
Chapter 4
Quantification of Spike-LFP Synchronization

Zhaohui Li and Xiaoli Li

4.1 Introduction

The advent of multielectrode arrays makes it possible to simultaneously record the
spiking activity of multiple neurons and neural ensembles, which offers an important
avenue to investigate fundamental issues about the neural coding (Galashan et al.
2011; Stafford et al. 2009). The resulting voltage signals are generally separated
into two types: one is the spikes or action potentials, which are fired by neurons and
identified by high-pass filtering, detecting, and sorting, and another is the local field
potentials (LFPs), which are the total synaptic current in the neuronal circuit and
obtained by low-pass filtering the original wideband signal (Mizuseki et al. 2009;
Perelman and Ginosar 2007). The interaction between the spikes of single neurons,
i.e., spike trains, and the ongoing LFP oscillations is becoming a hot topic in
neuroscience, because it allows us to study how the activities of individual neurons
are related to those of the larger-scale networks in which they are embedded. Its
significance has been shown to be associated with high-level brain functions, such
as attention (Chalk et al. 2010; Fries et al. 2001), memory (Harris et al. 2002; Le
Van Quyen et al. 2008; Lee et al. 2005), motor task (Courtemanche et al. 2002;
Hagan et al. 2012; van Wingerden et al. 2010), and sensory processing (Eggermont
and Smith 1995; Fries et al. 1997; Pienkowski and Eggermont 2011 Xu et al. 2012).
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4.2 Spike Field Coherence

4.2.1 Spike-Triggered Average and Spike Field Coherence

A typical method for studying spike-LFP interaction is the spike field coherence
(SFC), which measures synchronization between spike trains and LFPs as a function
of frequency and takes values between 0 % (complete lack of synchronization) and
100 % (complete synchronization) (Fries et al. 2001; Fries et al. 1997). The SFC
can be used to describe the strength of synchronization between spike times and a
particular phase of the LFP oscillation at a certain frequency. It has been employed
to investigate the memory formation in humans (Rutishauser et al. 2010), the neural
mechanism of visual attention in macaque monkeys (Chalk et al. 2010; Fries et al.
2001), the stimulus-specific synchronization in primary visual cortex of awake-
behaving cats (Siegel and Konig 2003), and other brain functions (Fries et al. 2002;
Issa and Wang 2011; Lewandowski and Schmidt 2011; Tiesinga et al. 2004; Wang
et al. 2011). An important advantage of the SFC is that it is independent on the LFP
power and spike rate (Fries et al. 2001).

The SFC is a function of frequency and obtained by computing the ratio of power
spectrum of the spike-triggered average (STA) over the average of power spectrum
of the LFP fractions (Fries et al. 1997). Thus, the SFC is independent on the LFP
power and spike rate (Fries et al. 2001). Suppose that the spike train of a neuron is
denoted as S D Œs1; s2; : : : sm�, where m is the spike number. V D Œv1; v2; : : : vm� is
the set of LFP segments, where vi is the samples of the LFP signal in the window
Œsi � T=2; si C T=2�. Here, T is the duration of the window. The STA is constructed
by averaging the LFP fractions within windows that centered on the spikes. Then,
the power spectrum of STA (PSTA) is defined as

PSTA D ‰

 
1

m

mX
iD1

vi

!
; (4.1)

where ‰ denotes the operation for calculating the power spectrum. Next, to describe
the power of every frequency component in the LFP segments that used to construct
the STA, i.e., vi with i D 1; 2; : : : ; m, the average power spectrum of vi (spike-
triggered power spectrum or STP) is (Fries et al. 1997; Rutishauser et al. 2010)

STP D 1

m

mX
iD1

Œ‰ .vi/�: (4.2)

Then, the SFC is defined as [17]

SFC D PSTA

STP
� 100%: (4.3)

The STP and PSTA can be computed with many methods. For instance, multitaper
analysis is a powerful and robust method to estimate single-trial spectrum (Jarvis
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and Mitra 2001), which can be performed by using the Chronux toolbox (Bokil et al.
2010). The multitaper method is employed in this chapter for spectrum analysis of
the simulated and experimentally recorded LFP signals.

