sugaya and Uchimiya  1992 ). Sucrose is known to pro-
vide carbon source which promotes cell division and root initiation in PTC experi-
ments. Based on which it was hypothesized that sucrose may act as a substrate on 
which the  rol C  works (Nilsson and Olsson  1997 ). Having this much of knowledge 
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about  rol C  gene, still there is  a   need to explore the mechanism and effect as an 
individual or in combination with other rol genes.  

18.2.7     Expression of Rol D Gene 

 The  rol D  gene is found in the TL-DNA of  Agropine  strain and associated with the 
conversion of ornithine to proline (Maurizio et al.  2001 ), but the exact function is 
still unknown till date. The presence of  rol D  gene alone is not  suffi cient   for root 
induction (Mauro et al.  1996 ). The expression of  rol D  gene depends on  the   devel-
opmental stage of the tissue, but not found to be tissue specifi c. The expression can 
be seen in each organ in adult plant; however, it has never been observed in apical 
meristems. It was also observed that the expression of  rol D  decreases on ageing 
plant with no expression at senescence stage (Trovato et al.  1997 ). The transgenic 
tobacco owing  rol D  gene is shown to induce early fl owering with large number of 
fl owers and reduction in roots (Mauro et al.  1996 ). The fl owers are high in  number   
but showed heterostyly and inhibit self-fertilisation; however, if the fl owers were 
manually selfed, then plants produce viable seeds (Mauro et al.  1996 ). Likewise in 
 rol B  gene,  rol D  also has Dof-binding promoter which takes part in auxin induction. 
The  rol D  gene resulted in meristem formation at later stages of development in 
plants and could probably be involved in determining the fate of newly generated 
meristem (Altamura  2004 ). 

 The  rol D  gene is localised in the cytosol and shows a sequence similarity to 
OCD (ornithine cyclodeaminase), enzyme  responsible   for conversion of orni-
thine to proline (Trovato et al.  2001 ). Since proline is an osmoprotectant and is 
produced during stress condition, therefore it may be possible that during fl ower-
ing, higher level of proline was found in the fl owers (Trovato et al.  2001 ). The 
synthesis of proline may enhance the biosynthesis  of   cell wall components like 
glycoprotein that are hydroxyproline rich involved in the cell division and exten-
sion (Trovato et al.  2001 ). An elucidation of functional role of Rol genes has 
been done (Table  18.3 ).

18.3         Conclusions 

 This chapter focuses on the potential of Rol genes A, B and C (combined or indi-
vidual) on transgenic technology that has already been proven fruitful in effi ciently 
enhancing the various aspects of plant architecture/framework like photosynthetic 
assimilation, phenotype and genotype to enhance the quality and yield of the desired 
product for the production of elite clones. As well, the cyclic development of root 
meristems and root tips opens opportunities for fundamental studies of the Rol gene 
and promoter expression. Apart, the present scenario reveals that Rol A, B, and C in 
combination and Rol C individual have been studied in  HR   for phytochemical accu-
mulation and in developing a plant with desired trait also. However, the combined 
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effect of Rol B and C has not been studied till date as per our knowledge goes; so it 
could be proven as an area of great interest, particularly in relation to novel phyto-
chemical accumulation or desired secondary metabolite production. In addition, it 
could easily be demonstrated that Rol D individually as well as in combination with 
other Rol genes has not been exploited so far; the manipulations in number and copy 
of integration of rol genes (A, B, C, D) either individually or combined will 
no doubt match the laborious and time-consuming techniques of molecular biology 
to study the secondary metabolite pathways and biosynthetic routes operating  in 
planta .     
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  19      Synthesis of Silver Nanoparticles 
from Plants and Their Applications                     

     Asra     Parveen     and     Srinath     Rao    

    Abstract 
   Nanobiotechnology defi nes applications of biosystems to produce novel func-
tional materials. Production of metal nanoparticles is increasing to develop inno-
vative technologies. There are various techniques to characterize the synthesized 
silver nanoparticles. UV-Vis spectroscopy is used for absorbance pattern, X-ray 
diffraction reveals crystalline nature with FCC geometry with mean particle size, 
Fourier transform infrared spectroscopy is for chemical compositions associated 
with NPs, and transmission electron microscopy is used to determine the shape 
of the NPs. AgNPs are one of the important materials having wide applications 
in optoelectronic devices, biosensors, and catalysis. Application of silver 
nanoparticles depends on the different charges, chemical composition, size, and 
shape. There are various methods to synthesize AgNPs. Keeping in view of syn-
thesis and applications of AgNPs, a brief study of available literature for biosyn-
thesis method and practices of silver nanoparticles has been reviewed.  

  Keywords 
   Nanobiotechnology   •   Metal NPs   •   Characterization techniques   •   Silver nanopar-
ticles   •   Applications  
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19.1       Introduction 

  Bionanoscience   and bionanotechnology is an interdisciplinary area of research that 
works with the integration of chemistry, materials science, biology, medicine, and 
engineering. However,  bionanotechnology   has appeared as a combination of bio-
technology and nanotechnology to develop biological synthesized nanomaterial as 
environmentally friendly. Nowadays, the use of nanoparticles is gaining because of 
their distinct biological, optical, chemical, and mechanical properties. Similarly, 
nanobiotechnology follows the principles and techniques of nanoscale and realizes 
the transformation of biosystems (living or nonliving).  Nanotechnology   industry 
has increasing market value of many billions of US dollars (Aitken et al.  2006 ) and 
would grow up to 3 trillion US dollars by 2018 (Global Industry Analysts  2008 ; 
Woodrow Wilson  2009 ). Nanoparticles have two broad groups, namely, organic and 
inorganic NPs.  Organic nanoparticles   include carbon nanoparticles (fullerenes), and 
 inorganic nanoparticles   include magnetic, noble metal (gold and silver) NPs, and 
semiconductor NPs (titanium dioxide and zinc oxide). The  Lycurgus Cup   of the 
fourth century AD (Fig.  19.1 ) is a good example which appears green in refl ected 
and red in transmitted light due to the presence of colloidal gold and silver (Turkevich 
 1985 ). The color changes as the cup contains 50 and 100 nanometers of AuNPs and 
AgNPs in the glass.

   Nanotechnology is gaining importance since the twenty-fi rst century to fi nd 
cheap, convenient, and safer methods for the production comparing to physical and 
chemical methods. Basically, there are two techniques for the  production   of 
nanoparticles: (1) the top-down  approach      and (2) the bottom-up approach (Fig.  19.2 ). 
In top-down approach, the larger materials are broken down using ultrafi ne grind-
ers, lasers, and vaporization followed by cooling (Senapati et al.  2005 ); the top-
down approach depends on the laws of quantum mechanics. In bottom-up approach, 
the small molecules get rearranged to form nanostructures with unique properties 

  Fig. 19.1     Lycurgus Cup ( a )   refl ected light ( b ) transmitted (  www.theguardian.com    )       
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where NPs “build up” atom by atom by self-organizing or self-assembly (Seeman 
and Belcher  2002 ).

   Since the work of Faraday, researchers have developed different approaches for 
the synthesis of colloidal noble metal nanoparticles by physical, chemical, and bio-
logical methods. Physical and chemical methods used for  the   synthesis of MNPs are 
sol-gel (Shukla and Seal  1999 ), laser ablation (Mafune et al.  2001 ), chemical reduc-
tion (Chaki et al.  2002 ), solvothermal (Rosemary and Pradeep  2003 ) and ion sput-
tering method (Raffi  et al.  2007 ), etc. Although these methods produce pure, 
well-defi ned nanoparticles but are quite expensive, the methods used are actually 
dangerous for the environment (Kumar and Yadav  2009 ). Nanoparticles are the 
building blocks that consist of few hundred atoms to millions of atoms with proper-
ties (chemical, biological electrical, mechanical, and optical). Biosynthesized NPs 
are unlike from the bulk material and have remarkable  applications   in various fi elds 
(Fig.  19.3 ).

   The plant- based   biosynthesized metal nanoparticles (gold and silver nanoparti-
cles) have received much attention as alternative method to chemical and physical 
methods. Metal nanoparticles produced using plant extracts are cost effective there-
fore economically used as valuable alternative for the bulk production. The biosyn-
thesized nanoparticles additionally remain constant than the chemical method 
(Duran et al.  2010 ), where plant extracts act as both reducing and capping agents in 
the synthesis. Silver, gold, platinum, and palladium are the most studied NPs; Ag 
and Au nanoparticles are widely used in biomedical fi eld.  

19.2     Biosynthesis of Metal Nanoparticles from Plants 

  Medicinal plants   have been  the   richest bioresource used in medicine, nutraceuticals, 
food supplements, and chemical entities for synthetic drugs (Ncube et al.  2008 ). 
The  phytochemicals   are not only important in medicines but also aid in the reduc-
tion and stabilization of metal nanoparticles playing dual function in the synthesis. 
Green synthesis of NPs is inexpensive and environmentally friendly and can easily 
synthesize in large scale which does not require toxic chemicals, energy, pressure, 
and temperature. Various organisms (unicellular and multicellular), i.e., bacteria, 

  Fig. 19.2     Schematic   representation of the building up of nanostructures       
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fungi, and yeast, have been used to  synthesize   inorganic nanomaterials extracellu-
larly and intracellularly (Mann  1996 ; Kumar et al.  1995 ; Ahmad et al.  2005 ). The 
rapid extracellular synthesis  of   AgNPs and AuNPs using leaf extracts of  numerous 
  plants has been reported like   Aloe vera    (Chandran et al.  2006 ),   Spinacia oleracea    
and   Lactuca sativa    (Kanchana et al.  2011 ),   Chenopodium album    (Dwivedi and 
Gopal  2010 ), and   Cassia alata    (Gaddam et al.  2014 ). Most of  the   plant material 
contains various water-soluble anionic  components   such as thiocyanate, nitrate, 
chlorides, sulfates, starches, tannins, saponins, terpenoids, polypeptide, and lectins 
(Darout et al.  2000 ). The biosynthesis of nanoparticles by plant material (fresh and 
dry) takes place at room temperature and requires less energy results in both intra-
cellular (inside living cells) and extracellular (outside the cells). There is increase in 
the use of different  medicinal plants   for the nanoparticle synthesis (Table  19.1 ).

  Fig. 19.3     Nanotechnology in   different fi elds (  http://www.deakin.edu.au    )       
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   Nanotechnology has evolved rapidly  to   develop new techniques in synthesis and 
characterization (Sharma et al.  2009 ). Sau and Rogach ( 2010 ) stated the earlier 
methods used for the synthesis result in lesser quantities with poor morphology. 
Synthesis of nanoparticles with poor morphology. Birla et al. ( 2009 ) reported the 
use of toxic chemicals and higher temperatures for synthesis process were toxic to 

   Table 19.1    List of  few   plants used in the biosynthesis of AgNPs   

 Sl. 
No.  Plants used 

 Biomolecules 
involved  Nanoparticles  Size (nm)  References 

 1   Datura metel 
L . 

 Plastohydroquinone 
or 
plastrocohydroquinol 

 Ag  16–40 nm  Kesharwani 
et al. ( 2009 ) 

 2   Mentha 
piperita L . 

 Menthol  Ag, Au  90 nm, 
150 nm 

 Ali et al. 
( 2011 ) 

 3   Zingiber 
offi cinale  Rosc. 

 Alkaloids, fl avonoids  Ag, Au  10 nm  Singh et al. 
( 2011 ) 

 4   Citrullus 
colocynthis L . 

 Polyphenols  Ag  31 nm  Satyavani et al. 
( 2011 ) 

 5   Achyranthes 
aspera  L. 

 Polyols  Ag  20–30 nm  Daniel et al. 
( 2011 ) 

 6   Desmodium 
trifl orum  ( L. ) 

 Water-soluble 
antioxidative agents 
like ascorbic acids 

 Ag  5–20 nm  Ahmad et al. 
( 2011 ) 

 7   Andrographis 
paniculata 
Nees . 

 Hydroxyfl avones, 
catechins 

 Ag  28 nm  Sulochana 
et al. ( 2012 ) 

 8   Astragalus 
gummifer  

 Proteins  Ag  13.1 ± 1.0 nm  Kora and 
Arunachala 
( 2012 ) 

 9   Coleus 
aromaticus 
Lour . 

 Flavonoids  Ag  40–50 nm  Vanaja and 
Annadurai 
( 2012 ) 

 10   Dioscorea 
bulbifera L . 

 Polyphenols or 
fl avonoids 

 Ag  8–20 nm  Ghosh et al. 
( 2012 ) 

 11   Dioscorea 
oppositifolia L . 

 Polyphenols  Ag  14 nm  Maheswari 
et al. ( 2012 ) 

 12   Glycyrrhiza 
glabra L . 

 Flavonoids, 
terpenoids, thiamine 

 Ag  20 nm  Dinesh et al. 
( 2012 ) 

 13   Hydrilla 
verticillata  

 Proteins  Ag  65.55 nm  Sable et al. 
( 2012 ) 

 14   Lantana 
camara L . 

 Carbohydrates, 
glycosides, and 
fl avonoids 

 Ag  12.55 nm  Sivakumar 
et al. ( 2012 ) 

 15   Averrhoa 
bilimbi  

 Amines, alcohol  Ag, Au  50–175 nm  Isaac et al. 
( 2013 ) 

 16   Capparis 
zeylanica  

 Amines, phenolic 
compounds 

 Ag  50–90 nm  Saranyaadevi 
et al. ( 2014 ) 

 17   Terminalia 
arjuna  

 Phenol/carboxylic 
group 

 Ag  3–50 nm  Ahmed and 
Ikram ( 2015 ) 
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the environment. Since then biological synthesis of nanoparticles captured attention 
by  using   bacteria (Shahverdi et al.  2009 ), fungi (Govender et al.  2009 ), actinomy-
cetes (Ahmad et al.  2003 ), algae (Chakraborty et al.  2009 ), etc. Mukherjee et al. 
( 2008 ) started a greener approach for the synthesis which was environmentally 
friendly as no toxic chemicals, temperature, and pressure are required. Hence, bio-
researchers also focused on the synthesis of bionanoparticles instead of using chem-
ically or physically synthesized nanoparticles (Thakkar et al.  2010 ).  The   yield of 
different sizes and shape of nanoparticles depends on the type of chemical, physical, 
and biological agents used. The biological means used for the production of 
nanoparticles are generally microbes (Gajbhiye et al.  2009 ) and plants (Jha et al. 
 2009 ; Javad et al.  2014 ) which results in both extracellular and intracellular synthe-
sis (Shaligram et al.  2009 ). Physical and chemical synthesis requires reducing and 
stabilizing agents (sodium borohydride, sodium citrate, and alcohols) which are 
mostly toxic and fl ammable with low production rate (Bar et al.  2009 ).    The reduc-
tion rate of metal ions is faster at room temperature using biological agents and is a 
low-cost, nontoxic, and less labor-intensive technique.    The exact mechanism of 
nanoparticle synthesis using biological agents is still in confusion as different bio-
agents react differently with metal ions. The biologically synthesized AgNPs have 
been in used silica-coated Ag nanowires and electric circuits (Kvistek and Prucek 
 2005 ). Plant-based nanoparticle synthesis is advantageous  over   other biological 
methods (microbial) as the synthesis reaction rate is very high and does not require 
specifi c  conditions   to grow the microbes Kumar and Yadav ( 2009 ). 

 Several plants have  been   used in biosynthesis of silver nanoparticle. Shankar 
et al. ( 2003 ) explained  geranium leaf extract   in rapid synthesis of stable and crystal-
line AgNPs (16–40 nm). Shankar et al. ( 2004 ) reported the extracellular synthesis 
of pure  metallic   silver, gold, and bimetallic Au/Ag nanoparticles from   Azadirachta 
indica    leaf broth. Ankamwar et al. ( 2005 ) reported that   Emblica offi cinalis    fruit 
extract leads to rapid reduction of the Ag ions in stable AgNPs. However, Chandran 
et al. ( 2006 ) controlled the shape and size of AgNPs with  Aloe vera  leaf extract as 
reducing agent. The volume of extract and temperature used during the reaction led 
in characteristic nanoparticles. Huang et al. ( 2007 ) reported the use of   Cinnamomum 
camphora    leaf for the synthesis of AgNPs (55–80 nm). The shape of nanoparticles 
differs due to biomolecules present in leaf extracts. They may be polyol and water- 
soluble heterocyclic components responsible for the reduction of silver ions. Li 
et al. ( 2007 ) identifi ed 3  nm   protein moieties capped the silver nanoparticles that aid 
in the reduction and capping of AgNPs. 

 Udayasoorian et al. ( 2011 ) have reported AgNP synthesis from leaf extract of 
  Cassia auriculata    under shaking conditions with 20–40-nm particle size. Velavan 
et al. ( 2012 ) investigated strong antioxidant activity of silver nanoparticles synthe-
sized from   Cassia auriculata    fl ower extract. Amaladhas et al. ( 2012 ) reported 
sennosides, a water-soluble constituent in  Cassia angustifolia  leaf extract reacted as 
both reducing and capping agents in the synthesis of AgNPs. Gaddam et al. ( 2014 ) 
 reported   biofabrication of AgNPs from  Cassia alata  leaf extract and its antimicro-
bial activity. There are reports where aqueous callus from different plants has been 
used as reducing agent for the synthesis of AgNPs like   Sesuvium portulacastrum  L  . 
(Nabikhan et al.  2010 ). Reddy et al. ( 2015 ) used aqueous callus extract of   Centella 
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asiatica    for the synthesis  of   AgNPs and reported strong inhibitory activity against 
 B. subtilis ,  S. aureus ,  E. coli , and  P. aeruginosa . 

19.2.1     Size and Shape 

 Various  factors   govern the size and shape of the bionanoparticles like  reaction   tem-
perature (Rai et al.  2006 ), concentrations of the leaf broth (Song et al.  2010 ), reac-
tion time (Li et al.  2007 ), etc. The reaction temperature increases the reaction rate 
where most Ag ions consumed to form nuclei (Song and Kim  2009 ).  

19.2.2     Characterization of Nanoparticles 

 Kumar and Yadav ( 2009 ) explained characterization techniques of nanoparticles. 
The fi rst step to characterize AgNPs is  by   visual observation (Fig.  19.4 ). The 
nanoparticles from  different   salts show characteristic peaks at different absorptions 
monitored by UV-Vis spectroscopy. Silver nanoparticles have an absorption peak 
between 400 and 450 nm. The increase in characteristic peak with increased reac-
tion time and concentration of plant extracts used indicates the formation of 
nanoparticles. UV-Vis spectra show characteristic peaks of the  surface plasmon 
resonance (SPR)   in nanosized particles.

   X-ray diffraction (XRD) technique characterizes the metallic nature of nanopar-
ticles. The wavelength is equivalent to the size of the atom used for analyzing the 
structural organization of atoms and molecules. The energetic X-rays penetrate 
through the nanomaterial giving detailed information of the bulk structure (Putnam 
et al.  2007 ). For very small crystallite sizes, signals in XRD are broadened, a phe-
nomenon described by the Scherrer.  Fourier transform infrared (FTIR) 

  Fig. 19.4    Visual 
observation of silver nitrate 
after reduction (AgNPs) at 
different concentrations of 
leaf extracts (Parveen et al. 
 2012 )       
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spectroscopy   is used to  determine   biomolecules of plants associated with nanopar-
ticles. Microscopic techniques such as  scanning electron microscopy (SEM)  ,  trans-
mission electron microscopy (TEM)  , and  atomic force microscopy   are mainly used 
to study morphology of nanoparticles. Some of the commonly used characterization 
techniques are given (Table  19.2 ).

19.2.3        Characterization of Associated Biomolecules 

 According to Iravani ( 2011 ), the reduction of metal NPs occurred by the biomole-
cules present in the plant extracts  like   enzymes, proteins, vitamins, polysaccharides, 
etc. Nanoparticles interact  with   biomolecules, and adsorption of proteins occurs on 
the surface of nanoparticles forming  nanoparticle protein complexes (NP-PC)   which 
makes NPs biocompatible. These active biomolecules control the composition, size, 
and shape of bionanoparticles (Xie et al.  2007 ). Proteins isolated from green alga 
played dual function in the ions reduction, and controlled the characteristics like 
size and shape of gold ions (Chandran et al.  2006 ; Kaur et al.  2009 ). Plants have a 
broad range of metabolites that aids in the reduction faster than microbial synthesis. 
Parveen and Rao ( 2014a ) considered plant biomolecules/proteins are responsible 
for  the   reduction and have dual function in biosynthesis and stabilization of nanopar-
ticles (Fig.  19.5 ).

19.3         Applications 

 Due to numerous applications of silver nanoparticles, future aspects of synthesis 
and its applications are becoming signifi cant in many fi elds such as energy, health 
care, environment, agriculture, etc. Ag ions and AgNPs are highly toxic to the 

   Table 19.2    Different  techniques   for characterization of nanoparticles   

 Techniques  Measures 

 Ultraviolet-visible spectroscopy (UV-Vis)  Absorption spectrum, optical 
characterization 

 Transmission electron microscopy (TEM), scanning 
transmission electron microscopy (STEM), high- 
resolution TEM (HRTEM) 

 Particle size and characterization 

 Scanning electron microscopy (SEM)  Particle size and characterization 

 Atomic force microscopy (AFM)  Particle size and characterization 

 Dynamic light scattering, photon correlation 
spectroscopy (PCS) 

 Average particle size, size distribution, 
and stability of nanoparticles 

 X-ray diffraction (XRD)  Average particle size for a bulk 
sample 

 Energy-dispersive X-ray spectroscopy  Elemental analysis 

 Fourier transform infrared spectroscopy (FTIR)  Spectral data 
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microorganisms (e.g., viruses, bacteria, fungi) (Wen et al.  2007 ). Silver nanoparti-
cles have inhibitory and bactericidal properties as it was an excellent antibacterial 
agent used from history. Parveen et al.  2012  have reported substantial antibacterial 
and antifungal impact in vitro by using biosynthesized AgNPs at very  low   concen-
trations (Fig.  19.6 ). Matsumura et al. ( 2003 ) suggested  that   silver ions interact with 
phosphorus moieties in DNA inactivating DNA replication and react with sulfur- 
containing proteins to inhibit enzyme functions.

   Nowadays, AgNPs are incorporated  in   various consumer goods like cosmetics, 
   toothpastes, surface cleaners, detergents, antimicrobial paints, toys, home appli-
ances, shoe insoles, brooms, automotive upholstery, textiles, and food storage con-
tainers (Thomas et al.  2007 ; Amendola et al.  2007 ; Navaladian et al.  2008 ; Fernandez 

  Fig. 19.5     SDS-PAGE analysis   of NP- associated   proteins (Parveen and Rao  2014a )       

  Fig. 19.6     Antimicrobial activity of   Ag nanoparticles against ( a )  E. coli , ( b )  B. subtilis , ( c ) 
 Serratia  spp., ( d )  A. fl avus , ( e )  A. niger  (Parveen et al.  2012 )       
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et al.  2008 ). Many commercial products such as T-shirts, socks, sportswear, and 
fabrics are incorporated with functionalized AgNPs, which is useful in the medical 
fi eld to avoid high risks of contamination associated with surgical suits (Benn and 
Westerhoff  2008 ). Some of the products and devices containing silver such as cath-
eters, prostheses, vascular grafts,  and    wound   dressings are being used in the medical 
fi eld (Furno et al.  2004 ). Likewise, AgNPs have also been used by food packaging 
industry in the packaging materials for the preservation of food for longer duration. 
Researchers  have   reported sonochemical coating technique for preparation of mate-
rials from the  colloidal   AgNPs using ultrasonication (Samberg et al.  2011 ). 

 The  metallic   NPs have  surface plasmon resonance (SPR)   properties used in  mak-
ing   sensors like real-time searching of membrane transport in living microbial cells 
(Xu et al.  2004 ), nitro-explosives (Marcia  2006 ), immunoassay labeling (Morones 
and Frey  2007 ), DNA sequence detection (Jacob et al.  2008 ), fi brinogens in human 
plasma (Zhi Liang et al.  2007 ), glucose sensor in medical diagnostics (Mishra et al. 
 2007 ), biolabeling, optical imaging of cancer (Wiley et al.  2007 ), and herbicide 
detection (Dubas and Pimpan  2008 ). 

 Silver nanoparticles have tremendous electronic applications in optics, data stor-
age devices, battery-based intercalation materials,    high-density recording devices, 
   integrated circuits (IC), and capacitors (Navaladian et al.  2008 ; Kim et al.  2007 ; 
Deshmukh and Composto  2007 ). Silver nanoparticles and silver nanocomposites 
have been used as catalyst in CO oxidation (Liu et al.  2005 ), p-nitrophenol reduc-
tion to p-aminophenol (Fernandez et al.  2008 ), and gaseous acetaldehyde photodeg-
radation (Hamal and Klabunde  2007 ). 

 Nanoagriculture evolves with the ambition to impart benefi cial effects on the 
crop plants (Kotegooda and Munaweera  2011 ). Nanoparticles serve as “magic bul-
lets” holding herbicides,  chemicals   (fungicides, insecticides, etc.), and genes (Nair 
et al.  2010 ). Nanoparticles can be  utilized   to improve disease resistance, nutrient 
utilization, and enhanced growth in crop plants. Parveen and Rao ( 2014b ) reported 
that biosynthesized AgNPs have enhanced the seed germination in   pearl millet   , but 
the growth of seedlings was affected (Fig.  19.7 ), whereas the same concentration of 
AuNPs was found benefi cial (Parveen et al.  2016 ). Parveen and Rao ( 2014c ) 
 reported   (anticancer activity of biosynthesized AuNPs and AgNPs on human 
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  Fig. 19.7    Effect of AgNPs on seed germination and seedling growth of  Pennisetum glaucum  
(Parveen and Rao  2014b )       
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carcinoma cells lines by  MTT   assay and found AgNPs were more toxic than AuNPs 
(Fig.  19.8 ). Parveen et al. ( 2015 ) have incorporated metal NPs to  prepare   bionano-
composites which have differential applications as antimicrobial and can be utilized 
in  preparation   of wound dressing, biosensor, and electronics (Figs.  19.9  and  19.10 ).

19.4           Conclusion 

  Bionanotechnology   serves as an important research area for the fabrication and use 
of metal nanoparticles. Various physical and chemical methods were designed for 
the production of nanoparticles, but the complications of using these methods led 
the researchers to explore for alternative, safe, and easy methods. A number of 

  Fig. 19.8    Comparative  study   (showing anticancer effect of AuNPs and AgNPs synthesized using 
 Cassia auriculata  leaf extract: ( a ) A549, ( b ) LNCap-FGC, ( c ) MDA-MB (Parveen and Rao  2014c )       

  Fig. 19.9    Preparation of  silver   bionanocomposite (Ag-BNC)    (Parveen et al.  2015 )       
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plants have been exploited for the synthesis of silver nanoparticles. The nanoparti-
cles were characterized by various analytical techniques, such as UV-Vis, FTIR, 
XRD, TEM, SEM and zeta potential measurements, etc. Plant-mediated nanoparti-
cle synthesis is environmentally friendly, nontoxic, easier, and cheaper for bulk pro-
duction of NPs. However, the exact mechanism of bionanoparticle synthesis is still 
under study. Silver nanoparticles have tremendous applications and can be utilized 
in electronics, catalysis, biology, pharmaceutical, and medical diagnosis.     
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    Abstract 
   European alder [ Alnus glutinosa  (L.) Gaertner], also called black alder or 
European black alder, is a medium-sized tree that is widely distributed through-
out Europe. In the few decades, black alder populations have declined drasti-
cally, partly as a result of deforestation and the disappearance of riparian habitats 
but mainly because of alder blight disease, caused by  Phytophthora alni . In order 
to protect these important genetic resources, the existing conservation methods 
must be improved and new tools developed. 

 Biotechnological methods, particularly in vitro or tissue culture methods, 
could be benefi cial for the large-scale multiplication, improvement and conser-
vation of the species. Axillary shoot proliferation from cultured meristems is the 
most frequently used method of micropropagation, as it provides genetic stabil-
ity. Axillary shoot multiplication has been achieved in several species of the 
genus  Alnus . Although most of these reports refer to material of juvenile origin, 
such as seedlings or young trees, there have been few reports regarding the prop-
agation of mature trees. Plantlets from mature trees of  A. glutinosa  are obtained 
and are viable for reintroduction to the natural habitat of the species. The explants 
used for in vitro multiplication can be stored at 4 °C under dim lighting for up to 
18 months. The stored material can be successfully recovered and shows good 
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growth that develops into shoots that are morphologically similar to those of 
non-stored controls. This technique reduces maintenance requirements and the 
risk of genetic alterations. 

 Somatic embryogenesis is considered the most effi cient in vitro procedure for 
mass propagation of plants. This technique has been successfully applied to 
immature zygotic embryos of black alder. This protocol may help to enhance the 
propagation of  A. glutinosa  and other alder species and could also provide a 
regeneration system for future use in genetic manipulation for introducing genes 
that confer resistance to pathogens such as  P. alni . 

 In vitro shoot tips and embryogenic cultures can be successfully cryopre-
served by vitrifi cation, indicating that long-term storage of black alder germ-
plasm may be possible. The material could then be safely stored while fi eld tests 
are undertaken.  

  Keywords 
   Adventitious shoots   •   Axillary shoots   •   Black alder   •   Cryopreservation   • 
  Germplasm conservation   •   Micropropagation   •   Somatic embryogenesis  

20.1       Introduction 

 The genus  Alnus , a member of the family Betulaceae, comprises some 30 species of 
monoecious trees and shrubs. They are distributed throughout the world, and very 
few of them reach a large size. 

20.1.1     General Features 

  Alnus , the Latin name classically used to refer to various species of alder, is derived 
from the Indo-Germanic root el-ol-, meaning shiny (particularly in reference to red 
and brown colours) and refers to the fact that the alder wood  turns   reddish orange 
after being cut. The wood was said to have protective properties, and the young 
branches were used to make whistles to attract spirits from the air. The species name 
 glutinosa  (sticky) refers to the sticky shoots and young leaves (López  2014 ). 

 There are four alder species  native   to Europe: the common alder ( A. glutinosa ), the 
grey alder ( A. incana ), the Italian alder ( A. cordata ) and the green alder ( A. viridis ). 
The type species is  A. glutinosa  (L.) Gaertner. The common, black or European alder 
( A. glutinosa ) is of considerable landscape value along waterways and plays a vital 
role in riparian ecosystems. Members of the genus  Alnus  are generally pioneer species 
that are able to colonise bare, open ground rapidly and are highly tolerant of wet sites. 

 The black  alder is a   medium-sized tree that does not usually grow taller than 20 m, 
although specimens of more than 30 m are known. It is typically a component of mixed 
broadleaved forest, although it represents less than 1 % of the forest cover in many 
countries, because the most suitable sites have been converted to agricultural land. The 
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tree has a shallow root system, with some deep roots that can reach water in sites where 
the water table is low. The surface roots have brownish-yellow nodules that house acti-
nomycete bacteria ( Frankia alni ) that are capable of fi xing atmospheric nitrogen. The 
nitrogen thus fi xed, at rates of 60–400 kg h −1  year −1 , is available to both the host tree and 
to the environment. The trunk is straight, reaches up to 1 m in diameter, and the bark is 
dark brown in adult trees and reddish brown in young ones. The crown of young trees 
is almost pyramidal and later becomes rounder or irregular in shape, with open 
branches. The leaves (4–10 cm) are simple, broad, with a well-developed petiole, dark 
green on the upper surface and paler green on the undersurface. They are round, elliptic 
or obovate, with a double-serrated margin and a rounded or slightly indented tip. The 
alternately arranged leaves appear in April or May, and when young they are sticky (as 
are the branchlets). The tree fl owers between February and April, and the fruits appear 
in autumn. The empty cones remain on the tree until  the   following spring and are a 
distinctive feature of the alder tree in winter (López  2014 ).  

20.1.2     Distribution and Propagation 

 Alder inhabits  a   large part of Europe, North and Northeast Asia (penetrating Asia 
Minor and the Caucasus) and Northwest Africa. The species was introduced to 
North America in the colonial era (Rehder  1940 ), and it has since become natu-
ralised throughout the Northeastern United States and Maritime region of Canada. 
It is somewhat fl exible as regards climate conditions and is well developed in cold 
temperate and warm temperate climates. It also tolerates intense cold winters and is 
known to resist  minimum   temperatures of −40 °C outside the growth season but is 
not resistant to late spring frosts. 

 The species is found at elevations ranging from almost sea level to 1,700 m, on 
the banks of rivers, streams and watercourses, as it requires soil that is almost per-
manently damp. Indeed, it is not very tolerant of summer drought. It  prefers   sili-
ceous soil and can grow in poor soils due to the capacity of the roots to fi x nitrogen 
from the atmosphere. 

 Alder shows a good capacity to regenerate from seeds and by sprouting from 
stumps but not from roots. Alder matures at between 3 and 30 years of age, depend-
ing on the ecotype and the stand conditions. The mature  trees   produce plentiful 
seeds every 3 or 4 years which are dispersed by wind and water. Germination rates 
are highly variable, ranging from 10 to 90 %, depending on the crop year and the 
stand. Growth is rapid, with yields of around 9–11 m 3 /ha year. The species is mod-
erately long lived, surviving for around 100–120 years (Claessens et al.  2010 ). 

 Although conservation of the alder germplasm is possible by cold stratifi cation 
and  cryopreservation   of seeds (Chmielarz  2010 ), storage of this material is of little 
interest, because seeds are genetically heterogeneous.    Vegetative propagation of  A. 
glutinosa  from cuttings taken from juvenile specimens is possible using standard 
horticultural techniques (Périnet and Lalonde  1983 ); however, propagation  from 
  cuttings obtained from mature trees is diffi cult (Claessens et al.  2010 ).  
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20.1.3      Phytophthora  Disease of Alder 

   Black alder populations have declined drastically throughout Europe in recent 
years, partly as a result of deforestation and the disappearance of characteristic 
riparian habitats but mainly because of alder blight disease caused by   Phytophthora 
alni    and subspecies (Brasier et al.  2004 ). At the beginning of the 1990s,  a   new dis-
ease, which was given the names alder root and collar rot, caused the loss of large 
numbers of alder trees. The disease has been described in several European coun-
tries and has had a destructive impact in some areas, such as Southeast England, 
Northeast France, Bavaria and Northern Spain (Gibbs  1995 ; Gibbs et al.  1999 ; 
Streito et al.  2002 ; Jung and Blaschke  2004 ; Tuset et al.  2006 ). All European alder 
species and red alder ( A. rubra ) are highly susceptible to the pathogen, although  A. 
glutinosa  is the most susceptible. In  2001 , the  North American Plant Protection 
Organization (NAPPO)   published an emerging pest alert (in its Phytosanitary Alert 
System) regarding alder  Phytophthora , before the fungal causal agent had been 
described. In 2004, Brasier and colleagues formally described the causal agent as  P. 
alni  and considered that it may be a hybrid between  P. cambivora  and  P. fragariae  
(a pathogen of strawberry) (Brasier et al.  1999 ). There are three subspecies: a stan-
dard hybrid designated  P. alni  subsp.  alni , a Swedish hybrid called  P. alni  subsp. 
 uniformis , and a subspecies designated  P. alni  subsp.  multiformis , which includes 
Dutch, German and UK variants. Diseased trees have smaller leaves than usual, 
which are yellow, disperse and often fall prematurely. The branches die, and fl owering 
and fruiting are intensifi ed. The most characteristic symptom in affected trees is 
necrosis in the internal zone of the cortex, which produces large cankers at the level 
of the root and trunk (Gibbs et al.  1999 ). 

 The alder, along with elm, is currently one of the most seriously threatened 
 species in European ecosystems. Given the important role that the species plays in 
stabilising riverbanks, purifying water and controlling water temperature as well as 
in the biodiversity of terrestrial and aquatic habitats, its disappearance would 
 seriously affect the stability of fl uvial ecosystems. Recognition of the importance of 
this species and of the danger represented by spread of the disease, which cannot yet 
be controlled, requires the development of new strategies of conservation of at least 
the most representative examples  .  

20.1.4     Economic Importance and Uses 

  Despite  its   relative scarcity in forests, black alder shows a good potential for  timber   
production. Nevertheless, the production of high-quality black alder  timber   is only 
possible on sites that correspond closely to its autecological optimum, as with other 
valuable broadleaf species. In these conditions, alder grows as rapidly as ash, maple 
and cherry, and the  timber   can fetch high prices due to its desirable characteristics. 
Moreover, the species contributes greatly to riverine ecosystems and to the services 
they provide. It contributes to biodiversity by providing habitats for specifi c fl ora 
and fauna, both on the tree itself and in the fl ooded root system. It assists in water 
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fi ltration and purifi cation in waterlogged soils, and the root system helps to control 
fl oods and stabilise riverbanks (Claessens et al.  2010 ). 

 Alder is suitable for repopulating poor soils and fl ooded areas, whereas other tree 
species require open, sunny sites. It has been widely used in gardening as an orna-
mental plant, as well as for windbreaks. It was also one of the fi rst species used in 
Europe to stabilise dunes. 

 The  timber   is very light in colour immediately after felling but then acquires a 
reddish or brownish-orange tone. It decomposes readily on contact with air, but is 
very resistant when submerged, and is valuable for making posts and foundation 
piles for hydraulic constructions and in the past was used for houses constructed in 
water, as in Amsterdam and Venice. It is easy to work with and to stain or apply 
other surface treatments and is therefore suitable for imitating other high-quality 
timbers (ebony, mahogany and cherry). At present its main application is for mak-
ing plywood and industrial items, as well as for artisanal work. It is also used to 
produce high-quality charcoal. Alder was also commonly used in home remedies 
for various ailments. The bark is very rich in tannins (19 %) and contains the fatty 
acids palmitic and stearic acid. Products made from the bark have astringent, 
anti- infl ammatory, decongestant and antipyretic properties and have been used as 
substitutes for quinine and as antidiarrhoeals (Alvárez et al.  2000 ). 

 Woody plants (especially black alder) are also potentially useful for accumulating 
and extracting heavy metals from polluted watercourse banks. The success of this 
application and of obtaining specimens tolerant/resistant to alder diseases would 
require regeneration of whole plants from cultured somatic tissues under selected 
conditions (Bajji et al.  2013 ). 

 Since the 1990s, biotechnology has provided new means of propagating and 
 conserving the species, including in vitro tissue culture. Micropropagation methods 
could be benefi cial for the large-scale multiplication, improvement and conserva-
tion of this species. 

 This chapter presents a review of micropropagation studies carried out on  A. 
glutinosa , by culture of axillary buds and differentiation of adventitious buds and 
somatic embryogenesis, as well as of the conservation methods used (slow growth 
and  cryopreservation  ) for mid- and long-term maintenance of the material .   

20.2     Micropropagation 

  Germplasm preservation   plays an important role in the maintenance of biodiversity 
and prevention of genetic erosion. The traditional method of conserving phytoge-
netic resources is in situ conservation (parks or natural reserves) (Iriondo  2001 ). 
Although effi cient, this method is costly, and there is a high associated risk of loss 
of trees due to environmental factors and pests (Engelmann  2004 ).  Ex situ conserva-
tion   is an alternative that has been internationally recognised as important (UNEP 
 2002 ) and is being used by numerous organisations for biodiversity conservation 
(Engelmann  2011 ). Ex situ conservation techniques can be used effectively to 
complement in situ methods and represent the only option for the conservation of 
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recalcitrant species or species in danger of extinction and for material from elite or 
genetically transformed genotypes (Sarasan et al.  2006 ). As there are not yet any 
effective methods for controlling  Phytophthora  disease of black alder (Webber et al. 
 2004 ; Jung and Blaschke  2004 ), conservation of the species in its natural habitat 
does not appear feasible, and biotechnological procedures such as micropropaga-
tion techniques provide the only means of cloning specimens selected for their tol-
erance/resistance to disease.  Micropropagation   protocols are also a prerequisite for 
 cryopreservation   and genetic transformation methods, which can complement con-
ventional breeding programmes. Regeneration of black  alder plants by   in vitro cul-
ture has been achieved by multiplication of axillary buds, adventitious shoot 
regeneration and somatic embryogenesis (Table  20.1 ).

20.2.1       Axillary Shoot Multiplication 

  Axillary shoot multiplication   from cultured meristems is the method most fre-
quently used for micropropagation as it provides genetic stability and is easily 
attained in many plant species (George et al.  2008 ). In black alder, this in vitro 
culture technique enables short- to medium-term ex situ storage of valuable geno-
types and massive production of the clonal plant stock to restore areas devastated by 
disease. The fi rst studies involving  micropropagation   of alder by axillary shoot mul-
tiplication date from the 1980s, when the importance of actinorhizal host plants in 
forestry was fi rst recognised (Tremblay et al.  1986 ; Périnet and Tremblay  1987 ). In 
these studies, micropropagation of several species of the genus  Alnus , including  A. 
glutinosa , was achieved, although most of them used material of juvenile origin, 
such as seedlings or young trees, and therefore of unknown value. Two decades 
later, when European alder populations were seriously damaged by disease, the fi rst 
studies with material of adult origin were carried out (Table  20.1 ). 

