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Chapter 1
Brief History and Development
of Electrophysiological Recording Techniques
in Neuroscience

Zhuo Huang

1.1 The Brief History of Bioelectrical Investigation

The bioelectrical investigation began with Luigi Galvani and Alessandro Volta in
the 1700s. In 1786, Luigi Galvani, an Italian professor of medicine, showed that
the frog muscle could be made to twitch when the leg of a dead frog was cut by a
metal knife. Galvani thought that the muscles of the frog must contain electricity.
However, Alessandro Volta repeated Galvani’s experiments and believed that the
electricity was generated by the metal cable which Galvani used to connect nerves
and muscles in his experiments. Volta was right. To prove his idea, Volta invented
the voltaic pile, which was the first electrical battery that could continuously provide
an electrical current to a circuit. He demonstrated that the animal electricity did
not come from the muscle in its pelvis but was a physical phenomenon caused by
rubbing frog skin (Bresadola 1998). In the following decades, scientists began to ask
how the sensory information is transmitted by electrical signals. The first attempt
to answer this question was the theory of “law of specific nerve energies” which
was proposed by Johannes Peter Müller in 1835. In this doctrine, Müller thought
that the nature of a sensory stimulus is defined by the pathway over which the
sensory information is carried and neurons which do not localized to this pathway
are not responsible for this information processing (Norrsell et al. 1999). In support
of this view, Hermann von Helmholtz provided evidence that cells at different
locations along the cochlear spiral are sensitive to different frequencies of sound
(Helmholtz 1885). These findings from the late nineteenth century form our current
understanding about the nervous system. Nowadays when we are trying to figure
out how information is processed in the cortex, where an array of neurons decodes
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2 Z. Huang

incoming stimuli according to the values of different component features, we are
reminded of Helmholtz’ work, who found that the array of auditory nerve fibers
would decompose sound into its component frequencies.

To examine the idea of Helmholtz and Müller about neuronal coding of sensory
information, it is required that direct recording of electrical activity from a single
neuron, not just additive effect of bundle of nerve fibers. However, in those years,
the electrical signals from a single neuron were too small to record. To pick up these
small signals, in 1917 Lucas at Cambridge University using vacuum tube built an
instrument which allowed the recoding of microvolt electrical signals in bandwidths
of several kilohertz. Luckily, Edgar Adrian, an English electrophysiologist and
recipient of the 1932 Nobel Prize for Physiology, used this instrument and revealed
much of what we know to this day about the principles of neuronal coding. Adrian’s
experiments revealed three fundamental facts about neural code (Hodgkin 1889).
Firstly, Adrian demonstrated that individual sensory neurons fire all-or-none action
potentials in response to external stimuli although the all-or-none firing law had
already been established for muscle and neurons. This finding, however, provides
first evidence that individual sensory neurons only provide a series of spikes for the
brain to process. Secondly, Adrian found that in response to a static stimulus, the
rate of spiking increases as the stimulus becomes stronger. The rate, or frequency,
of spikes implies the intensity of the stimulus. Thirdly, he discovered that if a
static stimulus is continued for a long time, the spike rate begins to decline, which
is normally called adaptation. Adrian believed this physiological phenomenon
is corresponding to the perception phenomena wherein the constant stimuli are
gradually ignored.

Additionally, Haldan Keffer Hartline, an American physiologist and corecipient
with George Wald and Ragnar Granit of the 1967 Nobel Prize in Physiology or
Medicine, investigated the response of single neuron from the compound eyes of
the horseshoe crab. Apart from reproducing Adrian’s results about the rate coding,
Hartline recorded the electrical impulses from a single optic nerve fiber which is
activated by light stimulation and demonstrated that photoreceptor cells in the eye
are interconnected in such a way that when one is stimulated, other neighboring
cells are depressed, thus increasing the contrast in the light patterns and contributing
to the contrast enhancement. Therefore, Hartline provided a detailed description
of how photoreceptors and nerve fibers work in the retina and how simple retinal
mechanisms constitute vital steps in the integration of visual information. The
concept of feature selectivity was clearly proposed by Horace Basil Barlow in 1935,
who is a British visual neuroscientist. Barlow recorded electrical activities from
retinal ganglion cells in the frog and showed that the response of these cells to a
spot of light at first grows with the area of the spot, but then declines if the spot
exceeds a critical size. The particular region of the sensory space that can affect
the activity of a neuron is called the receptive field of that cell. The receptive field
is “center surrounded”: spots within a small region excite the cell, but spots just
outside this region inhibit the cell (Barlow 1953a, b). Later on, the importance of
feature selectivity was strongly supported by the observations of Hubel and Wiesel
(1962). They found that many cells in cat visual cortex are selective not only for
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size of objects but also for their orientation. In Hubel and Wiesel’s experiments,
they showed that neighboring neurons are normally correlated to neighboring
orientations, so that feature selectivity is mapped over the surface of the cortex
(Hubel and Wiesel 1977). Furthermore, the notion of feature selectivity was also
demonstrated by the findings of O’Keefe and his colleagues. In pioneering studies
that were recognized by a Nobel Prize in 2014, O’Keefe discovered “place cells”
in the hippocampus (O’Keefe and Dostrovsky 1971; O’Keefe 1976; O’Keefe and
Conway 1978). In his early investigations, O’Keefe and Dostrovsky using single-
unit electrodes identified specific cells within the hippocampus in the freely moving
rat that fired only in the fixed location within an open field or maze. They referred to
these cells as “place cells” and coined the complementary neologism “place field”
to describe the specific location in the environment where the cell selectively fires.
The firing field is very stable over days and months once established, and place field
is established reasonably quickly on the order of a few minutes to one hour (Tanila
et al. 1997; Lever et al. 2002). Then, do the idea of rate cording, feature selectivity,
and cortical mapping tell us what we want to know about the neural code? Are
there other coding strategies which neurons use to interpret the external stimuli?
Actually, these previous ideas leave an open question of whether other features of
the spike train carry meaningful information, and indeed this question has been
central to many discussions of neural cording. In the following section, several
classical recording strategies for measuring the neuronal activity will be discussed.

1.2 What Is Spike Train?

Spike train is normally referred to as a series of discrete action potentials from a
neuron taken as a time series, sometimes referred to as temporal coding. This string
of neuronal firing may be generated spontaneously or in response to some external
stimuli. Spike train is a language in which the external world is encoded into our
brains, the language the brain uses for its internal communication, and the language
it talks to outside world.

To understand what spike is and how the spike train is generated, we need
to clarify how bioelectrical signals and neuronal action potentials are produced.
Bioelectrical signals are generated by ion channels and ion transporter proteins (ion
pumps) on neuronal membranes. Ion channels are the ion-permeable membrane
proteins. They open and close in response to specific stimuli and selectively
pass ions such as sodium, potassium, calcium, etc., through the impermeable cell
membrane. The ions flow across the membrane that generates bioelectrical signals.
There are two distinctive features of ion channels that differentiate them from ion
pumps. First, the rate of ion transport through the ion channel is very high (normally
more than 100 ions per second). Second, ions pass through ion channels down their
electrochemical gradient; thus this process does not require any help of metabolic
energy, whereas ion transporter proteins do require energy to move ions across a
plasma membrane against their concentration gradient (Hille 2001).
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Like other typical membrane proteins, mRNAs of ion channels are transcribed in
nuclei, and channels are synthesized in ribosome and inserted into the membrane
of the endoplasmic reticulum. Then following the posttranslational modification
including glycosylation, phosphorylation, and ubiquitination, the channels are
inserted into targeted membranes. They have many features of signaling proteins.
Ion channels have a variety of conformational states such as open, close, inacti-
vation, and desensitization states. Ion channels are typically subdivided into two
categories according to their way to activate the channels. The largest superfamily
of ion channels is opened by changes in membrane potential; thus they are called
voltage-gated ion channels, while several families of ion channels are gated by
extracellular ligands and they are called ligand-gated ion channels (Hille 2001).

Human brain has almost 100 billion neurons, and some of these neurons
communicate with each other in such a highly structured manner as to form
neural networks. To understand neural networks, it is necessary to understand
how individual neurons are interconnected. A neuron is a specialized cell that has
four morphological defined regions: the cell body, dendrites, axons, and axonal
terminals. The cell body is normally called soma, which contains the nucleus and
is responsible for the protein synthesis and cell metabolism. A neuron usually
has multiple branched projections (dendrites) from the soma, which serve as the
main apparatus for receiving input into the neuron from other nerve cells. The
soma also gives rise to the axon, which is capable of integrating all inhibitory and
excitatory synaptic inputs, generating all-or-none action potentials and transmitting
the messages to axonal terminals. The axonal terminals are distal terminations of
the branches of an axon. The neurotransmitters are packaged into tiny, bubble-like
compartments known as vesicles in axonal terminals. Presynaptic neurons normally
send their axons to dendrites of postsynaptic neurons, which are the region where
one neuron receives connections from other neurons. The connections between
neurons are not continuous but contiguous. The gaps between two neurons are
called synapses. The axon terminals of presynaptic neurons release excitatory or
inhibitory synaptic transmitter; commonly they are glutamate or GABA in the brain,
respectively. In neocortex, GABA mainly controls the excitability of local micro-
circuit, whereas glutamate is responsible for transmitting the information between
neurons. The synaptic transmission is electrochemical in nature. In excitatory
synaptic transmission, presynaptic neurons release excitatory transmitter, glutamate,
into synaptic cleft. The glutamate binds its inotropic receptors, AMPA, NMDA,
or kainite, and thus produces excitatory postsynaptic potentials (EPSP). Neuronal
dendrites from a single neuron received thousands of EPSP, which are temporally
synchronized and summated. The summarized EPSP propagates along the dendrites
to axon initial segment to initiate the all-or-none action potential (spike). Individual
neurons receive thousands of synaptic input and continuously generate series of
action potentials, which are called spike trains.
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1.3 The Measurement of Bioelectrical Signals

To investigate the significance of bioelectrical signals in the brain, the reliable
recording strategies for assessing the electrical properties of biological cells and
tissues are highly appreciated. In the past century, various electrophysiological
recording techniques were developed for measuring the voltage change or electrical
current on a wide variety of scales from single ion channel proteins to whole organs.
In general, the recording techniques are divided into two categories: intracellular
recording and extracellular recording. The intracellular recording technique usually
requires small electrode (micrometer in tip diameter) and inserts the tip into a single
cell, which allows us to make direct measurement of intracellular electrical activity
of a single neuron. The commonly used approaches for intracellular recording
include voltage clamp, current clamp, patch-clamp, and sharp electrode techniques
(Sakmann and Neher 1995). Oppositely, for extracellular recording techniques, the
electrode tip is left in the continuity with the extracellular space. If the tip is small
enough, such a configuration allows indirect observation and recording of action
potentials from a single cell, which is termed single-unit recording. Depending
on the preparation and precise placement, an extracellular configuration may pick
up the activity of several nearby cells simultaneously, and this is termed multi-
unit recording. As electrode size increases, the resolving power decreases. Larger
electrodes are sensitive only to the net activity of many cells, termed local field
potentials. Still larger electrodes, such as uninsulated needles and surface electrodes
used by clinical and surgical neurophysiologists, are sensitive only to certain types
of synchronous activity within populations of cells numbering in the millions, such
as electrocorticography (EcoG) and electroencephalography (EEG).

1.4 Single-unit and Multi-unit Recording and Their
Applications in Measuring Brain Activities

As discussed above, if microelectrode tip is small enough (usually 3–10 �m in
diameter), the spike activity (action potentials) of a single neurons can be isolated
when the electrode is placed close to the neuron’s soma or axon. The microelectrode
is primarily a glass micropipette or metal microelectrode made of platinum or
tungsten (Boulton 1990). The single-unit recordings are widely used in cognitive
science, where it allows us to study the relationship between a neuron’s activities in
response to various forms of sensory stimuli and behavior. For example, with single-
unit recording technique, the firing rate of single neurons in medial entorhinal cortex
has been shown to tightly correlate with the rodent’s spatial locations (Hafting et al.
2005).

However, the main disadvantage of this technique is to maintain the recording
electrode in place for long duration because the amplitude of the recorded spike
is very sensitive to electrode position. This is especially true when the single-
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unit recording is carrying on in a free-moving animal. Additionally, a major
challenge today is to successfully record the simultaneous activities from as many
neurons as possible because the complex behavior function requires the dynamics
of large neural networks which is composed of thousands of neurons. This is made
possible by the development of microelectronics’ microfabrication technologies.
It now becomes possible to build high-density microelectrode arrays containing
several hundreds of microelectrodes. This microelectrode theoretically allows us
to simultaneously record dozens or hundreds of neurons in various preparations
although many channels in the microelectrode don’t record “good quality signals”
(Van Dijck and Van Hulle 2014).

Based on the single-unit technique, if the electrode tip increases slightly, then
the electrode might record the summed synaptic voltages and action potentials
from several neurons surrounding the recording tip (Bishop and O’Leary 1942;
Lorente de No 1947). This type of recording is called multi-unit recording and
is often used in conscious animals to record changes in the activity in a discrete
brain area during normal activity. Recordings from one or more such electrodes that
are closely spaced can be used to identify the number of cells around it as well
as which of the spikes come from which cell. This process is called spike sorting
and is suitable in areas where there are identified types of cells with well-defined
spike characteristics. Nevertheless, multi-unit recording is less sensitive to electrode
placement than single-unit recording, thus making it difficult to isolate contributions
of individual neurons.

1.5 Local Field Potentials

Local field potentials (LFPs) are electrical potentials recorded in the extracellular
space of brain tissue, usually with a wide variety of electrodes (metal, silicon,
or glass micropipettes). Such recordings were first made in animals over 140
years ago (Caton 1875) and became an increasingly important tool both in the
fields of neuroscience research and medical diagnosis. LFP is different from the
electroencephalography (EEG), which is recorded at the surface of the scalp with
macro-electrodes. It is also different from the electrocorticography (EcoG, which is
also called intracranial electroencephalography), which is recorded from the surface
of the brain using large subdural electrodes, while LFPs are recorded in depth, from
within the brain tissue. The spatial scale of sampling from LFP is larger than multi-
unit recording, but is relatively local because the LFP signals can be very different
from the signals recorded from 1 mm or a few hundred microns away (Nauhaus
et al. 2009; Katzner et al. 2009).

What is the origin of LFP signals? Early studies supported a “circus movement
theory,” which proposed that the frequency of the LFP oscillations was generated
by traveling electrical pulses along loops of neural network. In contrast, Bremer
showed that action potentials have a limited contribution to the LFP and the oscilla-
tion of the membrane potential of neurons plays an important role in the generation
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of the LFP (Bremer 1938, 1949). In 1951, Eccles proposed that postsynaptic
potentials which are generated by synchronized excitation of neuron’s dendrites are
involved in the LFP activities (Eccles 1951). Later on, several evidences confirmed a
close correspondence between the LFP activity and synaptic potentials (Creutzfeldt
et al. 1966a, b; Klee et al. 1965). Recently, other neural sources such as inhibitory
synaptic inputs (Hasenstaub et al. 2005) and subthreshold membrane properties
(Kamondi et al. 1998) have also been found to considerably contribute to the LFP.
Additionally, calcium-activated potassium currents also play an important role in
the LFP generation (Buzsaki 2002). In summary, LFPs reflect the macroscopic and
net synaptic inputs, as well as net result of local signal processing in certain brain
area, while the multi-unit recordings most likely represent a weighted sum of the
extracellular action potentials of all neurons within a sphere of approximately 140–
300 �m radius surrounding the exposed tip of the electrode (Gray et al. 1995; Henze
et al. 2000). It is usually assumed that LFPs integrate signals from a larger area than
that of multi-unit recordings.

The reason for the fact that action potentials have a limited contribution to the
LFP activities is due to strong frequency-filtering properties of cortical tissue. High-
frequency signals (greater than 100 Hz), such as that produced by action potentials,
are strongly filtered and attenuated, while low-frequency events, such as synaptic
potentials, attenuate less with distance. Consequently, the action potentials only can
be recorded by electrodes placed adjacent to the recorded cell, while synaptic events
may propagate over large distances in extracellular space and be recordable as far
as on the surface of the scalp, where they contribute to the generation of the EEG
signals.

1.6 Electroencephalography (EEG)

Since Hans Berger made the first human EEG recording in 1924, the EEG technique
has gradually become the most frequently used tools to study human brain. The
electroencephalogram (EEG) is an electrical signal recorded from perhaps 20–256
electrodes attached to the human scalp. Each scalp electrode records electrical
activity at very large scales which is generated by almost ten million neurons in
the cortical layer. When compared to LFP, single-unit and multi-unit recordings,
EEG recording is completely noninvasive, thus making it an ideal neuroimaging
method that is routinely used in clinical applications as well as in neurophysiological
research. There are, however, several disadvantages of EEG recording technique.
First of all, the spatial resolution for EEG recording is very poor and it is impossible
to use it for localization of electrical activities. Second, EEG merely records the
signals originating from the superficial layer of the cortex. Third, the signal to noise
ratio of EEG recording is poor. Therefore, a complicated data analysis and relatively
large number of subjects are needed to obtain the useful information from EEG
recording.
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EEG signals are commonly subdivided into different frequency bands, whose
properties and functional significance have recently drawn increased attention in
neuroscience research field. These bands are typically referred to as delta (1–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (greater than 30 Hz)
(Basar 1980; Steriade 1991). The classification is based on the strong correlation of
each band with a distinct behavioral state (Wang 2010). Delta band is the frequency
range up to 4 Hz. It tends to be the highest in amplitude and the slowest waves. It
is seen normally in adults in slow-wave sleep and in babies. Theta is the frequency
range from 4 to 7 Hz. Theta is seen normally in young children. It may also be
seen in drowsiness or arousal in older children and adults. Alpha is the frequency
range from 7 to 14 Hz. Hans Berger named the first rhythmic EEG activity he saw
as the “alpha wave.” It emerges with closing of the eyes and with relaxation and
attenuates with eye opening or mental exertion. Beta is the frequency range from 15
to about 30 Hz. Beta activity is closely linked to motor behavior and is generally
attenuated during active movements. Low amplitude beta with multiple and varying
frequencies is often associated with active, busy, or anxious thinking and active
concentration. Rhythmic beta with a dominant set of frequencies is associated
with various pathologies and drug effects. Gamma is the frequency range from
approximately 30 to 100 Hz. Gamma rhythms are thought to represent binding of
different populations of neurons together into a network for the purpose of carrying
out a certain cognitive or motor function.

Early studies have been performed to understand the origin of the EEG signals
and demonstrated a close correspondence between EEG activity and synaptic
potentials (Creutzfeldt et al. 1966a, b; Klee et al. 1965), indicating that the
population EPSP and IPSP of cortical neurons are major components of the EEG
signal. Current view is the surface EEG signal reflects synchronized afferent or
efferent activity of cells in a certain brain area (Eccles 1951). Therefore, neural
synchrony is the key in explaining differences of electrical activities between those
observed at the local level (LFP, multi-unit recording, EcoG) and those at the
more global level (EEG) (Wennberg et al. 2011). The implication is that the scalp
EEG is not merely a highly smoothed version of intracranial data, and it contains
different kinds of information about neocortical dynamics which are not necessarily
observable in intracranial recordings.
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Chapter 2
Adaptive Spike Sorting with a Gaussian
Mixture Model

Zheng Li

2.1 Introduction

This chapter presents a method for adaptive spike sorting: variational Bayesian
Gaussian mixture (VBGM) adaptive spike sorting. We also present the nonadaptive
spike sorting method upon which it is based, expectation–maximization on a
Gaussian mixture model, so as to ease the reader into the adaptive case. We then
show the results of some experiments on synthetic as well as real neural data to
demonstrate the utility of VBGM adaptive spike sorting. This chapter is not meant
as an overview of spike sorting methods and challenges in general. Some reviews
of spike sorting can be found in Lewicki (1998), Sahani (1999), and Gibson et al.
(2012).

Spike sorting is an important step in the processing of signals recorded from
electrodes implanted into the extracellular space next to neurons. Such electrodes
record changes in extracellular currents due to action potentials in these nearby
neurons. These action potentials are manifested as spikes in the voltage versus time
graph and hence are commonly called spikes. For many neuroscience investigations
and other applications of neural recording, ideally, the activity of a single neuron
is isolated from the activity of others. Thus, some method must be applied to
distinguish the spikes of one neuron from the spikes of other neurons.

Due to differences in neuron morphology and relative position and orientation
between electrode and neuron, different neurons tend to exhibit spikes with different
shapes, i.e., different waveforms in the voltage versus time curve. The differences
in the spike shapes allow the registration of spikes to different neurons using this
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information. This process is called spike sorting. Unfortunately, spike shapes are
contaminated by noise from the recording system and from background neural
activity, which is the summation of action potentials and sub-threshold electrical
activity from neurons in the vicinity. Such noise can make spikes from different
neurons difficult to distinguish or can make spikes from the same neuron appear
different at different times. Under low noise conditions, relatively simple spike
sorting methods will perform sufficiently accurately for most research needs. This
is particularly true in neuroscience as experiments are often carried out over many
repeated trials, averaging out the effect of noise. However, in applications such
as brain–machine interfaces for the real-time control of prosthetics, the luxury of
repeated trials is not available.

In some applications, signals are acquired over long time periods. A problem
that arises when signals are collected over hours or longer is that the spike shapes of
neurons may change, due to micro-movements in the electrode relative to neurons.
To sustain spike sorting accuracy, adjustments must be made to the parameters of
the spike sorting method to adapt to these changes in spike shapes.

There has been prior work in adapting to changes in spike shapes. Some examples
are Bar-Hillel et al. (2006), Wolf and Burdick (2008), Gasthaus et al. (2009),
Calabrese and Paninski (2011), and Paraskevopoulou et al. (2014). In this chapter,
we present a method which can probabilistically track changing spike shapes, spike
noise distributions, and baseline firing rates in a computationally efficient manner.

2.2 Problem Statement

We start by describing more precisely what we mean by the spike sorting problem.
In the following we will work with the data from one electrode at a time. Multiple
electrodes can be processed independently in parallel using the same method. We
do not specifically address the processing of data from tetrodes or stereotrodes here,
though our adaptive algorithm is equally applicable. We assume that segments of
the voltage versus time curve (time series) which contain action potentials of nearby
neurons have been identified by some spike detection method. The most common
method is to set a threshold on the voltage and cut out a time window around each
threshold crossing. These time windows of the time series comprise our input data:
many instances of putative spikes.

More precisely, our data consists of N vectors bw1:::N / Rl, where each vector
is the voltage in a time window, length l, containing a putative action potential.
Since these windows of data may contain noise instead of an actual spike, we
sometimes call them waveforms. We assume the elements of these vectors are real-
valued voltages, though in actual implementations they are often stored as integer
outputs from the analog-to-digital converters of recording hardware, for memory
and bandwidth savings. The problem of spike sorting can be divided into two phases:
an offline phase and an online phase. Some practitioners only need to perform
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the offline phase, since all their data analysis is performed offline. However, our
adaptive spike sorting is aimed primarily at the online phase.

During the offline phase of spike sorting, N waveforms comprise the input.
The task is to cluster these waveform inputs into one of K groups, each of
which hopefully corresponds to a single neuron. Hence, offline spike sorting is
often synonymous with clustering. In practice, the practitioner cannot be sure of
whether similar spikes come from one neuron, so the term “unit” is used instead
of neuron. Also, there is often one or more groups which are called “multiunits,”
a designation for groups containing spikes which are too noisy to be further
separated but are likely to contain spikes from multiple neurons (inferred from
refractory violations or other hints). Also, some practitioners designate a group
which holds all noise waveforms: those which were mistakenly detected as spikes
by the spike detection method. Note that this clustering is generally considered to be
unsupervised. However, practitioners may use other sources of information to assist
in this endeavor, such as neuron refractory or encoding patterns (Ventura 2009).
The number of clusters K is unknown but generally a number less than 5 for most
electrode hardware (exceptions are stereotrodes and tetrodes). The output of offline
spike sorting is a label for each input waveform. Note that, absent simultaneous
intracellular recordings (e.g., Harris et al., 2000), there is no gold standard to
measure the accuracy of this clustering. However, some practitioners may use
metrics such as presence of refractory violations, separation between clusters, or
signal-to-noise ratio to support the assertion that a group corresponds to a “well-
isolated single unit.”

During the online phase of spike sorting, waveforms arrive as they are detected by
the spike detector and must be assigned to one of the K groups in real time. Standard
methods do not perform clustering during the online phase, but rather classification.
Usually, a model of spike waveform shape is used. This model describes what shape
a waveform from a neuron is expected to be. The model parameters are fitted using
the groups found during the offline phase. Then, this model and its parameters are
used to classify each new waveform, giving it a label as the output of the algorithm.
In standard practice, the parameters are static, thus assuming that the spike shape to
neuron mapping is not changing.

For adaptive spike sorting, the problem is expanded. We not only need a label
for the incoming waveform, but we need to update the parameters of our spike
sorting model to adapt to any changes which the incoming waveform may tell us.
An alternate formulation is to decouple the classification and model updates, so
that classification occurs in real time as new waveforms arrive, but updates occur
asynchronously and periodically, working on batches of the latest waveforms.

Thinking about this alternative formulation, we may notice a resemblance to the
offline phase of spike sorting, except that instead of performing clustering de novo,
we can perform clustering with some prior information—the previous estimates of
the model parameters. It is precisely this line of thought which is the basis of our
adaptive spike sorting method. However, before describing the adaptive method, we
first describe the model and static spike sorting algorithm upon which it is based.
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2.3 Spike Sorting with a Gaussian Mixture Model

One well-known probabilistic model used for spike sorting is the Gaussian mixture
model (GMM), also called the mixture of Gaussians (MoG). In this model, each
recorded instance of an action potential has a shape that is the archetypical shape for
the unit plus normally distributed noise. The parameters for this normal distribution
are specific to each unit and unchanging. Waveforms from multiple units are
recorded on a channel, so the set of all waveforms is a mixture of K normal
distributions, where K is the number of units. The archetypical shape for each unit
is the center (mean) of the distribution for that unit. Since some units may have
higher firing rate than others, the proportion of spikes from different units may be
nonuniform; thus, the mixture is also described by mixing coefficients—relative
frequencies of units, expressed as a probability.

When we use “shape,” we mean a feature vector of numbers describing the shape
in a concrete way. How we compute this feature vector is beyond the scope of this
chapter. The most common way is to use principal components analysis to reduce
dimensionality to a small number. For the remainder of this exposition, we assume
we have some way to generate features, though our method is independent of exactly
how. The dimension of the feature vector is typically small (about 2 to 3), both for
visualization purposes and to make parameter estimation more reliable.

To make the above description precise, let us define a feature generator function
g, and g .bw/ is the d-dimensional column vector of features generated from
waveform bw. If the waveform is from unit k, the mixture model describes the
features of a waveform g .bw/ as having distribution

g .bw/ � N
�

bmk;P�1
k

�

; (2.1)

where N is a d-dimensional multivariate normal distribution, bmk is the d-
dimensional mean vector for unit k (a column vector), and P k is the d� d precision
matrix (inverse of the covariance matrix) for unit k. The mean vector describes the
archetypical shape, and the precision matrix describes the amount of noise, or how
spread out in feature space the instances of waveforms from this unit are. Notational
note: we use hats to indicate vectors and bold to indicate matrices.

If we want to draw a random sample from this mixture model, we first randomly
decide which unit to draw from, using the mixing coefficients �1:::K as probabilities:

k � Cat .�1:::K/ : (2.2)

Here, Cat is a categorical distribution, with category probabilities specified by the
mixing coefficients �1:::K , which are nonnegative and sum to one. Once we have
chosen the unit (k), we draw randomly from the normal distribution, N

�

bmk;P�1
k

�

.
The output is the feature vector g .bw/ of a waveform of random identity and shape
corrupted by random noise.
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If we know the parameters of the model and want to know the identity of a
given spike, we can compute and compare probabilities. That is, we first compute
the probability of the spike coming from the first unit. We do this by computing
the probability of the waveform shape given the first unit’s center (archetypical
shape) and noise distribution, i.e., we evaluate the probability density function of
the normal distribution given the parameters of the first unit at the shape of the
waveform. Next, we account for the relative frequencies of the units by multiplying
the probability by the mixing coefficient of the unit. This gives us the unnormalized
probability of the spike coming from this unit. More precisely, with kD 1, we
compute

UP .g.bw/; k/ D �kN
�

g .bw/ jbmk;P�1
k

�

: (2.3)

We remember this UP .g .bw/; 1/. Then, we compute the unnormalized probability
of the spike coming from the second unit (set kD 2), and so on, until we have
probabilities from each unit. Finally, we pick the unit with the highest unnormalized
probability. This gives us the maximum probability estimate of the spike identity.
We use this procedure during online spike sorting with a GMM.

Sometimes we need the normalized probability of the spike belonging to a unit.
To compute it, we normalize the unnormalized probabilities so that they sum to one:

Pr .� .bw/ D i jbw; �1:::K ;bm1:::K ;P1:::K/ D
UP .g.bw/; i/

PK
kD1 UP .g.bw/; k/

: (2.4)

Here, �(bw) is the identity of the unit which generated waveform bw. Let us next look
at how to set the model parameters when we know the identity of each waveform
in a dataset. We gather all the waveforms belonging to unit k and set the normal
distribution parameters by computing the sample mean and sample covariance:

bmk D
1

nk

X

�.bw/Dk

g .bw/ ; (2.5)

P�1
k D

1

nk � 1

X

�.bw/Dk

.g .bw/ � bmk/ .g .bw/ � bmk/
T
; (2.6)

where nk is the number of waveforms belonging to unit k. To set the mixing
coefficients, we find the sample proportion of waveforms belonging to each unit:

 k D
nk

N
: (2.7)
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2.4 Clustering with the Expectation–Maximization
Algorithm

During offline spike sorting, we need to find the model parameters �1:::K ;bm1:::K ;P1:::K
when given a set of waveforms bw1:::N , as well as find the identity of each waveform.
At first glance this may seem an impossible problem, since the model parameters
are needed to compute the unit identities, but the identities are needed to compute
the model parameters. However, the well-known expectation–maximization (EM)
algorithm (Dempster et al. 1977) finds a solution, which in our case corresponds
to a clustering of the data. This solution is a local maxima of the incomplete-data
likelihood, which is

L D
N
Y

iD1

K
X

kD1

UP .g.bwi/; k/ : (2.8)

Note that this likelihood is incomplete because it is calculated without the labels.
The EM algorithm is often used with GMMs to perform clustering. We sketch

the algorithm before going into specifics. First, cluster parameters are initialized
using some scheme. This may be random or based on the output of a simpler
clustering algorithm, such as k-means. Then, in the expectation step, the probability
of each data point belonging to each cluster is computed using the parameters. These
probabilities are called responsibilities, because they tell us how “responsible” the
cluster is for that data point. Then, in the maximization step, the cluster parameters
are updated. This is performed using the responsibilities as “soft” labels. For
example, if a waveform belongs to unit A with 20 % probability, during the mean
computation, it is included in the summation with a 20 % weight. Also, instead
of contributing a count of 1 to nA, a contribution of 0.2 is used. The idea is that,
when the label is not confident, the cluster parameter estimation should reflect this.
Next, the incomplete-data likelihood is calculated. Then the process iterates between
the expectation and maximization steps. Each step uses the values computed in the
other step. This process continues until the incomplete-data likelihood no longer
increases, which indicates convergence to a local maxima. In practice, iterations are
stopped when improvement is smaller than a percentage threshold.

Now let us look at the equations. In the expectation step, we compute responsi-
bilities ri;k for each waveform i and for each cluster k:

ri;k  Pr .� .bwi/ D k jbwi; �1:::K ;bm1:::K ;P1:::K/ ; (2.9)

where the probability is as we defined it previously. We use an arrow instead of an
equals sign to indicate an assignment.

In the maximization step, we first compute the statistic nk for each cluster k:

nk D

N
X

iD1

ri;k : (2.10)



2 Adaptive Spike Sorting with a Gaussian Mixture Model 17

Then, we compute the new cluster parameters, for each cluster k:

bmk  
1

nk

N
X

iD1

ri;k � g .bwi/ ; (2.11)

P�1
k  

1

nk

N
X

iD1

ri;k � .g .bwi/ � bmk/ .g .bwi/ � bmk/
T
: (2.12)

Lastly, we compute the mixing coefficient for each cluster k:

�k  
nk

N
: (2.13)

In practice, the expectation–maximization algorithm is fairly sensitive to the initial-
ization, as it only converges to a local maxima. Time permitting, multiple restarts
are advisable. The best clustering can be chosen by the highest incomplete-data
likelihood. Another consideration is the need to pick the number of clusters K. There
are many answers to the question of how to pick K, with varying sophistication
and effectiveness. However, since the number of units on a channel is generally
limited, fairly simple procedures such as trying multiple values of K and comparing
solutions by penalized likelihood work fairly well. We will not discuss this problem
further.

2.5 Gaussian Mixture Models and Adaptive Spike Sorting

Now we are ready to attack the problem of adaptive spike sorting using the Gaussian
mixture model. We assume that we have already performed spike sorting offline on
older data and so have some initial cluster parameters in hand. The problem becomes
how to perform classification of waveforms online, while at the same time updating
the clustering parameters to track changes in the units’ archetypical spike shapes,
noise distributions, and firing rates.

Let us think about this problem in one particular way to gain insight. We can
assume that the new spikes are classified in real time without considering changes
in clustering parameters, and then, periodically, we perform a parameter update.
During this parameter update, we use the spikes which have been recorded since the
last parameter update. We also have the labels generated by online spike sorting.
Now, we are in a similar situation as the maximization step in the EM algorithm:
we have data and labels and need parameters. We can then set the clustering
parameters using the statistics calculated on the new batch of data. This is equivalent
to performing one iteration of the EM algorithm, using the previous clustering
parameters as initialization.

While this approach may work, it suffers from some drawbacks. The primary
drawback is that, if the batch of data is small, the parameter estimates may be
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unreliable. Also, one can criticize the algorithm as throwing away information,
by only using the old parameters as initialization. Even though the old parameters
initialize the EM iteration—they provide the labels—they do not in any other way
constrain the final parameter estimates, which are entirely dependent on the new
batch of data. If we make some assumptions about how spike shapes change over
time, for example, that they change slowly and smoothly, then we can use the old
parameters to inform the new parameter estimates.

Another possible criticism of this one-iteration approach is that the updated
sorting parameters may change the labeling, which in turn may change the sorting
parameters. This is ignored if only one iteration is performed. What if we perform
more than one iteration of EM? In that case, the labels of the data might change.
Since online classification has already been performed, this new information is
wasted. What if we perform EM until convergence on each new waveform as it
arrives? This would allow us to use the label computed based upon the updated
parameters. However, if we do this with EM, we run into the problem of parameter
estimates based on too little data.

Considering the above, one reasonable suggestion is to incorporate the previous
spike sorting parameters during the computation of the new parameters in some
manner. This would mitigate the problem of insufficient data, reduce the impact
of noise in our estimates, and allow prior information contained in the previous
parameters to inform our new parameters. Instead of completely new parameter
estimates, the parameters would be updated. The question becomes how best to
accomplish this scheme.

One approach may be to update the parameters using a moving average. We may
store a set amount of past data and weigh data based upon its age. Or, to be more
memory efficient, we can avoid storing data by using a stateful moving average, such
as an exponentially weighted moving average. The state can be the parameters or
the statistics we use to compute the parameters. While these approaches can work,
they provide no assurances of optimality.

A more elegant and principled approach is to use a Bayesian probabilistic
framework. We treat the parameters as random variables instead of point values.
The distribution of the random variables represents our uncertainty about their
values. Then, we can update our distributions for the parameters using Bayes’ rule,
which combines prior information (in our case, past parameter estimates) with new
observations (new incoming waveforms) to compute posterior estimates (updated
parameter estimates). The storing and calculation of uncertainty is crucial to this
paradigm, because the amount of uncertainty tells us how best to combine different
sources of information (prior information, new observations).

In the following, we present an adaptive spike sorting algorithm based on
the GMM which performs Bayesian updates of the GMM parameters. We use
probability distributions to represent the parameters of the GMM, so that the full
model is a hierarchical model, with hyperparameters specifying the distributions
of the GMM parameters. The algorithm operates on the hyperparameters during
updates. The algorithm is an example of variational Bayesian inference, so we call
it variational Bayesian Gaussian mixture adaptive spike sorting. In the next section,
we specify the hierarchical model.



2 Adaptive Spike Sorting with a Gaussian Mixture Model 19

2.6 Hierarchical Model for GMM Parameters

The hierarchical Bayesian Gaussian mixture model and variational Bayesian clus-
tering algorithm presented here can be found in Bishop (2006), which also presents
an exposition on variational Bayesian inference. We apply the model and algorithm
for adaptive spike sorting. This approach has been applied to other problems, for
example, to the problem of speaker identification by Gauvain and Lee (1991). We
refer to the general inference algorithm presented by Bishop as variational Bayes
on Gaussian mixtures (VBGM) clustering and our application of it to adaptive spike
sorting as VBGM adaptive spike sorting. We first discuss some preliminaries.

The three kinds of parameters we need to consider are mean vectors, precision
matrices, and mixing coefficients. Each kind of parameter has a different form,
best represented by a different distribution. We chose distributions for these
parameters so that they are conjugate to the normal and categorical distributions
they parameterize. This is a special property linking distributions which allows for
efficient inference and storage of parameters.

For example, the parameter of distribution X on some data is a real number x.
Say we model x as a random variable, with a distribution Y with parameter y. Say
we start with some prior information on x, i.e., a prior distribution Y with known
value of y, and observe some instances of data drawn from X. We can then update
the distribution Y using Bayes rule to get a posterior distribution Y0. For arbitrary
pairs of distributions X and Y, the posterior distribution Y0 will have a different form
from Y, i.e., come from a different family of distributions. Furthermore, it is very
likely that Y0 will not have a closed-form representation. However, if we choose Y
so that it is conjugate to X, then the posterior distribution Y0 is guaranteed to be
from the same distribution family as Y, differing only in the parameter value (y).

Thus, when we choose a distribution for the parameter (“prior distribution”)
which is conjugate to the distribution it parameterizes (the “likelihood”), we only
need to work with and store the hyperparameters (y in the above example). We need
not worry about the form of the distribution changing. Using conjugate priors allows
closed-form solutions to Bayesian inference on parameters and is one of the key
elements of the variational Bayesian approach. Admittedly, only using conjugate
priors limits our ability to express prior beliefs; however, conjugate priors are in
some sense “natural” as distributions for parameters—the hyperparameter updates
that they entail are fairly intuitive and reasonable.

Now we are ready to specify the hierarchical model. The cluster parameters for a
unit k, the mean vector bm and precision matrix P, are modeled as random variables
which together form a normal-Wishart distribution:

fbmk;Pkg � N.bmkjb�k; .ˇkPk/
�1/W .PkjWk; vk/ ;

where b�k, ˇk, Wk, and vk are hyperparameters. The hyperparameter b�k,
a d-dimensional column vector, is analogous to the mean vector bm. It specifies
the center of the distribution for the archetypical shape, and since the distribution
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is normal, the maximum probability value and the expectation for bmk is b�k. The
hyperparameter ˇk, a scalar, acts like a count of the amount of data seen so far. The
hyperparameter Wk, a matrix of size d� d called the scale matrix, is analogous
to (the inverse of) the sum of squared differences matrix when computing a
covariance. The hyperparameter vk, a scalar, is analogous to the number of data
when computing a covariance and is called the degrees of freedom. The expectation
of the Wishart distribution is precisely the product of these two hyperparameters,
which is analogous to computing the sample precision of a data set. Hence, it is
intuitively satisfying that the Wishart distribution is the conjugate prior for the
precision parameter of a normal distribution. The distributions on the mean and
precision are linked (modeled jointly) because their uncertainties naturally covary.
However, distributions are assumed to be independent between clusters.

The mixing coefficients �1:::K are modeled as having a Dirichlet distribution:

�1:::K � D .˛1:::K/ ; (2.14)

where ˛1:::K are scalar hyperparameters. They can be understood as observed counts,
i.e., if we observe 10 spikes of unit A, 20 of unit B, and 30 of unit C, then
˛A D 10, ˛B D 20, and ˛C D 30 would be the parameters of the Dirichlet
distribution of the mixing coefficients considering only these data. If we add more
observations, we simply add the counts for each unit to the corresponding ˛

hyperparameters (if we assume old data is as good as new data). In this sense the
Dirichlet distribution is an intuitively satisfying conjugate prior to the parameters of
the categorical distribution. Note that there is one Dirichlet distribution for all the
mixing coefficients.

2.7 Parameter Updates

We now consider how to update the cluster parameters and mixing coefficients.
We assume that we have prior distributions for the cluster parameters and mixing
coefficients, as represented by values of their hyperparameters. We assume we have
as input a batch of N new waveforms, which includes the case of one new waveform.

The variational Bayes iterations are similar to EM iterations, with steps that are
repeated until convergence. In the algorithm, we initialize the hyperparameters to
their previous values (i.e., from the previous update or from the initial spike sorting).
Some equations require the previous hyperparameters, since we need to know the
prior, so we also use a tilde (�) to indicate the previous hyperparameters.

Like the expectation step of the EM algorithm on GMMs, we start with the
computation of responsibilities. The equation is different from the evaluation of the
normal probability density function and multiplication by the mixing coefficients,
because now the normal distribution’s parameters and the mixing coefficients are
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distributions themselves. We redefine the responsibility as the expectation of the
waveform’s identity over the parameters’ distributions. Due to conjugacy, this
expectation is available in closed form. For all units k and all waveforms i, we
compute:

rk;i  
1

Zi
exp

�

hln�ki C
1

2
hln jPkji �

d

2
ln .2�/

�
1

2

�

d

ˇk
C vk

�

g .bwi/ �b�k

�T
Wk

�

g .bwi/ �b�k

�

�	

; (2.15)

where Zi is a normalizing constant to make all responsibilities for waveform i
sum to one, d is the dimensionality of the features, and � without subscript is the
natural constant. The terms with angled brackets h i mean the expectations of the
expressions within them and are defined below:

hln�ki D  .˛k/ �  

0

@

K
X

jD1

˛j

1

A ; (2.16)

hln jPkji D d ln 2C ln jWkj C

d
X

jD1

 

�

vk C 1 � j

2

�

: (2.17)

Here,  ./ is the digamma function and jWkj is the determinant of Wk.
After the entire procedure has converged, the responsibilities can be used to find

the classifier output of the online spike sorting algorithm. If we need a hard label for
each waveform, we can choose the unit with the highest responsibility. If we need
a confidence measure, we can use the responsibility values directly, since they are
probabilities.