4.2.2 Bursty Spike Trains and Weighted Spike Field Coherence

The SFC reflects the synchronization between spike trains and LFPs at different
frequencies. However, it does not work well for bursty spike trains and LFPs at
high frequency band, which will be shown in the following section. A burst can
be defined as a temporary increase in the firing rate of spikes from the background
activity (Cocatre-Zilgien and Delcomyn 1992; Palm 1981; Robin et al. 2009). As
the mechanism for generating bursts is mentioned, it is commonly accepted that
small depolarization keeps the cell silent, moderate depolarization makes the cell
fire single spikes, and large depolarization causes the cell to discharge in burst
mode. Thus, bursts code the same neural information as single spikes but with higher
reliability (Harris et al. 2001; Lisman 1997). With this understanding, the first spike
in each burst is selected and used to represent the burst as event (Kepecs and Lisman
2003; Swadlow and Gusev 2001).

When all spikes in the bursts are used to calculate the coherence, this operation
will decrease the SFC values even if there is strong phase-locked synchronization
between bursty spike trains and LFPs at high frequency band. To overcome this
drawback, an improvement for the algorithm of SFC is introduced in this chapter.
That is, multiple copies of the first spike in each burst are used to compute the
SFC. The number of the copies is determined by the number of spikes per burst.
Since this is analogous to the process of weight, the modified approach is referred
to as weighted spike field coherence (WSFC). To evaluate the performance of
this method, it is applied to both simulation data and real neurobiological signals
recorded in the hippocampus of rats.

The WSFC method allows only the first spike in every burst enter into the
computation of PSTA and STP. To emphasize the difference between single spikes
and bursts, multiple copies of the first spikes in bursts are used. In this way, the first
spike timing represents the occurrence of the burst, and the weighting procedure
(multiple copies of the first spike) reflects the properties of the burst. Then, the
WSFC is defined as

WSFC D PWSTA

WSTP
� 100 %; (4.4)

where the PWSTA is the power spectrum of weighted STA and the WSTP denotes
the weighted spike-triggered power spectrum of LFP. The “weighted” means that
the LFP segments around the first spikes in bursts are reused in the calculation
of STA and STP, and the “weight” is related to the spike number per burst. The
main difference between the two methods is that WSFC uses the first spike in burst
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multiple times rather than all the spikes used by SFC. An important advantage of
this operation is that it can remove the influence of the second and later spikes in
bursts on the computation of SFC. In other words, the WSFC method is immune to
the effect of burst.

Similar to the SFC, the WSFC is a population method and cannot be calculated
for single spikes. It suffers from the effect of spike count used in the computation
as well. Thus, it is necessary to minimize or avoid the bias raised by the amount of
spikes. Two measures may be adopted. One is to use enough spikes (>50 generally)
to calculate the WSFC. Another is to ensure that the spike counts in different
conditions are equal. In addition, two parameters should be identified before
calculating the SFC and WSFC. First, the traces of LFP to construct the STA are
set to be 960 ms in the simulations, with the aim of examining low frequencies. For
the real data in this study, a relatively short window of 480 ms is used focusing on the
gamma band frequencies. To summarize, the window length is selected depending
on the following principle: long enough to make reliable estimate for the power
spectrum and relatively short to represent the dynamics of LFP signal in the desired
band. Next, in the simulations, the spectrum is estimated by using multitaper method
with a time-bandwidth product of four and seven tapers, resulting in a spectral
resolution (half bandwidth) of 4.2 Hz. In the analysis of real data, due to the short
window of 480 ms, we use a time-bandwidth product of three and five tapers in order
to get a relatively smaller spectral resolution of 6.25 Hz. It means that we should
choose an appropriate time-bandwidth product and taper count to make a good
compromise between the spectral resolution and the benefit of the spectral estimate.