20.2.1.1     Material of Juvenile Origin 
 Brown ( 1980 )   mentions  an   unpublished study on the in  vitro   regeneration of plants 
from seedling cultures of  A. glutinosa  and  A. rubra ; however, the fi rst report of 
in vitro propagation of alder is attributed to Garton et al. ( 1981 ), who used material 
from 2-month-old plants. Aseptically germinated seedlings were used by Read et al. 
( 1982 ) and Périnet and Lalonde ( 1983 ), as well as 2-year-old plants grown in the 
fi eld by Tremblay and Lalonde ( 1984 ) and Périnet and Tremblay ( 1987 ). 

 Two mineral salt formulations were successfully used for the micropropagation 
of black alder from juvenile material: Woody plant medium ( WPM  ; Lloyd and 
McCown  1980 ) and Murashige and Skoog medium (MS; Murashige and Skoog 
 1962 ). Read et al. ( 1982 ) reported the WPM to be better than MS medium for induc-
ing shoot proliferation with less callus formation. Subsequently, Tremblay and 
Lalonde ( 1984 ) compared MS (Blaydes  1966 ) and WP media and observed good 
growth of  A. glutinosa  in the WP and MS media. Other mineral salt formulations 
such as B5 (Gamborg et al.  1968 ) Nagata and Takebe ( 1971 ) and Crone’s solution 
(Lalonde  1979 ) were not benefi cial and were sometimes even deleterious, to the 
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growth of black alder in comparison with the MS medium (Tremblay and Lalonde 
 1984 ).  MS salts   used at two or four times strength induced complete necrosis within 
3 weeks, whereas half-strength MS salts rapidly resulted in defi ciency symptoms 
(Tremblay and Lalonde  1984 ). 

 The sugar requirement of alders during culture varies between species and 
between genotypes at the intraspecifi c level and plays a particularly important role 
in the development of alder tissue cultures during the multiplication stage (Tremblay 
et al.  1986 ). Tremblay and Lalonde ( 1984 ) observed that 87 mM sucrose (3 % w/v) 
was optimal for  A. glutinosa , whereas all other species (seven species were tested) 
grew better in glucose. With small variations (58.3–87.5 mM, 2–3 % w/v), this 
sugar has been used for black alder propagation using juvenile material (Table 
 20.1 ). However, in a subsequent study, Welander et al. ( 1989 ) compared the effect 
of different carbon sources (sucrose, glucose and fructose) on shoot multiplication 
of black alder (although these authors did not indicate the age of the source of their 
explants) and found that 88 mM of glucose was the most effective carbon source in 
 A. glutinosa . These authors suggested that the differences might be explained by 
clonal diversity. 

 Different types and concentrations of  cytokinins   have been tested with the aim of 
optimising the in vitro multiplication of black alder, with benzyladenine (BA) being 
the most widely used (Table  20.1 ). Périnet and Lalonde ( 1983 ) compared BA (0.5–
25 μM) and N 6 -(Δ 2 -isopentenyl) adenine (2ip) (5–80 μM) and found that 1 μM BA 
produced the best results. Read et al. ( 1982 ) used the same concentration of BA to 
obtain multiple shoot formation. Tremblay and Lalonde ( 1984 ) and Périnet and 
Tremblay ( 1987 ) used a higher concentration of BA (2.5 μM), although in both 
studies a decrease in the concentration of BA favoured shoot elongation. Auxins 
have not generally been used during the multiplication stage. The presence of  auxin   
in combination with cytokinin was reported to be deleterious for inducing callus on 
leaves and shoots during initiation and multiplication steps (Read et al.  1982 ; 
Périnet and Lalonde  1983 ; Tremblay and Lalonde  1984 ). 

 Rooting of shoots produced in vitro has been successfully achieved both in vitro 
and ex vitro (Table  20.1 ). Garton et al. ( 1981 ) applied ex vitro methods to  A. gluti-
nosa  microshoots and observed that 100 % of the shoots rooted within 3 weeks in 
Jiffy mix. Read et al. ( 1982 ) used a similar system and achieved rooting rates of 
between 95 and 100 %. In vitro rooting was achieved with MS medium with half- 
strength nutrients and supplemented with indole-3-butyric acid (IBA) (1 μM) (Table 
 20.1 ). Périnet and Lalonde ( 1983 ) achieved 100 % rooting success, even in the 
absence of IBA, although the addition of 1 μM  auxin   to the rooting medium 
increased the number of roots per shoot and reduced the time required for 100 % 
rooting from 28 days for the  auxin  -free medium to 14–21 days for  auxin  - 
supplemented medium. Tremblay et al. ( 1986 ) confi rmed that in vitro-propagated 
microshoots of  Alnus  species can be rapidly rooted, independently of the technique 
used (mist bed or in vitro), permitting rapid large-scale multiplication of alders. 

 Acclimatisation of the plants obtained in vitro was successful, independently of 
the type of substrate used. The growth of the in vitro-propagated plantlets under 
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greenhouse conditions was even faster than growth of plantlets of the same species 
obtained from seedlings   (Tremblay et al.  1986 ).  

20.2.1.2     Material of Adult Origin 
    Effi cient   methods are required for the  clonal   propagation of  A. glutinosa  that have 
been selected at a mature stage. This is because it is diffi cult to predict the charac-
teristics of mature trees from juvenile plants and also because most individuals that 
might be selected for their tolerance/resistance to disease caused by  Phytophthora  
are already adult trees. Despite the technological advances that have been made over 
the last few years, there are few reports on the propagation of mature  A. glutinosa  
trees (Table  20.1 ). Lall et al. ( 2005 ) established a protocol for multiplying adult 
material of black alder, by using shoot tips taken from fruit- bearing branches of a 
sexually mature tree. Culture media for the introduction and shoot multiplication 
comprised  WPM   with BA (1–5 μM), and incorporation of 2,3,5-tri-iodobenzoic 
acid (2,3,5-TIBA) (0.1–3 μM), an  auxin   transport inhibitor, was required to mini-
mise callus and root formation during the multiplication stage. These authors con-
sider that the high  auxin   content of this species is an adaptation to its natural habitat, 
which suffers from frequent fl ooding. Naujoks et al. ( 2009 ) established in vitro 
clones from material of juvenile origin (from 6 months to 1 year old) and ten clones 
of adult material (about 18 years old) for studies of resistance to black alder decline. 
The multiplication medium (WPM) was supplemented with zeatin (Z), although the 
authors do not report the concentrations used or the results of establishment or 
in vitro multiplication trials. San José et al. ( 2013 ) successfully established three of 
the fi ve genotypes selected, by using material from adult trees (20–30 years) selected 
for their size and because they did not show symptoms of the disease (Fig.  20.1a ). 
The cuttings were forced to shoot in a phytotron, and the shoots that developed were 
used to establish the cultures (Fig.  20.1b ). The best results for both establishment 
and multiplication were obtained by supplementing the WPM with 0.44 μM BA and 
2.85 μM of indole-3-acetic acid (IAA). The authors indicate the need to carry out 
periodic transfer (every 3 weeks) of the shoots until the end of the subculture period 
of 9 weeks and that in the fi nal subculture, 2.28 μM Z was added to the medium to 
favour shoot elongation (Fig.  20.1c ). The results of this study showed that the per-
formance of shoot cultures of mature  A. glutinosa  was affected by the type of sugar 
in the culture medium and that glucose (111 mM) was better than sucrose for induc-
ing shoot development. Lall et al. ( 2005 ) also used glucose (167 mM) as a carbon 
source in the proliferation of axillary shoots established from an adult tree.

   As with material of juvenile origin, shoots established from mature material 
rooted easily, even without  auxin   treatment. Lall et al. ( 2005 ) observed successful 
rooting of shoots in medium without  auxin  . IBA and NAA were used by Naujocks 
et al. ( 2009 ), although, in both studies, the authors did not provide the correspond-
ing data. San José et al. ( 2013 ) achieved high rooting percentages (76.7 %) even 
with medium without  auxin   (Fig.  20.1d ). However, inclusion of IBA (0.49 μM) in 
the medium for 2–3 days increased the rooting rate (90 %), number of roots per 
rooted shoots (from 1.9 to 3.0) and length of the roots (26.4–35.7 mm). In addition, 
in the shoots treated with  auxin  , 63 % of the roots developed lateral roots, whereas 
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in the control only 43 % of the roots developed lateral roots, which is important for 
the establishment of root architecture in higher plants. San José et al. ( 2012 ) carried 
out an anatomical study of the development of adventitious roots in black alder 
shoots grown in rooting medium, with or without IBA. These authors found that 
addition of  auxin   to the medium accelerated the formation of meristemoids and the 
appearance of roots. These were visible 5–6 days after the start of the treatment, 
whereas in the control, without IBA, root emergence was delayed until day 8. 

 Rooted plants were successfully transferred to ex vitro conditions, with survival 
rates of more than 90 % (Fig.  20.1e ). In addition to comprising a safe germplasm 
bank that provides material for subsequent transformation studies aimed at 

  Fig. 20.1     Micropropagation and   conservation of  Alnus glutinosa . ( a ) Black alder mature trees 
established in vitro. ( b ) Forced fl ushing of branch segments in the growth chamber. ( c ) Axillary 
shoots following 9 weeks of culture on proliferation medium. ( d ) Adventitious root development 
on shoots treated with 0.49 μM IBA. ( e ) Acclimatised plantlets of black alder after 6 months in the 
greenhouse. ( f ) Somatic embryos developed from the upper surface of a cotyledon excised from a 
zygotic embryo. ( g ) Secondary somatic embryos after 6 weeks on proliferation medium. ( h ) 
Shoots developing from successfully cryopreserved shoot tips. ( i ) Formation of a new somatic 
embryo from cryopreserved embryo clumps       
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improving resistance of the trees to  P. alni , the plants obtained in vitro can be trans-
ferred to their natural environment and be used to reforest areas devastated by the 
disease  .   

20.2.2     Adventitious Shoot Propagation 

 Formation of  numerous    adventitious   buds was reported in nodal regions of black 
alder shoots in MS medium supplemented with 0.5–5 μM BA (Périnet and Lalonde 
 1983 ). The in vitro regeneration ability of black alder was subsequently studied by 
Bajji et al. ( 2013 ) with mature seeds and juvenile explants (hypocotyl segments, 
cotyledonary nodes and cotyledons) from 2-week-old in vitro seedlings. Mature 
seeds were cultured in modifi ed WPM (WPMm) in the presence  of   different con-
centrations of thidiazuron (TDZ) (0–10 μM) for 2–4 weeks under light conditions. 
The explants derived from seedlings grown in vitro were cultured in the same 
medium (WPMm) supplemented with different concentrations of 2ip (0–50 μM) 
and BA (1–5 μM) for 2–6 weeks in the dark. For all explant types tested, the best 
responses in terms of regeneration frequency, and especially the number of buds/
shoots per regenerated explant, were obtained when the explants were precultured 
for 2 weeks. When mature seeds were used as explants, addition of 1 μM TDZ 
induced the formation of more buds/shoots. When juvenile explants were used, 
cotyledon was the  most   responsive explant, and organogenesis was observed in all 
media and induction periods with a signifi cant effect of BA compared to 2ip. All 
explants (100 %) produced adventitious buds after culture for 2 weeks in the dark in 
medium supplemented with 1–3 μM BA. Rooting and acclimatisation of these 
shoots were not considered in this study. As the authors note, the aim of these stud-
ies was to develop a protocol for regenerating  adventitious shoots   from mature 
explants (e.g. leaves or internodes) based on the procedures (in vitro selection or 
genetic transformation) used to improve the potential use of woody plants (espe-
cially black alder)  for   accumulating and extracting heavy metals from the banks of 
polluted watercourses.  

20.2.3     Somatic Embryogenesis 

  Somatic embryogenesis   is  a   powerful tool for improvement of forest trees as it is 
considered to be the most appropriate means of in vitro regeneration of woody 
plants (Vieitez et al.  2012 ). To date, only one study of somatic embryogenesis 
involving members of the genus  Alnus  has been published (Corredoira et al.  2013 ), 
despite the importance of the genus. These authors described the induction of 
somatic embryos from immature zygotic embryos of black alder. The study fi ndings 
show that there is a short period during the development of the zygotic embryo 
when it is possible to establish embryogenic cultures. Somatic embryos were 
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initiated from zygotic embryos collected 1–3 weeks post-anthesis (WPA), i.e. when 
they were at globular or early cotyledonary stage and 0.5–1 mm in length. The 
induction frequency (16.6 %) and the mean number of somatic embryos (4.5 
embryos/explant) were highest after culture of zygotic embryos, collected at 3 
WPA, on MS medium supplemented with 0.9 μM 2,4-dichlorophenoxyacetic acid 
(2,4-D) and 2.22 μMBA. No embryos were induced  on   medium supplemented with 
only BA.    Initial somatic embryos developed indirectly from callus tissue formed on 
the surface of the zygotic embryos (Fig.  20.1f ). These results illustrate a feature 
widely seen in plant tissue culture, i.e. that the developmental/physiological status 
of the tissue used to initiate a culture may infl uence the subsequent potential of that 
culture. Embryogenic competence was maintained by secondary embryogenesis, 
which was affected by explant type, plant growth regulators and genotype. Repetitive 
embryogenesis occurred after culture of small groups of whole somatic embryos or 
isolated cotyledon explants on proliferation medium consisting of half-strength MS 
medium with 0.44 μM BA (Fig.  20.1g ). Histological analysis of isolated cotyledon 
explants showed that secondary embryos generated directly from differentiated 
embryogenic cells formed on the surface layers of cotyledons. Somatic embryos 
were observed at successive stages of development, including cotyledonary-stage 
embryos with shoot and root meristems. For plantlet conversion,    somatic embryos 
were transferred to maturation  medium   supplemented with 3 % maltose, followed 
by 6 weeks of culture in germination medium, consisting of WPM supplemented 
with 0.44 μM BA and 0.46 μM Z. Under these conditions, the plant conversion rate 
was 8 % with a germination rate of 20 %. This protocol appears promising for mass 
propagation, conservation and genetic transformation of black alder. 

 We have carried out initial experiments aimed at inducing somatic embryogen-
esis from leaves and apices of shoots obtained from selected adult trees and main-
tained in vitro. Murashige and Skoog medium supplemented with  different 
  concentrations of BA (2 μM), picloram (10–40 μM), NAA (5.4–21.6 μM) and 2,4-D 
(4.5–9 μM) was used, but so far  the   results have been unsuccessful.   

20.3     Germplasm Conservation 

 The use of in vitro tools can yield additional backup collections and provide alterna-
tive means of propagation and conservation of species (Reed et al.  2011 ). However, 
micropropagation requires periodic transfer of cultures to fresh medium and the 
inclusion of plant growth regulators, as well as organic and inorganic components 
in the culture media. These requirements increase the cost of the conservation tech-
niques, and more importantly, they  increase   the risk of somaclonal variation, and 
therefore the genetic fi delity of the stored germplasm is not ensured. These risks can 
be decreased using other unconventional conservation methods such as slow growth 
for the medium-term storage and  cryopreservation   for long-term storage (Ashmore 
 1997 ; Reed et al.  2011 ). 
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20.3.1     Medium-Term Storage 

  Reduced growth   is one of the main techniques used for preservation of genetic 
diversity.  The   technique is routinely used  for   medium- term   conservation of numerous 
species of both temperate and tropical origin, including crop plants such as potato, 
 Musa , yam and cassava (Ashmore  1997 ; Engelmann  1999 ,  2011 ). The main advan-
tages are the maintenance of disease-free cultures, reduced risk of genetic altera-
tions, lower maintenance costs and the need for less space than with other techniques. 
The use of this technique lengthened the period of subculture considerably, without 
affecting either the viability of the explants or their capacity for regrowth on transfer 
to standard conditions (Lambardi and De Carlo  2003 ). Reduced growth can be 
achieved by decreasing the temperature and/or the light intensity, using growth 
retardants, omitting carbon sources or increasing the osmolarity of the medium 
(Engelmann  1997 ). Of these options, temperature reduction yields the best  survival 
  of the material and is therefore the most frequently used method,  usually   carried out 
under low lighting or in darkness (Engelmann  2011 ).  These   techniques are clearly 
useful due to their fl exibility, simplicity and practicality, and they are the most direct 
way  of   restricting the growth and development of explants in vitro (Engelmann 
 1997 ; Turner et al.  2001 ). 

20.3.1.1     In Vitro-Grown Shoot Tips 
 A simple method was developed for the medium-term storage of  in vitro-grown 
shoot tips   of  A. glutinosa  established from trees aged 20–30 years (San José et al. 
 2015a ). In this study,    shoot apex and nodal segments excised from 9-week-old 
in vitro-grown shoots, derived from three clones of adult material, were used as 
explants. Two pre-storage treatments were used: Day 0, when the explants were 
placed in cold cabinets at 2–4 °C, immediately after subculture, and day 10, when 
the explants were placed in cold cabinets 10 days after subculture. After cold  storage 
for 3–24 months, the explants were removed from the cold cabinets and transferred 
to fresh proliferation medium under standard growth conditions. Under these 
conditions, a high percentage (75–87 %) of cultures remained viable after 18 
months, with no signifi cant differences as regards the type of explant or pre-storage 
period. The stored material was successfully recovered and multiplied,  showing 
  good growth and developed into normal shoots that were morphologically similar to 
those of non-stored controls. Cold storage is a safe, inexpensive method for con-
serving  plant   germplasm and considerably reduces the cost of micropropagation, 
which is high for alder, as in vitro cultures must be transferred to fresh medium 
every 3 weeks. 

 The histological study of these shoots, stored in the cold for a total of 24 months, 
showed that the main change was the accumulation of starch granules in cells of the 
shoot apex, as well as in cells located close to the vascular bundles, after 3 months. 
As the duration of cold storage increased, the number and size of the starch granules 
decreased, but cell plasmolysis and  the   content of lipid droplets increased. Cold 
damage to the shoots was widespread after 24 months at 4 °C.   
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20.3.2     Long-Term Storage 

 Advances in biotechnology have generated opportunities for the conservation of 
genetic resources, and the use and maintenance  of   plant materials at cryogenic tem-
peratures ( cryopreservation  )    now represent a suitable option for  long-term storage  . 
Cryopreservation allows the conservation of cells, tissues and organs derived from 
in vitro culture (such as shoot tips, callus cultures and somatic embryos) in liquid 
nitrogen (Reed  2008 ). Cryopreservation in liquid nitrogen (LN; −196 °C) is  currently 
considered the most valuable method for the long-term preservation of biological 
material. The main advantages of  cryopreservation   are its simplicity and applicabil-
ity to a wide range of genotypes (Pence  2014 ). Theoretically, plant material can be 
stored indefi nitely at this low temperature without any changes being observed. In 
alder,  cryopreservation   has been used for the long-term conservation of orthodox 
seeds (Chmielarz  2010 ), shoot tips derived from in vitro culture of adult tree material 
(San José et al.  2014 ) and somatic embryos (San José et al.  2015b ). The vitrifi cation 
method has been used in the past few years. This involves the dehydration of samples 
with highly concentrated vitrifi cation solutions followed by rapid cooling (Sakai 
 2000 ). Vitrifi cation refers to the physical process of transition of an aqueous solu-
tion into an amorphous, glassy state during ultrarapid freezing. This is increasingly 
the method of choice for long-term preservation of plant tissues. 

20.3.2.1     In Vitro-Grown Shoot Tips 
 An effective two-stage  cryopreservation   process has been developed for the long- 
term conservation of apices derived  from   in vitro culture  of   adult tree material (San 
José et al.  2014 ). Shoot tips (0.5–2 mm in length) excised from 3- to 9-week-old 
shoots were precultured in hormone-free WPM supplemented with 0.2–0.3  M 
  sucrose for 2–3 days at 4 °C in the dark and then treated with a mixture of 2 M 
glycerol plus 0.4 M sucrose (loading solution (LS); Matsumoto et al.  1994 ), for 
20 min at 25 °C. Osmoprotected shoot tips were fi rst dehydrated with 50 % plant 
vitrifi cation solution 2 (PVS2; 30 % glycerol, 15 % ethylene glycol, 15 % dimethyl 
sulphoxide and 0.4 M sucrose; Sakai et al.  1990 ), before being placed in 100 % 
PVS2 for 30–90 min at 0°Cor 25 °C. Shoot tips were plunged in liquid nitrogen 
(LN) for at least 2 h. The cryovials were removed from LN, rapidly rewarmed in a 
water bath, at 40 °C for 2 min, and washed twice, for 10 min at 25 °C, with 1.2 M 
sucrose solution, before being transferred to WPM supplemented with 2.22 μM BA, 
2.85 μM IAA, 0.92 μM Z, 111 mM glucose and 6 g/l Difco Bacto agar.    This proto-
col for the  cryopreservation   of in vitro-grown shoot tips was successfully applied to 
three alder genotypes derived from adult trees, with recovery rates higher than 50 % 
(Fig.  20.1h ). The best results were obtained with 0.5–1 mm shoot tips excised from 
6-week-old shoots precultured in hormone-free WPM for 2 days at 4 °C, before 
being treated with the loading solution and dehydrated with 50 % PVS2 solution for 
30 min at 0 °C and 100 % PVS2 solution for another 30 min at 0 °C. This technique 
enables  conservation   of selected alder specimens, and therefore if  trees   disappear as 
a result of disease or natural disasters, identical copies could be used to replace 
sample specimens or for reforestation purposes.  
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20.3.2.2     Somatic Embryos 
 San José et al. ( 2015b ) have developed a reproducible protocol for  cryopreserva-
tion   of black  alder   somatic embryos using a vitrifi cation method.  Somatic embryos   
clumps (1–2 mm) were precultured in hormone-free  MS   medium half-strength 
macronutrients, supplemented with 0.3 M sucrose for 3 days at 4°C or 25 °C and 
then treated with LS for 20 min at 25 °C.  Osmoprotected somatic embryos   were 
dehydrated using  plant vitrifi cation solution 2 (PVS2)  . The effect of incubating 
the cultures for different times with PVS2 (0–90 min) at 0°C or 25 °C was evalu-
ated. The embryos were plunged directly in LN for at least 2 h. Following rapid 
thawing in a water bath at 40 °C for 2 min, the somatic embryos were transferred 
onto MS1/2 supplemented with 0.44 μM BA, 87.5 mM sucrose and 6 g/l vitro 
agar. The best results were obtained when the somatic embryos were precultured 
in medium with 0.3 M sucrose for 3 days at 25 °C before being dehydrated with 
PVS2 solution for 60 min at 0 °C. Recovery of vitrifi ed somatic embryos was 
higher than 90 % in both embryogenic lines tested (Fig.  20.1i ). In order to check 
the maintenance of the germination ability,  somatic   embryos recovered from 
 cryopreservation   were proliferated and matured  before   plantlets were obtained by 
germination. After 2 months on germination medium, plantlets with no morpho-
logical abnormalities were produced. Cryopreservation did not affect the plant 
regeneration potential of  A. glutinosa  through somatic embryogenesis. The ploidy 
stability of the regenerated material was assessed by fl ow cytometry. Analysis of 
DNA ploidy stability showed no signifi cant differences between the control; 
PVS2-treated,    cryopreserved  somatic embryos; and   the plantlets developed from 
cryopreserved somatic embryos. 

 These fi ndings indicate the  potential   usefulness of long-term storage of alder 
embryo cultures, as well as the  valuable   transgenic cell  lines   in liquid nitrogen.    

20.4     Conclusions and Future Prospects 

 Although the ecological value of alders is well known, these trees have not often 
been the focus of forest protection concerns (Cech  1998 ). However, the damage 
caused by  P. alni , especially to  A. glutinosa , has led to the need to develop new 
methods for the rapid multiplication of selected genotypes and for obtaining 
genetically improved material. During recent years, there has been increased 
interest in mass propagation of woody plants and the use of biotechnological 
approaches. Of the biotechnological methods available, micropropagation meth-
ods are becoming increasingly important for use in the genetic transformation 
and  cryopreservation   of desirable selected lines of black alder (Park  2002 ). The 
present chapter illustrates the various approaches used for micropropagation, 
adventitious shoot regeneration, somatic embryogenesis and in vitro conserva-
tion of black alder germplasm. 

 To date, successful axillary shoot proliferation has been developed in black alder, 
for use with juvenile material, and also selected mature trees. Shoot multiplication 
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culture appears to be the most promising method for immediate application, to 
accelerate progress in breeding and massive production of alders, in order to pro-
duce selected specimens that could be used to restore areas affected by disease. 

 Regeneration of plants via the formation of adventitious buds from mature seeds 
and juvenile explants has been successfully developed in black alder. This method 
can still be used to capture somaclonal variation, obtain chimeral modifi cations and 
apply selection and mutagenic pressures due to the adventitious nature of regenera-
tion. Development of this technique with material of adult origin will be particularly 
useful for producing improved trees. 

  Somatic embryogenesis   is an ideal regeneration system for genetic transforma-
tion. Regeneration of plants from genetically transformed cells is a key step in 
developing a protocol for the genetic transformation of black alder. In this context, 
a protocol has been developed for inducing somatic embryogenesis from immature 
zygotic embryos of alder. Somatic embryos of black alder survived and regenerated 
whole plants. However, further research is required to refi ne the process of somatic 
embryogenesis. Establishment of embryogenic cultures from explants derived from 
mature black alder trees is one of the major research goals that should be achieved 
in the near future. Combining genetic studies with somatic embryogenesis and 
genetic transformation is probably the best way of accelerating the improvement 
processes in this species. 

 Reduced growth and  cryopreservation   have been successfully applied to germ-
plasm conservation in  A. glutinosa , thus favouring the secure maintenance of the 
genotypes selected during fi eld trials. In the past few years, considerable progress 
has been made in the area of  cryopreservation   of woody plant germplasm. 
Cryopreservation ensures safe, long-term conservation of genetic resources of plant 
species with recalcitrant seeds, of vegetatively propagated species and of biotechno-
logically produced material such as somatic embryos, cell lines and genetically 
transformed material. In vitro-grown shoot tips and somatic embryos have been 
shown to survive, and plants successfully regenerate after  cryopreservation  , without 
any phenotypic abnormalities. These are positive fi ndings in relation to the conser-
vation of black alder genetic resources. 

 Although  transgenic technology   is of enormous potential application in 
 A. glutinosa , transgenic plants have not yet been developed. The genus  Alnus  is 
geographically, ecologically and taxonomically diverse, and the vast genetic vari-
ability could be taken advantage of in a genetic improvement programme. 
Conventional tree breeding programmes for genetic amelioration of alder involve 
selection of particular traits, hybridisation and propagation of selected genotypes 
(Tremblay et al.  1986 ). Biotechnological methods can facilitate these processes and 
rapidly yield improved plants. Future efforts should aim to transform the material 
by using genetic constructs that would confer resistance to pathogens such as 
 Phytophthora alni .     
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 21      Isolated Microspore Culture and Its 
Applications in Plant Breeding 
and Genetics                     

     Mehran     E.     Shariatpanahi      and     Behzad     Ahmadi   

    Abstract 
   Isolated microspore culture (IMC) represents a unique system of single cell 
reprogramming in plants wherein a haploid male gametophyte, the microspore, 
switches its default gametophytic developmental pathway toward embryogenesis 
by specifi c stress treatment. The application of a stress treatment(s) is necessary 
for effi cient embryogenesis induction. Depending on species, microspores are 
often induced by cold and heat shock, osmotic stress, starvation, anti- microtubular 
agents, stress hormones, antibiotics, or polyamines. This technique (IMC) is 
likely to remain as a well-known method in plant breeding since it allows for the 
rapid production of completely homozygous lines while, in the context of devel-
opmental biology, it allows for in vitro embryogenesis to be explored in greater 
detail. Isolated microspores also represent ideal recipients for several gene trans-
fer techniques including electroporation, microprojectile bombardment, and 
 Agrobacterium -mediated transformation. IMC is also extensively used for 
genetic studies, i.e., studying inheritance of quantitative traits, quantitative trait 
loci (QTL) mapping, and genomics and gene identifi cation, for mutation and 
selection and also used for producing reversible male-sterile lines. Male sterility 
avoids the labor costs of manual emasculation and serves as a molecular strategy 
for transgene containment by preventing pollen release to the environment. 
Combination of this technique with doubled haploid (DH) production leads to an 
innovative environmentally friendly breeding technology. In addition, the useful-
ness of DHs for reverse breeding program, an applied plant breeding technique 
introduced to directly produce parental lines for any hybrid plant, is also gener-
ally discussed.  
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21.1       Introduction 

 Haploid is a general term describing sporophytes with single set of parental chro-
mosomes. Haploid and DH plant production technique offers an excellent system to 
speed up plant breeding programs, genetic analysis, physiological studies, gene 
transformation, QTL mapping, and reverse breeding programs (Liu et al.  2005 ; 
Wijnker et al.  2012 ; Brew-Appiah et al.  2013 ; Ilyas et al.  2014 ). 

 Haploids occur rarely in nature and therefore of limited practical value. To be 
useful, they must be produced in large numbers.    Haploids/DHs are mainly produced 
via: (1) parthenogenesis, (2) wide hybridization followed by chromosome elimina-
tion, and (3) androgenesis/gynogenesis (Asif  2013 ; Mishra and Goswami  2014 ). 
Parthenogenesis is a type of asexual reproduction wherein haploid plants develop 
from unfertilized egg cells (Bohanec  2009 ). Elimination of one parental genome 
after fertilizing the ovule by pollen of another species can occur in intraspecifi c, 
interspecifi c, intergeneric, or more distant hybrids leading to haploid plant forma-
tion of only one parent (Dunwell  2010 ). The DH production method used in  barley   
(  Hordeum vulgare  L.     ) is a typical example  of   selective chromosome elimination in 
the cross between  H. vulgare  and diploid  H. bulbosum , so that the chromosomes of 
 H. bulbosum  will be fi nally eliminated (Jauhar  2003 ). Gynogenesis, haploid regen-
eration from un-pollinated female gametophytes, is another method for haploid pro-
duction that has been used in many agronomically important species such as sugar 
beet and onion (Portemer et al.  2015 ). Nowadays androgenesis, regeneration of hap-
loid or DH plants through the anther or isolated microspore culture, has attracted the 
interests of many researchers and become the method of choice for haploid produc-
tion in a wide variety of species. 

 Microspores, immature pollen grains, are produced within the anthers (micro-
sporangia or pollen sacs) of the fl ower. Microsporogenesis, the process of formation 
of haploid unicellular microspores, commences with dividing microsporocytes 
(pollen mother cells or meiocytes) by meiosis into the four haploid microspores. 
Under normal conditions (in vivo), microspores are programmed to develop into the 
mature pollen grains in a process called “microgametogenesis” (Ma  2005 ). However, 
by manipulating the environment of the gametic cells under specifi c in vitro condi-
tions, it is possible to divert the default developmental pathway toward embryogen-
esis giving rise to haploid plants rather than mature pollen grains (Shariatpanahi 
et al.  2006 ). 

 The fi rst successful regeneration of haploid plants through the in vitro cultured 
anthers was reported by Guha and Maheshwari ( 1964 ) in  Datura innoxia . Soon 
later, androgenic haploid plants were achieved by Bourgin and Nitsch ( 1967 ) from 
cultured anthers of  Nicotiana sylvestris  and  N. tabacum . During the past four 
decades, many improved methods have been developed to increase the effi ciency of 
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haploid production from cultured anthers and isolated microspores in various spe-
cies (Ferrie and Caswell  2011 ). 

 DH  production   through  the   IMC technique drastically reduces the time period 
needed to develop new cultivars (Germana  2006 ). It generally takes 10–15 years to 
release a new cultivar through the conventional breeding programs, i.e., the pedi-
gree or bulk methods in self-pollinating crops, which includes selfi ng and subse-
quent selection. On the other hand, regeneration of haploid plants followed by 
chromosome doubling and selection of superior lines reduces the time frame by 3–4 
years. In cross-pollinating heterozygous crops, which often express a high degree of 
self-incompatibility and inbreeding depression, IMC is a rapid method to produce 
homozygous lines that can further be used in the development of synthetic varieties 
or hybrids (Immonen and Anttila  1996 ). Because microspore-derived DH plants  are 
  genetically fi xed and stable (true breeding lines), they can be replicated in trials 
allowing better estimates of within and between line variation and also improve the 
selection effi ciency (Collard et al.  2005 ). In addition, the phenotype of DH plants is 
not masked by dominance effects, and traits encoded by recessive genes can be eas-
ily identifi ed (Szarejko and Forster  2007 ; Ferrie and Möllers  2010 ). IMC  also   pro-
vides tremendous potential for studying quantitative inheritance. By using 
F2-derived DH population, genetic parameters and number of segregating genes 
can be estimated. Also, a smaller population of DH plants is needed for screening 
desirable recombinants than would be the case for conventional diploid populations 
(Martinez et al.  2005 ; Hussain et al.  2012 ). DH  populations   are available for DNA 
extraction and mapping 1.5 years after the initial crosses, i.e., almost as quick as an 
F2 or BC1 population and defi nitely much faster than a pedigree inbred or single 
seed descent population. DHs can be re-grown and distributed in seed form so that 
it is comfortable to screen with many markers. Map construction from  a   DH popula-
tion derived from the F1 of a cross is relatively simple because the expected segre-
gation is that of a backcross (Forster and Thomas  2003 ). DH populations are of 
favor in the QTL identifi cation as multisite replicated trials can be grown 3 years 
after the fi rst cross (Forster and Thomas  2003 ; Collard et al.  2005 ). 

 In this chapter, common stresses used for microspore embryogenesis induction 
are generally discussed. Then, the latest progresses in the induction and regulation 
of microspore embryogenesis and also its applications in plant breeding programs 
and genetic studies have been argued in a greater detail.  

21.2     Induction of Microspore Embryogenesis 

 Application of a stress(s) is necessary to induce microspore embryogenesis. The 
stresses required to switch the default developmental pathway of microspores 
toward embryogenesis vary with the species and even within a species and among 
its genotypes or varieties also. Nevertheless, several inducing factors have been 
identifi ed that positively infl uence the effi ciency of microspore embryogenesis in 
diverse species (reviewed by Shariatpanahi et al.  2006 ).  Heat shock   is usually con-
ducted at 30–37 °C for a varying duration from few hours up to several days, 
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whereas cold treatment is carried out at 4–10 °C from few days up to several weeks. 
It has been indicated that heat treatment signifi cantly affects the expression of  Rho- 
GTPases (ROP)   in isolated microspores of   B. napus    which is involved in the cyto-
skeletal rearrangement (Chan and Pauls  2007 ). Heat shock infl uences microtubule 
distribution, leading to more symmetrical division in microspores, and blocks fur-
ther gametophytic development (Dubas et al.  2011 ). Heat shock not only induces 
microspore embryogenesis but also accelerates the process of embryo formation 
(Ahmadi et al.  2012b ). Heat/cold treatment also affects auxin distribution and there-
fore the fate of embryogenesis either via or without suspensor formation (Prem 
et al.  2012a ; Dubas et al.  2014 ). Auxin mainly localizes in a polar way already in the 
uninucleate microspores subjected to the mild (1 day at 32 °C) or without (18 °C) 
heat treatment, which is essential for initiation of suspensor-bearing MDEs. While 
microspores are treated to a prolonged heat (32 °C for 5 days), auxin polarization 
arranges at a suspensor-free few-celled embryos (Dubas et al.  2011 ,  2014 ). Culture 
of isolated microspores in the induction medium containing non-metabolizable car-
bon sources, e.g., in mannitol or polyethylene glycol, has also proved to be useful in 
many species (Muñoz-Amatriaín et al.  2006 ), hot pepper (Kim et al.  2008 ), eggplant 
(Bal et al.  2009 ), wheat (Ayed et al.  2010 ), and oil palm (Indrianto et al.  2014 ). 
 Transcriptome analysis   of barley microspores revealed that 4-day mannitol treat-
ment substantially affected the expression of 2673 genes. Upregulation of transcrip-
tion factors related to stress responses and changes in developmental pathway of 
treated microspores toward embryogenesis took place during the pretreatment 
(Muñoz-Amatriaín et al.  2006 ). In addition, colchicine, a microtubule- 
depolymerizing agent, has been used as a stress pretreatment for embryogenesis 
induction in various species (Soriano et al.  2007 ; Klima et al.  2008 ; Dubas et al. 
 2010 ; Islam  2010 ; Li et al.  2012 ). Application of anti-microtubular agents, e.g., 
colchicine, cytochalasin D, trifl uralin, or oryzalin, leads to cytoskeletal rearrange-
ment which plays a key role in determining the developmental fate, since the disrup-
tion of these networks triggers or is suffi cient to induce gametic embryogenesis in 
the absence of a stress treatment (Soriano et al.  2013 ). Recently, several novel 
inducers have been reported to switch gametophytic developmental pathway of 
microspores toward embryogenesis which are discussed below. 

21.2.1     Antibiotics 

    Microbial contamination      is a serious  and   often unavoidable problem in the fi eld of 
microspore culture. Contaminations introduced to in vitro cultures can be exoge-
nous or endogenous originating from explants’ surface, intracellular spaces within 
the plant tissues, or poor aseptic conditions during manipulation in laminar fl ow 
hoods.  Endogenous bacterial contamination   has long been considered as one of the 
major bottlenecks in androgenesis induction in vegetables such as   Capsicum ann-
uum  L  . which drastically losses the number of isolated cultures (Lantos et al.  2012 ; 
Asif et al.  2013b ). Such contaminations may be substantially reduced or eliminated 
during the in vitro stages of plant tissue culture using antimicrobial treatments such 
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as antibiotics. In the  Agrobacterium -mediated gene transformation, it is also essen-
tial to use antibiotic for eliminating the remained  A. tumefaciens  cells after coculti-
vation. Despite their common and successful application to minimize bacterial 
growth in the cell and tissue cultures, antibiotics are shown to retard/inhibit or stim-
ulate explant growth and development. Their role(s) in affecting the developmental 
events is not well understood, but it has been assumed that the antibiotics mimic 
plant hormones since some of them possess an auxin-like activity (Qin et al.  2011 ). 
The number of MDE formation from wheat isolated microspores decreased with 
increasing level of  Timentin   in the induction medium (Brew-Appiah et al.  2013 ). 
100–400 mg l −1  Timentin was recognized as the optimal concentration so that a 
reasonable number of MDEs were produced while their regeneration effi ciency was 
retained. Optimal antibiotic agent, on the one hand, should provide reliable defense 
for bacterial infections and, on the other hand, keep microspores intact and viable. 
Reported by Asif et al. ( 2013b ), 24 bacterial isolates were strongly inhibited using 
 vancomycin   and  cefotaxime   (both 100 mg l −1 ) in microspore culture of triticale and 
wheat. In addition, microspore embryogenesis induction medium fortifi ed with the 
same antibiotic treatments resulted in increased  embryo-like structure (ELS)   forma-
tion, green and albino plant production in triticale. In wheat, signifi cant genotype-
dependant effect of cefotaxime was noticed for ELS, green and albino plant 
regeneration. Vancomycin, on the other hand, was not advantageous to MDE forma-
tion so that it signifi cantly reduced ELS number and green plant regeneration in all 
wheat genotypes tested (Asif et al.  2013b ). Exogenously applied cefotaxime 
(50 mg l −1 ) and  vancomycin   (100 mg l −1 ) for 24 h and 48 h, respectively, profoundly 
enhanced microspore embryogenesis induction in   B. napus   . Higher levels and dura-
tions were detrimental so that normal plant regeneration substantially decreased and 
resulted in callusing   (Ahmadi et al.  2014 ).  