Now we move on to the cluster parameter update, analogous to the maximization
step of EM on GMMs. We want to update the hyperparameters to reflect the
changes to the parameters’ distributions due to the new data observations. The
equations for updating the hyperparameters can be derived by applying Bayes’
rule—that is, adding (in log space) the probability density functions of the prior
distributions (distributions on parameters) with the probability density functions of
the likelihood (distributions on data). Then, one must carefully rearrange the terms
in the resulting sums, so that the formulas mimic the structure of the probability
density function of the prior distribution. Once this is complete, one can see that
the posterior distribution is from the same distribution family but with different
parameters, following the conjugacy property. Then, performing some algebra gives
the expressions for the new hyperparameters in terms of the old hyperparameters
and some statistics on the data. This is a somewhat tedious process, so we skip the
derivation steps and present the update equations below.
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To update the cluster parameters, execute the following for each cluster k:

ˇk  eˇk C nk;

b�k  
1

eˇk C nk

�

eˇk
e�k C nksk

�

;

vk  evk C nk;

W�1
k  

QW�1
k C nkSk C

Q̌
knk

Q̌
k C nk

�

sk � Q�k

� �

sk � Q�k

�T
: (2.18)

Again, tilde signs over variables indicate prior values. The statistics nk, sk

(d-dimensional column vector), and Sk (d� d matrix) are defined as:

nk D

N
X

iD1

rk;i;

sk D
1

nk

N
X

iD1

rk;i g .bwi/ ;

Sk D
1

nk

N
X

iD1

rk;i .g .bwi/ � sk/ .g .bwi/ � sk/
T
: (2.19)

Note the resemblance to the equations which calculate the count, mean, and
covariance matrix for EM. The contribution of the new data, summarized by these
statistics, is combined with the prior knowledge encoded in the old hyperparameters
in intuitive ways. For ˇk, which acts like a count of the amount of data used
to estimate the archetypical spike shape, the update is to add the count of the
waveforms for which the cluster is responsible. For b�k, the center of the distribution
for the archetypical spike shape, we do a weighted mean between the old center e�k,
weighted by the previous count eˇk, and the center of the new data sk, weighted by the
amount of new data nk. The update for Wk is somewhat more complex. We perform
the update on the inverse of the matrix, which is analogous to the sum of squared
differences matrix in a covariance calculation. We can understand it as adding the
previous sum of squared differences ( QW�1

k ) to the sum of squared differences of the
new data (nkSk), and then adding a term that accounts for the difference in the mean
used when doing the calculations for the sum of squared differences in the new data
and prior.

To update the hyperparameters defining the distribution for the mixing coeffi-
cients, for all k, do:

˛k  ęk C nk: (2.20)
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This can be easily understood as observing more instances of data belonging to each
cluster.

The responsibilities should be recomputed after updating each set of hyperpa-
rameters. That means, after the cluster parameter update, responsibilities should
be recomputed before performing the mixing coefficient update. Thus, an example
order of computation is as follows: responsibilities, cluster parameters, responsibil-
ities, mixing coefficients, and then repeat.

2.8 Detecting Convergence

The responsibility computation and the hyperparameter update steps are repeated
until convergence, similar to EM. However, we determine convergence by calculat-
ing a different value, which takes into account the distributions on the parameters.
This value is the variational lower bound, which we denote with B. It can be shown
that maximizing this lower bound minimizes the Kullback–Leibler divergence
between the inferred joint posterior on the parameters and the true joint posterior
(Bishop 2006). The lower bound, when carefully calculated, can also serve as a diag-
nostic tool, because it should not decrease during any hyperparameter update step.

The lower bound has many terms, so for the sake of clarity we break it into four
main contributors:

B D Bd C Br C B� C Bm;P: (2.21)

Bd is the contribution from the data:

Bd D
1

2

K
X

kD1

nk

�

hln jPkji �
d

ˇk
� vktr .SkWk/

�vk

�

sk �b�k

�T
Wk

�

sk �b�k

�

� d ln .2�/

	

; (2.22)

where tr() is the trace operator. Br is the contribution from the responsibilities:

Br D

N
X

iD1

K
X

kD1

rk;i .hln�ki � ln rk;i/ : (2.23)

B� is the contribution from the mixing coefficients:

B� D ln�
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where �() is the gamma function. Bm;P is the contribution from the cluster
parameters:
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(2.25)

For more information about the lower bound, see Bishop (2006).
In practice, the lower bound calculation can be slow and difficult to implement

correctly. As a substitute, one may look at the change in the posterior hyper-
parameters and stop when the change is smaller than some arbitrary, unitless
threshold. The lower bound essentially implements the principled way to do this:
the threshold is in terms of probability, thus allowing the contributions of different
hyperparameters to be added together in a meaningful way. Alternatively, one can
iterate a predetermined number of times or until some quota of execution time is
spent, with the possibility of larger approximation error.

2.9 Transition Model for Parameters

The variational Bayesian clustering method we have described thus far combines
new information from newly observed data with prior information to update
clustering, as well as assigns labels to the new data. We repeat this procedure
each time new data arrives. This accumulates information about the clustering
parameters, making them more and more certain. In other words, the distributions
for the clustering parameters become more and more narrow, and the parameter
updates, all else being equal, become smaller and smaller over time.

This is not exactly what we want from an adaptive algorithm. The reason we want
adaptation is that we assume the parameters are changing over time. Therefore, if
we accumulate information, we are giving undue influence to old data. To use an
analogy, in a moving average, we either discount old data or only take the average
within a time window so that only recent data are included. If the average was over
all data seen so far, it would not be adaptive, but rather more accurately described
as accumulating information or sequential estimation.

Thus, we need some way of discounting old information. This is equivalent to
making the distributions for the clustering parameters wider or less certain. For those
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familiar with Kalman filtering, we are essentially tracking the clustering parameters,
and we need to define a transition model for them. This model is called a transition
model because it characterizes how the parameters transition from the previous time
step (previous run of adaptive clustering) to the current time step.

We need some way to say mathematically that our knowledge of the parameters
are becoming less certain over time, since we assume they are changing. However,
we do not wish this transition model to change the expectations of the clustering
parameters. In other words, we only want to change the width of the distributions
and not their center locations. Their center locations will be updated during the
VBGM clustering procedure. We use the following updates to express such a
transition model, for all k:

eˇ�1
k  ˇ�1

k C c1;

evk  vk� c2;

QWk  Wk=c2;

Q’k  ’k� c3;

where 0 � c1, 0 < c2 � 1, and 0 < c3 � 1 are constants. Note that the right-
hand sides have posterior hyperparameter values from the previous update, and the
left-hand sides have prior hyperparameter values for the next update.

The update for ˇk is somewhat like the effect of a random walk (zero-mean nor-
mally distributed additive noise) upon a random variable with a normal distribution.
For vk and ˛k, we chose updates in this manner because these hyperparameters act
like counts of data observed so far. The update shrinks this count by a fraction, in a
manner analogous to an exponentially weighted moving average. The update to Wk

is necessary to keep the same Pk value in expectation. The three constants may need
different values, as they represent different aspects of change: c1 represents how fast
the archetypical spike shape is changing (larger means faster), c2 represents how fast
the noise distribution is changing (smaller means faster), and c3 represents how fast
the mixing coefficients, or relative firing rates, are changing (smaller means faster).

The optimal values of the constants depend on the actual rate of change of the
spike shapes and the time duration between updates. We do not address how to
find the optimal values here, and in our experiments they are chosen by hand. If
we had labels for the waveform identities, we may use methods from the field of
system identification to pick these values. However, true spike sorting labels are
unlikely to be available in practice, so some guesswork and tweaking on the part of
the practitioner is probably required.

The transition model should be executed whenever time passes. In practice, this
means executing it once before each run of the VBGM clustering. The constants
will need to be adjusted to reflect the amount of time which has elapsed since
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the previous clustering, if clustering occurs at varying intervals. When performing
adaptive spike sorting in batch mode, i.e., when working with many spikes at once,
we are approximating the transition. That is, since the spikes in the batch likely
occurred at different times, rigorously, they should be clustered one at a time, in
order, with transitions between each using values of c1, c2, and c3 corresponding to
the time elapsed since the previous spike. However, this may be too cumbersome,
and since spike shapes do not change on the order of seconds, it is probably
unnecessary to do a transition more often than once a minute.

2.10 Initial Spike Sorting

Variational Bayesian inference on Gaussian mixtures can be used for initial or
offline spike sorting as well. In fact, this is a convenient way to generate hyper-
parameters for input to the first update. For this purpose, a set of hyperparameters,
encoding some reasonable prior knowledge on the clustering parameters, or encod-
ing ignorance, is needed to initialize the algorithm. Then the variational inference
proceeds as described above.

For our experiments on synthetic and real neural data, we use the following
initialization, for all k:

e�k � N .0; 25� I/ ;

eˇk D 10;

QWk D 10� I;

evk D dC 2;

ęk D 1;

where I is the d� d identity matrix. Note that e�k is randomly drawn from a
multivariate normal distribution. This prevents different clusters from having the
same prior, a situation which may lead to degenerate clustering results. The
hyperparameters eˇk,evk, and ęk, which are larger when more data has been observed,
are set to small initial values, to encode weak prior beliefs on the archetypical spike
shapes and mixing coefficients. As long as eˇk,evk, and ęk are sufficiently small, the
exact values for e�k, QWk, and Q̨k are not important, since the data will easily overrule
the prior.

VBGM clustering can be used in offline spike sorting in general. When using
carefully chosen priors, one may avoid some problems encountered with EM on
GMM clustering, such as degenerate clusters or clusters with unlikely shapes or
mixing coefficients.
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2.11 Experiments on Synthetic Data

We next demonstrate the utility of the VBGM adaptive spike sorting approach on
synthetic data. We test on synthetic data first since we can generate data to our
liking. We perform a series of three experiments, with increasingly more challenging
changes to track.

The synthetic data are not based on spike shapes, but generic data points
drawn from a Gaussian mixture model with time-varying parameters. We used
two dimensions for the data, to ease visualization. All our synthetic experiments
use three components, and we assume that the algorithm knows KD3. In each
experiment, an initial clustering is performed on a static training data set. Then
updates are performed on sequential batches of non-stationary data.

Experiment 2.1
In the first experiment, we test the ability of the VBGM adaptive spike sorting
method to track changing spike shapes only, without changes in noise distribution or
mixing coefficients. To generate the data, we set the mixing coefficients �1 D 0:3,
�2 D 0:3, and �3 D 0:4. The cluster covariance matrices were P�1

1 D I, P�1
2 D 2� I,

and P�1
3 D 0:5� I. Each cluster mean parameter is a function of the time t:
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�
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; 4 �

2t
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�

;

bm2.t/ D

�

3C
2t
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;�1C

2t
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�

;

bm3.t/ D

�

�0:5C
3t
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; 2 �

2t

10000

�

:

The cluster means change roughly two standard deviations in each axis over the
duration of the experiment. To perform the initial clustering, we drew one thousand
points with tD0. This acted as static training data. Then we drew 10,000 points with
t increasing from 1 to 10,000 and tested the adaptive clustering on this data. The
data were processed in batches of 1000 consecutive points.

We performed initial clustering using the initialization from the previous section.
For the transition model on the clustering parameters, we set c1 D 0:01 and
c2 D c3 D 1. Figure 2.1 shows several plots of the results. In each of the first
ten panels, we show the data in two dimensions so that clusters can be seen. Each
panel corresponds to a run of VBGM adaptive spike sorting on a batch of 1000
data points. The last two panels show one dimension versus all time, to illustrate
the drift in the clusters more clearly. The coloring of the points indicates true cluster
membership (for visualization only, this was not given to the algorithm). To keep the
plots as simple as possible, we do not show the label output of VBGM adaptive spike
sorting. The magenta X marks the true centers of the clusters in the first ten panels.
Since each panel spanned 1000 time points, and the centers drifted continuously, we
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show the cluster center at the midpoint of the time window included in the panel.
The magenta lines in the last two panels indicate the true cluster centers versus
time. The posterior cluster center and cluster standard deviation as found by VBGM
adaptive spike sorting are indicated by the black C sign and ellipse in the first ten
panels. In the last two panels, the black lines indicate the posterior cluster centers.
Note that the black lines are piecewise linear interpolations of the posterior mean
values found in the batches. We can see that the VBGM adaptive spike sorting was
able to follow the changes in cluster means very well.

Experiment 2.2
For the second experiment on synthetic data, we increased the rate of change of the
cluster centers. We also made the clusters move closer to each other. The centers
were defined as:
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The cluster means change about three standard deviations in each axis over the
course of 10,000 time points. All other parameters were the same as Experiment 2.1.

The results of Experiment 2.2 are shown in Fig. 2.2. The layout of the figure
is similar to that of Fig. 2.1. For Experiment 2.2, tracking was mostly successful
but less accurate than in Experiment 2.1. Due to the proximity of the green and red
clusters, the tracking of both was affected, with the largest error during time points
7001–8000. However, as seen in the plots of Dimension 1 and Dimension 2 versus
time, the adaptive clustering started to recover near the end of the 10,000 time steps.

Experiment 2.3
In the third experiment on synthetic data, we set the cluster means, the cluster
precisions, and the mixing coefficients to vary over time:
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Fig. 2.1 VBGM adaptive spike sorting on synthetic data, Experiment 2.1. Only means of clusters
changed. First ten panels show clustering results on each batch. Last two panels show one
dimension versus time
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Fig. 2.2 VBGM adaptive spike sorting on synthetic data, Experiment 2.2. Means of clusters
changed more quickly than in Experiment 2.1. First ten panels show clustering results on each
batch. Last two panels show one dimension versus time
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We also increased the number of data points to 50,000, since more data is needed
to track the simultaneously changing parameters. The cluster means change about
three standard deviations in this experiment. The change in mixing coefficients is 0.2
for one cluster and 0.1 for the two others. For the transition model on parameters,
we used c1 D 0:01, c2 D 0:99, and c3 D 0:5. Adaptive clustering was performed on
batches of 5000 data points.

Figure 2.3 shows the results of Experiment 2.3, using the same layout as
before, except that 5000 points are depicted in each of the first ten panels. Also,
magenta ellipses have been added to show the true cluster standard deviations.
VBGM adaptive spike sorting performed fairly well in terms of cluster means,
comparable to Experiment 2.2. The tracking of cluster precisions was poorer: the
final one-standard-deviation ellipses were less elongated than the true ellipses for
the blue and red clusters. This was likely because c2 was too large. In terms of
mixing coefficients, accuracy was also fairly good. The (expectations of the) mixing
coefficients from the initial clustering were �1 D 0:2906, �2 D 0:3021, and
�3 D 0:4073, very close to the true mixing coefficients at tD0. After processing
all data, the (expectations of the) final mixing coefficients were �1 D 0:4640,
�2 D 0:2132, and �3 D 0:3228. The inferred mixing coefficients slightly lag behind
the true mixing coefficients. This is understandable, since the algorithm operates in
batch mode.

2.12 Experiments on Real Neural Data

The experiments on synthetic data showed that the VBGM adaptive spike sorting
algorithm can track changes in synthetic data fairly well. Next we test our method
on real neural data.

The data were acquired from a Rhesus monkey (Macaca mulatta) in the
laboratory of Miguel Nicolelis at Duke University. The data were recorded from
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Fig. 2.3 VBGM adaptive spike sorting on synthetic data, Experiment 2.3. All parameters changed.
First ten panels show clustering results on each batch. Last two panels show one dimension versus
time
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motor-related cortical areas using chronically implanted microwire electrode arrays
(for methods, see Li et al. 2009, monkey C). Electrodes were made of stainless steel
or tungsten and approximately 50 micron in diameter. Electrodes were grouped into
pairs which had 300 micron differences in length. Electrodes were positioned in a
uniform grid where adjacent pairs were separated by 1 mm. The electrodes in each
pair were separated by a large enough distance in depth so that they were unlikely
to record from the same neurons; thus, we do not process them as stereotrodes. The
data were recorded using a Plexon Inc. Multichannel Acquisition Processor.

The unstable recordings at the start and end of sessions were discarded. We
only processed waveforms which crossed an experimenter-set voltage threshold
for spike detection. Putative noise waveforms were culled by template matching
against a database of noise shapes observed in that recording setup. Also, waveforms
which saturated the analog-to-digital converter for more than 10 % of the waveform
window were culled. After these preprocessing steps, we removed the labels
obtained from online spike sorting using the Plexon hardware. We divided the spikes
into six consecutive blocks, with an approximately equal number of spikes in each
block.

We used two feature dimensions for input, to be similar to the experiments on
synthetic data and to make visualization easy. We first computed the time derivative
of each waveform. Then we performed principal components analysis using data
in the first block. We used the two largest principal components to project all data
down to two dimensions. We then scaled the features to have standard deviation of
approximately two, so as to be similar to the synthetic data.

The number of clusters K was set by hand. We used constants c1 D 0:01 and
c2 D c3 D 1, also set by hand. Initial spike sorting was performed on the first block,
using the initialization previously described, then VBGM adaptive spike sorting was
applied sequentially to the remaining five blocks.

Results of adaptive spike sorting on three different channels are shown in
Figs. 2.4, 2.5, and 2.6. These channels had data spanning 23, 24, and 35 min,
respectively. The blackC signs and ellipses indicate means and standard deviations.
In the sixth panel, the initial mean and standard deviation are shown in red for
comparison. The bottom panels show spike shapes of each unit to illustrate the
change in actual waveform shape, instead of feature values. The mean initial and
final spike shapes are shown in red and black, respectively. For calculating the mean
shapes, responsibilities were used to weigh the mean calculation, similar to the
maximization step of EM. We can see that the VBGM adaptive spike sorting could
track the slowly changing spike shapes. In Fig. 2.6, there is substantial change in
spike shape over the course of 35 min.

2.13 Discussion

The experiments on neural data show that VBGM adaptive spike sorting can track
changing spike shapes when conditions are favorable. That is, when the clusters are
fairly well separated. Tracking accuracy is expected to deteriorate if clusters are
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Fig. 2.4 VBGM adaptive spike sorting on neural data from cortex of Rhesus monkey, example
1. First six panels show clustering on each batch. Last three panels show mean waveform shape
comparison. Data shown spans 23 min

close together in feature space, as seen in the second experiment on synthetic data.
If true labels or labels with high confidence from some other source are available,
they can be used to make tracking of parameters more accurate. There are also
likely to be some heuristics which can improve tracking performance, by leveraging
knowledge about the biology.

In general, adaptive spike sorting is an ill-posed problem. Given only the spike
shape data, we cannot distinguish an outlier due to noise from a data point reflecting
a sudden change in the underlying biology. However, we can define a probabilistic
model on the entire system and, by assuming the model is correct, trust in the
most probable explanation. In this approach, the probability of the deviation from
expected spike shape arising from noise would be weighed against the probability of
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Fig. 2.5 VBGM adaptive spike sorting on neural data from cortex of Rhesus monkey, example
2. First six panels show clustering on each batch. Last two panels show mean waveform shape
comparison. Data shown spans 24 min

the underlying system changing, as defined by the transition model on parameters.
This is what we do in our adaptive spike sorting solution.

A consideration for adaptive spike sorting is the computational cost of the
algorithm, since it must process data in real time. Using batch mode for parameter
updates, asynchronous with real-time classification for spike labels, gives two
benefits: amortization of some of the fixed computational costs and likely better
CPU cache performance. However, it still requires that data be processed faster than
it arrives, on average.

In our experiments, we used a moderately optimized MATLAB implementation
of VBGM clustering on a desktop personal computer with an Intel Core i7 class
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Fig. 2.6 VBGM adaptive spike sorting on neural data from cortex of Rhesus monkey, example
3. First six panels show clustering on each batch. Last two panels show mean waveform shape
comparison. Data shown spans 35 min

processor. Initial clustering of 15,000 data points used less than 2 s. Runs of the
VBGM adaptive spike sorting on batches of data (also 15,000 data points) took
less than 0.25 s each. During the updates, convergence was quicker due to prior
information.

Execution speed is expected to be heavily dependent on the feature dimen-
sionality d, though for spike sorting, dimensionality much higher than three is
seldom seen. Complexity analysis of the computations shows that the slowest
steps (computing rk;i and S k) have time complexity O

�

NKd2
�

, while overall, the
complexity of one VBGM clustering iteration is O

�

NKd2 C Kd3
�

. The cubic term
comes from the inverse in the update for W�1

k . The number of iterations per run
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largely depends on the prior, and our above results suggest the number of iterations
is low (<10) during adaptation.

If we were to use our current MATLAB implementation to perform adaptive
spike sorting on individual spikes as they arrive, the execution rate would be about
220 Hz, where each event is processing one new spike. This value was found
while processing 10,000 data points in succession with 2 clusters and 2 feature
dimensions. Note that this value is far lower than the >60 KHz execution rate
of batch-mode operation, indicating that much of the computation during single
spike adaptation is independent of the amount of data. This execution speed is fast
enough for one to a few channels of recordings. With a well-optimized C/CCC
implementation, speed should be at least an order of magnitude faster. If the VBGM
clustering algorithm stops iterating when available execution time runs out, the
clustering results would be biased toward the prior, since it is the initialization.
This is a fairly safe failure condition, which makes stop-on-time-limit a potential
implementation strategy.

The VBGM adaptive spike sorting method compares most closely with the work
of Wolf and Burdick (2008). Their algorithm uses the previous clustering result as
initialization in a Bayesian extension of EM. However, they do not place strong
priors on the cluster covariances and mixing coefficients; they use diffuse priors
instead. Their algorithm also handles loss and discovery of neurons and models
noise outliers. The work of Calabrese and Paninski (2011) is also similar to ours
in some ways. They use a mixture of Kalman filters to track changing archetypical
spike shapes. They also add a mechanism for modeling refractory. The sophisticated
hierarchical model of Gasthaus et al. (2009) elegantly handles loss and discovery of
neurons, as well as neural refractory. They use a particle filter to perform inference
on this model.

In summary, we have presented an adaptive spike sorting method which uses
Bayesian inference to track slow drifts in spike shape, noise distribution, and relative
firing rate. The method is computationally efficient and can successfully track
changes in real neural data. However, future work can improve this approach by
adding a method to handle discovery and loss of neurons and a method for choosing
transition model parameters intelligently.
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Chapter 3
Causality of Spike Trains Based on Entropy

Zhaohui Li and Xiaoli Li

3.1 Introduction

Over the past decades, most studies by means of spike trains have focused on
the understanding of the neural coding (de Charms and Zador 2000; Nemenman
et al. 2008; Ohiorhenuan et al. 2010; Pouget et al. 2000). It is of great interest to
find out how neurons process and transmit information, which is a foundational
issue for understanding the function of neuronal circuits and systems (Averbeck
et al. 2006; Cessac et al. 2010). To this end, simultaneous recording of multiple
single neurons was employed, including multielectrode arrays (Dickey et al. 2009;
Kandagor et al. 2010), multiple single electrodes (Fries et al. 2001), optical imaging
(Sasaki et al. 2006; Takahashi et al. 2007; Zochowski et al. 2000), etc. By using
the recorded spike trains, it is possible to study the interaction among neurons and
their relationships within neural systems and then quantify the neural network’s
structural information to investigate the neural coding. Analysis of spike trains can
give functional information such as the coupling strength and direction (Averbeck
et al. 2006; Brown et al. 2004; Cessac et al. 2010; Salinas and Sejnowski 2001).

Most analytical methods concentrate on the strength of pairwise connections, i.e.,
the degree of similarity or dissimilarity between two spike trains, including the cost-
based metric (Victor and Purpura 1997; Victor and Purpura 1996), the van Rossum
distance (van Rossum 2001), correlation-based methods (Haas and White 2002;
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Schreiber et al. 2003), event synchronization method (Quian Quiroga et al. 2002),
and the ISI-distance (Kreuz et al. 2007). These methods have been successfully used
to find the temporal similar pattern of the spike trains (Fellous et al. 2004; Narayan
et al. 2006; Wang et al. 2007). However, above methods are symmetric, and thus
they can’t capture the causal relationship between spike trains. To obtain the causal
relationship between the spike trains, Granger causality and information theory-
based causality were proposed. Granger causality method evaluates the coupling
directions by determining whether the information of a neuronal series is useful
in forecasting (Chen et al. 2004; Ding et al. 2006; Havlicek et al. 2010; Kamiński
et al. 2001; Seth 2005, 2010). In recent years, Granger causality has been used
to estimate the coupling direction in spike trains (Krumin and Shoham 2010;
Nedungadi et al. 2009). But it has two disadvantages: requirement of stationarity
and reliance on second-order statistics (Nedungadi et al. 2009). Other methods
for estimating the causality between neural series based on the information theory
are conditional mutual information (Palu et al. 2001; Palu and Stefanovska 2003),
transfer entropy (Schreiber 2000; Vicente et al. 2011), and permutation entropy
(Bandt and Pompe 2002; Olofsen et al. 2008). The details on these methods can
be found in Hlavkov Schindler et al. (2007). At present, to estimate the causality
between two spike trains, two main methods, causal entropy (Waddell et al. 2007)
and transfer entropy (Gourévitch and Eggermont 2007), were applied. The causal
entropy (CE) is a time-adaptive approach to detect the asymmetries in the relative
inter-spike intervals between neuronal pairs. The transfer entropy (TE) quantifies the
fraction of information in the past of a neuron flowed to the future of another neuron.

In this chapter, we address an information theory-based approach, which is
referred to as permutation conditional mutual information (PCMI), to extract the
causality between spike trains recorded from a pair of neurons. The permutation
entropy and conditional mutual information have been used to analyze neural signals
(Li et al. 2007, 2008, 2010; Salvador et al. 2010; Vejmelka and Palus 2008).
Recently, the two methods have been integrated together, named as PCMI, to eval-
uate the directionality index between two cardiorespiratory series (Bahraminasab et
al. 2008) and to estimate the coupling direction between two neuronal populations
(Li and Ouyang 2010). In this chapter, we intend to estimate the coupling direction
between the spike trains by means of PCMI.

3.2 Entropy in Spike Trains

3.2.1 Conditional Mutual Information

The spike trains are series of the occurrence of action potentials recorded from
individual neurons, and each spike train can then be represented as a series of
impulse functions:

S.t/ D
W
X

iD1

ı .t � ti/ (3.1)
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Fig. 3.1 Extraction of motifs from a simulated spike train. (a) A simulated spike train. (b) Dis-
cretize the spike train by adding spikes in each bin. (c) Motifs contained in the discretized sequence
(order: m D 3, so 3! D 6 different motifs), including “slopes” (M1 and M5), “peaks” (M2 and M4),
and “troughs” (M3 and M6). The numbers indicate six different motifs which are defined identical
to Li and Ouyang (Li and Ouyang 2010)

where t1 � � � tW are the spike times and W denotes the number of spikes. In order
to analyze with PCMI, a temporal resolution � (i.e., the bin size) is employed to
discretize a spike train to a sequence of integers N D fN1;N2; : : : ;Nng (Shlens et al.
2007; Strong et al. 1998), where each integer Ni (i D 1; 2; : : : ; n, n D T=� is the
total number of time steps within the recorded time interval of length T) denotes the
number of spikes occurred in each bin. The scheme is illustrated in Fig. 3.1a, b. Less
spikes will fall into a bin with the decrease of bins. If � is equal to the sampling
period of the spike train, the sequence will become a binary one.

Like electroencephalogram (EEG) and local field potential (LFP), the discretized
spike trains may generally present as a fluctuation over time. The motifs (i.e., ordinal
patterns, defined in Olofsen et al. (2008) and denoted as M in this chapter) embedded
in the fluctuations may provide the causal information between two spike trains.
According to the definition of permutation entropy (Bandt and Pompe 2002), the
number of total motifs is equal to the factorial of the order (i.e., the number of data
points in each motif). For example, there are six different motifs when order m D 3,
including “slopes,” “peaks,” and “troughs,” which are illustrated in Fig. 3.1c. The
order m is an important parameter in the PCMI algorithm, and how to choose its
value will be discussed in the following section. It should be noted that there is a
little difference in the sorting method in discretized spike trains compared with the
method in EEG or LFP. The values in the fragment of continuous EEG or LFP signal
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have a continuous distribution; equal values are neglected and only unequal ones
are considered for simplicity (Bandt and Pompe 2002). However, in the discretized
spike trains, the equal values can’t be simply neglected. Otherwise, the temporal
patterns contained in spike trains will be destroyed severely by the removal of equal
values. To solve this problem, the approach employed in this chapter contains the
following step: two equal values for sorting Ni D Nj and i < j are treated as Ni < Nj,
i.e., an ascending pattern. As shown in Fig. 3.1c, the ordinal pattern that is composed
of three data points denoted as solid triangles is classified as M5.

Another important parameter is the lag 	 in PCMI. The lag is the number of
sample points spanned by each section of the motif (Olofsen et al. 2008). The motifs
under 	 D 1 and 	 D 2 are illustrated in Fig. 3.1c. The motifs inside the ellipses
are of lag 	 D 1, and the motif indicated by the solid squares is of lag 	 D 2.
The effect of lag 	 on the result of PCMI in the discretized spike trains will be
addressed in the following section. Now, the probability of occurrence of each motif
can be calculated as p .Mi/ D f .Mi/ = .n � .m � 1/ 	/, where f (Mi), i 2 .1 W mŠ/
denotes the frequency of Mi in the discretized spike trains and n is the length of the
discretized spike trains.

On the basis of the permutation analysis, the probability distribution functions,
the joint probability functions, and the conditional probability functions of two
discretized spike trains can be obtained, and then the conditional mutual information
can be calculated. Let SX and SY be two spike trains recorded from two neurons.
Their corresponding discretized sequences are X D fxng and Y D fyng, respectively.
The marginal probability distribution functions of X and Y are denoted as p(x) and
p(y), respectively; the joint probability function of X and Y is denoted as p(x, y).
Then, the entropy of X and Y can be defined as (Thomas and Cover 1991)

H.X/ D �
X

x2X

p.x/ log p.x/; (3.2)

and

H.Y/ D �
X

y2Y

p.y/ log p.y/: (3.3)

The joint entropy H(X, Y) of X and Y is given by

H .X;Y/ D �
X

x2X

X

y2Y

p .x; y/ log p .x; y/: (3.4)

The conditional entropy H .XjY/ of X given Y is defined as

H .XjY/ D �
X

x2X

X

y2Y

p .x; y/ log p .xjy/: (3.5)
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Then, the common information contained in both X and Y can be evaluated by
the mutual information:

I .XIY/ D H.X/C H.Y/ � H .X;Y/ : (3.6)

To infer the causal relationship, i.e., the directionality of the coupling between
X and Y, the conditional mutual information (CMI, i.e., the PCMI in this chapter)
may be employed to estimate the “net” information about the future of one process
contained within the other process. The PCMI between X and Y can be calculated
by the following equations (Li and Ouyang 2010; Palu et al. 2001; Palu and
Stefanovska 2003):

IıX!Y D I .XIYıjY/ D H .XjY/C H .YıjY/ � H .X;YıjY/ (3.7)

and

IıY!X D I .YIXıjX/ D H .YjX/C H .XıjX/ � H .Y;XıjX/ ; (3.8)

where Xı (Yı) is the future ı steps ahead of the process X(Y). The main procedure
of the algorithm to detect the coupling direction is as follows:

1. Find the maximum value in IıX!Y and IıY!X , then denoted as I�X!Y and I�Y!X .
2. Similar to Rosenblum et al. (2002) and Schnupp et al. (2006), the directionality

index between X and Y is defined as

DP
X!Y D

�

I�X!Y � I�Y!X

I�X!Y C I�Y!X

�

: (3.9)

Since both I�X!Y and I�Y!X are confined in the interval [0 1], the value of DP
X!Y

(DP: the directionality index of PCMI) ranges from �1 to 1. DP
X!Y > 0 means that

SX drives SY , and DP
X!Y < 0 means that SY drives SX .

3.2.2 Transfer Entropy

The transfer entropy can estimate the information transferred from one neuron to
another neuron (Gourévitch and Eggermont 2007). Let

�

t tC 	f


and
�

t � 	p t


denote the upcoming time interval and past time interval, respectively, and XF, XP

and YF, YP are the number of spikes of SX and SY (SX and SY denote two spike trains)
falling in the two intervals; then the transfer entropy from SX to SY is defined as

'X!Y D I
�

YFIXPjYP
�

D H
�

YFjYP
�

� H
�

YFjXP;YP
�

: (3.10)
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To reduce the bias caused by the surrogate data that generated by randomly shuffling
the inter-spike intervals, the normalized transfer entropy (NTE) is defined as

 X!Y D
'X!Y � '

shuffled
X!Y

H .YFjYP/
: (3.11)

There is no causality between two spike trains, when the NTE is less than zero. To
restrict the NTE in the interval [0 1], we set up  D 0 if  < 0. The directionality
index DT

X!Y (DT : the directionality index of TE) is defined as

DT
X!Y D

�

 X!Y �  Y!X

 X!Y C  Y!X

�

2 Œ�1 1
 : (3.12)

The DT
X!Y is greater than 0 if the spike train SX drives the spike train SY ; if the

DT
X!Y is less than 0, that means the spike train SX is driven by the spike train SY ; if

the DT
X!Y is about 0, there is no causal relationship between the two spike trains.

3.2.3 Causal Entropy

The causal entropy is an information theory method to estimate the causal relation-
ship between two spike trains (Dzakpasu and Zochowski 2005; Waddell et al. 2007).
The method is based on the variations of the distribution of inter-spike intervals in
SX and SY . The detail of the algorithm can be found in Waddell et al. (2007). Herein,
the �X!Y and �Y!X are denoted as the causal entropies between SX and SY . The
normalized directionality index of CE is defined as

DC
X!Y D �

�X!Y � �Y!X

�X!Y C �Y!X
2 Œ�1 1
 (3.13)

where DC
X!Y (DC: the directionality index of CE) has the same meaning as the

DT
X!Y .

3.3 Izhikevich Model for Spike Trains

In this chapter, the Izhikevich neuronal model is employed for the simulation
analysis to evaluate the performance of the methods. The Izhikevich neuronal
model combines the biological plausibility of Hodgkin-Huxley-type dynamics and
the computational efficiency of integrate-and-fire neurons; this simple model can
generate the rich behavior of biological neurons, including spiking, bursting, and
mixed mode firing patterns (Izhikevich 2003).



3 Causality of Spike Trains Based on Entropy 45

The Izhikevich neuronal model contains two variables: v and u. v is the
membrane potential of the neuron and u is a membrane recovery variable; the model
is below:

v0 D 0:04v2 C 5vC 140 � uC I; (3.14)

u0 D a .bv � u/ (3.15)

with the auxiliary after-spike resetting

if v � 30 mv; then

�

v c
u uC d;

(3.16)

where I is the synaptic current or injected DC current. The parameter a describes the
time scale of u, b describes the sensitivity of u to subthreshold fluctuations in v, c
describes the spike reset values of v, and d describes the spike reset value of u. These
parameters are set as a D 0:02; b D 0:2; c D �65 mv; d D 2. The injected
current I is set as a normally distributed random Gaussian variable. The causality
between two neurons is obtained in such a way the output of the first neuron (neuron
1) is fed into the second neuron (neuron 2) with a time delay (denoted as “dI”). The
coupling strength is determined by a proportion R which means how many percents
of the output of neuron 1 are injected into neuron 2. The larger the proportion, the
stronger the coupling between the two neurons.

3.4 Characterization and Comparison of the Causality

3.4.1 Parameter Choices in PCMI

In the PCMI algorithm, four different parameters (i.e., �, 	 , order, and ı) should be
firstly considered before its application. The effect of these parameter selections on
the performance of the PCMI is discussed by the Izhikevich neuronal model. Given
R D 0:5, dI D 25 ms, and the spike train length 50s, two spike trains are generated:

1. The temporal resolution �. The � is the bin size that is used to discretize
spike trains. The � ranges from 1 to 30 ms with a step of 1 ms. Figure 3.2
plots the directionality index estimated by the PCMI with order m D 2 and
m D 3, respectively. For m D 2, it can estimate the coupling direction when
� < 15 ms; while m D 3, when � is larger than 10 ms, the coupling direction
cannot be found. The underlying reason is that the larger� destroys the inherent
permutation patterns contained in the two spike trains; however the smaller the
�, the more accurate permutation information can be obtained. In this chapter, it
is recommended that the � is set as the sample period of the spike train, namely,
� D 1 ms.
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2. The lag 	 . The lag is the number of data points between the adjacent two points
in the motifs. Figure 3.3 shows the directionality index at the different lags with
m D 2 and m D 3; it is found that the different lags can give similar results
for the two orders. In Shelhamer (2007), an autocorrelation function (ACF) of a
signal can be employed to determine the lag 	 . In this chapter, we found the lag 	
determined by the ACF is always one, so the 	 D 1 is selected in this simulation
analysis.

3. The order m. The order denotes the number of data points included in the motif.
The length of data is at least greater than mŠ � mŠ � mŠ points to obtain a reliable
result of PCMI, for example, m D 4 means we need 13,824 data points (Li and
Ouyang 2010). In this chapter, there are only 0 s and 1 s in the binary sequences;
when m D 2 (ascending and descending ordinal patterns), the permutation
patterns of the series can be fully described. As can be seen in Figs. 3.2 and
3.3, m D 2 is an appropriate selection for the calculation of PCMI.

4. The ı. It is noted that the ı cannot be less than the order m in PCMI
(Bahraminasab et al. 2008). And the ı is associated with the delay time, which
will be discussed in the following section. Thus, the ı should be larger than the
maximal delay between two spike trains for investigating the causality at all delay
times.
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Fig. 3.4 The PCMI estimate for the Izhikevich neuronal models. (a) Model I1: one delay of 25 ms
between neuron 1 and neuron 2, 50 % of the output of neuron 1 is injected into neuron 2. (b) Model
I2: two different delays of 15 ms and 30 ms between neuron 1 and neuron 2, 20 % and 30 % of the
output of neuron 1 associated each delay is injected into neuron 2. (c and d) The PCMI estimate
between neuron 1 and neuron 2 (I1!2 and I2!1) with different ı values for model I1 and model I2

3.4.2 Comparison of Simulation Results

Firstly, the capability of PCMI for charactering the causal relationship is demon-
strated by the Izhikevich neuronal model. Model I1 and model I2 are constructed
and shown in Fig. 3.4a, b, respectively. In model I1, R D 50 % and dI D 25 ms, two
spike trains of 10s are generated with the causality from neuron 1 to neuron 2. In
model I2, the coupling direction is the same as model I1 but the strength is composed
of two fractions: R1 D 20 % with d1I D 15 ms and R2 D 30 % with d2I D 30 ms.
The reason for the usage of the model I2 is that the coupling between neurons
may involve multiple pathways that vary in their conduction delays (Swadlow et
al. 1978). For both models, we use � D 1 ms to discretize the two spike trains
and m D 2, 	 D 1, and ı D 2 W 50 to calculate the PCMI. Figure 3.4c, d plots
the PCMI values between neuron 1 and neuron 2 (I1!2 and I2!1) with different ı
values for model I1 and model I2, respectively. Obviously, there is a peak of I1!2

corresponding to every delay time in the two models, which is indicated by the
product of ı and� (e.g., ı D 25 and� D 1 ms for 25 ms delay). In fact,� identifies
the resolution of the delay times. Moreover, the value of I1!2 is proportional to the
coupling strength, as can be observed in Fig. 3.4d. On the other hand, the I2!1

stays closely to 0 due to the absence of causality from neuron 2 and neuron 1. The
estimated directionality indexes for the two models reflect the coupling direction
exactly.
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Secondly, to compare with the PCMI, the TE and CE methods are carried out
with the same simulations. As mentioned in the previous section, the PCMI, TE,
and CE are all parameter-dependent methods. We set the parameters of the three
methods as follows: ı D 2 W 50 for PCMI; 	f D 1 W 50 ms and 	p D 1 W 50 ms for
TE; 10 bins of size 5 ms for CE. The comparison is carried out in three aspects:

1. Variation of directionality index with the coupling strength

In the Izhikevich neuronal model, the parameter R which reflects the coupling
strength ranges from 0 to 100 % with a step of 5 %. Spike trains for neuron 1 and
neuron 2 are simulated with the causality from neuron 1 to neuron 2 and a delay
time of 10 ms. These spike trains are of 10s length. As can be seen in Fig. 3.5a,
it is clear that the PCMI and TE are superior to the CE at identifying the coupling
direction. As far as PCMI and TE are concerned, the advantage of the PCMI is that
it can determine the coupling direction with more reliability and robustness for the
weak coupling. Figure 3.5b plots the PCMI values for different coupling strengths.
In the direction from neuron 1 to neuron 2, the PCMI estimate is proportional to
R. On the other hand, the PCMI estimate is always close to 0 because there is no
causality between the two neurons in the opposite direction.

2. The effect of spike train duration on the directionality index estimation

Since the three methods for comparison in this chapter all depend on the
statistical calculation, it is necessary to investigate the effect of the duration of
spike trains on the directionality index estimation. Given dI D 10 ms, two neurons
are generated with the driving direction from neuron 1 to neuron 2. Figure 3.6a, b
plots the directionality index estimated by the PCMI, TE, and CE for two different
coupling strengths: RD 10 % and RD 30 %. In Fig. 3.6a, with the increase of
duration, the directionality index of PCMI increases with small fluctuations and then
becomes stationary. In comparison, the directionality index of TE is not suitable for
estimating the directionality index because of the large fluctuations and the small
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Fig. 3.6 Effect of spike train duration on the directionality index and PCMI values for the
Izhikevich neuronal model. (a and b) Directionality index estimated by the PCMI, TE, and
CE(DP

1!2, DT
1!2, and DC

1!2) for R D 10 % and R D 30 %. (c and d) PCMI values (I1!2 and
I2!1) with different durations for R D 10% and R D 30 %

directionality index. As can be seen in Fig. 3.6b, the behavior of PCMI and TE
are similar, but the PCMI is still superior to the TE, especially when the spike
trains duration is less than 10s. In both of the cases, compared with PCMI and TE,
the directionality index of the CE does not change obviously with the spike train
duration, but it is not very efficient to evaluate the coupling detection. The effect of
spike train duration on the PCMI values for the two coupling strengths are described
in Fig. 3.6c, d. It was found that that there is a significant decrease for RD 10 %. On
the other hand, for the coupling strength RD 30 %, the PCMI value almost does not
vary with the spike train durations.

3. The robustness of directionality index

Three types of noise are considered in this chapter: the jitter noise corresponding
to a shift in time of the spikes in spike trains, the missing spikes corresponding to
the random deletion of spikes in spike trains, and the extra spikes corresponding
to the random insertion of independent spikes in spike trains. The jitter noise may
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appear in stochastic biological processes such as synaptic transmission and spike
propagation in a neural network. The missing and extra spikes arise as spurious
points in the spike trains, primarily caused by spikes which are not fired by the
recorded neuron, but by other external processes involving the discharges of other
neurons, errors in the spike sorting procedure, electrical artifacts, etc. (Asai and
Villa 2008; Schreiber et al. 2003).