4.2.3 Simulation and Application

4.2.3.1 Simulation Results

To simulate the real extracellular recoding, the LFP signal is generated by summing
multiple sine waves with different frequencies, amplitudes, and phases (Rutishauser
et al. 2010). The frequencies range from 1 Hz to 100 Hz with a step of 1 Hz,
focusing on the LFP in gamma band and below. The amplitudes of the components
are inversely proportional to their frequencies. The phases are randomly selected
from [0 2�]. In addition, a white Gaussian noise with the signal-to-noise ratio of
3 dB is added to the composite oscillation. Thus, the generated artificial LFP signal
follows the 1/f power distribution. The phase-locked spikes that fired by simulated
individual neurons locate at a certain phase of the underlying oscillation and skip
cycles at random, while the non-phase-locked spikes occur randomly. The simulated
bursts consist of two to six spikes. The interspike intervals (ISIs) in the bursts range
from 3 to 10 ms. The amount of the burst is quantified by burst index, which is
defined as the ratio of spikes in bursts to all spikes (Mizuseki et al. 2011, 2012). To
avoid the bias caused by the number of spikes (Fell et al. 2001; Grasse and Moxon
2010), 200 spikes are generated for each realization.
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Fig. 4.1 The SFC between bursty spike train and LFP for different phase-locked cases. (a) Spikes
or bursts are phased locked to 50-Hz component. (b) Spikes or bursts are phased locked to 5-Hz
component
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Fig. 4.2 The WSFC between bursty spike train and LFP for different phase-locked cases. (a) The
phase locking is represented between spikes or bursts and 50-Hz component. (b) The phase locking
is represented between spikes or bursts and 5-Hz component

By using the simulated LFP signal, the effect of bursts in spike trains on the
calculation of SFC and WSFC is investigated, and the advantage of WSFC for
estimating the coherence between bursty spike trains and LFPs is demonstrated.
The SFC and WSFC are calculated in three cases: 100 % spikes are locked to a
certain phase of specified components (e.g., 50 Hz and 5 Hz) in the simulated LFP
signal (100 % phase locked), 50 % spikes are phased locked (50 % phase locked),
and spikes are fired randomly (non-phase locked), where the spikes include single
spikes and first spikes in bursts. The mean values of SFC and WSFC at the two
frequencies versus the burst indexes are plotted in Figs. 4.1 and 4.2. For the 50-
Hz component, the SFC is strongly reduced by the bursts that occurred in spike
trains for both 100 % and 50 % phase-locked cases, while it keeps at the chance
level for the random phase locking, as shown in Fig. 4.1a. It means that the bursts
do not lead to spurious increase of the SFC for random spikes, but can severely
reduce the SFC values for spikes phase locked to high-frequency components. For
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the 5-Hz component, the decrease of the SFC also presents in the 100 % and 50 %
phase-locked cases, but with smaller amplitude. However, the SFC increases a little
for the random phase locking, as illustrated in Fig. 4.1b. It implies that the bursts
exert relatively small effect on the SFC estimate for spikes phase locked to low-
frequency components. All simulations are implemented by using 200 spikes, which
means that the decrease of the SFC is indeed caused by the location rather than the
amount of spikes.

On the other hand, the WSFC method using the first spikes effectively eliminates
this influence caused by bursts for both low and high frequencies. Due to the reuse
of first spikes in bursts, the amplitude of the STA gets larger as a function of the
number of bursts involved. Consequently, the WSFC presents a slight increase with
the increasing of bursts in spike trains, as shown in Fig. 4.2a, b. However, the
relative difference in WSFC between conditions almost remains the same, which
is meaningful for the comparison between different phase-locked cases.

Furthermore, the influence of the bursts at different frequencies is examined. The
given nine frequencies are as follows: 5 Hz in theta band, 10 Hz in alpha band,
20 Hz in beta band, and 30 Hz, 40 Hz, 50 Hz, 60 Hz, 70 Hz, and 80 Hz in gamma
band. The single spikes and first spikes in bursts are presumed to fire exactly at a
certain phase of these component oscillations. The influence is quantified by the
coefficient of variation (CV) of the SFC or WSFC magnitudes for different burst
indexes. As shown in Fig. 4.3a, b, the SFC between spike trains and LFPs in gamma
frequency band is prone to be affected by the bursts for 100 % and 50 % phase-
locked cases. Whereas for the low frequencies, e.g., 5 Hz and 10 Hz, the bursts in
spike trains exert very little effect on the computation of SFC, on the other hand, the
WSFC has a relatively more robust performance for both high and low frequencies.
The effect of bursts under the random phase locking is illustrated in Fig. 4.3c. The
SFC and WSFC measure performs similarly to each other. Although the variation of
WSFC is relatively large, it does not imply a reduction of the WSFC performance.
As explained before, these variations are represented in different locked conditions
with similar increasing tendencies, providing a reliable comparison of the coherence
between different conditions. This is also demonstrated by the values of CV in
different phase-locked cases. The lower degree of the phase locking, the smaller
mean of the WSFC at different burst indexes and the larger CVs for frequencies take
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Fig. 4.3 Effect of burst on the SFC and the WSFC when spikes or bursts phase locked to different
frequency components. (a) 100 % phase locking. (b) 50 % phase locking. (c) Random phase
locking
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on. To summarize, the WSFC is an efficient tool to reveal the coherence between
spike trains and LFPs, particularly in high frequency band.