21.2.2     Antioxidants 

   Isolation and  stress    treatment   of microspores cause oxidative damage to the cells in 
the form of lipid peroxidation, protein oxidation, nucleic acid damage, and appear-
ance of apoptotic-like bodies, all eventually lead to cell death and thus decrease in 
viability of cultured microspores (Żur et al.  2009 ; Rodríguez-Serrano et al.  2011 ; 
Sharma et al.  2012 ). Despite having a quick harmful effect on microspore viability, 
the increase in  reactive oxygen species (ROS)   production has been reported to be 
favorable to microspore embryogenesis induction if fi rmly adjusted (Hoseini et al. 
 2014 ; Żur et al.  2014 ) so that treatment of barley ( H. vulgare  L.) microspores with 
 ROS    scavengers resulted in decreased cell death during early stages, but later 
reduced the total number of MDEs produced (Rodríguez-Serrano et al.  2011 ). In 
plant cells, the precise equilibrium between ROS generation and decomposition 
depends on the activity of enzymatic and nonenzymatic components of the antioxi-
dative system. Major ROS-scavenging enzymes include superoxide dismutase 
(SOD), peroxidase (POX), and catalase (CAT), whereas ascorbic acid, glutathione, 
proline, α-tocopherol, carotenoids, and fl avonoids belong to the most important 
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nonenzymatic antioxidants (Gill and Tuteja  2010 ). Reported by Żur et al. ( 2009 ), 
induction medium, as the major inducer of microspore embryogenesis in triticale, 
had a temperature-dependant manner effect on the activity  of   antioxidative enzymes, 
i.e., SOD, POX, and CAT, so that the activity of all enzymes under low-temperature 
(5 °C) regime was similar as in the control subjected only with the stress connected 
with the establishment of in vitro culture. By contrast, the type of induction medium 
exhibited drastic effect on the activity of all abovementioned enzymes when cultures 
were incubated at higher-temperature (32 °C) regime (Żur et al.  2009 ). Low- 
temperature pretreatment (3 weeks at 4 °C) of freshly excised triticale tillers signifi -
cantly increased the activity of enzymatic antioxidants in the anthers of responsive 
 DH   lines when compared with the recalcitrant ones (Żur et al.  2014 ).  Principal com-
ponent analysis (PCA)   revealed that the activity of POX, CAT, and SOD was posi-
tively correlated with the effi ciency of embryogenesis (Żur et al.  2014 ).  Antioxidative 
enzymes   play important roles in microspore embryogenesis induction which cannot 
be replaced even by highly active nonenzymatic antioxidants (Żur et al.  2014 ). The 
ability to sustain antioxidative enzyme activity under inductive stresses is also an 
important factor needed for highly effective microspore embryogenesis induction, 
allowing for the generation of signals initiating microspore reprogramming and 
simultaneously protecting the cells from further toxic effects of ROS accumulation 
(Żur et al.  2014 ). Plastids and mitochondria are the major target/production sites of 
ROS during abiotic stresses. Highly increased levels of ROS in plastids not only 
decrease the viability of microspores but also are correlated with albinism, as albino 
plants are deprived of chlorophyll (Asif et al.  2013a ). Exogenously applied mito-
chondrial or plastid antioxidants, e.g., glutathione in the induction medium, signifi -
cantly increased embryogenesis and green plant regeneration in contrast to the 
untreated cultures in wheat and triticale (Asif et al.  2013a ). Glutathione and ascor-
bate are nonenzymatic antioxidants that detoxify and scavenge free radicals and 
regulate the redox cellular state. Synergistic effect of ascorbate and glutathione has 
been observed in microspore embryogenesis of   B. napus    in a dose-dependent man-
ner. Microspore embryogenesis was enhanced using 10 mg l −1  glutathione in combi-
nation with 5 or 10 mg l −1  ascorbic acid. However, abnormal embryos were observed 
when glutathione level was increased by 100 mg l −1  (Hoseini et al.  2014 ). Ascorbate 
and glutathione are also involved in the plantlet regeneration from MDEs.  Buthionine 
sulfoximine (BSO)   treatment which affects glutathione and ascorbate metabolism 
produced lower ascorbate levels in the regenerated MDEs and activated expression 
of meristem-specifi c genes including  ZWILLE ,  SHOOTMERISTEMLESS , and 
 ARGONAUTE 1  (Stasolla et al.  2008 ). Expression of these genes is required for 
shoot meristem formation and correct embryo patterning via activating phytohor-
mones, e.g., cytokine biosynthesis (Scofi eld et al.  2013 ). The enhancing effect of 
α-tocopherol as intercellular and intracellular physiological antioxidant which main-
tains homeostasis of labile metabolites in the cells was also reported in isolated 
microspore culture of  B. napus  (Hoseini et al.  2014 ). However, the effect of 
α-tocopherol on microspore embryogenesis follows a temperature-dependant 
manner so that it was more effective on microspore embryogenesis at 30 °C in 
comparison with those cultures treated   at 32.5 °C.  
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21.2.3     Phytohormones 

 Phytohormones also known as “plant regulators” including auxins, cytokinins, gib-
berellic acid, brassinosteroids, ethylene, abscisic acid, jasmonic acid, and salicylic 
acid are chemical messengers that coordinate cellular activities, i.e., cell division 
and differentiation. Last decade has witnessed astonishing progresses in the induc-
tion and regulation of MDE formation using these phytohormones. Current achieve-
ments in this area are discussed below. 

21.2.3.1     Auxins 
  Auxins    have   cardinal roles in coordination of many growth and behavioral pro-
cesses and are essential for plant body development.  Auxins   also have an outstand-
ing role(s) during the somatic/gametic and zygotic embryogenesis. HPLC analysis 
of endogenous auxin level revealed that auxin content was increased about 100-fold 
in microspore-derived proembryos when compared with the auxin content detected 
at the single cell level (Dubas et al.  2014 ; Rodríguez-Sanz et al.  2014 ). Such high 
auxin levels could characterize dividing cells being stimulated to grow and divide. 
Differential distribution of the plant hormone auxin is also important and prerequi-
site for normal MDE formation.     Using   the reporter β-glucuronidase ( GUS ) and the 
green fl uorescent protein (GFP) markers under control of synthetic auxin- responsive 
DR5 or DR5rev promoters, Dubas et al. ( 2014 ) observed polar auxin distribution 
after exine rupture, which lasted at the late globular stage under the prolonged  heat 
  stress condition. This polarity is not only the effect of heat stress but also refl ects 
genome-regulated pattern of   B. napus    MDE development. The apical-basal embryo-
genic axe formation can be  probably   marked by such polar pattern of reporter gene 
activity (Dubas et al.  2014 ). Treatments with the inhibitor of the polar  auxin   trans-
port  1-N-naphthylphthalamic acid (NPA)   or high doses of antiauxin  p - 
chlorophenoxyisobutyric acid ( PCIB  ,  chemical   compound that competes with auxin 
for binding sites)  affected   embryogenesis initiation and further MDE development 
in contrast to untreated cultures.    Neither new MDEs nor development of embryo- 
like structures were detected in the treated cultures, whereas in the embryogenic 
cultures without NPA and PCIB, embryogenesis was normally initiated and pro-
gressed (Ahmadi et al.  2012a ; Rodríguez-Sanz et al.  2014 ). 

 MDEs are mainly formed via two major routes: a zygotic-like pathway charac-
terized by initial suspensor formation followed by embryo proper formation and the 
second route characterized by initially unorganized embryos lacking  a   suspensor 
(Dubas et al.  2014 ; Soriano et al.  2013 ). The pattern of embryogenic development 
is highly based on the intensity and distribution of the plant  hormone   auxins during 
the embryogenesis process (Dubas et al.  2014 ).  Polar auxin transport   is needed for 
embryo proper specifi cation from the suspensor in the zygotic-like pathway. 
Tracking this pathway revealed higher auxin concentration in one pole of  initially 
  inducted uninucleate microspores. After asymmetric transverse division, higher 
auxin activity was noted in the basal cell, recognized as the place of auxin biosyn-
thesis from which the hormone is transported to the apical cell. After a series of 
basal cell transverse divisions and suspensor formation, directional auxin fl ow takes 
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place from the suspensor cells to apical cells. As the proembryo progresses, auxin 
 mainly   accumulates at the places where the cotyledon primordium and provascular 
strands began to form. On the contrary, in the suspensor cells except for the region 
of the hypophysis, auxin activity decreases. In the suspensor-lacking pathway, on 
the other hand, no auxin polarity was observed in uninucleate microspores and after 
symmetrical divisions. When a multicellular structure was released from the exine, 
auxin was observed at the only one pole. This polar auxin distribution lasted up to 
the late dermatogen stage. Such polar pattern of auxin  distribution   probably  marks 
  the apical-basal  embryogenic   axe formation (Dubas et al.  2014 ).  

21.2.3.2     Stress Hormones 
 Microspores  under   certain stress conditions in vitro  can   switch their developmental 
programmed pathway toward embryogenesis.  Stress hormones   are produced by 
plants in response to a number of environmental stresses, including some that are 
used to induce androgenesis. Applying low-temperature pretreatment to excised 
infl orescences of triticale  led   to intensive ABA accumulation in comparison with 
untreated tillers (Żur et al.  2012 ). 

 However, there has been  no   correlation between  ABA   concentration and andro-
genesis induction effi ciency, whereas negative correlation was seen between regen-
eration ability and concentration of ABA collected from cold-treated tillers. 
Monitoring changes in plasma membrane fl uidity and ABA content associated with 
embryogenesis induction in   B. napus    microspores revealed that plasma membrane 
remodeling followed by inductive stress (heat shock at 32 °C for 24 h) is coincided 
with changes in  ABA   content in both microspores and induction medium (Dubas 
et al.  2013 ). Heat shock causes microspores’ plasma membrane more rigid and 
increases ABA level in the induced microspores. However, heat treatment also 
increased ABA content in microspores of nonresponsive cultivars which had no 
clear-cut impact on  androgenesis   induction effi ciency, suggesting a more complex 
mechanism of initiation process. On  the   contrary, promotive effects of stress hor-
mones, i.e., ABA, salicylic acid, and jasmonic acid, were observed when exoge-
nously applied to the induction medium (Ahmadi et al.  2014 ). ABA at 0.5 mg l −1  for 
12 h enhanced microspore embryogenesis by about threefold compared with 
untreated cultures. High embryogenesis frequency was also observed when cultures 
were exposed to 1.0 mg l −1  jasmonic acid for 12 h. However, microspore embryo-
genesis and plantlet regeneration signifi cantly decreased as jasmonic acid level was 
increased. SA treatment (0.2 and 0.5 mg l −1 ) during the 6 h exposure also caused a 
profound increase in the number of embryos generated  relative   to untreated cul-
tures, but treatment at  longer   durations decreased MDE formation, so that 2.0 and 
5.0 mg l −1  SA for 12 and 24 h completely inhibited embryogenesis induction. 
Nevertheless, initial sporophytic divisions were observed in the treated microspore 
at those toxic levels, but all failed to  proceed    further   into the  fully   developed MDEs 
(Ahmadi et al.  2014 ).    
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21.3     Applications of Microspore Embryogenesis 

21.3.1     Gene Transformation 

   Microspores   contain gametic number (n) of chromosomes. Both the haploid chro-
mosome number and embryogenic capability exhibit microspores, one of the most 
interesting cells to be stably transformed. Based on the developmental stage of 
microspores, transforming procedures can be classifi ed into two major categories, 
gametophytic and sporophytic (Resch and Touraev  2011 ). The gametophytic route 
includes (i) transforming mature pollen wherein a recombinant DNA is incorpo-
rated into the pollen genome before pollination or introduced to stigma before/after 
pollination and (ii) transformations based on microspore maturation where the for-
eign DNA is delivered into the microspores, cultured and matured under in vitro 
condition, and then used for pollination to achieve transformants (also known as 
male germ line transformation). The sporophytic route is based on transforming 
embryogenic microspores, wherein the default gametophytic fate of isolated micro-
spores is shifted toward sporophytic pathway to produce MDEs instead of mature 
pollen grains (Brew-Appiah et al.  2013 ). Once transgenes are incorporated into the 
haploid genome of targeted cells prior to S phase (DNA synthesis) and genome 
doubling, the DHs may become completely homozygous for the transgenes. Thus,    
IMC not only provides an ideal system for gene transformation but also is amenable 
for transgene to be readily selected under in vitro conditions. Isolated microspores 
also provide an excellent system to avoid hemizygousity. On the contrary, identifi -
cation of homozygous transgene(s) derived from somatic (diploid) targets requires 
the assessment of two additional segregating generations bred from hemizygous 
transformants (Hansel et al.  2012 ). Nowadays, many researchers have recognized 
the great benefi t(s) that a functional microspore transformation system would offer 
and tried to transform microspores in diverse species using eletroporation, micro-
projectile bombardment, and   Agrobacterium tumefaciens   -mediated methods dem-
onstrating stable integration of DNA. 

  Electroporation   has been reported to be an effi cient tool for foreign DNA deliv-
ery into the plant cells. The fi rst report of electroporation-mediated delivery of DNA 
to the microspores arose from detection of   chloramphenicol acetyltransferase    
expression in maize microspores by Fennell and Hauptmann ( 1992 ). Soon after, the 
delivery  of  β - glucuronidase  ( GUS )   to the microspores of   B. napus    (Jardinaut et al. 
 1993 ) and maize (Jardinaut et al.  1995 ) was reported. Obert et al. ( 2004 ) conducted 
an experiment to optimize the  electroporation   medium, concentration of donor 
DNA, voltage, and pulse duration in order to gain a reproducible protocol for maize 
microspores. Taken together, they found that the highest amount of  GUS -expressing 
microspores was achieved when a combination of 200 mg ml −1  DNA, three pulses 
with frequency of 0.1 Hz, and fi eld 400 V/cm during 20 ms was applied (Obert et al. 
 2004 ). 

 Ingram et al. ( 1999 ) transformed MDEs obtained from in vitro cultured anthers 
of wheat using microprojectile bombardment. They found that paper supports dur-
ing the bombardment signifi cantly improve the effi ciency of transformation so that 
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bombardment of MDEs on semiliquid regeneration medium without a fi lter paper 
on the surface of the medium led to a 45 % reduction in the mean number of GUS 
foci/MDE at 1-day post-bombardment. The presence of semiliquid medium over 
the MDEs could act as a protective fi lm, with its surface tension reducing the impact 
of gold particles (Ingram et al.  1999 ). Type and concentration of carbohydrate in the 
culture medium also affect the expression of transgene. Signifi cantly longer  GUS  
expression in the transformed MDEs was noted in the presence of high amounts of 
maltose (0.4 M) in the culture medium. High osmoticum medium is thought to pro-
tect tissues during bombardment by reducing cell turgor, causing plasmolysis. This 
leads to reduced leakage of cell contents following bombardment. High osmoticum 
medium may also induce membrane changes, leading to increased cell tolerance to 
microprojectile impact (Clapham et al.  1995 ; Ingram et al.  1999 ). Transgenic plants 
could be produced by the direct delivery of plasmid DNA into the isolated micro-
spores using high-velocity microprojectiles (Yao et al.  1997 ; Nehlin et al.  2000 ). 
Higher rate of transformation was observed when 48 h incubated microspores were 
used as the targets. Size of gold particles is another determining factor which 
severely affects the effi ciency of transformation. Bombardment of incubated micro-
spores with particle sizes of 1.5–3.0 μm resulted in a four- to sixfold increase in 
 GUS  expression compared with particles of 1.0 μm (Nehlin et al.  2000 ). Drastic 
decline in viability of microspores was observed within the fi rst week of culture 
which could adversely affect the effi ciency of process. Renovation of culture 
medium 24 h, 48 h, or 72 h after initial culture showed benefi cial effects on micro-
spore viability (Nehlin et al.  2000 ). Working on isolated microspores of wheat, 
Mentewab et al. ( 1999 ) and Folling and Olesen ( 2001 ) observed transient expres-
sion of marker genes, but transgenic wheat plants were not obtained, probably due 
to the ineffi cient microspore regeneration protocol in the experiments. Less than 
100 MDEs were produced from isolated microspores of several spikes in the con-
trols. The effi ciency is likely to be further reduced with the introduction of genes by 
microprojectile bombardment since microspores are very sensitive to physical dam-
age. The success in microspore transformation fairly relies on the effectiveness of 
microspore regeneration protocol. Thus, a highly effi cient microspore culture sys-
tem is required as a basis for transformation experiments. 

  Agrobacterium -mediated transformation is in general a much more effi cient way 
of introducing foreign genes into some species, e.g.,  Brassicas , than microprojectile 
bombardment or other techniques (Takahata et al.  2005 ). A comparison between 
 Agrobacterium - and biolistic-based transformation methods in  H. vulgare  high-
lighted some of the advantages of the  Agrobacterium  system such as higher effi -
ciency of transformation, lower copy number of transgene(s), and more stable 
inheritance with fewer rates of the transgene(s) silencing (Travella et al.  2005 ). 
Being potentially useful recipient of foreign genes, Cegielska-Taras et al. ( 2008 ) 
transformed   B. napus    MDEs using  A .   tumefaciens    strains EHA105 and LBA4404, 
both carrying the binary vector pKGIB containing the  uidA  gene and the  bar  gene 
for resistance to phosphinothricin as a selectable marker. Transformed MDEs 
expressed  GUS  and regenerated plants exhibited resistance to herbicide Basta. Since 
the physical barrier imposed by the thick microspore wall constitutes an obstacle for 

M.E. Shariatpanahi and B. Ahmadi



497

effi cient transforming of isolated microspores, Abdollahi et al. ( 2009 ) implemented 
additional methods to overcome this drawback. They obtained the best result 
through the co-transformation by microspore bombardment with DNA-coated 
microprojectile particles, followed by  A. tumefaciens  infection, a process called 
“ agrolistic  .” The “agrolistic” method combines the benefi ts of the  Agrobacterium  
transformation system with that of the biolistic DNA delivery method (Ziemienowicz 
et al.  2012 ). Although profound progresses in gene transformation methods based 
on  IMC   technique have been made in the last decades, there is still demand for fur-
ther investment and improvement in both model and crop plant species. 

 Nevertheless microspore transformation is widely used to avoid hemizygousity; 
surprisingly this system has confronted with the regeneration of hemizygous trans-
genics in some cases (Shim et al.  2009 ; Brew-Appiah et al.  2013 ). This dilemma 
appears when microspores targeted to transformation have progressed into the G2 
stage or going into mitosis becoming binucleate (Shim et al.  2009 ). The type of 
microspore pretreatment has a great infl uence of rate of hemizygous regeneration. 
Mannitol with cold treatment for 4 days and mannitol treatment for 7 days at 28 °C 
followed by biolistic bombardment led to a few hemizygous transgenic plants in 
barley. Conversely, a cold pretreatment for 28 days, which slows but does not arrest 
the cell cycle, led to a few homozygous transgenics using biolistic bombardment. 
Reported by Shim et al. ( 2009 ), microspores in cold plus mannitol pretreatment for 
4 days were held in the G1 and S cell cycle stages during pretreatment, while in the 
cold pretreatment for 28 days, they progressed slowly into the G2 stage or some 
going into the mitosis. It has been hypothesized that inducing a transgene(s) at the 
G1 or early prior to S phase, following pretreatment, should produce homozygous 
transformants, whereas introduction at the G2 phase should lead to regeneration of 
hemizygous transgenic plants  (Shim et al.  2009 ).  

21.3.2     Induced Mutation and Selection 

   Plant   breeding programs are based on creating genetic variation, selection, evalua-
tion, and multiplication of desired genotypes. Microspore culture provides an ideal 
method for creating variation via induced mutation (Seyis et al.  2014 ). Any DNA 
alteration imposed to haploid cells would be homozygous in  the   DH plants facilitat-
ing the identifi cation of recessive mutants. On the other hand, recessive mutations 
with deleterious effects cannot be recovered using this method (Ferrie and Möllers 
 2010 ). The new genetic variability from cultured haploid cells will be increased by 
the application of physical, chemical mutagens, T-DNA insertion mutagenesis 
(Jung and An  2013 ), AC/DS transposon mutagenesis (Wang et al.  2013 ), and site-
directed mutation using transcription activator-like effector nucleases ( TALENs  , 
Gurushidze et al.  2014 ). Induced mutation and selection has been extensively used 
to improve yield, quality, disease, and pest resistance in crops such as  Brassicas , 
wheat, rice, barley, cotton, peanuts, and beans, which are seed propagated (Barro 
et al.  2002 ; Seyis et al.  2014 ). Many selected mutants have been released as cultivars; 
several others have been used as parents in the basic breeding programs, i.e., 
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pedigree of some of the leading cultivars. The release of high-yielding and short-
height barley mutants as varieties “Diamant” and “Golden Promise” have had a 
major impact on  the    brewing industry in Europe. These mutants have been used as 
the parents of many leading barely cultivars released in Europe (reviewed by 
Ahloowalia and Maluszynski  2001 ). 

 Availability of refi ned protocols for MDE production and manipulation of hap-
loid tissues in  Brassicas  has attracted the attention of breeders to induce mutation 
and in vitro selection in this responsive species. Thanks to rapid generation of large 
MDE haploid populations,    IMC has become a useful tool for mutation and selec-
tion. Polsoni et al. ( 1987 ) accomplished a successful rapid isolation of oilseed rape 
(  B. napus    L.) microspores by mechanical homogenization (maceration) of whole 
fl uorescence with fl oral buds no longer than 4.5 mm, also designated as large-scale 
microspore culture. With this method, millions of microspores can be isolated in 
each trial, resulting in a fi nal yield of several hundred MDEs within 1 month, so they 
outlined the effi ciency of this technique for induced mutation and in vitro screening 
(Polsoni et al.  1987 ). Soon later, Swanson et al. ( 1988 ) selected  mutan  t DH lines 
which were tolerant to chlorsulfuron herbicide about 10–1000 times more than the 
corresponding plants. Imidazolinone-tolerant canola DH plants were also obtained 
with fi ve to ten times improved tolerance to the fi eld-recommended rates of Pursuit 
and Scepter (Swanson et al.  1989 ). Ultraviolet (UV) light has been widely used as a 
physical mutagenic agent. DH plants of  B. napus  regenerated from microspores 
exposed to UV irradiation exhibited changes in the level of resistance to herbicides, 
pathogens, abiotic stresses, and saturated fatty acid profi le. Irradiation of  B. napus - 
isolated microspores led to regeneration of DH plants exhibiting increased resis-
tance to the chlorsulfuron and  Alternaria brassicicola , suggesting the generation of 
novel heritable resistance to this herbicide and pathogen (Ahmad et al.  1991 ). Also, 
 B. campestris  DH  plants   resistant to soft rot disease were produced by UV irradia-
tion (Feng-Ian and Takahata  1999 ). EMS, as a chemical mutagen, has also been 
utilized to construct mutant library. From a population of nearly 400 DH plants 
derived following EMS treatment, nine lines were identifi ed that exhibited promis-
ing useful changes in erucic acid content in the seed oil (Barro et al.  2001 ). Isolated 
microspores of  B. napus  were exposed to EMS mutagen and then screened on the 
culture medium supplemented with oxalic acid as a selection agent of   Sclerotinia 
sclerotiorum    (Liu et al.  2005 ). Of the 54 DH lines produced,  two   DH lines of resis-
tant mutants exhibited greater resistance when compared with donor lines and the 
resistant control. In addition, induced mutation followed by in vitro selection in the 
media containing trans-4-hydroxy-l-proline as a selecting agent resulted in high 
cold tolerance in the regenerated DH plants of  B. napus  (McClinchey and Kott 
 2008 ; Janska et al.  2010 ). Furthermore, EMS treatment effi ciently affected the fatty 
acid profi le of regenerated mutant DH plants (Ferrie et al.  2008 ). Fatty acid analysis 
of  B. napus  DH lines indicated a range of 5.0–7.7 % in saturated fatty acid propor-
tions. In  B. juncea , saturate proportions ranged from 5.4 to 9.5 %, and of the 7000 
 B. rapa  lines that were analyzed, 197 lines exhibited raised oleic acid (>55 %), 69 
lines showed reduced linolenic acid content (<8 %), and 157 lines had low saturated 
fatty acid proportions (<5 %), when compared with the parental lines (Ferrie et al. 
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 2008 ). Male- sterile   DH lines with cytoplasmic inheritance or dominant genetic 
male sterility were obtained using  60 Co γ-ray irradiation which provides valuable 
resources for developing male sterility in  Brassicas  (Huang et al.  2014 ). Instead of 
treating isolated microspores, Prem et al. ( 2012b ) subjected germinating seeds to 
EMS and ENU in order to obtain mutant donor plants. Irrespective of genotype, 
isolated microspores cultured from ENU-treated donor plants produced no MDE. In 
addition, the response of mutant plants derived from EMS mutagen was about 100 
times lower than nontreated donor plants. They concluded that instead of having 
detrimental effects on effi ciency of MDE production, valuable mutants can be 
recovered from mutated donor plants (Prem et al.  2012b ). All together, chemical 
mutagens have several advantages over physical ones. For instance, the rate of 
mutagenesis is much higher and the variety of point mutations produced is vast, but 
majority of mutants created by chemical mutagenesis have indicated to exhibit 
adverse agronomic  traits (Han et al.  2007 ; Xu et al.  2010 ).  

21.3.3     Quantitative Trait Loci (QTL) Mapping and 
Marker- Assisted Selection (MAS) 

     DH  populations    suggest   tremendous material for constructing genetic  linkage   maps 
and QTL analyses. The major advantage  of   DHs  over   other commonly used popula-
tions such as F2 and backcross is that they produce completely homozygous lines 
which can be easily multiplied without any genetic alteration occurring and thus 
facilitates conducting replicated trials across different locations and years for vari-
ous agronomic traits (Collard et al.  2005 ). In addition, DH populations allow for 
assignment of components of environmental variation, which can be valuable for 
analysis of physiological effects (Pink et al.  2008 ). To date, the QTLs responsible 
for many important agronomic traits including seed yield and oil content (Lionneton 
et al.  2002 ; Chen et al.  2010 ; Cloutier et al.  2011 ; Yang et al.  2012 ), glucosinolate 
accumulation (Lou et al.  2008 ), chlorophyll content (Ge et al.  2012 ), bolting time 
(Ajisaka et al.  2001 ; Nishioka et al.  2005 ; Yang et al.  2007 ; Chen et al.  2010 ), and 
resistance to clubroot (Suwabe et al.  2003 ), blackleg (Yu et al.  2005 , Yu et al.  2008 ), 
 Verticillium longisporum  (Rygulla et al.  2008 ), downy mildew (Yu et al.  2009 ), 
 Sclerotinia  stem rot (Wu et al.  2013 ), and Turnip mosaic virus (Zhang et al.  2008 ; 
Jin et al.  2014 ) have been surveyed and analyzed with the molecular map con-
structed  from   DH populations resulting from  IMC   technique. 

 The construction of linkage maps and QTL analysis is often costly and time- 
consuming; therefore, any alternative system(s) that can save time and expenses 
would be highly appreciated, especially if resources are limited. One “short-cut” 
method used to identify markers that tag QTLs is bulked segregation analysis (BSA, 
Collard et al.  2005 ). In BSA, a population is screened for a trait, and individuals at 
the two extreme ends of the distribution formed into two contrasting bulks. The 
DNA samples of two pools or “bulks” are then combined. By making DNA bulks, 
all loci are randomized, except for the region containing the gene of interest. 
Polymorphic markers, after screening two bulks, may indicate marker(s) that are 
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linked to a gene or QTL of desired trait (Collard et al.  2005 ). This technique is 
dependent upon accurate phenotyping,  and   DH populations have a particular advan-
tage here in that they can be repeatedly tested. Although DH populations proved to 
be valuable segregant population for QTL analyses, they may not be applicable to 
outbreeding crops where inbreeding depression can cause nonrandom changes in 
gene frequency and loss of vigor of the lines (Collard and Mackill  2008 ). 

 The markers that have preliminary identifi ed genetic mapping studies are also 
quite suitable for MAS. Most characters of economic importance are quantitative 
traits which are affected by environment and numerous loci throughout the genome 
with individually small effects and thus exhibit low heritability. In such situations, 
selection is often postponed until the lines become more homozygous in later gen-
erations (F5 or F6). Visual assessment for agronomic traits is carried out for resis-
tance to stresses, as well as laboratory tests for quality or other traits to select 
superiors. The homozygous breeding lines can be harvested in bulk and assessed in 
replicated trials. The entire process takes considerable amount of time (often 5–10 
years) and cost (Collard and Mackill  2008 ). In order to improve effi ciency of selec-
tion, integrating molecular genetics with artifi cial selection known as MAS has 
been arose (Pink et al.  2008 ). DNA markers used for MAS should be highly reliable 
(reproducible), codominant in inheritance, relatively simple and cheap to be used, 
and generally highly polymorphic. Once tightly linked markers that reliably predict 
a trait phenotype have been identifi ed, they may be used for MAS. For many agro-
nomic traits, homozygous and heterozygous plants cannot be distinguished by con-
ventional phenotypic screening. This technique allows breeders to select individuals 
based on their genotypes and thus accelerate the breeding process     (Collard et al. 
 2005 ; Collard and Mackill  2008 ).  

21.3.4     Reversible Male Sterility 

   F1  hybrid   cultivars  often    represent   high heterosis and therefore of great commercial 
value and the protection of breeder’s rights (Birchler et al.  2003 ; Ribarits et al. 
 2007 ). Commercial production of hybrids is only feasible if a reliable and cost- 
effective pollination control system is available. Various procedures have been 
reported to block self-pollination of the female fl owers such as mechanical removal 
of anthers or male fl owers, application of male-specifi c gametocides, or application 
of male sterility (Parez-Prat and van Lookeren Compagne  2002 ). 

 Male sterility, as an effi cient system for hybrid production, avoids the manual 
emasculation labor and serves as a molecular strategy for transgene containment by 
preventing pollen release to the environment, but most crops lack a naturally occur-
ring system (Parez-Prat and van Lookeren Compagne  2002 ; Ribarits et al.  2007 ; 
Toppino et al.  2011 ). In addition, the achievement of complete male sterility in the 
female parent and the restored fertility in F1 hybrids is the major bottleneck in the 
commercial hybrid seed production. 

 Thanks to recent progresses in the area of metabolic engineering in pathways of 
microgametogenesis, biotechnology has added new possibilities to obtain reversible 
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male-sterile plants (Ribarits et al.  2007 ; Toppino et al.  2011 ). It has been indicated 
that glutamine plays an essential role during pollen development, as isolated and 
in vitro cultured microspores are unable to develop into the functional pollen grains 
in a medium lacking glutamine (Ribarits et al.  2007 ). Transformation of   Nicotiana 
tabacum  L.   with mutated tobacco   glutamine synthetase  genes  , which synthesize 
glutamine from glutamate, fused to the tapetum- and microspore-specifi c promoters 
caused pollen abortion closed to the fi rst pollen mitosis and thus resulted in male 
sterility. Completely homozygous male-sterile lines were rapidly produced by 
microspore embryogenesis technique. Furthermore, foliage sprays with glutamine 
and in vitro maturation restored the fertility of male-sterile lines (Ribarits et al. 
 2007 ). Using this technique,  F1 hybrid   seed production technology can be applied 
in many commercially important crops  .  

21.3.5     Reverse Breeding 

    Reverse breeding   is  a   novel breeding technique which allows for production of new 
hybrid plant varieties in a much shorter time frame and ambient numbers compared 
to conventional plant breeding techniques (forward breeding). The term “reverse 
breeding” was originally introduced to describe a technique in plant cell cultures, 
where homozygous lines are produced from heterozygous parent lines (Dirks et al. 
 2009 ; Wijnker et al.  2012 ). Here, the term “reverse breeding” includes the earlier 
proposed usage but goes beyond the original defi nition by widening the methods 
used to produce homozygous lines (Palmgren et al.  2014 ). 

 Generally, reverse breeding comprises two essential steps: (i) the suppression of 
crossover based in a selected hybrid plant (chosen for its elite quality) and (ii) 
regeneration of DHs from microspores containing nonrecombinant chromosomes. 
The knockdown of gene expression involved in homologous recombination, essen-
tial for reverse breeding, can be achieved by targeting genes using RNA interference 
(RNAi) or siRNAs, resulting in predominantly posttranscriptional gene silencing. 
Alternatively, dominant-negative mutations of the target gene can be used (Dirks 
et al.  2009 ). Silencing  DISRUPTED MEIOTIC cDNA1  ( DMC1 ) gene resulted in 
nonrecombined parental chromosome segregation during meiosis in   A. thaliana    
gametes (Wijnker et al.  2012 ). The protein encoded by  DMC1  is essential for mei-
otic homologous recombination which plays a central role in generating diversity of 
genetic information and also is essential for the reductional segregation of chromo-
somes that must occur in order to produce gametes during the sexual reproduction 
(Cloud et al.  2012 ). The second step in reverse breeding is to convert microspores, 
carrying nonrecombined chromosomes, into  the   DH plants through  the   IMC tech-
nique, as an effi cient method, or other techniques depending on the plant species 
(Forster et al.  2007 ). From the regenerated DHs, complementary parents can be 
screened for reconstituting the initial heterozygote (Dirks et al.  2009 ). It seems that 
many plant breeding enterprises would benefi t from this novel technique to deal 
with market demands and develop new varieties that are more sustainable or pro-
ductive in a wide range of crops, including fruits and vegetables in the near future  .      
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  22      Indirect Somatic Embryogenesis 
and Plantlet Development from Mature 
Seed Embryo Explants of  Bambusa 
arundinacea  (Retz.) Wild                     

     P.     Venkatachalam      and     K.     Kalaiarasi   

    Abstract 

   Effi cient plant production via indirect somatic embryogenesis was established by 
using mature seed-derived embryo explants of  Bambusa arundinacea . The pres-
ent investigation demonstrates an optimized method for somatic embryogenesis 
using various auxins and cytokinins. The seed-derived embryos as explants were 
cultured on MS medium containing 1.0 mg/L each of 2,4-dichlorophenoxyacetic 
acid (2,4-D) and 6-benzyl amino purine (BAP) to induce embryogenic callus, 
and the maximum percent of embryogenic callus induction obtained was (85 %) 
with compact and nodular structure. Proliferated embryogenic callus was trans-
ferred onto MS medium fortifi ed with 2,4-D (1.0 mg/L) and α- naphthalene ace-
tic acid (NAA) (1.0 mg/L) in combination with different doses of BAP and/or 
kinetin (KIN) (0.5–4.0 mg/L) for somatic embryo formation and maturation. 
Somatic embryos developed were rapidly multiplied upon frequent subculture 
onto fresh medium to attain maturation. The highest percent of embryo matura-
tion (94 %) as well as germination of somatic embryos (25.1 %) was noticed on 
MS medium containing the combination of 2,4-D+NAA+BAP (1.0 mg/L each). 
The matured embryos were germinated into full plantlets which were transferred 
into paper cups initially. The acclimatized plantlets were hardened successfully 
in the pots containing soil under greenhouse conditions where about 90 % of the 
plants were survived. Histological investigations confi rmed the initiation of 
embryos during the somatic embryogenesis process. Therefore, indirect somatic 
embryogenesis is an alternate promising tool for high-frequency plant regenera-
tion. In this investigation, a reliable plant regeneration protocol via somatic 
embryogenesis has been developed, and it could be more suitable for commercial 
scale micropropagation of  Bambusa arundinacea  plants in the near future.  
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  Abbreviations 

   2,4,D    2,4-Dichlorophenoxyacetic acid   
  BAP    6-Benzyl amino purine   
  FAA    Formalin acetic acid   
  KIN    Kinetin/6-furfurylaminopurine   
  MS    Murashige and skoog   
  NAA    α-Naphthalene acetic acid   
  SE    Somatic embryogenesis   
  SEM    Scanning electron microscope   

22.1         Introduction 

 Bamboos are hollow and woody plants and monocotyledonous perennial grass 
belonging to the family Poaceae and grow in tropical and subtropical regions, with 
prominent knots and having rapid growth, which can reach up to 40 m in height. 
They cover about 14 million hectares in the world containing about 1200 species 
belonging to 70 genera (CBTC  2008 ). For various uses, the  requirement of   bamboo 
is estimated at 26.69 million tonnes, but the supply of bamboo is 13.47 million 
tonnes only against the current demand (Haque  2009 ). This has prompted to adopt 
biotechnological tools such as in vitro propagation  for   large-scale uniform seedling 
production. Due to the long and erratic fl owering cycle (30–45 years) in  Bambusa 
arundinacea , plant propagation via seeds has hindered the commercial cultivation 
of this important species. Furthermore, other factors were also greatly restricting the 
large-scale plant production of this species via conventional methods (Saxena and 
Bhojwani  1993 ). Therefore, plant tissue culture is one of the fast and reliable plant 
propagation techniques for large-scale multiplication of bamboo plants in short 
duration. Bamboo shoots are being used as an important vegetable due to the pres-
ence of low in fat, high fi ber content and various nutrients such as amino acids, 
vitamins, fl avonoids, phenolic compounds, trace elements, and steroids (Nirmala 
et al.  2011 ). Muniappan and Sundararaj ( 2003 ) demonstrated the presence of fl avo-
noids and glycosides and traces of alkaloids and phytosterols in the methanolic 
extracts of bamboo, and these compounds are being currently used for various 
applications such as antiulcer and anti-infl ammatory activity. It has been reported 
that various parts of   Bambusa arundinacea    plants contain high  medicinal properties   
for several applications including antidiabetic potential (Macharla  2011 ), 
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antibacterial activity (Zhang et al.  2010a ), anti-infl ammatory and protective effects 
(Hong et al.  2010 ). The ethanolic extracts of the root part of  Bambusa arundinacea  
were endowed with potential antihyperglycemic activity (Jaimik et al.  2011 ; 
Sundeep Kumar et al.  2012 ). Most recently, Kalaiarasi et al. ( 2015 ) demonstrated 
the anticancer activity of bamboo leaf extract-derived biomolecules-coated silver 
nanoparticles against human prostate cancer (PC3) cell lines. 

 Somatic embryogenesis is a simple process in which somatic cells can differenti-
ate into individual embryos capable of producing whole plantlet  for   large-scale 
identical plant production (Mudoi et al.  2013 ). In somatic embryogenesis, a single 
cell can produce the whole plantlet identical to mother plant which is the great 
advance of this propagation method compare to the organogenesis process (Vasil 
 1987 ). For the fi rst time, Mehta et al. ( 1982 ) reported the regeneration of plantlets 
from mature embryos of  Bambusa arundinacea  via somatic embryogenesis. Later, 
plant regeneration via somatic embryogenesis was established by using zygotic 
embryo explants from  D. strictus  (Saxena and Dhawan  1999 ),  Otatea acuminate 
aztecorum  (Woods et al.  1991 ), and  D. hamiltonii  (Zhang et al.  2010b ). Most of the 
micropropagation studies in bamboo using seedling explants were used for plant 
regeneration either through axillary shoot proliferation or somatic embryogenesis 
(Beena et al.  2012 ). However, further refi nement is required to develop an effi cient 
micropropagation protocol with maximum plant regeneration frequency, to lead a 
path for successful development of valuable bamboo cultivars. Plant regeneration 
via somatic embryogenesis could be highly benefi cial  for   large-scale production of 
bamboo seedlings with commercial quality. Therefore, the present study is mainly 
focused on establishing a rapid and reproducible method for high-frequency plant 
production via indirect somatic embryogenesis in  Bambusa arundinacea  using 
mature seed embryo as initial explants.  

22.2     Materials and Methods 

22.2.1     Initiation of Bamboo Cultures 

 Seeds of  Bambusa arundinacea  were purchased from Forestry Network market, 
Bangalore, and were authentically confi rmed as  B. arundinacea  by The  Forest 
College and Research Institute   and  Tamil Nadu Agricultural University (TNAU)  , 
Coimbatore, Tamil Nadu, India. Seeds were dehusked by removing the seed coat 
and were soaked overnight with  Bavistin (carbendazim fungicide)   to prevent fungal 
contamination. After soaking, seeds were treated with 10 % (v/v) Tween-20 for 
15 min and washed with sterile distilled water for three times. Subsequently, the 
seeds were disinfected with 0.1 % (w/v) aqueous mercuric chloride solution for 
15 min and then thoroughly washed with sterile distilled water for several times. All 
 the   operations were performed under sterile conditions in the laminar air fl ow hood. 
Then the sterilized seeds were transferred onto Murashige and Skoog’s ( 1962 ) 
medium containing various growth regulators  for   initiation of embryogenic callus.  
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22.2.2     Culture Media and Conditions 

 In the present study, the medium used was based on MS basal salts and used sucrose 
as a carbon source. For somatic embryo induction,    maturation, and  plantlet   produc-
tion, different growth hormonal combinations were added into the medium, and the 
pH of the media was adjusted to 5.8 with 0.1 N NaOH or HCl prior to adding 
7.0 g/L agar and autoclaved at 121 °C with 1.05 kg/cm 2  pressure for 20 min. For 
embryogenic callus induction, cultures were maintained in the dark condition. 
Further, in vitro cultures for plantlet production were kept at 25 ± 2 °C under a 
16/8 h light/dark cycle, and light was provided by using cool white fl uorescent tubes 
with 60 μE m −2 s −1  intensity.  

22.2.3     Initiation of Somatic Embryos 

 Seed-derived embryos of  Bambusa arundinacea  were used as an initial explant 
material for embryo induction. Embryogenic callus initiation was observed after 
28 days of culture, and it was further transferred onto MS medium containing dif-
ferent concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D) (0.5–4.0 mg/L) in 
combination with 1.0 mg/L 6-benzyl amino purine (BAP) for somatic embryo for-
mation. Initiated embryos were dissected out from  the   embryonic clusters  and   sub-
cultured onto fresh embryo multiplication medium. The development of embryogenic 
callus nature was further confi rmed by anatomical studies.  

22.2.4     Embryo Maturation and Germination into Plantlets 

 For embryo maturation, MS medium was fortifi ed with different doses of BAP and/
or kinetin (KIN) (0.5–4.0 mg/L)  in   combination with 1.0 mg/ L each of 2,4-D and 
NAA. The medium was supplemented with 3 % (w/v) sucrose  as   carbon source. 
While doing subculture, non-embryogenic callus and brown color tissues were care-
fully taken out, and only greenish embryogenic callus was transferred into fresh 
media for further growth and development. Fully developed and matured embryos 
were identifi ed visually and subcultured onto fresh germination medium for devel-
opment of full plantlets.  