For the Izhikevich neuronal model, neuron 1 drives neuron 2 with a delay time
of 10 ms. The simulated spike trains are of 10s length. The effect of noise on the
directionality index estimation is evaluated by the models of two different coupling
strengths: RD 10 % and RD 30 %.

a) Jitter noise. The jitter noise is added to the spike trains via shifting every spike in
each spike train by a time normally distributed in an interval. From the simulation
results for the Izhikevich neuronal model which are shown in Fig. 3.7a, b, it can
be observed that the performances of PCMI and TE to resist jitter noise are very
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Fig. 3.7 Effect of jitter noise on the directionality index and PCMI values for the Izhikevich
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close to each other. However, they can only resist small jitter noise. But the CE
cannot resist against the jitter noise. In Fig. 3.7c, d, the PCMI estimate from
neuron 1 to neuron 2 (I1!2) is greatly influenced by the jitter noise which leads
to the poor ability of identifying the coupling direction.

b) Missing spikes. The amount of missing spikes is quantified by the percentage
of randomly deleted spikes in each spike train. The simulation results for
the directionality index are shown in Fig. 3.8a, b. For the coupling strength
RD 10 %, the directionality index estimated by the PCMI decreases with the
increasing number of missing spikes. The directionality index of TE fluctuates
dramatically and the directionality index of CE stays around zero. For the
coupling strength RD 30 %, the effect of the missing spikes on the PCMI and
CE are not significant, but the directionality index of TE decreases significantly.
Figure 3.8c, d plots the variation of PCMI values with the missing spikes. With
the increase of missing spikes, I1!2 decreases significantly and I2!1 increases
very slightly. But I1!2 is always larger than I2!1 which ensures a correct
estimation of the coupling direction.
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Fig. 3.8 Effect of missing spikes on the directionality index and PCMI values for the Izhikevich
neuronal model. (a and b) The robustness of directionality index estimated by the PCMI, TE,
and CE (DP

1!2, DT
1!2, and DC

1!2) against jitter noise for R D 10% and R D 30 %. (c and d) The
variation of PCMI values (I1!2 and I2!1) with different jitters for R D 10 % and R D 30 %
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Fig. 3.9 Effect of extra spikes on the directionality index and PCMI values for the Izhikevich
neuronal model. (a and b) The robustness of directionality index estimated by the PCMI, TE,
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variation of PCMI values (I1!2 and I2!1) with different jitters for R D 10% and R D 30 %

c) Extra spikes. The amount of extra spikes is quantified by the percentage of
randomly inserted independent spikes in each spike train. Figure 3.9a, b shows
the estimation of directionality index by the PCMI, the TE, and the CE as a
function of extra spikes. For the coupling strength RD 10 %, the extra spikes
make the directionality index of PCMI decrease to about 0.4 when the number
of the extra noisy spikes is equal to the half of original spikes number. But the
PCMI is still capable of estimating the coupling direction. On the other hand,
the TE is not suitable for estimating the coupling direction due to its uncertain
results, and the CE is not appropriate because of its approximate zero values. For
the coupling strength RD 30 %, the directionality index of the TE and CE are
both influenced severally by the extra spike noise. However, there is only a small
decrease for the PCMI with the increasing of the noisy spikes. As can be seen in
Fig. 3.9c, d, there is variation of the PCMI values because of the extra spikes, but
this does not alter the result about the coupling direction, which is similar to the
case of missing spikes.
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3.5 Conclusions

Characterizing the connections between individual neurons is essential for the better
understanding of neural coding. In this chapter, the PCMI method is introduced to
identify the causal relationships (information flow) between two spike trains. To
assess the performance of the measure, a series of simulations were performed by
means of the Izhikevich neuronal model. The simulation results shows that the
PCMI method can be applied for the analysis of causality between neurons by
spike trains. In comparison with the TE and CE methods, the advantages of the
PCMI can be summarized in the following. (1) The PCMI can detect the interaction
delays between two spike trains, even if there is a wide distribution of the delay
times due to the multiple pathways that connect two neurons. The interaction delays
are indicated by the product of ı and �, and the resolution is determined by �.
(2) The PCMI method is able to estimate the directionality index reliably for the
weak coupling strength (e.g., RD 10 % for the Izhikevich neuronal model) between
spike trains, but the TE and CE methods are not suitable in this case because of the
dramatical fluctuations and small values of the directionality index, respectively. For
the stronger coupling strength (e.g., RD 30 % for the Izhikevich neuronal model),
the three methods are able to identify the directionality index, but the PCMI is
better than the TE and CE at identifying the coupling direction for short spike
trains. (3) The PCMI is more robust to the noise in spike trains than the TE and
CE, particularly for the missing and extra spikes. The underlying reason is that the
PCMI is based on the ordinal patterns contained in the spike trains; thus the missing
or extra spikes cannot severely destroy the inherent ordinal patterns, particularly
when there is a stronger coupling strength between two spike trains. On the other
hand, because the TE is calculated in terms of the number of spikes in time intervals
and the CE is computed by means of the relative inter-spike intervals between a pair
of spike trains, therefore they are influenced greatly by the missing and extra spikes.
In summary, the PCMI method can give the quantification of the directionality index
and the detection of temporal dynamics between two interacting spike trains.
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Chapter 4
Quantification of Spike-LFP Synchronization

Zhaohui Li and Xiaoli Li

4.1 Introduction

The advent of multielectrode arrays makes it possible to simultaneously record the
spiking activity of multiple neurons and neural ensembles, which offers an important
avenue to investigate fundamental issues about the neural coding (Galashan et al.
2011; Stafford et al. 2009). The resulting voltage signals are generally separated
into two types: one is the spikes or action potentials, which are fired by neurons and
identified by high-pass filtering, detecting, and sorting, and another is the local field
potentials (LFPs), which are the total synaptic current in the neuronal circuit and
obtained by low-pass filtering the original wideband signal (Mizuseki et al. 2009;
Perelman and Ginosar 2007). The interaction between the spikes of single neurons,
i.e., spike trains, and the ongoing LFP oscillations is becoming a hot topic in
neuroscience, because it allows us to study how the activities of individual neurons
are related to those of the larger-scale networks in which they are embedded. Its
significance has been shown to be associated with high-level brain functions, such
as attention (Chalk et al. 2010; Fries et al. 2001), memory (Harris et al. 2002; Le
Van Quyen et al. 2008; Lee et al. 2005), motor task (Courtemanche et al. 2002;
Hagan et al. 2012; van Wingerden et al. 2010), and sensory processing (Eggermont
and Smith 1995; Fries et al. 1997; Pienkowski and Eggermont 2011 Xu et al. 2012).
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4.2 Spike Field Coherence

4.2.1 Spike-Triggered Average and Spike Field Coherence

A typical method for studying spike-LFP interaction is the spike field coherence
(SFC), which measures synchronization between spike trains and LFPs as a function
of frequency and takes values between 0 % (complete lack of synchronization) and
100 % (complete synchronization) (Fries et al. 2001; Fries et al. 1997). The SFC
can be used to describe the strength of synchronization between spike times and a
particular phase of the LFP oscillation at a certain frequency. It has been employed
to investigate the memory formation in humans (Rutishauser et al. 2010), the neural
mechanism of visual attention in macaque monkeys (Chalk et al. 2010; Fries et al.
2001), the stimulus-specific synchronization in primary visual cortex of awake-
behaving cats (Siegel and Konig 2003), and other brain functions (Fries et al. 2002;
Issa and Wang 2011; Lewandowski and Schmidt 2011; Tiesinga et al. 2004; Wang
et al. 2011). An important advantage of the SFC is that it is independent on the LFP
power and spike rate (Fries et al. 2001).

The SFC is a function of frequency and obtained by computing the ratio of power
spectrum of the spike-triggered average (STA) over the average of power spectrum
of the LFP fractions (Fries et al. 1997). Thus, the SFC is independent on the LFP
power and spike rate (Fries et al. 2001). Suppose that the spike train of a neuron is
denoted as S D Œs1; s2; : : : sm
, where m is the spike number. V D Œv1; v2; : : : vm
 is
the set of LFP segments, where vi is the samples of the LFP signal in the window
Œsi � T=2; si C T=2
. Here, T is the duration of the window. The STA is constructed
by averaging the LFP fractions within windows that centered on the spikes. Then,
the power spectrum of STA (PSTA) is defined as

PSTA D ‰

 

1

m

m
X

iD1

vi

!

; (4.1)

where‰ denotes the operation for calculating the power spectrum. Next, to describe
the power of every frequency component in the LFP segments that used to construct
the STA, i.e., vi with i D 1; 2; : : : ;m, the average power spectrum of vi (spike-
triggered power spectrum or STP) is (Fries et al. 1997; Rutishauser et al. 2010)

STP D
1

m

m
X

iD1

Œ‰ .vi/
: (4.2)

Then, the SFC is defined as [17]

SFC D
PSTA

STP
� 100%: (4.3)

The STP and PSTA can be computed with many methods. For instance, multitaper
analysis is a powerful and robust method to estimate single-trial spectrum (Jarvis
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and Mitra 2001), which can be performed by using the Chronux toolbox (Bokil et al.
2010). The multitaper method is employed in this chapter for spectrum analysis of
the simulated and experimentally recorded LFP signals.

4.2.2 Bursty Spike Trains and Weighted Spike Field Coherence

The SFC reflects the synchronization between spike trains and LFPs at different
frequencies. However, it does not work well for bursty spike trains and LFPs at
high frequency band, which will be shown in the following section. A burst can
be defined as a temporary increase in the firing rate of spikes from the background
activity (Cocatre-Zilgien and Delcomyn 1992; Palm 1981; Robin et al. 2009). As
the mechanism for generating bursts is mentioned, it is commonly accepted that
small depolarization keeps the cell silent, moderate depolarization makes the cell
fire single spikes, and large depolarization causes the cell to discharge in burst
mode. Thus, bursts code the same neural information as single spikes but with higher
reliability (Harris et al. 2001; Lisman 1997). With this understanding, the first spike
in each burst is selected and used to represent the burst as event (Kepecs and Lisman
2003; Swadlow and Gusev 2001).

When all spikes in the bursts are used to calculate the coherence, this operation
will decrease the SFC values even if there is strong phase-locked synchronization
between bursty spike trains and LFPs at high frequency band. To overcome this
drawback, an improvement for the algorithm of SFC is introduced in this chapter.
That is, multiple copies of the first spike in each burst are used to compute the
SFC. The number of the copies is determined by the number of spikes per burst.
Since this is analogous to the process of weight, the modified approach is referred
to as weighted spike field coherence (WSFC). To evaluate the performance of
this method, it is applied to both simulation data and real neurobiological signals
recorded in the hippocampus of rats.

The WSFC method allows only the first spike in every burst enter into the
computation of PSTA and STP. To emphasize the difference between single spikes
and bursts, multiple copies of the first spikes in bursts are used. In this way, the first
spike timing represents the occurrence of the burst, and the weighting procedure
(multiple copies of the first spike) reflects the properties of the burst. Then, the
WSFC is defined as

WSFC D
PWSTA

WSTP
� 100%; (4.4)

where the PWSTA is the power spectrum of weighted STA and the WSTP denotes
the weighted spike-triggered power spectrum of LFP. The “weighted” means that
the LFP segments around the first spikes in bursts are reused in the calculation
of STA and STP, and the “weight” is related to the spike number per burst. The
main difference between the two methods is that WSFC uses the first spike in burst
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multiple times rather than all the spikes used by SFC. An important advantage of
this operation is that it can remove the influence of the second and later spikes in
bursts on the computation of SFC. In other words, the WSFC method is immune to
the effect of burst.

Similar to the SFC, the WSFC is a population method and cannot be calculated
for single spikes. It suffers from the effect of spike count used in the computation
as well. Thus, it is necessary to minimize or avoid the bias raised by the amount of
spikes. Two measures may be adopted. One is to use enough spikes (>50 generally)
to calculate the WSFC. Another is to ensure that the spike counts in different
conditions are equal. In addition, two parameters should be identified before
calculating the SFC and WSFC. First, the traces of LFP to construct the STA are
set to be 960 ms in the simulations, with the aim of examining low frequencies. For
the real data in this study, a relatively short window of 480 ms is used focusing on the
gamma band frequencies. To summarize, the window length is selected depending
on the following principle: long enough to make reliable estimate for the power
spectrum and relatively short to represent the dynamics of LFP signal in the desired
band. Next, in the simulations, the spectrum is estimated by using multitaper method
with a time-bandwidth product of four and seven tapers, resulting in a spectral
resolution (half bandwidth) of 4.2 Hz. In the analysis of real data, due to the short
window of 480 ms, we use a time-bandwidth product of three and five tapers in order
to get a relatively smaller spectral resolution of 6.25 Hz. It means that we should
choose an appropriate time-bandwidth product and taper count to make a good
compromise between the spectral resolution and the benefit of the spectral estimate.

4.2.3 Simulation and Application

4.2.3.1 Simulation Results

To simulate the real extracellular recoding, the LFP signal is generated by summing
multiple sine waves with different frequencies, amplitudes, and phases (Rutishauser
et al. 2010). The frequencies range from 1 Hz to 100 Hz with a step of 1 Hz,
focusing on the LFP in gamma band and below. The amplitudes of the components
are inversely proportional to their frequencies. The phases are randomly selected
from [0 2�]. In addition, a white Gaussian noise with the signal-to-noise ratio of
3 dB is added to the composite oscillation. Thus, the generated artificial LFP signal
follows the 1/f power distribution. The phase-locked spikes that fired by simulated
individual neurons locate at a certain phase of the underlying oscillation and skip
cycles at random, while the non-phase-locked spikes occur randomly. The simulated
bursts consist of two to six spikes. The interspike intervals (ISIs) in the bursts range
from 3 to 10 ms. The amount of the burst is quantified by burst index, which is
defined as the ratio of spikes in bursts to all spikes (Mizuseki et al. 2011, 2012). To
avoid the bias caused by the number of spikes (Fell et al. 2001; Grasse and Moxon
2010), 200 spikes are generated for each realization.
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Fig. 4.1 The SFC between bursty spike train and LFP for different phase-locked cases. (a) Spikes
or bursts are phased locked to 50-Hz component. (b) Spikes or bursts are phased locked to 5-Hz
component
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Fig. 4.2 The WSFC between bursty spike train and LFP for different phase-locked cases. (a) The
phase locking is represented between spikes or bursts and 50-Hz component. (b) The phase locking
is represented between spikes or bursts and 5-Hz component

By using the simulated LFP signal, the effect of bursts in spike trains on the
calculation of SFC and WSFC is investigated, and the advantage of WSFC for
estimating the coherence between bursty spike trains and LFPs is demonstrated.
The SFC and WSFC are calculated in three cases: 100 % spikes are locked to a
certain phase of specified components (e.g., 50 Hz and 5 Hz) in the simulated LFP
signal (100 % phase locked), 50 % spikes are phased locked (50 % phase locked),
and spikes are fired randomly (non-phase locked), where the spikes include single
spikes and first spikes in bursts. The mean values of SFC and WSFC at the two
frequencies versus the burst indexes are plotted in Figs. 4.1 and 4.2. For the 50-
Hz component, the SFC is strongly reduced by the bursts that occurred in spike
trains for both 100 % and 50 % phase-locked cases, while it keeps at the chance
level for the random phase locking, as shown in Fig. 4.1a. It means that the bursts
do not lead to spurious increase of the SFC for random spikes, but can severely
reduce the SFC values for spikes phase locked to high-frequency components. For
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the 5-Hz component, the decrease of the SFC also presents in the 100 % and 50 %
phase-locked cases, but with smaller amplitude. However, the SFC increases a little
for the random phase locking, as illustrated in Fig. 4.1b. It implies that the bursts
exert relatively small effect on the SFC estimate for spikes phase locked to low-
frequency components. All simulations are implemented by using 200 spikes, which
means that the decrease of the SFC is indeed caused by the location rather than the
amount of spikes.

On the other hand, the WSFC method using the first spikes effectively eliminates
this influence caused by bursts for both low and high frequencies. Due to the reuse
of first spikes in bursts, the amplitude of the STA gets larger as a function of the
number of bursts involved. Consequently, the WSFC presents a slight increase with
the increasing of bursts in spike trains, as shown in Fig. 4.2a, b. However, the
relative difference in WSFC between conditions almost remains the same, which
is meaningful for the comparison between different phase-locked cases.

Furthermore, the influence of the bursts at different frequencies is examined. The
given nine frequencies are as follows: 5 Hz in theta band, 10 Hz in alpha band,
20 Hz in beta band, and 30 Hz, 40 Hz, 50 Hz, 60 Hz, 70 Hz, and 80 Hz in gamma
band. The single spikes and first spikes in bursts are presumed to fire exactly at a
certain phase of these component oscillations. The influence is quantified by the
coefficient of variation (CV) of the SFC or WSFC magnitudes for different burst
indexes. As shown in Fig. 4.3a, b, the SFC between spike trains and LFPs in gamma
frequency band is prone to be affected by the bursts for 100 % and 50 % phase-
locked cases. Whereas for the low frequencies, e.g., 5 Hz and 10 Hz, the bursts in
spike trains exert very little effect on the computation of SFC, on the other hand, the
WSFC has a relatively more robust performance for both high and low frequencies.
The effect of bursts under the random phase locking is illustrated in Fig. 4.3c. The
SFC and WSFC measure performs similarly to each other. Although the variation of
WSFC is relatively large, it does not imply a reduction of the WSFC performance.
As explained before, these variations are represented in different locked conditions
with similar increasing tendencies, providing a reliable comparison of the coherence
between different conditions. This is also demonstrated by the values of CV in
different phase-locked cases. The lower degree of the phase locking, the smaller
mean of the WSFC at different burst indexes and the larger CVs for frequencies take
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frequency components. (a) 100 % phase locking. (b) 50 % phase locking. (c) Random phase
locking
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on. To summarize, the WSFC is an efficient tool to reveal the coherence between
spike trains and LFPs, particularly in high frequency band.

4.2.3.2 Application to Real Data

The data set consists of simultaneous recordings of cells in layer CA1 of the right
dorsal hippocampus of three Long-Evans rats, which were implanted with a 4-
shank or 8-shank silicon probe. After recovery from surgery (about 1 week) and
training (at least 3 days), the physiological signals were recorded during the open
field tasks in which the rats chased randomly dispersed drops of water or pieces of
Froot Loops on an elevated square platform. The signals were amplified (1000x),
band-pass filtered (1 Hz–5 kHz), and sampled continuously at 20 kHz. Then, the
LFPs were down-sampled to 1250 Hz. The offline spike sorting was performed
automatically. The details about the behavioral experiment and data collection can
be found in (Mizuseki et al. 2009). A subset of the data set is analyzed in this study
(in particular, ec013.527 at http://crcns.org/data-sets/hc/hc-2).

In hippocampus, gamma frequency oscillations (30–80 Hz) have been suggested
to underlie various cognitive functions, such as attention selection (Bauer et al.
2006; Fries et al. 2001), memory (Fell et al. 2001; Howard et al. 2003; van Vugt et al.
2010), and sensory perception (Colgin et al. 2009; Muzzio et al. 2009). Moreover, it
has been reported that the firing patterns of pyramidal cells in hippocampus are
significantly phase locked to gamma oscillations in behaving rats (Colgin et al.
2009; Csicsvari et al. 2003; Senior et al. 2008). Here, we examine that whether
this phase locking can be characterized by the WSFC and SFC methods. In the
recordings of the data set used in this study, the pyramidal cells exhibit firing
patterns of single spikes and complex spike bursts. A segment (150� 400 s) of the
recordings used for the analysis of coherence is shown in Fig. 4.4a, b, containing
the gamma band LFP signal and the neuronal activity (neuron 37 in the selected
data set).

In order to preserve the timing relationship between spikes and LFP, the gamma
band-pass filtering is performed digitally with zero-phase shift using the EEGLAB
toolbox (Delorme and Makeig 2004). Then, we estimate the WSFC and SFC as
a function of time (sliding window of 10s advanced in steps of 5 s), respectively.
A series of two or more consecutive spikes with <10-ms ISIs is considered as a
burst in this study (Mizuseki et al. 2011; Senior et al. 2008). Figure 4.4c shows the
burst index in every window. To guarantee sufficient statistical power, we select
the windows containing at least 50 single spikes and bursts for the calculation
of coherence (Rutishauser et al. 2010). For statistical purposes, the results are
converted to z-scores. The surrogate spike trains are created by perturbing every
spike with a random time in a window of 30 ms around the original spikes. The
statistical significance is set conservatively at z > 1:96 for the level p < 0:05. In
Fig. 4.4d, e, the z-transformed WSFC and SFC are plotted versus time, respectively,
and the horizontal line indicates the significant level. Obviously, the traditional
method, i.e., SFC which uses all spikes in bursts, fails to descript the phase locking

http://crcns.org/data-sets/hc/hc-2
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Fig. 4.4 The WSFC and SFC applied to real data. (a) A segment of the recorded LFP signal. (b)
Spiking activities of neuron 37 in the segment. Vertical lines indicate the occurrence of spikes
fired by the neuron. (c) Burst index for windows with >50 spikes. (d) Z-transformed WSFC for
each selected window. The red horizontal line indicates the significant level of p < 0:05. (e) Z-
transformed SFC for each selected window. The coherence in the two plots (d) and (e) is obtained
by using the average of the WSFC and SFC within gamma band, respectively

between the spike train and LFP in gamma band, while the modified method,
i.e., WSFC which utilizes the copies of first spikes in bursts, characterizes this
relationship effectively. We also found similar results for other data sets, which
further demonstrate the performance of WSFC to uncover the relationship between
activities of pyramidal cells in hippocampus and LFP in gamma band; the results
for other data sets are shown in the supporting document.
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4.3 Spike-Triggered Correlation Matrix Synchronization

Spikes and LFP are acquired from the signal recorded by a microelectrode. The
former are fired by neurons and identified by high-pass filtering, detection, and
sorting. The latter reflects the total effects of the synaptic currents in the neuronal
circuit and is obtained by low-pass filtering the original wideband signal. Several
rhythms of LFP are generated through inhibitory networks that produce periodic
fluctuations in the intracellular potential of the target postsynaptic neurons such that
the excitability of these neurons varies within one period of the rhythm, which can
be used to synchronize the spiking of neurons (Buzsaki and Wang 2012; Ray 2014).
Also, it is reported that spikes can be inferred from LFP in the primary visual cortex
of monkeys (Rasch et al. 2008). Furthermore, LFP is thought to mainly reflect the
summed transmembrane currents flowing through the neurons within a local region
around the microelectrode tip (Buzsaki et al. 2012; Reimann et al. 2013), and its
phase is widely adopted to characterize the spike-LFP synchronization (Colgin et al.
2009; Csicsvari et al. 2003; Fries et al. 2001). In view of the above considerations,
we suggest that a specific variation of LFP phase causes an individual neuron to fire
spikes and consequently generate the spike-LFP synchronization.

4.3.1 Correlation Matrix and Spike-LFP Synchronization

Several spike-LFP synchronization measures have been introduced in the past few
years, e.g., the phase histogram (Csicsvari et al. 2003), phase locking (Colgin
et al. 2009), spike field coherence (Fries et al. 2001), and coherency (Pesaran
et al. 2002). However, these measures are dependent upon the total number of
spikes, which renders comparison of spike-LFP synchronization across experimen-
tal contexts difficult. Often, different experimental conditions yield substantially
different numbers of spikes. Thus, it is necessary and urgent to develop an unbiased
measure for characterizing the synchronization between spikes and LFP. In 2010,
a circular statistics, pairwise phase consistency (PPC), has been proposed. It is a
bias-free and consistent estimator of spike-LFP synchronization (Vinck et al. 2010).
Unfortunately, as shown below, the performance of PPC severely deteriorates in the
presence of spike noise. In this chapter, we present a new measure for estimating
spike-LFP synchronization, which is independent of the total number of spikes and
robust against spike noise. The main idea of the method is to take LFP segments
centered on each spike (spike-triggered LFPs) as multichannel signals and calculate
the index of spike-LFP synchronization by constructing a correlation matrix. Thus,
this method is referred to as spike-triggered correlation matrix synchronization
(SCMS).

Suppose that the spike train (i.e., a series of spikes) fired by a neuron is denoted as
S D Œs1; s2; : : : sn
, where si (i D 1; 2; : : : ; n) is the spiking time and n is the number
of spikes. V D Œv1; v2; : : : vn
 is the set of LFP segments, where vi (i D 1; 2; : : : ; n)
denotes the samples of the LFP signal in the time window Œsi � T=2; si C T=2
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and T is the duration of the LFP segments. First, extract the instantaneous phase of
every LFP segment by Hilbert transform. For a signal v(t), the analytic signal �(t) is
a complex function of time, and it is defined as

�.t/ D v.t/C jQv.t/ D A.t/ej.t/; (4.5)

where the function Qv(t) is the Hilbert transform of v(t):

v.t/ D
1

�
P:V: �

Z C1

�1

v.t/

t � 	
d	: (4.6)

P.V. indicates that the integral is taken in the sense of Cauchy principal value
(Rosenblum et al. 1996). Thus, the instantaneous phase  i(t) of LFP segment vi(t)
is obtained. Second, construct the correlation matrix C by calculating the phase-
locking value (PLV) between pairs of LFP segments, i.e.,

cij D

ˇ

ˇ

ˇ

ˇ

ˇ

1

N

N
X

kD1

ej.i.tk/�j.tk//

ˇ

ˇ

ˇ

ˇ

ˇ

; (4.7)

where N denotes the number of samples in the time window and C is a real
symmetric matrix. Then, the eigenvalue decomposition of C is given by

C ui D �i ui; (4.8)

where �i are the eigenvalues, with �1 � �2 � � � � � �n, and ui are the eigenvectors
corresponding to �i. Finally, in order to obtain a normalized value of spike-LFP
synchronization which is independent of the number of spikes, we randomize all
spike-triggered LFP segments to compute a surrogate correlation matrix R (Li
et al. 2007). The surrogate data is generated by randomly shuffling the order of
the original signals (Theiler et al. 1992). Similarly, we can obtain the ordered
eigenvalues of matrix R. Repeating this randomization and computation M times
(we select M D 100 in this work), the mean and standard deviation (SD) of the
maximum eigenvalues are denoted as �

0

1 and s1, respectively. Then, the normalized
spike-LFP synchronization can be computed by the following equation:

� D

( �

�1 � �
0

1

�

=
�

n � �
0

1

�

if �1 >
�

�
0

1 C K � s1
�

0 otherwise
; (4.9)

where K is a constant that determines the threshold and K D 3 is selected for 99 %
confidence intervals (Li et al. 2007).

The reason for the choice of the maximum eigenvalue (�1 and �
0

1) is in the
following. Li et al. noted that when multichannel signals are acquired from a
local region, the first synchronization index, which corresponds to the maximum
eigenvalue, is appropriate for indicating the global synchronization (Li et al. 2007).
Moreover, as spikes and LFP are recorded by the same microelectrode, the spike-
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triggered LFPs can be considered as signals from one region of synchronization.
Thus, it is justifiable to use the first synchronization index to characterize the spike-
LFP synchronization.

In the SCMS algorithm, a parameter (i.e., the window length of the LFP
segments) should be determined before its application. It is possible that there are
other spikes immediately before or after a specific spike. These spikes may alter
the frequency and phase of the LFP (Zanos et al. 2011). This supports the selection
of a short window. However, the algorithm uses the similarity of the variation in
LFP phase as the mechanism for the calculation of spike-LFP synchronization.
Consequently, a longer window improves the accuracy of the similarity calculation.
Considering this trade-off, we used a window of 20 ms in the analysis of simulated
and real data.

4.3.2 Simulation and Application

4.3.2.1 Simulation Results

To test the properties of the algorithm, simulated LFP was generated by summing
multiple sine waves with different frequencies, amplitudes, and phases (Rutishauser
et al. 2010). The frequencies ranged from 1 to 100 Hz with a step of 1 Hz,
thereby focusing on the LFP in the gamma band and below. The amplitudes of
the components were inversely proportional to their frequencies. The phases were
randomly selected from [0 2�]. Synchronized spikes fired by simulated individual
neurons were located at a certain phase of the summed LFP waveform. These sim-
ulated neurons skipped cycles at random. The total number of synchronized spikes
was denoted by ªp. Additionally, non-synchronized spikes occurred randomly,
and their amount was denoted by ªn. The strength of spike-LFP synchronization
was determined by the ratio R D #p=

�

#p C #n
�

, e.g., R D 1 implies perfect
synchronization and R D 0 indicates complete non-synchronization.

First, the effect of the total number of spikes on the algorithm’s output was
investigated. The number of spikes ranged from 10 to 100 with a step of 5. The
strength of simulated spike-LFP synchronization was set to 0.25, 0.5, or 0.75.
Figure 4.5 shows the mean value of the SCMS output for different numbers of
spikes, with 100 realizations for each number. As can be seen, the SCMS output
almost does not change with the sample size. This property is of crucial importance
when making comparisons between different experimental conditions.

Second, the robustness of the SCMS method against noise in the spike trains
was studied. Three types of noise were considered: jitter noise (a shift of spiking
time), missing spikes (false negatives), and extra spikes (false positives). Jitter noise
may appear in stochastic biological processes, such as synaptic transmission and
spike propagation in a neural network. The noise due to missing and extra spikes
is primarily caused by external processes such as the firing of other neurons, errors
in the spike sorting procedure, and electrical artifacts (Asai and Villa 2008). We
compare the SCMS method with the pairwise phase consistency (PPC) method.
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Fig. 4.5 Effect of the total number of spikes on the output of the SCMS method

Jitter noise was added to the spike trains via shifting every spike by a time
normally distributed in an interval. The strength of jitter noise was quantified by
the interval length. The number of spikes in the simulation was set to 50. As
shown in Fig. 4.6a, b, both the SCMS and the PPC are affected by jitter noise,
and their output values decrease as the interval of jitter increases. However, the
output of SCMS decreases more slowly compared to that of PPC. Moreover, we
are still able to visually distinguish between the different levels of spike-LFP
synchronization in the SCMS output even as the jitter interval grows to 20 ms. In
contrast, it becomes difficult to observe a clear distinction between different levels of
synchronization by looking at the PPC output when the interval is larger than 5 ms.
Once the data acquisition procedures, recording system, and the spike detection
method have been determined, the jitter noise of different neurons is about the same
in scale. Thus, when comparing the spike-LFP synchronization between different
experimental conditions or between different pairs of neurons and LFP signals, the
SCMS measure is able to provide more significant results.

Noise due to extra spikes was quantified by the number of independent spikes
randomly inserted into spike trains. In the simulation, the original number of spikes
was 20, and the number of extra spikes ranged from 2 to 30 with a step of 2. As
shown in Fig. 4.6c, d, the SCMS and PPC outputs decrease with the number of
extra spikes. Due to the random insertion of independent spikes, the strength of the
simulated spike-LFP synchronization reduces, and consequently the two outputs
decrease. It is difficult to distinguish between different synchronization strengths
by looking at the output of the PPC method when a large amount of extra spikes
is present. In comparison, the output of the SCMS method indicates differences
between the synchronization levels for even the largest amount of extra spikes.

The noise due to missed spikes was quantified by the number of randomly deleted
spikes. In the simulation, the original number of spikes was 50, and the number of
missed spikes ranged from 2 to 30, with a step of 2. Figure 4.6e, f show that the two
methods are basically unaffected by the number of missed spikes. That is to say, they
are robust against the noise due to missed spikes. The underlying reason is that the
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output and (d) mean PPC output versus the number of extra spikes. (e) Mean SCMS output and (f)
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random deletion of spikes does not alter the strength of spike-LFP synchronization,
but just reduce the total number of spikes. Since the two methods are not biased
by the total number of spikes, they are both resistant to noise arising from missed
spikes.

4.3.2.2 Application to Real Data

In this section, the SCMS method was applied to data recorded from rhesus monkey.
All procedures were conducted in compliance with the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and were approved by the
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Institutional Animal Care and Use Committee of Beijing Normal University. Data
was recorded from a male adult monkey (Macaca mulatta). After the animal had
been trained in a simple fixation task, a 6� 8 multielectrode array (with electrode
length of 0.5–0.6 mm, interelectrode spacing of 0.4 mm, and typical electrode
impedances of a few hundred kiloohms at 1 kHz; Blackrock Microsystems) was
implanted into V1 corresponding to eccentricities between 2.0ı and 5.0ı in the
lower visual field. LFP and spike data were recorded at 30 kHz using a 128-
channel acquisition system (Cerebus; Blackrock Microsystems). Visual stimuli were
generated by a stimulus generator (ViSaGe; Cambridge Research Systems) on a 22-
in. CRT monitor (Iiyama Vision Master Pro 514) at a viewing distance of 100 cm.
Drifting sinusoidal gratings (99 % contrast; spatial frequency, 2 cycle/deg; temporal
frequency, 4 Hz) were displayed within a circular patch of 4ı visual angle in
diameter, covering the visual field locations of all recording sites. The gratings
drifted in different directions between 0 and 360ı, in 22.5ı steps in a pseudorandom
order. The stimulus was presented for 2 s and repeated eight times.

To identify spikes fired by neurons, the recorded signals were filtered with a
band-pass filter of 300–3000 Hz. Then, spikes were detected using a threshold
method (Quiroga et al. 2004). We did not use spike sorting in this work. Due to
the robustness of the method against noise in spike trains, it was not necessary to
implement spike sorting in the data preprocessing. For LFPs, the recorded signals
were filtered with a band-pass filter of 30–80 Hz, because our concentration was
on the synchronization between spikes and LFPs in the gamma band. To preserve
the phase relationship between spikes and LFP, gamma band-pass filtering was
performed digitally with a zero-phase shift using the EEGLAB toolbox (Delorme
and Makeig 2004).

Orientation selectivity is an emergent property of neurons in the primary visual
cortex (V1) (Hubel and Wiesel 1962, 1968). Most studies focused on the response
of individual neurons to investigate the mechanisms of this selectivity (Priebe and
Ferster 2012; Ringach et al. 1997; Shapley et al. 2003). Neuronal oscillations in
the gamma band (30–80 Hz) have been suggested to play a central role in feature
binding or establishing channels for neural communication (Ray and Maunsell
2010). With increasing interest in and popularity of LFP analysis, oscillations in
LFP gamma band have been used to study orientation selectivity (Berens et al.
2008; Xing et al. 2012). In this chapter, we examined whether the spike-LFP
synchronization exhibits orientation selectivity in macaque V1 by using the SCMS
method. Orientation selectivity based on spike-LFP synchronization is quantified
by circular variance (CV), which is a global measure of the shape of the orientation
tuning curve and defined as (Batschelet 1981)

� D 1 �

ˇ

ˇ

ˇ

X

k
rk exp .i2�k/

ˇ

ˇ

ˇ

X

k
rk

; (4.10)

where rk denotes the mean spike-LFP synchronization in response to a drifting
grating with angle � k. The angles � k spanned the range from 0 to 360 ı with
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Fig. 4.7 Application of SCMS to data recorded from the visual cortex of a rhesus monkey. (a) The
orientation tuning curve, calculated using spike-LFP synchronization as a substitute for firing rate,
of a neuron (electrode #17) in V1. (b) The histogram of circular variance (CV) values, quantifying
significance of orientation selectivity, of the 48 recorded neurons from V1

equally spaced intervals (22.5 ı in this work). According to circular statistics,
� < 0:9 means that the orientation selectivity of a neuron to the drifting grating is
significant. Figure 4.7a shows the tuning curve based on spike-LFP synchronization
of a neuron in V1. Clearly, two troughs can be observed and the tuning curve shows
a regular pattern as a function of the orientation. This means that the spike-LFP
synchronization of this neuron is sensitive to the orientations of the drifting gratings.
As shown in Fig. 4.7b, the CV of all 48 recorded neurons in V1 is less than 0.8, and
the great majority (75 %) is located in the range from 0.6 to 0.7. This implies that
the recorded neurons’ spike-LFP synchronization exhibits significant orientation
selectivity.

4.4 Conclusion

In this chapter, we introduced two methods to estimate the synchronization between
the spiking activity of individual neurons and the LFP of neural ensembles. The
WSFC is a correcting measure of a widely used SFC method which underestimates
the coherence between bursty spike trains and LFPs, especially in high frequency
band. The WSFC method allows only the first spike in every burst to enter into
the calculating procedure, aiming to eliminate the influence of the other spikes.
Moreover, it utilizes multiple copies of the first spike to highlight the difference
between single spike and burst. This “weighting” operation preserves the inherent
characteristic of burst, i.e., series of spikes raised by a large depolarization. Both
simulation and experimental results show that the WSFC method performs better
than SFC for investigating the relationship between bursty spike trains and high
frequency band LFPs. Also, it can be used to analyze any spike trains and LFPs.
Furthermore, a potential application of the WSFC is to study whether bursts enhance
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the coherence between spike trains and LFPs. Briefly, the WSFC is a promising
method to uncover details of the neural coding.

Moreover, we introduced a new method, spike-triggered correlation matrix
synchronization (SCMS), for characterizing the synchronization between spike
trains and rhythms present in LFP. We demonstrated that the SCMS is not sensitive
to the total number of spikes in the calculation. In addition, it is superior to another
unbiased measure (PPC) in resisting spike noise arising from jitter and extra spikes.
Thus, the SCMS is a promising measure for estimating spike-LFP synchronization.
By applying the SCMS method to neuronal data recorded from macaque primary
visual cortex, we demonstrate that spike-LFP synchronization can be used to explore
the mechanism of orientation selectivity.
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Chapter 5
Artifact Removal in EEG Recordings

Ke Zeng and Xiaoli Li

5.1 Introduction

EEG is the neurophysiologic measurement of the electrical activity of the brain
recorded through electrodes placed on the scalp. As it may provide insight into the
functional structure and dynamics of the brain, EEG signals play a vital role in
brain research. Clinical practices have extensively relied on E analysis to diagnose
brain diseases such as the seizure disorders, head injuries, degenerative diseases, and
metabolic disturbances. However, as a result of directly recording from electrodes
placed on the scalp, EEG traces are prone to contamination of artifacts from various
sources such as scalp muscles, eyeblinks, sweating, and instrumentation noises.
These artifacts will inevitably introduce severe bias to the data interpretation or
even completely overwhelm the EEG waves (Fatourechi et al. 2007). The common
clinical practice is to cut the entire neural data segment affected by known artifacts,
which will lead to a relevant information loss (Cassani et al. 2014). There exists a
pressing need for an approach that is able to remove the artifacts in EEG recording to
the most and to avoid loss or disruption of the structural information when achieving
the former goal.

Numerous attempts have been performed to tackle this grand research challenge.
The independent component analysis (ICA)-based methods are dominant for auto-
matic artifact rejection (James and Gibson 2003). ICA is a blind source separation
(BSS) technique which extracts statistical sources, i.e., independent components,
from the raw multivariate recordings. ICA separates artifacts and concentrates them
into the corresponding independent components, and those can be easily canceled
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afterwards. When there are less channels than sources, ICA by its nature cannot
guarantee an efficient separation of the artifacts from the neural components, and
useful information may be lost (Hyvärinen et al. 2001; Eriksson and Koivunen
2004). Furthermore, the effectiveness of ICA also depends on the length of the data
segment under processing. That is, the data segment should be long enough to adapt
to the number of channels (over-complete ICA), normally in an exponential manner.

To overcome the limitation with the ICA-based methods, wavelet transform
has been proposed to assist ICA for improving the performance of denoising
(Castellanos and Makarov 2006; Mammone et al. 2012). In general, these “wavelet-
ICA” methods use wavelet transform to decompose the data of each channel into
multiple predefined frequency sub-bands, such as delta, theta, alpha, and beta sub-
bands. ICA then applies to these components in different frequency sub-bands to
extract the sources. When the wavelet transform performs an n-level decomposition
of the original data, an extended dataset forms with a size n times of the original
data. The extended dataset contains more “channels” than the original data and
satisfies the condition of applying ICA. However, wavelet transform is a linear
algorithm which demands the data to be decomposed should be linear and stationary,
while the neural data are typical nonlinear and nonstationary, such as EEG. A
common disadvantage of data decomposition by wavelet is that the temporal
patterns of data, such as instantaneous amplitude and phase/frequency, cannot
be accurately estimated. Moreover, wavelet decomposition splits up data at each
sub-band by the means of predefined corresponding time-invariant filters, thereby
precluding the possibility of adapting the decomposition to the local variation of the
oscillation. There exists a lack of accuracy in the decomposition of nonlinear and
nonstationary neural data with wavelet; thus, the separation of artifact sources with
ICA may not be reliable (Mijović et al. 2010; Sweeney et al. 2013).

It is critical to ensure that the decomposed data components still accurately reflect
the characteristics of the original neural data. In other words, the decomposition
approach should adapt to the data’s nonlinearity and nonstationarity. Ensemble
empirical mode decomposition (EEMD) has proved effective in exploring the
structure of neural data (Wu and Huang 2009). The EEMD method can break down
a complicated signal without a basic function into a series of oscillatory intrinsic
mode functions (IMFs) embedded in the original data. This method is data-driven,
which can decompose nonlinear and nonstationary data without a priori knowledge.
EEMD also excels in its resistance to noises, which make it a natural candidate for
processing noisy neural data. This study established an approach upon EEMD and
ICA for artifact rejection of multivariate neural data, namely, EEMD-ICA (Zeng
et al. 2014). The approach employs EEMD to decompose data into intrinsic mode
functions (IMFs), and those IMFs possibly containing artifacts will be identified
and selected. ICA then concentrates the artifacts hidden in the selected IMFs into
the target sources, which will be automatically captured and eventually rejected.

To evaluate the performance of the proposed approach, EEMD-ICA had been
tested against two dominant methods in terms of artifact rejection, i.e., the classical
ICA (Delorme et al. 2007) and the automatic wavelet ICA (AWICA) methods
(Mammone et al. 2012). Two batches of experiments on artifact removal had been
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performed using semi-simulated data and real-life epileptic EEG data, respectively.
In the first batch of experiments, four types of common artifacts (i.e., eyeblink,
muscle noise, discontinuity, and white noise) in EEG were simulated and mixed
with resting-state EEG to construct semi-simulated data. Results indicated that
the proposed approach continuously outperforms the counterparts in terms of both
normalized mean square error (NMSE) and structure similarity (SSIM) (Wang and
Bovik 2009; Zhang et al. 2013). The superiority of the proposed method becomes
even greater with the decrease of SNR in all cases, e.g., the SSIM of the EEMD-
ICA can almost double that of AWICA and triple that of ICA. The second batch
of experiments aimed to investigate the effects of the alternative approaches on
dynamic characteristics of EEG containing absence seizures (absence EEG). Multi-
scale permutation entropy (MPE) (proposed in our previous work (Ouyang et al.
2013)) had been calculated to measure the dynamic characteristics of absence EEG
during seizure-free, pre-seizure, and seizure states and to classify the three seizure
states via linear discriminant analysis (LDA). The raw absence EEG might contain
intensive artifacts, which would severely affect the accuracy of classification. Prior
to the MPE feature extraction, the three methods were applied to the raw EEG data
for artifact rejection. Using the manually selected dataset as a reference (with a
classification accuracy of 89.7 % obtained), the EEMD-ICA approach performed
the best for classifying the three states (87.4 %, about 4.1 % and 8.7 % higher than
that of AWICA and ICA, respectively).

The remainder of this paper is organized as follows: Section 5.2 gives a
comprehensive review of the main methods proposed for removing artifacts from the
EEG and a brief introduction to the design of the proposed EEMD-ICA approach.
Section 5.3 compares EEMD-ICA approach with alternative approaches handling
semi-simulated dataset. Section 5.4 presents the results for analyzing absence EEG
after artifact removal with approaches. Section 5.5 concludes the paper with a
summary.

5.2 Denoising Methods

In this section, we will provide a comprehensive overview of methods used for
artifact removal in EEG recordings and then give a brief introduction to the design
of EEMD-ICA approach. For each method, we not only account for its principle
in the removal of EEG artifact but also highlight its advantages and disadvantages.
Furthermore, we also refer to the extension of the methods if there exist.