4.2.3.2 Application to Real Data

The data set consists of simultaneous recordings of cells in layer CA1 of the right
dorsal hippocampus of three Long-Evans rats, which were implanted with a 4-
shank or 8-shank silicon probe. After recovery from surgery (about 1 week) and
training (at least 3 days), the physiological signals were recorded during the open
field tasks in which the rats chased randomly dispersed drops of water or pieces of
Froot Loops on an elevated square platform. The signals were amplified (1000x),
band-pass filtered (1 Hz–5 kHz), and sampled continuously at 20 kHz. Then, the
LFPs were down-sampled to 1250 Hz. The offline spike sorting was performed
automatically. The details about the behavioral experiment and data collection can
be found in (Mizuseki et al. 2009). A subset of the data set is analyzed in this study
(in particular, ec013.527 at http://crcns.org/data-sets/hc/hc-2).

In hippocampus, gamma frequency oscillations (30–80 Hz) have been suggested
to underlie various cognitive functions, such as attention selection (Bauer et al.
2006; Fries et al. 2001), memory (Fell et al. 2001; Howard et al. 2003; van Vugt et al.
2010), and sensory perception (Colgin et al. 2009; Muzzio et al. 2009). Moreover, it
has been reported that the firing patterns of pyramidal cells in hippocampus are
significantly phase locked to gamma oscillations in behaving rats (Colgin et al.
2009; Csicsvari et al. 2003; Senior et al. 2008). Here, we examine that whether
this phase locking can be characterized by the WSFC and SFC methods. In the
recordings of the data set used in this study, the pyramidal cells exhibit firing
patterns of single spikes and complex spike bursts. A segment (150 � 400 s) of the
recordings used for the analysis of coherence is shown in Fig. 4.4a, b, containing
the gamma band LFP signal and the neuronal activity (neuron 37 in the selected
data set).

In order to preserve the timing relationship between spikes and LFP, the gamma
band-pass filtering is performed digitally with zero-phase shift using the EEGLAB
toolbox (Delorme and Makeig 2004). Then, we estimate the WSFC and SFC as
a function of time (sliding window of 10s advanced in steps of 5 s), respectively.
A series of two or more consecutive spikes with <10-ms ISIs is considered as a
burst in this study (Mizuseki et al. 2011; Senior et al. 2008). Figure 4.4c shows the
burst index in every window. To guarantee sufficient statistical power, we select
the windows containing at least 50 single spikes and bursts for the calculation
of coherence (Rutishauser et al. 2010). For statistical purposes, the results are
converted to z-scores. The surrogate spike trains are created by perturbing every
spike with a random time in a window of 30 ms around the original spikes. The
statistical significance is set conservatively at z > 1:96 for the level p < 0:05. In
Fig. 4.4d, e, the z-transformed WSFC and SFC are plotted versus time, respectively,
and the horizontal line indicates the significant level. Obviously, the traditional
method, i.e., SFC which uses all spikes in bursts, fails to descript the phase locking

http://crcns.org/data-sets/hc/hc-2
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Fig. 4.4 The WSFC and SFC applied to real data. (a) A segment of the recorded LFP signal. (b)
Spiking activities of neuron 37 in the segment. Vertical lines indicate the occurrence of spikes
fired by the neuron. (c) Burst index for windows with >50 spikes. (d) Z-transformed WSFC for
each selected window. The red horizontal line indicates the significant level of p < 0:05. (e) Z-
transformed SFC for each selected window. The coherence in the two plots (d) and (e) is obtained
by using the average of the WSFC and SFC within gamma band, respectively

between the spike train and LFP in gamma band, while the modified method,
i.e., WSFC which utilizes the copies of first spikes in bursts, characterizes this
relationship effectively. We also found similar results for other data sets, which
further demonstrate the performance of WSFC to uncover the relationship between
activities of pyramidal cells in hippocampus and LFP in gamma band; the results
for other data sets are shown in the supporting document.
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4.3 Spike-Triggered Correlation Matrix Synchronization