22.2.5     Acclimatization of Plantlets into Soil 

 Germinated embryos with root and shoot systems were subcultured into half- 
strength MS medium without any growth regulators for further growth and full 
plantlet development. Well-developed plantlets were initially placed in plastic cups 
(95 × 60 mm) containing a mixture of sand/soil in 2:1 ratio, and they were covered 
with polyethylene bags to ensure high humidity and maintained in the controlled 
environment for 15 days. Subsequently, polyethylene bags were removed and 
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maintained for additional week under controlled environment  for   acclimatization. 
Later, plantlets were transplanted into pots containing soil with manure and kept 
under greenhouse condition.    Acclimatized plantlets were fi nally established in the 
fi eld condition.  

22.2.6     Histological and SEM Analysis 

  Histology was   performed by fi xing the samples overnight  in   FAA. Somatic embryos 
at different stages (globular and cotyledonary) were fi xed in FAA (formalin: acetic 
acid) for 24 h. The fi xed tissues were dehydrated with 70 % (v/v) ethanol and then 
dried at room temperature until critical point. The tissues were stained  with   safranin 
and viewed under a light microscope (Magnus XLD). For scanning electron micro-
scopic  analysis  ,  somatic   embryos were used for coating with gold–palladium on a 
Quick Cool Coater (Sanyu-Denshi, Japan) and examined under scanning electron 
microscope (JOEL, Japan) and captured images.  

22.2.7     Experimental Design and Data Analysis 

 Experiments were  designed   using a  completely randomized block design (CRBD)   
and data were collected from  three   independent experiments with 20 replicates. 
Data on various parameters such as the frequency of somatic embryo formation, 
   total no of embryos per explant, and embryo germination  percentage   were recorded 
and evaluated by  analysis of variance (ANOVA)   using SAS program. The differ-
ences in mean values were compared by Student-Newman-Keuls test at the  P  ≤ 0.05 
level.   

22.3     Results and Discussion 

22.3.1     Embryogenic Callus Initiation and Development 
of Somatic Embryos 

 The seed-derived embryo explants failed to produce embryogenic callus which cul-
tured on hormone-free medium. They became brownish in color initially and later 
dried. However, initiation of embryogenic calli from the embryonic scutella of  B. 
arundinacea  was noticed on MS medium supplemented with different doses of 
2,4-D (0.5–4.0 mg/L)  along   with 1.0 mg/L BAP. As shown in Fig.  22.1a , embryo-
genic callus formation was recorded on MS medium augmented with 2,4-D, and the 
 percent   of embryogenic callus development was increased, increasing the concen-
trations of 2,4-D up to 2.0 mg/L. Among the combinations tried, 2.0 mg/L 2,4-D and 
1.0 mg/L BAP was found to be the best combination for initiation of maximum 
percent of embryogenic calli with compact and nodular structure with regeneration 
potential (Tables  22.1  and  22.2 ). The highest frequency of embryogenic callus 

22 Indirect Somatic Embryogenesis and Plantlet Development from Mature…



514

  Fig. 22.1    ( a – h ) Plant regeneration via somatic embryogenesis in  Bambusa arundinacea . ( a ) 
 Yellowish , granular, and compact callus, ( b ) nodular embryogenic callus obtained during multipli-
cation with buds protruding from callus in cluster, ( c ) maturation of somatic embryos with shoot 
and root primordia development, ( d ) germination of somatic embryos, ( e ) plantlet development 
from somatic embryo with shoot and root, ( f ) a plantlet produced via somatic embryogenesis with 
well-developed shoot and roots, ( g ) acclimatized plants growing in pots under greenhouse condi-
tion, and ( h )  scanning   electron microscopy image of embryogenic callus ( Bar line  = 1 cm)       
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obtained was 85 % (Fig.  22.1b ), and the 2,4-D and BAP combination was not only 
best  for   embryogenic callus development but also exhibited regeneration potential 
when compared with 2,4-D alone. It is noteworthy to mention that 2,4-D at higher 
concentrations produced non-embryogenic calli with compact in nature. When 
other auxins tried for somatic embryogenic callus induction, they failed to produce 
embryogenic callus (data not shown). Results indicated that the embryogenic callus 
rate was declined at higher concentrations of 2,4-D and became necrotic at later 
stage. Similar results were also reported earlier by Yeh and Chang ( 1987 ). It has 
been reported that 2,4-D was considered as essential auxin for embryogenic callus 

   Table 22.1    Effect of various concentrations of 2,4-D in combination with 1.0 mg/L BAP on 
embryogenic callus induction from mature seed-derived embryo explants of  Bambusa 
arundinacea    

 Hormone 
concentration (mg/L)  Callus induction frequency 

(%) (Mean±S.E)*  Callus morphology 
 Rate of callus 
induction a   2,4-D  BAP 

 0.5  1.0  69.5 ± 0.56 c   White, compact, 
nodular callus 

 +++ 

 1.0  1.0  85.0 ± 0.24 a   Creamy yellow, 
compact, nodular 

 ++++ 

 2.0  1.0  71.4 ± 0.08 b   Creamy yellow, 
compact, nodular 

 ++++ 

 3.0  1.0  62.6 ± 0.43 c   Yellow – brown callus  ++ 

 4.0  1.0  57.1 ± 0.67 d   Yellow – brown callus  ++ 

  *Values represent means±standard error. Means followed by same letter within a column are not 
signifi cantly different at 5 % level 
  a + indicates that 20 % of callus proliferated vigorously  

   Table 22.2    Effect of different concentration of two cytokinins (BAP and KIN) along with 2,4-D 
(1.0 mg/L) and NAA (1.0 mg/L) on maturation of somatic embryos and germination into 
plantlets   

 Hormone concentration 
(mg/L)  Percent of somatic embryo 

maturation (Mean±S.E)* 
 Percent of embryo 
germination (Mean±S.E) *   BAP  KIN  2,4-D  NAA 

 0.5  –  1.0  1.0  87.5 ± 0.34 b   18.2 ± 0.70 c  

 1.0  –  1.0  1.0  94.0 ± 0.67 a   25.1 ± 1.41 a  

 2.0  –  1.0  1.0  79.4 ± 0.2 c   14.4 ± 0.58 c  

 3.0  –  1.0  1.0  65.3 ± 0.15 d   11.8 ± 0.32 d  

 4.0  –  1.0  1.0  43.6 ± 0.86 f   9.1 ± 0.57 d  

 –  0.5  1.0  1.0  48.3 ± 0.59 f   8.06 ± 0.60 e  

 –  1.0  1.0  1.0  66.0 ± 1.04 d   12.17 ± 1.01 d  

 –  2.0  1.0  1.0  59.6 ± 1.2 e   10.8 ± 1.18 d  

 –  3.0  1.0  1.0  42.5 ± 0.33 f   9.5 ± 1.16 d  

 –  4.0  1.0  1.0  29.7 ± 0.45 g   5.0 ± 0.3 e  

  *Values represent means±standard error. Means followed by same letter within a column are not 
signifi cantly different at 5 % level  
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formation in bamboo species (Woods et al.  1991 ). According to Hu et al. ( 2011 ), 
seed-derived embryo explants had greater potential  for   embryogenic callus devel-
opment than young shoot explants in  D. farinosus .    The present results are in agree-
ment with earlier reports. Somatic  embryos   were obtained when seeds cultured on 
B5 medium containing 2,4-D (0.5–1.5 mg/L) in  D. strictus  (Rao et al.  1985 ).  High 
  frequency of plant regeneration via somatic embryogenesis was reported using dif-
ferent explants (Sood et al.  2002 ). Ramanayake and Wanniarachchi ( 2003 ) demon-
strated that high concentrations of 2,4-D (7.5 mg/L) and NAA (3.0 mg/L) were 
found to be essential for embryogenic callus formation in  D. giganteus . Godbole 
et al. ( 2002 ) suggested that development of bamboo plants via somatic embryogen-
esis is considered as best propagation method  for   large-scale commercial produc-
tion of uniform seedlings.

22.4           Embryo Maturation and Germination into Plantlets 

 In order to produce complete plantlets, it is essential to culture the somatic embryos 
onto embryo maturation medium for development of root and shoot primordia. To 
achieve embryo maturation, embryogenic callus was transferred onto a medium 
containing different levels of BAP and/or KIN (0.5–4.0 mg/L) in combination with 
auxins (2,4-D and NAA 1.0 mg/L each) for 3 weeks. Among the combinations 
tested, maximum percent of somatic embryo maturation (94 %) was recorded on a 
medium containing 1.0 mg/L each of BAP + NAA+ 2,4-D combination 
(Fig.  22.1c, d ), while KIN+NAA+2,4-D (1.0 mg/L each) combination showed 66 % 
 embryo   maturation response. Interestingly, BAP was  found   to be the best cytokinin 
for highest rate of embryo maturation when compared to the KIN. Upon transfer of 
greenish coleoptillar stage, somatic embryos onto germination medium produced 
well- developed shoot axis as well as roots after 28 days of culture (Fig.  22.1e ). 
Isolation of germinated somatic embryos from clumps after development of shoot 
and root tissue was highly essential because it allowed continuous proliferation and 
germination of plants from somatic embryos, which could be applied  for   large-scale 
propagation (Konan et al.  2007 ). Well-developed bipolar embryos were transferred 
onto fresh germination medium containing same growth regulator combinations for 
embryo germination. Results showed that the BAP+NAA+2,4-D combination was 
found to be best for maximum percent of embryo germination with well-established 
root system (25.1 %) followed by KIN+NAA+2,4-D combination (Fig.  22.1f ). Of 
the two cytokinin combinations examined, BAP was found to be best for enhanced 
rate of somatic  embryo   germination in  B. arundinacea . On the other hand, the matu-
ration and germination rate of embryos was slightly decreased at higher doses of 
cytokinins. It has been reported that BAP  showed   highest rate of somatic embryo 
maturation in  B. nutans  by Mehta et al. ( 2010 ). According to Saxena and Dhawan 
( 1999 ), the possible reason for decreased rate of embryo germination is due to phys-
iological immaturity of somatic embryos. However, it is highly essential to refi ne 
the embryo germination protocol which is one of the prerequisites for large produc-
tion of uniform plants via somatic embryogenesis (Venkatachalam et al.  1999 ). 
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22.4.1     Acclimatization and Filed Establishment 

 After germination, plantlets with well-developed root and shoots were gently trans-
ferred into fresh half-strength MS medium  for   further growth (Fig.  22.1f ). Healthy 
plantlets were carefully removed from the culture tubes without damaging root sys-
tem and washed with sterile water  to   remove adhered agar traces and transplanted 
into paper cups containing soil and sand mixture in the ratio of 2:1 and covered with 
polythene bags. Initially, the plantlets were maintained under controlled environ-
ment for acclimatization. After removal of polythene bags, plantlets were estab-
lished into pots fi lled with soil and maintained under greenhouse condition 
(Fig.  22.1g ). The survival rate observed was 90 %, and the well-rooted plantlets 
were successfully established in the fi eld condition.  

22.4.2     Histological Studies 

 In order to confi rm the embryogenic nature of the callus, histological analysis was 
carried out by SEM. As expected, the embryogenic cell was differentiated from 
periphery layer of the callus from parenchyma cells.  Histological analysis   suggested 
that somatic embryos had shoot and root meristems as individual structures. Based 
on histological studies, nodular type of callus  was   considered as embryogenic 
nature.    Scanning electron microscopy analysis was also carried out to identify the 
appearance somatic embryo structures. Results indicated that the observed embryos 
like structures were found to be typical globular stage and bipolar cotyledonary 
embryos (Fig.  22.1h ). The present result is in agreement with earlier report in 
  Curcuma amada  Roxb  . by Soundar Raju et al. ( 2013 ). The present plant regenera-
tion protocol might be highly useful for commercial scale propagation of this eco-
nomically important bamboo species for expansion of its cultivation.   

22.5     Conclusions 

 In summary, this study reports a rapid protocol for plant regeneration via indirect 
somatic embryogenesis using mature seed-derived embryo explants of  B. arundina-
cea . Currently, a simple, rapid, and reproducible plant regeneration system for bam-
boo was established. Although plant regeneration via somatic embryogenesis in 
bamboo was reported earlier, the present regeneration method could produce more 
number of somatic embryos with high plant regeneration rate. Of the two cytokinin 
combinations used, BAP was identifi ed as best cytokinin for embryo maturation as 
well as germination into whole plantlets in bamboo. The present regeneration pro-
tocol may open up new avenue to  produce   large-scale bamboo seedlings with uni-
form nature for commercial cultivation in the near future.     
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    Abstract 
   Micropropagation is one of the current commercial applications of plant tissue 
culture technologies. It refers to the in vitro clonal propagation of plants from 
small plant tissues. Micropropagation technology is preferred over the traditional 
asexual propagation methods. Micropropagation ensures rapid and mass multi-
plication of genetically identical copies of individual plants, resulting in rejuve-
nation of old cultivars and quick regeneration of new cultivars resistant to biotic 
and abiotic stresses. This technology proved to be particularly effi cient for 
orchids and recalcitrant plants. Micropropagation of recalcitrant plants and 
orchids, such as  Paphiopedilum delenatii , has been achieved using novel practi-
cal methods including wounding technique in combination with liquid culture 
and stem node culture. Crop improvement using somaclonal variation found in 
the in vitro cultured cells has also been accomplished, and many somaclonal 
variants have been released. The focus of this chapter is to discuss and highlight 
those advances in micropropagation technology as well as somaclonal variants 
for crop improvement achieved over the recent past years.  

23.1       Introduction 

 Micropropagation is one of the best in vitro commercial applications of plant tissue 
culture that has become an industrial technology used for in vitro clonal propaga-
tion of important horticultural, silvicultural, and medicinal plants from small plant 
parts. The micropropagation technique is preferred over the traditional clonal 
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propagation methods. Micropropagation ensures true-to-type, rapid, and mass mul-
tiplication of genetically identical copies of individual plants in a relatively short 
time and limited space, resulting in rejuvenation of old varieties and quick regenera-
tion of new varieties resistant to biotic and abiotic stresses. Furthermore, in micro-
propagation, the rate of multiplication is often much higher, and the micropropagated 
plants could acquire more new desirable traits, such as increased number of runners 
in strawberry and bushy habit of ornamental plants (Kane  2011 ; Bhojwani and 
Dantu  2013a ). Micropropagation is especially useful for orchids and plant species 
that are diffi cult to be propagated by the traditional methods (Pierik  1991 ; Nhut 
et al.  2006 ; George et al.  2008 ; Yam and Arditti  2009 ; Bhojwani and Dantu  2013a ). 
The history of micropropagation is closely related to the development of techniques 
for in vitro propagation of orchids (Yam and Arditti  2009 ; Bhojwani and Dantu 
 2013a ). In the past few years, a signifi cant progress has been achieved in the cellular 
and molecular biology of plants (El-Esawi et al.  2012 ,  2015 ,  2016a ,  b ; Sammour 
et al.  2013 ; El-Esawi and Sammour  2014 ; El-Esawi  2015a ,  b ,  2016 ; Jourdan et al. 
 2015 ; Consentino et al.  2015 ), especially in the in vitro growth and micropropaga-
tion of orchids and recalcitrant plants which are very distinct from other plants 
(Nhut et al.  2005 ,  2006 ). Micropropagation technology of orchids, such  as 
 Paphiopedilum delenatii   , has been increasingly optimized using novel practical 
methods including wounding technique in combination with liquid culture and stem 
node culture (Nhut et al.  2006 ). Such novel methods proved to be effi cient for the 
commercial production and conservation of  P. delenatii . Crop improvement using 
somaclonal variation found in the in vitro cultured cells has also been accomplished, 
and many somaclonal variants have been released as commercial varieties world-
wide (Gosal and Kang  2012 ).  

23.2     Micropropagation Stages 

 Successful micropropagation includes fi ve main stages (Bhojwani and Razdan 
 1996 ; Bhojwani and Dantu  2013a ):

    Stage 0 : Donor plant selection and preparation  
   Stage 1 : Establishment of aseptic cultures  
   Stage 2 : Multiplication  
   Stage 3 : Rooting of in vitro formed shoots  
   Stage 4 : Transplantation and acclimatization    

23.2.1     Stage 0: Donor Plant Selection and Preparation 

 Quality  and   responsiveness of explants in vitro are affected by the physiological 
status, phytosanitary, and genotype of the donor plant (Read  1988 ; Valero-Aracama 
et al.  2008 ; Kane  2011 ; Bhojwani and Dantu  2013a ). Prior to culture establishment, 
stock plants used as the source of explants should be maintained in clean controlled 
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conditions that enhance active growth but decrease the possibility of disease infec-
tion and contamination (Kane  2011 ). Maintaining pathogen-tested stock plants 
under the conditions of the use of basal irrigation, lower humidity, and antibiotic 
sprays would effectively minimize the  contamination   problem of candidate explants, 
which would in turn allow excision of larger and more responsive explants (Kane 
 2011 ; Bhojwani and Dantu  2013a ). 

 Several practices can also be  used   to enhance explant responsiveness by modify-
ing the physiological status of the stock plant (Kane  2011 ; Bhojwani and Dantu 
 2013a ). Such practices include the following: (1) trimming to induce lateral shoot 
growth, (2) pretreatment sprays containing gibberellic acid or cytokinins, and (3) 
use of forcing solutions containing 200 mg/L 8-hydroxyquinoline citrate and 2 % 
sucrose to stimulate bud break and deliver growth regulators to target explant tissues 
(Read  1988 ; Kane  2011 ). 

 Stage 0 may also include manipulation of other factors such as temperature and 
light treatments, under which the mother plants are maintained and  the   growth regu-
lators are applied, which could affect the explants’ responsiveness at the later stages 
(Kane  2011 ; Bhojwani and Dantu  2013a ).  

23.2.2     Stage 1: Establishment of Aseptic Cultures 

 The goal of this stage is to initiate and establish  aseptic cultures   of the plant to be 
propagated using suitable explants. The success  at   this stage depends on the selec-
tion of the best explant, proper sterilization procedure, and prohibition of any hyper-
sensitivity reactions of the explants (Kane  2011 ; Bhojwani and Dantu  2013a ). The 
selection of the suitable explant depends on the objective of the study as well as the 
mode of regeneration and multiplication required (Kane  2011 ). Either apical bud or 
nodal segments with at least one axillary bud are commonly used explants  for 
  micropropagation (Bhojwani and Dantu  2013a ).  Meristem-tip culture   could be used 
in order to eliminate viruses. Otherwise, meristem-tip culture should be avoided due 
to its poor survival and complex culture requirements. Propagation from apical and 
axillary buds has the advantage of true-to-type progeny (Kane  2011 ; Bhojwani and 
Dantu  2013a ). Direct or indirect adventitious bud formation can be produced from 
leaf, stem, root, or nucellus explants. Nucellus explants are used for obtaining 
somatic embryos in  Citrus  and mango. The nucellus is the only tissue from the adult 
cashew plants that would be used for micropropagation (Cardoza and D’Souza 
 2000 ; Kane  2011 ; Bhojwani and Dantu  2013a ).  In   monocots, the intercalary meri-
stem at the base of bulb scales  or   young leaves has been used for regenerating 
adventitious buds (Kane  2011 ; Bhojwani and Dantu  2013a ). 

 The donor plants in the greenhouse should  be   established from cuttings to avoid 
wind-borne contaminants (Kane  2011 ; Bhojwani and Dantu  2013a ). Aseptic shoot 
tips should be dissected out, inside a sterile hood, by removing the outer leaves or 
scales from the buds and bulbs, respectively, and the surface should be sterilized by 
wiping with 70 % ethanol (Bhojwani and Dantu  2013a ). The explants from many 
plants (i.e., tree species and some horticultural crops) release phenols,    forming 
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quinones upon oxidation, and turn the medium black that might be toxic to  the 
  tissue (Bhojwani and Dantu  2013a ).  

23.2.3     Stage 2: Multiplication 

  The success of  micropropagation   depends mainly on the effi ciency of this stage 
(Bhojwani and Dantu  2013a ). Shoot multiplication can be carried out through (1) 
regeneration from callus, (2) direct adventitious bud formation from the explant, 
and (3) forced axillary branching. Each of these methods has its own merits and 
drawbacks:

    1.     Regeneration from callus : Under suitable culture conditions,    cells from almost 
all plant parts could form callus that could be induced to regenerate plants via 
organogenesis or somatic embryogenesis (Bhojwani and Dantu  2013a ). Both of 
these methods could produce a large number of plants, but the latter is much 
more effi cient. Somatic embryogenesis is a highly effi cient process by which 
somatic cells can develop into differentiated plants through potential embryo-
logical stages without gamete fusion (Bhojwani and Dantu  2013a ). This is in 
contrast to a separate rooting step required for the de novo formed shoots. 
Furthermore, upon standardization of somatic embryogenesis protocol, the pro-
cess could be highly controlled and scaled up for mass production in bioreactors 
(Etienne et al.  2006 ; Bhojwani and Dantu  2013a ). The embryos could be con-
verted into synthetic seeds for possible transplantation on a large scale. However, 
a reproducible protocol for somatic embryogenesis is not available for many 
plant species (Bhojwani and Dantu  2013a ). Synchronization of embryogenic 
cultures could not be achieved easily, and the conversion of embryos into plants 
has been poor due to physiological and morphological abnormalities (Bhojwani 
and Dantu  2013a ). The  major   drawback of somatic embryogenesis is an inter-
vening callus phase, inducing variability. Therefore, regeneration from callus is 
not the best mean for mass clonal multiplication (Bhojwani and Dantu  2013a ).   

   2.     Adventitious bud formation : The adventitious buds are formed directly from any 
part of  the   plant other than axillary (apical) bud. Many horticultural plants form 
adventitious shoots from leaf pieces ( Saintpaulia ,  Begonia ) and root cuttings 
(raspberry, blackberry) that have been used for clonal propagation of these plants 
(Bhojwani and Dantu  2013a ). The advantages of in vitro propagation by adventi-
tious shoot formation are: (1) enhancing the number of shoots per propagule, (2) 
small pieces of tissues that do not survive in vivo can form shoot buds in cul-
tures, and (3) many plants that do not form adventitious shoots in nature can do 
so in vitro. Adventitious bud formation from leaf scales has been used in the 
Liliaceae and Iridaceae members (Ascough et al.  2009 ; Bhojwani and Dantu 
 2013a ). Almost 100 bulblets could be regenerated from a single scale of lily 
(Gupta et al.  1978 ). This massive regeneration potentiality in lily has raised the 
technique to mass production on a commercial scale in bioreactors (Takahashi 
et al.  1992 ; Bhojwani and Dantu  2013a ).   
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   3.     Forced axillary branching : It is the most widely used method for commercial 
micropropagation of the desired plants.    Removal of the apical meristems stimu-
lates the axillary buds to grow out into shoots (Bhojwani and Dantu  2013a ). In 
the well-established horticultural practice of clonal propagation by stem cut-
tings, the new plant can be developed from the axillary bud at the node. However, 
this process of clonal multiplication is slow and limited by the number of cut-
tings produced from the mother plant. Exogenous application of growth regula-
tors, especially cytokinins, could stimulate the axillary buds to grow even in the 
presence of terminal bud and increase the number of usable fl ushes (Bhojwani 
and Dantu  2013a ). However, the effect of exogenous growth regulators does not 
last long. Excess cytokinins may cause epigenetic changes in the plants regener-
ated through forced axillary branching (Bhojwani and Dantu  2013a ). Bushiness 
in the micropropagated  Gerbera  plants, accompanied by excessive leaves and 
short peduncle, could be attributed to the use of excess 6-benzylaminopurine 
(BAP). Moreover, long exposure to culture conditions affects the size and shape 
of fruits in strawberry (Bhojwani and Dantu  2013a ) .    

23.2.4       Stage 3: Rooting of In Vitro Formed Shoots 

 Shoots  formed   through regeneration from callus, forced axillary branching, or direct 
adventitious bud formation need an additional step of rooting for a complete plant 
formation (Bhojwani and Dantu  2013a ). In some cases, the shoots formed in vitro 
by any of the three  methods   mentioned above, being continually exposed to cytoki-
nins, may remain short and need an elongation step before transfer to rooting 
medium. The elongation medium may be liquid having the same composition as for 
shoot multiplication or with a reduced level of cytokinin (Bhojwani and Dantu 
 2013a ). 

 Cytokinins present in the  medium   may prohibit the formation of roots and are 
essential to transfer the shoots to a suitable medium for rooting (Bhojwani and 
Dantu  2013a ). Rooting is generally carried out by transferring individual shoots to 
a medium provided with a suitable auxin. The rooting stage is labor intensive, 
accounting for about 70 % of the cost of micropropagated plants. So, the rooting 
percentage should be high. To cut down the rooting cost of micropropagated shoots, 
many commercial companies head for in vivo rooting. Therefore, the micropropa-
gated shoots may be treated as microcuttings and planted directly after treating the 
cut basal end with auxins or a commercial rooting mixture. In vivo rooting  not   only 
cuts down the cost but also gets rid of the problems associated with in vitro rooting 
(Bhojwani and Dantu  2013a ).  

23.2.5     Stage 4: Transplantation and Acclimatization 

 The success of micropropagation relies on the establishment of the plants in soil 
mixture. The plants grown in vitro are exposed to the artifi cial environment of the 
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culture vial, characterized by the culture medium rich in organic and inorganic 
nutrients, growth regulators, sucrose, high humidity, poor gaseous exchange, and 
low light (Bhojwani and Dantu  2013a ). Under these unnatural conditions, plants can 
grow well but may suffer from many anatomical, morphological, cytological, and 
physiological abnormalities that necessitate their careful acclimatization to the 
in vivo conditions (Bhojwani and Dantu  2013a ). The two main abnormalities of 
these plants include poor control of water loss and heterotrophic mode of nutrition. 
Under high humidity of the culture vials, the leaves exhibit scanty deposition of 
wax, poor development of cuticle, and abnormally large stomata (Bhojwani and 
Dantu  2013a ). The lack of cuticle and movement of stomata may cause increased 
water loss on transplantation, resulting in decreasing their survival chances. Hence, 
in vitro plants should be hardened before transfer to fi eld conditions. 

23.2.5.1     Acclimatization 
 The main aim  of   acclimatization of the in vitro plants, growing under low light het-
erotrophic conditions and high humidity, is to help them grow under high light 
autotrophic conditions and low humidity (Bhojwani and Dantu  2013a ). Hardening 
the in vitro plants may take 4–6 weeks, so that they could survive under normal 
conditions. The individual micropropagated plants should be taken out of the agar 
medium; the roots are then washed to remove the agar and individually planted in 
pots containing a suitable potting mixture. The plants are irrigated with a mild nutri-
tive solution such as Knop’s solution (Bhojwani and Dantu  2013a ). 

 To maintain high humidity around the transplanted in vitro plants, they should be 
covered with plastic bags having small holes for air circulation. The plants are 
maintained in low light or shade for about 15–20 days and slowly acclimatized to 
low humidity conditions by removing the polybags for few hours every day in the 
beginning and slowly increasing the time of exposure till the plants could withstand 
complete removal of the cover (Bhojwani and Dantu  2013a ). During this phase, 
plants are hardened to survive on inorganic nutrition, and their photosynthetic 
machinery is reactivated to become autotrophic. The plants can survive under fi eld 
conditions  only   when new roots and leaves are formed.  

23.2.5.2     In Vitro Formation of Storage Organs 
 Plant species,    producing storage organs (corm, tuber, rhizome, bulb) in nature, can 
be enhanced to do so in cultures in order  to   facilitate transplantation with high sur-
vival rates (Bhojwani and Dantu  2013a ). Moreover, this may remove the rooting 
step altogether. The storage organs could be easily stored and planted manually or 
by machines. In vitro formation of storage organs has been carried out in  Crocus  
(Plessner et al.  1990 ),   Gladiolus    (Dantu and Bhojwani  1995 ),  Dioscorea  spp. 
(Forsyth and Van Staden  1984 ), and potato (Donnelly et al.  2003 ) by increasing 
sucrose concentration and changing the growth regulator and temperature and light 
treatments (Bhojwani and Dantu  2013a ). 

 In vitro formation of tubers has  been   extensively studied in potato. The  precise 
  conditions, enhancing in vitro tuberization for various potato cultivars, have been 
established, and the whole process has been raised to the level of commercial 
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production (Bhojwani and Dantu  2013a ). Shoot multiplication could happen under 
long-day conditions on a medium supplemented with sucrose (2–3 %), and in vitro 
microtuberization is enhanced by complete darkness or short-day conditions and 
increased sucrose level (8–9 %) in the culture medium (Bhojwani and Dantu  2013a ). 
Microtubers are harvested and sown in plastic trays to regenerate minitubers, used 
as seed tubers for crop production. 

 The requirement of growth  regulators   and growth retardants for microtuber for-
mation depends on the propagator (Donnelly et al.  2003 ). Some varieties could 
produce better microtubers in the absence of any retardant or growth regulator, 
while a number of varieties need the presence  of   either or both (Bhojwani and Dantu 
 2013a ). Dantu and Bhojwani ( 1987 ) regenerated corms using micropropagated 
shoots of  Gladiolus  in liquid cultures with elevated concentration of sucrose 
(6–10 %). Corm formation could also be achieved in liquid shake cultures treated 
with biosynthesis inhibitors, such as paclobutrazol (Steinitz et al.  1991 ). Temperature 
requirement for corm formation differs for summer- and winter-fl owering  Gladiolus  
species (De Bruyn and Ferreira  1992 ). The winter-fl owering  G. tristis  formed corms 
at 15 °C, while the summer-fl owering  G. dalenii  formed corms at 24 °C. Light 
intensity also affects corm formation  in   some  Gladiolus  varieties (Thun et al.  2008 ). 
In  Dierama luteoalbidum , belonging to the family Iridaceae,  corm   formation with 
6–8 % sucrose has been achieved in 6 months that could be decreased to 3  months 
  by adding aclobutrazol to the culture medium (Madubanya et al.  2006 ).    

23.3     Factors Affecting Micropropagation 

23.3.1     Culture Initiation and Shoot Multiplication 

 MS (Murashige and Skoog  1962 ) is the most widely used medium for both culture 
initiation and shoot multiplication. It has  been   modifi ed for various systems. For a 
number of plants, the full strength of MS is very toxic and should be decreased to 
half strength or less (Bhojwani and Dantu  2013a ). Bamboos, such as   Dendrocalamus   , 
revealed a better shoot proliferation on a MS basal medium of one-half strength 
(Bhojwani and Dantu  2013a ). The promoting effect of the reduced salt concentra-
tion of MS could be attributed to the reduced strength of nitrogen, particularly the 
ammonium salt. In   Gladiolus   , decreasing ammonium nitrate to half strength and 
providing the MS medium with NaH 2 PO 4  enhanced the multiplication rate (Dantu 
and Bhojwani  1992 ; Bhojwani and Dantu  2013a ). 

 The medium should be provided with suitable growth regulators  for   culture ini-
tiation and later shoot multiplication (Bhojwani and Dantu  2013a ). Among various 
 cytokinins   available commercially, BAP has been widely used. However, other 
cytokinins have proved to be more useful for other plants (Bhojwani and Dantu 
 2013a ). For example,  2-isopentenyladenine (2iP)   proved to be better than BAP in 
 Rhododendron  (Anderson  1975 ), blueberry (Cohen  1980 ), and garlic (Bhojwani 
 1980 ). The expensive cytokinin,  zeatin  , is not recommended for commercial 
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micropropagation (Bhojwani and Dantu  2013a ). The urea-derived cytokinin, thidi-
azuron (TDZ), has also proved useful to regenerate species. 

  Topolins  , the latest group  of   aromatic cytokinins used in tissue culture studies, 
revealed promising results in different plant species (Bhojwani and Dantu  2013a ). 
mT (meta-topolin) promoted acclimatization and ex vitro survival rate in 
 Spathiphyllum  species, as well as the multiplication of plantains (Escalona et al. 
 2003 ). mTR (meta-topolin riboside) increased the survival rate of potato cultures 
(Baroja-Fernández et al.  2002 ), and mT derivatives enhanced anti-senescence 
effects and histogenic stability in rose and  Petunia  varieties, respectively (Bogaert 
et al.  2006 ). mTR proved to be better than BAP in  terms   of shoot quality and multi-
plication rate in  Barleria greenii , an endangered ornamental shrub (Amoo et al. 
 2011 ). The most effective concentration of cytokinins varied between 1 and 2 mg 
L −1 . TDZ is effective at concentrations varied between 0.002 and 0.10 mg L −1 . 
Higher concentrations of this cytokinin could stimulate callusing and may cause 
morphological abnormalities including hyperhydration. To maximize regeneration 
in plants, the cytokinin should be combined with a suitable auxin (Bhojwani and 
Dantu  2013a ). The most popular used auxins include indole-3-butyric acid (IBA) 
and 1-naphthaleneacetic acid (NAA) in a range of 0.1–1 mg L −1 .  Gibberellic acid 
(GA3)   enhanced the multiplication rate and the shoot quality formed in  Gardenia . 

 Media  supplemented   with agar are used for culture initiation and shoot multipli-
cation (Bhojwani and Dantu  2013a ). However, multiplication and survival rate of a 
large number of plant systems proved to be better in liquid cultures. Cultures could 
be established only in a liquid medium of a pH of 5.7–5.8 in some orchids, such as 
 Cattleya  (Bhojwani and Dantu  2013a ). However, other plants including  Magnolia  
and  Dianthus  prefer a highly acidic medium for enhanced rates of shoot multiplica-
tion maintained in light (Bhojwani and Dantu  2013a ).  

23.3.2     Rooting 

 Many  micropropagated   plants could root in vitro on a MS medium of a full strength, 
provided with a suitable auxin (Bhojwani and Dantu  2013a ). However, some plants 
could not root on a MS medium of a full strength.  Narcissus  and  Rhododendron  
enhanced in vitro rooting percentage on a MS medium of a half strength (Bhojwani 
and Dantu  2013a ). Shoots of some apple varieties rooted only when ammonium 
nitrate was decreased to a half strength or completely removed from the medium 
(Hyndman et al.  1982 ; Sriskandarajah et al.  1990 ; Bhojwani and Dantu  2013a ). The 
period of exposure to auxins differs in plant species. Herbaceous plants require a 
short exposure, while woody species need a long or continuous exposure to auxins. 
Long exposure to auxins could also  stimulate   callusing at the base or cause chloro-
sis of leaves. Auxins have been used at a concentration of 0.1–1.0 mg L −1  for rooting 
(Bhojwani and Dantu  2013a ).   
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23.4     Micropropagation Systems 

  Micropropagation   systems could be divided into (1) photomixotrophic systems, in 
which the plant growth depends on photosynthesis and the medium sugar (green 
shoot cultures), and (2) heterotrophic system, in which the plant growth depends 
entirely on the culture medium sugar (nonchlorophyllous cell and embryogenic cul-
tures). Furthermore, current efforts are being made to  develop   photoautotrophic 
micropropagation systems, in which the plants can grow in sugar-free medium 
(Bhojwani and Dantu  2013a ). 

 The major drawbacks of the fi rst two systems, in which the plants grow on sugar- 
containing medium, are that the plants could not perform photosynthesis under low 
light intensity and low CO 2  concentration in the vessel, resulting in different mor-
phological, phenotypical, and physiological abnormalities in plants (Bhojwani and 
Dantu  2013a ). However, under photoautotrophic conditions, growth and quality of 
the plants could be improved, and the  plant   acclimatization ex vitro could also  be 
  enhanced (Bhojwani and Dantu  2013a ).  Photoautotrophic in vitro multiplication   
has been successfully achieved in many plant species such as  Brassica oleracea , 
 Citrus macrophylla ,  Eucalyptus camaldulensis ,  Solanum tuberosum ,  Rubus idaeus , 
 Ipomoea batatas ,  Nicotiana tabacum , and  Lycopersicon esculentum  (Bhojwani and 
Dantu  2013a ). 

 A comparative study of micropropagation of  Zantedeschia elliottiana  and 
 Cunninghamia lanceolata  under  photomixotrophic micropropagation (PMM)   and 
 photoautotrophic micropropagation (PAM)   conditions showed that PAM reduced 
the period of in vitro multiplication and rooting to half, enhanced the shoot quality, 
improved the rooting quality in  the   absence of an auxin, lowered the losses due to 
infection, lowered the production cost, and enhanced higher survival ex vitro (Kozai 
and Xiao  2006 ; Bhojwani and Dantu  2013a ).  

23.5     Advances in Recalcitrant Plant Micropropagation 

  Paphiopedilum  is a terrestrial orchid genus that grows from the Himalayas, Southeast 
Asia, to Papua New Guinea (Teoh  2005 ; Nhut et al.  2006 ).   Paphiopedilum    could be 
traditionally propagated by seeds or “ keikis  ” (Bahasa Indonesian, referred to plant-
lets derived from mature orchid plants) (Nhut et al.  2006 ).  Paphiopedilum  propaga-
tion using seeds reveals a low survival rate. In contrast,  Paphiopedilum  propagation 
using keikis shows a high survival rate, but the mature slipper orchid plant should 
take 2–3 years to form keikis (Nhut et al.  2006 ). Therefore, plant cell tissue culture 
has become an ideal technique for preserving this genus from extinction. Bubeck 
( 1973 ) was the fi rst to  micropropagate    Paphiopedilum . Many scientists have 
attempted to micropropagate this unique type of orchids from various plant parts 
and using different methods (Nhut et al.  2006 ). Those attempts included plantlet 
regeneration from meristem culture (Bubeck  1973 ), lateral bud induction (Stewart 
and Button  1975 ), shoot multiplication from seedlings (Huang et al.  2001 ), and axil-
lary shoot induction and plantlet regeneration from shoot tips (Huang  1988 ). 
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Recently, plantlets have been successfully regenerated through protocorm-like bod-
ies (PLBs) from totipotent calli (Lin et al.  2000 ), and direct shoot bud formation was 
produced from in vitro leaf explants (Chen et al.  2004 ). 

 The endangered species,   Paphiopedilum delenatii   , has been a promising potted 
plant for centuries due to its distinctive shapes and attractive color. However, the 
increasing market demand and the low multiplication rate using traditional propaga-
tion methods have endangered the survival of this orchid (Nhut et al.  2006 ). 
Therefore, two practical methods including wounding technique in combination 
with liquid culture and stem node culture were established and  applied   for  P. dele-
natii  propagation (Nhut et al.  2006 ). 

23.5.1     Wounding Technique and Liquid Culture 

        Wounding technique   included  easy   propagation procedures for  P. delenatii , ensures 
better shoot survival rate,  and   enhances multiplication rates (Nhut et al.  2005 ,  2006 ). 
Additionally, this technique helps in  propagation   and preservation of  endemic   and 
endangered species, reducing  the   plantlet cost, and production of a large number of 
plantlets in a short period (Nhut et al.  2005 ). In vitro 6-month-old seedlings were 
exploited as explants for shoot induction using wounding technique (Nhut et al. 
 2005 ,  2006 ). Their roots were carefully removed and the seedling bases were 
pierced. These wounded seedlings were then placed onto media- containing fl ask 
that contains basal MS medium provided with different concentrations of TDZ for 
investigating the shoot regeneration. A piece of fi lter paper was also added in the 
liquid-containing culture vessels. Shoot survival rate and number of shoots per 
explant have been recorded after 12 weeks of culture at 25 ± 2 °C, 70−80 % relative 
humidity, and a 12-h photoperiod of 45 μmol m −2  s −1  photosynthetic photon density 
fl ux (Nhut et al.  2005 ,  2006 ). 

 The highest survival rate was measured from wounded seedlings cultured on MS 
solid medium provided with 0.5 mg L −1  TDZ, while no shoot formation was pro-
duced in control treatments with non-wounded shoots in all media types (Nhut et al. 
 2005 ,  2006 ). An average of 2.3 green and vigorous shoots were produced on a 
medium containing 0.25 mg L −1  TDZ and 0.5 mg L −1  NAA, indicating that the 
wounding step is a prerequisite for shoot formation in seedlings (Nhut et al.  2005 , 
 2006 ). Wounded cells at the damaged sites may be responding to stimulating agents 
such as plant growth regulators present in nutrient media. No shoot formation was 
produced on non-wounded seedlings in control treatments, indicating that intact 
cells of these seedlings were not affected by the stimulators (Nhut et al.  2005 ,  2006 ). 
In semisolid auxin-containing media, the number of newly formed shoots decreased 
due to the elevated TDZ concentration. In contrast, the number of shoots formed in 
liquid medium was increased by increasing TDZ levels (Nhut et al.  2005 ,  2006 ). 
These results show that TDZ effect on explants depends signifi cantly on the physi-
cal properties of the medium and that the medium physical state mainly affected 
shoot formation in wounded seedlings. Wounded seedlings could easily uptake 
plant growth regulators and nutrient components due to not being completely 
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submerged in the culture medium (Nhut et al.  2005 ,  2006 ). This induces the differ-
entiation of the affected tissue and results in the formation of a higher number of 
shoots per explant. Moreover, a signifi cantly lower adverse effect of TDZ on plant 
tissue was detected in liquid media (Nhut et al.  2005 ,  2006 ). The survival rate was 
relatively high and did not vary considerably among treatments. The survival rate on 
TDZ-containing medium was lower than that on a medium containing TDZ com-
bined with auxin, indicating that the presence of auxins in liquid media could 
increase the survival rate (Nhut et al.  2005 ,  2006 ). However, auxins of high concen-
tration may play an inhibitory role in liquid media since the shoot number per 
explant, formed in liquid media without auxin, was two times greater than that in 
auxin-containing media. 