5.2.1 Regression Methods

Regression methods are the most frequently used EEG artifact removal methods
up to the mid-1990s, especially for electrooculography (EOG) artifact reduction
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(Gratton et al. 1983). The premise condition of regression methods is that one or
more reference channels are available and properly represent all artifact waveforms.
Regression methods can be used either in the time or frequency domain to estimate
the influence of the reference waveforms on the signal of interest. Regression
methods assume that each EEG channel is a linear and time-invariant superposition
of interesting source signal and a fraction of the source artifact represented by the
reference channels. Formally, this is given as follows:

xi D si C
XN

jD1
˛j � rj (5.1)

where xi and si are the observed EEG and desired EEG from channel i, respectively,
rj is the jth reference channel, and ˛j is the corresponding jth fraction coefficient.
Regression methods estimate fraction coefficients ˛j of all the reference channels
for each EEG channel. Artifact removal is then performed by subtracting the
regressed portions of the reference waveforms from each EEG channel, resulting
in an estimation of artifact-free EEG.

Due to their simplicity and reduced computational demands, regression methods
have been widely used. Application of this method for artifact removal in EEG
suffers the following two deficits. The main drawback of regression methods is the
bidirectional contamination, which refers to the brain signals being measured in
the reference channels such as EOG channels. If artifact removals directly use the
regression methods and do not take bidirectional contamination in account, certain
cerebral information of interest would be inevitably canceled in the subtraction
procedure. To alleviate the effect of bidirectional contamination, the simplest way
is to filter out the brain signal in the reference channels, as the artifact signal often
focuses in some special channel such as EOG (1–4 Hz) (Romero et al. 2008). The
other disadvantage of regression methods is that they need one or more reference
channels, which limits their application mainly in EOG and ECG. Due to this
deficient, regression methods have been replaced by more sophisticated algorithms
in the real application. However, regression methods are still used as the “gold-
standard” technique when comparing the performance among different EEG artifact
removal methods.

5.2.2 Filtering Methods

Simple low-pass, band-pass, or high-pass filtering represents the classical filtering
methods for artifact removal in EEG. However, they are only effective when there
is no overlap between the frequency bands of signal of interesting and artifacts. As
it is known that spectral overlap is common for typical artifact recorded along with
the EEG, application of these classical filtering methods for removing EEG artifacts
would therefore inevitably lose certain cerebral information of interest. To overcome
this deficiency, numerous advanced filtering methods were introduced to adapt their
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filter parameters following some optimization criteria. In this section, we briefly
describe three main advanced filtering methods: adaptive filtering, Wiener filtering,
and Bayes filtering.

1. Adaptive filtering. Adaptive filtering operates under the assumption that the
desired signal and artifacts are uncorrelated. The filter generates a signal corre-
lated with artifact signals from reference channels, and then the estimated desired
signal is the subtraction from observed signal (Diniz 2008). The most prevalent
algorithm employed in adaptive filtering is the least mean squares (LMS), which
is linear in complexity and convergence. To model the contamination of the
artifact on the EEG activity, LMS iteratively adjusts a vector of weights (w) by

bs.n/ D x.n/ � wT.n/r.n/ (5.2)

w .nC 1/ D w.n/C 2�bs.n/r.n/ (5.3)

where ŝ(n) and x(n) are the estimated of desired signal and the observed signal,
respectively, r is the reference channel, and � controls the rate of adaption. The
weight w continues to adapt until the generated artifact wT

n r, which is correlated
with the provided reference, has been minimized.

In the adapting filtering methods, the choice of the artifact reference is key to
the proper functioning of the algorithm (Daly et al. 2013). Though both adaptive
filtering and regression methods need reference channels in artifact removal in
EEG, the former has some advantage over the latter as the weights used to
modeling artifacts in regression methods should be constant (Romero et al. 2009).
The adaptive filter is easy to implement and can be operated online and without
preprocessing or calibration, but the requirement of additional reference channel
can add the complexity of the hardware system and limit its real application.

2. Wiener filtering. Wiener filtering is another parametric technique used for
artifact removal in EEG. The Wiener filtering is based on a statistical approach,
which does not require external reference signals. Wiener filtering produces
a linear time-invariant filter to minimize the mean square error between the
desired signals and their estimated desired signals (Izzetoglu et al. 2005). The
minimization is performed using the power spectral densities (PSDs) of the
observed signal and the artifacts. For most practical application, these PSDs are
generally not available a priori and must be estimated from measurements.

The necessity for calibration prior to usage and inability to run in real time are
the disadvantages of Wiener filter compared with the adaptive filter. However, it
eliminates the requirement for additional sensors to recording reference signals in
the adaptive filter. In addition, once properly calibrated, it even can achieve a better
performance with respect to the adaptive filter.

3. Bayes filtering. Bayes filtering is a probabilistic method estimating a given
systems state from available noisy observed signal. The assumption of Bayes
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filtering is that the dynamic system is Markov, meaning that the current state
variables contain all the relevant information about the system (Fox et al. 2003).
Bayes filters are performed with predictor–corrector processes. The predictor
uses a time update model to estimate the process state at a given time, and then
the corrector utilizes a measurement model to evaluate the relationship between
the observed data and the internal state.

Bayes filters are not directly implementable due to their intractable computation,
while they can be approximated through Kalman filters (Morbidi et al. 2008) and
particle filters (Candy 2009). These approaches can overcome both the limitations
of adaptive filtering and Wiener filtering. Like Wiener filtering, the Bayes filter
methods do not require additional sensors to record reference signals. However,
unlike the Wiener filtering, Bayes filtering can be employed in real-time applications
and does not need calibration prior to usage.

5.2.3 Blind Source Separation Methods

Blind source separation (BSS) is a wide class of algorithms with the goal of
estimating sources from a mixing system without the aid of information about
the mixing process (Comon and Jutten C. Handbook of blind source separation.
Academic Press 2010). A linear mixing system can be expressed as

X D AS (5.4)

where XD[x1, : : : , xq]T is the observations, SD[s1, : : : , sp]T is the sources, and A is
a [q� p] mixing matrix. As only the observations X are known, the BSS technique
is used to generate an unmixing matrix to determine the original sources.

bs DWX (5.5)

where bs is the estimation of the original sources and W is the [q�p] unmixing
matrix W. In the BSS methods, all EEG channels are simultaneously exploited
to estimate the source signals, and EEG artifacts removal is performed in the
transformation domain; the artifact-free EEG is then obtained by applying the
inverse transformation to the corrected components. As BSS is an unsupervised
learning process, no additional reference signal is required.

There are lots of different algorithms available to perform BSS, including
principal component analysis (PCA) (Ille et al. 2002), independent component
analysis (ICA) (Hyvarinen et al. 2001), and canonical correlation analysis (CCA)
(De Clercq et al. 2006) described in the following. Each algorithm performs matrix
factorization to implement BSS with some particular assumptions about the signals,
such as independence for ICA. The choice of the optimum algorithm to employ
depends on a priori knowledge of the signal. Some of the most common BSS
algorithms employed in research are described as follows.
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1. PCA. PCA uses an orthogonal transformation to convert a set of observations of
possibly correlated variables into a set of values of linearly uncorrelated variables
called principal components. The orthogonal transformation is defined in such a
way that the first principal component has the largest possible variance, which
means accounting for as much of the variability in the data as possible, and
each succeeding component in turn has the highest variance possible under the
constraint that it is orthogonal to all the preceding components. PCA can be
done by eigenvalue decomposition of a data covariance (or correlation) matrix
or singular value decomposition of a data matrix, usually after normalizing or
Z-scores the data matrix for each variable.

PCA is a second-order algorithm and is therefore strongly influenced by ampli-
tude. It is shown that PCA performed well for EEG artifact removal only when
the amplitude of the artifact was greater than that of interesting signal. And when
the amplitude of artifact was similar or less than that of interesting signal, other
BSS methods obtain better performance. In addition, the greatest problem of PCA
is that the assumption of orthogonality in both temporal and spatial between neural
activity and typical artifacts does not generally hold. Hence, PCA is often unable to
separate some artifactual components from brain signals. In fact, PCA is often used
just as a whitening step of ICA, since artifacts and brain signals are better modeled
as independent rather than orthogonal.

2. ICA. ICA is a typical technique which extracts statistical sources, i.e., indepen-
dent components, from the raw multivariate recordings. ICA separates artifacts
and concentrates them into the corresponding independent components, and
those can be easily canceled afterwards. And the artifact-free EEG is recon-
structed by inverse ICA with desired signal source. There are a lot of algorithms
used to determine the independent components. Some of the most commonly
employed are FastICA, JADE, Infomax, and SOBI. The approach of each algo-
rithm to estimating independence is different: FastICA maximizes the magnitude
of the kurtosis or the neg-entropy of the component distributions; Infomax
estimates the component probability distributions; SOBI takes advantage of
temporal correlations in the source activities; and the JADE algorithm maximizes
the kurtosis of the component distributions through a joint diagonalization of the
fourth-order cumulants.

ICA, as a nonparametric algorithm, has a major advantage over some other
parametric algorithms (such as adaptive filtering), and no priori information (such
as reference signals) is required for the algorithm to function. One of the major
limitations of ICA is the requirement for the independent sources to be non-
Gaussian. ICA can obtain an estimate of the sources if the sources are non-Gaussian.
Unfortunately, a component is generally not known to be Gaussian or non-Gaussian
a priori. The EEG data are commonly whitened by PCA before the computation of
the ICA to cancel the correlation between the signals and reduce the dimensionality
of the data. In addition, when there are less channels than sources, ICA by its nature
cannot guarantee an efficient separation of the artifacts from the neural components,
and useful information may be lost.
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3. CCA. CCA is another typical BSS method for the source separation of mixed
signals. To solve the BSS problem, CCA assumes the sources to be maximally
autocorrelated and mutually uncorrelated. In terms of seeking uncorrelated
sources, CCA uses a weaker condition than statistical independent sought by
ICA. In addition, ICA does not consider temporal correlations and can return
the same solution no matter how the samples are arranged in time. To address
this problem, CCA extracts uncorrelated sources that have maximum spatial or
temporal correlation within each source.

As ICA employs statistical independence to separate the sources, it only can
isolate those artifacts with stereotyped scalp topographies, but not those artifacts
without (such as muscle artifacts). However, CCA performs well for both stereo-
typed and non-stereotyped artifacts by considering temporal correlations. Moreover,
it is also noted that the CCA method always returns the same components ordered
by autocorrelation with a given dataset, and the last few components with lower
autocorrelation are often corresponding to the artifact sources. In addition, the CCA
method adopts second-order statistics (SOS) rather than high-order statistics (HOS)
to extract components; hence, CCA algorithm performed better relative to ICA in
terms of computational complexity by at least an order of magnitude and can be
used for online EEG artifact removal.

5.2.4 Source Decomposition Methods

In addition to separating artifact components simultaneously using all the EEG
channels by the BSS methods, there are also lots of additional algorithms devised to
estimate artifact component from just a single channel. Such algorithms directly
decompose each individual channel into basic waveforms that represent either
signal of interesting or the artifact component. The principle based on these
algorithms is that source signal (either the signal or artifact) can be represented by
a single decomposition unit, such as certain wavelet basis for the wavelet transform
or an intrinsic mode function (IMF) for empirical mode decomposition. As the
personal healthcare devices desire for minimal instrumentation (less sensors) and
low operational complexity, these algorithms are utilized more frequently in this
domain:

1. Wavelets transform. The wavelet transform (WT) has been used for artifact
removal in EEG recordings since the early 1990s. The WT is defined as the inner
product of the signal with the time shifted and scaled wavelet functions. The
wavelet transform coefficients at some scale represent the similarity of the signal
to be decomposed with the wavelet at that scale. The discrete wavelet transform
(DWT) is most often used for wavelet denoising, and the goal of DWT is to
isolate the artifact in both time and frequency in order to minimize the impact of
the artifact removal process on the rest of the neural signal. DWT computes two
sets of coefficients: approximation coefficients and detail coefficients, which are
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obtained by convolving signal with a series of low-pass filters for approximation
and high-pass filters detail.

Wavelet denoising operates in three steps: (1) decompose the signal into a
number of levels, 2) threshold the wavelet coefficients, and (3) reconstruct EEG data
from artifact-free components. EEG artifact removal based on the wavelet transform
depends on that the sources of interest and artifacts will not be decomposed in the
same wavelet basis. As the accurate separation of the signal and noise depends on
the wavelet basis and its similarity to the source signal to be preserved, the mother
wavelet and the decomposition level are critical for the design of wavelet denoising.
The strategy of selecting a wavelet is that the shape of wavelet and the transient of
interest should be matched. As to decomposition level, the artifact will be diluted
across frequency bands for too deep decomposition, leading it difficult to isolate in
time, and the artifact will not be isolated in frequency for too little decomposition,
causing neural data to be unnecessarily lost in the thresholding process. The proper
level of decomposition depends in large part on artifact type and the sampling
frequency of the data. When the artifacts to be removed include many types, a
strategy of multilevel wavelet decomposition may be used (Kelly et al. 2011). The
choice of threshold in the second step also needs to be carefully made. In general,
there are two strategies for threshold setting: hard and soft threshold. It is known
that soft threshold has large bias in the denoised signal resulting in under correction
of artifacts. On the other hand, hard threshold produces large variance and induces
artifact itself when there is a spike-like transient artifact. So good threshold should
be trade-off between soft and hard thresholds in terms of artifact removal and signal
distortion, such as adaptive thresholding (Krishnaveni et al. 2006).

Although DWT shows to be an interesting tool for EEG artifact removal,
there are many limits for the real application. One of the most typical cases
is that the DWT is unable to separate artifacts completely which overlap with
signal of interesting in the spectral domain, such as EMG artifact embedded on
an EEG signal. In 2011, synchrosqueezed wavelet transform (SWT) (Daubechies
et al. 2011), a combination of wavelet analysis and reallocation method, has
been proposed as a novel adaptive decomposition tool for signals. This method
introduces a precise mathematical definition for a class of functions that can be
viewed as a superposition of a reasonably small number of approximately harmonic
components. And experiments show that SWT does indeed succeed in decomposing
arbitrary oscillatory components. Hence, SWT may be a potential interesting tool to
achieve better EEG artifact removal performance relative to WT.

2. Empirical mode decomposition. The EMD was proposed as a new signal
decomposition method for nonlinear and nonstationary data (Huang et al. 1998).
The EMD method can decompose any complicated signal into a collection of
oscillatory modes, called intrinsic mode functions (IMFs), which represent fast
to slow oscillations in the signal. EMD sequentially decomposes N IMFs by a
sifting process such that x.t/ D

PN
iD1 imf i.t/C rn.t/ where rn is the residual of

signal. Each IMF should satisfy two conditions: (1) over the full length of each
IMF, the number of maxima and the number of zero crossings must be the same
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or differ by 1 at the most; (2) at any point of each IMF, the envelope defined by
the mean value of the maxima and the minima must be zero.

In the EMD denoising, thresholds also need to be selected for EEG artifact
removal (Kopsinis and McLaughlin 2009). The first strategy for thresholds setting
is to judge whether a specific IMF contains signal of interesting or noise. The key
to this strategy is that the artifacts can be represented by one or more IMFs. The
second strategy is just a direct application of wavelet thresholding in the EMD
denoising such as hard and soft thresholding. This is because the EMD can also be
interpreted as a dyadic filter bank although this filter bank structure is by no means
predetermined and fixed as in wavelet decomposition. A wavelet-like threshold
directly applying to IMFs can bring catastrophic consequences for the continuity
of the reconstructed signal. This is because the processed IMF with some thresholds
would be against to the definition of IMF. However, it is possible to guess if the
interval between two zero crossings is noise dominant or signal dominant based
on the single extrema that correspond to this interval. Hence, the third strategy is
to adapt threshold for EMD characteristics which is referred to as EMD interval
thresholding.

IMF in the EMD is introduced based on the local properties of the signal, which
eliminate the need for spurious harmonics to represent nonlinear and nonstationary
signals. Therefore EMD would outperform DWT in the case of handling oscillatory
signals, such as EEG. Additionally, EMD is a data-driven method rather than relying
on a predefined linear basis as the wavelet does, which enables it to deal with very
local variations of nonlinear and nonstationary EEG. EMD also has been criticized
due to its sensitivity to noise and susceptibility to interference from mode mixing,
which means a single IMF including oscillations of dramatically disparate scales.
When mode mixing occurs, an IMF would contain different physical processes in
a mode, suggesting a lack of accuracy in the decomposition between the signal
of interesting and the noise. To address the pitfalls, EMD method has recently
evolved to ensemble empirical mode decomposition (EEMD) (Wu and Huang
2009), which consists of sifting an ensemble of white noise-added signal (data)
and treats the mean as the final IMF. EEMD utilizes the full advantage of the
statistical characteristics of white noise to perturb the signal in its true solution
neighborhood. As the EEMD demands repetitive processing of many trials of
the noise-added signals, the EEMD-based method is intensive in computing. A
parallelized EEMD method has been developed using general-purpose computing
on the graphics processing unit (GPGPU), namely, G-EEMD (Chen et al. 2010),
which paves the way of EEMD in practice.

5.2.5 EEMD-ICA Method

The design of the EEMD-ICA approach (Zeng et al. 2014) is illustrated in Fig. 5.1.
The approach operates in five stages: (1) decomposition of neural data, (2) selection
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Fig. 5.1 Block diagram of EEMD-ICA framework for artifact rejection of multivariate neural
data. This framework consists of five blocks: (1) decomposition of neural data, (2) selection of
IMFs with artifacts, (3) concentration of artifacts, (4) artifact rejection, and (5) reconstruction of
“artifact-free” neural data. Each channel neural data is first decomposed into four IMFs in this
diagram. The artifact IMFs are then selected from the IMFs dataset and passed into ICA. The
artifacts in the selected IMFs can be concentrated into a few independent components. The artifact
components then can be identified by means of quantitative measures and rejected afterwards. The
artifact-free neural data is eventually reconstructed via the inverse ICA

of IMFs with artifacts, (3) concentration of artifacts, (4) artifact rejection, and
(5) reconstruction of the “artifact-free” neural data. In the first stage, EEMD was
used to decompose each data channel into a series of embedded IMFs. In the
second stage, the IMF containing artifacts will be automatically selected. In the
third stage, ICA concentrates the artifact contents dispersing in multiple IMFs into
a few components. In the fourth stage, the artifact components are automatically
identified by means of a quantitative measure and rejected. Finally, the artifact-free
EEG dataset is reconstructed in two steps: inverse ICA and summing up every group
of denoised IMFs corresponding to the same data channel.

EEMD-ICA approach utilized both the EEMD and ICA to separate artifact from
EEG recordings. The EEMD is unable to remove artifacts which overlap with
EEG in the spectral domain, and ICA by its nature cannot guarantee an efficient
separation when the number of channels is less than that of sources. The EEMD-ICA
combines the positive aspects of both independent algorithms to overcome some
of their individual shortcomings. And this combined method can even be used for
single-channel EEG recordings due to the EEMD creating multidimensional data
from a single-channel EEG measurement. To remove the artifact in EEG, a strategy
of coarse-to-fine detection was used. Once the IMFs are obtained by the EEMD, the
artifactual IMFs should be identified for further processing. This intends to refine
the ICA’s processing of the subset of IMFs. In this study, entropy and kurtosis are
referred to for detecting the components containing artifacts:

(a) Entropy. Most artifacts are typically “unusual” time courses in the sense that
they appear as transient or unexpected events. The outliers generated by these
events would enhance the randomness or the uncertainty of the neural data.
Then entropy, a natural measure to quantifying the degree of randomness, is
particularly appealing as an indicator to detect the IMFs containing artifacts
(Hild et al. 2006). To estimate the entropy of each IMF, all of the probability
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density functions (pdf) of data values in each IMF were first computed. The
entropy (E) of the ith IMF (IMFi) can be then computed as follows:

E.i/ D �
X

x2IMFi

pdf .x/ log .pdf .x// (5.6)

where pdf(x) is the probability of the value x in the probability distribution in IMFi.
The entropy was computed for all of the decomposed IMFs.

(b) Kurtosis. The entropy measure can be used to identify transient or unexpected
artifacts, while some other artifacts, such as blinks and discontinuity, are
typically characterized by a peaky distribution of potential values and can be
detected based on their unusual peakyness. The kurtosis (or the fourth-order
cumulant) of the activity values in IMFs applies to quantify the peakyness
(Delorme et al. 2007). For each IMF, its kurtosis K conforms to the following
equations:

K D m4 � 3m2
2 (5.7)

mn D E f.x � m1/
ng (5.8)

where mn is the nth central moment of all activity values of the IMF and m1 is the
mean value and E is the expectancy function.

The two measures were first normalized to zero mean and unit standard deviation.
Then, those components (IMFs or independent components) whose entropy or
kurtosis exceeds the corresponding thresholds were marked as artifact components.
In the coarse process of artifact removal, the choices of the two thresholds were
not too strict, and low thresholds will be better, which can reject IMFs obviously
corresponding to interesting neural signal and retain enough data channels for the
ICA. However, thresholds in the fine process will be more rigorous and higher to
guarantee accurate selection of artifact independent components.

5.3 Simulation

As EEG data are generally noisy, artifact rejection is crucial for EEG preprocessing.
It has long been a grand research challenge for an approach which is able (1) to
remove the artifacts to the most and (2) to avoid loss or disruption of the structural
information at the same time; thus the risk of introducing bias to EEG interpretation
may be minimized. To achieve this goal, we proposed an approach upon EEMD and
ICA for artifact removal in EEG recordings, namely, EEMD-ICA. The approach was
tested against the classical ICA (Delorme et al. 2007) and the automatic wavelet
ICA (AWICA) methods (Mammone et al. 2012), which were dominant methods
for artifact rejection. The classical ICA separated artifacts and concentrated them
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into the corresponding independent components for rejection afterwards. AWICA
first used wavelet transform to decompose raw data of each channel into multiple
frequency sub-bands and then applied ICA to the decomposed data to separate the
artifacts for rejection at the end. In order to evaluate the effectiveness of the proposed
approach in handling EEG data possibly with intensive noises, experiments on
artifact removal had been performed using semi-simulated data mixed with a variety
of noises.

5.3.1 Data Simulation

The test data is a resting-state EEG, which was recorded at a sampling rate of 256 Hz
using an 8-electrode scalp montage. There were two electrodes located in the frontal
area, the central area, the tempo-parietal area, and in the occipital area, respectively.
Fifty epochs of 10 s “clean” data were selected by experts as background EEG to
construct semi-simulated data.

In this study, four types of artifacts were simulated to represent the noises
commonly observed in EEG according to (Delorme et al. 2007). Those include (a)
eyeblink, (b) discontinuity, (c) muscle noise, and (d) white noise as illustrated in
Fig. 5.2. Eyeblinks and muscle artifacts were modeled using random noise band-
pass filter (FIR) between 1 and 3 Hz and between 20 and 60 Hz, respectively.
Electrical shift artifacts were implemented as discontinuities. Finally, unfiltered
random Gaussian noises were used to simulate the white noise.

To construct the semi-simulated EEG, the modeled artifacts were added to the
“clean” EEG as follows: (1) the modeled eyeblinks and muscle noises were pro-
jected to all electrodes with varying intensities, and (2) the discontinuity and white

Fig. 5.2 Four types of simulated artifacts introduced into actual EEG. (a) Low-frequency events
(1–3 Hz) modeling eyeblink artifacts, (b) signal discontinuities modeling the electrical shift
artifacts, (c) transient high-frequency events (20–60 Hz) modeling muscle artifacts, and (d)
unfiltered random Gaussian noises modeling the white noise
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noises were added to data channels randomly selected. As eyeblinks significantly
affected the EEG in the frontal area, the scalp topography of modeled eyeblinks
in each projection was set with high gains (>80 %) at the most frontal electrodes
and low gains (<20 %) at the rest electrodes. The projection of modeled muscle
noises mainly concentrated at temporal electrodes (>95 %) as these electrodes were
liable to the muscle noises. The discontinuity and white noises manifested no spatial
characteristics, and those were added to randomly selected channels.

In general, SNR could affect the performance of noise removal methods. This
simulation study investigated the performance of the three approaches with data of
a range of SNRs (from 0.1 to 1.5). For each type artifact, 50 modeled artifacts in
each SNR level were projected to the 50 epochs of “clean” EEG data, respectively.
And the performance of artifact rejection methods was calculated as the average of
the 50 simulation trials.

5.3.2 Performance Metrics

The goal of artifact rejection is to restore the artifact-free state of the semi-simulated
EEG contaminated by artifacts. Two performance metrics are proposed to quantify
an artifact rejection approach’s ability of rejecting artifacts. That is, how “clean” the
resulted data is after artifact rejection:

(a) Normalized Mean Square Error (NMSE). NMSE is the most commonly used
metric for quantifying performance of signal processing, which can be defined
as follows:

NMSE D
kx �bxk22
kxk22

(5.9)

where x is the original artifact-free data and bx is the corresponding data recon-
structed from the artifactual signal.

(b) Structure Similarity (SSIM). SSIM (Wang and Bovik 2009) is the second
metric. SSIM for the original signal x and its reconstructed databx conforms
to the following formula:

S .x;bx/ D
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(5.10)

where �x and �
bx are the local sample means of x andbx, respectively; �x and �

bx

are the local sample standard deviations of x and bx, respectively; and �xbx is the
sample cross correlation of x andbx after removing their means. SSIM is bounded:
�1 � S .x;bx/ � 1, the maximum value S .x;bx/ D 1 may be achieved only if x Dbx.
The higher the SSIM is, the better the quality of recovery is.
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5.3.3 Parameter Settings

The FastICA (Hyvärinen 1999) was chosen as a representative ICA method as
it was the fastest implementation of ICA. The mother wavelet adopted in the
AWICA approach was db4, which denoted a maximally flat-frequency response.
The decomposition level was set to 5 as the EEG (sample rate 256 Hz) can be
separated into the five ranges of the major EEG rhythms: delta 1–4 Hz, theta 4–
8 Hz, alpha 8–14 Hz, beta 14–32 Hz, and gamma 32–64 Hz, 64–128 Hz. In the
context of the EEMD-ICA approach, the number of IMFs was set to six in order to
keep consistence with the AWICA. The ratio of the standard deviation of the added
noise in EEMD is set to 0.1.

5.3.4 Results and Discussions

The results for every approach against the four types of artifacts are presented in
Fig. 5.3. The MMSE and SSIM values are the average of 50 trials and presented in
the upper and lower rows, respectively. Each column corresponds to a unique type
of artifacts:

(a) ICA vs. AWICA and EEMD-ICA

It can be observed that the approach based on the classical ICA performed the
worst in term of both NMSE and SSIM when dealing with any type of artifacts.

Fig. 5.3 Artifact rejection performance measure (y axis, NMSE in the top row and SSIM in the
bottom row) by three methods (ICA, AWICA, and EEMD-ICA) for four types of simulated artifacts
(columns) of increasing SNR (x axis, in the range of SNR from 0.1 to 1.5)
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Fig. 5.4 The artifact component detected and rejected by the three approaches. (a) is the simulated
eyeblink. (b),(d), and (f) are the artifact components detected by ICA, AWICA, and EEMD-
ICA, respectively, and (c), (e), and (g) are the underlying useful EEG signals (cerebral activities)
contained in the (b),(d), and (f)

That is because the number of data channels is eight, which was far less than
the number of the latent sources. Hence, the ICA method cannot sufficiently
separate the artifactual components. As illustrated in Fig. 5.4, although the blink
component (Fig. 5.4b) detected by ICA obviously indicates the presence of strong
artifact (the original artifact shown in Fig. 5.4a), it also contains a considerable
amount of cerebral activities of interest (Fig. 5.4c). Directly rejecting such blink
components would lead to loss of useful information, and this inevitably results in
serious distortion when reconstructing the artifact-free EEG. With the assistance
of decomposition methods such as EEMD and wavelet, a dataset with additional
channels can be established to meet the demand of ICA. Thus, ICA works effectively
in separating artifactual source even from the original data with a limited number of
channels. Figure 5.4d and f clearly indicate that the blink components detected by
AWICA and the EEMD-ICA contain much less useful EEG data (Fig. 5.4e and g)
than that detected by ICA.

Moreover, EEMD method can be regarded as a dyadic filter for any data (Wu
and Huang 2009), which is similar to a multilevel wavelet decomposition. When
the artifactual data are concentrated in a single sub-band (via decomposition with
wavelet or EEMD), only one sub-band will account for the artifact signal. ICA can
focus on a specific frequency range rather than processing the entire dataset. In this
manner, although the artifact components might still contain neural activities when
the ICA does not work in the optimal case, these neural activities are only confined
in the frequency range in connection with the artifacts. Thus, information loss in the
other frequency ranges can be avoided.

(b) AWICA vs. EEMD-ICA

From the upper row of Fig. 5.3, it can be observed that the difference among
NMSEs measured upon the AWICA and EEMD-ICA approaches is insignificant
when the SNR is high (SNR>1). With the gradual decrease of SNR, the EEMD-
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ICA approach performs better and better than the AWICA does. This is attributed
to the merit of EEMD method, which is much more resistant to noises than its
counterparts.

In contrast, as shown from the lower row of Fig. 5.3, the EEMD-ICA approach
significantly outperforms AWICA in terms of SSIM in almost all cases. NMSE is
formulated in a manner that all the samples are equally treated, and this causes that
the content-dependent variations between the two signals in comparison cannot be
accounted for. On the contrary, the SSIM measures the structural similarity between
two signals, which may be more suited for structured neural data (such as EEG) than
the NMSE does. From this fact, it can be concluded that the EEMD-ICA approach
can retain more structural information of the data of interest than AWICA.

As illustrated in Fig. 5.5, an eyeblink was simulated and mixed with the original
EEG (Fig. 5.5a), and the denoising outputs of AWICA and EEMD-ICA were
showed in Fig. 5.5b. From both the segments with artifacts (Fig. 5.5c) and without
artifacts (Fig. 5.5d), it can be observed that (1) the outputs of AWICA (the channels

Fig. 5.5 Comparison between AWICA and EEMD-ICA for removing eyeblink artifact. (a) A
semi-simulated data channel containing eyeblink artifact from 4 to 5 s; (b) the top channel is
the original EEG before noise was added, and the middle and the bottom channels are the denoised
outputs using AWICA and EEMD-ICA, respectively. The denoised segment contaminated by
artifacts from 4 to 4.5 s is highlighted in (c), and the denoising segment from 6.5 to 7 s outside
artifacts is highlighted in (d)
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in the middle) only follow the trend of the original EEG (the channels at the top)
and (2) the outputs from the EEMD-ICA (the channels at the bottom) not only keep
the trend but also maintain the structural information (such as phases) of the original
EEG.

The advantage of EEMD over wavelet is that EEMD can break the data into its
oscillatory modes. Therefore it is inevitable that the EEMD-ICA approach would
outperform AWICA in the case of handling oscillatory signals, such as EEG.
Additionally, EEMD is a data-driven method rather than relying on a predefined
linear basis as the wavelet does, which enables it to deal with very local variations of
nonlinear and nonstationary neural data. EEMD-ICA can thus retain more structural
information of the original data than the AWICA approach does.

(c) Performance for handling white noises

As shown in the fourth column of Fig. 5.3, the EEMD-ICA approach can achieve
a performance of dealing with the white noises dramatically better than the rest. That
is because the EEMD method is a noise-assisted method, which adds white noises
to the data under processing to address the mixed mode problem with EMD. In
the EEMD method, the EMD algorithm is applied to decompose an “ensemble” of
white noise-added data rooted from the original data. The average of the IMFs in
the ensemble is the final result of decomposition. With the help of white noises, the
EEMD automatically eliminates mode mixing in all cases. At the same time, the
EEMD method itself owns the intrinsic characteristic to resist white noises.

(d) Practicability

In sophisticated scientific and engineering applications, the efficiency is a
premise when ensuring the effectiveness of artifact removal. The classical ICA
approach is the fastest one. The AWICA approach is about four times slower, while
the EEMD-ICA approach can be about tens of times slower. This is reasonable as
EEMD demands repetitive processing of many trials of the noise-added signals,
and it is highly compute intensive. Real-time application of EEMD based on
conventional computing platform is therefore impractical.

Considering the applications of EEMD-ICA in real practice, the parallelized
EEMD method, namely, G-EEMD, can be employed. It has been developed by
successfully adopting the technology of general-purpose computing on graph-
ics processing units (GPGPU) in our previous work (Chen et al. 2010). The
G-EEMD exhibits an efficiency hundreds of times better and excessively high-
performance/price ratio compared to the original serial implementation of EEMD,
which paves the way of EEMD-ICA in practice.

5.4 The Effects of Artifact Rejection on Seizure Detection

Artifact rejection serves as a preprocessing method of neural data processing.
Its effectiveness can be further examined against real-life problems, e.g., seizure
detection. An absence EEG records sudden and abrupt seizures, which reflect
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transient signs and/or symptoms of abnormal, excessive, or synchronous neural
activities in the brain. It may have significant impact on the educational development
of sufferers (Killory et al. 2011). Seizure detection plays a very important role in
studying the mechanism of absence and in the process of recovery (Zeng et al.
2016). In real-world applications, intensive noises contained in raw EEG recordings
will inevitably introduce significant bias to seizure detection. This study investigated
the effectiveness of artifact rejection methods in EEG-based seizure detection.

5.4.1 EEG Recordings

Seven patients (four males and three females with absence epilepsy) aged from
8 to 21 years old were recruited after taking consent from the Ethics Committee
of Peking University People’s Hospital. The EEG data were recorded using the
Neurofile NT digital video EEG system from scalp surface electrodes (International
10–20 System) at a sampling rate of 256 Hz using a 16-bit A/D converter and
filtered within a frequency band of 0.5–35 Hz. Nineteen electrodes were used and
the impedance levels were set at less than 50 k�.

The EEG segments (a duration of 2 s) were selected from seizure-free, pre-
seizure, and seizure intervals, and each state has 60 EEG epochs. Many of these
epochs were contaminated by eyeblinking, muscle artifacts, etc. Experimental
results from these raw data were referred to as the baseline for further comparison.

ICA, AWICA, and EEMD-ICA approaches were used to first preprocess the raw
EEG epochs, respectively, and three “artifact-free” datasets were constructed for
classification again. In addition, another 60 EEG epochs free of artifact had also
been produced by an experienced clinician by inspecting the EEG visually. This
manually selected data will be used to develop a gold standard to benchmark three
artifact rejection approaches.

5.4.2 Results and Discussion

In this study, multi-scale permutation entropy (MPE) proposed in our previous
work is used as an indicator for identifying seizure-free, pre-seizure, and seizure
states (Ouyang et al. 2013). The scale factor is set as 5. To classify three states,
discriminant analysis (DA) is used as classifier and the type of DA is quadratic
(Cai et al. 2008). In order to develop robust classifiers, we choose the tenfold cross
validation data resampling technique for training and testing the classifiers. The
classification accuracy is used as a metric for evaluating the effect of three artifact
rejection methods, which is defined as the number of correct classifications/the total
number of states.

The result shows that a classification accuracy of 70.6 % can be obtained from
the raw EEG, which can be used as the baseline to calculate the performance gains
after artifact rejection. And the manually selected data can achieve an accuracy of
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89.7 %, which can be considered as the idea performance of “artifact-free” datasets
preprocessed by some optimized artifact rejection method. After artifact rejection
for the raw data by ICA, AWICA, and EEMD-ICA approaches, the classification
accuracies are 78.7 %, 83.3 %, and 87.4 %.

Comparing the results of raw dataset with the manually selected dataset, it is
easy to mistake the pre-seizure and seizure states as seizure-free states under the
interference of noise. This is because the permutation entropy was proposed to
measure the irregularity of nonstationary time series (Bandt and Pompe 2002; Li
et al. 2008), and the noises would often strengthen the irregularity of the EEG (as
illustrated in II.B.1)). Under the influences of noises, the EEG during the pre-seizure
and seizure states would have increasing irregularity and may be misclassified as the
seizure-free state, where EEG is the most irregular. However, to distinguish the pre-
seizure state and seizure state from the seizure-free state is the major concern in
research and clinical practice. Hence, appropriate artifact rejection is needed before
the seizure detection.

Comparing the results of raw dataset with the “artifact-free” datasets, it suggests
that all of the three artifact rejection approaches can obviously improve the
performance of classification and achieve gains of 8.1 %, 12.7 %, and 16.8 %,
respectively. In comparison with the ICA method, both AWICA and EEMD-ICA
can further improve the performance of seizure detection. This indicates that both
wavelet and the EEMD decomposition can enhance the performance of ICA in
denoising. In addition, EEMD-ICA is even superior to AWICA with a 4.1 % higher
accuracy, which is the closest to the ideal situation. This is because EEMD excels in
dealing with oscillation data, which will benefit MPE to use the local order structure
of the time series to extract informative features from epilepsy EEG data (Ouyang
et al. 2013; Bandt and Pompe 2002; Li et al. 2008). Hence, it can be concluded
that EEMD-ICA can preserve more structural information than its counterparts to
achieve the best performance.

5.5 Conclusions

This study developed an approach for artifact removal in EEG recordings, a vital
issue in EEG preprocessing. The approach combines EEMD and ICA for selection
of artifactual components and concentration of artifacts, respectively. Entropy and
kurtosis are defined to indicate the presence of artifacts of various types. The
effectiveness of the proposed approach was examined using both semi-simulated
data purposely contaminated with selected artifacts and absence EEG data in real
life. Comparisons were made against the classical ICA and AWICA approaches,
and EEMD-ICA always performed the best.

When using SSIM as the metric, EEMD-ICA significantly outperformed the
other two approaches for all types of noise. EEMD-ICA can almost double that of
AWICA and triple that of ICA when handling intensive noises. When the SNR was
high, the difference between the three approaches was not significant in terms of
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NMSE. When SNR became lower, the EEMD-ICA approach’s superiority turned to
be very significant. In particular, the EEMD-ICA approach handled the white noises
very well due to the noise-assisted EEMD algorithm.

The effectiveness of the artifact rejection approaches had been evaluated via
characterizing the dynamics of absence EEG. All of the three artifact rejection
approaches can improve the accuracy of classifying the seizure-free, pre-seizure,
and seizure states. EEMD-ICA still outperformed the other two approaches, whose
performance was the most close to that of the gold standard. The performance of
EEMD-ICA was encouraging because more structural information can be reserved
than the other two approaches did. EEMD-ICA manifests a suitable tool for reject-
ing artifacts as many as possible while retaining sufficient structural information of
noisy EEG data.
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Chapter 6
Order Time Series Analysis of Neural Signals

Gaoxiang Ouyang and Xiaoli Li

6.1 Introduction

The electroencephalogram (EEG) signal is a measure of the summed activity of
approximately 1–100 million neurons lying in the vicinity of the recording electrode
and may provide insight into the functional structure and dynamics of the brain
(Sleigh et al. 2004). Therefore, the exploration of hidden dynamical structures
within neural signals is of both basic and clinical interests (Stacey and Litt 2008).
Recently, an order time series analysis method was proposed by Bandt and Pompe
(Bandt and Pompe 2002). This method measures the irregularity of non-stationary
time series. The basic premise of this method is consideration of the order relations
between the values of a time series and not the values themselves. The advantages of
this method are its simplicity, robustness, and low complexity in computation [3–4]
without further model assumptions. Also, the Bandt-Pompe method is robust in
the presence of observational and dynamical noise (Bandt and Pompe 2002; Rosso
et al. 2007). This method does show a fundamental distinction between deterministic
chaos and noisy systems (Amigo et al. 2007). These advantages facilitate the use of
methods based on the Bandt-Pompe algorithm for investigating the intrinsic ordinal
structures in complex time series from physical systems (Bahraminasab et al. 2008)
and physiological systems (Zanin et al. 2012). In this chapter, the order time series
analysis is used to track transient dynamics of EEG recordings.
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6.2 Order Time Series Analysis

Order time series analysis is a new technique in evaluating the dynamic char-
acteristics of a given time series (Bandt and Pompe 2002; Bandt 2005). Given
a time series of length L, fx1, x2, : : : , xLg, a vector can be generated using an
embedding procedure: St D

�

xt; xtC	 ; : : : ; xtC.m�1/	



where m and 	 are the
embedding dimension and the lag, respectively. This vector St can be rearranged
in an ascending order,

�

xtC.j1�1/	 � xtC.j2�1/	 � � � � xtC.jm�1/	



. To obtain a unique
result, we set jr�1 < jr in the case of xtC.jr�1�1/	 D xtC.jr�1/	 . For m different
numbers, there will be mŠ D .1 � 2 � � � � � m/ possible order patterns � i, iDm!,
also called permutations. For example, for m D 3, there are six order patterns
between xt; xtC	 and xtC2	 , as shown in Fig. 6.1a, and the relation xtC2	 < xt < xtC	

corresponds to the order pattern �4 D 231. Figure 6.1b illustrates the order patterns
of a white noise time series (left) and the logistic map (right) [xnC1 D 4xn .1 � xn/

and 0 < x0 < 1], with m D 3 and 	 D 1. Then we can count the occurrences of the
order pattern � i, which is denoted as C(� i), and the relative frequency is calculated
by p .�i/ D C .�i/ = .L � .m � 1/ 	/, i D 1; 2; � � �mŠ, as seen in Fig. 6.1c.

6.2.1 Permutation Entropy

The complexity of time series also can be quantified by using order time series
analysis. A new permutation method was proposed by Bandt and Pompe (Bandt and
Pompe 2002) to map a continuous time series onto an order pattern; the statistics of
the order patterns is called permutation entropy. Based on Shannon’s information
theory, the permutation entropy is defined as

PE.m/ D �
mŠ
X

iD1

p .�i/ ln p .�i/ (6.1)

The corresponding normalized permutation entropy is

NPE D PE.m/= ln .mŠ/ (6.2)

The largest value of NPE is 1, meaning that the time series is completely random;
the smallest value of NPE is 0, meaning that the time series is very regular. In short,
the permutation entropy refers to the local order structure of the time series. More
details can be found in (Bandt and Pompe 2002; Bandt 2005).
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6.2.2 Forbidden Order Patterns

As shown in Fig. 6.1c, the distributions of order patterns of the white noise and
logistic map time series are quite different. With regard to the white noise time
series, all order patterns appear (i.e., no patterns are forbidden) because of the
characteristics of random behavior, and the probability distribution of the order
patterns is even (Ouyang et al. 2009). In contrast, with the logistic map time series,
the pattern of �6 D 321 disappears because of the characteristics of deterministic
behavior, called the forbidden order pattern (Amigo et al. 2007). Furthermore, if
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an order pattern of dimension m is “forbidden,” its absence pervades all longer
dimensions of m in the form of more missing order patterns (Amigo et al. 2008).