Spikes and LFP are acquired from the signal recorded by a microelectrode. The
former are fired by neurons and identified by high-pass filtering, detection, and
sorting. The latter reflects the total effects of the synaptic currents in the neuronal
circuit and is obtained by low-pass filtering the original wideband signal. Several
rhythms of LFP are generated through inhibitory networks that produce periodic
fluctuations in the intracellular potential of the target postsynaptic neurons such that
the excitability of these neurons varies within one period of the rhythm, which can
be used to synchronize the spiking of neurons (Buzsaki and Wang 2012; Ray 2014).
Also, it is reported that spikes can be inferred from LFP in the primary visual cortex
of monkeys (Rasch et al. 2008). Furthermore, LFP is thought to mainly reflect the
summed transmembrane currents flowing through the neurons within a local region
around the microelectrode tip (Buzsaki et al. 2012; Reimann et al. 2013), and its
phase is widely adopted to characterize the spike-LFP synchronization (Colgin et al.
2009; Csicsvari et al. 2003; Fries et al. 2001). In view of the above considerations,
we suggest that a specific variation of LFP phase causes an individual neuron to fire
spikes and consequently generate the spike-LFP synchronization.

4.3.1 Correlation Matrix and Spike-LFP Synchronization

Several spike-LFP synchronization measures have been introduced in the past few
years, e.g., the phase histogram (Csicsvari et al. 2003), phase locking (Colgin
et al. 2009), spike field coherence (Fries et al. 2001), and coherency (Pesaran
et al. 2002). However, these measures are dependent upon the total number of
spikes, which renders comparison of spike-LFP synchronization across experimen-
tal contexts difficult. Often, different experimental conditions yield substantially
different numbers of spikes. Thus, it is necessary and urgent to develop an unbiased
measure for characterizing the synchronization between spikes and LFP. In 2010,
a circular statistics, pairwise phase consistency (PPC), has been proposed. It is a
bias-free and consistent estimator of spike-LFP synchronization (Vinck et al. 2010).
Unfortunately, as shown below, the performance of PPC severely deteriorates in the
presence of spike noise. In this chapter, we present a new measure for estimating
spike-LFP synchronization, which is independent of the total number of spikes and
robust against spike noise. The main idea of the method is to take LFP segments
centered on each spike (spike-triggered LFPs) as multichannel signals and calculate
the index of spike-LFP synchronization by constructing a correlation matrix. Thus,
this method is referred to as spike-triggered correlation matrix synchronization
(SCMS).

Suppose that the spike train (i.e., a series of spikes) fired by a neuron is denoted as
S D Œs1; s2; : : : sn�, where si (i D 1; 2; : : : ; n) is the spiking time and n is the number
of spikes. V D Œv1; v2; : : : vn� is the set of LFP segments, where vi (i D 1; 2; : : : ; n)
denotes the samples of the LFP signal in the time window Œsi � T=2; si C T=2�
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and T is the duration of the LFP segments. First, extract the instantaneous phase of
every LFP segment by Hilbert transform. For a signal v(t), the analytic signal �(t) is
a complex function of time, and it is defined as

�.t/ D v.t/ C jQv.t/ D A.t/ej�.t/; (4.5)

where the function Qv(t) is the Hilbert transform of v(t):

v.t/ D 1

�
P:V: �

Z C1

�1
v.t/

t � �
d�: (4.6)

P.V. indicates that the integral is taken in the sense of Cauchy principal value
(Rosenblum et al. 1996). Thus, the instantaneous phase � i(t) of LFP segment vi(t)
is obtained. Second, construct the correlation matrix C by calculating the phase-
locking value (PLV) between pairs of LFP segments, i.e.,

cij D
ˇ̌̌
ˇ̌ 1

N

NX
kD1

ej.�i.tk/��j.tk//

ˇ̌̌
ˇ̌ ; (4.7)

where N denotes the number of samples in the time window and C is a real
symmetric matrix. Then, the eigenvalue decomposition of C is given by