 Wounding technique proved to be effi cient for inducing shoot regeneration, and 
highest numbers of shoot were produced in a liquid medium that contained 1.0 mg 
L −1  TDZ (Nhut et al.  2005 ,  2006 ). Moreover, rooting plantlets could be produced 
after 3 months on rooting medium. Because of their effi ciency, the wounding 
method and liquid culture could be used for large-scale micropropagation of this 
orchid and other endangered species      .  

23.5.2     Stem Elongation and Stem Node Culture 

 An innovative protocol for  micropropagating       P. delenatii  through shoots from elon-
gated plantlet-derived nodal segments was reported (Nhut et al.  2005 ,  2006 ). In 
vitro plantlets of 1.5 cm in height were placed excessively  onto   MS medium con-
taining 2.0 mg L −1  BA, 1 g L −1  AC, 0.5 mg L −1  NAA, coconut water (20 %, v/v), 
30 g l −1  sucrose, and 9 g l −1  agar and then incubated in darkness or under different 
light intensities of fl uorescent (FL) tube and red LEDs (Nhut et al.  2005 ,  2006 ). The 
greatest plant height was observed  in   plantlets incubated in darkness after 4 weeks 
of culture, followed by the plant height of those exposed to 30 μmol m −2 .s −1  of red 
LEDs and 30, 45, and 60 μmol m −2  s −1  of FL (Nhut et al.  2005 ,  2006 ). The plant 
height of  P. delenatii  shoots was the highest in the dark, but plantlets were yellow 
and not very vigorous. When  P. delenatii  shoots were incubated under low light 
intensity of 30 μmol m −2  s −1  of FL and red LEDs, their shoots elongated, and dis-
tances among leaves were widened along the stem. Moreover, it had been reported 
that red LEDs affect chlorophyll synthesis (Tripathy and Brown  1995 ; Nhut et al. 
 2005 ,  2006 ), leaf expansion, and stem elongation (Hoenecke et al.  1992 ). Nhut 
( 2002 ) also revealed that plantlets of  Eucalyptus ,  Cymbidium , and  Phalaenopsis  
elongated under red LEDs. The elongated plantlets of  P. delenatii  also had a normal 
growth  and   thin stems. In this case, 30 μmol m −2  s −1 of FL and red LEDs seemed to 
be optimal for stem growth and photosynthetic activity of  P. delenatii . These light 
intensities together with excessive crowding in culture induced internode elongation 
of shoots, resulting in their development into rhizome-like structure (Nhut et al. 
 2005 ,  2006 ). 

 The elongated  plantlets   developed from this experiment were utilized as explants 
for the following step in which they were collected; roots and leaves were carefully 
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removed for exposing nodes (Nhut et al.  2006 ). These stems were then segmented 
into nodal segments. The isolated nodal segments were cultured on a nutrient 
medium containing plant growth regulators including TDZ and zeatin for studying 
their effects on shoot formation (Nhut et al.  2006 ). Of the cytokinins (TDZ and 
zeatin) used for inducing the shoot formation on elongated stem-derived nodal seg-
ments, TDZ is the most effective cytokinin for shoot proliferation of this recalcitrant 
species. The highest shoot formation rate (75 %) was recorded on media provided 
with 2.0 mg L −1  TDZ. However, bigger and more greenish shoots were detected on 
a modifi ed MS medium containing 1.5 mg L −1  TDZ. The shoot size varied among 
treatments: the biggest on medium comprising 2.0 mg L −1  TDZ, whereas the small-
est on medium provided with 0.5 mg L −1  TDZ. TDZ proved to be more effective for 
morphogenesis induction such as proliferation and shoot  regeneration   of several 
orchids (Chen and Piluek  1995 ; Nayak et al.  1997 ; Nhut et al.  2006 ). However, 
Huang et al. ( 2001 ) stated that TDZ inhibits shoot proliferation of  Paphiopedilum . 
Nhut et al. ( 2005 ) reported that the combination of TDZ with NAA proved to be 
effi cient for adventitious shoot induction at  high   concentration. Low concentration 
of TDZ was not suitable for the shoot formation of  P. delenatii . Further studies on 
rooting ability of shoot derived from nodal segment have been carried out. Three- 
month shoots were subcultured on a rooting media to stimulate root formation. Root 
primordia were fi rstly detected after 2 weeks of culture, and rooting plantlets were 
ready to be transferred to greenhouse after 3 months. Furthermore, it was also 
revealed that regenerated plantlets derived from stem node were uniform and vigor-
ous (Nhut et al.  2006 ). 

 Although this method has been  s  uccessfully used for micropropagation of many 
orchids such as  Dendrobium  and  Phalaenopsis , no reports have been recorded yet 
on the intensity effect of fl uorescent tubes and LEDs  on    P. delenatii  elongation and 
 micropropagation   using stem node culture (Nhut et al.  2006 ). Nhut et al. ( 2005 ) 
proved the effectiveness of this method, producing a large number of plantlets with 
lower cost in a shorter period.     Stem node culture      proved to be effi cient for the com-
mercial production and conservation of  P. delenatii .   

23.6     Somaclonal Variation 

 Variation among tissues or plants derived from the in vitro somatic cell cultures is 
known as somaclonal variation (Gosal and Kang  2012 ). It characterizes genetic 
mutations that happen during the tissue culture process. It may be genetic or may 
result from culture-induced epigenetic changes (Larkin and Scowcroft  1981 ). The 
epigenetic changes are expressed at cell culture stage, but these changes usually 
disappear when plants are regenerated or reproduced sexually. Variation derived 
from anther and pollen culture is known as gametoclonal variation, whereas that 
occurs through protoplast culture is termed as protoclonal variation (Gosal and 
Kang  2012 ). Therefore, it provides a novel way to create a new genetic variation for 
crop improvement. 
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23.6.1     Somaclonal Variation Induction 

 Callus cultures can be established from suitable explants and multiplied through 
periodic subculturing (Gosal and Kang  2012 ). Cell suspension cultures could be 
established by transferring actively growing callus to  agitated   liquid medium and 
can be maintained and multiplied through periodic subculturing (Gosal and Kang 
 2012 ). Plants are regenerated usually from long-term maintained callus or cell sus-
pension cultures and transferred to soil for screening the variation. In vitro selection 
at cellular level can be achieved for some traits by growing cells from cell suspen-
sions and calli on a medium provided with elevated levels of various biotic and 
abiotic stress factors (only the variant cells survive). In vitro selection also decreases 
the chances of diplontic selection, but needs a high level of correspondence between 
the traits selected in vitro and expressed in vivo (Gosal and Kang  2012 ). Somaclonal 
variants can be determined through screening that involves evaluation of regener-
ated plant traits such as yield that cannot be assessed  at   single-cell level or through 
cell selection.  

23.6.2     Somaclonal Variation Causes 

 Somaclonal variation may be genetic or epigenetic; the genetic variation is herita-
ble, whereas the epigenetic variation is not heritable and has no signifi cance in sexu-
ally propagated plants (Gosal and Kang  2012 ). Genetic variation may result from 
the following causes:

    1.     Chromosomal changes  
  Chromosomal changes      in tissue culture-derived plants have been detected with 
respect to both chromosome number and structure (Gosal and Kang  2012 ). 
Besides polyploidy, aneuploidy (monosomics and trisomics) has been detected 
in ryegrass, oats, wheat, and potato. A number of studies of modifi ed chromo-
some structure in cultured plant cells have been recorded (Lee and Phillips 
 1988 ). Deletions, translocations, inversions, and duplications have been detected 
in barley, wheat, maize, and potato. Small changes in chromosome structure 
could change genetic transmission and expression of specifi c genes. Moreover, 
recombination or chromosome breakage may occur in preferential regions of 
particular chromosomes, thereby infl uencing some regions of the genome (Evans 
et al.  1984 ; Gosal and Kang  2012 ).   

   2.     Point mutations  
  Genetic   changes looking like  single-gene mutations   have now been observed in 
numerous crops (Gosal and Kang  2012 ).  The   recessive single-gene mutations are 
doubtful if variant does not express itself in the regenerant (R 0 ) plant, but the 
self-fertilized R 1  progeny segregates in an expected 3:1 Mendelian ratio for a 
morphological trait (Gosal and Kang  2012 ). This type of analysis has been 
achieved for several tomato somaclones and used to map somaclones to specifi c 
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loci (Evans and Sharp  1986 ). This process has also been recorded in maize, rice, 
tobacco, and wheat (Gosal and Kang  2012 ).   

   3.     Mitotic crossing over  
  Mitotic crossing over   may cause some of the genetic variation that leads to the 
recovery of homozygous  recessive   single-gene mutations in some regenerated 
plants (Gosal and Kang  2012 ). Dulieu and Barbier ( 1982 ) regenerated plants 
from   Nicotiana tabacum    with specifi c chlorophyll defi ciency markers present in 
heterozygous condition. A high frequency (9.6 %) of variant regenerants at the 
“a 1 ” and “y” loci has been attributed to the combination of deletion and mitotic 
recombination.   

   4.     Cytoplasmic genetic changes  
  Cytoplasmic genetic changes   including mitochondrial DNA (mtDNA) have been 
characterized in maize by  assessing   plants for two cytoplasmic traits (Gengenbach 
et al.  1977 ; Gosal and Kang  2012 ). Sensitivity to host-specifi c toxin of  Drechslera 
maydis  race T, the causal agent of southern corn leaf blight, is associated with all 
genotypes containing Texas male sterile (cms-T) cytoplasm (Gosal and Kang 
 2012 ). Such traits are tightly linked and controlled by mitochondrial 
DNA. Gengenbach et al. ( 1977 ) used in vitro for resistance to toxin and pro-
duced resistant plants with the goal of recovering toxin-resistant cytoplasmic 
male sterile lines, but among the regenerants, resistance was associated with 
reversion to male fertility. Restriction endonuclease pattern of mtDNA showed 
signifi cant changes in mtDNA. This mutation to male fertility and toxin insensi-
tivity has been revealed to be a frameshift mutation in mitochondrial DNA 
(Gosal and Kang  2012 ).   

   5.     Transposable element activation  
 Activation of mutator genes has been detected following plant cell cultures of 
 Nicotiana  and maize (Gosal and Kang  2012 ). Chromosome breakage  and   fusion 
and genomic stress caused by culture conditions are main  causes of   transposable 
element activation. Transposable elements can cause phenotypic changes in 
plants, and their activation during in vitro culture stimulates somaclonal varia-
tion (Kaeppler et al.  2000 ; Gosal and Kang  2012 ).   

   6.     Deamplifi cations and amplifi cations  
 Defi ciencies in ribosomal DNA ( rDNA   deamplifi cations) have been detected at 
the molecular level in fl ax, triticale,    and potato. On the other hand, gene amplifi -
cations have  been   detected in  Nicotiana  (Santoso and Thornburg  2002 ; Gosal 
and Kang  2012 ).   

   7.     DNA methylation and demethylation  
 De novo methylation and  demethylation      events represent a main part of differen-
tial genomic changes (Gosal and Kang  2012 ). Tissue-specifi c  DNA methylation   
 of   different sequences has been recorded for several plants. Genome activity and 
the structural organization of chromatin somehow seem to be related to DNA 
methylation (Bardini et al.  2003 ; Bednarek et al.  2007 ).   

   8.     Virus elimination  
 Virus infection causes changes in the plant reaction to other diseases. Larkin and 
Scowcroft ( 1981 ) reported that  the    virus elimination   during in vitro passage 
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could change the plant susceptibility to certain fungal diseases and the soma-
clones might exhibit resistance.   

   9.     Modifi ed expression of multigene families  
 Culture conditions may regulate the expression of a multigene  family   that previ-
ously expressed some agronomically  i  mportant genes, including those for glia-
dins, glutenins, and zeins (Gosal and Kang  2012 ).    

23.6.3       Origin of Somaclonal Variation 

 The variation detected in tissue culture-derived plants is a combined effect of the 
genetic heterogeneity of the initial explant cells and the genetic and epigenetic vari-
ations happening during the culture course (Bhojwani and Dantu  2013b ). 

23.6.3.1     Preexisting Variability 
 The level  of   somaclonal variation arising from the explant depends on the age and 
type of tissue and organ (Castorena Sanchez et al.  1988 ; Bhojwani and Dantu 
 2013b ), the donor plant genotype (Krikorian et al.  1993 ), and the cultivation mode 
of donor plants (Pijnacker et al.  1989 ). Polyploid plants with a higher chromosome 
number reveal greater variation in plants regenerated in vitro (Skirvin et al.  1994 ; 
Bhojwani and Dantu  2013b ). 

 In most of the angiosperms,    normal plant development is accompanied by direct 
changes in nuclear DNA (D’Amato  1990 ; Bhojwani and Dantu  2013b ). In the apical 
meristems, the cells are maintained at a uniform diploid level. However, their deriv-
atives could undergo duplication and endoreduplication to various degrees during 
the differentiation process into specialized tissues, resulting in somatic cells with 
higher levels of DNA (Bhojwani and Dantu  2013b ). Such a phenomenon of poly-
ploidization of body cells is known as  polysomaty  .  Dendrophthoe falcata ,  Helianthus 
tuberosus ,  Helianthus annuus , and  Lilium longifl orum  are some of the nonpolyso-
matic species (Bhojwani and Dantu  2013b ). Torrey ( 1965 ) reported that, in root 
cultures of pea, the fi rst set of tetraploid mitosis was derived from the explant. 
 Aneusomaty   is another type of preexisting chromosomal variability, occurring 
rarely in hybrids and polyploids of recent origin. Every individual of sugarcane 
clone H50-7209 exhibited chromosome number mosaicism (2 n  = 108–128). In this 
plant, the apical meristems and the mature tissues contain mosaic of cells with vary-
ing proportion of different aneuploid chromosome numbers. The aneusomaty is 
promoted in callus cultures derived from such tissues. 

  Genetic chimera breakdown      during callusing or direct differentiation of adventi-
tious organs could be another source of somaclonal variation, especially in the veg-
etatively propagated species (Bhojwani and Dantu  2013b ). Highly differentiated 
tissues such as roots, stems, and leaves produce more variation than explants with 
the preexisting meristems, such as shoot tips and axillary buds. However, in banana 
somaclonal variation occurred with higher frequencies in the plants derived 
from shoot tip cultures than in those derived through somatic embryogenesis 
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(Shchukin et al.  1998 ). This could be attributed to the chimeric nature of the shoot 
tip and dissociation of the chimera in cultures, resulting in the variant recovery. 

 The level of  variability   contributed by the explant varies with the explant source. 
Moreover, meristematic and embryonic tissues may yield more stable cells and 
regenerated plants than explants involving mature and differentiated cells (Bhojwani 
and Dantu  2013b ). In pineapple, all the plants obtained from syncarp or slip calli 
were variants, while only 7 % of the plants produced from the crown revealed varia-
tions (Wakasa  1979 ). Most of plants produced from seed callus of  Cymbopogon  
species were atypical, but those produced from infl orescence callus closely resem-
bled the parents, with a little variation (Chandra and Sreenath  1982 ; Bhojwani and 
Dantu  2013b ). The plants produced directly from spadix explants of   Anthurium 
scherzerianum    were less variable than those regenerated from leaf explants (Geier 
 1987 ). In geranium, the plants produced from in vivo stem cuttings were uniform, 
but those regenerated from in vivo root and petiole cuttings were variable (Skirvin 
and Janick  1976 ). In potato, cotyledon-derived protoplasts yielded more tetraploids 
than leaf-derived protoplasts (Osifo et al.  1989 ). In cucumber, the plants that were 
propagated from meristems lacked variation, and low variation occurred in the 
direct regeneration from leaf explants (Plader et al.  1998 ). However,  a   high fre-
quency of changes was detected in plants directly regenerated from protoplasts.  

23.6.3.2     In Vitro Induced Variations 
 Excision  of   tissue from the stable environment of the plant body and its transfer to 
culture medium inside the culture vial under artifi cial conditions could be a poten-
tial shock, resulting in a range of abnormalities and mutations, such as structural 
and numerical changes in the chromosomes and DNA organization (Bhojwani and 
Dantu  2013b ). An obvious evidence of tissue culture-stimulated variation is the 
occurrence of chromosomal changes in the cultured tissues of nonpolysomatic spe-
cies, such as  C. capillaris , and in cultures derived from single cells or protoplasts. 
Olmos et al. ( 2002 ) reported  the   occurrence of hot spots of instability in the genome. 
Therefore, somaclonal variation may not be a random process. 

 In vitro culture conditions and rapid multiplication of tissues infl uence its genetic 
stability, causing the occurrence of somaclonal variation (Bhojwani and Dantu 
 2013b ). The frequency of variation increases with the increase in the number of 
multiplication cycles. This could be attributed to the elevated mutation rate with 
each cell cycle and accumulation of mutations over a period of time. In shoot tip 
cultures of banana, somaclonal variation occurred after  the   fi fth subculture, and its 
frequency was increased thereafter (Rodrigues et al.  1998 ). Shepherd et al. ( 1996 ) 
recorded similar results in two other banana cultivars. 

 The culture medium is one of the  various   factors that induce somaclonal varia-
tion. In tissue cultures 2,4-D has proved highly mutagenic (Bhojwani and Dantu 
 2013b ). It either stimulates polyploidy or selectively favors division of polyploid 
cells. In the presence of  2,4-D  , suspension cultures of  Haplopappus  have been con-
verted from wholly diploid state to wholly tetraploid state over a period of 6 months 
(Sunderland  1977 ). Substitution of 2,4-D by NAA or IAA decreased the chromo-
somal aberrations (Chand and Roy  1980 ). Additionally, in pea, 2,4-D enhanced 

M.A. El-Esawi



539

polyploid mitosis at a hormonal concentration of 0.25 mg L −1 , but favored divisions 
in diploid cells at herbicidal concentration of 20 mg L −1 . High concentrations of 
BAP and  kinetin   in cultures induced genetic variation (Trujillo and Garcia  1996 ). 
Embryogenic suspension cultures of cucumber in auxin (2,4-D)-containing medium 
revealed greater genetic variation than those in cytokinin-containing medium 
(Ładyzynski et al.  2002 ). 

 In vitro clonal propagation of oil palm was developed in 1970s, but several forms 
of somaclonal variation regularly occurred in the micropropagated plants (Bhojwani 
and Dantu  2013b ).  Mantled phenotype   is a detected fl oral abnormality that refers to 
feminization of male parts in fl owers of both sexes (Corley et al.  1986 ), leading to 
the decrease of productivity or total loss of harvest due to abortion of abnormal 
fruits (Eeuwens et al.  2002 ).  The   abnormality intensity varies according to the 
nature of the embryogenic calli from which the plants are recovered.   

23.6.4     Nature of Somaclonal Variation 

 Somaclonal variation has been revealed in several crops for both quantitative and 
qualitative traits, including male sterility in maize; early tasseling in corn; high 
sucrose content in sugarcane; improved protein content in rice and triticale;    changed 
plant height, tiller number, grain color, and gliadin proteins in wheat; disease resis-
tance in maize, sugarcane, mustard, and potato; and salt tolerance in rice (Jain et al. 
 1989 ; Gosal and Kang  2012 ). However, such somaclonal variations have not been 
fully exploited because, in many cases, these involve either the existing types or 
there were desirable changes accompanied by several undesirable changes (Gosal 
and Kang  2012 ).  

23.6.5     Importance of Somaclonal Variation for Crop 
Improvement 

 Various useful traits  have   been recovered using this methodology in sugarcane (Leal 
et al.  1994 ; Kaur et al.  2001 ; Khan et al.  2004 ; Jalaja et al.  2006 ; Gosal and Kang 
 2012 ), maize (Zheng et al.  2004 ), potato (Veitia-Rodriguez et al.  2002 ; Lara et al. 
 2003 ), rice (Cristo et al.  2006 ; Elanchezhian and Mandal  2007 ), wheat (Ahmed and 
Abdelkareem  2005 ; Sabry et al.  2005 ),  Prunus persica  (Hammerschlag and 
Ognjanov  1990 ), and apple rootstocks (Rosati and Predieri  1990 ; Donovan et al. 
 1994 ). Recovery of novel variants that are rare in the natural gene pool, such as 
atrazine resistance in maize, improved methionine contents  in   cereals, jointless 
pedicels in tomato, increased seedling vigor in lettuce, and  Fusarium  resistance in 
alfalfa, is of much importance (Sengar et al.  2009 ; Gosal and Kang  2012 ). Genetic 
and molecular evidence for elevated recombination frequency through cell culture 
has now been provided (Larkin et al.  1993 ). Tissue culture of wide hybrids also 
assists in breaking undesirable linkages and achieving introgression from foreign 
sources (Gosal and Kang  2012 ). Several new cultivars have been developed through 
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somaclonal variation in sugarcane, tomato, potato, sorghum, and  Brassica  (Gosal 
and Kang  2012 ). This simple  and   cost-effective technique helps in improving the 
apomictic and vegetatively propagated species. Somaclonal variant of medicinal 
plants, such as citronella Java, has been developed and released as commercial vari-
eties that could produce higher yield and oil content than  original   varieties (Gosal 
and Kang  2012 ).   

23.7     Conclusions 

 Micropropagation refers to the in vitro clonal propagation of plants from small plant 
parts. This technique is preferred over the traditional asexual propagation methods 
because it ensures true-to-type, rapid, and mass multiplication of genetically identi-
cal copies of individual plants, resulting in a quick regeneration of new varieties 
which are resistant to diseases and abiotic stresses. Novel practical methods includ-
ing wounding technique in combination with liquid culture and stem node culture 
have been established and applied for the in vitro growth and micropropagation of 
recalcitrant plants and orchids, such as  Paphiopedilum delenatii . These methods 
proved to be useful for the commercial production and conservation of  Paphiopedilum 
delenatii . Many somaclonal variants have been released as commercial varieties 
worldwide.     
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 24      Improvement of Green Leafy Vegetables: 
The Role of Plant Tissue Culture 
and Biotechnology                     

     Sandopu     Sravan     Kumar    ,     M.  C.     Aruna    , 
and     Parvatam     Giridhar    

    Abstract 
   Biotechnological improvement of both ornamental and edible, i.e. food value 
plants, is one of the important research areas since fi ve decades throughout the 
world. Especially in vitro propagation technology has come as an aid to accom-
plish the targets of sustainable propagation of both traditional plants of commer-
cial importance, to rescue the endangered plant species, and also for their 
qualitative and quantitative improvement. From nutritional and nutraceutical 
point of view, green leafy vegetables or leafy greens play a pivotal role in view 
of their potential health benefi ts. Signifi cant focus has been given for this cate-
gory of plants by employing in vitro propagation methods to get an effi cient mass 
multiplication, somatic embryogenesis for sustainable cultivation, and also 
through callus suspension cultures for achieving augmented yield of high-value 
secondary metabolites. Apart from this, attempts have been made to mobilise the 
desired traits of nutritionally important biomolecules through genetic engineer-
ing into leafy vegetables to alleviate nutrient-defi cient diseases in consumers. In 
addition to this, the well-documented optimised methodologies to leafy vegeta-
bles would help as an in vitro model for elucidating the biosynthetic pathways of 
respective nutritionally important molecules. Under this context, various devel-
opments in the above said areas pertaining to green leafy vegetables would be 
having implications for value addition through food technology. Accordingly, a 
review on various biotechnological aspects of green leafy vegetables has been 
contemplated, and the same will be covered in this chapter.  
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  Abbreviations 

   2,4-D    2,4-Dichlorophenoxyacetic acid   
  2iP    6-(gamma,gamma-dimethylallylamino) Purine   
  B5 medium    Gamborg’s medium   
  BAP    6-Benzylaminopurine   
  GA 3     Gibberellic acid   
  GLVs    Green leafy vegetables   
  IAA    Indole-3-acetic acid   
  IBA    Indole-3-butyric acid   
  Kin    Kinetin   
  MS    Murashige and Skoog   
  NAA    1-Naphthaleneacetic acid   
  TDZ    Thidiazuron   

24.1         Introduction 

 Consumption of green foods especially leafy vegetables benefi ts human health by 
improving nutritional status in view of their major phytonutrients and also alleviates 
risk of diseases like cancer, diabetes and hepatotoxicity due to their nutraceutical 
potential. Throughout the world these green leafy vegetables (GLVs) are part of daily 
meals which includes both conventional GLVs that are commercially propagated or 
wild GLVs often used by people familiar with them and also by ethnic communities 
residing in forest areas. A wide range of GLVs are in use globally and their usage is 
limited to a specifi c geographical location. Since ancient periods GLVs as a food are 
major source of nutrients and minerals apart from their traditional medicinal use due to 
the presence of phytochemicals. Being a rich source of carotenoids, anthocyanins, 
betalains and other pigments and minerals such as iron, they are benefi cial in address-
ing oxidative stress, eye problems, iron defi ciency, etc. (Tables  24.1  and  24.2 ).

    During the past few decades, a large number of investigations on phytonutrients 
and bioactive compounds of various GLVs were reported which substantiate their 
potential as nutrient source as a fresh form and also as  nutraceuticals   in either pro-
cessed or formulations based on the extractives (Saini et al.  2014 ; Kumar et al. 
 2015a ,  b ). Nowadays there is a great emphasis to promote GLV-based fortifi ed 
foods to alleviate hunger, malnutrition-related diseases in developing nations. In 
this regard, the best example is   Moringa  spp  . leaf-based formulations which were in 
use as a source of major nutrients in African countries (Saini et al.  2014 ). 
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   Table 24.2    Some of the  important    secondary metabolites   produced in vitro from various GLVs   

 Plant  Explants  Metabolites  Reference 

  Amaranthus  spp. 
(amaranth) 

 Seedling, leaf, 
stems 

 Coloured callus 
formation 
(   betacyanins) 

 Bianco-Colomas ( 1980 ), 
Silva-Sánchez et al. ( 2008 ), 
Yaacob et al. ( 2011 ), and 
Biswas et al. ( 2013 ) 

  Bacopa monnieri  
L. (water hyssop) 

 Leaf-derived callus 
culture 

 Tannins, fl avonoids, 
glycosides, terpenoids, 
saponins and steroids 

 Singh ( 2012 ) 

 Callus culture 
from shoot tip 

 Bacoside A  Parale et al. ( 2010 ); 
Sharma et al. ( 2013 ), and 
Talukdar ( 2014 ) 

  Basella  spp. 
(Indian spinach) 

 Callus  Anthocyanins 
pigments 

 Pumchausuan and 
Wongroung ( 2009 ) 

  Centella asiatica  
L. (gota kola) 

 Whole plants 
derived from nodal 
explants 

 Asiaticoside  Kim et al. ( 2004 ) 

 Leaves  Asiaticoside, 
madecassoside, 
madecassic acid, 
asiatic acid 

 Randriamampionona et al. 
( 2007 ) and Satheesan et al. 
( 2012 ) 

  Coriandrum 
sativum  L. 
(coriander) 

 Callus  C-glycosylated 
apigenin 

 Barros et al. ( 2012 ) 

  Solanum nigrum  
L. (black 
nightshade) 

 In vitro shoot 
cultures and callus 
cultures 

 Solasodine  Bhat et al. ( 2008 ), 
Yogananth et al. ( 2009 ), 
and Bhat et al. ( 2010 ) 

  Portulaca 
grandifl ora  L. 
(moss-rose 
purslane) 

 Callus  Betalain pigments  Endress ( 1980 ) 

  Trigonella 
foenum -  graecum  
L. (fenugreek) 

 Callus, cell 
suspensions, 
protoplast cultures, 
 Agrobacterium 
tumefaciens - 
mediated 
transformation 

 Diosgenin, trigonellin, 
etc. 

 Trisonthi et al. ( 1980 ), 
Ramesh et al. ( 2010 ), 
Christen ( 2002 ), 
Petropoulos ( 2002 ), 
Rezaeian ( 2011 ), Ciura 
et al. ( 2015 ), Reid et al. 
( 2003 ), and Khawar et al. 
( 2004 ) 

 For sustainable production and effective utilisation of GLVs, plant biotechnol-
ogy interference would help to improve the nutrient profi les and also to develop 
elite plants for value addition. In vitro propagation methods are helpful to develop 
elite clones for  mass multiplication   of plants with vim and vigour. During the past 
fi ve decades, researchers have made signifi cant investigations to establish in vitro 
propagation protocols for a quite good number of GLVs (Mahadevan et al.  2009 ). 
Similarly, attempts were also made to screen in vitro cultures of GLVs for the pres-
ence of various phytochemicals,  secondary metabolites  , and also for their 
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improvement (Saini et al.  2012 ). Although 10–15 GLVs are commonly used, more 
number of plant genera (herbs) are traditionally in use for edible purposes, and the 
same needs to be explored for biotechnological improvement. As of now, there are 
no reviews on the improvement of GLVs through plant tissue cultures and biotech-
nology. This book chapter information would provide a glance at various develop-
ments happened so far in tissue culture of GLVs and also provide the necessity of 
research activities to be taken up for effective utilisation of GLVs. Some of the 
methodologies that are already optimised for GLVs could be effectively utilised to 
elucidate the biosynthetic pathways of respective plant. Some of the herbs such as 
 Mentha  spp. which fi nds use as a culinary spice are not covered as they are more 
familiar for their medicinal applications. 

24.1.1      Allium schoenoprasum  L. 

    Allium  species are well known for their healing properties in curing of numerous 
problems (Keusgen  2002 ).   Allium schoenoprasum    (chive) is  less   known and has 
curative properties (Timite et al.  2013 ). It contains sulphur compounds with 
prominent antibacterial activity (Rattanachaikunsopon and Phumkhachorn  2008 ). 
The plants are widely used for culinary purposes, as a food condiment, and milder 
fl avour than onion. They can also be used as an ornamental plant due to their 
beautiful fl owers. The regeneration of plants through both callogenesis and 
somatic embryogenesis was achieved from different explant types, but the basal 
plate and young leaves were recognised as the most responsive explants (Kahane 
et al.  1992 ; Ayabe and Sumi  1998 ; Kenel et al.  2010 ). Lubomski ( 1990 ) reported 
the highest shoot multiplication on 20 g/L sucrose and 1.0 mg/L BAP and rooting 
was observed in both IAA and IBA with successful cold storage for 6 months. As 
they are not well studied than other systems such as garlic and onion, there is a 
limited number of regeneration protocols, namely, leaf explant (Rauber and 
Grunewaldt  1989 ), root sections (Zdravkovic-Korac et al.  2010 ) and the basal 
plate (Tubic et al.  2011 ). 

 In  Allium  spp. auxins were majorly used for induction of regeneration 
(Mukhopadhyay et al.  2005 ), and cytokinins (BAP) as a sole PGR has been used 
seldom (Kahane et al.  1992 ; Van Staden et al.  2008 ). Tubic et al. ( 2011 ) reported 
that the three cytokinins (BAP, Kin and TDZ) at 5 μM concentration are best on the 
regeneration capacity from stalk sections of chives. Tubic et al. ( 2016 ) recorded 
high regeneration effi ciency in the presence of 10 μM TDZ for 4 weeks followed by 
subculture to either 5 μM Kin-containing or PGR-free medium. Similarly, a positive 
correlation between peroxidase, catalase and superoxide dismutase activity with 10 
μM TDZ than 1 μM Kin and the regeneration capacity was observed  . 

24.1.2       Amaranthus  

     Amaranthus       is a fl owering plant that belongs to the family Amaranthaceae. 
 Amaranthus  is having a great interest in the last years as an agronomic crop, 
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alternative energy source and ornamental plant around the world (Joshi and Rana 
 1991 ; Brenner and Makus  1997 ; Grobelnik Mlakar et al.  2010 ). It is an annual, 
broad-leafed plant that is used as a high-protein grain, leafy vegetable or forage 
crop. There are several varieties of  Amaranthus  available wherein  A. cruentus  (pur-
ple amaranth),  A. retrofl exus  (common amaranth),  A. spinosus  (prickly amaranth), 
 A. tricolor  (hybrid amaranth) and  A. viridis  (slender amaranth) which are com-
monly used as GLVs (Flores and Teutonico  1986 ). They are drought tolerant and 
require warm growth conditions for germination (65–75 °F). There are several vari-
eties of  Amaranthus  that are being studied as leafy vegetable. It was found that in 
general, genus  Amaranthus  has potential to micropropagation. Selected genotypes 
via direct or indirect regeneration or via somatic embryogenesis were developed, 
and the importance of the type and concentration of growth regulators used for 
induction of morphogenic processes was emphasised (Bennici and Schiff  1997 ). 
There are reports on shoot formation from calluses derived from hypocotyl seg-
ments (Flores et al.  1982 ; Bennici et al.  1992 ) from petiole and leaf segments 
(Bennici et al.  1997 ). The adventitious shoot induction in  A. cruentus  in vitro in the 
presence of BAP, zeatin, TDZ and NAA was reported (Gajdosova et al.  2013 ). 

 Scoles et al. ( 2000 ) reported the pigment separation and characterisation from  A. 
hypochondriacus  L. Bianco-Colomas ( 1980 ) reported accumulation of more  beta-
cyanins   and amaranthine from seedlings of  A. caudatus  L. cv. Pendula grown 
in vitro when they are cultivated in the light rather than in the dark. The seed bioac-
tive peptide characterisation and anticancer activity were also investigated (Silva-
Sánchez et al.  2008 ). The coloured callus production from leaf and stem explants of 
 A. cruentus  on different combination of hormonal medium with most optimum red 
callus induction on 1.5 mg/L IAA and 1.5 mg/L zeatin with leaf explant. They con-
fi rmed those red pigments as fl avonoids  called   betacyanins (Yaacob et al.  2011 ). 
However, a recent report investigated the stable callus line with enhanced produc-
tion of red colour using MS medium containing NAA and BAP, using stem explants 
of  A. tricolor  (Biswas et al.  2013 ).    

24.1.3      Apium graveolens  L. 

     Apium graveolens       ( celery   – Apiaceae) is cultivated as a fresh vegetable (Ryder  1979 ) 
because they resemble the leafy vegetable, hence, generally planted in gardens as a 
cooking herb.  Green celery   is mostly used in the preparation of salads and cooking 
as leafy vegetable in the USA. The callogenesis from the petioles followed by 
embryogenesis in the suspension cultures and fi nally their development into plantlets 
was reported (Williams and Collin  1976a ). Williams and Collin ( 1976b ) observed 
little or no phenotypic variation among regenerated plants of  celery   and concluded 
that  celery   is highly stable in tissue culture. Moreover, the subsequent results showed 
subtle variation in regenerated plants (Browers and Orton  1982 ; Orton  1983a ,  b , 
 1985 ). Fujii ( 1982 ) investigated the fi eld trials of  celery   cv. Tall Utah 52–70.  Orton 
(1983b)  identifi ed the variation at the Pgm2 locus among somatic embryo-derived 
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regenerants of  celery  . The callus from leaf explant of  celery   was good on MS medium 
containing 2.3 μM 2,4-D + 2.8 μM Kin + 300 mg/L timentin and  Agrobacterium -
mediated transformation using bar gene as selectable marker (Loskutov et al.  2008 ). 
Donovan et al. ( 1994 ) reported the somaclonal variation from stem explants on callus 
initiation medium (MS + 0.5 mg/L 2,4-D + 0.6 mg/L Kin) followed by regeneration 
on MS medium with 30 g/L sucrose. The cell suspension immobilisation in 
Ca-alginate reveals that the immobilised cells showed reduced dry weight and uni-
form respiratory rate with  2,4-D  . However, there is no increase in dry weight of the 
immobilised cells but small increase in respiratory rate with 2,4-D  .  

24.1.4      Bacopa monnieri  L. 

   Being an edible, medicinal and multipurpose herb,   Bacopa monnieri       has been exten-
sively investigated for its conservation, sustainable production by employing in vitro 
propagation methods. It is considered as a memory vitaliser like   Centella asiatica    in 
herbal formulations. In many parts of India, this plant is considered as edible and 
fi nds use in making various recipes mainly due to various health benefi ts attributed 
to this plant (Basu et al.  1967 ). Enumerated tissue culture protocols were optimised 
for its  mass multiplication   by using various explants such as nodal segments, axillary 
buds, shoot tips, leaf explants, etc. (Basu et al.  1967 ; Elangovan et al.  1995 ). 
Micropropagation methods for conservation of  B. monnieri  by using adventitious 
shoot buds on MS medium supplemented with cytokinins such as 0.5–2.5 mg/L BAP 
alone or combined with 0.5–2 mg/L Kin were developed (Elangovan et al.  1995 ). In 
the same study, the signifi cance of synergistic blend of BAP or NAA with that of 
2,4-D was reported for obtaining callus. Similarly, Praveen ( 2009 ) achieved the high-
est rate of shoot regeneration on semi-solid MS medium fortifi ed with BAP or Kin or 
TDZ wherein 2 mg/L Kin showed best response. Highly proliferative callus could be 
obtained under synergetic activities of 1 mg/L NAA, 0.5 mg/L Kin and 1 mg/L casein 
hydrolysate (Rahman et al.  2002 ). Tiwari et al. ( 2006 ) and Ramesh et al. ( 2009 ) 
demonstrated the effi ciency of Bavistin interference on rapid proliferation of shoot 
buds (45 shoots) from encapsulated single-nodal micro-cuttings of micropropagated 
plants. Both leaf and nodal explants were also good choice (Vijayakumar et al.  2010 ) 
for obtaining multiple shoots preferably in the presence of 2 mg/L BAP or Kin or 
TDZ or even in the presence of fungicide Bavistin which exhibits somewhat cytoki-
nin-like activity. Haque and Ghosh ( 2013 ) optimised a micropropagation protocol by 
using shoot tips and nodal segment as explants, wherein 15–19 shoots were obtained 
from shoot tips and also achieved in vitro fl owering of these shoots up on subcultur-
ing onto MS medium containing 0.2 mg/L BAP. The effi ciency of synthetic cytokinin 
TDZ at 6.8 μM on high-frequency shoot bud initiation (93 shoot buds) from leaf 
explants was reported. Interestingly subculture of these leaf explants onto medium 
containing 2.2 μM BAP produced up to 130 adventitious shoot buds by the end of 
three subcultures. In addition to these, a novel tissue culture medium formulation 
was explored by blending MS medium with a cyanobacterium extract ( Aulosira fer-
tilissima ) which could generate up to 400 shoots per nodal explant upon three 
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subcultures (Banerjee and Modi  2010 ). In most of the cases, the explant source, viz. 
ex vitro or in vitro, is the key factor to show varied responses for shoot multiplica-
tion. Especially, the concentration of cytokinin such as BAP or Kin (Kin-0.01–0.3 
mg/L) found to be good enough to get 40 multiple shoots (Sharma et al.  2010 ) from 
nodal explants. A glance at various reports reveals that subculturing onto the respec-
tive shoot bud induction media or quite low cytokinin-containing media supports 
further shoot elongation.  In vitro rooting   of microshoots is not a diffi cult task in  B. 
monnieri  which could be achieved on MS or half MS media devoid of any growth 
regulators or very low concentration of IBA or IAA or NAA or combination of aux-
ins (Banerjee and Modi  2010 ; Mehta et al.  2012 ). 

 Effi cient callus induction and multiplication from leaf petiole explants in the pres-
ence of 0.25 mg/L 2,4-D and 0.5 mg/L Kin or 0.25 mg/L 2,4-D and 0.1 mg/L BAP 
were reported (Mehta et al.  2012 ). Rout et al. ( 2011 ) achieved callus-mediated organ-
ogenesis from  B. monnieri  by using leaf explants on MS medium with 2 mg/L BAP 
and 0.5 mg/L NAA. Subsequently shoot regeneration from callus was obtained in 
combination of 2 mg/L BAP and 0.5 mg/L NAA or 2 mg/L BAP and 0.5 mg/L IAA  . 

24.1.4.1     In Vitro Production of Metabolites 
 Compared to in  vitro   culture such as shoot cultures, leaf-based callus suspension 
cultures were proved to be highly effective in producing bacoside A, wherein up to 
fi ve- to six fold increased in bacoside A could be obtained in 40 days on MS liquid 
medium comprising 1 mg/L NAA, 0.5 mg/L Kin, 1 g/L casein hydrolysate and 30 
g/L sucrose (Rahman et al.  2002 ). Singh ( 2012 ) investigated the presence of various 
photochemicals in leaf-derived callus culture wherein the presence of glycosides, 
terpenoids, tannins, fl avanoids, saponins and steroids was formed. Similarly, 
Talukdar ( 2014 ) established callus culture from shoot tip explants in the presence of 
2,4-D and screened these cultures for  the   biosynthesis of bacoside A tetracyclic 
triterpenoid saponin which showed 1.53 % of total bacoside content. In a recent 
study, Sharma et al. ( 2013 ) are able to augment bacoside production in in vitro shoot 
cultures by challenging with abiotic elicitors such as jasmonic acid, copper sulphate 
and salicylic acid, wherein 1.24-fold higher bacoside was produced compared to 
control shoots. Similarly by feeding various organic supplements to culture medium, 
enhanced production of bacoside A in both shoot and callus cultures with up to 
1.2–4 times higher was shown (Parale et al.  2010 ). In a recent study, 1.8-fold 
increase in bacoside content was achieved in in vitro  shoot   cultures on medium 
containing 50 μM methyl jasmonate (Sharma et al.  2013 ).   