Most chaotic systems exhibit FOP, and in many cases, the measure of the number
of these patterns is related to other classic metric entropy rates (e.g., Lyapunov
exponent) (Amigo et al. 2007). In other words, the existence of FOP should be
a hallmark of deterministic orbit generation, and it can be used to distinguish
deterministic from random systems (Amigo et al. 2008). However, when FOP
analysis is applied to real-time series, the finiteness of sequences will produce false
FOP (i.e., order patterns missing in a random sequence without constraints). Thus,
the application of this method requires some attention since real-time series are finite
(making it possible that random sequences have “false” FOP with finite probability)
and noisy (blurring the difference between determinism and randomness) (Amigo
and Kennel 2008). To this end, a sufficiently long series is required to avoid
producing false forbidden patterns. Given the embedding dimension m and the lag 	
and a time series of length L, the number of possible order patterns is m !, while the
number of groups of data is L� .m � 1/ 	 . To ensure that all possible order patterns
of dimension m occur in a time series of length L, the condition L� .m � 1/ 	 � mŠ
must be satisfied (Amigo et al. 2007). For this reason, given a dimension of length
m, we need to choose L � .mC 1/Š.

6.2.3 Dissimilarity Index

As shown in Fig. 6.1c, the distributions of the ordinal patterns of the white noise
and logistic map time series are quite different. With the white noise time series,
the characteristics of random processes, the probability distribution should be even
since any ordinal pattern has the same probability of occurrence when the time
series is long enough to exclude statistical fluctuations. However, when the series
corresponds to a deterministic process, as in the example of the logistic map, there
are some patterns that will be encountered frequently in the time series due to the
underlying deterministic structure. Therefore, we can quantify the distance between
the frequency distributions to measure dissimilarity between two time series. In this
study, we evaluate the distance using the Wootters statistical distance. We defined
the normalized Wootters distance between two time series X and Y by

Dm .x; y/ D
2

�
cos.�1/

"

mŠ
X

iD1

�

px .�i/ � py .�i/
�.1=2/

#

(6.3)

where px(� i) and py(� i) represent the frequency distributions of the time series x
and y, respectively. This measure ranges from 0 to 1 (0 � Dm � 1) (Ouyang and
Li 2010). When Dm D 0, it indicates that the order pattern distribution in the two
series is identical. In contrast, Dm D 1 indicates that one of the two series is totally
different.
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6.3 Applications

Absence seizures are a form of generalized seizure accompanied by spike-and-wave
complexes in the electroencephalogram (EEG). People with absence epilepsy have
repeated seizures that cause momentary lapses of consciousness. These sudden and
abrupt seizures most commonly occur in childhood or adolescence and may have
a significant impact on the educational development of patients. The prediction
of absence seizures using detectable dynamic changes in the EEG is still debated
(Suffczynski et al. 2006). In this chapter, the order time series analysis is used to
track transient dynamics of EEG recordings. The aim of this study is to confirm
whether or not the pre-seizure state in absence epilepsy can be detected.

To investigate the predictability of absence seizures, 110 30-s EEG signals of
GAERS were selected from 18 GAERS, each with a concluding 10-s absence
seizure EEG segment. Seizure onset was determined manually by an experienced
experimental scientist by observing abrupt increases in EEG amplitude coupled with
simultaneous behavioral immobility, twitching of the vibrissae and facial muscles,
and diminished muscle tone in the neck (Danober et al. 1998). Experiments were
performed in 18 male Genetic Absence Epilepsy Rats from Strasbourg (GAERS)
of at least 13 weeks of age. At this stage of development, all GAERS display the
characteristic repeated spike-wave discharges (SWD) on the EEG during absence
seizures. All procedures were performed under a British Home Office project license
[UK Animals (Scientific Procedures) Act, 1986] at the University of Birmingham
by Dr. Douglas Richards. GAERS were anesthetized with medetomidine/ketamine
(0.5 and 75 mg/kg i.p., respectively) for the duration of the surgery, with immediate
postoperative reversal of the effects of medetomidine with atipamezole (1 mg/kg
s.c.). In all animals, a bipolar twisted-wire EEG electrode (MS303/1; Semat
Technical, St. Albans, UK) was implanted in the frontal cortex (mm, relative to
bregma; AP, 2.2: L, 2.4: V, 2.6 from the dura mater). The headmounts were secured
to 2 skull screws with dental cement (Duralay II), and the animals were allowed to
recover overnight with free access to water and rat diet. The following day, after
connection of a cable to the EEG electrode, the animal was transferred to an EEG
recording cage and left to acclimatize to this environment for at least 45 min. The
signal from the EEG electrode was visualized directly on an oscilloscope and was
further amplified (BioAmp ML 136), filtered, digitized (100 Hz), and stored using a
PowerLab 2/20 running Chart v4.2 software (AD Instruments, Hastings, UK). Once
the regular SWD were being observed, 30 min of EEG was recorded from each
animal. The EEG data sets were preprocessed by a band-pass filter at 0.5–22 Hz.

6.3.1 Results of EEG Data

To investigate the dynamical order patterns in EEG series during different stages of
an absence seizure, a moving window technique (window length of 1.4 s) is applied
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to investigate the order patterns in EEG segments. The criterion for overlapped
windows is that the time distance between two consecutive windows is 0.1 s (10
samples). For the analysis of absence seizures, only the lower dimension mD 4 is
selected during the order pattern analysis. This is because the dimension m must
satisfy the condition of .mC 1/Š < L. Figure 6.2a shows an EEG series including
one absence seizure. At time tD 20 s, an absence seizure occurred. The relative
frequency p(� i) of order patterns in each EEG segment for dimension mD 4 is
shown in Fig. 6.2b. Different relative frequency distributions of EEG segments
during different seizure states can be seen. In particular, during the seizure state,
the repeated SWD is characteristic of absence epilepsy, so some order patterns of
EEG segments obviously are increasing from the seizure-free state to the seizure
state. Therefore, the number of FOPs in the EEG segments increases markedly from
the seizure-free state to the seizure state, as shown in Fig. 6.2c. Then, to investigate
the number of FOPs in EEG series during different seizure states, EEG series are
dissected from the seizure-free state (from 10 to 20 s prior to seizure onset), the pre-
seizure state (from 0 to 10 s prior to seizure onset), and the seizure state (the first
10 s of the absence seizure itself). Thus, 3� 10 s EEG epochs are obtained for each
of the 110 seizures. Previous studies have shown that the duration of the pre-seizure
state is only around a few seconds as determined by using synchronization measures
(Aarabi et al. 2008).

To compare the number of FOPs in EEG epochs during different states, we
calculated the average number of FOPs < n .m;L/ > for .mC 1/Š � L � 1000

in the seizure-free, pre-seizure, and seizure EEG epochs, respectively, as shown in
Fig. 6.3. The results show that the number of FOPs within seizure EEG epochs is
much higher than that in seizure-free EEG epochs. The average number of FOPs
with different moving window lengths, L, gradually increases from the seizure-free
to seizure states for dimensions mD 4. It can be seen that a high number of FOPs
in the EEG series during the seizure state are found, indicating that the determinism
of the EEG recordings is significant during absence seizures. The results also show
that EEG epochs during pre-seizure intervals exhibit a higher degree of determinism
than those during seizure-free EEG epochs but a lower degree than those during
seizure EEG epochs in absence epilepsy. These findings support the notion that the
underlying dynamics of EEG series in absence epilepsy is related to their increased
determinism (regularity) arising from the synchronous discharge of large numbers
of neurons (Meeren et al. 2002; Polack et al. 2007).

6.3.2 Detection of Pre-Seizure EEG Changes

Next, to investigate the predictability of absence seizures with order time series
analysis, the order time series analysis is applied to detect the pre-seizure state.
Figure 6.4 shows the predictability analysis of an absence seizure using the
dissimilarity index and permutation entropy. The EEG recording of 30 s is first
divided into epochs of 1.4 s with an overlap of 1.3 s; the first 10-s EEG epoch
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is selected as the reference window; and the original EEG recording is shown
in Fig. 6.4a. At the end of the EEG recording, an absence seizure occurs. The
dissimilarity Dm (mD 4 and 	 D 2) between the EEG windows and the reference
window is then calculated, as shown in Fig. 6.4b, and threshold and anticipation time
are plotted as well. It can be seen that the dissimilarity Dm gradually increases until
the seizure occurs, which may indicate the underlying dynamics of the EEG series
in absence epilepsy changing from random to deterministic prior to the occurrence
of the absence seizure.

Then, the permutation entropy (mD 4 and 	 D 2) of each EEG epoch also is
calculated, as shown in Fig. 6.4b, and a threshold and anticipation time are plotted
as well. The results show that the values of permutation entropy are at a higher



106 G. Ouyang and X. Li

200 600 1000
0

1

2

3
Seizure-free

L

<n
(m

,L
)>

Seizure
Pre-seizure

Fig. 6.3 Average number of FOPs of dimension m found in EEG epochs of length L,< n .m;L/ >,
for seizure-free data (dashed line), pre-seizure data (solid line), and seizure data (dot-dashed line),
which gradually increases from the seizure-free to the seizure state for dimensions m D 4

Seizure onset

Permutation Entropy

Anticipation Time

EEG Recordings

Threshold

50mV2a

b

s

Dissimilarity index

Threshold

Fig. 6.4 The prediction analysis of absence seizure by using EEG recordings. (a) Original EEG
recordings with a seizure. (b) The dissimilarity index and permutation entropy profiles. The
threshold value .�˙ k�/k D 4 of the dissimilarity index and permutation entropy are 0.2358 and
0.9222, respectively. The anticipation time of the dissimilarity index and permutation entropy is
4.1 s and 3.9 s, respectively



6 Order Time Series Analysis of Neural Signals 107

0 5 10
0

5

10

15
a b

0 5 10
0

5

10

15

Anticipation time (s) Anticipation time (s)

N
um

be
rs

N
um

be
rs

Permutation entropyDissimilarity index

Fig. 6.5 The histogram of anticipation time for dissimilarity index (a) and permutation entropy
(b), respectively. The max and min anticipation time is 10.0 s and 0.1 s for the dissimilarity index
and 10.5 s and 0.1 s for permutation entropy, respectively

level during the normal state in comparison with the seizure state; permutation
entropy begins to gradually decrease prior to the seizure, which may indicate the
dynamical complexity of neural activity of the network changing from complex
to simple (synchronization) prior to the occurrence of the epileptic seizure. It also
can be seen that the dissimilarity index and permutation entropy are essentially flat
during the reference window. In brief, order time series analysis, the dissimilarity
index, and permutation entropy can successfully track the dynamical changes from
normal to absence seizure.

The method described above is applied to analyze all of the seizures (110).
The anticipation time is used to indicate the pre-seizure state. Once a positive
anticipation time is obtained, this means that the absence seizure can be predicted.
The distribution of anticipation time is shown in Fig. 6.5. An analysis of the entire
EEG dataset found that the dissimilarity index successfully detected the pre-seizure
state prior to the seizure in 62 of 110 seizures (56.4 %) and permutation entropy
successfully detected the pre-seizure state prior to the seizure in 60 of 110 seizures
(54.5 %). The mean anticipation times for the dissimilarity index and permutation
entropy are 5.8 s and 5.9 s, respectively. These results show that the dissimilarity
index is very similar to the permutation entropy for detecting pre-seizure EEG
changes and the order time series analysis methods. Furthermore, the case study
described above shows that the dissimilarity index and permutation entropy of a
single-channel EEG of 1.4 s can be calculated in less than 2 ms using MATLAB
(Math Works Inc.) on a 1.6 GHz personal computer. Therefore, the order pattern
analysis calculation has a high computational efficacy and could be applied to
clinical, real-time, online monitoring of absence seizures.
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6.4 Conclusions

In this chapter, order time series analysis methods are used to track the transient
dynamics of EEG recordings during the different absence seizure states in genetic
absence epileptic rats. The results show that the number of FOPs in pre-seizure
EEG epochs is higher than that in seizure-free EEG epochs but lower than that in
seizure EEG epochs. A possible reason for this is that the epileptic process induces
or enhances nonlinear, deterministic structures in an otherwise linear stochastic
appearance of the EEG. Furthermore, we investigate order time series analysis
as a tool to detect the pre-seizure state by using EEG recordings. The results
show that order time series analysis can track the dynamical changes of EEG data
so as to describe transient dynamics prior to the absence seizures. Experiments
demonstrated that the dissimilarity index and permutation entropy successfully
detected the pre-seizure state in 62 and 60 of 110 seizures, respectively. Another
important advantage of the order time series analysis in detecting pre-seizures is the
very simple algorithm and resulting faster computation. An important next goal will
be to confirm the results presented here in a large clinical cohort of absence epilepsy
patients.
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Chapter 7
Dynamical Similarity Analysis of EEG
Recordings

Gaoxiang Ouyang and Xiaoli Li

7.1 Introduction

EEG monitoring systems have become important clinical tools for the evaluation
and treatment of epilepsy. The EEG is a measure of the summed activity of
approximately 1–100 million neurons lying in the vicinity of the recording electrode
(Buzsaki 2006) and may provide insight into the functional structure and dynamics
of the brain (Stam 2005). Therefore, the exploration of hidden dynamical structures
within EEG signals is of both basic and clinical interest (Stacey and Litt 2008).
Recently, various methods have been used to analyse the temporal evolution of
brain activity from EEG recordings (Stam 2005). They range from traditional linear
methods such as Fourier transforms and spectral analysis (Rogowski et al. 1981)
to nonlinear methods derived from the theory of nonlinear dynamical systems
(also called chaos theory) such as Lyapunov exponents (Wolf et al. 1985) and
correlation dimension (Rapp et al. 1985). To some extent, these chaos-based
approaches are capable of extracting informative features from epilepsy EEG data
(Lehnertz and Elger 1998), sleep EEG data (Ferri et al. 2003), and anaesthesia
EEG data (Widman et al. 2000), and moreover, these chaos-based approaches
are superior to the traditional linear methods (Rabinovich et al. 2006). However,
chaos-based approaches assume that the signal is stationary and originates from a
low-dimensional nonlinear system. In reality, a real EEG is a nonstationary signal
and stems from a highly nonlinear system (Gribkov and Gribkova 2000). Therefore,
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chaos-based approaches must be used with care and caution in analysing EEG
data (Eckmann and Ruelle 1992). It is thus important to develop new methods
to characterize EEG changes in different physiological and pathological states
(Eckmann and Ruelle 1992).

Recently, a dynamical similarity index (DSI) method was proposed by Baulac
et al. (Le Van Quyen et al. 1999; Navarro et al. 2002). This method is composed
of the phase space reconstruction of EEG dynamics and the measurement of
dynamical similarity between a reference window and a test window (a segment
of EEG recordings). The key issues of this method, aside from the reconstruction
of phase space, are to determine a radius value, which is applied for the normalized
cross-correlation integral to calculate the dynamical similarity index (Schreiber and
Schmitz 1997), and the length of the windowed EEG recordings. It has been found
that the dynamical similarity index rises or falls dramatically when the radius of
hypersphere or the length of the EEG window is changed slightly. This is due to
the fact that the data just outside the hypersphere (greater than the radius value)
are not accounted and data in the hypersphere (less than the radius values) are
treated equally because of the hard or binary boundary of the Heaviside function.
To overcome these problems, a new dynamical similarity index is proposed in this
chapter (Li et al. 2004). A Gaussian function is employed to replace the Heaviside
function in the dynamical similarity; as a result, the hard boundary of Heaviside
function becomes soft, so the closer the data points are, the more similar they are.
This similarity measure is then used to investigate the dynamic characteristics of
epileptic EEG data.

7.2 Dynamical Similarity Analysis

7.2.1 Phase Space Reconstruction

The first step in the analysis of a signal using nonlinear dynamics theory is the
reconstruction of the phase space trajectory of the signal. The idea of using time-
delay coordinates to reconstruct the trajectory in the phase space was proposed in
Packard et al. (1980). Later, Takens proved a theorem that is the firm basis of the
methods of delay (Takens 1981). The methods of delay usually are used to embed a
scalar time series u1, u2, : : : , uL into an m-dimensional space (Packard et al. 1980;
Takens 1981):

Exk D
�

uk; ukC	 ; : : : ; ukC.m�1/	

�

; (7.1)

where k D 1; 2; : : : ;L � .m � 1/ 	 , 	 is the delay time, and m is the embedding
dimension, m � 2. The difficulty of this method is the choices of the delay time, 	 ,
and the minimum embedding dimension, m.

Takens’ theorem assumes that the data is infinite and noise-free, in which case the
delay time, 	 , can be chosen almost arbitrarily. However, real data sets are always



7 Dynamical Similarity Analysis of EEG Recordings 113

finite and noisy; the choice of the delay time must therefore be considered carefully.
If 	 is too small, the reconstructed attractor is compressed along the identity line
and this is called redundancy; if 	 is too large, the attractor dynamics may become
disconnected causally, and this is called irrelevance (Kim et al. 1999). The most
common method for choosing a proper time delay is based on detection of the first
local minimum of the mutual information (MI) function (Fraser and Swinney 1986),
since the first minimum of the MI(	 ) portrays the time delay where the signal utC	

adds maximal information to the knowledge we have from ut (Fraser and Swinney
1986).

As for the choice of the embedding dimension, if m is too small, the geometry
is not unfolded entirely; if m is too large, it leads to excessive computations and
enhances the problem of contamination by rounding or instrumental error. As shown
in Grassberger et al. (1991), the dimensionality of various parts of nonstationary
signals may be different from each other. On the other hand, as indicated in Ding
et al. (1993), noise will tend to increase the required dimension. Hence, it is
important to choose a sufficiently large embedding dimension that contains the
relevant dynamics in the presence of noise. In this study, the mutual information
method (Fraser and Swinney 1986) and Cao’s method (Cao 1997) are employed to
estimate the delay time and the embedding dimension.

7.2.2 Correlation Sum

In nonlinear dynamical analysis, the correlation sum is the estimator of the
correlation integral (Grassberger and Procaccia 1983), which reflects the local
probability density in state space. It counts the number of pairs of vectors in state
space that are closer than a given hypersphere radius r:

C.r/ D
1

N2

N
X

iD1

N
X

jD1

‚
�

r �
�

�Exi � Exj

�

�

�

(7.2)

where N is the number of considered states Exi, r is a predefined cutoff distance, k�k
is the norm (e.g. the Euclidean norm), and ‚.�/ is a Heaviside function (‚.x/ D 1

for x > 0 and ‚.x/ D 0 for x � 0).

7.2.3 Nonlinear Similarity Index

The dynamical similarity index, proposed by Le Van Quyen et al. (1999), was
designed to measure the dynamical similarity between the two attractors X and Y.
The computation procedure for the dynamical similarity index is as follows:
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1. Given two time series x1, x2, : : : , xn and y1, y2, : : : , yl, the time-delay vectors Ex
and Ey first are reconstructed with embedding dimension m and the delay time 	 .

2. The correlation sum of state space x and y, respectively, is calculated:

C .x; x/ D 1

Nx
2

Nx
X

iD1

Nx
X

jD1

‚
�

r �
�

�Exi � Exj

�

�

�

C .y; y/ D 1

Ny
2

Ny
X

iD1

Ny
X

jD1

‚
�

r �
�

�Eyi � Eyj

�

�

�

(7.3)

where k�k denotes the Euclidian norm,‚ the Heaviside step function, and Nx and
Ny the number of vectors in the state space of the time series x and y, respectively.

3. Then, the cross-correlation sum between x and y is calculated (Schreiber and
Schmitz 1997):

C .x; y/ D
1

NxNy

Nx
X

iD1

Ny
X

jD1

‚
�

r �
�

�Exi � Eyj

�

�

�

(7.4)

where k�k denotes the Euclidian norm,‚ the Heaviside step function, and Nx and
Ny the number of vectors in the state space of the time series x and y, respectively.

4. To further improve the discriminatory power between two dynamics, the autocor-
relation sum C(x, x) and C(y, y) are used; the dynamical similarity index (DSI) is
written as:

DSI D C .x; y/ =
p

C .x; x/C .y; y/ (7.5)

where DSI ranges from 0 to 1 and provides a sensitive measure of the closeness
between two dynamics.

If the time series x and y have the same underlying dynamics, the value of DSI is
around one; otherwise, it goes down to zero. The details of the dynamical similarity
index computation can be found in Le Van Quyen et al. (1999). In calculating the
dynamical similarity index, a Heaviside function is used to calculate the correlation
integral in Eq. (7.2). This function leads to the following two problems (Sarkara and
Leong 2003):

1. The rigid boundary of the Heaviside function results in the absence of some
information. For instance, when the data point is just outside the boundary, i.e.
the Euclidian distance k�k is just greater than the radius value r, this data point is
considered to be outside the box.
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2. The contributions of all of the data points inside the hypersphere, i.e. the
Euclidian distances less than the radius value r, are treated equally.

These two problems make the calculation of the dynamical similarity index
brittle and the choice of the radius value difficult. The similarity index varies
dramatically with a slight change of the data point position and the length of time
series or with a slight change of the radius value. These problems can be avoided
if the Heaviside function in Eq. (7.2) is replaced by a Gaussian function; this is
because the Gaussian function is a soft boundary in calculating the correlation sum;
all of the data points are members of the Gaussian function. Any members can
be distinguished based on the distance between the points and the centre of the
Gaussian function. If the radius of the Gaussian function is changed, the contribution
of each point changes gracefully rather than abruptly as in the case of the crisp
boundary of the Heaviside function.

The new dynamical similarity index calculation is composed of two main steps.
The first step is to construct reference dynamics from the time series. The second
step is to compute the similarity index between the time series based on a Gaussian
function with a radius r. Instead of the Heaviside function in Eq. (7.4), it can be
written as:

CG .x; y/ D
1

NxNy

Nx
X

iD1

Ny
X

jD1

exp
�

�
�

�Exi � Eyj

�

�

2
=r2
�

: (7.6)

The function CG(x, y) measures the average similarity between any data points of
the test window and all of its neighbours. The new similarity index (NSI) also is
defined as:

NSI D CG .x; y/ =
p

CG .x; x/CG .y; y/ (7.7)

where NSI ranges from 0 to 1 and provides a sensitive measure of the closeness
between the two windows. The new similarity NSI possesses the characteristics of
DSI in Eq. (7.5) as well.

7.3 Simulation Analysis and Results

7.3.1 Neural Mass Model

A neural mass model known as the nonlinear lumped-parameter cerebral cortex
(LPCC) model (Lopes da Silva et al. 1974; Jansen and Rit 1995; Wendling et al.
2000) is used to test the performance of this new method in this study. The following
set of six differential equations governs the model:



116 G. Ouyang and X. Li

Table 7.1 Physiological interpretation and standard values of model parameters (Adapted from
Jansen and Rit 1995)

Parameter Interpretation Standard value

A Average excitatory synaptic gain 3.25 mV
B Average slow inhibitory synaptic gain 22 mV
a Dendritic average time constant in the

feedback excitatory loop
a D 100 s�1

b Dendritic average time constant in the slow
feedback inhibitory loop

b D 50 s�1

C1, C2 Average number of synaptic contacts in the
excitatory feedback loop

C1 D C, C2 D 0.8 C (with C D 135)

C3, C4 Average number of synaptic contacts in the
slow feedback inhibitory loop

C3 D C4 D 0.25 C

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

:
y0.t/ D

:
y3.t/;

:
y3.t/ D AaS .y1 � y2/ � 2ay3.t/ � a2y0.t/;
:
y1.t/ D

:
y4.t/;

:
y4.t/ D Aa fp.t/C C2S ŒC1y0.t/
g � 2ay4.t/ � a2y1.t/;
:
y2.t/ D

:
y5.t/;

:
y5.t/ D Bb fC4S ŒC3y0.t/
g � 2by5.t/ � b2y2.t/:

(7.8)

All of the values of the parameters in the model are set based on a physiological
basis, as listed in Table 7.1, more details of which can be found in Jansen and
Rit (1995) and Wendling et al. (2000). In the model, the intrapopulation behaviour
is influenced primarily by the excitatory neuron parameter, A, and the inhibitory
neuron parameter, B. The parameters A and B modulate the balance of excitation and
inhibition (he.t/ D u.t/Aate�at and hi.t/ D u.t/Bbte�bt). By altering the excitatory
and inhibitory parameters, the model can produce signals that strongly resemble
intracranial EEG recordings (Wendling et al. 2000).

In this study, the extrinsic input p(t) represents Gaussian white noise with
assigned mean value and variance (mean (p)D 90, std(p)D 30), which describes the
overall density of action potentials coming from other regions. For each simulation
described below, the differential equations are solved numerically using a fourth-
and fifth-order Runge–Kutta algorithm. Initial conditions are set to zero in all
simulations, and an integration step size of 5 ms is used.

7.3.2 Similarity Analysis of Simulated EEG Data

The determination of radius r is a difficult issue within this new method as well
as the dynamical similarity index. There is no well-founded criterion to choose the
radius (Thiel et al. 2002). Generally speaking, too small a value of r results in a low
similarity index in spite of the same underlying dynamics of the time series. On the
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contrary, too large a value results in a high similarity index when the time series
share the same or different underlying dynamics. The effect of the radius value, r,
on the similarity method is discussed here. In the example shown in Fig. 7.1a, the
excitatory and inhibitory parameters in the model are set as AD 3.25 and BD 22,
for which the model produces a signal similar to normal background activity when
other parameters are set to standard values (Wendling et al. 2000). We discarded the
first 2000 iterated times as transient and obtained the next 4000 data points (20 s) for
experiments. The similarity index (mD 5, 	 D 2) is calculated between the first 2000
points and last 2000 points from simulated EEG data over a series of r, as shown
in Fig. 7.1b (log–log plot). The values of r are set to the order of magnitude of the
standard deviation (� ) of the time series, which ranged from 0.2� to 2� . Given the
r values, the similarity indexes DSI and NSI have a progressive increase from 0.45
to 1 and from 0.61 to 1. Their mean and deviation is 0.88˙ 0.16 and 0.92˙ 0.10,
respectively. As shown in Fig. 7.1b, compared with the dynamical similarity index
DSI, the new similarity index NSI is not more sensitive to the selected values r. In
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Fig. 7.1 Log–log plot of similarity DSI and NSI vs. radius. When the radius r increased from 0.2�
to 2� , the similarity indexes DSI and NSI have a progressive increase from 0.45 to 1 and from 0.61
to 1, respectively
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Fig. 7.2 The effect of length of EEG segment on the similarity index

this study, the radius r is determined by the 1� of the time series, giving a stable
similarity index with simulated EEG segments of several seconds’ duration.

The similarity index also varies with the length of the EEG segment. We
investigated the sensitivity of the similarity indexes DSI and NSI on the length of
the EEG segment. For each simulation, we discarded the first 2000 iterated times
as transient and obtained the next 2 N data points for experiments. The similarity
index (mD 5, 	 D 2, rD 1) is calculated between the first N points and last N points
from simulated EEG data over a series of N, as shown in Fig. 7.2. It has been found
that the fluctuation of DSI is more significant than that of the NSI; their mean and
deviation is 0.987˙ 0.009 and 0.990˙ 0.006, respectively. The deviation of DSI is
higher than that of NSI. Thus, the new similarity index NSI is less sensitive to the
length of the EEG segment.

In the next experiment, the excitatory parameter, A, in the model is gradually
increased from 3.25 to 3.8 (Fig. 7.3a), as a result of which the model produces
signals that are similar to epileptic activity when parameter A approaches 3.8
(Fig. 7.3b). The simulated EEG signals are sampled at 200 Hz and then the
dissimilarity measure is applied to the long-term EEG signals using a moving-
window technique. The criterion of windows overlapped such that the time distance
between two consecutive windows is 1 s (200 data points). In this test, the first
recording of 10 s is selected as the reference. The similarity index between EEG
windows and the reference segment is determined for the moving window of a
length of 2000 points with an overlap of 1800 points on dimension mD 4, delay
	 D 2, and radius rD 1. Prior to 50 s, with the excitatory parameter AD 3.25, both
EEG windows and the reference segment are similar to the background activity
with the same underlying dynamics. Therefore, as shown in Fig. 7.3c, the value of
the similarity index, both DSI and NSI, is close to 1. However, the similarity index
started to increase with the gradual increase of the excitatory parameter, A. After
250 s, the brain activity is interrupted by regular 3-s spikes; the neural mass model
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Fig. 7.3 Simulation analysis using a neural mass model. (a) The excitatory parameter A of the
model. (b) The long-term EEG signals (top) and examples of zoomed EEG signals. (c), (d), (e),
and (f) The time course of the similarity index between EEG window and reference segment and
with additive Gaussian noise of signal-to-noise ratio (SNR) 6, 0, and �6
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produces signals that are similar to epileptic activity. The similarity index between
the EEG window and the reference segment is smaller than 0.6 after 250 s. It is
also evident that the values of DSI fluctuated more than those of NSI during the
seizure-free state.

To further test the performance of the similarity measure, independent realiza-
tions of white noise are added to the reference segment and each EEG window. The
signal-to-noise ratio (SNR) is set at 6, 0, and �6, respectively, in order to test the
performance of the similarity measure at different noise intensities. As shown in
Fig. 7.3d, e, and f, the observational noise caused an increase in the similarity index
during the seizure state. When the noise level is high (SNRD�6), the similarity
measures between the reference segment and EEG window during the epileptic
state are greater than those when the noise level SNRD 6. On the other hand, when
the noise is too strong (SNRD�6), as shown in Fig. 7.3f, the values of similarity
index DSI are not changed from the normal state to the seizure state. However,
the similarity index NSI still consistently decreases with respect to the excitatory
parameter, A. Therefore, the similarity index is sensitive to the changes of excitatory
parameter A, demonstrating that the proposed similarity measure successfully can
reveal the dynamic characteristics of simulated EEG in the different states.

7.3.3 Application to Epileptic EEG Data

Three data sets (denoted I, II, and III), each containing 110 single-channel EEG
epochs of 10 s duration, are analysed in this study. These EEG epochs were
obtained from 18 male genetic absence epilepsy rats from Strasbourg (GAERS)
of at least 13 weeks of age. At this stage of development, all GAERS display the
characteristic repeated spike-wave discharges (SWD) on the EEG during absence
seizures (Danober et al. 1998). All procedures were performed under a British
Home Office project licence [UK Animals (Scientific Procedures) Act, 1986] at
the University of Birmingham by Dr. Douglas Richards. Many of the details of the
experiments can be found in Chap. 6. The EEG data sets were preprocessed using a
band-pass filter at 0.5–22 Hz.

To investigate the dynamic characteristics of EEG data during different seizure
phases, EEG signals of GAERS were selected and dissected from seizure-free
(group I), pre-seizure (group II), and seizure (group III) intervals. One hundred and
ten EEG epochs were selected for each data set. Seizure onset is determined man-
ually by an experienced experimental scientist by observation of abrupt increases
in EEG amplitude coupled with simultaneous behavioural immobility, twitching of
the vibrissae and facial muscles, and diminished muscle tone in the neck (Danober
et al. 1998). As an example, three EEG recordings for the seizure-free, pre-seizure,
and seizure states are magnified and displayed in Fig. 7.4. It is shown that similar
amplitudes of EEG recordings in groups I and II range around some 4 mv, and EEG
recordings demonstrate a high-amplitude firing pattern during the seizure state.

http://dx.doi.org/10.1007/978-981-10-1822-0_6
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Fig. 7.4 Sample EEGs for (from top to bottom) groups I, II, and III

To calculate a similarity index from EEG data, we have to reconstruct a phase
space from the EEG data. The embedding dimension and delay time of the EEG
signals are determined using the mutual information measure and Cao’s method.
Given 	 and m, a standard method to reconstruct the underlying dynamics may be
carried out. Then, the delay time 	 and the embedding dimension m of entire EEG
epochs are determined by using the methods described above. The optimum values
of 	 range from 4 to 15 samples (mean and standard deviation is 8:84 ˙ 2:09) for
different EEG segments. Thus, the optimum delay time, 	 D 9, is selected for the
phase space reconstruction of the three EEG data sets. The optimum embedding
dimension m ranges from 6 to 13 (mean and standard deviation is 9:85˙ 1:09) for
different EEG segments. Therefore, mD 10 is suitable for the topologically proper
reconstruction of the EEG data.

Then, to investigate the sensitivity of the similarity index on the length of the
radius value r, two EEG segments I1 and I2 [as shown in Fig. 7.5a] during the
seizure-free state are selected to compute the similarity index. The similarity index
between S1 and S2 should be close to 1 because they are all from the seizure-free
stage, showing a great degree of similarity in the dynamic properties of the brain’s
electrical activity. We calculate the similarity indexes DSI and NSI (mD 10, 	 D 9),
respectively, between the two segments over a series of r, as shown in Fig. 7.5b
(log–log plot).

The values of r are set to the order of magnitude of the standard deviation (� )
of the time series, which ranges from 1� to 4� . Given the r values, the similarity
indexes DSI and NSI show a progressive increase from 0.03 to 1 and from 0.42 to
1. Their mean and standard deviation are 0.67˙ 0.35 and 0.90˙ 0.15, respectively.
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Fig. 7.5 Log–log plot of similarity DSI and NSI vs. radius for EEG data

As shown in Fig.7.5b, compared with the dynamical similarity index DSI, the new
similarity index NSI is not more sensitive to the selected values r. In this study, the
radius r is determined by the 2� of the EEG signals.

Next, to investigate the dynamic characteristics of EEG series during different
stages of an absence seizure, EEG series are dissected from the seizure-free state
(from 10 to 20 s prior to seizure onset), the pre-seizure state (from 0 to 10 s prior
to seizure onset), and the seizure state (the first 10 s of the absence seizure itself).
Thus, 3� 10 s EEG epochs are obtained for each of the 110 seizures.

To reveal the similarity measure of the EEG recordings during the different
phases of the seizure, the average similarity measure of a pair of EEG signals in
the same seizure states and across different seizure states is calculated. As listed
in Table 7.2, it can be seen that the average similarity measures between EEG
segments within the seizure-free state are close to 1. These results suggest that the
EEG segments within the seizure-free state share the same dynamic characteristics.
However, the similarity measures between EEG segments across different seizure
states are typically smaller than those within the seizure-free state. These results
support the view that there are changes in the dynamic characteristics for different
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Table 7.2 The similarity measure NSI of EEG data at the seizure-free, pre-seizure, and seizure
states (mean ˙ std)

Similarity Seizure-free Pre-seizure Seizure

Seizure-free 0.950 ˙ 0.018 0.929 ˙ 0.035 0.836 ˙ 0.087
Pre-seizure – 0.955 ˙ 0.030 0.806 ˙ 0.100
Seizure – – 0.812 ˙ 0.092

Table 7.3 The similarity measure DSI of EEG data at the seizure-free, pre-seizure, and seizure
states (mean ˙ std)

Similarity Seizure-free Pre-seizure Seizure

Seizure-free 0.707 ˙ 0.072 0.700 ˙ 0.107 0.458 ˙ 0.181
Pre-seizure – 0.841 ˙ 0.118 0.447 ˙ 0.227
Seizure – – 0.439 ˙ 0.192

absence seizure states (Stacey and Litt 2008). The results of similarity measure
DSI are listed in Table 7.3, which is similar to similarity measure NSI for change
detection in dynamic characteristics during different seizure states.

7.4 Conclusions

In this chapter, the improved dynamical similarity method, i.e. new similarity index
NSI, is proposed to analyse epileptic EEG recordings. Compared with the dynamical
similarity index proposed by Le Van Quyen et al. (1999), the new similarity index
has more advantages than the dynamical similarity index. The summary is as
follows: (i) the new similarity index NSI is insensitive to the selection of the radius
value r and the EEG signal length, and (ii) the new similarity index method is more
robust to noise. Furthermore, similarity measures between EEG segments during
the seizure-free state are higher than those during different states, indicating that the
changes in dynamic characteristics can be found during different absence seizure
states. An important next goal is to implement the new similarity index NSI to test
a large number of epileptic patients in order to analyse the efficacy of the change
detection in dynamic characteristics during different seizure states.
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Chapter 8
Entropy Measures in Neural Signals

Zhenhu Liang, Xuejing Duan, and Xiaoli Li

8.1 Introduction

The concept of entropy was first proposed as a thermodynamic principle by Clausius
in 1865. It described the distribution probability of molecules of gaseous or fluid
systems. In 1949, Claude E. Shannon introduced entropy to information theory to
describe the distribution of the signal component (Shannon and Weaver 1949). Since
then, entropy had been investigated to analyze neural signals.

So far, various entropy measures have been proposed and used to quantify neural
signals ranging from spike trains (Zhaohui and Xiaoli 2013), local field potentials
(LFP) (Hu and Liang 2013) to electroencephalogram (EEG) (Zandi et al. 2013).
Especially, for the noninvasive and high temporal resolution, EEG is widely used in
clinical neurological disease diagnosis and brain-state monitoring, such as epilepsy
(Zandi et al. 2009), Alzheimer’s disease (Cao et al. 2015), depth of anesthesia (DoA)
measures (Liang et al. 2015), cognition analysis (Song and Zhang 2016), and brain–
computer interface (Zhang et al. 2015). In this chapter, we focus on the entropy
measures in DoA monitoring.
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In the operating room, it is important to guarantee successful surgery and ensure
patient safety and comfort. How to intelligently monitor the anesthetic drug effect
on the brain is an important clinical concern for the anesthesiologists (Monk et al.
2005). The central nervous system (CNS) is the target of anesthetic drugs and
the EEG. EEG has been widely used as a surrogate parameter to quantify the
anesthetic drug effect (Rampil 1998; Jameson and Sloan 2006; Bruhn et al. 2006).
However, only limited information can be gleaned from the EEG signal purely
by waveform observation. With the development of signal processing methods,
our understanding of EEG has greatly improved. Various EEG signal processing
methods have been applied to analyze, identify or detect mental disorder, and
investigate consciousness mechanisms (Rampil 1998; Okogbaa et al. 1994; Burton
and zilberg 2002; Natarajan et al. 2004; Abásolo et al. 2006).

As yet, numerous entropy algorithms have been proposed and used to quantify
depth of anesthesia. The number of entropy-related articles retrieved from PubMed
comes to 244, covering the Shannon entropy (ShEn) (Yoon et al. 2011; Bruhn et al.
2001), spectral entropy (SpEn) (which includes response entropy (RE) and state
entropy (SE)) (Klockars et al. 2012; Viertiö-Oja et al. 2004), approximate entropy
(ApEn) (Bruhn et al. 2000), permutation entropy (PE) (Li et al. 2008a, 2012),
wavelet entropy (WE) (Särkelä et al. 2007), and Hilbert–Huang spectral entropy
(HHSE) (Li et al. 2008b). In addition to these mentioned entropies, sample entropy
(SampEn) and fuzzy entropy (FuzzyEn) were also considered here.

Firstly, the entropy methods based on the frequency domain are useful for
estimating anesthetic drug effect. SpEn was the first frequency–domain method
successfully applied and commercialized into the M-entropy module (Viertiö-Oja
et al. 2004). In this system, two parameters are calculated: response entropy (RE)
and state entropy (SE). SE primarily includes the spectrum of EEG signals from
0.8 Hz to 32 Hz, whereas RE includes electromyography (EMG) activity, ie, from
0.8 Hz to 47 Hz (Viertiö-Oja et al. 2004). It can be seen that the window of
spectral entropy is variable, but not self-adaptive. Conversely, the window in the
wavelet transform (WT) is adaptively variable through an artificially given basis
function. This has been suggested as a useful tool for presenting EEG signals in
different time and frequency scales (Zoughi et al. 2012). In particular, the entropy
of a signal in the wavelet domain (ie, WE) indicates signal variation at each
frequency scale (Rosso et al. 2001). However, in practice, the wavelet transform can
only deal with linear, nonstationary signals. To overcome this shortcoming, Huang
et al. in 1998 proposed empirical mode decomposition (EMD), in conjunction with
Hilbert transform (Hilbert–Huang transform), as a method to process nonlinear and
nonstationary signals (Huang et al. 1998). This method can adaptively generate the
basic function and isn’t restrained by the Heisenberg uncertainty principle, making
it suitable for analysis of abruptly changing signals. This method has been widely
used to extract features of EEG recordings (Liang et al. 2000; Rilling et al. 2003; Li
2006; Shalbaf et al. 2012). In particular, Li et al. developed Hilbert–Huang spectral
entropy (HHSE) and successfully applied it to anesthetic EEG signals (Li et al.
2008b).
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Then, as we know, the dynamics of the EEG show some nonlinear and chaotic
characteristics in the time domain. So, many entropy methods based on time domain
and phase space have also been applied to analyze EEG signals. ShEn, as a basic
entropy method, has been used for signal analysis (Shannon and Weaver 1949).
It measured the predictability of later amplitude values of the signal based on the
probability distribution of prior amplitude values and was proved to be a simple
and robust electroencephalographic measure of anesthetic drug effect (Bruhn et al.
2001). But the ShEn value is variable for each individual, so it is not reliable for
clinical application. In 1991, the ApEn algorithm, derived from Kolmogorov–Sinai
entropy, was published (Pincus 1991). It was also based on the information of
amplitude values and quantified the predictability of subsequent amplitude values
of the signal. It has been widely used in biomedical signals, including the EEG
signals during anesthesia. The existing study showed that it correlated well with
the concentration of desflurane (Bruhn et al. 2000). However, ApEn lacked relative
consistency and was highly dependent on data length. To overcome this limitation,
Richman and Moorman proposed another statistics named SampEn in 2000, which
removed self-matching and relieved the data length bias (Richman and Moorman
2000). In recent years, it has been used for analyzing EEG signals (Montirosso et al.
2010; Yoo et al. 2012). FuzzyEn was proposed by Chen et al. (Chen et al. 2007). It
is based on the fuzzy membership functions to define the vectors’ similarity, using
the soft and continuous boundaries of fuzzy functions to ensure the continuity and
validity of FuzzyEn’s definition (Chen et al. 2009). ApEn, SampEn, and FuzzyEn
are all based on phase space reconstruction, making them computationally complex.
In 2002, Bandt and Pompe introduced the interesting concept of PE which was
based on symbolic dynamics and was a complex measure for time series analysis
(Bandt and Pompe 2002). Because of its simple concept and fast computation, it has
been widely used in EEG signal analysis (Li et al. 2008a; Cao et al. 2004; Li et al.
2007). Furthermore, its derivatives, multi-scale permutation entropy (MPE) (Li et al.
2010) and composite PE index (CPEI), (Olofsen et al. 2008) have been successfully
applied to analyze EEG signals during anesthesia.

We noticed that the definitions of all the above entropies are based on the
Shannon information theory, which belonged to a short-range or extensive concept.
However, the physical systems especially the biomedical systems are often char-
acterized by either long-range interactions, long-term memories, or multifractality
(Zunino et al. 2008). To describe these characters, two generalized forms of entropy
were proposed: Renyi entropy (Renyi 1970) and Tsallis entropy (qentropy) (Tsallis
et al. 1998). The Tsallis entropy has a parameter q for non-extensity. If q > 1,
the entropy is more sensitive to events that occur often; if 0 < q < 1, it is more
sensitive to the events that occur seldom (Maszczyk et al. 2008). In the limit of
q ! 1, it coincides with the Shannon entropy. These generalized entropies can
provide additional information about the importance of specific events, such as
outliers or rare events. The two classes of entropies and their combinations with
current signal processing methods have been applied to EEG analysis (Bezerianos
et al. 2003; Tong et al. 2003; Inuso et al. 2007) and proved to be advantageous than
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the Shannon versions (Zunino et al. 2008; Arefian et al. 2009). To make the research
more instructive, we believe it is useful to investigate these non-extensive entropy
measures along with those extensive Shannon entropies in DoA monitoring.