C ui D �i ui; (4.8)

where �i are the eigenvalues, with �1 � �2 � � � � � �n, and ui are the eigenvectors
corresponding to �i. Finally, in order to obtain a normalized value of spike-LFP
synchronization which is independent of the number of spikes, we randomize all
spike-triggered LFP segments to compute a surrogate correlation matrix R (Li
et al. 2007). The surrogate data is generated by randomly shuffling the order of
the original signals (Theiler et al. 1992). Similarly, we can obtain the ordered
eigenvalues of matrix R. Repeating this randomization and computation M times
(we select M D 100 in this work), the mean and standard deviation (SD) of the
maximum eigenvalues are denoted as �

0
1 and s1, respectively. Then, the normalized

spike-LFP synchronization can be computed by the following equation:

� D
( �

�1 � �
0
1

�
=
�

n � �
0
1

�
if �1 >

�
�

0
1 C K � s1

�
0 otherwise

; (4.9)

where K is a constant that determines the threshold and K D 3 is selected for 99 %
confidence intervals (Li et al. 2007).

The reason for the choice of the maximum eigenvalue (�1 and �
0
1) is in the

following. Li et al. noted that when multichannel signals are acquired from a
local region, the first synchronization index, which corresponds to the maximum
eigenvalue, is appropriate for indicating the global synchronization (Li et al. 2007).
Moreover, as spikes and LFP are recorded by the same microelectrode, the spike-
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triggered LFPs can be considered as signals from one region of synchronization.
Thus, it is justifiable to use the first synchronization index to characterize the spike-
LFP synchronization.

In the SCMS algorithm, a parameter (i.e., the window length of the LFP
segments) should be determined before its application. It is possible that there are
other spikes immediately before or after a specific spike. These spikes may alter
the frequency and phase of the LFP (Zanos et al. 2011). This supports the selection
of a short window. However, the algorithm uses the similarity of the variation in
LFP phase as the mechanism for the calculation of spike-LFP synchronization.
Consequently, a longer window improves the accuracy of the similarity calculation.
Considering this trade-off, we used a window of 20 ms in the analysis of simulated
and real data.

4.3.2 Simulation and Application

4.3.2.1 Simulation Results

To test the properties of the algorithm, simulated LFP was generated by summing
multiple sine waves with different frequencies, amplitudes, and phases (Rutishauser
et al. 2010). The frequencies ranged from 1 to 100 Hz with a step of 1 Hz,
thereby focusing on the LFP in the gamma band and below. The amplitudes of
the components were inversely proportional to their frequencies. The phases were
randomly selected from [0 2�]. Synchronized spikes fired by simulated individual
neurons were located at a certain phase of the summed LFP waveform. These sim-
ulated neurons skipped cycles at random. The total number of synchronized spikes
was denoted by ªp. Additionally, non-synchronized spikes occurred randomly,
and their amount was denoted by ªn. The strength of spike-LFP synchronization
was determined by the ratio R D #p=

�
#p C #n

�
, e.g., R D 1 implies perfect

synchronization and R D 0 indicates complete non-synchronization.
First, the effect of the total number of spikes on the algorithm’s output was

investigated. The number of spikes ranged from 10 to 100 with a step of 5. The
strength of simulated spike-LFP synchronization was set to 0.25, 0.5, or 0.75.
Figure 4.5 shows the mean value of the SCMS output for different numbers of
spikes, with 100 realizations for each number. As can be seen, the SCMS output
almost does not change with the sample size. This property is of crucial importance
when making comparisons between different experimental conditions.

Second, the robustness of the SCMS method against noise in the spike trains
was studied. Three types of noise were considered: jitter noise (a shift of spiking
time), missing spikes (false negatives), and extra spikes (false positives). Jitter noise
may appear in stochastic biological processes, such as synaptic transmission and
spike propagation in a neural network. The noise due to missing and extra spikes
is primarily caused by external processes such as the firing of other neurons, errors
in the spike sorting procedure, and electrical artifacts (Asai and Villa 2008). We
compare the SCMS method with the pairwise phase consistency (PPC) method.
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Fig. 4.5 Effect of the total number of spikes on the output of the SCMS method