24.1.5      Basella  spp. 

    Basella   spp     . (family – Basellaceae) are commonly known as  Ceylon spinach  ,  Indian   
spinach and Malabar nightshade, and the plant is  highly   exploited for its medicinal 
properties in Chinese traditional medicine and in ancient Indian medical system to 
treat constipation and also used as a diuretic, a toxicide and an anti-infl ammatory 
(Toshiyuki et al.  2001 ). There are two common species such as  Basella rubra  L. 
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(red stem and leaves) and  Basella alba  L. (green stem and leaves), which are twin-
ing herbaceous vines, perennial, succulent, branched, smooth and annual and found 
in tropical and subtropical areas (Khare  2004 ). Recently, the nutritional facts of the 
leaves of  Basella  spp. were explored (Kumar et al.  2015a ), a method for red-violet 
pigment extraction, characterisation and food application Kumar et al. ( 2015b ,  c ), 
and functional attributes of  B. rubra  fruit extracts against human cervical carcinoma 
cells (Kumar et al.  2015d ) were also been reported. 

 There are limited data on the in vitro micropropagation of  Basella  spp.  B. alba  
hypocotyl explants induced callus in MS medium containing BAP, NAA and 2,4-D 
individually or in combinations wherein cotyledon explants failed. However, there 
is bud regeneration from callus of hypocotyl supplemented with BAP and 
NAA. Rooting was best in medium containing half MS medium and 0.3 mg/L NAA 
(Guo and Xu  2000 ). Similarly, Song et al. ( 1996 ) reported the use of different 
explants (hypocotyls and cotyledons) on MS medium containing different combina-
tions of NAA, BAP and Kin in which 0.1–0.3 mg/L NAA and 1–3 mg/L BAP with 
hypocotyls explants showed callus growth. The same callus was transferred to 0–0.3 
mg/L NAA and 3 mg/L BAP or 3 mg/L Kin-induced buds which in turn induced 
rooting on half MS medium supplemented with 0.3 mg/L NAA (Song et al.  1996 ). 
In vitro production of anthocyanin-pigmented callus from hypocotyl explants on 
MS medium containing 0.1 μM 2,4-D and 5 μM BAP was achieved (Pumchausuan 
and Wongroung  2009 ). The coloured callus culture developed on MS medium con-
tains 0.1 μM 2,4-D and 5 μM BAP. The cell suspension cultures with different 
concentrations of sucrose (3 %) and UV illumination for 20 min on the production 
of anthocyanins pigments have also been reported (Pumchausuan and Wongroung 
 2009   ).  

24.1.6      Brassica oleracea  L. 

  Kale   is an  important   GLV in both oriental countries and Europe  and   also other parts 
of the world. In vitro propagation methods for these GLVs were initiated for decades 
ago. Different plant parts such as cotyledons (Hu et al.  2006 ), hypocotyls (Zee and 
Hui  1977 ; Huang et al.  2004 ), stems (Pua et al.  1999 ), root segments (Wong and 
Loh  1988 ) and axillary bud explants (Huang et al.  1999 ) were used for in vitro 
propagation. The nature of explants is reported to be important for optimising 
growth media and also to get maximum response for shoot bud proliferation. Ahmad 
and Spoor ( 1999 ) investigated the role of NAA and BAP combinations on induction 
of callus, its growth and regeneration of shoots. Pua et al. ( 1999 ) opined that half- 
and whole-stem explants were more responsive for regeneration compared to coty-
ledons and hypocotyls. Growth medium comprising MS salts with 2 mg/L BAP in 
synergy with 1 mg/L NAA or 4 mg/L BAP with 0.5 mg/L NAA is able to induce 
100 % response. Recently, Qin et al. ( 2012 ) established in vitro regeneration proto-
col for Chinese kale wherein silver nitrate incorporation into culture  medium 
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  comprising 2 mg/L BAP and 0.4 mg/L NAA induced 86.7 % and 94 % response for 
hypocotyl and cotyledon explants, respectively. Explants such as fl amingo bill (the 
portion of a seed upon removal of one cotyledon and  primary   and secondary meri-
stems from seedlings but retaining the radical hypocotyledon and one cotyledon) 
were used. Up to four to fi ve multiple shoots were induced in the presence of 2 mg/L 
BAP.  Effective   rooting of adventitious shoots could be  obtained   on MS medium 
comprising 0.2 mg/L NAA (Qin et al.  2012 ).  

24.1.7      Centella asiatica  L. 

     Centella asiatica       is an important medicinal plant in traditional medicine (Warrier 
et al.  1994 ; Sivarajan and Balachandran  1994 ), and also its leaves are consumed as 
leafy vegetables in view of its role in improving the memory and strength. The 
important metabolites of this plant comprise a bitter compound, vellarin; an alka-
loid, hydrocotylin; and the glycosides, centalloside and asiaticoside (Anonymous 
 1950 ). 

 Extensive in vitro propagation methods have been studied for this plant to obtain 
organogenesis through callus cultures (Patra et al.  1998 ; Josekutty  1998 ), shoot tips 
(Nath and Buragohain  2003 ), axillary buds (Tiwari et al.  2000 ), leaf explants 
(Banerjee et al.  1999 ), stolons (Sampath et al.  2001 ) and somatic embryos (Martin 
 2004 ; Paramageetham et al.  2004 ). Up to 15 shoots were obtained in the presence of 
2 mg/L BAP in MS medium (Karthikeyan et al.  2009 ). Callus-mediated organogen-
esis showed rapid in vitro shoot bud regeneration from stem-derived callus (42.8 
shoots/culture) and leaf-derived callus (54.3 shoots/culture), respectively, upon cul-
turing on medium supplemented with 4 mg/L BAP, 2 mg/L Kin, 0.25 mg/L NAA 
and 20 mg/L adenine sulphate (Patra et al.  1998 ). In an interesting study, low-cost 
alternatives were explored for effi cient in vitro shoot multiplication wherein labora-
tory-grade sucrose and tap water were used (Raghu et al.  2007 ). As per many 
reports,    in vitro rooting of shoots is not a diffi cult task as it could be achieved in the 
presence of low concentration of auxins such as IAA or IBA or even on medium 
devoid of any auxins (Patra et al.  1998 ; Karthikeyan et al.  2009 ). High-frequency 
somatic embryogenesis and plant regeneration were reported by Martin ( 2004 ), 
wherein up to 203 somatic embryos/100 mg callus were obtained from embryo-
genic callus on half-strength MS medium provided with 0.54 μM 2,4-D and 1.16 
μM Kin followed by 88 % of them conversion to plantlets on half-strength semi-
solid MS medium with 0.054 μM NAA and 0.044 μM BAP. Callus cultures were 
successfully established along with suspension culture development by using leaf 
explants on MS medium comprising 1 mg/L BAP and 1 mg/L NAA or 0.5 mg/L 
BAP and 1 mg 2,4-D (Nath and Buragohain  2005 ). The established callus cultures 
are able to produce asiaticoside 494.62 mg/g dry mass  . 
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24.1.7.1     In Vitro Production of Metabolites 
 Stimulation of different  secondary   metabolites of importance from   Centella asiat-
ica    plant parts was investigated especially asiaticoside derivatives in view of their 
possible role in treating Alzheimer disease (Mook-jung et al.  1999 ). Preliminary 
studies in this report showed 50 % increase in asiaticoside content in micropropa-
gated shoot. Subsequent studies (Kim and Botella  2004 ) proved that whole plants 
derived from nodal explants are able to produce signifi cantly high content of asiati-
coside compared to ex vitro plant material. Elicitor-mediated stimulation of asiati-
coside accumulation in plants grown in bioreactor condition was investigated (Kim 
et al.  2004 ), wherein, to achieve 1.53–1.41-fold increase in asiaticoside production, 
the plants were challenged with methyl jasmonate and yeast extract. The contents of 
various triterpenoid metabolites such as asiaticoside, madecassoside, madecassic 
acid and asiatic acid were detected in the leaves of in vitro-propagated plants 
(Randriamampionona et al.  2007 ) to get large quantity of asiaticoside generation 
7.12 mg/g dry weight. Satheesan et al. ( 2012 ) attempted to enhance asiaticoside 
production in  Centella asiatica  by employing root colonisation method wherein the 
tissue-cultured plants were infected with an endophytic fungus  Piriformospora 
indica  which not only enhances effi cient rooting biomass but also metabolite 
production.   

24.1.8      Coriandrum sativum  L. 

   This edible herb is having  great   economic importance and most commonly used as 
 a   fl avouring spice in Indian, Chinese and Oriental cuisine. The seeds contain an 
unusual fatty acid petrocelinic acid which comprises 85 % (w/w) of the total seed 
fatty acid. Establishment of in vitro culture of this plant would pave way for in vitro 
production of various  bioactives   from this plant. Initial attempts were made by 
Kataeva and Popowich ( 1993 ) to establish  C. sativum  shoot through micropropaga-
tion. Similarly attempts were also made for in vitro shoot cultures and callus cul-
tures for this plant (Liu et al.  2002 ; Barros et al.  2012 ). 

  Somatic embryogenesis   is reported to be very successful and reproducible for 
regeneration of large number of shoots (Zee  1981 ). Initially, hypocotyls callus-
mediated somatic embryogenesis in the presence of 1 mg/L 2,4-D and 1 mg/L Kin 
in MS medium was reported (Mujib et al.  1990 ). Subsequently, similar studies were 
carried out by Stephen and Jayabalan ( 2000 ). Kim et al. ( 1996 ) reported high-fre-
quency plant regeneration via somatic embryogenesis by using callus suspension 
culture. In vitro fl owering in shoots derived from shoot tip explants was also reported 
(Stephen and Jayabalan  1998 ). Embryogenic callus could be obtained in the pres-
ence of 1 mg/L 2, 4-D and 0.2 mg/L Kin. Repeated subculturing on the same 
medium lead to globular embryogenic callus development. Subculturing of the 
same embrogenic callus in differentiated media comprising 1 mg/L NAA or 0.5 
mg/L IAA along with 2 g/L casein hydrolysate induced embryogenesis. Further 
refi nement to the protocol for somatic embryogenesis of  C. sativum  was attempted 
by Murthy et al. ( 2008 ) by inducing embryogenic callus from cotyledon and 

S.S. Kumar et al.



563

hypocotyl segments. Barros et al. ( 2012 ) attempted to fi nd variation in phenolic 
profi les of in vitro and in vivo grown plants of  C. sativum , wherein the richness of 
phenolic acids and derivatives in fruits of in vivo grown plants and C-glycosylated 
apigenin as a main compound in in vitro samples were shown  .  

24.1.9      Hibiscus sabdariffa  L. and  Hibiscus cannabinus  L. 

       Hibiscus sabdariffa  and    H. cannabinus  belong to the family Malvaceae that are 
 familiar   as  roselle   and  kenaf  , respectively, in many parts of the world. They are an 
 annual   erect, herbaceous subshrub,    grown in tropical and subtropical climates. The 
plants are bushy, with nearly smooth, cylindrical, typically red stems with red peti-
oles and a red or pale yellow colour calyx and green stem and green leaves that is 
considered edible (Brouk  1975 ; Purseglove  1986 ; Morton  1987 ). They are one of 
the preferred GLVs in southern parts of India especially in Andhra Pradesh and 
Telangana. The plants are reported to have medicinal properties such as antihyper-
tensive, antidiabetic, antimicrobial and chemopreventive and other folklore medici-
nal applications as a diuretic and mild laxative (Mayol-Soto and Aragón-Vargas 
 2002 ; Kuriyan et al.  2010 ; Lin et al.  2011 ). Micropropagation of roselle provides a 
powerful tool to eliminate virus, leading to the production of healthy and vigorously 
growing planting material (Narayanaswamy  1997 ). The vegetative propagation 
methods offer many benefi ts including the ability to regenerate clones, convenience 
and ease of propagation, combination of genotypes and reduction of length of juve-
nile period (Hartman et al.  1994 ). Most of in vitro propagation studies were on 
 kenaf   (Zapata et al.  1999 ; Srivatanakul et al.  2000 ; Khatun and Naher  2002 ; Herath 
et al.  2004 ), except a sporadic report on plant regeneration from hypocotyl-based 
callus in  H. siryacus  (Jenderek and Olney  2001 ) and somatic embryogenesis in  H. 
sabdariffa  (Raoul et al.  2010 ). A very recent study on the in vitro production of 
ascorbic acid from normal root cultures initiated from leaf explants of  kenaf   was 
reported (Kumar et al.  2015e ). Recent investigations have further added the value to 
this plant, as evidenced by the ascorbic acid content of  H. sabdariffa  (Sarkiyayi and 
Ikioda  2010 ) and optimisation of leaf-drying methods for effective utilisation of 
foliage for food formulations (Kumar et al.  2015f ). 

 The callus induction and somatic embryogenesis from  H. sabdariffa  by using 
different sugars on three types of explants (root, hypocotyl, cotyledon) and diverse 
combinations of plant growth regulators in MS and  Drivers and Kuniyuki walnut 
(DKW)   medium were studied (Raoul et al.  2010 ). Ayadi et al. ( 2011 ) reported the 
formation of multiple buds from young buds and cotyledons. In another study, the 
high-frequency multiple shoot induction and proliferation to complete propagation 
were reported in  kenaf   through apical and nodal shoot explant on hormone-free MS 
medium and hardened in greenhouse conditions with 70 % survival rate (Ayadi et al. 
 2011 ). Govinden-Soulange et al. ( 2009 ) reported that the 8 weeks of culturing of  H. 
sabdariffa  microshoots in the presence of 2.0 mg/L IBA on MS medium was 
required for induction of rooting. 
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 According to earlier reports for  H. cannabinus  ( kena  f), BA and Kin at different 
concentrations alone (Herath et al.  2004 ) or in combination with auxins like NAA 
and other substances such as M-topolene (Gomez-Leyva et al.  2008 ), IAA were 
used, wherein rosette-like shoot bud mass along with microshoots was prevalent, 
followed by subsequent subculturing to get 12–13 shoots per explant (Chen et al. 
 2010 ). Chen et al. ( 2010 ) reported that in  kenaf   12–14 shoot production in MS 
medium supplemented with 5 mg/L BA, 0.3 mg/L IAA and 0.2 % (m/v) F-68 with 
100 % response. The rooting was achieved with IAA and NAA combination. 
Srivatanakul et al. ( 2000 ) reported multiple shoot induction in MS medium supple-
mented with 1 μM TDZ wherein the highest shoot number in different cultivars of 
 kenaf   was noticed and upon subculturing in hormone-free medium-induced shoot 
elongation and rooting. In fact, in  kenaf   ( H. cannabinus ) too,  in vitro rooting   could 
be achieved effi ciently on both hormone-free medium (Ayadi et al.  2011 ) and in the 
presence of respective auxins (Herath et al.  2004 ) which varies with the cultivar. 
Ayadi et al. ( 2011 ) reported a micropropagation protocol for  kenaf   ( H. cannabinus ) 
wherein 3.66 multiplication rates could be achieved upon fi ve subcultures with 4–6 
weeks of culturing at each level    .  

24.1.10      Lactuca sativa  L. 

   In vitro  propagation   of  lettuce   to develop breeding material  by   employing tissue 
culture was reported (Pink and Carter  1987 ). Effective shoot growth from maxillary 
bud explants was induced in the presence of 1–2 mg/L Kin and 6.4 mg/L IAA.  In 
vitro rooting   of these shoots was obtained in the presence of 6.4 mg/L of IAA fol-
lowed by 90–95 % of survival upon fi eld transfer. The main constraint in micro-
propagation of  lettuce   is its long culturing period. To overcome this, efforts were 
made (Teng et al.  1992 ) for rapid regeneration from suspension cultures of cotyle-
don-derived callus that was used to establish suspension cultures followed by opti-
misation of various parameters such as quality of callus, light intensity, the type of 
carbohydrate and its concentration and various auxins and cytokinins infl uence on 
growth and differentiation in suspension cultures. Hundreds of shoot production 
from 50 to 55 mg of cell aggregates within 2 weeks were reported when suspension 
cultures were grown in Schenk and Hildebrandt (SH) ( 1972 ) basal medium com-
prising 1 g/L inositol, 1.5 % glucose, 0.4 μM BAP and 0.54 μM NAA (Teng et al. 
 1992 ). The main advantage in this protocol was that there is no necessity of cell 
aggregates from suspension culture transferring onto solid media as reported earlier 
for  lettuce   by Alconero ( 1983 ) and Sasaki ( 1975 ) which requires 5 weeks to 3 
months. 

 In order to address salinity-related problems in cultivation of  lettuce   crop, salt 
tolerance was induced in  lettuce   via plastid genetic engineering wherein  betaine-
aldehyde dehydrogenase (BADH)   was transferred to the plant (Suleiman et al. 
 2012 ). Similarly in a study, a genotype-independent transformation of  lettuce   was 
investigated by Curtis et al. ( 1994 ) wherein 13  lettuce   cultivars were assessed for 
the suitability to  Agrobacterium -mediated gene transfer. Genetic manipulation 
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technology for improvement of  lettuce   was initiated by Kim and Botella ( 2004 ). 
Recently, somaclonal variation and selection approach were used (Cheng et al. 
 2014 ) to develop polyphenol-rich Rutgers Scarlet Lettuce (RSL), i.e.  L. sativa . 
Lettuce being an important vegetative crop having economic importance, tissue cul-
ture studies (Koevary et al.  1978 ; Pink and Carter  1987 ; Bloksberg and Salveit 
 1986 ; Ampomah-Dwamena et al.  1997 ) were attempted. Apart from these, to deter-
mine the response of apical and axillary shoot tip explants of  lettuce   to the storage 
time and head maturity was demonstrated by Jenni et al. ( 2006 ) wherein core length 
as a source of variation between maternal explants was also studied  .  

24.1.11      Moringa oleifera  L. 

   Moringa oleifera    is commonly known as  drumstick   or  ben oil tree  . It is a widely 
cultivated species of  Moringaceae   and native to the sub-Himalayan tracts of 
Northwestern India. The plant is a fast growing tropical perennial soft-wooded tree 
with a long history of traditional medicine and culinary uses. There are some other 
species of genus  Moringa  like  M. stenopetala  which is an important crop in Kenya 
and Ethiopia (Verdcourt  1985 ). Similarly,  M. peregrine  was known to the ancient 
Egyptians who utilised its seed oil. However, some of the species are in danger of 
extinction, especially  M. hildebrandtii  which is now extinct in the wild (Olson and 
Razafi mandimbison  2000 ).  M. oleifera  leaves are a very good source of food rich in 
nutrients and minerals, and the tree has maximum leaves at the end of the dry season 
when other foods are typically scarce (Fuglie  1999 ). There are few reports on the 
tissue culture of  M. oleifera  especially through clonal propagation using nodal 
explants taken from non-aseptic source, either from young seedlings or matured 
plants (Stephenson and Fahey  2004 ; Islam et al.  2005 ; Marfori  2010 ). Hence, the 
preservation of the  Moringa  spp. is thus of great concern from biodiversity, ethno-
botanical, dietary and pharmacological perspectives. In a recent report, Saini et al. 
( 2012 ) reported that the young nodal sections grown aseptically on MS medium 
supplemented with 4.44 μM BAP producing an average of 9–10 shoots per explant 
after 15 days of inoculation. Similarly, the rooting of individual shoots was obtained 
on 2.85 μM IAA along with 4.92 μM IBA. The micropropagated plants were more 
superior over control  plants   to contain 13.4 % and 14.7 %    higher amount of 
α-tocopherol and total carotenoids, respectively.  

24.1.12      Portulaca spp.  

   Portulaca    species are succulent herbs with profuse branching. They are    pharmaceu-
tically important plants (Chavalittumrong et al.  2007 ). In some parts of India,  P. 
grandifl ora  H. and  P. oleracea  L. are popularly known as edible purslane are used 
as leafy vegetable in view of nutrients and  nutraceutical  s. The arial part of this plant 
contains metabolites, viz. portulal, portulenone, portulenol, portulene, etc. In vitro 
propagation of this plant has been reported by using nodal segments (Jain and 
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Bashir  2010 ). Shoot proliferation up to 57 shoots per explant was observed in MS 
medium containing 4 mg/L BAP followed by effi cient rooting in the presence of 
0.75 mg/L NAA. Shoot explants are also able to induce rapid direct shoot multipli-
cation on MS  medium   containing 2 mg/L BAP  followed   by rooting on half MS 
medium with 0.75 mg/L NAA (Jain and Bashir  2010 ). Similar studies for  P. olara-
cea  was also reported (Rajendiran et al.  2015 ). 

  P. grandifl ora  callus cultures were  able   to produce betalain pigments. Especially, 
accumulation of  betacyanins   can be regulated by inhibiting the accumulation of 
DOPA. Tyrosine being a precursor of DOPA investigations was carried out to pro-
duce tyrosine from biochemical  conversions   by  using    Portulaca  callus (Endress 
 1980 ) wherein phenylalanine was used as a substrate.  

24.1.13      Rorippa nasturtium-aquaticum  L. 

  Watercress   is one of  the   popular high-value salad crop grown in the UK and other 
parts of Europe.    This plant commonly grows in large gravel-based beds of shallow 
fl owing calcarious spring water in southern parts of UK (Ryder  1979 ). As the breed-
ing programmes are very limited and also the absence of any cultivars (Ryder  1979 ), 
in vitro propagation methods for its propagation were attempted. Moreover, crook 
root is a fungal disease caused by  Spongospora subterranea  f. sp. that causes a huge 
loss to this crop. To address this, the potential use of somaclonal variations in water-
cress was investigated (Arnold et al.  1994 ,  1995 ; Claxton et al.  1998 ). Callogenesis 
could be obtained from petiole explants on MS medium comprising 1 μM TDZ and 
0.2 μM 2,4-D which subsequently produces up to 4–5 shoots per gram of callus in 
4 weeks. The regenerated adventitious roots were screened to fi nd the resistant 
clones against fungal diseases (Arnold et al.  1994 ). Similarly various explants such 
as hypocotyl, cotyledons, petiole, true leaf explants, stem and shoot tip cultures 
were also tested for callus induction and organogenesis. Especially,    the shoot tip 
culture obtained from 14-day seedlings was grown on MS  medium   supplemented 
with 0.44 μM BAP that leads to shoot proliferation.  

24.1.14      Rumex vesicarius  L. 

    Rumex vesicarius  (Polygonaceae), commonly called as  dock sorrel   or  bladder dock  , 
is an annual, pale green herb. This plant  fi nds   use as a  leafy   vegetable in some part 
of India and also as a medicinal plant. The seed germination, growth, development 
and effect of exogenous gibberellic acid and the effect of different temperatures on 
the germination rate, germination percentage and some chemical contents of sorrel 
for 16 days was reported (Asrar  2000 ,  2011 ). The percentage of seed germination 
was recorded with 200 ppm GA 3  (62 %) followed by 100 ppm GA 3  (53 %) after 48 
h of soaking at 20 °C in growth chamber, whereas the percentage seed germination 
decreases by increasing the incubation temperature (Asrar  2011 ). 

 Micropropagation of  R. vesicarius  shoots with MS + 8.88 μM BAP with an aver-
age of 11 shoots, MS + 26.63 μM Kin produced 4.6 shoots and rooting was best 
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achieved in medium containing 2.46 μM IBA or 7.38 μM NAA (Abo El-soud et al. 
 2012 ). Similarly, multiple shoots were induced on medium containing 8.8 μM BAP 
and 2.4 μM NAA with a maximum of 4–6 shoots, and rooting was induced in half-
strength MS medium containing Kin, IBA supplemented with 1.5 % activated char-
coal (Nandini et al.  2013 ). In vitro fl owering was also successful on MS medium 
containing BAP, NAA and GA 3  (Nandini et al.  2013 ). The somatic embryogenesis, 
profuse callusing and regeneration on MS medium with 2 mg/L BAP and 0.5 mg/L 
NAA were reported (Nandini et al.  2014 ). The shoot organogenesis from leaf-
derived callus on MS medium supplemented with 4 mg/L BAP, 1 mg/L NAA and 
rooting of the microshoots were done in half-strength MS with 1 mg/L NAA 
(Nandini et al.  2014 ). High concentration of auxin in combination with less concen-
tration of cytokinin induced the somatic embryogenesis and its maturation (Nandini 
et al.  2014 ). Lavanya et al. ( 2013 ) too reported the in vitro clonal propagation meth-
ods for  R. vesicarius . The leaf-derived callus-mediated shoot multiplication in 
Schenk and Hildebrandt (SH) medium with 2 mg/L BA was studied, wherein 90 % 
of callusing and 85 % multiple shoots were induced (Kakarla et al.  2014 ). The 
in vitro bioactive compound production was also demonstrated   (Alam  2012 ).  

24.1.15      Solanum nigrum  L. 

     Solanum nigrum    is commonly known as  black nightshade  . It is well familiar for its 
 medicinal   properties in view of two important alkaloids solamargine and solasoline 
in its plant parts. This plant is considered as a model plant in view of high multipli-
cation rate and easy in vitro propagation. Accordingly reports on direct regeneration 
of shoots from leaf explants (Sreedhar et al.  2008 ; Saritha and Naidu  2008 ; Mingozzi 
and Morini  2009 ), protoplast cultures (Hassanein and Soltan  2000 ), production of 
plants from anthers (Harn  1972 ), shoot tips (Verma et al.  2010 ) and nodal explants 
(Padmapriya et al.  2011 ) were available. In fact, the tissue culture attempts were 
initially attempted in the 1970s (Harn  1972 ) to produce haploid plants by anther 
culture through callus-mediated organogenesis on MS medium supplemented with 
1.9 mg/L NAA, 2.2 mg/L 2,4-D and 2.2 mg/L Kin followed by their transfer onto 
0.5 mg/L NAA and 2,4-D. In vitro shoot cultures are easily established from shoot 
cuttings from in vitro-germinated seedlings on MS medium or B5 medium with 
suitable plant growth regulators. B5 medium supplemented with 0.5 mg/L BAP was 
found to be good for multiple shoot production followed by its in vitro shoot pro-
duction with 1 mg/L IBA (Hassanein and Soltan  2000 ). By using shoot tip explants, 
up to 20 multiple shoots could be obtained in the presence of 1 mg/L BAP and 3 
mg/L BAP from shoot tips and nodal explants, respectively (Kavitha et al.  2012 ). 
Supplementation of media with NAA (1 mg/L) supports  effi cient   in vitro rooting 
within 2–3 weeks. Both Kin and BAP found to be more responsive for shoot induc-
tion from nodal explants, wherein up to 40–49 multiple shoots were produced from 
nodal explants (Padmapriya et al.  2011 ). The obtained shoots were able to respond 
effectively  for   in vitro rooting in the presence of 10–15 μM of IBA or 2,4-D. Effi cient 
methods for induction of callus culture from leaf explants and highly proliferative 
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cultures that able to produce multiple shoots (indirect organogenesis) were also 
developed (Yogananth et al.  2009 ; Sridhar and Naidu  2011 ; Mahadev et al.  2014 ). 

 In vitro fl owering induction in established microshoots of  S. nigrum  was reported 
on MS medium containing 2,4-D and BAP (Kolar et al.  2008 ). An effi cient somatic 
embryogenesis protocol by using root, stamen and leaf explants was reported by Xu 
et al. ( 2014 ), wherein 93–100 % response for producing embryogenic calli on MS 
medium comprising 1 mg/L 2,4-D under dark condition was achieved. Subsequently 
the development of frog egg-like bodies was achieved followed by plantlet forma-
tion in the presence of 0.5 mg/L BAP and 0.1 mg/L GA 3 . Ewais et al. ( 2015 ) evalu-
ated the infl uence of biologically synthesised silver nanoparticles on  S. nigrum  
callus response from leaf explants. Attempts were also made for  Agrobacterium 
rhizogenes  mediated transformation of  S. nigrum . Even for bioremediation studies, 
the in vitro cultures of  S. nigrum  are reported to be a good choice. Being a cadmium 
hyperaccumulator, cadmium toxicity was evaluated by studying protective effects 
of proline in callus and in vitro-regenerated shoots on  S. nigrum  (Xu et al.  2009 ). 
Verma et al. ( 2010 ) explored the possibility of preservation of germplasm through 
encapsulation of shoot tips by using alginates  . 

24.1.15.1     In Vitro Production of Metabolites 
 Signifi cant  contributions   towards  secondary metabolites   production in in vitro cul-
tures of  S. nigrum  were made by researchers wherein metabolites such as solasodine 
were analysed, quantifi ed and also improved in established in vitro shoot cultures 
and callus cultures (Bhat et al.  2008 ,  2010 ; Yogananth et al.  2009 ). Similarly analy-
sis of various phytochemical constituents that exhibit antimicrobial activities from 
in vitro callus cultures and crude plant extracts from  S. nigrum  was reported. The 
maximum solasodine content of 2.34 mg/g dry mass was observed in in vitro-regen-
erated shoots derived from leaves and 0.76 mg/g dry mass in non-regenerative callus 
which work better than 0.5 mg/g dry mass fi eld-grown shoots (Bhat et al.  2010 ). 
Prior to this, similar observations for higher content of solasodine in in vitro callus 
cultures of  S. nigrum  were achieved by Yogananth et al. ( 2009 ) wherein up to 0.142 
mg/g dry mass and 0.116 mg/g dry mass  of   solasodine was documented in callus 
culture grown in terms of 2.5 mg/L IAA +0.5 mg /L BAP and 2 mg/L NAA + 0.5 
mg/L BAP, respectively.   

24.1.16      Spinacia oleracea  L. 

 Spinach ( S. oleracea ) is a  dioecious   plant native to West Asia and probably Iran and 
at present is  widely   cultivated in the world as one of the most popular vegetables 
and known as a rich source of iron, vitamins and minerals (Bao et al.  2009 ). It is an 
important vegetable crop of which dioecy in nature has made cultivar improvement 
diffi cult using traditional breeding methods (Neskovic and Radojevic  1973 ) 
attempted micropropagation of spinach using seeds. The callus induction from leaf 
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explants of spinach could be achieved with MS medium containing 2 mg/L Kin and 
0.5 mg/L 2,4-D, and shoot regeneration occurred upon transferring to medium con-
taining 2 mg/L Kin, 0.01 mg/L 2,4-D and 1 mg/L GA 3 .    The established shoots were 
rooted on 1 mg/L IBA medium and transferred to fi eld condition with 60 % survival 
rate (Al-Khayri et al.  1991 ). Al-Khayri et al. ( 1992 ) studied the stimulator action of 
coconut water in two cultivars of spinach, High Pack and Baker, and showed that the 
addition of 15 % (v/v) coconut water to the culture medium improved callus growth, 
shoot regenerative capacity and shoot growth in leaf disc cultures of spinach.    The 
callus weight obtained after 5 weeks showed direct relationship to the varied con-
centration of coconut water added to the media. The shoot regeneration was noticed 
to be faster in coconut water containing media which took 4–5 weeks compared to 
8–12 weeks on a coconut water-free media. Shojaei et al. ( 2010 ) identifi ed the best 
explants and media for spinach tissue culture. Though the effects of explants were 
not signifi cant except on regeneration phase, the medium for callus induction was 
found to be MS media comprising 1.5 mg/L IAA and 2.5 mg/L GA 3 . Shoot regen-
eration was best in  MS   media containing 0.5 mg/L NAA and 2 mg/L GA 3 . The 
highest  shoot   regeneration frequency of 84 % was  obtained   in this media. The best 
rooting medium reported was MS medium containing 0.5 mg/L IBA.  

24.1.17      Talinum portulacifolium  L. 

  T. portulacifolium  is  an   erect shrub belonging to the family Portulacaceae. It is a 
very well- known   important medicinal plant in the local system of medicine and 
commonly wild grown in Tamil Nadu, Karnataka and other parts of India (Nair and 
Henry  1983 ). It is commonly used as GLVs due to its rich vitamin A and mineral 
content and to strengthen the body. The low survival rate by stem cuttings restricts 
its mass propagation via conventional methods. The tissue culture plants have been 
reported to possess superior fi eld performance to those derived from stem cutting in 
terms of survival rate, fruit yield, rhizome production and plant weight (Gustavsson 
and Stanys  2000 ). 

 There is a very limited data  on   the in vitro micropropagation of  T. portulacifo-
lium  compared to other species of  Talinum . The shoot proliferation of  T. portulaci-
folium  was effi cient in MS medium with 6 μM BAP and 2 μM IAA (Thangavel et al. 
 2008 ). It could be possible to get eight new shoots from  single   explant after three 
subcultures with 15 days of interval. The rooting was facilitated on MS medium 
containing with 4 μM IBA and 1 μM NAA (Thangavel et al.  2008 ). 

 Rao et al. ( 2009 ) reported the anti-hyperglycemic activity of  T. portulacifolium  
leaf methanol extracts against alloxan-induced diabetes. Similarly, the antidiabetic 
activity and antioxidant effects in the liver and kidney like malondialdehyde (MDA), 
reduced glutathione (GSH) and catalase levels of methanol extracts showed a sig-
nifi cant effect  in   rat model (Thalapaneni et al.  2011 ).  
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24.1.18      Trigonella foenum-graecum  L. 

   Trigonella foenum - graecum    is a medicinal plant extensively distributed in most 
regions of  the   world belonging to the family Leguminaceae. The seeds and leaves 
have been extensively studied not only for medicinal aspects (Shani et al.  1974 ) but 
also for nutritional value (Rajagopalan  1998 ). Elaleem et al. ( 2014 ) reported the 
in vitro callus induction on both B5 and MS medium from cotyledons and hypo-
cotyl explants with different combinations of plant hormones where B5 medium 
showed good response. The seeds have been extracted for polysaccharides, galacto-
mannan and different saponins such as diosgenin, yamogenin, mucilage, volatile oil 
and alkaloids such as choline and trigonelline (Seasotiya et al.  2014 ). El-Nour et al. 
( 2013 ) reported that the two auxins on callus induction using cotyledons and hypo-
cotyls explants. There are many bioactive, i.e. trigonelline, coumarin and nicotinic 
acid, compounds isolated from fenugreek seeds having medicinal activity especially 
diabetes (Moorthy et al.  2010 ). The  in   vitro shoot regeneration using different cyto-
kinins from fenugreek  has   been explored (Aasim et al.  2009 ,  2010 ). 

24.1.18.1     In Vitro Production of Shoots and Metabolites 
 There are several studies on  Trigonella  covering fi elds from secondary metabolite 
production from cell suspension culture (Cerdon et al.  1945 ; Khanna et al.  1975 ; 
Trisonthi et al.  1980 ; Ramesh et al.  2010 ), callus culture (Joshi and Handler  1960 ; 
Khanna and Jain  1973 ; Radwan and Kokate  1980 ), protoplast culture (Shekhawat 
and Galston  1983 ; Christen  2002 ; Petropoulos  2002 ) and organogenesis (Khawar 
et al.  2002 ; Prabakaran and Ravimycin  2012 ), and  Agrobacterium tumefaciens -
mediated genetic transformation (De La Riva et al.  1998 ; Merkli et al.  1997 ; Reid 
et al.  2003 ; Khawar et al.  2004 ) has been reported. Prabakaran and Ravimycin 
( 2012 ) investigated the chlorophyll pigment content in the callus with different mor-
phology and the in vitro-regenerated plants. An optimised method for in vitro cul-
ture conditions for diosgenin accumulation has been reported (Rezaeian  2011 ; 
Ciura et al.  2015 ). Vaezi et al. ( 2015 ) reported the indirect plant regeneration using 
different plant growth regulators in vitro established shoot from callus cultures.   
 

24.2     Future Prospects 

  GLVs being  a   rich source of nutrients and  nutraceuticals   are easily accessible to 
wide range of consumers at affordable price. Modern agricultural practices, includ-
ing polyhouse/greenhouse growing techniques that adopted of late in many devel-
oping countries to combat the adverse effects of environment contributed to a 
greater extent to their sustainable production and availability throughout the year to 
consumers. However, some of these GLVs are specifi c to geographical conditions. 
As explained above in this chapter, successful efforts were made by researchers to 
improve the quality of some commonly used GLVs with the intervention of plant 
tissue culture and other biotechnological methods. During this course, some 
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important biomolecules are also identifi ed which are otherwise known for their anti-
oxidant potential. Many of such  secondary metabolites   identifi ed are known for 
their potential applications in medicine hence could be potential  nutraceuticals  . But 
due to their low concentrations in intact plant parts, alternate methods for their pro-
duction through callus cultures or root cultures are having paramount signifi cance 
as it will lead to scale-up studies and also to pursue downstream processing for 
economic prospects. In in vitro cultures of plants such as  Basella rubra  and 
 Amaranthus  species, betalain pigments were streamlined. Whether it is for a pig-
ment or other metabolites, this alternate mode of production could act as a model for 
elucidating respective metabolite biosynthetic pathway. So, sustainable efforts are 
required to further fi ne-tune the existing methods for improvement of the quality of 
GLVs and also to embrace emerging technologies for large-scale production of 
GLVs and their effective utilisation upon postharvest (Fig.  24.1 ). As explained 
above, recent research has identifi ed many of GLVs as a valuable resource of nutri-
ents and metabolites with potential for multipurpose uses and also as a source for 
preparing raw materials of pharmaceutical industry. Now it is a well-established 

  Fig. 24.1    Scope for biotechnological improvement of green leafy vegetables       
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fact that GLVs are the source  of   bioactives and other constituents such as protein, 
mucilage and fi xed oils, as well as culinary uses for both traditional and modern 
fl avouring. The demand for such plant-based metabolites, mainly with a higher con-
tent, prompted more directed tissue culturing efforts. Successful efforts by research-
ers assert that there are possibilities for enhancing the chemical constituents by the 
use of tissue and static or suspension cell cultures (Khanna and Jain  1973 ; Trisonthi 
et al.  1980 ) and by biological manipulation of yield (Petropoulos  2002 ).

   Some of these GLVs contain antinutritional compounds such as oxalates, phy-
tates, hydrocyanides, etc. which pose a threat to consumer’s health (Agbaire and 
Emoyan  2012 ). Through genetic engineering it could be possible to either reduce 
such antinutritional compound content or to arrest their production (Fig.  24.1 ). 
Apart from this, the rampant use of fertilisers, pesticides and insecticides in the fi eld 
leads to environmental pollution and also leads to accumulation of poisonous chem-
icals and heavy metals in GLVs especially when they are grown in areas of industry-
polluted soils and waters. Under this context, organised cultivation of elite varieties 
of GLVs in polyhouse is a solution to get healthy plants for better health of consum-
ers. Many parts of the world are endowed with various types of indigenous leafy 
vegetables which provide not only food, income and employment but also as herbal 
medicine to the population. Some GLVs are unexplored and have uncharacterised 
germplasm, susceptible to pests and diseases, and contain antinutritional factors, 
recalcitrant seed and seed dormancy. Due to their perishable nature upon harvesting, 
infl uence against the realisation of potentials of the GLVs. In many third world 
countries, traditional indigenous leafy vegetables are important in the agricultural 
development of respective state and country as the case may be. For example, in 
African countries like Nigeria, some indigenous leafy vegetables, viz.  Amaranthus 
cruentus ,  Corchorus olitorius  L.,  Celosia argentea  L.,  Gongronema latifolium , 
 Vernonia amygdalina  Del,  Talinum triangulare ,  Telfairia occidentalis  Hook.f., 
 Talinum triangulare  Willd.,  Solanecio biafrae  (Olive and Hiern) C. Jeffrey and 
 Launea taraxicifolia  (Willd.) Amin ex  C. Jeffrey , are considered as a good source of 
nutrients (Opabode and Adebooye  2005 ). 