In this study, we involved the Tsallis wavelet entropy (TWE) and Renyi wavelet
entropy (RWE) proposed by Rosso et al. (Rosso et al. 2003, 2006), the Tsallis
permutation entropy (TPE) proposed by Zunion et al. (Zunino et al. 2008), and a
new Renyi permutation entropy (RPE).

For illustrative purposes, we divided the entropies into two families:

1. Entropies based on the time–frequency domain: RE, SE, WE, and HHSE
2. Entropies based on the time domain: ApEn, SampEn, FuzzyEn, and PE

Additionally, many attempts have been made to develop multi-scale entropy
(MSE) algorithms for describing the multi-scale properties of neural populations
in recent years (Costa et al. 2002, 2005; Chen and Yang 2012; Aziz et al. 2005),
in both normal (He and et al. 2010; Bell et al. 2012; Nunez et al. 2001) and
diseased states (Escudero et al. 2006; Ouyang et al. 2009; Labate et al. 2013). For
the decomposition methods, Costa et al. proposed MSE based on the consecutive
coarse-graining (CG) procedure combined with Zhang’s and Pincus’s approaches
(approximate entropy) to assess the complexity of time series (Costa et al. 2002;
Pincus 1991). This method has been widely used in analyzing complex physiologic
time series (Costa et al. 2002, 2005; Thuraisingham and Gottwald 2006). Based on
this method, Li et al. proposed multi-scale permutation entropy to track the effects
of sevoflurane anesthesia on the central nervous system. The results showed that
single-scale permutation entropy was blind to subtle transitions between light and
deep anesthesia, while the MPE index tracked these changes accurately (Li et al.
2010). However, this coarse-graining process reduced the length of a time series
as the scale increased. When applied to a short-term time series, it may yield an
imprecise estimation of entropy (Wu et al. 2013). To overcome this shortcoming,
Wu proposed the moving-average (MA) procedure to achieve the same length at
each scale (Wu et al. 2013) and evaluated the effectiveness of CG and MA by the
synthetic noise signal analysis.

For multi-scale entropy measures, the Shannon entropy (ShEn) (Shannon 2001),
sample entropy (SampEn) (Richman and Moorman 2000), and permutation entropy
(PE) (Bandt and Pompe 2002) are usually used for multi-scale analysis. ShEn
is a typical measure which quantifies the distribution probability of time or
frequency domain. Compared with approximate entropy, SampEn removes self-
matching and is less dependent on data length (Richman and Moorman 2000). Many
MSE measures are based on it. In our previous work, multi-scale sample entropy
(MSSE) measures based on the CG procedure were proposed for DoA measures
(Wang et al. 2014). Further, multi-scale permutation entropy (MSPE) based on the
coarse-graining procedure has been proposed and used to analyze the dynamics of
physiological time series in many studies (Li et al. 2010; Aziz et al. 2005; Morabito
et al. 2012; Takahashi et al. 2010). In this chapter, we only considered the MSE
based on SampEn and PE.
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This chapter is organized as follows. Section 2 describes all single-scale entropy
measures, and Sect. 3 gives the multi-scale entropy measures of PE and SampEn
based on CG and MA methods. In Sect. 4, the details of EEG data set, the
pharmacokinetic/pharmacodynamic modeling, and the results of the application of
all entropy measures to the real EEG are presented. Finally, the conclusion is given
in Sect. 5. The parameter selection of some entropy measures was discussed in
Appendix.

8.2 Entropy Measures

8.2.1 Response Entropy and State Entropy

The probability density function (PDF) of the signal power spectrum in the
frequency domain is quantified. The details of the SpEn algorithm can be found
in (Rezek and Roberts 1998; Inouye et al. 1991), which is as the same as applying
in the M-entropy module (Viertiö-Oja et al. 2004). SpEn contains RE and the SE,
which is computed as follows:

RE D
Hsp0:8�47

log .N0:8�47/
(8.1)

SE D
Hsp0:8�32

log .N0:8�47/
(8.2)

We described the degree of skewness in the frequency distribution by SpEn. For
example, in the normalized case, the SpEn of a pure sine wave with a single spectral
peak is 0, while that of white noise is 1.

8.2.2 Wavelet Entropy (SWE, TWE, and RWE)

WE can differentiate specific brain states under spontaneous or stimulus-related
conditions and recognize the time localizations of a dynamic process. To calculate
wavelet entropy, wavelet energy Ej of a signal is determined at each scale j as
follows:

Ej D
XLj

kD1
d.k/2 (8.3)

where k and Lj are the summation index and the number of coefficients at each scale
j within a given epoch, respectively. The total energy over all scales is obtained by

Etotal D
X

j
Ej D

X

j

XLj

kD1
dj.k/

2 (8.4)
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Then the wavelet energy is divided by total energy to obtain the relative wavelet
energy at each scalej:

pj D
Ej

Etotal
D

Ej
X

j
Ej

D

XLj

kD1
d.k/2

X

j

XLj

kD1
dj.k/

2
(8.5)

SWE is calculated from the Shannon entropy of pj distribution between scales as
follows:

S.s/ D �
X

j
pj log pj (8.6)

The details of the algorithm used in this study can be seen in (Särkelä et al. 2007).
And TWE is defined as

S.T/q D
1

q � 1

X

j

�

pj �
�

pj
�q

(8.7)

where q is a non-extensity parameter.
Based on the definition of the Renyi entropy (Renyi 1970), RWE is defined as

(Rosso et al. 2006)

S.R/a D
1

1 � a
log

h
X

j

�

pj
�a
i

(8.8)

For S(S)
q , the normalized SWE is

SWE D S.s/= log NJ (8.9)

where NJ is the number of wavelet resolution levels.

And S(T)
q is normalized by dividing

h

1 � N1�q
J

i

= .q � 1/, defined by (Rosso et al.

2003)

TWE D
s.T/q

h

1 � N1�q
J

i

= .q � 1/
(8.10)

Further, the normalized S(R)
a is defined as (Maszczyk et al. 2008)

RWE D
s.R/a

log NJ
(8.11)

The values of the three WE measures depended on the wavelet basis function, the
number of decomposed layers (n), and the data length (N). Furthermore, TWE and
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RWE are related to the parameters q and a, respectively. Among these parameters,
the wavelet basis function is the most important. Because of the lack of a fixed
criterion, it is very difficult to select an appropriate wavelet basis function in
practical applications, and many studies select it based on experiments. The details
of the selection process in this study can be found in Appendix A.

8.2.3 Hilbert–Huang Spectral Entropy

HHSE is dependent on Hilbert–Huang transform, which applies the Shannon
entropy concept to the Hilbert–Huang spectrum. The detailed algorithm is shown
in (Li et al. 2008b). For a given nonstationary signal x(t), the EMD method decom-
poses the signal into a series of intrinsic mode functions (IMFs) Cn(1, 2, : : : , N),
where N is the number of IMFs. The signal x(t) can be written by

x.t/ D
n�1
X

iD1

imf .t/i C rn.t/ (8.12)

Applying the Hilbert transform to the IMF components

Z.t/ D imf .t/C iH Œimf .t/
 D a.t/e
i

Z

!.t/dt
(8.13)

in which a.t/ D
p

imf 2.t/C H2 Œimf .t/
, !.t/ D d
dt Œarctan .H Œimf .t/
 =imf .t//
,

and

h .!/ D
Z

H .!; t/ dt (8.14)

where !(t) and a(t) are the amplitude of IMF and the instantaneous frequency,
respectively.

In order to simplify the representation, the Hilbert–Huang spectrum is indicated
as a function of frequency (f ) instead of angular frequency (!). The marginal
spectrum is normalized by

bh.f / D h.f /=
X

h.f / (8.15)

Next, the Shannon entropy concept is applied to the Hilbert–Huang spectrum, and
Hilbert–Huang spectral entropy is obtained by

HHSE D �
X

f

bh.f / log
�

bh.f /
�

(8.16)
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where HHSE represents Hilbert–Huang spectral entropy. The frequency resolution
and data length (N) can affect the HHSE values. For precise computation of the
frequency resolution, we choose the frequency resolution as 0.1 Hz. N directly
influences the EMD. Generally, the boundary effect may be induced if N is too
large or too small, which can contaminate the data and distort the power spectrum.
The selection of N used in this study is given in Appendix B.

8.2.4 Approximate Entropy

ApEn is derived from Kolmogorov entropy which was introduced by Pincus in 1991
(Pincus 1991). ApEn can be used to analyze a finite length signal and belongs to
nonlinear dynamics describing the unpredictability or randomness of a signal. Its
computation involves embedding the signal into phase space and estimating the rate
of increment in the number of phase space patterns within a predefined value r—
when the embedding dimension of phase space is increasing from m to mC 1.

For a time series x.i/ .1 � i � N/ of finite length N, reconstitution of the N�mC1
vectors Xm(i) follows the form:

Xm.i/ D fx.i/; x .iC 1/ ; : : : x .iC m � 1/g ; i D 1; 2; : : :N � mC 1 (8.17)

where m is embedding dimension.
Let Cm

i (r) be the probability that any vector Xm(j) is within r of Xm(i), defined as

Cm
i .r/ D

1

N � mC 1

N�mC1
X

jD1

‚
�

dm
ij � r

�

I i; j D 1; 2; : : :N � mC 1 (8.18)

where d is the distance between the vectors Xm(i) and Xm(j), defined as

dm
ij D d

�

Xm
i ;X

m
j



D max .jx .iC k/ � x .jC k/j/ ; k D 0; 1; : : : ;m (8.19)

and ‚ is the Heaviside function.
After that, define a parameter ˚m(r):

ˆm.r/ D .N � mC 1/�1
N�mC1
X

iD1

ln Cm
i .r/ (8.20)

Next, when the dimension increases to mC 1, repeat the above process.

ˆmC1.r/ D .N � m/�1
N�m
X

iD1

ln CmC1
i .r/ (8.21)
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Finally, approximate entropy is defined by

ApEn .m; r;N/ D ˆm.r/ �ˆmC1.r/ (8.22)

We showed the detailed algorithm in (Bruhn et al. 2000). The data length (N),
tolerance (r), and embedding dimension (m) will influence the ApEn index.
According to (Pincus 1991) and (Bruhn et al. 2000), N is recommended to be 1000,
rD 0.1–0.25 of the standard deviation of the signal and mD 2 – 3. We described the
selection process of these parameters in Appendix C.

8.2.5 Sample Entropy

The SampEn that Richman and Moorman proposed (Richman and Moorman 2000)
is based on ApEn but differs from it in three ways:

1. SampEn removes self-matches.
2. In order to avoid ln 0 caused by eliminating self-matches, SampEn computes

additional operation of the total number of template well-matches prior to
computing the logarithmic operation.

3. For an equal number of patterns for the embedding dimensions m and mC 1, the
time series reconstitution in SampEn has N � m rows instead of N � m C 1 in
ApEn with an embedding dimension of m.

The first step is the same as ApEn. When the embedding dimension is m, the total
number of template matches is

Bm.r/ D .N � m/�1
N�m
X

iD1

Cm
i .r/ (8.23)

Similarly, when the embedding dimension is m C 1, the total number of template
matches is

Am.r/ D .N � m/�1
N�m
X

iD1

CmC1
i .r/ (8.24)

Finally, the SampEn of the time series is estimated by:

SampEn .r;m;N/ D � ln
Am.r/

Bm.r/
(8.25)

SampEn is based on ApEn, so its parameters and selection procedures are the
same as ApEn (see Appendix D).
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8.2.6 Fuzzy Entropy

Zadeh introduced the concept of “fuzzy set” (Zadeh 1965) in 1965. It provided a
mechanism for measuring the degree to which a pattern belonged to a given class,
by introducing the concept of “membership degree” with a fuzzy function uC(x).
The nearer the value of uC(x) to unity, the higher the membership grade of x in the
set C. Inspired by this, Chen et al. (Chen et al. 2007). developed FuzzyEn based
on SampEn. FuzzyEn uses the fuzzy membership function u(dm

ij , r) to obtain the
similarity between Xm

i and Xm
j instead of the Heaviside function.

FuzzyEn is based on SampEn, so the parameters and selection procedures n of
the two kinds of entropies are the same (see Appendix E).

8.2.7 Permutation Entropy

There are three types of PE measures involved in this study. PE is an ordinal
analysis method, in which a given time series is divided into a series of ordinal
patterns for describing the order relations between the present and a fixed number
of equidistant past values (Bandt 2005). The advantages of this method are its
simplicity, robustness, and low computational complexity (Li et al. 2007). For
an N-point-normalized time series fx.i/ W 1 � i � Ng, firstly the time series is
reconstructed:

Xi D fx.i/; x .iC 	/ ; : : : x .iC .m � 1/ 	/g ; i D 1; 2; : : : ;N � .m � 1/ 	 (8.26)

where 	 is time delay and m is embedding dimension.
Then, rearrange Xi in an increasing order:

fx .iC .j1 � 1/ 	/ � x .iC .j2 � 1/ 	/ � � � � � x .iC .jm � 1/ 	/g (8.27)

There are m ! permutations for m dimensions. Each vector Xi can be mapped to one
of the m ! permutations.

Next, the probability of the j th permutation occurring pj can be defined as

pj D
nj

XmŠ

jD1
nj

(8.28)

where nj is the number of times the j th permutation occurs.
Based on the probability of the j th permutation pj, we define SPE, TPE, and RPE

as follows.
SPE can be viewed as the Shannon entropy associated with the probability

distribution pj:
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S.s/1 D �
XmŠ

jD1
pj log pj (8.29)

And the normalized SPE is

SPEn D
S.s/1

S.s/1max

D

XmŠ

jD1
pj log pj

log .mŠ/
(8.30)

Based on the definition of the Tsallis entropy, Zunino et al. proposed the normalized
TPE and defined it as (Zunino et al. 2008)

TPE D

XmŠ

jD1

�

pj � pq
j

�

1 � .mŠ/1�q (8.31)

Furthermore, the normalized RPE measure based on the Renyi entropy and permu-
tation probability distribution pj is

RPEn D
log

XmŠ

jD1
pa

j

.1 � a/ ln mŠ
(8.32)

In (Li et al. 2008a, 2010, 2012), SPE was used to evaluate the effect of sevoflurane
and isoflurane anesthesia on the brain. In this study, the m D 6 and 	 D 1 are
selected for sevoflurane anesthesia as proposed in (Li et al. 2008a). The SPE’s
parameters for isoflurane anesthesia are the same as those used by Li et al. (Li
et al. 2012). TPE and RPE are first used in DoA measure; therefore, selection of the
appropriate parameters of TPE and RPE is based on the experiments. The details of
the selection process were shown in Appendix F.

8.3 Multi-Scale Entropy Measures

8.3.1 Multi-Scale Decomposition Procedures

8.3.1.1 Coarse Graining

Given a one-dimensional discrete time series fx1, x2, : : : xi, : : : , xNg, construct a set
of consecutive coarse-grained time series fy(s)g, where s is the scale factor. As shown
in Fig. 8.1a, each coarse-grained time series is derived according to the following
equation:

y.s/j D
1

s

js
X

iD.j�1/sC1

xi; 1 � j � N=s (8.33)
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Fig. 8.1 Illustrations of multi-scale decomposition procedures: (a) Coarse graining for scale D 2.
The window size is the scale level s. (b) Moving average for scale D 2. The window size is the
scale level s, and overlap size is s � 1

The length of each coarse-grained time series equals to the length of the original
time series N divided by s.

8.3.1.2 Moving Average

Similar to the coarse-graining procedure, each element of a moving average is
defined as follows (Wu et al. 2013):

z.s/j D
1

s

jCs�1
X

iDj

xi; 1 � j � N � sC 1 (8.34)

The details of the moving-average procedure are shown in Fig. 8.1b. Compared to
the CG procedure, the moving average does not largely reduce the length of a time
series. The length of a moving-average time series is N � sC 1. And this makes the
moving-average procedure more reliable than CG for short-term time series analysis
(Wu et al. 2013).

8.3.2 Multi-Scale Permutation Entropy Based on CG and MA

Six multi-scale permutation entropy (MSPE) measures, namely: SPE, RPE, and
TPE based on CG procedure (CG-SPE, CG-RPE, CG-TPE, respectively) and
SPE, RPE, and TPE based on MA procedure (MA-SPE, MA-RPE, MA-TPE,
respectively), are formed by means of combining the three PE measures with two
multi-scale decomposition methods.
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In terms of the multi-scale decomposition method, we choose five scales (from
1 to 5). In regard to the entropy measurements, the calculation depends on the length
of epoch N and the embedding dimension m, and there is a necessary condition
mŠ < N. According to our previous study (Liang et al. 2015; Li et al. 2008a), we
choose m D 6, so the length of the chosen epoch needs to be bigger than 720 for
scale D 5. The length of moving-average time series just has a small change and
makes no difference to the epoch length selection. While the length of each coarse-
grained time series is N/5, to fulfill the requirement, we can either extend N or
decrease m to the second-best option m D 3 (Li et al. 2010).

In this study, the parameter selection criteria are based on the performance in
distinguishing awake and anesthetized states. At the sampling rate of 100 Hz, we
designed two parameter groups N D 1000, m D 3 and N D 4000, m D 6 for
comparison, and other parameters are set as 	 D 1, a D 2, and q D 0:9 for RPE and
TPE (Liang et al. 2015).

Figure 8.2 shows the changes of CG-SPE, CG-RPE, and CG-TPE over the
five scales based on two sets of parameters in different states. All the indices
monotonously decreased in anesthesia phase. It is obvious that in the N D 4000,
m D 6 part, the difference between two states is more significant, and this indicates
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Fig. 8.2 The changes of CG-based MSPE measures with different parameters in different
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that the second serials of parameters have better ability in distinguishing awake and
anesthetized states. Therefore, N D 4000, m D 6; 	 D 1; a D 2; and q D 0:9 were
selected for MSPE based on CG and N D 1000, m D 6; 	 D 1; a D 2; and q D 0:9
for MSPE based on MA.

Similar to the study in (Li et al. 2010), MSPE is calculated as follows:

MSPE D
1

s

s
X

iD1

PE jscale i (8.35)

where PE PEjscale i should be SPE, TPE, or RPE at scale i. We only considered
s D 1; 2 and 3.

8.3.3 Multi-Scale Sample Entropy Based on CG (CG-SampEn)
and MA (MA-SampEn)

Similar to MSPE, the composed multi-scale sample entropy (MSSE) is described as

MSSE D
1

s

s
X

iD1

SampEn jscale i (8.36)

where scales 1, 2, and 3 are considered in this work. Base on the above descriptions,
we set the parameters m D 2, and r D 0.2*SD for CG-SampEn and MA-SampEn.
The condition of scale 1 is similar as the single SampEn mentioned above.

8.4 Characterization and Comparison of Different Methods

8.4.1 EEG Data Set

In this study, the data set we used was from a previous study (McKay et al. 2006),
in which 19 patients aged 18–63 years were recruited from Waikato Hospital,
Hamilton, New Zealand. The subjects were scheduled for elective gynecologic,
general, or orthopedic surgery. All patients were rested for at least 6 h before
anesthesia and received no premedication. Patients were American Society of
Anesthesiologists physical status I or II and signed written informed consent
following approval by the Waikato Hospital ethics committee.

Before application of Ag/AgCl electrodes, the skin was carefully cleaned with
an alcohol swab to ensure electrode-skin impedance to be less than 7.5 k�. Three
electrodes were used to record the EEG signals between the forehead and temple.
RE and SE were measured every 5 s with a plug-in M-entropy S/5 module (Datex–
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Ohmeda). The sevoflurane concentration was measured at the mouth at 100/s.
All data were recorded and stored by a laptop computer. Off-line analysis was
performed using the MATLAB (version 8, MathWorks, Inc.) software.

8.4.2 Pharmacokinetic/Pharmacodynamic Modeling

To derive the relationship between the effect-site anesthetic drug concentration and
the measured EEG index, PK/PD modeling was used. These methods have been
successfully used to evaluate the proposed EEG indices (Li et al. 2008a; Olofsen
et al. 2008). It describes the relationship between drug dose and its effect through
two successive physiological processes (McKay et al. 2006). The pharmacokinetic
(PK) side of the model describes the drug concentration changes in the blood
over time, while the pharmacodynamic (PD) part shows the relation between the
concentration of the drug at effect site and its measured effect. The simplest effect-
site model is a first-order model, defined as

dCeff =dt D keo
�

Cet � Ceff
�

(8.37)

where Ceff denotes the effect-site concentration, keo is the first-order rate constant
for efflux from the effect compartment, and Cet is the end-tidal concentration.

In addition, a nonlinear inhibitory sigmoid Emax model was used to describe the
relationship between the estimated Ceff and the measured EEG indices:

Effect D Emax � .Emax � Emin/ �
Ceff

�

EC�
50 C Ceff

�
(8.38)

where Effect is the processed EEG measure, Emax and Emin, respectively, are the
maximum and minimum Effect for each individual, EC50 is the drug concentration
that causes 50 % of the maximum Effect, and � is the slope of the concentration–
response relationship.

The coefficient of determination R2 is calculated by

R2 D 1 �

n
X

iD1

.yi �byi/
2

n
X

iD1

.yi � y/2
(8.39)

where yi is the measured Effect for a given time and ŷi is the corresponding modeled
Effect.

The Ceff is estimated by iteratively running the above model with a series of keo

values, with the optimal keo yielding the greatest R2 for each patient.
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8.4.3 Statistical Analysis

To further evaluate the correlation between the measured EEG index and the
underlying anesthetic drug effect, prediction probability (Pk) statistics were applied,
as described in (Smith et al. 1996). Given two random data points with different Ceff ,
Pk described the probability of the measured EEG index correctly predicted the Ceff

of the two points. Its definition is

Pk D
Pc C Ptx=2

Pc C Pd C Ptx
(8.40)

where Pc, Pd, and Ptx separated the probability of two data points drawn at random,
independently and with replacement from the population are a concordance, a
discordance, or an x-only tie. Pk D 1 meant that the EEG index was perfectly
concordant with Ceff ; whereas Pk D 0:5 meant the EEG index was obtained by
chance. When the monotonic relation between the drug concentration and the EEG
index was negative, the resultant Pk value was replaced by 1- Pk.

In addition, the Kolmogorov–Smirnov test was used to determine whether the
data sets were normally distributed. To assess the index stability during the awake
state and the sensitivity to the induction process, the relative coefficient of variation
(CV) (Li et al. 2008a) was used.

8.4.4 All the Entropy Measure Comparison Without
Multi-Scale Procedures

First we applied these entropy measures to the EEG data recorded from sevoflurane
anesthesia. Figure 8.3a showed a preprocessed EEG recording and the derivative
from the EEG signal during the whole sevoflurane induction process: from awake
to induction, then to deep anesthesia, and finally recovery. With the deepening of
anesthesia, the mean amplitude of the EEG gradually increased, then decreased
during recovery. The concurrent end-tidal sevoflurane concentration is represented
by the black line in Fig. 8.3b. It can be regarded as the drug concentration
in the blood, derived from the recorded sevoflurane concentration at the mouth
(represented by gray line). The detailed spectrogram is shown in Fig. 8.3c. The
changes in RE, SE, SWE, TWE, RWE, HHSE, ApEn, SampEn, FuzzyEn, SPE,
TPE, and RPE of the EEG recording were successively given in Fig. 8.3d–k. As can
be seen, all the entropy indices generally followed the changes in EEG pattern as
the drug concentration changed.

Loss of consciousness (LoC) is the most important clinical time point during
anesthesia. We investigated the ability of these entropies in tracking LoC. Figure 8.4
showed the changes in each index around LoC (from LoC-30s to LoCC 30s) for
all subjects during sevoflurane anesthesia. For these plots, the index values were
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Fig. 8.4 Entropy analysis around the time of LoC for subject undergoing sevoflurane anesthesia
(n D 19). (a–l) The normalized indices around LoC (from LoC � 30 s to LoC C 30 s) for all
subjects. The red plus sign denotes the point of LoC. (m) Statistical analysis of the absolute slope of
the linear-fitted polynomials versus time for studied indices. Bar height indicates the mean value,
and the lower and upper lines are the 95 % confidence interval of each index

normalized to range from 0 to 1. It can be seen from Fig. 8.4a–l that SWE decreased
most rapidly, followed by RWE. Thus, SWE appeared to be the most sensitive to
LoC. To verify this, we calculated the absolute slope values (mean˙SD) of the
linear-fitted polynomials versus time for these indices, as shown in Fig. 8.4m. As
can be seen, the absolute slope value for SWE (0.43˙ 0.23) is the largest.

To further compare the ability of the indices to distinguish different anesthesia
states, the sevoflurane anesthesia procedure was divided to describe four states,
ie, awake, induction, deep anesthesia, and recovery. For each index, a box plot is
given in Fig. 8.5. The data was not normally distributed, so the statistics of the 19
patients undergoing sevoflurane anesthesia were expressed as median (min–max), as
shown in Table 8.1. All the entropy indices monotonically decreased as anesthesia
deepened, then increased during recovery. These changes were consistent with the
results in Fig. 8.3. The overlap of the three types of PE (SPE, TPE, and RPE) values
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and RPE at awake (I), induction (II), deep anesthesia (III), and recovery (IV) states

Table 8.1 The statistics of the studied indices at different anestehsia states (median (min–max))

Awake Induction Deep anesthesia RoC

RE 0.87 (0.65–0.90) 0.58 (0.35–0.89) 0.59 (0.37–0.68) 0.66 (0.34–0.79)
SE 0.77 (0.65–0.79) 0.61 (0.37–0.79) 0.63 (0.39–0.73) 0.71 (0.37–0.79)
SWE 0.86 (0.37–0.96) 0.40 (0.10–0.83) 0.36 (0.07–0.66) 0.68 (0.32–0.83)
TWE 0.93 (0.71–0.98) 0.61 (0.37–0.91) 0.57 (0.32–0.71) 0.76 (0.55–0.85)
RWE 0.88 (0.52–0.96) 0.46 (0.16–0.83) 0.43 (0.12–0.62) 0.71 (0.39–0.82)
HHSE 5.63 (4.43–6.26) 4.43 (2.93–6.01) 4.40 (3.02–5.02) 4.81 (3.76–6.03)
ApEn 1.44 (0.63–1.59) 0.95 (0.54–1.35) 1.08 (0.47–1.50) 1.26 (0.63–1.60)
SampEn 1.88 (0.52–2.65) 1.08 (0.15–2.37) 0.97 (0.01–1.63) 1.44 (0.13–2.16)
FuzzyEn 3.28 (1.49–4.33) 1.80 (0.81–4.14) 1.70 (1.01–3.72) 2.22 (1.13–3.44)
SPE 0.81 (0.79–0.83) 0.64 (0.49–0.82) 0.58 (0.46–0.82) 0.65 (0.56–0.75)
TPE 0.91 (0.87–0.92) 0.74 (0.49–0.91) 0.57 (0.44–0.69) 0.62 (0.53–0.80)
RPE 0.91 (0.87–0.92) 0.67 (0.33–0.91) 0.46 (0.29–0.62) 0.60 (0.47–0.79)

RE response entropy in the M-entropy module, SE state entropy, SWE Shannon wavelet entropy,
TWE Tsallis wavelet entropy, RWE Renyi wavelet entropy, HHSE Hilbert–Huang spectral entropy,
ApEn approximate entropy, SampEn sample entropy, FuzzyEn fuzzy entropy, SPE Shannon
permutation entropy, TPE Tsallis permutation entropy, RPE Renyi permutation entropy
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Table 8.2 The CV of the
studied indices at different
anestehsia states

Awake Induction Deep anesthesia RoC

RE 0.025 0.149 0.047 0.052
SE 0.016 0.122 0.047 0.050
SWE 0.080 0.338 0.177 0.077
TWE 0.024 0.161 0.063 0.038
RWE 0.043 0.276 0.127 0.057
HHSE 0.029 0.089 0.027 0.024
ApEn 0.040 0.193 0.064 0.043
SampEn 0.095 0.259 0.087 0.094
FuzzyEn 0.089 0.193 0.088 0.073
SPE 0.006 0.115 0.028 0.025
TPE 0.003 0.138 0.030 0.028
RPE 0.004 0.219 0.043 0.041

between the awake and deep anesthesia states was smaller than the other indices.
This means PE has a better ability to separate these states and a greater robustness
to individual differences.

To estimate the baseline variability and the sensitivity to the induction process
of each index, the CV values of all the indices for the sevoflurane data set are
computed, and the results are given in Table 8.2. During the awake state, the CV
value of SampEn was 0.095 which was the highest. The CV value of TPE was 0.003,
significantly lower than the other indices. The CV values of SPE and RPE were
also very low. This illustrated that PE measures were less sensitive to noise, while
SampEn methods were the least robust against noise. During induction, the CV of
SWE (0.338) was the highest. This demonstrated that SWE had a faster response
speed compared to the other indices.

To further compare the performance of the studied indices, PK/PD modeling
was performed to describe the relationship between the index values and the
estimated sevoflurane effect-site concentration. Table 8.3 gave these parameters
for sevoflurane anesthesia, in which the maximum coefficient of determination
(R2) gave the correlation between the index values and the anesthetic effect-site
concentration. Figure 8.6 showed the R2 values of the indices for the data sets. It
can be seen that the R2 for TPE (0.95, 95 % confidence interval 0.92–0.98) was
significantly higher than the other entropy indices.

To assess how the indices could correctly predict the drug effect-site concen-
trations, we evaluated the prediction probability Pk of all the indices from the
PK/PD modeling for all the subjects, as shown in Fig. 8.7, and the statistical
results are shown in Table 8.4. For sevoflurane, the Pk of RPE is equal (0.87, 95 %
confidence interval is 0.83–0.90), slightly higher than RWE (0.85) and TWE 0.81
(95 % confidence interval 0.79–0.84). Also, the Pk of RPE was higher than that of
TPE and SPE. Similarly, the Pk of RWE was the highest in the three WE methods.
It meant that the Renyi entropy had a better performance in predicting drug effect-
site concentrations compared with the Shannon entropy and Tsallis entropy. The
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Table 8.3 The PK/PD modeling parameters for sevoflurane

t1/2keo (min) � Emax Emin EC50 R2

RE 0.04 ˙ 0.03 8.25 ˙ 7.62 0.46 ˙ 0.09 0.13 ˙ 0.06 1.19 ˙ 0.60 0.80 ˙ 0.14
SE 0.06 ˙ 0.06 5.22 ˙ 2.32 0.35 ˙ 0.09 0.14 ˙ 0.05 1.71 ˙ 0.93 0.72 ˙ 0.16
SWE 0.07 ˙ 0.02 4.01 ˙ 3.12 1.01 ˙ 0.16 0.15 ˙ 0.07 1.42 ˙ 0.51 0.79 ˙ 0.12
TWE 0.03 ˙ 0.01 3.81 ˙ 1.86 0.50 ˙ 0.10 0.05 ˙ 0.16 1.54 ˙ 0.63 0.86 ˙ 0.06
RWE 0.04 ˙ 0.02 5.95 ˙ 3.98 0.58 ˙ 0.10 0.12 ˙ 0.07 1.68 ˙ 0.60 0.85 ˙ 0.06
HHSE 0.05 ˙ 0.02 4.15 ˙ 3.43 1.99 ˙ 0.41 0.62 ˙ 0.34 1.56 ˙ 1.15 0.80 ˙ 0.06
ApEn 0.05 ˙ 0.02 8.22 ˙ 6.62 0.82 ˙ 0.17 0.22 ˙ 0.11 1.84 ˙ 0.52 0.78 ˙ 0.11
SampEn 0.05 ˙ 0.02 5.68 ˙ 4.45 1.46 ˙ 0.38 0.40 ˙ 0.22 1.64 ˙ 0.62 0.75 ˙ 0.12
FuzzyEn 0.06 ˙ 0.04 2.75 ˙ 1.54 2.14 ˙ 0.40 0.58 ˙ 0.32 1.05 ˙ 0.38 0.69 ˙ 0.17
SPE 0.70 ˙ 0.32 4.65 ˙ 1.57 0.32 ˙ 0.05 0.08 ˙ 0.03 1.30 ˙ 0.33 0.94 ˙ 0.04
TPE 0.18 ˙ 0.01 6.98 ˙ 3.19 0.39 ˙ 0.04 0.02 ˙ 0.12 1.33 ˙ 0.37 0.96 ˙ 0.02
RPE 0.02 ˙ 0.01 4.67 ˙ 3.25 0.50 ˙ 0.14 0.10 ˙ 0.16 1.40 ˙ 0.48 0.95 ˙ 0.03

t1/2keo D blood effect-site equilibration constant
� D slope parameter of the concentration–response relation
Emax D EEG parameter value corresponding to the maximum drug effect
Emin D EEG parameter value corresponding to the minimum drug effect
EC50 D concentration that causes 50 % of the maximum effect
R2 D maximum coefficients of determination
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Fig. 8.6 Maximum coefficient of determination values for sevoflurane anesthesia (n D 19). For
comparison, the R2 values for each index are expressed by a different sign and color

differences between RPE and the other indices were statistically significant (all
p < 0:005, paired t-test). And the difference between RPE, TPE, and SPE were
statistically significant (p D 0:03 and 0.01, respectively; paired t-test), which meant
that RPE had a stronger ability to track the sevoflurane effect-site concentration
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Fig. 8.7 Statistical analysis of prediction probability (Pk) values for sevoflurane (n D 19)

Table 8.4 The Pk statistics
for each entropy index

Entropy index Pk Sevoflurane

RE 0.74 ˙ 0.06
SE 0.73 ˙ 0.06
SWE 0.83 ˙ 0.04
TWE 0.84 ˙ 0.05
RWE 0.85 ˙ 0.05
HHSE 0.81 ˙ 0.04
ApEn 0.80 ˙ 0.04
SampEn 0.81 ˙ 0.03
FuzzyEn 0.80 ˙ 0.03
SPE 0.83 ˙ 0.05
TPE 0.83 ˙ 0.06
RPE 0.87 ˙ 0.03

during anesthesia. In order to get a more intuitive comparison, the best curve fits of
all indices against the effect-site concentration are demonstrated (Fig. 8.8).

To compare the timeliness performance of each index in tracking DoA, we
recorded the computing time of each index for the same subject. Twenty EEG
recordings from the two data sets were selected. The calculated epoch length (N)
of each algorithm was 10 s, and the overlap was 5.0 s. The computing time for
1 min EEG data for each index was given in Table 8.5. The fastest index was
WE (0.025˙ 0.001 s). The RE/SE and PE computation times were 0.096˙ 0.008 s
and 0.545˙ 0.016 s, respectively. HHSE (14.718˙ 1.563 s) was the slowest. The
desktop computer used for this test had the following configuration: Intel Core
i3 CPU, four cores at 2.93 GHz, with 2GB of RAM, and running Windows XP
professional operating system.
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Fig. 8.8 Dose-response curves between the RE(a), SE(b), SWE(c), TWE(d), RWE(e), HHSE(f),
ApEn(g), SampEn(h), FuzzyEn(i), SPE(j), TPE(k), RPE (l), and the sevoflurane Ceff for the best
fit, with the greatest value of R2 shown above the figures. The dots denote the measured EEG index
values. The solid lines denote the PK/PD-modeled EEG index values

Table 8.5 The computing
time for different entropy
indices for 1 min data length

Entropy index Calculation time(s)

RE/SE 0.096 ˙ 0.008
SWE/RWE/TWE 0.025 ˙ 0.001
HHSE 14.718 ˙ 1.563
ApEn 2.490 ˙ 0.098
SampEn 2.541 ˙ 0.073
FuzzyEn 4.785 ˙ 0.119
SPE/RPE/TPE 0.545 ˙ 0.016

8.4.5 MSE Comparison with CG- and MA-Decomposed
Procedures

Although there are various MSE measures, we only considered multi-scale sample
entropy and multi-scale permutation entropy. And the decomposed procedures of
CG and MA were also considered. The traditional MSEs were based on the CG
decomposed procedure. So, MA-SampEn, MA-SPE, MA-TPE, and MA-RPE were
first proposed in this study.

Figure 8.9 showed the six multi-scale permutation entropy measures applying to
the same data set used above. The scale of sD 1, 2, 3, and composed scale index



8 Entropy Measures in Neural Signals 149

Time(min)

-200

-100

0
100

200
a

b

c

d

0

2 4 6 8 10 120

EE
G

(μ
V

)

0.6

0.7

0.8

0.9

1
MSPE_S
s = 1
s = 2
s = 3

MSPE_R
s = 1
s = 2
s = 3

MSPE_R
s = 1
s = 2
s = 3

C
G

_S
PE

2 4 6 8 10 120

0.4

0.6

0.8

1

C
G

_R
PE

2 4 6 8 10 120

Time(min)

Time(min)

0.5

0.6

0.7

0.8

0.9

1

C
G

_T
PE

2 4 6 8 10 120
Time(min)

Fig. 8.9 The EEG signal (a) and MSPE of SPE (b), RPE (c), and TPE (d) at scales 1, 2, 3, and
composed MSPE indices



150 Z. Liang et al.

0.6

0.7

0.8

0.9
1

a b c

d e f
I II III IV

C
G

_M
SP

E_
S

0.4

0.6

0.8

I II III IV

C
G

_M
SP

E_
R

1

0.5

0.6

0.7

0.8

0.9

I II III IV

C
G

_M
SP

E_
T

0.7

0.8

0.9

1

I II III IV

M
A

_M
SP

E_
S

0.7

0.8

0.9

1

I II III IV

M
A

_M
SP

E_
T

0.6

0.7

0.8

0.9

I II III IV

M
A

_M
SP

E_
R

Fig. 8.10 The box plots of MSPE based on CG- and MA-decomposed procedure. (a)–(c) The
MSPE with CG of the Shannon permutation entropy (a), Tsallis permutation entropy (b), and
Renyi permutation entropy (c). (d)–(f) The MSPE with MA of the Shannon permutation entropy
(d), Tsallis permutation entropy (e), and Renyi permutation entropy (f)

(the mean of sD 1, 2, and 3) with each entropy were plotted in Figure b–d. It can
be seen that all the curves could track the changes of anesthesia. Considering the
decomposed procedure, the parameters of MSPE were different from the single-
scale PE. The selection details were discussed in Sect. 8.3.2. It can be seen from the
figures that there was no big difference between MSPE for sD 1, 2, 3, and composed
measures. Only the composed scale measures of MSPE were calculated for all the
subjects for statistics.

The box plots of composed scale MSPE with six multi-scale permutation
entropies were shown in Fig. 8.10. The results showed that all the MSPE with
composed measures could distinguish different anesthesia states like the single-scale
PE (such as SPE, TPE, and RPE) did.

The multi-scale sample entropy measures based on CG and MA analysis were
shown in Fig. 8.11. It was obvious that the MSSE showed bigger fluctuations in
the awake state compared with the MSPE indices. The box plots of CG-SampEn
and MA-SampEn for sD 1, 2, 3, and the composed scale measures were shown in
Figs. 8.12 and 8.13, respectively. The statistics of all MSPE and MSSE indices were
shown in Table 8.6 and 8.7. The CVs of the CG-SPE, MA-SPE, and MA-TPE were
0.005 (mean) at the awake state, which were the smallest in all the MSE measures.
Compared with MSSE, MSPE had smaller CVs during the awake state. It meant
that MSPE has better antinoise performance than MSSE. Moreover, CG-RPE in
induction processes had the highest CV (0.197) in all MSPE measures, which meant
that CG-RPE was more sensitive to the anesthesia-state changes.
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Fig. 8.11 The raw EEG and the corresponding multi-scale sample entropy measures

8.5 Conclusions

In this study, we investigated the performance of twelve entropy algorithms and
two kinds of MSE (MSPE and MSSE) measures to assess the effect of GABAergic
anesthetic agents on EEG activity. The EEG data under sevoflurane anesthesia were
employed as the test samples for evaluating the different entropy algorithms. We
compared their performance in estimating DoA. PK/PD modeling and prediction
probability statistics were applied to assess their effectiveness. In order to make the
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Fig. 8.12 The MSSE based on CG-decomposed procedure at s D 1(a), s D 2(b), s D 3(c), and the
composed measures

comparisons more clear, the single-scale entropy (12 entropy measures) and multi-
scale entropy measures were assessed separately.

Firstly, the twelve entropy measures were divided into two classes: time–domain-
based and time–frequency–domain-based analyses. ApEn, SampEn, FuzzyEn, and
PE are time–domain analysis methods. All these entropy algorithms are based on
nonlinear theories, and the first three are phase space analytical methods (Chen
et al. 2009). PE is based on ordinal pattern analysis of the time series (Bandt
2005). Considering that EEG has nonlinear characteristics, these four methods have
their respective advantages. For example, FuzzyEn and PE are less sensitive to the
signal quality and calculation length (Li et al. 2008a; Pincus 1991). Compared with
ApEn and SampEn, FuzzyEn can resolve more details in the time series and has
more accurate definition in theory (Chen et al. 2009). RE, SE, WE, and HHSE
indices are based on the time–frequency domain. The start point of RE and SE
is the spectral entropy, which has the particular advantage that the contributions
to entropy from any particular frequency range are explicitly separated. In order
to achieve optimal response time, RE and SE adopt variable time windows for
each particular frequency called time–frequency-balanced spectral entropy (Viertiö-
Oja et al. 2004). Compared with the variable time windows of RE and SE, the
window function of WE is variable in both time and frequency domains. The
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HHSE algorithm is based on the EMD and Hilbert transform (Li et al. 2008b).
The advantage of this method is that it can estimate the instantaneous amplitude
and phase/frequency. Also it can break down a complicated signal without a basis
function (such as sine or wavelet functions) into several oscillatory modes that are
embedded in this complicated signal. The marginal spectrum gives a more accurate
and nearly continuous distribution of EEG energy, which is completely different
from the Fourier spectrum (Li et al. 2008b).