Jitter noise was added to the spike trains via shifting every spike by a time
normally distributed in an interval. The strength of jitter noise was quantified by
the interval length. The number of spikes in the simulation was set to 50. As
shown in Fig. 4.6a, b, both the SCMS and the PPC are affected by jitter noise,
and their output values decrease as the interval of jitter increases. However, the
output of SCMS decreases more slowly compared to that of PPC. Moreover, we
are still able to visually distinguish between the different levels of spike-LFP
synchronization in the SCMS output even as the jitter interval grows to 20 ms. In
contrast, it becomes difficult to observe a clear distinction between different levels of
synchronization by looking at the PPC output when the interval is larger than 5 ms.
Once the data acquisition procedures, recording system, and the spike detection
method have been determined, the jitter noise of different neurons is about the same
in scale. Thus, when comparing the spike-LFP synchronization between different
experimental conditions or between different pairs of neurons and LFP signals, the
SCMS measure is able to provide more significant results.

Noise due to extra spikes was quantified by the number of independent spikes
randomly inserted into spike trains. In the simulation, the original number of spikes
was 20, and the number of extra spikes ranged from 2 to 30 with a step of 2. As
shown in Fig. 4.6c, d, the SCMS and PPC outputs decrease with the number of
extra spikes. Due to the random insertion of independent spikes, the strength of the
simulated spike-LFP synchronization reduces, and consequently the two outputs
decrease. It is difficult to distinguish between different synchronization strengths
by looking at the output of the PPC method when a large amount of extra spikes
is present. In comparison, the output of the SCMS method indicates differences
between the synchronization levels for even the largest amount of extra spikes.

The noise due to missed spikes was quantified by the number of randomly deleted
spikes. In the simulation, the original number of spikes was 50, and the number of
missed spikes ranged from 2 to 30, with a step of 2. Figure 4.6e, f show that the two
methods are basically unaffected by the number of missed spikes. That is to say, they
are robust against the noise due to missed spikes. The underlying reason is that the
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Fig. 4.6 Effect of noise in the spike trains on SCMS and PPC. The simulated spike-LFP
synchronization strength was 0.25, 0.5, or 0.75. There were 100 realizations for each strength.
(a) Mean SCMS output and (b) mean PPC output as a function of jitter noise. (c) Mean SCMS
output and (d) mean PPC output versus the number of extra spikes. (e) Mean SCMS output and (f)
mean PPC output versus the number of missed spikes

random deletion of spikes does not alter the strength of spike-LFP synchronization,
but just reduce the total number of spikes. Since the two methods are not biased
by the total number of spikes, they are both resistant to noise arising from missed
spikes.

4.3.2.2 Application to Real Data

In this section, the SCMS method was applied to data recorded from rhesus monkey.
All procedures were conducted in compliance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and were approved by the
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Institutional Animal Care and Use Committee of Beijing Normal University. Data
was recorded from a male adult monkey (Macaca mulatta). After the animal had
been trained in a simple fixation task, a 6 � 8 multielectrode array (with electrode
length of 0.5–0.6 mm, interelectrode spacing of 0.4 mm, and typical electrode
impedances of a few hundred kiloohms at 1 kHz; Blackrock Microsystems) was
implanted into V1 corresponding to eccentricities between 2.0ı and 5.0ı in the
lower visual field. LFP and spike data were recorded at 30 kHz using a 128-
channel acquisition system (Cerebus; Blackrock Microsystems). Visual stimuli were
generated by a stimulus generator (ViSaGe; Cambridge Research Systems) on a 22-
in. CRT monitor (Iiyama Vision Master Pro 514) at a viewing distance of 100 cm.
Drifting sinusoidal gratings (99 % contrast; spatial frequency, 2 cycle/deg; temporal
frequency, 4 Hz) were displayed within a circular patch of 4ı visual angle in
diameter, covering the visual field locations of all recording sites. The gratings
drifted in different directions between 0 and 360ı, in 22.5ı steps in a pseudorandom
order. The stimulus was presented for 2 s and repeated eight times.