 These leafy vegetables are a key source of income for those who engage in its 
farming either at small scale or commercial way. Majority of these vegetables have 
proven to possess economic potentials and contribute to food security in rural areas. 
The research institutes in India focus mainly on the regularly cultivated species, and 
most of the unexplored or underutilised leafy vegetables often do not receive atten-
tion. Therefore, the research priorities have to be oriented to GLVs so that it will 
contribute substantially to promote the underutilised GLVs. It is necessary to pro-
mote GLVs propagation in large scale with the help of tissue culture methods such 
as clonal propagation, organogenesis, somatic embryogenesis and anther culture as 
they can solve improvement and production problems and also help to pick up elite 
lines with quality traits for  mass multiplication   and commercial propagation. 
Advocating such less-known GLV cultivation through ethnic group participation 
under respective local NGO monitoring or government-funded schemes or through 
homestead concept would be helpful to alleviate nutrient defi ciency diseases in poor 
and ethnic communities. If sustainable production of highly nutrient underutilised 
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leafy vegetables is promoted, the same would become a base for the concept of 
‘biofortifi cation through biotechnology to combat malnutrition’ .     
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 25      Nonzygotic Embryogenesis for Plant 
Development                     

     Mohamed     A.     El-Esawi    

    Abstract 
   Nonzygotic or somatic embryogenesis is a specialized developmental mode by 
which somatic cells, under appropriate induction conditions, undergo restructur-
ing pathway to form embryogenic cells. These cells then undergo a sequence of 
morphological and biochemical alterations that lead to the formation of a nonzy-
gotic embryo and the production of new plants. Nonzygotic embryogenesis is a 
model system for a large-scale plant production. In vitro nonzygotic embryogen-
esis has wide practical and commercial applications in basic and applied aspects 
of agriculture and plant sciences. This chapter discusses the factors affecting 
nonzygotic embryogenesis and provides valuable information on induction, 
development, origin, and maturation of nonzygotic embryos, being useful for 
biotechnological applications. It also highlights the physiological, biochemical, 
and molecular aspects of nonzygotic embryogenesis. Moreover, this chapter sur-
veys the characteristics of zygotic and nonzygotic embryos, as well as the syn-
thetic seed technology and the practical applications of nonzygotic embryogenesis 
for crops improvement.  

25.1       Introduction 

 The life cycle of higher plants comprises the haploid gametophyte and the diploid 
sporophyte generations. The diploid sporophyte generation starts with a fertilization 
process which produces a zygote embryo and an endosperm nucleus (Yang and 
Zhang  2011 ). The  developmental pathway   of the zygotic embryogenesis includes 
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globular, scutellar, and coleoptilar stages in monocots; globular-shaped, heart- 
shaped, torpedo-shaped, and cotyledonal stages in dicots; and globular and early 
and late cotyledonary embryos in conifers (Yang and Zhang  2011 ). Accomplishment 
of these developmental stages leads to the production of a new plant. Alternatively, 
the new plant could be originated from a single somatic cell or a group of somatic 
cells. This propagation technology, differing from the zygote embryogenesis path-
way, is called somatic or nonzygotic embryogenesis, and the embryos derived from 
somatic cells are known as somatic or nonzygotic embryos (Yang and Zhang  2011 ), 
being the main focus of this chapter. 

 Nonzygotic embryogenesis is a specialized developmental mode by which 
somatic cells, under appropriate induction conditions, undergo restructuring path-
way to produce embryogenic cells. These cells then undergo a sequence of morpho-
logical and biochemical alterations that lead to the formation of a somatic embryo 
and the production of new plants (Yang and Zhang  2011 ). Nonzygotic embryogen-
esis, occurring among widely tissue types, is a model system for the study of mor-
phological, physiological, biochemical, and molecular events happening during the 
embryos development in higher plants. In vitro nonzygotic embryogenesis has wide 
practical applications in basic and applied aspects of agriculture and plant sciences 
(Bhojwani and Dantu  2013 ). 

 The  formation   of nonzygotic embryos in vitro was fi rst demonstrated in carrot by 
Steward et al. ( 1958 ). Since then, carrot has become a model system to investigate 
the different aspects of nonzygotic embryogenesis in several plant species. The gen-
eration of nonzygotic embryos has been recorded in more than 500 species of 
monocots and dicots including carrot, citrus, alfalfa, coffee, maize, cotton, mustard, 
sunfl ower, rice, wheat, and  Ranunculus sceleratus  (Bhojwani and Dantu  2013 ). In 
 Ranunculus sceleratus , the fl oral and somatic tissues produce callus on a coconut 
milk-containing media, and several nonzygotic embryos are formed on this callus 
within a short period on the original medium (Bhojwani and Dantu  2013 ). These 
nonzygotic embryos grow in situ or upon transfer to a fresh medium. In citrus, the 
nonzygotic embryos originate from potential nucellar cells or from a callus in sub-
cultures (Bhojwani and Dantu  2013 ). Nonzygotic embryogenesis has been also 
reported from single somatic cells of  Macleaya cordata . Moreover, nonzygotic 
embryogenesis of  Arabidopsis thaliana  is being developed as a model system to 
investigate the molecular biology and genetic aspects of embryogenesis (Raghavan 
 2006 ; Bhojwani and Dantu  2013 ).  

25.2     Factors Affecting Nonzygotic Embryogenesis 

 Nonzygotic (somatic) embryogenesis procedures include induction of embryogen-
esis, embryo development, embryo maturation, and their growth to give complete 
plants. The widely used method to induce somatic embryogenesis is to culture an 
appropriate plant tissue in a suitable nutrient medium supplemented with auxins 
(Bhojwani and Dantu  2013 ). The requirement for embryogenesis induction differs 
based on the plant species. Successful somatic  embryogenesis   requires the right 
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selection and manipulation of plant tissues and genotype, basal media, growth 
regulators, and physical culture environment. 

25.2.1     Plant Tissue and Genotype 

 The selection of explant (plant tissue) for  gener  ating somatic embryos is limited to 
the less differentiated tissues such as hypocotyl segments, embryonic shoot tip, 
young leaves and fl oral parts, and immature zygotic embryos (Bhojwani and Dantu 
 2013 ). The choice of immature zygotic embryos as explants plays the most impor-
tant role in the successful induction of nonzygotic embryogenesis in monocots and 
many dicots. The more differentiated explants contain cells which are converted to 
be embryogenic and are known as  induced embryogenic determined cells (IEDCs)  , 
while the zygotic embryos comprise cells that have embryogenic competence and 
are known as  pre-embryogenic determined cells (PEDCs)   (Bhojwani and Dantu 
 2013 ). Immature zygotic embryo is used as the best explant for somatic embryogen-
esis induction in  Arabidopsis thaliana . Immature embryos of this plant species cul-
tured on a liquid medium may exhibit indirect somatic embryogenesis through a 
callus phase (Raghavan  2004 ). In contrast, the older embryos cultured on semisolid 
medium reveal direct somatic embryogenesis from the protoderm cells of the coty-
ledons (Gaj  2001 ; Kurczyńska et al.  2007 ). 

 Remarkable intervarietal variations for somatic embryogenic potential have been 
recorded in many crops such as maize, groundnut, rice, and soybean (Bhojwani and 
Dantu  2013 ). A mutant line (2HA) of  Medicago truncatula  cv. Jemalong revealed 
500-fold greater capacity to produce somatic embryos than the parent genotype 
(Nolan et al.  2003 ).  Genot  ypic variations could be due to varying levels of growth 
regulators. The endogenous levels of the cytokinin and auxin in the ovules of highly 
embryogenic genotypes of maize were lower than that in the poorly embryogenic 
and nonembryogenic genotypes (Bhojwani and Dantu  2013 ).  

25.2.2     Basal Media 

 Basal medium of  Mu  rashige and Skoog ( 1962 ) or its modifi cations have been 
mainly used for the successful somatic embryogenesis. However, White’s or SH 
basal medium has been rarely utilized with appropriate supplements. Sucrose is the 
most widely used carbon source, but glucose and galactose/lactose were preferred 
in scarlet runner bean and citrus nucellus cultures, respectively (Bhojwani and 
Dantu  2013 ). Moreover, the nitrogen form in the culture medium also infl uences 
in vitro somatic embryogenesis. For example, carrot cultures initiated in White’s 
medium that comprises KNO 3  as the only source of inorganic nitrogen could not 
form somatic embryos upon transfer to auxin-free medium. However, the embryos 
were successfully developed upon addition of a reduced nitrogen source such as 
NH 4 Cl mixed with KNO 3  (Halperin and Wetherell  1965 ). 
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 Other nitrogen sources such as casein hydrolysate (CH) and amino acids could 
also enhance somatic embryo development (Bhojwani and Dantu  2013 ). Casein 
hydrolysate (CH; 3 g L −1 ) stimulated somatic embryos development in orchard 
grass cultures. Proline, alanine, arginine, and glutamine also induced the develop-
ment of somatic  e  mbryos in alfalfa. Therefore, nitrogen sources play an important 
role in the continued synthesis of protein and nucleic acids, as well as maintaining 
an appropriate pH during embryogenesis.  

25.2.3     Growth Regulators 

 Growth regulators can exert large effects in plants in terms of gene expression, 
growth, and development (Beyl  2011 ). Endogenous plant growth regulators (PGRs) 
that the plant biosynthesizes for itself are known as hormones which control differ-
ent processes such as root and bud initiation, dormancy, cell division and enlarge-
ment, fl owering, and ripening (Beyl  2011 ). When a plant is developing from a 
germinating seed, such hormones direct the growth and development of shoots and 
roots through cell division and enlargement. The following fi ve categories of hor-
mones have been traditionally identifi ed and classifi ed as auxins, cytokinins, gib-
berellins, abscisic acid, and ethylene. Auxins and cytokinins are the most important 
hormones used in plant tissue culture media. Other new PGRs have been discovered 
such as jasmonates, polyamines, salicylic acid, brassinosteroids, triazoles, and oli-
gosaccharins (Beyl  2011 ). 

25.2.3.1     Auxin 
 Auxins enhance root initiation and cell enlargement (Beyl  2011 ). Additionally, aux-
ins play an essential role in apical dominance, phototropism, geotropism, root 
induction, and wounding responses (Beyl  2011 ).  Auxins   are commercially exploited 
as herbicides or to stimulate parthenocarpy to prohibit fruit abscission (Beyl  2011 ; 
Bhojwani and Dantu  2013 ).  Indoleacetic acid (IAA)   is the most common auxin 
found naturally and of a limited use in tissue culture media due to its sensitivity to 
light and tendency to be oxidized, metabolized, or broken-down by microorganisms 
(Beyl  2011 ). The concentration of endogenous IAA in plants is regulated by the rate 
of biosynthesis and oxidation by the enzyme IAA oxidase and the synthesis of con-
jugates with amino acids and sugars. Other auxins found naturally include phenyl-
acetic acid (PAA) and indole-3-butyric acid (IBA). Auxins including naphthalene 
acetic acid (NAA), 2,4- dichlorophenoxyacetic acid (2,4-D), dicamba (DIC), and 
picloram (PIC) can induce callus growth in tissue culture and are horticulturally 
used as herbicides against dicotyledonous weeds (Beyl  2011 ; Bhojwani and Dantu 
 2013 ). PAA and IAA are relatively weak auxins, while 2,4-D, NAA, DIC, and PIC 
are strong (Beyl  2011 ; Bhojwani and Dantu  2013 ). The carrot embryogenic cultures 
could be initiated and propagated in a medium containing 2,4-D of a concentration 
varied between 0.5 and 1.0 mg L −1 . On this medium, callus could  differenti  ate local-
ized groups of meristematic cells, known as  proembryogenic masses (PEMs)   
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(Bhojwani and Dantu  2013 ). These PEMs could be developed into dicot embryos 
only upon transfer to auxin-free media or in the presence of low levels of auxin.  

25.2.3.2     Cytokinins 
  Cytokinins   proved to have impressive effects on the induction of somatic embryo-
genesis. Cytokinins play an essential role in controlling different processes in plants 
such as cell division and enlargement, development of chloroplasts and shoots, vas-
cular development, resource uptake, as well as nodulation in leguminous species 
(Beyl  2011 ). They could also mitigate apical dormancy and induce shoot prolifera-
tion and cell division in tissue culture techniques. Cytokinins include two general 
groups known as adenine and phenylurea cytokinins (Beyl  2011 ). Adenine cytoki-
nins may be aromatic such as benzyladenine (BA) and meta-topolin (mT) or iso-
prenoid such as zeatin (ZEA) and isopentenyladenine (IPA). Phenylurea cytokinins 
comprise thidiazuron (TDZ) and diphenylurea. 

 Synthetic cytokinins including BA and 6-furfurylaminopurine (KIN) have 
proved to have an important role in inducing shoot proliferation and callus forma-
tion in different woody and herbaceous species (Beyl  2011 ). IPA and ZEA found 
naturally were isolated from  Zea mays  kernels (Letham  1963 ). In carrot tissue cul-
ture, ZEA promoted the process of somatic embryogenesis at a concentration of 0.1 
μM. Meta-topolin (mT; Strnad et al.  1997 ; Beyl  2011 ), isolated from poplar leaves, 
could be more active than ZEA or BA in inducing shoot formation of sugar beet 
(Kubalakova and Strnad  1992 ) and  Spathiphyllum fl oribundum  (Werbrouck et al. 
 1996 ). TDZ, used as a defoliant for cotton, is a potent cytokinin showing activity at 
low concentrations (10 pM) (Preece et al.  1991 ). TDZ plays an essential role in the 
micropropagation of recalcitrant species and may act through endogenous hor-
mones modulation (Murthy et al.  1998 ; Beyl  2011 ). Many plant species including 
tobacco, peanut, geranium, and chickpea showed responsiveness to TDZ in terms of 
embryogenesis (Murthy et al.  1998 ). A mixture of TDZ and IPA stimulated the 
growth of fl oral structures from stamen explants in  Rhododendron  (Shevade and 
Preece  1993 ; Beyl  2011 ). Furthermore, Skoog and Miller ( 1957 ) studied the rela-
tionship between auxins and cytokinins in regulating the formation of shoots and 
roots from callus. If the ratio of cytokinin to auxin is high, the shoot  form  ation 
occurs, but, if the ratio of auxin to cytokinin is high, the root formation happens. 
High concentrations of both auxins and cytokinins can induce callus formation.  

25.2.3.3     Abscisic Acid 
  Abscisic acid (ABA)   has an  important   role in stomatal control, bud and seed dor-
mancy, leaf abscission, and senescence (Beyl  2011 ). In tissue culture, ABA is posi-
tively effective at low concentrations but prohibits both callus growth and production 
of buds and embryos at high concentrations (Gaspar et al.  1996 ). Brown et al. ( 1989 ) 
reported that the low concentrations of ABA could promote embryogenesis in cere-
als. ABA proved to be effective in pre-treating somatic embryos of carrot to enhance 
their survival rate (Kitto and Janick  1985 ; Beyl  2011 ). ABA could also promote the 
development of conifer somatic embryos (Becwar et al.  1987 ; Hakman and von 
Arnold  1988 ; Boulay et al.  1988 ; Misra and Green  1990 ). ABA can prohibit shoots 
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proliferation when germplasm preservation is required (Singha and Powell  1978 ; 
Beyl  2011 ). ABA may also inhibit growth of grape somatic embryos as reported 
earlier by Rajasekaran et al. ( 1982 ).  

25.2.3.4     Gibberellins 
 Gibberellins have strong effects on stem elongation and sex expression in plants 
(Beyl  2011 ). They also play an essential  role   in dormancy and germination but do 
not have a large role in regulation of in vitro development (Gaba  2005 ). Gibberellins 
may reduce root formation and interfere with bud initiation and embryogenesis 
(Beyl  2011 ). Rosati et al. ( 1980 ) proved that GA3 has been effi cient for rooting of 
Japanese plum in vitro. However, Jiminez ( 2001 ) reported that gibberellins could 
prohibit embryogenesis or somatic embryo maturation in different plant species. 
Exogenous GA3 decreased the number of somatic embryos produced in carrot 
(Fujimura and Komamine  1975 ). A combination of gibberellic acid, zeatin, and 
ABA was  ne  eded in caraway (Ammirato  1977 ), while GA3 and 2iP were required 
in grapevine (Bhojwani and Dantu  2013 ).  

25.2.3.5     Ethylene 
 Ethylene plays a role in plant  morph  ogenesis, ripening, senescence, abscission, and 
stress (Beyl  2011 ). High concentrations of ethylene can prohibit the in vitro growth 
and maturation of plant tissues. Ethylene used exogenously prohibited somatic 
embryogenesis in  Daucus carota . 2,4-D induced the inhibition of embryo develop-
ment that might be due to the production of endogenous ethylene. Ethylene biosyn-
thesis (nickel, cobalt, and salicylic acid) and action inhibitors could promote somatic 
embryogenesis in plant species such as rubber and carrot (Beyl  2011 ).   

25.2.4     Selection of Subculture and Electric Current-Dependent 
Stimulation 

 Few multicellular explants could  express   their cellular totipotency under specifi c 
culture conditions (Bhojwani and Dantu  2013 ). The suspension cultures and calli 
that came from these explants are heterogeneous in terms of the embryogenic poten-
tial of its component cells. Sometimes, the embryogenic parts of calli are distinct 
from the nonembryogenic portions based on their morphological characteristics, 
and it is essential to prepare appropriate subcultures to initiate regenerating tissue 
cultures (Bhojwani and Dantu  2013 ). Nabors et al. ( 1983 ) reported that the embryo-
genic calli of various Poaceae species were granular and with a smooth surface, but 
the nonembryogenic calli were rough and translucent. Similarly, the embryogenic 
calli of  Coffea arabica  appeared brown and hard  while   the nonembryogenic calli 
were friable and pale (Quiroz-Figueroa et al.  2006 ). 

 Dijak et al. ( 1986 ) reported that a moderate electric current could stimulate the 
differentiation of embryos and shoots. For example, in alfalfa, the exposure of the 
protoplasts to a moderate electric current promoted the direct embryogenesis from 
40 to 100 % and the number of embryos per plate from 76 to 116 (Bhojwani and 
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Dantu  2013 ). Such electrical  stimu  lation of a plant development could be attributed 
to changes in microtubules organization that infl uence the cell polarity (Dijak and 
Simmonds  1988 ; de Jong et al.  1993 ; Bhojwani and Dantu  2013 ). 

 Other factors including initial cell density and light and oxygen concentration in 
cultures play an important role in the induction of plant somatic embryogenesis 
(Bhojwani and Dantu  2013 ).   

25.3     Induction, Development, and Origin of Nonzygotic 
Embryos 

 Depending on the culture conditions and explant nature, somatic embryos may orig-
inate either directly from the explant cells or indirectly via a phase of callus forma-
tion after many cycles of cell divisions (Bhojwani and Dantu  2013 ). 

25.3.1     Induction 

 Plant growth regulators, especially auxin, are widely exploited to  induc  e dedifferen-
tiation required to get embryogenic competence (Bhojwani and Dantu  2013 ). Auxin, 
such as 2,4-D, is the most important hormone used to activate cell division in the 
differentiated plant cells both in vivo and in vitro. An important process correlated 
with the somatic embryogenesis stimulation is the change of cellular polarity. Plant 
growth regulators applied for the induction of somatic embryogenesis may change 
the cell polarity and enhance asymmetric division (Bhojwani and Dantu  2013 ). In 
carrot cell suspensions, the smaller daughter cells were developed into nonzygotic 
embryos (Backs-Hüsemann and Reinert  1970 ). The polarity of the entire somatic 
embryogenesis is estimated before the fi rst division of the embryogenic cells. Dijak 
et al. ( 1986 ) reported that the exposure of freshly isolated mesophyll  pr  otoplasts to 
an electric current enhanced the embryogenic response in alfalfa. The electric cur-
rent would stimulate the differentiation of embryos and shoots through affecting 
cell polarity and changing the microtubules organization.  

25.3.2     Development 

 In carrot, embryogenic cells are formed  on   the medium after reinitiation of cell divi-
sion and cell proliferation in the presence of auxin (Bhojwani and Dantu  2013 ). The 
suspension cultures comprise  proembryogenic masses (PEMs)   and two types of 
single cells, known as cytoplasmically rich small cells and vacuolated long cells. 
The cytoplasmically rich small cells may form PEMs or globules (Komamine et al. 
 1990 ). However, the majority of the PEMs originate from the pre-existing PEMs (de 
Vries et al.  1988 ; Emons et al.  1992 ). PEMs contain embryogenic cells held together 
by nonembryogenic cells. The continued presence of auxin induces cell elongation 
and adhering cells disruption (Bhojwani and Dantu  2013 ). The embryogenic cells 
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excrete specifi c proteins into the culture media that support maintaining the embryo-
genic potential of cultures and stimulate the appearance of small embryogenic cells 
in nonembryogenic cultures (Kreuger and Van Holst  1993 ). Upon transfer of carrot 
embryogenic cultures to auxin-free medium, the disruption of cells from  each   oth-
er’s ends and the globules could be developed into globular embryos (Bhojwani and 
Dantu  2013 ). In this case, the fi rst differentiation step is the production of a proto-
derm outside the globule. The globular embryos could be developed further into 
typical embryos. The developing embryos could then produce their own auxin, and 
further morphogenesis could occur.  

25.3.3     Origin 

 Nonzygotic embryos originate from  si  ngle cells (Gray  2011 ; Bhojwani and Dantu 
 2013 ). Many studies reported the somatic embryogenesis in callus and plant suspen-
sion cultures leading to the production of somatic embryos resembling the zygotic 
embryos (Bhojwani and Dantu  2013 ). Backs-Hüssemann and Reinert ( 1970 ) 
reported the formation of bipolar somatic embryos resembling zygotic embryos 
from a single cell separated from carrot tissue cultures. The cell was divided by 
unequal division and the smaller derivative was further divided to form an embryo.   

25.4     Maturation of Nonzygotic Embryos 

 Nonzygotic (somatic) embryos  g  enerally skip the fi nal stage of zygotic embryo 
maturation and grow to form weak seedlings (Bhojwani and Dantu  2013 ). To pro-
mote maturation, the morphologically fully developed nonzygotic embryos need 
special treatments such as abscisic acid treatment, exposure to a high concentration 
of sucrose, and gradual drainage. The maturation of nonzygotic embryos of soybean 
was signifi cantly increased in the presence of sucrose as reported earlier by 
Buccheim et al. ( 1989 ). Maize somatic embryos could also undergo a maturation 
phase to form a typical storage organ in the presence of a high sucrose concentration 
(Emons and Kieft  1993 ). Senaratna et al. ( 1989 ) also reported that nonzygotic 
embryos of alfalfa could resist desiccation by treating them with abscisic acid at the 
torpedo to cotyledonary stages. These abscisic acid-treated embryos were converted 
into plantlets upon a direct sowing in sterile soil. The vigor of these plantlets was 
greater than that of the plantlets originated from non-desiccated embryos. Sometimes 
the somatic embryos show structural abnormalities which should be minimized to 
enhance the maturation and development  of   nonzygotic embryos (Bhojwani and 
Dantu  2013 ). Moreover, the maturation and conversion of somatic embryos could 
be enhanced under a reduced humidity or in the presence of auxin inhibitors.  
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25.5     Physiological and Biochemical Traits of Nonzygotic 
Embryogenesis 

 Physiological and biochemical  cha  nges could happen within the cell which gets 
embryogenic competence before the appearance of any morphological differentia-
tion of nonzygotic embryo (Bhojwani and Dantu  2013 ). The most important change 
detected is in the endogenous levels of hormones and their associated effects. Noma 
et al. ( 1982 ) reported that, in nonembryogenic callus, the levels of polar gibberellic 
acids were higher than the less polar ones. However, when the callus became 
embryogenic, the levels of less polar gibberellic acids were higher than the polar 
ones. Abscisic  aci  d also exhibits changes in endogenous levels relying on the 
embryo stage (Kamada and Harada  1981 ; Bhojwani and Dantu  2013 ). 

 The levels of arginine and aliphatic amines were maximum during globular and 
torpedo developmental stages but were reduced in geminating embryos (Bhojwani 
and Dantu  2013 ). The increase in the endogenous level of polyamines is associated 
with the somatic embryogenesis induction in carrot (Altman et al.  1990 ). Further 
studies on mango and  Solanum melongena  supported the causative role of poly-
amines in nonzygotic embryogenesis (Litz et al.  1993 ; Yadav and Rajam  1998 ). 
During the development of globular  emb  ryo, an increase in the turnover rate of 
RNA and protein followed by active DNA synthesis was observed (Fujimura et al. 
 1980 ).  

25.6     Molecular Aspects of Nonzygotic Embryogenesis 

 Changes in gene expression may  oc  cur during somatic embryogenesis. Several 
molecular markers and embryo-specifi c genes have been recognized and cloned 
from somatic embryos (Zimmerman  1993 ; Schmidt et al.  1997 ; Montero-Córtes 
et al.  2010 ; Bhojwani and Dantu  2013 ). Calcium plays a key role in regulation of 
several cellular and physiological processes in plants (Yang and Zhang  2011 ). In 
 Daucus carota  system, Ca2+ proved to promote somatic embryogenesis. The vacu-
olar Ca 2+  is the fi rst signal that helps in the recognition of embryogenic cells 
(Bhojwani and Dantu  2013 ). Cellular calcium signals are observed and inherited by 
sensor molecules. Three major classes of Ca 2+  sensors have been identifi ed in plants 
(Yang and Zhang  2011 ): (1) Calmodulin (CaM) is found in the meristematic regions 
of developing embryos and embryogenic cell cultures. In cultures of  Saccharum 
offi cinarum , CaM expression was specifi c to the embryogenic stage. (2) Calcium- 
dependent protein kinase (CDPK) has a C-terminal CaM-like domain which can 
directly bind Ca2+. CDPKs play regulatory roles in several developmental and 
metabolic processes. Anil and Rao ( 2000 ) reported that blocking the CDPK- 
involved signaling pathway prohibits nonzygotic embryogenesis in  Santalum 
album . (iii) Calcineurin B-like proteins (CBLs) play an essential role in decoding 
 calci  um transients and regulating a family of protein kinases (CIPKs). Various CBL 
proteins and CIPKs were identifi ed and implicated as important components of 
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abiotic stress responses and ion transport processes (Yang and Zhang  2011 ).  CIPK9  
is essential in the early stage of somatic embryogenesis (Zhu et al.  2008 ). 

 Cell wall-associated proteins have a signaling role in plant development 
(Bhojwani and Dantu  2013 ). Oligosaccharin group of these proteins can participate 
in embryogenesis regulation. The wall of the embryogenic cells of maize has arabi-
nogalactan proteins (AGPs) (Samaj et al.  1999 ; Bhojwani and Dantu  2013 ). 
Chapman et al. ( 2000 ) reported the key role of AGPs in the induction of somatic 
embryogenesis in  Cichorium . Arabinogalactan proteins of tomato could also induce 
the somatic embryogenesis in carrot (Kreuger and van Holst  1996 ). Moreover, two 
callus-specifi c proteins (Cl and C2) are formed in proliferating carrot  cell   cultures 
(Bhojwani and Dantu  2013 ). Upon transfer to an embryogenic-specifi c medium, the 
protein profi le of callus changes resulting in the appearance of two new embryo- 
specifi c proteins (E1 and E2). The callus-specifi c and embryo-specifi c proteins 
could be regulated (Sung and Okimoto  1981 ,  1983 ). 

 Germin-like proteins (GLPs), embryogenic cell proteins (ECPs), and Trx H pro-
teins (Karami et al.  2009 ; Bhojwani and Dantu  2013 ) have been identifi ed at differ-
ent stages during somatic embryogenesis. Moreover, Schmidt et al. ( 1997 ) isolated 
many genes from carrot suspension cultures, such as Somatic Embryogenesis 
Receptor Kinase (DcSERK) that act as a marker of single competent cells. AtSERK1 
gene has been separated from  Arabidopsis thaliana . Overexpression of AtSERK1 
gene in  Arabidopsis thaliana  seedlings showed three- to fourfold increase in the 
initiation effi ciency of somatic embryogenesis (Bhojwani and Dantu  2013 ). LEAFY 
COTYLEDON (LEC) 1 and 2 are two genes identifi ed through the use of loss- o  f- 
function mutations in  Arabidopsis  (Bhojwani and Dantu  2013 ). LEC1 and LEC2 
affect embryo maturation and partially convert cotyledons into leaves. Expression 
of both LEC1 and LEC2 stimulate the embryos formation on vegetative tissues 
(Lotan et al.  1998 ; Stone et al.  2008 ). LEC2 stimulates somatic embryogenesis in 
vegetative tissues and can act through AGAMOUS-Like 15 (AGL15), stimulating 
the enzyme that inactivates GA and thus promote the formation of somatic embryo 
(Stone et al.  2001 ,  2008 ; Wang et al.  2004 ). 

 Analysis of the conditioned cell-free medium, used to induce somatic embryo-
genesis in fresh cultures, revealed the presence of three types of extracellular  pro-
teins   (EPl, EP2, and EP3) which have been released by embryogenic cells. Only 
nonembryogenic cells can release EPl (van Engelen et al.  1991 ; Bhojwani and 
Dantu  2013 ). EP2 is only produced by the somatic embryos and embryogenic cells 
and could be expressed in the PEMs  periphe  ral cells and the somatic embryos pro-
toderm (Sterk et al.  1991 ). EP2 may also be involved in the transport of cutin mono-
mers to the specifi c sites of cutin synthesis. EP3 could induce the normal protoderm 
formation (de Jong et al.  1992 ). Furthermore, PLANT GROWTH ACTIVATOR 6 
(PGA6) gene has been identifi ed in  Arabidopsis  (Bhojwani and Dantu  2013 ). 
Overexpression of PGA6 gene enhanced the  forma  tion of somatic embryo from dif-
ferent vegetative tissues and zygotic embryo. PGA6 is similar to WUSCHEL 
(WUS) gene that regulates the stem cells fate in shoot and fl oral meristem and helps 
in maintaining the embryonic stem cells identity (Zuo et al.  2002 ). MYB118 and 
MYB115 genes have also been identifi ed and could play an important regulatory 
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role in inducing vegetative-to-embryonic transition as well as enhancing somatic 
embryos formation in  Arabidopsis   fr  om vegetative parts (Wang et al.  2009 ; 
Bhojwani and Dantu  2013 ).  

25.7     Characteristics of Zygotic and Nonzygotic Embryos 

 Unlike the zygotic embryos, nonzygotic  embry  os may exhibit secondary embryo-
genesis and their development is asynchronous (Bhojwani and Dantu  2013 ). Zygotic 
and nonzygotic embryos have the same developmental patterns, passing through 
globular, scutellar, and coleoptilar stages in monocots, or globular, heart, torpedo, 
and cotyledonary stages in dicots and conifers (Gray  2011 ). During early develop-
mental stage, the embryo gains a globular shape and remains undifferentiated but 
with a well-defi ned epidermis. However, the fi nal stages of development are distin-
guished by coleoptilar enlargement in monocots and increase in cotyledon size in 
dicots (Gray  2011 ). At the same time, the embryonic axis becomes increasingly 
developed. In dicots, the root apical meristem becomes well-established. In mono-
cots, the embryo axis grows parallel to the scutellum. The root apical meristem is 
embedded, whereas the shoot apical meristem grows externally and is protected by 
the coleoptile (Gray  2011 ). 

 The major difference in the gross morphology between zygotic embryos in seeds 
and nonzygotic embryos growing in vitro is due to the physical  cons  traint on zygotic 
embryos. Zygotic embryos exhibit a compressed shape due to their fl attened shape 
during development (Gray  2011 ). However, somatic embryos become larger and 
have wider hypocotyls and cotyledons (Gray and Purohit  1991 ). Additionally, more 
developmental abnormalities occur during somatic embryogenesis when compared 
to zygotic embryogenesis. Somatic embryos may also exhibit structural abnormali-
ties including poorly developed apical meristems and extra cotyledons (Gray  2011 ). 

 Unlike the zygotic embryos, nonzygotic embryos lack a suspensor which is the 
pathway for all nutrients required (Gray  2011 ; Raghavan  1976 ). Moreover, nonzy-
gotic embryos often lack a quiescent resting phase. In contrast, during seed matura-
tion, zygotic embryos of several crops have a resting period, being the main factor 
allowing seeds to be  conserve  d and used in agricultural practices (Gray  1986 ; Gray 
and Purohit  1991 ).  

25.8     Synthetic Seed Technology and Applications 
of Nonzygotic Embryogenesis 

 In the whole plant, the biochemical and  mole     cular markers have been used for 
improving crops through breeding practices (El-Esawi et al.  2012 ,  2015 ,  2016a ,  b ; 
Sammour et al.  2013 ; El-Esawi and Sammour  2014 ; El-Esawi  2015a ,  b ,  2016 ; 
Jourdan et al.  2015 ; Consentino et al.  2015 ). However, in tissue culture, the artifi cial 
or synthetic seed technology has emerged with the aim of developing somatic 
embryogenesis into a commercially benefi cial method of plant multiplication and 
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improvement (Gray  2011 ). A synthetic seed is a nonzygotic embryo engineered to 
be of practical uses in the commercial plant regeneration (Gray  2011 ). Due to these 
useful practical reasons, somatic embryos should be converted into synthetic seeds 
(synseeds) by encapsulating in a protective covering for fi eld planting (Pinto et al. 
 2008 ). The synseeds coating must be mild and protective to the somatic embryos 
and should incorporate growth regulators, nutrients, and other constituents neces-
sary for germination (Bhojwani and Dantu  2013 ). The synthetic seeds should also 
be compliant to the existing farm machinery. The successful synthetic seed technol-
ogy also relies on the quality and development of  nonzygotic      embryos which should 
have high rates of maturation and conversion on planting (Pinto et al.  2008 ). The 
most common widely used method for encapsulation of single somatic embryos is 
the coating with calcium-alginate (Bhojwani and Dantu  2013 ). The important 
advantages of synthetic seeds include their easy handling and transportation, higher 
scale-up capacity, potential long-term storage, uniformity in production, and poten-
tial for automation of the whole production process (Bhojwani and Dantu  2013 ). 
Seedless watermelon is an attractive candidate for synthetic seed technology since 
the per-plant cost could be reduced (Gray  2011 ). Similarly, conifers, which are dif-
fi cult to be improved using breeding practices, would benefi t from the artifi cial seed 
technology applications (Farnum et al.  1983 ; Gray  2011 ). 

 Since the nonzygotic embryogenesis has been induced in the majority of crop 
plants, very large numbers of somatic embryos have been obtained. In carrot,  n     on-
zygotic embryos at the same development stage could be produced in gram quanti-
ties (Bhojwani and Dantu  2013 ). These characteristics have made somatic 
embryogenesis, a model system for a large-scale plant propagation in automated 
bioreactors (Quiroz-Figueroa et al.  2006 ).  

25.9     Conclusions 

 The formation of nonzygotic embryos in vitro was fi rst demonstrated in carrot 
which has become a model system to investigate the different aspects of nonzygotic 
embryogenesis in several plant species. The generation of somatic embryos has 
been recorded in more than 500 species of monocots and dicots. Successful somatic 
embryogenesis requires the right selection and manipulation of plant tissues and 
genotype, basal media, growth regulators, and physical culture environment. 
Nonzygotic embryogenesis, occurring among widely tissue types, is a model sys-
tem for a large-scale plant production and for understanding the morphological, 
physiological, biochemical, and molecular aspects happening during the embryos 
development in higher plants. In vitro nonzygotic embryogenesis has wide practical 
and commercial applications in basic and applied aspects of agriculture and plant 
sciences.     
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 26      Somatic Hybridization and Microspore 
Culture in  Brassica  Improvement                     

     Mohamed     A.     El-Esawi    

    Abstract 
    Brassica  species have an economic and medicinal importance. Somatic hybrid-
ization is a widely used technology for the transfer of nuclear and cytoplasmic 
traits in  Brassica  species. Many wild  Brassica  species have important agronomic 
traits, especially those for disease resistance, that could be transferred into the 
cultivated brassicas. Somatic hybridization enhanced the development of inter-
specifi c and intergeneric hybrids in the sexually incompatible  Brassica  species. 
Additionally, the microspore culture is one of the most effective technologies 
used for developing microspore-derived embryos and double haploid plants. The 
formation of haploids and doubled haploids using microspores enhanced the 
generation of homozygous genotypes in  Brassica  species. This technology 
played an important role in breeding self-incompatible and out-crossing geno-
types. This chapter discusses the advanced applications of somatic hybridization 
and microspore culture in  Brassica  improvement over the past years.  

26.1       Introduction 

  Somatic hybridization is a w  idely used technology for the transfer of nuclear and 
cytoplasmic traits in  Brassica  species. Protoplast fusion allows DNA to be intro-
gressed from sexually incompatible  Brassica  species (Sigareva and Earle  1997 ; 
Christey  2004 ). Many wild plant species have important agronomic traits, espe-
cially those for pathogen resistance and altered fatty acid composition, which could 
be transferred into the cultivated crops (El-Esawi et al.  2012 ,  2015 ,  2016a ,  b ; 
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El-Esawi and Sammour  2014 ; El-Esawi  2015a ,  b ,  2016 ; Consentino et al.  2015 ;  
Jourdan et al.  2015 ). Protoplast fusion enhanced the development of interspecifi c 
and intergeneric hybrids in the sexually incompatible  Brassica  species (Christey 
 2004 ).  Protoplast fusion   could be used in the production of new nuclear cytoplasmic 
organelle combinations, resulting in an increase in cytoplasmic diversity (Christey 
 2004 ). In  Brassica napus , various cytoplasmic male sterility systems have been 
characterized, including cytoplasmic male sterility Ogura, Tour, and Polima and 
cytoplasmic male sterility from Kosena radish. Somatic hybridization has been uti-
lized for embedding them into new genotypes (Sigareva and Earle  1997 ; Christey 
 2004 ). 

 The microspore culture is one of the most effective technologies used for devel-
oping microspore-derived embryos and double haploid plants. This technology 
played an important role in breeding self-incompatible and out-crossing genotypes 
(Ferrie and Keller  2004 ). Since the fi rst promising production of microspore-derived 
embryos from  Datura  anthers (Guha and Maheshwari  1964 ,  1966 ), various species 
including  Brassica  formed microspore-derived embryos from cultured anthers 
(Keller and Armstrong  1978 ,  1979 ). Microspore culture of  Brassica  species is a 
highly effective system for producing several embryos and double haploid lines 
(Ferrie and Keller  2004 ). This haploidy system has been used in various applica-
tions, including genetics, breeding, mutagenesis, transformation, genomics, and 
physiological and biochemical analyses (Ferrie and Keller  2004 ).  

26.2     Somatic Hybridization in  Brassica  

26.2.1     Protoplast Culture and Shoot Regeneration 

 Creating an effective  protoplast culture and shoot regeneration   system for the 
required somatic hybrids is essential for their successful regeneration and applica-
tion. Generally, rates of protoplast regeneration could be reduced after fusion 
(Christey  2004 ). However, some cabbage genotypes exhibited improved regenera-
tion after fusion (Sigareva and Earle  1997 ). Many  Brassica  species exhibited shoot 
regeneration from protoplasts with varying levels of success.  Brassica oleracea  and 
 Brassica napus  revealed the highest rates of shoot regeneration (Christey  2004 ). 
However,  Brassica campestris  showed low rates of shoot regeneration. Plant regen-
eration has been achieved using protoplasts isolated from different explants such as 
cotyledons, leaves, and hypocotyls from in vitro seedlings (Christey  2004 ). Other 
explants used for the subsequent shoots regeneration involve roots (Xu et al.  1982 ), 
infl orescence (Yang et al.  1994 ), cell suspensions (Simmonds et al.  1991 ), peduncle 
stem peels (Chuong et al.  1987 a), and microspore-derived embryos (Swanson et al. 
 1988 ). Other factors including choice of media and culture system should also be 
considered during protoplast fusion process (Christey  2004 ). 

 Pelletier et al. ( 1983 ) founded a unique protocol which is the basis of most other 
protoplasm regeneration protocols. This protocol utilizes the liquid medium during 
initial culture which is then transferred to a series of solid media for callus 
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development and shoot regeneration (Christey  2004 ). Various culture methods have 
been utilized, including agarose beads (Jaiswal et al.  1990 ), liquid culture in 24-well 
plates (Jourdan and Earle  1989 ), and the alginate bead technology (Yamagishi et al. 
 2002 ). Additionally,  Brassica napus  feeder layer system, described by Walters and 
Earle ( 1990 ), is currently used for protoplast fusion. Hu et al. ( 1999 ) studied 28 
cultivars of  Brassica napus ,  Brassica rapa , and  Brassica juncea. Brassica rapa  cul-
tivars did not regenerate shoots, whereas  Brassica juncea  genotypes showed high 
regeneration rates ranging between 56 and 60 %. Eleven of the 17  Brassica    n    apus  
lines exhibited regeneration rates ranging between 1 and 24 % (Christey  2004 ).  

26.2.2     Protoplast Fusion and Agronomic Traits Transfer 

 Sigareva and Earle ( 1997 ) established protocols for  Brassica  protoplast fusion 
which involved high concentrations of high  molecular   weight polyethylene glycol 
in the presence of calcium, followed by washing at high pH and high calcium. 
Additionally, more fusion protocols have been established, such as electrofusion 
(Hagimori et al.  1992 ; Gaikwad et al.  1996 ; Christey  2004 ) and dextran application 
(Kameya et al.  1989 ). Protoplast fusion could result in desired or undesired out-
comes. However, various strategies could be used to get rid of the undesired out-
comes and enhance the chances of developing desired traits (Christey  2004 ). For 
example, irradiation combined with chemicals could be used to prohibit the division 
of both fusion partners, resulting in developing only somatic hybrids (Christey 
 2004 ). Sometimes, protoplast fusion does not require pretreatment due to the lack 
of regeneration ability of one fusion partner, such as fusions including  Brassica 
rapa  (Christey et al.  1991 ; Ren et al.  2000 ), radish (Kameya et al.  1989 ),  Moricandia 
arvensis  (Toriyama et al.  1987 a), and  Camelina sativa  (Sigareva and Earle  1999 a). 