Although all the entropy algorithms have theoretical advantages with respect to
the characterization of EEG recordings during GABAergic anesthesia, we still need
to assess their practical performance from several perspectives. In qualitative terms,
all the indices are effective at tracking the changes of drug concentration through the
EEG analysis. As demonstrated in the presented figures and tables, all the entropies
decreased with the deepening of anesthesia. However, there are quantitative dif-
ferences between these indices for assessing different anesthesia states. This is
because the principles underlying each algorithm are entirely different. Entropies
based on the time domain measure the predictability of future amplitude values of
the electroencephalogram based on the knowledge of one or two previous amplitude
values. With increasing GABAergic anesthetic drug concentration, the EEG signals
become more regular, which leads to a reduction in the ApEn value. Entropies based
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Table 8.6 The statistics of the MSE indices at different anestehsia states (median (min-max))

Awake Induction Deep anesthesia RoC

CG-SPE 0.96 (0.92–0.97) 0.77 (0.56–0.97) 0.71 (0.52–0.82) 0.82 (0.70–0.86)
CG-TPE 0.94 (0.90–0.96) 0.73 (0.52–0.96) 0.66 (0.48–0.78) 0.78 (0.65–0.83)
CG-RPE 0.93 (0.85–0.95) 0.64 (0.36–0.95) 0.57 (0.32–0.74) 0.76 (0.51–0.81)
MA-SPE 0.97 (0.93–0.99) 0.82 (0.69–0.98) 0.75 (0.64–0.84) 0.81 (0.76–0.90)
MA-TPE 0.98 (0.93–0.99) 0.82 (0.69–0.98) 0.76 (0.64–0.85) 0.82 (0.76–0.90)
MA-RPE 0.95 (0.87–0.97) 0.71 (0.57–0.95) 0.63 (0.53–0.74) 0.70 (0.64–0.82)
CG-SampEn
(composed)

1.63 (1.09–2.40) 1.24 (0.59–2.00) 1.25 (0.40–1.73) 1.88 (1.09–2.12)

MA-SampEn
(composed)

1.59 (0.88–2.24) 0.83 (0.38–1.86) 0.74 (0.33–1.04) 1.25 (0.67–1.53)

CG-SPE coarse-graining Shannon permutation entropy, CG-TPE coarse-graining Tsallis permu-
tation entropy, CG-RPE coarse-graining Renyi permutation entropy, MA-SPE moving-average
Shannon permutation entropy, MA-TPE moving-average Tsallis permutation entropy, MA-RPE
moving-average Renyi permutation entropy, CG-SampEn coarse-graining sample entropy, MA-
SampEn moving-average sample entropy

Table 8.7 The CV of the studied indices at different anestehsia states

Awake Induction Deep anesthesia RoC

CG-SPE 0.005 0.112 0.03 0.03
CG-TPE 0.006 0.126 0.037 0.031
CG-RPE 0.008 0.197 0.073 0.046
MA-SPE 0.005 9.075 0.017 0.019
MA-TPE 0.005 0.074 0.017 0.018
MA-RPE 0.009 0.111 0.022 0.027
CG-SampEn (composed) 0.035 0.069 0.068 0.051
MA-SampEn (composed) 0.034 0.085 0.058 0.063

on the time–frequency domain, such as RE and SE, also decrease with increasing
DoA because the EEG shifts to a simpler frequency pattern as the anesthetic dose
increases (Rampil 1998).

In all of the 12 entropy measures, TWE, RWE, TPE, and RPE are based on
the Tsallis entropy and Renyi entropy theories, respectively. The Tsallis entropy
and Renyi entropy theories are considered as generalized entropy compared to
the Shannon entropy. Similar to the Renyi entropy, the Tsallis entropy used the
non-extensive parameter q to measure the information of specific events. The
results showed that TPE and RPE were better than SPE in assessing the effects of
anesthesia. Similar results also can be seen in TWE, RWE, and SWE. The excellent
performance indicates their potential usefulness in anesthesia analysis.

Furthermore, four measures were considered for the evaluation of each index.
Firstly, the coefficient of determination and prediction probability statistics were
used to assess the correlation of each index with the anesthetic drug effect-
site concentration. Three PE measures had a higher Pk and R2 compared to the
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other indices. Secondly, CV was used to evaluate the sensitivity of each index to
artifacts during the awake state (Li et al. 2008b, 2010). The results showed that
PE outperformed the other indices at this level. In all entropy measures, SWE
had the highest CV during anesthesia induction, indicating that this index was
superior at discriminating awake and anesthetized states. Thirdly, the performance
for estimating the point of LoC was considered. Although all the entropy measures
could distinguish between awake and anesthetized states (see Fig. 8.4), the speed
of transition (slope) between the two states was fastest for SWE, while SE had
the slowest transition. Finally, the computing time was used to assess algorithm
complexity. The results showed that the WE index is the fastest algorithm of all
the entropy indices tested. HHSE was the slowest: its computing time for the same
data length was about 580 times longer than that of WE. In order to improve the
computational efficiency, the parallelized method based on the graphics processing
unit has been proposed (Chen et al. 2010).

The multi-scale entropy provides a new perspective in neural population analysis.
Although there are various multi-scale decomposition procedures and entropy
measures (Li et al. 2010; Costa et al. 2002; Ahmed and Mandic 2011; Park et al.
2007), few of current MSE studies offer systematic analysis of the performance of
MSE measures. In this chapter, two kinds of entropy measures (PE and SampEn)
based on two multi-scale decomposition procedures (CG and MA) were analyzed.

As we know, there were other multi-scale decomposition methods, such as
wavelet transform (WT) and empirical mode decomposition (EMD) (Unser and
Aldroubi 1996; Hsu et al. 2007; Stamoulis et al. 2011), and they provided excellent
performance in time–frequency–domain analysis. Other entropies, such as ApEn
(Costa et al. 2002; Pincus 1991) and FuzzyEn (Zou and Lei 2012), were also used
to form MSE measures, while PE and SampEn has been proved to be better than
the others. Further, as a symbolic dynamic method, PE was not suitable to join with
time–frequency–domain analysis, ie, WT and EMD. Therefore, only CG and MA
were considered to form multi-scale decomposition methods.

In terms of the two decomposition procedures CG and MA, from the aspect of
algorithm mechanism, each procedure has its advantages and disadvantages. Both
of them are typical morphology methods. The CG procedure reduces the length of a
time series with the increase of scale. It is superior in long-term time series analysis
but may yield an imprecise estimation of entropy in short-term time series (Wu et al.
2013). For this reason, CG-based MSPEs have poor performance in tracking EEG
signals. MA procedure solves this problem but brings computing redundancy.

Through the real data analysis, the antinoise ability, the ability to track the
strength change of neural oscillations, and the sensitivity of distinguishing the
different mental states of the six MSPE and two MSSE measures were evaluated
and concluded as follows:

(i) The MSPE measures have a better antinoise ability than MSSE measures. For
MSPE, with the increase of scales, the differences of distinguishing different
anesthesia states are negligible, but the ability of antinoise increases. And MA-
TPE at scale 3 performs the best.
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(ii) All the MSEs at scaleD 1, 2, 3, and composed scale measures have the same
trend in tracking the strength change of neural oscillations. MA-RPE is more
sensitive in tracking the changes of different anesthesia states.

(iii) Considering the data length and the characteristics of real-time computing, the
CG-SPE, CG-RPE, CG-TPE, and CG-SampEn indices may be not suitable for
analyzing anesthesia EEG recordings.

In conclusion, we gave an in-depth comparison of the twelve single-scale entropy
measures and eight MSE measures. The results may provide valuable references
to neural signal analysis, especially for the evaluation of anesthetic effects. In
particularly, the PE indices, especially RPE measure, performed better than the other
entropy indices in several aspects. However, some other issues should be addressed
and need to be further explored. Firstly, we only assessed the performance of
different measures on anesthesia EEG data sets. In consideration of the complexity
of neural populations, the conclusions may not be suitable for all neurophysiological
signals. Secondly, for the MSE measures, how to combine the different scales to
better reflect the inner characteristics of the nonlinear signals should be further
studied. In addition, to develop a useful tool as a dependable clinical measure, each
entropy measure still needs additional optimization of parameters.

Appendices

Each entropy index contains several parameters, which can severely impact the out-
put of its index. Therefore, it is very important to select the appropriate parameters.
In anesthesia researches, there are many methods to select parameters including the
interindividual variations, eg, the relationship with drug effect-site concentration
obtained from PK/PD and prediction probability (Li et al. 2012, [88]). In this
study, the method of selecting the parameters is based on indices’ performance in
distinguishing different anesthesia states and interindividual variations. Fifty data
sets in awake, deep anesthesia, and recovery states from 19 patients are selected,
respectively. The RE and SE algorithms applied in the study adopts the Datex–
Ohmeda S/5™ entropy module (Viertiö-Oja et al. 2004). The PE’s parameter
selection is based on our previous work (Li et al. 2012, 2010). The details of other
entropy algorithm’s parameters are discussed as follows. All the results are given
by mean˙ standard deviation. The blue, red, and green colors represent the awake
state, deep anesthesia state, and recovery state, respectively.

Appendix A: WE

There are three types of WE measures (SWE, TWE, RWE) considered in this
study. The parameters include basis functions, the data length N, the Tsallis entropy
parameter q, and the Renyi entropy parameter a. The basis functions and data
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Fig. 8.14 The changes of WE in different anesthesia with different parameters. (a–g) The change
of SWE with different wavelet basis functions: (a) haar, (b) db2, (c) coif2, (d) sym2, (e) bior2.2,
(f) bior3.3, and (g) bior4.4. The horizontal axis shows the number of layers (n) decomposed by
corresponding wavelet function. The vertical axis shows SWE values. (h) The changes of SWE
with different N. (i–j) The changes of TWE with 0 < q < 1 (i) and q > 1 (j). (k–l) The changes of
RWE with 0 < a < 1 (k) and a > 1 (l)

length selection are based on the SWE. First, several common basis functions
including Haar, Daubechies, Coiflets, Symlets, and Biorthogonal wavelet families
were selected. The result is shown in Fig. 8.14a–e. N is assumed to be 1000. As
can be seen, only the SWE based on the biorthgonal basis function can completely
separate anesthesia state (red color) from awake (blue color), and recovery states
(green color), without overlap. However, there are some basic functions in the
biorthgonal family. Figure 8.14e–g show the results obtained by bior2.2, bior3.3,
and bior4.4. It can be seen that the SWE achieved by bior3.3 not only distinguishes
anesthesia states from non-anesthesia but also differentiates between awake and
recovery states, especially when the number of layers is 2 and 3. So in this study,
the bior3.3 was chosen as the wavelet basis function, and the number of layers was
3. Then, based on them, the selection of N is given in Fig. 8.14h. N ranges from 500
to 3000 points with the step of 500 points under the sample of 100 Hz. The figure
shows that when N � 1000, there is no significant difference in WE for each state.
So N D 1000 (10 s) was selected to calculate the WE. Furthermore, based on the
parameters of basis function and N, the selections of q in TWE and a in RWE are
given in Fig. 8.14i–l.
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Appendix B: HHSE

In order to choose an appropriate data length N in HHSE algorithm at the sample
rate of 100 Hz, a series of N were used to calculate the HHSE in different anesthesia
states. The result is shown in Fig. 8.15. All values of N could distinguish different
anesthesia states. And when the data length was equal to or greater than 1000, the
HHSE value would be nearly invariable with the changes of N. So N D 1000 (10 s)
was selected in this study.

Appendix C: ApEn

Figure 8.16a–b, respectively, give the result of ApEn over different r in different
anesthesia states with N D 1000, m D 2, and m D 3. With increasing r, the ApEn
values in awake state and recovery state increased and then decreased, while it
monotonously changes with r in deep anesthesia state. Both figures show that when
r is 0.2 or 0.25 of SD, the difference between deep anesthesia and other states is
larger. Considering that the r in ApEn is also used to suppress the noise, its value
is chosen as small as possible. The r was chosen as 0.2 of SD. Figure 8.16c shows
the selection of m with N D 1000 and r D 0.2*SD. It can be seen that ApEn nearly
doesn’t change with m. Meanwhile when m is 2, the interindividual variations of
ShEn is smaller. With r D 0.2*SD and m D 2, the selection of N is shown in
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Fig. 8.16d. The ApEn was very dependent on N, and it increased with enlarging
N, as well as its interindividual variations, especially in awake and recovery states.
The difference between awake and anesthesia state also became larger, but when
N was greater than 1000, the difference was not obvious. Therefore, r D 0.2*SD,
mD 2, and N D 1000 were selected in this study, which is consistent with the study
(Bruhn et al. 2000) through different methods to choose parameter was used.

Appendix D: SampEn

Figure 8.17a–b, respectively, show the changes of SampEn over different r in
different anesthesia states, with N D 1000, m D 2 and 3. The SampEn values
monotonously decrease with increasing r in all states. The difference between awake
state and deep anesthesia was obvious, but not between awake and recovery state.
There is much overlap between them. Considering the interindividual variations,
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Fig. 8.17 The changes of SampEn with different parameters at different anesthesia states. (a)
mD2, ND1000; (b) mD3, ND1000; (c) rD0.2*SD, ND1000; (c) rD0.2*SD, mD2

r D 0.2 is better. Figure 8.17c shows the changes of SampEn over different m with
r D 0.2, N D 1000. There is no significant difference in different m values. For
simplicity, m D 2 was selected. The selection of N is given in Fig. 8.17d. The
SampEn values with r D 0.2, m D 2 were almost invariable as N increased. This
implies that SampEn values are not dependent on N. Finally, N D 1000 (10 s at the
sample rate of 100 Hz), mD 2, and r D 0.2*SD were selected in this study.

Appendix E: FuzzyEn

Figure 8.18 gives the changes of FuzzyEn with different parameters in different
anesthesia states. Accordingly, we selected r D 0.2, m D 2, and N D 1000 for the
computation of FuzzyEn in this study.
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Appendix F: TPE and RPE

The embedded dimension m, lag 	 , and data length N had been discussed in our
previous study (Li et al. 2008a, 2010, 2012). It is suggested that m D 6 and 	 D 1

are suitable for the sevoflurane DoA monitoring, and m D 3 	 D 2 is better for
isoflurane analysis. So, for the parameters of TPE and RPE, we only considered the
embedded dimension of 3 and 6. For the sevoflurane, using 	 D 1 and isoflurane
is 	 D 2. Figure 8.19a–b are the TPE of three anesthesia states at the 0 < q < 1

and q > 1, respectively, the m D 3. Figure 8.19c–d show the TPE of m D 6 at
0 < q < 1 and q > 1, respectively. It can be seen that in m D 6, q D 0:9 has a
better performance in TPE. Figure 8.19e–h are the RPE measure of three anesthesia
states similar as Fig. 8.19a–d. We select the m D 6 and a D 2 for RPE calculation.
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Chapter 9
Synchronization Measures in EEG Signals

Zhenhu Liang, Yang Bai, Ye Ren, and Xiaoli Li

9.1 Introduction

Synchronization measures have been wildly used in many scientific and technical
disciplines. Particularly, synchronization phenomena have become an important
feature in understanding mechanism of normal (Roelfsema et al. 1997; Steriade
et al. 1993; Mizuhara and Yamaguchi 2007) or abnormal (Uhlhaas and Singer 2006)
brain functions. And it is found that synchronization between neuronal populations
plays a key role in information processing in the brain (Engel et al. 2001a; Li et al.
2007a; Schnitzler and Gross 2005; Aviyente et al. 2011a).

So far, there exist many synchronization detection methods, such as cross
correlation, coherence, mutual information, phase synchronization, and event syn-
chronization, and they have been proposed to quantify the degree of synchronization
in different neural systems. These synchronization measures have been proved
effective in epileptic seizure prediction and detection (Zheng et al. 2014; Mirowski
et al. 2009; Slooter et al. 2006) and Alzheimer (Koenig et al. 2005; Stam et al. 2005)
and autism (Mehran et al. 2012) detection and assessment. Also, synchronization
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measures were used to explore consciousness state-related mechanisms, such as
sleep (Birchler-Pedross et al. 2011; Moroni et al. 2012) and anesthesia (Koskinen
et al. 2001; Shalbaf et al. 2015).

The theoretical foundations are various for different synchronization methods.
It was difficult to give unified criteria for selecting effective synchronization
methods, when investigating different brain functions or understanding mechanisms
of different brain diseases. In this chapter, we gave an example of using different
synchronization measures to understand mechanism of anesthesia effect on the brain
and evaluated performance of these synchronization measures in distinguishing the
states of anesthesia.

How general anesthetic agents induce unconsciousness in the central nervous
system may provide a direction for future rational anesthetic drug design and
improved intraoperative monitoring (Lewis et al. 2012). Over the last decade, many
theories have been proposed to explain the mechanism of consciousness, such as
the cognitive binding. A number of recent studies gave evidence that breakdown
of long-distance cortical connectivity across multiple brain regions in particular
frontal-parietal cortices may play a critical role in loss of consciousness (LoC) (Voss
and Sleigh 2007; Nallasamy and Tsao 2011; Lee et al. 2009a, b). At the same time,
many different signal processing methods based on different information theories
have been proposed to quantify neuro-synchrony (Pereda et al. 2005; Breakspear
2004; Kaminski and Liang 2005; Stam 2005).

In this chapter, we systematically investigate changes in electroencephalogram
(EEG) synchrony during anesthesia induced by propofol, using a range of different
synchronization measures. The aim is to evaluate various information coupling
measures in separating different anesthesia states. Some novel synchronization
measures, and methods proposed in our previous work, are used. Among these,
cross correlation (COR) is probably the most commonly applied method. Coherence
and phase synchronization (PS) are based on the frequency domain, while wavelet
coherence (WTC) is based on time-frequency domain. Mutual information (MI) is
based on information theory. Nonlinear interdependence (NI) and cross recurrence
analysis are based on state space theory.

Any future practical monitor of anesthesia must be quick, robust, and operable.
Therefore, unlike most studies which incorporate many channels (Dauwels et al.
2010), we only considered synchronization and information coupling between
two channels of EEG. In this chapter, we concentrated on the coupling between
prefrontal and primary motor cortices. In order to compare their properties within
the same context, we applied the synchronization methods to the same EEG
data set with a range of depth of anesthesia states: awake, unconscious state,
and recovery of consciousness (RoC). To validate the relative effectiveness of
these synchronization algorithms, we evaluated performance of each algorithm on
modeling pharmacokinetic/pharmacodynamic (PK/PD) drug effects. We quantified
the correlation coefficients (Rij) between each synchrony measure and the bispectral
index (BIS), the prediction probability (Pk) of each measure with the BIS and
with effect-site propofol concentration (ESPC). Our goal is to select the most
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effective measure in clinical anesthetic depth evaluation and to further understand
the underlying neurophysiological mechanisms of anesthesia.

Different approaches for measuring synchronization rely on certain characteristic
features of the dynamical system under investigation. However, the underlying
dynamic properties of the experimental data are usually not completely known. It is
important to validate the measures against model systems where the synchrony of
the underlying dynamics are known and can be artificially manipulated (Kreuz et al.
2007). Therefore, we adopted three coupled model systems with different properties
to evaluate the performance of each method for tracking coupling strength.

This chapter is organized as follows: Sect. 9.2 describes each synchronization
measure and its parameter selection. Section 9.3 gives three nonlinear dynamical
coupled models, the EEG recordings, and preprocessing. Section 9.4 illustrates the
criteria for measure evaluation in models, as well as the statistical methods. The
results of the applications of the synchronization measures to the model and real
EEG show in Sect. 9.5. Finally, the conclusions are given in Sect. 9.6.

9.2 Synchronization Measures

9.2.1 Cross Correlation

The cross correlation is a classical and simple measure of the interdependence
between two time series. It can be used to evaluate the linear relationship between
two variables X and Y based on a delay time 	 , which may reflect a causal
relationship between the signals. The calculation of the COR is described in the
following:

Given two time series, x(t) and y(t), and normalized to have zero mean and unit
variance, their cross correlation function is

Cxy .	/ D
1

N � 	

N�	
X

tD1

x .tC 	/ y.t/ (9.1)

where N is the total number of samples and 	 is the time lag between the signals.
The details of this method can be found in Zhou et al. (2009). There are two

parameters that affect the value: data length N and delay time 	 . The parameter
selections are introduced in Appendix A.

9.2.2 Cross Coherence

Coherence is a popular method for detecting neuronal sources that are working
together in a spatially distributed network and to determine how strongly they
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collaborate (Thatcher et al. 2008). It is a frequency domain-based method which
measures the linear correlations of two time series (Nunez 2006). We considered two
coherence calculation methods: coherence based on Fourier transformation (FTC)
and wavelet transformation (WTC).

Given two time series x and y, subdivide into M segments of equal length L.
The basic coherence function is computed by averaging over these segments. The
coherence function with magnitude square Cxy(f ) is described by

Cxy.f / D
jhX.f /Y�.f /ij2

jhX.f /ij jhY.f /ij
(9.2)

where X(f ) and Y(f ) are the Fourier transforms of time series x and y, respectively.
Y* denotes the complex conjugate of Y, and hX(f )i is the average of X(f ) computed
over the M segments, similar to hY(f )i and hX(f )Y*(f )i. jYj stands for the magnitude
of Y.

Similar to FTC, the wavelet coherence function calculates the ratio of the cross
spectrum to the product of the auto-spectrum of the two series, x and y, which is
defined as

.cw .s; 	//2 D

ˇ

ˇSw
xy .s; 	/

ˇ

ˇ

2

Sw
xx .s; 	/ Sw

yy .s; 	/
(9.3)

where Sw
xy(s, 	 ) is the localized power spectrum, it is

Sw
xy .s; 	/ D

1

s
Z

T
Wx .s; 	/W�

y .s; 	/ d	
; T D Œ	 ��	; 	 C�	
 (9.4)

Here T is selected based on the time resolution desired in the coherence map. And
the auto-spectrum Sw

xx(s, 	 ) and Sw
yy(s, 	 ) are defined similar to Sw

xy(s, 	 ).
The power spectrum is calculated based on the Morlet wavelet transform

(MWT). The details are described in Li et al. (2007b). The normalized average
synchronization based on the coherence of signals x and y at a frequency band
[fL, fH] is defined by

dxy D
1

Nw

fH
X

wDfL

Hxy.f / (9.5)

where Hxy(f ) could be replaced by the Cxy(f ) or Cw(s, 	 ). Nw is the number of
summands in the summation, so the synchronization value of dxy is between 0 and
1 (Li et al. 2013).

The WTC index across five frequency bands, ı .1 � 4Hz/, � .4 � 8Hz/,
˛ .8 � 13Hz/, ˇ .13 � 30Hz/, and �1 .30 � 40Hz/, was calculated and denoted
as WTCı , WTC� , WTC˛ , WTCˇ , and WTC�1, respectively, in this chapter.
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9.2.3 Phase Synchronization

PS analysis has been independently proposed by Lachaux et al. (Lachaux et al.
1999) and Mormann et al. (Mormann et al. 2000) and applied later by Allefeld
and Kurths (Allefeld and Kurths 2003, 2004). This approach is based on the
concept of synchronization of chaotic oscillators studied by Rosenblum et al.
(Rosenblum et al. 1996). Phase synchronization is sensitive to nonlinear coupling
(David et al. 2004) and is a promising tool for quantifying coupling in multichannel
electroencephalogram or magnetoencephalogram (MEG) recordings (David et al.
2004; Engel et al. 2001b; David and Friston 2003) and may be helpful for
understanding communication mechanisms in the brain (Li et al. 2007b; Le Van
Quyen and Bragin 2007; Aviyente et al. 2011b).

There are various PS estimation methods; however, two steps are fundamental:
instantaneous phase estimation and phase-locking quantification. Li et al. employed
the windowed harmonic wavelet transform (WHWT) to extract the instantaneous
phase of brain signals and show that WHWT performs better than traditional meth-
ods, such as the Hilbert transform (HT) (Li et al. 2011). So we chose WHWT to cal-
culate the instantaneous phase in this study. The algorithm is described as follows.

Consider two time series x(t) and y(t); the Fourier transform is used to achieve the
corresponding expressions in the frequency domain, X(f ) and Y(f ). Then, multiply
X(f ) by the conjugate of the windowed harmonic wavelet Ww(f ) denoted as A.f / D
X.f /W�

w.f /. Take the inverse Fourier transform of A(f ) to obtain the signal with
WHWT denoted by a(t), as presented by (Park and Kim 2001)

a.t/ D u.t/C jH Œu.t/
 D u.t/C
j

�

Z 1

�1

u .	/

t � 	
d	 D S.t/ej'.t/ (9.6)

where H Œ�
 stands for the operation of Hilbert transform. The magnitude is

represented as S.t/ D
q

.u.t//2 C .H Œu.t/
/2, and the instantaneous phase of a(t) is

'.t/ D tan�1

�

H Œ.u.t//


u.t/

�

D tan�1

�

imag Œa.t/


real Œa.t/


�

(9.7)

The phase difference can be defined with the instantaneous phase x(t) and y(t)
(achieved through the WHWT of the scalar observations x(t) and y(t)):

�xy.t/ D x.t/ � y.t/ (9.8)

There are mainly three PS calculation methods used. Among them, phase-locking
value (PLV) (Lachaux et al. 2000) is based on time windows with a specified length
N. Here, we denote it as PSPLV:

PSPLV D
1

N

ˇ

ˇ

ˇ

XN

tD1
ej�xy

ˇ

ˇ

ˇ (9.9)
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where the PSPLV is bound between 0 and 1.
Another method is based on Shannon entropy (PSSE) (Tass et al. 1998). It can be

defined as:

PSSE D
Smax � S

Smax
(9.10)

where S D �
XN

kD0
pk ln pk is the entropy of the distribution of the cyclic relative

phase ‰ D �xy mod 2� . And Smax D ln N, where N is the number of bins used
for the distribution. The optimum of bins (N) is set as e0:626C0:4 ln.L�1/, where L is
the number of data points. The range of PSSE is between 0 and 1.

The third PS measure is based on conditional probability (PSCP) and is described
as follows:

Divide the interval [0, 2�] into n bins and denote the values of x mod 2� falling
into the l-th bin as � l and the number of points within this bin as Ml. Then, compute

the Ml corresponding values �ij D y mod 2�
ˇ

ˇ

ˇx mod 2�D� , where i D 1 � � � Ml.

Last, we average over all n bins ƒl D 1=Ml

XMl

iD1
ei�i;l and get the synchronization

index

PSCP D 1=n
Xn

iD1
jƒlj (9.11)

In this study, we divide the EEG data into five frequency bands, ı, � , ˛, ˇ, and �1,
as similar as WTC. The PS indexes were calculated in each frequency bands with
time epochs (Te). The Appendix B gives the discussion of the effect of epoch lengths
on each PS indexes.

9.2.4 Mutual Information Based on Kernel Estimation
(KerMI)

The mutual information is a widely used nonlinear measure with calculating the
interdependence between variables.

The mutual information between two discrete random variables x(t) and y(t)
(t D 1; 2; : : : ;N) calculated with marginal probabilities px(x) and py(y) and joint
probability pxy(x, y), which is defined as

I .x; y/ D
X

x;y

pxy .x; y/ log
pxy .x; y/

px.x/py.y/
(9.12)

The most straightforward approach for estimating probability is partitioning x(t) and
y(t) into K (k D 1; 2; : : : ;K) bins of finite size and counting the numbers of points
falling into each bins. The number of points within the bin is denoted as Qx(k),
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Qy(k), and Qxy(k). Then, the probabilities can be denoted as px D
Qx.k/

N , py D
Qy.k/

N ,

and pxy D
Qxy.k/

N .
Kernel techniques are attractive alternative to binning a distribution which is

discussed thoroughly in Silverman (1986). Rather than simply counting the points
of time series, we can determine the distance-dependent weight of each point that
employs the kernel function. In this study, we considered the Gaussian kernel
(Beirlant et al. 1997). Then, the marginal probability density and joint probability
density estimated by the Gaussian kernel estimator can be denoted as (Steuer et al.
2002),

px.x/ D
1

N

1
p
2�h2

N
X

tD1

e� 1

2h2
.x�xt/

2

; py.y/ D
1

N

1
p
2�h2

N
X

tD1

e� 1

2h2
.y�yt/

2

(9.13)

pxy .x; y/ D
1

N

1

2�h2

N
X

tD1

e� 1

2h2
..x�xt/

2C.y�yt/
2/ (9.14)

where parameter h is the window width of the kernels.
Finally, we can obtain the mutual information based on kernel estimation,

KerMI D
1

N

N
X

tD1

log




pxy .x; y/

px.x/py.y/

�

(9.15)

The approximately optimal window width h is given by hopt 	 �
�

4
dC2

�1=.dC4/

N�1=.dC4/ with dD 2 being the dimension of Gaussian kernel estimation and ¢ the
average marginal standard deviation (SD) (Silverman 1986).

9.2.5 Permutation Cross Mutual Information (PCMI)

Recently, permutation analysis and conditional mutual information were integrated
to estimate the coupling direction between two cardiorespiratory series (Bandt and
Pompe 2002). Then PCMI was proposed with integration of permutation analysis
and cross mutual information.

Given a time series xt (t D 1; 2; : : : ), form the embedding vector Xt Œxt; xtC	 ; : : : ;

xtCm	 
 with the embedding dimension m and lag 	 . Then, arrange the vector Xt in an
increasing order as a symbol of vectors:

�

xtC.j1�1/	 � xtC.j2�1/	 � � � � � xtC.jm�1/	



.
For m dimensions, there will be m ! permutations, and each vector Xt in m-
dimensional space can be mapped to one of the m ! permutations. Next, the
probability distribution of permutations in the symbol sequences can be calculated,
denoted p1, p2, : : : , pk, where m D 6.
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Based on the permutation probability distribution of X and Y, the permutation
entropy H(X) and H(Y) can be calculated. And the joint entropy of H(X, Y) from the
cross-probability distribution is described as

H.X;Y/ D �
X

xeX

X

yeY

p.x; y/ log p.x; y/ (9.16)

where p(x, y) is the joint probability distribution of X and Y.
The PCMI requires three parameters to be defined before application: the

embedded dimension m, the lag 	 , and the epoch length. Previous studies found
that at a sample rate of 100 Hz, m D 6, 	 D 1 and epoch length of 1000 resulted in
the best PCMI performance (Liang et al. 2013). Therefore we use m D 6, 	 D 1,
epochD 1000 for calculation of PCMI in this study.

9.2.6 Nonlinear Interdependence

Nonlinear interdependence provides a measure of generalized synchronization in
nonlinear systems, namely, the interdependence according to the distance of delay
vectors in bivariate data. It was demonstrated that nonlinear interdependence can not
only compute the coupling strength but also indicate the coupling direction (Quiroga
et al. 2000; Breakspear and Terry 2002a, 2002b).

In the study of Quiroga et al. (2002), nonlinear interdependence was used to
disclose the coupling information of two EEG recordings in rats. The details of the
algorithm are described as follows:

Two time series are treated as two systems X and Y, with embedding dimension
m and time lag 	 . Then reconstruct the delay vectors Xn D

�

xn; : : : ; xn�.m�1/	

�

and
Yn D

�

yn; : : : ; yn�.m�1/	

�

. Defining rn,j and sn,j, j D 1; : : : ; k as the time indexes of
the k nearest neighbors of Xn and Yn, respectively.

The mean squared Euclidean distance to its k neighbors for each Xn is defined as

R.k/n .X/ D
1

k

k
X

jD1

�

Xn � Xrn;j

�2
(9.17)

The y-conditioned mean squared Euclidean distance is defined using the time
partners of the closest neighbors of Yn replacing the nearest neighbors’ indexes

R.k/n .X jY / D
1

k

k
X

jD1

�

Xn � Xsn;j

�2
(9.18)

There are three interdependence measures defined in the Refs (Quiroga et al. 2000,
2002). The first is S(k)(XjY), described as

S.k/ .XjY/ D
1

N

N
X

nD1

R.k/n .X/

R.k/n .XjY/
(9.19)
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When the elements in Xn have an average squared radius, then R.X/ D

1=N
XN

nD1
R.N�1/

n .X/. If the systems are highly correlated, we get R.k/n .XjY/ 	

R.k/n .X/ � R.X/. While R.k/n .XjY/ 	 R.X/ � R.k/n .X/, if they are independent. Since
R.k/n .X jY / � R.k/n .X/ by construction, we have 0 < S.k/ .X jY / � 1.

A low value of S(k)(XjY) indicates the two series are independent, while high
value indicates the two series are synchronous.

The second interdependence measure H(k)(XjY) is defined as

H.k/ .X jY / D
1

N

X

log
Rn.X/

R.k/n .X jY /
(9.20)

The third interdependence measure is the normalized method, defined as

N.k/ .X jY / D
1

N

N
X

nD1

Rn.X/ � R.k/n .X jY /

Rn.X/
(9.21)

In this study, the S(k)(XjY), H(k)(XjY), and N(k)(XjY) indexes were calculated, and
the parameter selection is discussed in Appendix C.

9.2.7 Cross Recurrence Analysis

Cross recurrence analysis was introduced to examine the intricate recurrent structur-
ing between paired signals which were also time delayed and embedded in higher
dimensional space (Eckmann et al. 1987).

Considering two time series x(t) and y(t), the cross recurrence plot (CRP), which
is a bivariate extension of the recurrence plot (RP), is introduced to analyze the
dependencies between two different systems (Zbilut et al. 1998; Marwan and Kurths
2002). Similar to the RP, the cross recurrence matrix is defined by

CREx;Ey
i;j ."/ D ‚

�

" �
�

�Exi � Eyj

�

�

�

; i D 1; : : : ;N; j D 1; : : : ;N (9.22)

where N is the number of measured points Exi or Eyj and " is a threshold distance.‚.�/
is the Heaviside function (i.e.,‚.x/ D 0, if x < 0, and‚.x/ D 1 otherwise) and k�k
is a norm function.

There are various ways of quantifying the RP, such as recurrence rate, determin-
ism (DET), laminarity, and entropy of diagonal length (ENTR). In this study, the
DET index was used to evaluate the synchronization of the two systems.

Stochastic behavior causes none or short diagonals, whereas deterministic
behavior causes longer diagonals and fewer single, isolated recurrence points. The
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DET calculates the ratio of recurrence points that form diagonal structures (of at
least length lmin) to all recurrence points, which can characterize the behavior of the
nonlinear system, and is defined by

DET D

Xl

lDlmin
lP.l/

Xl

lD1
lP.l/

(9.23)

where P(l) is the frequency distribution of the lengths of the diagonal structures in
the CRP. lmin is the threshold, which excludes the diagonal lines which are formed
by the tangential motion of the phase space trajectory. For lmin D 1, the determinism
is one.

The selection of the parameters for DET is detailed in Appendix D.

9.3 Simulation Models and EEG Recordings

9.3.1 Three Nonlinear Dynamical Coupled Model Systems

In our analysis, we used the time series x1 and y1 (length of 4096) generated from
three coupled model systems to compare the synchronization measures.

The first model system consisted of two coupled Hénon maps, as proposed in
Schiff et al. (1996). The equations of motion for the driver and the responder are:

x1;nC1 D 1:4 � x21;n C bxx2;n
x2;nC1 D x1;n
y1;nC1 D 1:4 �

�

Cx1;ny1;n C .1 � C/ y21;n
�

C byy2;n
y2;nC1 D y1;n

(9.24)

The parameters were set to bx D by D 0:3 to yield identical systems with a sampling
interval of 1. The coupling strength C was varied from 0 to 0.8 in steps of 0.01.

The second system employed two coupled Rössler systems (Palus and Ste-
fanovska 2003). The equations of motion of this coupling model are:

:
x1 D �wxx2 � x3
:
x2 D wxx1 C 0:15x2
:
x3 D 0:2C x3 .x1 � 10/
:
y1 D �wyy2 � y3 C C .x1 � y1/
:
y2 D wyy1 C 0:15y2
:
y3 D 0:2C y3 .y1 � 10/

(9.25)
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The equations were integrated using Runge-Kutta 4th order with a sampling interval
of 0.3. A parameter mismatch between the two systems was introduced by setting
wx D 0:95 and wy D 1:05. The coupling strength C was varied from 0 to 2 in steps
of 0.025.

The third system adopted two Lorenz systems (Kreuz et al. 2007). The equations
of motion of this coupling model are:

:
x1 D 10 .x2 � x1/
:
x2 D x1 .28 � x3/ � x2
:
x3 D x1x2 �

8
3
x3

:
y1 D 10 .y2 � y1/
:
y2 D y1 .28:001 � y3/ � y2
:
y3 D y1y2 �

8
3
y3 C C .x3 � y3/

(9.26)

The equations were integrated using Runge-Kutta 4th order with a sampling interval
of 0.01. The coupling strength C was varied from 0 to 2 in steps of 0.025.

9.3.2 Real EEG Recordings and Preprocessing

Following the previously published work (Williams and Sleigh 1999), we studied
the EEG data recording from ten human volunteers with the permission of the
Waikato Hospital Ethical Committee. During the recording, the volunteers (Amer-
ican Society of Anesthesiologists physical status I or II) were recruited to undergo
a brief propofol anesthetic and recovered in accordance with normal procedures
of the Australian and New Zealand College of Anaesthetists (ANZCA) guidelines.
Before the experiment, all subjects gave written informed consent after obtaining
the permission of the hospital ethical committee. In order to record credible EEG
recordings, the silver-silver chloride scalp electrodes were placed at the position of
Fp1-F7 and C3-T3 with the ground electrode placed at FpZ according to the 10–20
international system to produce bipolar signals (Fig. 9.1a). The raw EEG and the
BIS values were recorded with the Aspect A-1000 EEG monitor (Aspect Medical
Systems, Natick, MA, USA) with the sampling frequencies of 256 Hz and 0.2 Hz,
respectively.

Fig. 9.1b illustrates the whole experimental sequence diagram. The propofol
intravenous infusion was 150 ml/h (1500 mg/h) in an antecubital vein via a syringe
driver pump initially, and the BIS and raw EEG data were recorded when the
infusion started. Then, a verbal list of dissimilar objects was read to the subject
at 30-s intervals who held a syringe filled with water between the forefinger and
thumb. When the syringe dropped (LoC time), the infusion and the read of the
list of dissimilar stopped, and the time was recorded as “syringe-drop time.” The
subject was then allowed to awake and given the play of a prerecorded tape of
random numbers and some verbal commands such as “move your right foot.” The
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Channel 1

Channel 2

Fp
1F7

T3 C3

Fp
Z GND INDUCTION PHASE

(Propofol infusion 150 ml/h)

Syringe-drop time

TIME
(sec)

AUDITORY
INPUT 30 30 30 30 30 30

A verbal list of dissimilar objects
(30 sec intervals)

5 5 5 5 5 5 5 5 5 5 55

Played tape of random
numbers

Verbal Commands
(10 sec intervals)

RECOVERY PHASE

Command time
Number timeObject time

a b

Fig. 9.1 (a) Positions of scalp electrodes at Fp1-F7 and C3-T3. (b) The diagram of experimental
sequence. The “object time” (circle), “syringe-drop time”, “number time” (triangle), and “com-
mand time” were marked in the diagram. A verbal list of dissimilar objects was executed in 30-s
intervals in the induction phase. The tape of random numbers was played, and verbal commands
were given in 10-s intervals in the recovery phase

Table 9.1 The event times for each subject (in seconds)

Subject “Object time” “Syringe-drop time” “Number time” “Command time”

#1 180 283 435 475
#2 150 379 732 757
#3 90 357 639 649
#4 90 421 792 802
#5 30 454 a 650
#6 120 289 360 380
#7 180 433 a 588
#8 90 202 a 545
#9 30 401 822 832
#10 90 355 560 570

“Object time” D the time point of the last object remembered for the subject during the induction
phase
“Syringe-drop time” D the time point that the subject dropped the syringe, denoting the end the
induction and time point of loss of consciousness
“Number time” D the time point of the first number remembered during emergence process
“Command time” D the time point corresponding to the subject’s correct response to verbal
command
aSubjects who did not remember any number until responding to verbal command

verbal commands lasted 5 s and they were at 10-s intervals. We recorded the time
as “command time” as soon as the subject responded the verbal command correctly
(recovery of consciousness (RoC) time). The subjects were questioned as to the first
number that they could recall and the last object that they could remember during
propofol induction, and these two time points were recorded as “object time” and
“number time,” respectively. The study was terminated about 60 s after LoC time.
Table 9.1 shows the four recorded times of all subjects.
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In the EEG preprocessing, we mainly focused on three types of artifacts: baseline
drift, head movement noise, and physiological noise (such as electrooculogram
(EOG) and electromyogram (EMG)). And different kinds of artifact were processed
with different artifact-rejection approach. Firstly, baseline drift and head movement
noise are usually in the low-frequency band (<0.5 Hz), and the function eegfilt.m
in EEGLAB was used to reduce this noise (Delorme and Makeig 2004). Using
statistical mean and standard deviation methods (Seo 2006), amplitude values
beyond the range mean ˙ 2SD or the raw data with amplitude larger than 200 �V
were rejected as considered as outliers. EOG artifacts were reduced through a
stationary wavelet transform based on an appropriate threshold (Li et al. 2008a).
Finally, inverse filtering was used to identify transient events in the EEG and was
employed to detect and remove EMG and other high-amplitude transient artifacts
(Fatourechi et al. 2007; Schlögl 2000).

In practice, the EEG data were divided into a series of 10-s epochs, with an
overlap of 75 % (in particular, the data were divided into different lengths of time
epoch for the calculation of PS indexes.) Synchronization indexes were calculated
based on these epochs. In order to evaluate the synchronization performance in
consciousness detecting, we chose three states from the whole period: awake
state (AS) (the period before “object time”), unconscious state (US) (the period
between LoC time and “number time”), and recovery state (RS) (the period after
“command time”). Then the efficacy of the indexes was evaluated by the capability
for distinguishing different anesthetic states.

9.4 Evaluation Criteria and Statistics

9.4.1 Criteria for Measures Evaluation in Model

We assume that an increase of coupling strength necessarily leads to an enhance
of synchronization. To compare the different synchronization measures in
terms of their capability to reflect different degrees of coupling, we used the degree
of monotonicity (Kreuz et al. 2007) to evaluate the dependence on the coupling
strength C of the synchronization measures.

Each synchronization index is computed at rD 81 monotonously increasing
coupling strengths for each model system, resulting in values Si, i D 1; 2; : : : ; r.
If s depends monotonically on the coupling strength C, the Si� Sj, i� j. The degree
of monotonicity is defined as

DoM D
2

r .r � 1/

r�1
X

iD1

r
X

jDiC1

sign
�

sj � si
�

(9.27)

The DoMD 1 if the sequence s1, s2, : : : , sr has a strictly monotonous increasing
trend, while DoMD�1 if it has a monotonically decreasing trend.
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9.4.2 Statistical Analysis

We did statistical analysis of comparing the strength of association of each
synchrony measure with the BIS index and propofol effect-site concentration
(derived from pharmacokinetic/pharmacodynamic (PK/PD) modeling) (Williams
and Sleigh 1999) and also the ability of each measure to separate the wakeful
from unresponsive behavioral states in the subjects. For each subject, the strength of
association between the various synchrony measures and the bispectral index (BIS)
or effect-site propofol concentration (ESPC) Ceff was assessed using prediction
probability (Pk). A Pk value of 1 means that the synchrony measure index is
perfectly concordant with the BIS or Ceff . A value of 0.5 means that the synchrony
measure is not superior to that expected by chance. We also used box plots to
visualize and evaluate the performance of each index for distinguishing different
anesthesia states. The relative coefficient of variation (CV) (the ratio of standard
deviation (SD) to mean) was used to evaluate the index stability during awake and
its sensitivity to the induction process (Li et al. 2008b). Further, the Rij was used to
assess the correlation of different synchrony measures and BIS with each other. For
all tests, P < 0.05 was considered significantly.