To identify spikes fired by neurons, the recorded signals were filtered with a
band-pass filter of 300–3000 Hz. Then, spikes were detected using a threshold
method (Quiroga et al. 2004). We did not use spike sorting in this work. Due to
the robustness of the method against noise in spike trains, it was not necessary to
implement spike sorting in the data preprocessing. For LFPs, the recorded signals
were filtered with a band-pass filter of 30–80 Hz, because our concentration was
on the synchronization between spikes and LFPs in the gamma band. To preserve
the phase relationship between spikes and LFP, gamma band-pass filtering was
performed digitally with a zero-phase shift using the EEGLAB toolbox (Delorme
and Makeig 2004).

Orientation selectivity is an emergent property of neurons in the primary visual
cortex (V1) (Hubel and Wiesel 1962, 1968). Most studies focused on the response
of individual neurons to investigate the mechanisms of this selectivity (Priebe and
Ferster 2012; Ringach et al. 1997; Shapley et al. 2003). Neuronal oscillations in
the gamma band (30–80 Hz) have been suggested to play a central role in feature
binding or establishing channels for neural communication (Ray and Maunsell
2010). With increasing interest in and popularity of LFP analysis, oscillations in
LFP gamma band have been used to study orientation selectivity (Berens et al.
2008; Xing et al. 2012). In this chapter, we examined whether the spike-LFP
synchronization exhibits orientation selectivity in macaque V1 by using the SCMS
method. Orientation selectivity based on spike-LFP synchronization is quantified
by circular variance (CV), which is a global measure of the shape of the orientation
tuning curve and defined as (Batschelet 1981)

	 D 1 �
ˇ̌̌X

k
rk exp .i2
k/

ˇ̌̌
X

k
rk

; (4.10)

where rk denotes the mean spike-LFP synchronization in response to a drifting
grating with angle 
 k. The angles 
 k spanned the range from 0 to 360 ı with
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Fig. 4.7 Application of SCMS to data recorded from the visual cortex of a rhesus monkey. (a) The
orientation tuning curve, calculated using spike-LFP synchronization as a substitute for firing rate,
of a neuron (electrode #17) in V1. (b) The histogram of circular variance (CV) values, quantifying
significance of orientation selectivity, of the 48 recorded neurons from V1

equally spaced intervals (22.5 ı in this work). According to circular statistics,
	 < 0:9 means that the orientation selectivity of a neuron to the drifting grating is
significant. Figure 4.7a shows the tuning curve based on spike-LFP synchronization
of a neuron in V1. Clearly, two troughs can be observed and the tuning curve shows
a regular pattern as a function of the orientation. This means that the spike-LFP
synchronization of this neuron is sensitive to the orientations of the drifting gratings.
As shown in Fig. 4.7b, the CV of all 48 recorded neurons in V1 is less than 0.8, and
the great majority (75 %) is located in the range from 0.6 to 0.7. This implies that
the recorded neurons’ spike-LFP synchronization exhibits significant orientation
selectivity.

4.4 Conclusion

In this chapter, we introduced two methods to estimate the synchronization between
the spiking activity of individual neurons and the LFP of neural ensembles. The
WSFC is a correcting measure of a widely used SFC method which underestimates
the coherence between bursty spike trains and LFPs, especially in high frequency
band. The WSFC method allows only the first spike in every burst to enter into
the calculating procedure, aiming to eliminate the influence of the other spikes.
Moreover, it utilizes multiple copies of the first spike to highlight the difference
between single spike and burst. This “weighting” operation preserves the inherent
characteristic of burst, i.e., series of spikes raised by a large depolarization. Both
simulation and experimental results show that the WSFC method performs better
than SFC for investigating the relationship between bursty spike trains and high
frequency band LFPs. Also, it can be used to analyze any spike trains and LFPs.
Furthermore, a potential application of the WSFC is to study whether bursts enhance
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the coherence between spike trains and LFPs. Briefly, the WSFC is a promising
method to uncover details of the neural coding.

Moreover, we introduced a new method, spike-triggered correlation matrix
synchronization (SCMS), for characterizing the synchronization between spike
trains and rhythms present in LFP. We demonstrated that the SCMS is not sensitive
to the total number of spikes in the calculation. In addition, it is superior to another
unbiased measure (PPC) in resisting spike noise arising from jitter and extra spikes.
Thus, the SCMS is a promising measure for estimating spike-LFP synchronization.
By applying the SCMS method to neuronal data recorded from macaque primary
visual cortex, we demonstrate that spike-LFP synchronization can be used to explore
the mechanism of orientation selectivity.
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