 Molecular markers have been utilized to select the desired cybrid or hybrid 
fusion products surviving on antibiotic- or herbicide-containing medium (Christey 
 2004 ). In  Brassica napus , hygromycin-resistant  Brassica nigra  (Gerdemann- 
Knörck et al.  1995 ) and Basta-resistant  Arabidopsis thaliana  (Forsberg et al.  1998 ) 
have been utilized to help selecting fusion products and prohibit the growth of 
unfused  Brassica napus  protoplasts.  Furthermo  re, selectable marker genes have 
been used to select the fusion products of hygromycin-resistant  Brassica juncea  and 
phosphinothricin-resistant  Brassica oleracea  (Arumugam et al.  1996 ; Christey 
 2004 ). After protoplast fusion, the putative hybrids produced must be identifi ed and 
characterized by a range of methods, including analyses of morphological and cyto-
logical traits, isozymes, and molecular markers (AFLP, RFLP, mtDNA, and cpDNA) 
(Dixelius  1999 ; Fahleson et al.  1997 ; Christey  2004 ). 

 Protoplast fusion has also been utilized to resynthesize  Brassica  amphidiploid 
species, including  Brassica carinata ,  Brassica napus , and  Brassica juncea , through 
fusing the appropriate diploid species, resulting in generating new forms as well as 
increasing the genetic variation in the amphidiploid species and exploiting cytoplas-
mic traits from both parents (Christey  2004 ). Since the formation of the fi rst inter-
tribal somatic hybrids between  Brassica campestris  and  Arabidopsis thaliana  

26 Somatic Hybridization and Microspore Culture in Brassica Improvement



602

(Gleba and Hoffmann  1979 ,  1980 ), various intertribal somatic hybrids have been 
accomplished between  Brassica  species and four other Brassicaceae tribes, includ-
ing genera from the Arabideae, Lepidieae, Sisymbrieae, and Drabeae tribes. The 
agronomic traits of interest that have been successfully transferred involved disease 
resistance, altered oil quality, herbicide resistance, and drought tolerance and  c  old 
tolerance (Christey  2004 ). 

 Bacterial and fungal diseases affect  Brassica , causing a high economic damage. 
Protoplast fusion has been utilized to overcome interspecifi c, intergeneric, and 
intertribal crossing barriers in the transfer of genes conferring bacterial and fungal 
disease resistance (Christey  2004 ). Furthermore, the genus  Moricandia  of 
Brassicaceae contains C 3 –C 4  intermediates that exhibit reduced photorespiration. 
To enhance the production of C 3   Brassica  species, modifying their photosynthetic 
characteristics should be achieved through the transfer of this trait (Christey  2004 ). 
Several intergeneric somatic hybrids have been produced by fusion of  Brassica 
oleracea  and  Moricandia nitens  (Yan et al.  1999 ). Six hybrids exhibited a gas- 
exchange trait which was intermediate between the C 3  and C 4   Moricandia nitens  
and C 3   Brassica oleracea . Other agronomic traits, including pest resistance, altered 
oil quality, and metal hyperaccumulation, have been transferred through  Brassica  
 protoplas  t fusion (Christey  2004 ). Asymmetric somatic hybrids have been produced 
via the fusion of  Brassica napus  and  Crambe abyssinica  having greater amounts of 
erucic acid using UV irradiation (Wang et al.  2003 ; Christey  2004 ). Furthermore, 
several somatic hybrids have been produced via the fusion of the metal hyperaccu-
mulator  Thlaspi caerulescens  and  Brassica napus  (Brewer et al.  1999 ). Several 
hybrids survived on high zinc-containing medium. AFLP markers have been uti-
lized to identify and  char  acterize these somatic hybrids (Christey  2004 ).  

26.2.3     Cytoplasmic Traits and Fertility 

 Protoplast fusion could be used in the production of new nuclear cytoplasmic organ-
elle combinations, causing increasing of cytoplasmic  d  iversity (Christey  2004 ). 
Additionally, protoplast fusion exhibited reassortment processes in the cytoplasmic 
organelles produced to repair any defects that emerged because of nuclear- organellar 
incompatibility. Recombination of organellar DNA could happen, resulting in creat-
ing new cytoplasmic traits (Christey  2004 ). Several methods have been used to pro-
duce cybrids which comprise a nucleus from one source and a cytoplasm from 
another one. These methods included treatment with gamma rays or UV irradiation 
(Christey  2004 ). The most widely used method for cybrid production is the asym-
metric hybridization which includes iodoacetate treatment of the recipient source 
and irradiation of the donor one. Sigareva and Earle ( 1997 ) reported that the gamma- 
irradiation method was the most effi cient in cybrid production. UV irradiation 
proved to be uneffective method. However, irradiation of cytoplasts was also needed 
because some of the cytoplasts kept nuclear DNA. 

  Cytoplasmic male sterility (CMS)   plays an important role in hybrid seed produc-
tion since the self-incompatibility technologies have some disadvantages, involving 
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breakdown of incompatibility, genetic complexity of the system, and labor inten-
siveness (Christey  2004 ). In  Brassica napus , various cytoplasmic male sterility sys-
tems have been characterized, including cytoplasmic male sterility Ogura, Tour, and 
Polima and cytoplasmic male sterility from Kosena radish. Somatic hybridization 
has been utilized for embedding them into new genotypes. The CMS Ogura system 
from  Raphanus sativus  is commonly used. However,  Raphanus  chloroplasts are not 
completely functional at low temperature, causing chlorosis and limited growth 
(Christey  2004 ). Organelle segregation after protoplast fusion prevented this issue. 
Moreover, cabbages have been produced via fusion of fertile cabbage and cold- 
tolerant CMS broccoli (Sigareva and Earle  1997 ). Only diploid  f  usion products con-
taining the Ogura-specifi c mtDNA sequence should be selected. Fusion of  Brassica 
napus  and  Brassica tournefortii  produced male sterile cybrid  Brassica napus  geno-
types (Liu et al.  1996 ). MtDNA analyses of male sterile genotypes showed that the 
 atp6  locus of  Brassica tournefortii  could play a role in CMS expression. CMS was 
also introduced into  Brassica juncea  after protoplast fusion of  Trachystoma ballii  
and  Brassica juncea , followed by repeated backcrossing (Kirti et al.  1995 b). These 
new lines had a recombinant plastome (Baldev et al.  1998 ) and a large mitochon-
drial recombination (Kirti et al.  1995 b). In male sterile systems of alloplasmic ori-
gin, the lack of appropriate fertility restorer genes could reduce the use of such 
genotypes in generating hybrid seeds (Christey  2004 ). Protoplast fusion between 
 Raphanus sativus  and  Brassica napus  along with backcrossing process could be 
used to introduce a restorer gene (Sakai et al.  1996 ). Furthermore,    new CMS types 
proved to be effi cient for F1 hybrid seed production in  Brassica oleracea . Yarrow 
et al. ( 1990 ) and Christey et al. ( 1991 ) used protoplast fusion to transfer Polima 
CMS and  nigra  CMS to broccoli, respectively. The combination of the two cyto-
plasmic traits of CMS  and   atrazine resistance (ATR) through protoplast fusion 
would be much better to improve growth on atrazine-containing soils (Christey 
 2004 ). The combination of these two cytoplasmic traits has been mainly used in 
 Brassica napus  and  Brassica oleracea . Moreover, CMS Ogura and Polima have 
been combined with ATR in  Brassica napus  (Christey  2004 ). 

 Intertribal somatic hybrids form few fertile plants. In  Brassica carinata  hybrids 
produced by fusion of  Brassica oleracea  and  Brassica nigra , somatic hybrids com-
prised 34 chromosomes, and the majority had meiosis of 17 bivalents (Narasimhulu 
et al.  1992 ). The low level of fertility indicates the presence of other chromosomal 
alterations which could be due to the effect of fusion or cell culture (Christey  2004 ). 
The formation  of   asymmetric hybrids results in more fertile hybrids. Intertribal fer-
tile somatic hybrids between  Brassica napus  and  Lesquerella fendleri  have also 
been produced (Skarzhinskaya et al.  1996 ).   

26.3     Microspore and Haploidy System in  Brassica  

 Since the fi rst promising production of microspore-derived embryos from  Datura  
anthers (Guha and Maheshwari  1964 ,  1966 ), several species including  Brassica  
have produced microspore-derived embryos from cultured anthers (Keller and 
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Armstrong  1978 ,  1979 ; Ferrie and Keller  2004 ).  Embryogenesis frequency   from 
 Brassica  anther culture was low compared to the microspores number available 
per anther (Keller and Armstrong  1978 ; Swanson  1990 ; Ferrie and Keller  2004 ). 
Therefore, other methodologies have been developed for culturing the isolated 
microspores instead of the whole anther. The isolated microspores of  Brassica 
napus  produced haploid plants as demonstrated earlier by Lichter ( 1982 ). Microspore 
culture of  Brassica  species is a highly effective system for producing several 
embryos and double haploid lines (Ferrie and Keller  2004 ). This haploidy system 
has been used in various applications, including genetics, breeding, mutagenesis, 
transformation, genomics, and physiological and biochemical analyses (Ferrie and 
Keller  2004 ). 

 Haploidy systems have been used  in   genetics and breeding programs to develop 
new genotypes. Double haploidy could fasten breeding program, develop homozy-
gous genotypes in one generation, and use smaller population sizes (Ferrie and 
Keller  2004 ). Most of the  Brassica  genotypes have been developed through micro-
spore culture or spontaneous doubling (Ferrie and Keller  2004 ). Schuler et al. 
( 1992 ) reported that heterosis could affect the seed yield in  Brassica rapa . 
Developing hybrid lines might use this heterosis. In  Brassica oleracea , genotypes 
developed from anther culture had different ploidy levels ranging from haploid to 
polyploid (Farnham  1998 ; Wang et al.  1999 ). This could be attributed to the irregu-
lar polyploidization and spontaneous doubling occurring during the microspore 
culture process (Ferrie and Keller  2004 ). 

  Mutation methods   have been utilized to develop several genotypes of different 
crop species through treating seeds with physical or chemical mutagens (Ferrie and 
Keller  2004 ). Seed mutagenesis proved to be effi cient for enhancing genetic varia-
tion and developing genotypes. Single-celled haploid microspores would be the 
most appropriate material to be used for mutagenesis studies (Ferrie and Keller 
 2004 ). Chemical or physical mutagens have been successfully used to stimulate 
mutations in  Brassica  microspores as well as to induce embryogenesis (Ferrie and 
Keller  2004 ). Macdonald et al. ( 1988 ) reported that treating  Brassica napus  buds 
with gamma rays may result in increasing the embryo and double haploid plants. 
Microspore mutagenesis has been carried out in  Brassica rapa  and  Brassica napus  
to develop disease- or herbicide-resistant genotypes (Beversdorf and Kott  1987 ; 
Swanson and Erickson  1989 ; Ahmad et al.  1991 ; Zhang and Takahata  1999 ). 
Examination and choice during the haploid stage could assist in producing geno-
types carrying disease resistance trait (Ferrie and Keller  2004 ). Bansal et al. ( 1998 ) 
inoculated haploid  Brassica napus  plantlets with  Leptosphaeria maculans . These 
plants were then treated with colchicine to double the chromosomes and rescreened 
for blackleg symptoms. Many resistant double haploid plants were generated  from 
  the resistant haploid plantlets (Bansal et al.  1998 ; Ferrie and Keller  2004 ). Double 
haploidy has also been used in improving canola meal (McClellan et al.  1993 ; Ferrie 
and Keller  2004 ). 

 Microspores are ideal tool for  transformation   studies in  Brassica . Successful 
microspore transformation studies have been successfully achieved using 
 Agrobacterium -mediated transformation, particle bombardment, and electroporation 
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(Ferrie and Keller  2004 ). The fi rst commercial transgenic canola genotype was 
developed using  Agrobacterium -mediated transformation method (Oelck et al. 
 1991 ).  Brassica  microspore culture has been utilized to investigate the early events 
and regulation process of embryogenesis (Ferrie and Keller  2004 ). Several methods 
have been used to identify the early stages of embryogenic microspores, including 
morphological and cytological analyses (Hause and Hahn  1998 ; Simmonds and 
Keller  1999 ; Ferrie and Keller  2004 ). Flow cytometry has been used to separate and 
distinguish between induced and non-induced cells (Pechan and Keller  1988 ; 
Schulze and Pauls  2002 ).    Fluorescence microscopy has also been used to identify 
embryogenic microspores (Telmer et al.  1992 ). Gene mapping and investigating 
their linkage relationships to other genes are essential in breeding programs (Ferrie 
and Keller  2004 ). Double haploids proved to be invaluable in this case. Double 
haploids could be exploited to assess traits within a population based on bulked 
segregant analysis. Double haploids could also be used for studying quality trait 
loci. Application of genome-wide expression profi ling in such systems could also 
be possible in  Brassica  (Ferrie and Keller  2004 ).  

26.4     Conclusions 

 Protoplast fusion plays an important role in the transfer of nuclear and cytoplasmic 
important traits between different  Brassica  species, genera, and tribes. Protoplast 
fusion could be used in the production of new nuclear cytoplasmic organelle com-
binations. In  Brassica napus , various cytoplasmic male sterility systems have been 
characterized, including cytoplasmic male sterility Ogura, Tour, and Polima and 
cytoplasmic male sterility from Kosena radish. The microspore culture is an ideal 
technology for developing microspore-derived embryos and double haploid plants. 
Since the fi rst promising production of microspore-derived embryos from  Datura  
anthers, several plants including  Brassica  produced microspore-derived embryos 
from cultured anthers. This haploidy system has been used in various applications, 
including genetics, breeding, mutagenesis, transformation, genomics, and physio-
logical and biochemical analyses.     
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 protoplasts  ,   108   ,   109     
 somatic embryogenesis  ,   103   ,   107   ,   108   

  Barley 
 DH production method  ,   488  
 mutants  ,   498  
 ROS  ,   491  
 transcriptome analysis  ,   490   

   Basella  spp.  ,   559–560   
  Bavistin (carbendazim fungicide)  ,   511   
  Bell pepper  ,   364–368    
  Ben oil tree   . See   Moringa oleifera   
  Betacyanins  ,   555   ,   557   ,   566    
  β-glucuronidase ( GUS )  ,   495   
  Betaine-aldehyde dehydrogenase 

(BADH)  ,   564   
  Bioactives  ,   562   ,   572   
  Bionanoscience  ,   450   
  Bionanotechnology  ,   450   ,   459   
  Biotin  ,   346   
  Black nightshade   . See   Solanum nigrum   
  Bladder dock   . See   Rumex vesicarius   
  Bottom-down approach  ,   450   
   Brachylaena huillensis   ,   183    
   Brassica  species 

  B .  napus   ,   490–496   ,   498        
  B .  oleracea  L. var.  botrytis   ,   353–357   
  B .  oleracea  L. var.  capitata   ,   351–354   
 microspore and haploidy system 

 breeding  ,   605  
 embryogenesis frequency  ,   604  
 genetics and breeding programs  ,   604  
 mutation methods  ,   604   
 transformation  ,   604  

 somatic hybridization 
 agronomic traits transfer  ,   601   ,   602     
 cytoplasmic traits and fertility  ,   602   ,   603    
 defi nition  ,   599  
 protoplast culture and shoot 

regeneration  ,   600   ,   601  
 protoplast fusion  ,   600–602        

  Brinjal  ,   359–360   ,   362   ,   363   
  Broccoli  ,   356–361     
  Buthionine sulfoximine (BSO)  ,   492     

 C 
  Cabbage  ,   351–354    
   Capsicum annuum   ,   364–368    
   Cassia  

  C .  alata   ,   452  
  C .  auriculata   ,   454    

  Caulifl ower  ,   353–357    
  Cefotaxime  ,   491   
  Celery  ,   557   ,   558       
   Centaurea  spp.  ,   171   ,   172   
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   Centella asiatica   ,   454–455   ,   558   ,   561   ,   562   
  Ceylon spinach  ,   559–560   
   Chenopodium album   ,   452   
   Chitinase  expression  ,   346   
   Chloramphenicol acetyltransferase   ,   495   
  Chromosomal changes  ,   535   
   Cinnamomum camphora   ,   454   
  Cinnamyl alcohol dehydrogenase (CAD)  ,   276   
  Cole crops  ,   354   ,   358   
  Completely randomized block design 

(CRBD)  ,   513   
   Coriandrum sativum   ,   562–563   
  Cowpea trypsin inhibitor ( CpTI )  ,   345   
   cry  gene(s)  ,   344   
  Cryopreservation  ,   469   ,   471   ,   472   ,   479   , 

  481–483             
   Cuphea procumbens   ,   9    
   Curcuma amada  Roxb  ,   517   
  CX5R  ,   425   
  Cytokinin beta-glucosidase enzyme  ,   426   
  Cytokinins  ,   475   
  Cytoplasmic genetic changes  ,   536   
  Cytoplasmic male sterility (CMS)  ,   602   ,   603     

 D 
  Dainty spur   . See  Rhinacanthus nasutus  
  Demethylation  ,   536   
   Dendrocalamus   ,   529   
  2,4-dichlorophenoxyacetic acid (2,4-D)  , 

  538   ,   558   
  DNA methylation  ,   536   
  Dock sorrel   . See   Rumex vesicarius   
  Doubled haploid (DH)  ,   488   ,   489   , 

  492   ,   497–501               
  Drivers and Kuniyuki walnut (DKW)  ,   563   
  Drumstick   . See   Moringa oleifera     

 E 
  Eggplant  ,   359–360   ,   362   ,   363   
  Electroporation  ,   495    
   Emblica offi cinalis   ,   454   
  Embryo-like structure (ELS)  ,   491   
  Endogenous bacterial contamination  ,   490   
   Enterobacter ludwigii   ,   317   
   Erythrina variegata  L.  ,   6    
   Eucalyptus  

  Agrobacterium -mediated transformation  , 
  233–235   ,   237       

 aseptic cultures  ,   222  
 clonal fi delity  ,   229   ,   232    
 genetic transformation techniques  ,   232   

 gun-mediated genetic transformation  ,   232  
 micropropagation  ,   220   ,   221   
 rooting and acclimatization  ,   224   ,   225   
 shoot organogenesis  ,   222   ,   223   , 

  226   ,   227   ,   229       
 somatic embryogenesis  ,   222   ,   223   , 

  226   ,   227   ,   229       
 stem cuttings  ,   221   ,   222   

  Expressed sequence tags (ESTs)  ,   271   
  Ex situ conservation  ,   471   
  Extracellular proteins (EP)  ,   592     

 F 
  F1 hybrid  ,   500   ,   501   
  Food and Agriculture Organization (FAO)  , 

  348   ,   351   
  Forced axillary branching  ,   527   
  Forest College and Research Institute  ,   511   
  Fourier transform infrared (FTIR) 

spectroscopy  ,   455–456     

 G 
   Galanthus nivalis  agglutinin (GNA)  ,   348   
  Gene gun method  ,   347   
  Genetic chimera breakdown  ,   537   
  Genetic engineering  ,   420   
  Genetic transformation 

  A. tumefaciens   ,   311  
 gene silencing  ,   312  
  Withania somnifera   ,   334   

  Geranium leaf extract  ,   454   
  Gerbera tissue culture  ,   323–325       
  Germplasm conservation 

 long-term storage 
 in vitro-grown shoot tips  ,   481    
 somatic embryos  ,   482    

 medium-term storage  ,   480    
  Germplasm preservation  ,   471   
  Gibberellic acid (GA3)  ,   530   
   Gladiolus   ,   528   ,   529    
   Glutamine synthetase  genes  ,   501   
   Gmelina arborea   ,   141   
  Gossypol  ,   387   
  Green celery  ,   557   
  Green leafy vegetables (GLVs) 

  Allium schoenoprasum   ,   556  
  Amaranthus   ,   556–557  
  Apium graveolens   ,   557–558  
  Bacopa monnieri   ,   558–559  
  Basella  spp.  ,   559–560  
  Brassica oleracea  L.  ,   560–561    

Index



614

 Green leafy vegetables (GLVs) ( cont .) 
  Centella asiatica   ,   561  
  Coriandrum sativum   ,   562–563  
 emerging technologies  ,   570–573  
  Hibiscus  

  H .  cannabinus   ,   563–564  
  H .  sabdariffa   ,   563–564  

 in vitro propagation  ,   549–554  
  Lactuca sativa   ,   564–565  
 metabolites in vitro production  , 

  559   ,   562   ,   568     
  Moringa oleifera   ,   565   
  Portulaca grandifl ora   ,   565   ,   566   
  Rorippa nasturtium-aquaticum   ,   566   
  Rumex vesicarius   ,   566–567  
 secondary metabolites  ,   555  
  Solanum nigrum   ,   567–568  
  Spinacia oleracea   ,   568   ,   569   
  Talinum portulacifolium   ,   569   
  Trigonella foenum-graecum   ,   570      

 H 
  Hairy root (HR)  ,   420–425   ,   429–437                           
  Haploids  ,   262   
  Heat shock  ,   489   
   Helicoverpa armigera   ,   348   
   Hemidesmus indicus   ,   322–323   
   Hibiscus  

  H .  cannabinus   ,   563–564  
  H .  sabdariffa   ,   563–564   

   Hordeum vulgare  L.   . See  Barley    

 I 
  Indian Himalayan region (IHR) 

  Aconitum  
  A. balfourii   ,   17   ,   24–27   ,   33   ,   35        
  A. heterophyllum   ,   18   ,   27   ,   28   ,   35    

 aconitine and pseudaconitine  ,   19   ,   20   
 harvesting  ,   36   ,   37    
 high-value alpine medicinal herbs  ,   17  
 in vitro propagation  ,   17   ,   18  
 life and economy  ,   17  
  P .  kurrooa   ,   18   ,   28–30   ,   35       
 picrosides  ,   20   ,   21    
 podophyllotoxin  ,   21–24         
  Podophyllum hexandrum   ,   19   ,   36    

 cotyledonary tube and cotyledonary 
leaves  ,   31   

 embryos  ,   31  
 PGSs  ,   30  

 podophyllotoxin production  ,   32   ,   33   
 taxol production  ,   32  
 tissue culture studies  ,   31   ,   32  
 well-rooted microshoots  ,   31  

 preparation  ,   33  
 soil and climate condition  ,   33  
 weeding, irrigation and fungicide 

treatment  ,   36   
  Indian spinach   . See   Basella  spp.  
  Indirect somatic embryogenesis 

 cell culture initiation  ,   511  
 controlled environment  ,   517  
 culture media and conditions  ,   512  
 data analysis  ,   513  
 embryogenic callus initiation  ,   513   ,   516  
 embryo maturation  ,   516  
 experimental design  ,   513  
 germination into plantlets  ,   516  
 histology  ,   513   ,   517  
 plantlets into soil  ,   513  
 SEM  ,   513  
 somatic embryos development  ,   516  
 somatic embryos initiation  ,   512   

  Indoleacetic acid (IAA)  ,   586   
  The Indomalayan tropical 

 conventional tree propagation  ,   247   
 sustainable plantations  ,   246   ,   247   

  Indoxyl-β- glucosidase  ,   424   
  Induced embryogenic determined cells 

(IEDCs)  ,   585   
  Inorganic nanoparticles  ,   450   ,   452   
  Insecticidal crystal protein  ,   344   
  Insect pest management  ,   344   
  Insect resistance genes 

 animal origin  ,   345   ,   347  
 bell pepper  ,   364–368   
 brinjal  ,   359–360   ,   362   ,   363  
 broccoli  ,   356–361    
 cabbage  ,   351–354   
 caulifl ower  ,   353–357   
 lectin gene  ,   345  
 lettuce  ,   363–364   ,   366   
 microbial origin  ,   344   
 pea  ,   360–365    
 PI gene  ,   345  
 plant origin  ,   345   ,   346  
 potato  ,   350–352   
 tomato  ,   348–350    
  vip  gene(s)  ,   344   ,   345   

  In vitro-grown shoot tips  ,   480   ,   481   
  In vitro mutagenesis 

 asiatic hybrid lilies  ,   315   
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 chimera isolation  ,   311  
 chrysanthemum  ,   312   ,   313   
 ornamental crops  ,   310  
 ornamental fl oriculture  ,   310  
  Polianthes tuberosa  L.  ,   314   ,   315     

  In vitro rooting  ,   559   ,   561   ,   564   ,   567     
  In vitro selection 

 advantages and limitations  ,   403   ,   404    
  Alternaria helianthi   ,   399   ,   400  
 biotechnological and phytopathological 

approaches  ,   408  
  Cajanus cajan   ,   401  
 culture fi ltrate/toxins  ,   396–398   ,   402   ,   403   
 disease resistance  ,   404   ,   405   ,   408   ,   409   
 genetic engineering  ,   395  
 methodology  ,   407   ,   408   
 pathogens  ,   398   ,   400   ,   402   
 phytotoxins  ,   406   ,   407     
 requirements  ,   404   
 variability and stability  ,   407   

  Isolated microspore culture (IMC)  ,   489   ,   495   , 
  497–499   ,   501      

  2-isopentenyladenine (2iP)  ,   529     

 J 
   Jatropha curcas  

 acclimatization  ,   320    
 antibiotics  ,   316   ,   317   ,   319   ,   320  
 antioxidants  ,   317   ,   318  
 genetic transformation  ,   331–333      
 in vitro rooting  ,   320   ,   321   
 oil yield  ,   316  
 shoot organogenesis  ,   316–318       

 K 
  Kale  ,   560   
  Keikis  ,   531   
  Kenaf  ,   552   ,   563   ,   564          
  KNOX genes  ,   424     

 L 
   Laburnum anagyroides  

 acclimatization  ,   153   
 axillary buds 

 acclimatization  ,   145   
 explant effects  ,   143  
 initiation medium  ,   139    
 in vitro rooting  ,   144   ,   145   
 primary explants  ,   137  

 proliferation medium  ,   142    
 season  ,   139–141     

 axillary shoots  ,   150   ,   151   
 dormancy  ,   146–148    
 in vitro germination  ,   149  
 in vivo germination  ,   149  
 micropropagation  ,   136  
 rooting  ,   153   
 seed germination  ,   146   
 seedling tissues  ,   146  
 shoot regeneration  ,   154   ,   155     

   Lactuca sativa   ,   363–364   ,   366   ,   452   ,   552   , 
  564–565             

  Lectin gene  ,   345    
  Lettuce  ,   363–364   ,   366   ,   552   ,   564   ,   565           
   Lilium  sp.  ,   327   ,   328       
  Liquid culture, micropropagation  , 

  532–533   
  Long-term storage  ,   481   
  Lycopene  ,   348   
   Lycopersicon esculentum    . See  Tomato  
  Lycurgus Cup  ,   450      

 M 
  Malabar nightshade   . See   Basella  spp.  
  Male sterility  ,   500–501   
  Mantled phenotype  ,   539   
  Marker-assisted selection (MAS)  ,   

499–500   
  Mass multiplication  ,   555   ,   558   ,   572   
  Medicinal plants  ,   451   ,   452   
  Medium-term storage  ,   480     
  Membrane polarisation technique  ,   432   
  Meristem-tip culture  ,   525   
  Metal nanoparticles 

 applications 
 agriculture  ,   458  
 anticancer effect  ,   458   ,   459  
 antimicrobial activity  ,   457   
 consumer goods  ,   457  
 electronic applications  ,   458  
 food packaging  ,   458  
 medical fi eld  ,   458  
 SPR  ,   458  

 biomolecules  ,   456   ,   457  
 biosynthesis  ,   452–455          
 characterization  ,   455   ,   456  
 production  ,   451  
 size and shape  ,   455  
 synthesis  ,   451   

  Microbial contamination  ,   490   
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  Micropropagation 
 adventitious shoot propagation  ,   478    
 axillary shoot multiplication 

 adult origin  ,   476–478  
 juvenile origin  ,   472–476  

 factors affecting 
 culture initiation  ,   529   ,   530   
 rooting  ,   530   
 shoot multiplication  ,   529   ,   530   

 heterotrophic systems  ,   531    
 photomixotrophic systems  ,   531   
 recalcitrant advances 

 liquid culture  ,   532–533  
 stem elongation  ,   533   ,   534      
 stem node culture  ,   534   
 wounding technique  ,   532–533  

 somatic embryogenesis  ,   478   ,   479    
 stages 

 acclimatization  ,   528   
 aseptic cultures establishment  , 

  524–526        
 donor plant selection and 

preparation  ,   525  
 multiplication  ,   526–527  
 rooting of in vitro formed shoots  ,   527    
 storage organs  ,   528   ,   529     

  Microspore embryogenesis 
 applications 

 gene transformation  ,   495–497  
 mutation and selection  ,   497–499  

 induction 
 antibiotics  ,   490–491  
 antioxidants  ,   491–492  

 male sterility  ,   500–501  
 MAS  ,   499–500  
 phytohormones 

 auxins  ,   493   ,   494    
 stress hormones  ,   494     

 QTL mapping  ,   499–500   
  Mitotic crossing over  ,   536   
   Moringa  spp  ,   548  

  M .  oleifera   ,   565    
  Multigene family, modifi ed expression  ,   537   
  Murashige and Skoog (MS) medium  ,   475   
   Musa   ,   102     

 N 
  Nanoparticle protein complexes (NP-PC)  ,   456   
  Nanotechnology 

 different fi elds  ,   451   ,   452  
 market value  ,   450  
 production  ,   450     ( see also   Silver 

nanoparticles )   

  1-N-naphthylphthalamic acid (NPA)  ,   493   
  Nasunin  ,   359   
  “New Leaf Plus”, potato  ,   351   
  “New Leaf”, potato  ,   351   
  “New Leaf Y”, potato  ,   351   
   Nicotiana  

  N .  rustica   ,   423  
  N .  tabacum   ,   501   ,   536   

   Nicotiana tabacum  rol B domain B factor 1 
( NtBBF1 )  ,   425   

  Nonzygotic embryogenesis 
 applications  ,   593   ,   594   
 basal media  ,   585   ,   586  
 development  ,   583   ,   589   ,   590  
 formation  ,   584  
 growth regulators 

 ABA  ,   587  
 auxins  ,   586   
 cytokinins  ,   587   
 ethylene  ,   588  
 gibberellins  ,   588   

 induction  ,   589   
 maturation  ,   590   
 molecular aspects  ,   591–593        
 origin  ,   590  
 physiological and biochemical traits  ,   591    
 plant tissue and genotype  ,   585   ,     ( see also 

  Somatic embryogenesis )  
 subculture and electric current-dependent 

stimulation  ,   588   ,   589   
 synthetic seed technology  ,   593   ,   594   
 zygotic characteristics  ,   593     

  North American Plant Protection Organization 
(NAPPO)  ,   470   

  NPA   . See  1-N-naphthylphthalamic acid (NPA)  
   Nt -14-3ωII  ,   426   
  Nutraceuticals  ,   548   ,   565   ,   570   ,   571     

 O 
   ORF - 13   ,   424   
  Organic nanoparticles  ,   450   
  Organogenesis 

 acclimatisation  ,   131  
 banana production  ,   103  
 callus induction  ,   120–122   ,   128   ,   129     
 hardening  ,   127  
 plant material  ,   120  
 regenerated plantlets  ,   121  
 rooting  ,   127   ,   130   ,   131  
 shoot regeneration  ,   122   ,   125   ,   129   ,   130  
 statistical analysis  ,   121  
 tropical tree crops  ,   260   

  Osmoprotected somatic embryos  ,   482     
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 P 
   Papaver somniferum   ,   330   
   Paphiopedilum  spp.  ,   531   

  P .  delenatii   ,   524   ,   532–534     
  Paradise tree   . See   Simarouba glauca   
   Parkia timoriana  

 callus induction  ,   92   
 DNA isolation protocol  ,   88   ,   89  
 economic uses  ,   85   
 genetic diversity  ,   89  
 genetic transformation  ,   93   ,   94  
 in vitro regeneration  ,   93   ,   94  
 population genetic status  ,   89   ,   92   
 production and utilisation  ,   86   
 somatic embryogenesis  ,   92   
 thioproline content  ,   87   ,   88      

   p -chlorophenoxyisobutyric acid (PCIB)  ,   493   
  Pea  ,   360–365     
  Pearl millet  ,   458   
  Pepper mottle virus (PeMV-1)  ,   366   
  Photoautotrophic in vitro multiplication  ,   531   
  Photoautotrophic micropropagation 

(PAM)  ,   531   
  Photomixotrophic micropropagation (PMM)  , 

  531   
  Phytochemicals  ,   451   
  Phytohormones 

 auxins  ,   493   ,   494      
 stress hormones  ,   494       

   Phytophthora alni   ,   470   
   Picrorhiza kurroa  

 genetic transformation  ,   63    
 in vitro regeneration 

 acclimatization  ,   61  
 clonal propagation  ,   59  
 Farm yard manure/vermicompost  ,   62   
 IAA and IBA  ,   60  
 large-scale propagation  ,   59  
 synthetic seeds  ,   60  

 tissue culture  ,   28–30       
   Pisum sativum   ,   360–365     
  Plant genetic engineering techniques  ,   343   ,   347   
  Plant tissue culture 

  Acacia gerrardii   ,   11   
  Albizia lebbeck   ,   10   ,   11  
  Cuphea procumbens   ,   9   
  Erythrina variegata  L.  ,   6   
 in India  ,   11   ,   12  
 medicinal plants  ,   4  
 morphogenic pathways  ,   5  
  Salix alba   ,   5   ,   6  
  Syzygium cumini   ,   9   ,   10  
 UGC  ,   4  
  Withania somnifera   ,   7–9       

  Plant transgenic technology  ,   344   
  Plant vitrifi cation solution 2 (PVS2)  ,   482   
   Podophyllum hexandrum  

 callus and cell cultures 
  A. rhizogenes   ,   57   ,   58  
 Kukumseri region  ,   57   ,   58  
  Linum fl avum   ,   56  
 MS medium  ,   56  
 podophyllotoxin accumulation  ,   56   ,   57  
 RAPD markers  ,   57  
 suspension cultures  ,   55   

 herbal medicines  ,   46  
 kutkin  ,   47  
 mass propagation  ,   47–52   
 micropropagation  ,   47   ,   53   ,   54   
 podophyllotoxins  ,   46  
 rare, endangered, and threatened plants  ,   47  
 root cultures  ,   54   ,   55   

  Point mutations  ,   535   
  Polar auxin transport  ,   493   
   Polianthes tuberose   ,   314   ,   315   
  Polysomaty  ,   537   
   Portulaca grandifl ora   ,   565   ,   566     
  Potato  ,   350–352    
  Pre-embryogenic determined cells 

(PEDCs)  ,   585   
  pRiA4  ,   425   
  Principal component analysis (PCA)  ,   492   
  Proembryogenic masses (PEMs)  ,   586   ,   589   
  Protease inhibitor (PI) gene  ,   345   
  Protein α-amylase inhibitors  ,   345   
  Purple cabbage  ,   351     

 Q 
  Quantitative trait loci (QTL) mapping  , 

  499–500     

 R 
  Random amplifi ed polymorphic DNA 

(RAPD)  ,   9   
  Rare, endangered and threatened (RET) plants 

  Azadirachta indica   ,   210   ,   213    
  Citrus indica   ,   208   ,   209  
  Clerodendrum serratum   ,   203   ,   204  
  Embelia tsjeriam-cottam   ,   208  
 excised root culture  ,   202  
 germplasm preservation  ,   213  
 in vitro process  ,   202   ,   203  
  Operculina petaloidea   ,   206  
 plantlet production  ,   202   
 plant material  ,   201  
 root induction  ,   202  
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Rare, endangered and threatened 
(RET) plants ( cont .)

 root segments  ,   202  
 shoots, proliferation  ,   202  
 surface sterilization  ,   201   
  Uraria picta   ,   204    

  Reactive oxygen species (ROS)  ,   491   
  Recalcitrant plant micropropagation 

 liquid culture  ,   532–533  
 wounding technique  ,   532–533   

  Reduced growth  ,   480   
  Regeneration from callus  ,   526    
  Reverse breeding  ,   501   
  Reverse transcriptase-polymerase 

chain reaction (RT-PCR) 
technique  ,   350   

   Rhinacanthus nasutus  
 acclimatisation  ,   131  
 callus induction  ,   120–122   ,   128   ,   129     
 hardening  ,   127  
 plant material  ,   120  
 regenerated plantlets  ,   121  
 rooting  ,   127   ,   130   ,   131  
 shoot regeneration  ,   122   ,   125   ,   129   ,   130  
 statistical analysis  ,   121   

  Rho-GTPases (ROP)  ,   490   
  Ribosomal DNA (rDNA)  ,   536   
  RNA-induced silencing complex 

(RISC)  ,   380   ,   385   
  RNA interference (RNAi) 

 advantages  ,   382   
 application  ,   387   ,   388    
 defi nition  ,   381  
 discovery  ,   381   ,   382   
 disrupting genomic stability  ,   380  
 fascinating technique  ,   380  
 mechanism 

 Dicer  ,   384    
 dsRNA  ,   383  
 interference response  ,   387  
 microRNAs  ,   384  
 natural siRNAs  ,   385   
 RISC  ,   385–387   ,   389    
 shRNAs  ,   385  
 target mRNA  ,   387  

 RISC  ,   380   
   Rol A  gene 

 expression  ,   433   
 non-integral membrane protein  ,   423  
 open reading frame  ,   423  
 transcription factor  ,   424   

   Rol B  gene 
 adventitious roots  ,   425  
 auxin gene  ,   425  

 expression  ,   434    
 HRs  ,   424  
  NtBBF1   ,   425  
 open reading frame  ,   424  
 pRiA4  ,   425  
  RBF1   ,   425   

  Rol binding factor 1 ( RBF1 )  ,   425   
   Rol C  gene 

 altered architecture  ,   426  
 auxin gene  ,   425  
 expression  ,   434–436        
 gel permeation  ,   426  
 open reading frame  ,   426   

   Rol D  gene 
 expression  ,   436   
 open reading frame  ,   427   

  Rol genes 
 functional roles 

 HRs  ,   430–431  
 transformed plants  ,   437–438  

 function, localisation and expression  , 
  427–428  

 hairy root disease  ,   420  
 individual and synergistic effect  ,   429     
 metabolic profi les modulation  ,   431   ,   432     
 pharmacological active ingredients  ,   432  
  rol A  

 expression  ,   433   
 non-integral membrane protein  ,   423  
 open reading frame  ,   423  
 transcription factor  ,   424  

  rol B  
 adventitious roots  ,   425  
 auxin gene  ,   425   
 expression  ,   434    
 HRs  ,   424  
  NtBBF1   ,   425  
 open reading frame  ,   424  
 pRiA4  ,   425  
  RBF1   ,   425  

  rol C  
 altered architecture  ,   426  
 auxin gene  ,   425  
 expression  ,   434   ,   435     
 gel permeation  ,   426  
 open reading frame  ,   426  

  rol D  
 expression  ,   436    
 open reading frame  ,   427    

  Rooting, in vitro formed shoots  ,   527   
   Rorippa nasturtium-aquaticum   ,   566    
   Rosa clinophylla   ,   325   ,   326    
  Roselle  ,   563   
   Rumex vesicarius   ,   566–567     
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 S 
   Salix alba   ,   5   ,   6   
  Salt-tolerant plants 

 abiotic stress tolerance  ,   305  
  Arthrobacter pascens   ,   304  
 cell and tissue culture  ,   300  
  E. coli  betA gene  ,   304  
 mechanisms  ,   300   ,   301  
 methodology  ,   301   ,   303   
 molecular manipulation  ,   303  
 radiation-induced mutagenesis  ,   304  
 salinity affects  ,   299  
 selection  ,   303    

  Scanning electron microscopic 
(SEM) analysis  ,   456   ,   513   , 
  514   ,   517   

   Sclerotinia sclerotiorum   ,   498   
  SDS-PAGE analysis  ,   457   
  Sea cabbage  ,   351   
  Secondary metabolites  ,   555   ,   568   ,   571    
   Sesuvium portulacastrum  L.  ,   454   
  Short hairpin RNAs (shRNAs)  ,   385   
  Silver bionanocomposite (Ag-BNC)  ,   459    
  Silver nanoparticles 

 applications 
 Ag-BNC  ,   459   ,   460   
 agriculture  ,   458  
 anticancer effect  ,   459  
 antimicrobial activity  ,   457  
 consumer goods  ,   457  
 electronic applications  ,   458  
 food packaging  ,   458  
 medical fi eld  ,   458  
 SPR  ,   458  

 biomolecules  ,   456   
 biosynthesis  ,   451   ,   452   ,   454        
 characterization  ,   455   ,   456  
 size and shape  ,   455   

   Simarouba glauca  
 acclimatization and hardening  ,   74   
 auxins  ,   80  
 callus induction  ,   74   ,   75  
 cotyledon and internode explants  ,   73  
 culture condition  ,   74  
 edible oil  ,   73  
 organic additives  ,   80   
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