9.5 Results

9.5.1 Model Simulation Results

Figure 9.2a–d showed the attractors of the responder (y1(t) and y2(t)) of Hénon maps
at four coupling strengths CD 0, CD 0.6, CD 0.7, and CD 0.8, while Fig. 9.2e–h
showed the plot of the first component of the driver (x1(t)) versus the first component
of the responder (y1(t)) at corresponding coupling strengths C. The attractor of the
responder looked the same for CD 0 (Fig. 9.2a) and CD 0.8 (Fig. 9.2d). By contrast,
the driver and responder were completely independent when CD 0 (Fig. 9.2e) and
identical synchronization between driver and responder could be observed when
CD 0.8 (Fig. 9.2h). Between CD 0 and CD 0.8, a rather sharp transition to a
synchronized state took place around CD 0.7 (Fig. 9.2g). The coupled Rössler
systems at four coupling strengths CD 0, CD 0.5, CD 1, and CD 2 were shown in
Fig. 9.3. Figure 9.3a–d showed the attractors of the responder (y1(t) and y2(t)), and
a clear tendency toward the identity of driver (x1(t)) and responder (y1(t)) could be
observed in Fig. 9.3e–h. Figure 9.4a–d showed the attractors of the responder (y1(t)
and y3(t)) of coupled Lorenz systems at four coupling strengths CD 0, CD 0.4,
CD 1.15, and CD 2, whereas Fig. 9.4e–h showed the plot of the driver (x1(t)) and
the responder (y1(t)) at corresponding coupling strengths C. The transition toward
the synchronized state took place around CD 1.15 (Fig. 9.4g).

We used the simulated data x1 and y1 of three coupled model systems to calculate
the synchronization indexes mentioned in Sect. 9.2 at different coupling strength.
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Fig. 9.2 Coupled Hénon maps for different coupling strengths C. (a) and (e) C D 0, (b) and (f)
C D 0:6, (c) and (g) C D 0:7, and (d) and (h) C D 0:8
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Fig. 9.3 Coupled Rössler systems for different coupling strengths C. (a) and (e) C D 0, (b) and
(f) C D 0:5, (c) and (g) C D 1, and (d) and (h) C D 2

The index value at increasing coupling strength C for the Hénon, Rössler, and
Lorenz systems was shown in Figs. 9.5, 9.6, and 9.7.

Different model systems exhibited different behaviors with increasing coupling
strength. In Fig. 9.5, the value of synchronization indexes, with the exception of
DET and WTC, showed a rising trend with increasing coupling strength C, and they
had a steep rise at a coupling strength CD 0.7. It can be seen from Fig. 9.5a that the
COR, KerMI, PCMI, NI, and FTC values started at zero when CD 0 and showed
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Fig. 9.4 Coupled Lorenz systems for different coupling strengths C. (a) and (e) C D 0, (b) and
(f) C D 0:4, (c) and (g) C D 1:15, and (d) and (h) C D 2

less fluctuations. The PCMI rose more gradually, while the NI exhibited a sharp
increase at higher C. In terms of PSPLV, PSSE, and PSCP, high values were obtained
for uncoupled or weakly coupled Hénon systems and more fluctuations could be
observed (Fig. 9.5b). DET and WTC decreased slightly when the coupling strength
was weak and increased after CD 0.45. They stayed in the range of about 0.3 to 0.4
during the whole coupling strength. As can be seen from the Fig. 9.6, most values
of synchronization indexes saw an increase at about CD 0.2, while PSSE and DET
saw a sharp decrease. Particularly, DET had a high value (DETD 0.9095) when
CD 0 and it remained at high value during the whole range of coupling strength. By
contrast, WTC had a low value (WTCD 0.0511) when CD 0 and it stayed at low
values, reaching 0.049 when CD 2. In Fig. 9.7, a sharp rise appeared when C D
1.15 for most indexes. The KerMI and three PS indexes had a nonzero value when
C D 0, and three PS indexes showed more fluctuations. In terms of DET and WTC,
fluctuating during the whole range of coupling strength, DET gained high values
and WTC had low values as they were presented in the coupled Rössler systems
(Fig. 9.6c).

The values of DoM of the synchronization measures for the Hénon, Rössler,
and Lorenz systems were shown in Fig. 9.8. In terms of different model systems,
almost all the highest value of DoM of each synchronization measure was obtained
in Hénon and Rössler systems. The DoM values of the Lorenz system were smaller
than that of the Hénon and Rössler systems, which was due to the fluctuations
in Lorenz system. Regarding the different synchronization measures, PCMI had
the highest DoM value in both Hénon system (DoMD 0.985) and Lorenz system
(DoMD 0.770), and KerMI gained the highest DoM value in Rössler system
(DoMD 0.998). Also, we found that the higher DoM values were obtained for
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Fig. 9.5 Synchronization measures applied to coupled Hénon systems. (a) COR, KerMI, PCMI,
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NI in Hénon (DoMD 0.984) and Rössler (DoMD 0.988) systems. These results
illustrated that PCMI, KerMI, and NI had a better ability to track the increasing
coupling strength. By contrast, DET and WTC gained the negative DoM values
which meant that they even had the monotonically decreasing trend with increasing
coupling strength.

9.5.2 Application to Real EEG Recordings

FTC and WTC were calculated with pairwise channels for each subject in order to
find a better coherence method to quantify the synchronization in frequency domain.

The EEG recordings of two channels from one subject were shown in Fig. 9.9a,
b, c, and d and showed the FTC and WTC spectrums during the whole period. In
terms of FTC spectrum, EEG signals were divided into a series of 10-s epochs with
overlap of 75 %. The epochs were windowed using a Hamming window and FFT
length was set to be 128. As can be seen from the figure, FTC spectrum could not
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reflect the changes of coherence during the whole period (Fig. 9.9c). With similar
results as the spectrogram shows, the WTC spectrum in the ı, ˛, and ˇ frequency
bands increased obviously during unconscious state (Fig. 9.9d). Therefore, WTC
index was extracted from WTC spectrum to quantify the synchronization during
propofol-induced anesthesia period.

Then the synchronization indexes were computed during the whole anesthetic
period for all subjects. Figure 9.10a gives an example of one subject from the left
prefrontal and left primary motor cortex, respectively.

Figure 9.10b–c was the corresponding Ceff and BIS index. Figure 9.10d–k
showed the values of all synchronization indexes for the same subject. In each
frequency band (ı, � , ˛, ˇ, and �1), three PS indexes were calculated, and results
showed that the PSPLV and PSCP had similar results, which was consistent with
previously reported results in Quiroga et al. (2002), and the PSCP will not be further
reported. It also can be seen that the PCMI, NI, PSPLV (ı, � , ˛, and �1), and PSSE
(ı, ˇ) saw a decreasing trend with the increasing Ceff value, whereas KerMI, DET,
and WTC (ı, � , and ˛ frequency bands) showed an increasing trend which was
consistent with the Ceff .
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Fig. 9.9 (a)–(b) Two-channel preprocessed EEG recordings of one subject over the whole
experiment period. (c) The FTC spectrum of the two EEG recordings. (d) The WTC spectrum
of the two EEG recordings

The statistical parameter Pk were used to quantify the ability of predicting BIS
(PK_BIS) and the Ceff (PK Ceff ) of the synchronization measures. The box plots of Pk

values of each synchronization indexes with BIS and Ceff were shown in Fig. 9.11.
The median of Pk values of all measures were displayed in Table 9.2. It can be
seen from Fig. 9.11 and Table 9.2 that PCMI had the highest Pk value with BIS
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(PK_BIS D 0.855) and ESPC (PK Ceff D 0.794). DET ranked second with the value
PK_BIS D 0.823 and PK Ceff D 0.781. These figures demonstrated that PCMI and
DET could best predict the BIS and follow the ESPC. The Pk values of NI, KerMI,
and COR were smaller than PCMI and DET.
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Fig. 9.10 Two EEG recordings from one subject and corresponding synchronization measures
versus time. (a) Two preprocessed EEG recordings from left prefrontal and left primary motor
cortex recorded simultaneously at 256 Hz. The data were resampled to 100Hz for analysis.
The recordings include the transitions from the conscious state to unconscious state and from
unconsciousness to RoC. The four dashed gray lines are the time marks of the experiments. (b)
Effect-site propofol concentration for the same subject. (c) The BIS value of the same subject
derived from one EEG monitor. (d)–(k) Time course of synchronization measures, plotted with a
time intervals of 10 s with 75 % overlap
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Furthermore, in order to evaluate the ability of the synchronization measures in
distinguishing different anesthetic states which is essential for depth of anesthesia
monitoring, we give the synchronization indexes and the box plots of the index
values at three anesthetic states (awake, unconscious, and recovery) in Fig. 9.12.
It can be seen from Fig. 9.12 that KerMI, PCMI, NI, and DET could significantly
distinguish awake and unconscious states as well as unconscious and recovery states
(p < 0.001), whereas COR could only distinguish awake and unconscious states
(p < 0.001). As for WTC, there was a significant rise in unconscious state and a
significant drop in recovery state for all frequency bands (Fig. 9.12b–f). In terms
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Fig. 9.11 Statistical analysis of all subjects for each of the synchronization measures. (a) The
prediction probability value of the indexes with the BIS as an independent variable. (b) The
prediction probability value of the synchronization indexes with the ESPC index (Ceff ) of all
subjects

of PSPLV, the phase synchronization dropped significantly in unconscious state for
PSPLV (ı, � , ˛, and �1) and had no significant changes in recovery state, while PSPLV

(ˇ) could not distinguish the three anesthetic states (Fig. 9.12g–k). PSSE could only
distinguish three states at � and ˇ frequency bands (Fig. 9.12l–p). There was an
increase in unconscious state and a decrease in recovery state for KerMI and DET,
while the trends were opposite for PCMI and NI.

It is crucial for the DoA monitoring that the index value should stay stable during
each anesthetic state. Table 9.3 represents the CV values of synchronization indexes
that calculated with all subjects at awake, unconscious, and recovery states.

As can be seen from Table 9.3, PCMI had the low CV in awake state
(CVD 0.085), unconscious state (CVD 0.146), and recovery state (CVD 0.105).
The CV of NI, PSPLV, PSSE, and DET was lower than COR and KerMI, which were
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Table 9.2 Median of PK of different synchronization indexes with BIS and Ceff

COR
WTC
(ı)

WTC
(� )

WTC
(˛)

WTC
(ˇ)

WTC
(�1)

PSPLV

(ı)
PSPLV

(� )
PSPLV

(˛)
PSPLV

(ˇ)

BIS 0.579 0.594 0.677 0.753 0.755 0.248 0.711 0.595 0.605 0.399
Ceff 0.607 0.662 0.621 0.763 0.794 0.393 0.624 0.621 0.615 0.479

PSPLV

(�1)
PSSE

(ı)
PSSE

(� )
PSSE

(˛)
PSSE

(ˇ)
PSSE

(�1)
KerMI PCMI NI DET

BIS 0.613 0.619 0.545 0.453 0.667 0.460 0.714 0.855 0.783 0.823
Ceff 0.580 0.509 0.605 0.530 0.688 0.520 0.709 0.794 0.764 0.781

COR cross correlation
WTC coherence based on wavelet transformation
PSPLV phase synchronization based on phase-locking value
PSSE phase synchronization based on Shannon entropy
KerMI mutual information based on kernel estimation
PCMI permutation cross mutual information
NI nonlinear interdependence
DET determinism

all smaller than WTC in awake and unconscious states. These results illustrated
that PCMI, NI, PS, and DET are more robust to noise during the propofol-induced
anesthesia.

Although with various results for the synchronization measures, they also have
somewhat relevance with the BIS and Ceff . Thus, the correlation coefficient R was
calculated.

BIS and ESPC of all subjects and the averaged R over all subjects were shown in
Fig. 9.13. It can be seen that the PCMI had the highest correlation coefficient with
BIS (RD 0.846) and Ceff (RD0.739). DET ranked second with BIS (RD 0.843) and
Ceff (RD 0.703). As for PS and WTC, PSPLV (ı) and WTC (˛) correlated with BIS
and Ceff higher than that of other frequency bands. In terms of the relation among
different synchronization measures, PCMI correlated closely with DET (RD 0.949)
and NI (RD0.838).

9.6 Conclusions

We considered seven types of synchronization measures, including cross cor-
relation, cross coherence based on Fourier transforms and wavelet transform,
three phase synchronization measures at different frequency bands, three different
mutual information measure-based methods, nonlinear interdependence, and cross
recurrence analysis. These seven types of method quantify synchronization based on
different foundations. The cross correlation demonstrates the relationship of EEG
magnitude between different channels. If EEG magnitude increases in one channel
and at the same time (or within a preset time lag) it also occurs in the other channel,
the COR value will be high. The cross coherence is a time-frequency domain method
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Table 9.3 CV of the studied indexes at different anesthetic states

Awake state Unconscious state Recovery state

COR 0.633 0.186 0.299
WTC(ı) 0.684 0.479 0.636
WTC(� ) 1.206 0.743 0.981
WTC(˛) 1.334 0.705 1.118
WTC(ˇ) 1.595 0.733 0.822
WTC(�1) 2.89 1.356 2.077
PSPLV(ı) 0.243 0.280 0.323
PSPLV(� ) 0.183 0.263 0.262
PSPLV(˛) 0.350 0.290 0.309
PSPLV(ˇ) 0.326 0.490 0.480
PSPLV(�1) 0.491 0.255 0.427
PSSE(ı) 0.095 0.141 0.185
PSSE(� ) 0.064 0.059 0.177
PSSE(˛) 0.180 0.038 0.155
PSSE(ˇ) 0.089 0.079 0.096
PSSE(�1) 0.082 0.0578 0.103
KerMI 0.627 0.227 0.548
PCMI 0.085 0.146 0.105
NI 0.220 0.165 0.209
DET 0.226 0.138 0.269

The meaning of the indexes refers to the legend of Table 9.2

and can separate the cross-channel associations within different frequency bands.
In this study, we used two cross coherence evaluation methods (Fourier transform
and wavelet transform) to quantify the coherence. It is generally thought that the
wavelet decomposition has better time resolution than the Fourier-based method.
Phase synchronization analysis is a classic neuronal oscillation analysis method
that is somewhat independent of the raw amplitude of the signal. The instantaneous
phase extraction is based on the WHWT, which was proposed in our previous study
(Li et al. 2011). Mutual information has been widely applied in EEG analysis as a
way of estimating information integration between different EEG channels or brain
regions for mechanism analysis and neurological disease diagnosis, such as epilepsy
seizure, Alzheimer’s disease and autism, etc. (Abásolo et al. 2008; Hall and Sarkar
2011; Langen et al. 2009). It is based on the hypothesis that state information of one
channel can be used to reduce the uncertainty for understanding the other channel
if they are associated in some way. In practical terms, the probability density can be
estimated in a number of different ways. We applied two different methods, kernel
density estimation and permutation entropy, to calculate the MI value. Nonlinear
interdependence and cross recurrence analysis are nonlinear time series analysis
methods based on reconstruction of the phase space of the signals. The nonlinear
interdependence measure of S(k)(XjY) and the determinism measure can be used as
indexes to quantify synchrony. Although we considered a large variety of synchrony
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Fig. 9.13 Correlation coefficients R among different synchronization measures, BIS, and Ceff

averaged over all subjects

measure, it is impossible to include all existing measures in this study. Of the seven
types of methods tested, each has their own representative features. The measures
we have studied probe different aspects of the system or time series, such as phase,
symbolic dynamics, time-frequency relationships, etc.

Neurophysiological signals are complex, nonlinear, and nonstationary. The
features of the coupling dynamics underlying these signals, however, are not well
understood (Andrzejak et al. 2003), making the choice of evaluative measure
somewhat arbitrary. At the very least, the measures to be used must be validated
against a test standard. To evaluate the performance of the synchrony measures
we utilized, three nonlinear coupling models were used, upon which each method
was tested. The results show that the synchronization measures could track the
changes of coupling strength in the models, but with differing, somewhat nonlinear
characteristics. All methods show an abrupt change at a certain coupling strength
threshold.
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The synchronization measures were able to distinguish the different anesthesia
states (see Fig. 9.12) with the exception of COR. Of all the measures, PCMI appears
to be superior to the other methods, for the following reasons. Firstly, it is less
sensitive to noise in the EEG signal during the awake state (seen in Fig. 9.9).
Furthermore, PCMI correlated closely with propofol effect-site concentration and
BIS index (a higher Pk and Rij (see Table. 9.2)) and is less affected by the amplitude
of the EEG (the distribution probability calculation based on the permutation (Li
et al. 2008c; Olofsen et al. 2008)).

Interestingly, the WTC, KerMI, and DET methods exhibit an opposite trend of
changes in anesthetic levels compared with the other measures. This phenomenon is
difficult to explain in the context of understanding anesthetic mechanisms. To some
extent it can be explained on the basis of the simulation model analysis, which
shows that WTC and DET change out of phase with the other methods. However,
the KerMI index increases with increasing coupling strength in the simulations and
appears to contradict the reductions seen with the other measures when applied
to the EEG. Clearly, the EEG signal is more complex than simulated by simple
nonlinear models, and further insight is required into the underlying principles
underpinning the different synchrony measures.

Although all synchrony measures could track this fundamental shift in EEG
pattern, each algorithm responded in characteristic fashion. The WTC is a time-
frequency measurement method, which characterizes the phase synchrony at each
frequency point. It can be seen that the spectrum of the WTC is similar to
the EEG spectrogram of the recordings computed using a short-time Fourier
transform. WTC is based on the summation of the coherence of the frequency
band at each time point. Because it takes signal amplitude into account, the value
of WTC at ı frequency band increases most obviously with the deepening of
anesthesia. Among the three phase synchronization methods, which measure the
phase difference of two EEG signals, only PSPLV and PSCP at the ı frequency band
clearly distinguished the awake state from unconscious state. PCMI and KerMI
are both mutual information measures, but their calculation principles are different.
PCMI is related to the permutation pattern probability distribution. With deepening
anesthesia the permutation pattern decreases because the EEG signals become more
regular. On the other hand, the KerMI quantifies the difference in amplitude between
time-domain neighboring signals. The high value of KerMI during anesthesia is on
account of the small difference in signal magnitude between adjacent signals. The
slower fluctuation of signal, the smaller the difference between adjacent points. So,
when anesthesia deepens and the signals become regular, the KerMI will increase.
The nonlinear method DET, which is based on the recurrence plot, describes the
complexity of the nonlinear system. When anesthesia deepens, the EEG signal
becomes more regular and the DET measure will increase with this trend. In our
case we are looking at the cross recurrence, i.e., the recurrence occurs when the
trajectory in one channel becomes close to that of the other channel, thus reflecting
the inner coupling changes during anesthesia.

It is not meaningful to attempt to quantify on the basis of one or other measure
the extent to which synchronization either strengthens or weakens during anesthesia.
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Because each measure is derived from a different perspective, their outputs can
be seen as complementary, not conflicting. Such as, we could say that coherence
between two brain areas during anesthesia is increased based on the WTC. At
the same time, mutual information based on the permutation measure decreases
with deepening anesthesia. Further, PCMI, PSPLV at ı frequency band (ı .1�4Hz/),
and NI show a declining trend with increasing propofol concentration, reflecting
a reduction in long-range coupling. From the perspective of information theory,
PCMI is based on the permutation pattern probability distribution, which decreases
with the deepening of anesthesia. This decreasing pattern to some extent reflects the
marked decrease in the mean firing rate in the cortex (Olofsen et al. 2008; Hentschke
et al. 2005). Moreover, Lewis et al. found that propofol-induced unconsciousness is
associated with an increase in the low-frequency EEG (<1 Hz) band. Consistent
with these observations, we found that PSPLV and PSCP values at the delta frequency
band exhibit an abrupt change at the loss of consciousness point. This suggests
that the appearance of low-frequency activity might be a good proxy for loss of
long-distance coupling (Lewis et al. 2012). The NI index significantly drops in
unconsciousness state in our study, suggesting that disparate brain regions have
weaker interdependence with increasing drug effect. This is consistent with the
findings of previous studies (Lee et al. 2009b; Jameson and Sloan 2006; Schrouff
et al. 2011). The increase in wavelet coherence of the slow oscillation (<1Hz),
ı rhythm (1–4Hz), and ˛ rhythm (8–13Hz) during deep anesthesia suggests that
propofol enhances corresponding band activity. We found that the high WTC values
during deep anesthesia state are also consistent with the results of our previous study
(Li et al. 2013).

In conclusion, we found that most of the synchronization measures that we
investigated can track the anesthetic effect on the EEG. However, each measure
responded in distinctive fashion, on account of their corresponding characteristic
principles. Each method may be seen to capture specific synchrony criteria. It is
important to underscore that these issues need to be carefully taken into account
when formulating and verifying theories explaining anesthesia mechanisms. The
different measures responded in characteristic fashion, suggesting that each may
tell us something different about the mechanism by which anesthetic drugs disrupt
cortical information processing and coupling. These in-depth analyses have impor-
tant implications for understanding of other neural mechanisms.

Appendices

In order to evaluate the synchronization measures in different anesthetic states
efficiently, we discussed the parameter selections of COR, PS, NI, and DET. The
indexes corresponding to the states of awake, unconscious, and recovery were
selected for comparison. The values of synchronization indexes under different
parameters were shown in Fig. 9.14, 9.15, 9.16, 9.17, and 9.18.
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Fig. 9.14 COR values at
different time lag 	 in awake
state (AS) (red), unconscious
state (US) (green), and
recovery state (RS) (blue)
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in AS (red), US (green), and RS (blue)

Appendix A. COR

Figure 9.14 shows the cross correlation indexes of different delay times 	 at different
study states (red, awake state (AS); green, unconsciousness state (US); and blue,
recovery state (RS)) for all ten subjects under propofol anesthesia. We chose two
positive delay times, two negative delay times, and the zero delay time. The cross
correlation values are positive and higher when 	 D 0 at both the awake state and
recovery state. Besides, the COR value reveals quite large negative correlation at the
deep anesthesia state when 	 D 0. For this reason, we choose the zero delay time.
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Appendix B. PS

Figures 9.15 and 9.16 show the PSPLV (ı, � , ˛, ˇ, and �1) and PSSE (ı, � , ˛, ˇ,
and �1) indexes at different Te in awake state (red), unconscious state (green), and
recovery state (blue). It can be seen from Fig. 9.15 that the PSPLV values of each
frequency band decreased with Te increasing. The difference between awake and
unconscious states of PSPLV (ı) was larger than PSPLV in other frequency bands. By
contrast, PSSE had some fluctuation at different epoch lengths Te (Fig. 9.16). And
Te D 20 was selected in our study.

Appendix C. NI

Firstly, Fig. 9.17a shows the NI values with the parameter of time lag 	 D 1, nearest
neighbors kD 20 in different embedding dimension m in AS (red), US (green),
and RS (blue) of all subjects. The NI values with 	 D 2 and kD 20 in different
m were shown in Fig. 9.17b. It can be seen from Fig. 9.17a and b that NI increased
monotonically with increasing m. And the difference of NI indexes between these
states became wider with the increase of m. Considered the calculation complexity,
mD 5 was selected for the NI indexes. Then, Fig. 9.17c shows NI indexes with
mD 5 and kD 20 in different 	 . The difference of NI indexes between awake and
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unconscious states became smaller with increasing 	 , so we chose 	 D 1. Finally,
the NI values with mD 5 and 	 D 1 in different nearest neighbors k were shown in
Fig. 9.17d and we selected kD 20 in this study.

Appendix D. DET

Figure 9.18a, b, and c shows the DET value range with embedding dimension mD 3,
mD 4, and mD 5, respectively, in threshold of diagonal length lminD 2 in different
time lag 	 in awake state (red), unconscious state (green), and recovery state (blue)
of all subjects. mD 3 and 	 D 2 were selected for the great DET difference between
awake and unconscious states. DET indexes with mD 3 and 	 D 2 in different lmin

were shown in Fig. 9.18d and lminD 2 was selected.
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Chapter 10
Estimating Coupling Direction Between
Neuronal Populations

Gaoxiang Ouyang and Xiaoli Li

10.1 Introduction

Synchronization phenomena have been found in biological systems; examples
include cardiorespiratory interaction (Rosenblum 2002) and neuronal oscillations
(Rosenblum and Pikovsky 2001; Roelfsema et al. 1997). Synchronization analysis
has been a focus of attention with respect to biological systems (Rosenblum and
Pikovsky 2001). Synchronization between brain areas has been the subject of a num-
ber of studies in both the normal (Roelfsema et al. 1997; Rodriguez et al. 1999) and
diseased brain (Uhlhass and Singer 2006). To further understand synchronization
in the brain, we need to identify the coupling direction between neuronal signals
recorded from different brain areas. In this chapter, we present a novel methodology
based on permutation analysis and conditional mutual information for estimation of
a directionality index between two neuronal populations (Li and Ouyang 2010).
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10.2 Coupling Direction

Generally, synchronization analysis contains the coupling strength and direction
between neural series. Several methods have been proposed to estimate the coupling
direction in bivariate neural series. First of all, a Granger causality-based method has
been proposed to investigate the coupling directions of neuronal signals (Brovelli
et al. 2004; Lungarella and Sporns 2006; Wang et al. 2008). The results have
shown that the Granger causality-based method can be applied successfully to linear
models, but it has been demonstrated that the change in cross-prediction error cannot
be applied directly to indicate the coupling direction in nonlinear systems (Palus
and Vejmelka 2007). Information theory-based methods also have been proposed
to estimate the coupling direction between neural series; typical methods include
transfer entropy (Schreiber 2000) and conditional mutual information (Palus et al.
2001; Vejmelka and Palus 2008). The advantages and disadvantages of the coupling
direction based on information theory can be found in (Hlavackova-Schindler
et al. 2007). The detection of relationships between the instantaneous phases of
interacting oscillators also can be used to identify the coupling direction, including
the evolution map approach (EMA) and the instantaneous period approach (IPA)
(Rosenblum 2002; Rosenblum and Pikovsky 2001). Unfortunately, the EMA and
IPA are sensitive to noise in the time series, so they are not very suitable for
analyzing noisy and non-stationary EEG recordings. In order to detect the weak
coupling direction of oscillators, state-space and phase-dynamics approaches have
been proposed (Smirnov and Bezruchko 2003; Smirnov and Andrzejak 2005).
The state-space approach requires optimal embedding parameters, and the phase-
dynamics approach requires a strong oscillatory behavior, so the application of these
two methods is also limited. Furthermore, these two approaches are sensitive to
noise in the time series, like EPA and IPA.

Recently, order pattern analysis and conditional mutual information have been
integrated to estimate the coupling direction between two time series in interacting
oscillators and apply it to cardiorespiratory data (Bahraminasab et al. 2008). In
this chapter, we apply this new method to estimate the coupling direction between
neuronal populations based on the probability distribution of order patterns and
conditional mutual information. The so-called permutation conditional mutual
information (PCMI) is compared with the traditional conditional mutual information
method. The performance of the PCMI method is assessed by utilizing a coupling
neural mass model.

10.2.1 Mutual Information

Consider two neuronal populations XDfxtg and YDfytg, which are recorded
from two different brain areas, respectively. The probability distribution functions
of neuronal populations are denoted as p(x) and p(y), and their joint probability
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function is defined as p(x,y). In the mutual information computation, the probability
distribution functions can be estimated by a histogram method. A key parameter in
this method is to determine the number of bins (denoted as NBin in the study), and
then the entropy of X and Y are defined as

H.X/ D �
X

x2X

p.x/ log p.x/ (10.1)

and

H.Y/ D �
X

y2Y

p.y/ log p.y/ (10.2)

The joint entropy of H(X,Y) is defined as

H .X;Y/ D �
X

x2X

X

y2Y

p .x; y/ log p .x; y/ (10.3)

The common information contained in X and Y can be estimated by the following
mutual information (MI) calculation:

I .XIY/ D H.X/C H.Y/ � H .X;Y/ (10.4)

MI is a measure derived from Shannon’s information theory to estimate the
information gained from observations of the effect of one random event on another
(Hlavackova-Schindler et al. 2007). Intuitively, the mutual information I(X;Y)
measures the information about X that is shared by Y. The relation between MI
and entropy is illustrated in Fig. 10.1. If X and Y are independent, then X contains
no information about Y and vice versa, so their mutual information is zero. If X and
Y are identical, then all information conveyed by X is shared with Y. Knowing X
reveals nothing new about Y and vice versa; therefore, the mutual information is the
same as the information conveyed by X (or Y) alone, namely, the entropy of X. For
more details of MI, see (Hlavackova-Schindler et al. 2007).

Fig. 10.1 Diagram
indicating the mutual
information common to
variables X and Y. The mutual
information I(X;Y) is defined
by the intersection of the two
sets, whereas the joint
entropy H(X,Y) is defined by
the union of the two sets

H(X ) H(Y )

H(X,Y )

H(X |Y ) H(Y |X )I(Y ;X )
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10.2.2 Conditional Mutual Information and Directionality

If the random variables X and Y are statistically independent, the joint entropy
H(X,Y) becomes H(X,Y)DH(X)CH(Y). In general, the joint entropy may be
expressed in terms of conditional entropy H(XjY) as follows:

H .X;Y/ D H .XjY/C H.Y/ (10.5)

The conditional entropy H .XjY/ of X given Y is denoted as

H .XjY/ D �
X

x2X

X

y2Y

p .x; y/ log p .xjy/ (10.6)

Then the conditional mutual information (CMI) between two series X and Y is
defined as (Palus et al. 2001; Vejmelka and Palus 2008)

IıX!Y D I .XI�ıYjY/ D H .XjY/C H .�ıYjY/ � H .X; �ıYjY/ (10.7)

and

IıY!X D I .YI�ıXjX/ D H .YjX/C H .�ıXjX/ � H .Y; �ıXjX/ (10.8)

where�ıX is an observable process derived from the process X in its future ı steps,
i.e., �ıX W xtCı D xt. The information that is transferred from the process X (or Y)
to the process Y (or X) at some later point in time can be defined as

IX!Y D
1

N

N
X

ıD1

IıX!Y (10.9)

and

IY!X D
1

N

N
X

ıD1

IıY!X (10.10)

Based on the conditional mutual information, the directionality index between X
and Y can be defined by

DXY D

�

IX!Y � IY!X

IX!Y C IY!X

�

(10.11)

The value of DXY ranges from 1 to 1. DXY > 0, meaning that the process X drives Y;
DXY < 0 means that the process Y drives X, and DXY D 0 means that the interactions
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between X and Y are symmetrical. In the method described above, two parameters
must be determined, i.e., the number of bins (NBin) and the future step ı.

10.2.3 Permutation Conditional Mutual Information

The EEG is a continuously variable signal, the amplitude and frequency of which
change over time. Actually, the signals are composed of ascending and descending
patterns. The statistical analysis of these two simple patterns may help us to indicate
the change in a dynamical system. To obtain more information from a dynamical
signal, we may set up more complicated patterns (see Fig. 10.2b, ®1–®6). In this
study, these different patterns are referred to as the order pattern. The EEG signals
consist of a sequence of order patterns. Based on the probability distribution of these
order patterns, a new complexity measure called permutation entropy is proposed
(Bandt and Pompe 2002) and has been successfully used to analyze neural signals
(Li et al. 2008, 2014).

The algorithm for the calculation of the probability distribution of order patterns
is very simple. Figure 10.2a shows the original series (upper) and the discrete points
(bottom) for the short interval, marked by a black bar. For example, the first three
points belong to the ®2 pattern. The main procedure of the algorithm is as follows:

1. Given a sequence of order patterns [order: mD 3, so 3!D 6 different patterns; see
Fig. 10.2b].

2. An epoch of the neural signal is extracted, and the number of different patterns
in the signal is estimated [see Fig. 10.2a].

3. The probability of occurrence of each pattern in the signal is calculated [see
Fig. 10.2c]. Let f .�i/ ; i 2 .1 W mŠ/ denote the frequency of the order pattern in
the time series; its relative frequency is defined as

p .�/ D f .�/ = .L � .m � 1/ 	/ (10.12)

where L is the length of the time series. In the following section, p(�) is
simplified as p(x) for the x signal.

If we analyze two signals [one is shown in Fig. 10.2a; another signal is not plotted
here], the joint probability of the occurrence of each order pattern in the signals,
p(x, y), can be calculated as shown in Fig. 10.2d.

Once we obtain the probability distribution functions of two series X and Y,
new conditional mutual information is obtained through the replacement of the
probability distribution functions (Bahraminasab et al. 2008), called permutation
conditional mutual information (PCMI). It is noted that the probability distribution
function in PCMI is based on the order pattern of signals, but in CMI, it is based
on the amplitude of signals. The advantages of the PCMI will be discussed in the
following sections through comparison with the CMI method.
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Fig. 10.2 The probability distribution of order patterns in simulated EEG. (a) A segment of
simulated EEG (upper) and some order patterns (order D 3 and delay D 1) (bottom). (b) All order
patterns of the order of 3 (3!). (c) The probability distribution of order patterns of EEG X and Y.
(d) The cross-probability distribution of order patterns for EEG X and Y

10.3 Simulation Analysis and Results

10.3.1 Coupled Neural Mass Model

The neural mass model is based on physiologically relevant parameters (Wendling
et al. 2000). The advantage of this model is that it can be used to validate the perfor-
mance of the signal processing through comparison with the model parameters; in
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contrast, the signal processing method validated by the neural mass model can give
a direct physiological interpretation of real data from animals or human beings.

In this study, a neural mass model (Wendling et al. 2000; Jansen and Rit 1995;
Lopes da Silva et al. 1974) is applied to generate two coupling or non-coupling
populations in order to test the performance of the proposed method. The following
set of seven differential equations governing the model (nD 1,2) is below (Wendling
et al. 2000):
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(10.13)

All values for the parameters of the model are set based on a physiological basis,
as listed in Table 10.1, the details of which can be found in (Wendling et al. 2000;
Jansen and Rit 1995). In the model, intrapopulation behavior is influenced primarily
by the excitatory neuron parameter, A, and the inhibitory neuron parameter, B. The
parameters A and B modulate the balance of excitation and inhibition (he.t/ D
u.t/Aate�at and hi.t/ D u.t/Bbte�bt). By altering the excitatory and inhibitory

Table 10.1 Physiological interpretation and standard values of model parameters (adapted from
(Wendling et al. 2000; Jansen and Rit 1995))

Parameter Interpretation Standard value

A Average excitatory synaptic gain 3.25 mV
B Average slow inhibitory synaptic gain 22 mV
a Dendritic average time constant in the

feedback excitatory loop
a D 100 s�1

b Dendritic average time constant in the slow
feedback inhibitory loop

b D 50 s�1

Cl, C2 Average number of synaptic contacts in the
excitatory feedback loop

C1 D C, C2 D 0.8 C (with C D 135)

C3, C4 Average number of synaptic contacts in the
slow feedback inhibitory loop

C3 D C4 D 0.25 C

ad Average time delay on efferent connection
from a population

ad D 33 s�1

Kij Connectivity constant associated with the
connection between two populations i to j

No standard value
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parameters, the model can produce signals that strongly resemble intracranial EEG
recordings (Wendling et al. 2000). Another important parameter is the connective
strength, K; this parameter manages the degree and coupling direction between
neuronal populations. In this study, two coupled neuronal populations are generated
to test its directionality index by altering the above three parameters, in particular
the connective strength, K.

In the model described above, the extrinsic input p(t) represents Gaussian white
noise with an assigned mean value and variance [mean(p) D90, STD(p)D 30] that
describes the overall density of action potentials coming from other regions. For
each simulation described below, the differential equa tions are solved numerically
using a fourth-fifth order Runge-Kutta algorithm (Matlab code: ode45.m). Initial
conditions are set to zero in all simulations, and an integration step size of 5 ms
(sampling frequency: 200 Hz) is used. The first 1000 points of the simulated signals
are discarded in order to avoid transient behavior.

10.3.2 Directionality Index with Different Coupling Strength

Given A1DA2D 3.25 and B1DB2D 22 for two unidirectional coupling popula-
tions, and the coupling parameter K21D 0, K12 changes from 0 to 20 with a step
of 2. Two neuronal populations of 10 s are generated. In this case, population 1
drives population 2 with the different coupling coefficients. Figure 10.3a plots the
directionality index estimated by PCMI and CMI; the directionality index increases
with the increase in the coupling coefficients. With the connective strengths K12D 0
and K21D 0, the directionality index of PCMI and CMI is close to 0, indicating that
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Fig. 10.3 Influence of coupling coefficients on the directionality index for unidirectional coupled
neuronal populations (a) and bidirectional coupled neuronal populations (b). Symbols represent
the mean values of entropy for each group, and bars represent the standard deviation
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there are no coupling relations between populations 1 and 2. However, the variation
of the CMI directionality index is more intense. As the connective strength K12

increases from 0 to 20, the directionality index of both PCMI and CMI increases
with the increase of the connective strength K12. Both PCMI and CMI can indicate
correctly the coupling direction between two populations, namely, that population 1
drives population 2.

Then, we investigate the performance of PCMI and CMI for bidirectional neural
mass populations. Given A1DA2D 3.25 and B1DB2D 22 for two unidirectional
coupling populations and the coupling parameter K21D 4, K12 changes from 0 to
20 with a step of 2. When K12 is less than K21, population 2 drives population 1,
and vice versa. Two neuronal populations of 10 s are generated. Figure 10.3b plots
the directionality index estimated by PCMI and CMI with respect to the coupling
strength; the directionality index increases with the increase of the coupling strength
of K12. When K12DK21D 4, the directionality index is around zero; when K12 < K21,
the directionality index is less than 0, and when K12 > K21, the directionality index
is greater than 0. In the comparison between PCMI and CMI, PCMI is superior to
CMI in identifying the directionality index.

10.3.3 Robustness of Directionality Index Against Noise

The robustness of the directionality index is evaluated further by adding noise into
the neuronal populations. Only the measurement noise is considered here, which
does not perturb the inherent dynamics of systems. Independent sources of white
noise are added to the neuronal populations generated by neural mass model. Given
A1DA2D 3.25 and B1DB2D 22 for two unidirectional coupling populations and
the coupling parameters K12D 10 and K21D 0, two neuronal populations of 10 s
are generated. Population 1 drives population 2. The signal-to-noise ratio (SNR)
ranges from -10 dB to 20 dB with a step of 2 dB. The directionality index at the
different noise intensities is tested. As seen in Fig. 10.4a, the directionality index
estimated by PCMI and CMI decreases with the amplitude of added white noise.
It is obvious that the PCMI method can identify the directionality index when the
SNR > 6. With further increases in SNR, PCMI is superior to CMI in identifying the
coupling direction between the two neuronal populations.

Then, we investigate the performance of PCMI and CMI for bidirectional neural
mass populations. Given A1DA2D 3.25 and B1DB2D 22 for two oscillators and
the coupling parameters K12D 2 and K21D 10, population 1 drives population 2.
Two neuronal populations of 10 s are generated. The signal-to-noise (SNR) ratio
ranges from -10 dB to 20 dB with a step of 2 dB. The directionality index at
the different noise intensities is tested. Figure 10.4b plots the directionality index
estimated by PCMI and CMI with respect to the levels of white noise. It can be
seen that the directionality index of PCMI increases with the increase of SNR.
When SNR is greater than 2, the PCMI method can identify the directionality
index. However, the CMI method cannot indicate the coupling direction between
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populations 1 and 2. PCMI is superior to CMI in identifying the coupling direction
between the two neuronal populations.

10.3.4 Application to Epileptic Seizures

Figure 10.5a shows 60 s pre-ictal to ictal segments of neuronal population activity
from the CA1 and CA3 of rat hippocampus. The seizure starts at approximately
6.5 s in the recording. The seizure activity recorded from the RCA1 (right CA1)
begins suddenly, while that recorded from RCA3 (right CA3) develops more
gradually. First, we investigate the coupling direction of CA1 and CA3 in the right
hippocampus. The filtered directionality index between the RCA1 and RCA3 over
time is plotted in Fig. 10.5b. It is obvious that most of the coupling direction between
RCA1 and RCA3 is significant and the RCA3 drives RCA1 for the whole duration
of the seizure.

10.4 Conclusions

In this chapter, a novel method is proposed to analyze the coupling direction of
bivariate neuronal populations. A simulation study on the efficacy of the new
method as a tool to identify causal connectivity between neuronal populations has
been presented. Simulations suggest that the PCMI method is adequate to estimate
the coupling direction under a large range of SNRs and coupling efficiency and
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Fig. 10.5 The coupling dynamics between the right CA1-CA3 in the hippocampus from the pre-
ictal to ictal states. (a) The recordings at the CA1 and CA3 in the hippocampus (right: R). (b) The
filtered directionality index between the right CA1 and CA3

that it is better than the traditional CMI method. The PCMI was applied to analyze
the coupling dynamics in the hippocampus (CA1 and CA3) during pre-ictal to ictal
states. The relationship between the information flow and the propagation of seizure
in the CA1 and CA3 can be described by the PCMI method. A further interesting
question is whether the method proposed herein is suited to analyze the interaction
in real EEG recordings. This issue needs to be investigated in future studies.
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Chapter 11
The Comodulation Measure of Neuronal
Oscillations

Duan Li and Xiaoli Li

11.1 Introduction

Recent observations suggest that these neuronal oscillations at different frequency
bands interact (e.g. Steriade 2001; Jensen and Colgin 2007; Isler et al. 2008). These
comodulations are believed to be associated with ‘self-organising’ and ‘emergent
properties’ of neural networks; thus the measurement of the comodulation rela-
tionship is a requirement for the exploration and validation of the functional roles
of neuronal populations. The traditional method is the bispectral (bicoherence)
analysis (Nikias and Raghuveer 1987), which has been developed to inspect the
comodulation within the output from neural populations (Schanze and Eckhorn
1997; Schack et al. 2002). The bispectral analysis includes amplitude and phase
information and is a very good tool to quantify quadratic phase coupling (QPC)
amongst the components of a signal, so it can be used to characterise the non-
linearity of the dynamical system (Koronovskii and Hramov 2002). In this chapter,
we concentrate on the bicoherence method, which is derived from the bispectral
analysis but with the amplitude normalised to one; in this way, the bicoherence can
be used to isolate phase relationship between oscillations with different frequency
bands.
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Bicoherence analysis has been applied successfully to evaluate QPC types of
non-linear effects in neural series (e.g. Shils et al. 1996; Schanze and Eckhorn
1997; Schack et al. 2002; von Stein et al. 2000), in particular, to investigate the
effect of anaesthetic drugs on the electroencephalogram (EEG) (Johansen and Sebel
2000; Hagihira et al. 2002, 2004; Hayashi et al. 2007, 2008; Morimoto et al. 2006).
This method has become a core technology of the Bispectral Index System (BIS)
monitor (Aspect Medical System, Natick, MA). In order to successfully apply
Fourier bicoherence to practical EEG signals, at least 3 min of data (at sampling
rate 128 Hz, epoch length 2 s and 75 % overlap) are required to calculate reliable
bicoherence values (Hagihira et al. 2002). However neuronal interactions change
quickly, so we are forced to analyse the phase coupling of neuronal oscillations over
relatively short periods of time. For this reason, Fourier analysis is not well suited
for the comodulation measure of neuronal oscillations.

Recently, wavelet bicoherence was proposed to detect the phase coupling with
reasonable temporal resolution (van Milligen et al. 1995; Chung and Powers 1998;
Larsen et al. 2001). In computing wavelet bicoherence, a Morlet function is often
applied. The estimation of Morlet wavelet-based bicoherence needs a relatively
complex algorithm and some parameter choices. To overcome the drawback of
the traditional continuous wavelet transform (CWT), a general harmonic wavelet
transform (GHWT) was introduced (Newland 1993, 1994a, b), which is similar to
the ordinary discrete wavelet transform for multiresolution analyses using the fast
Fourier transform algorithm. GHWT can provide a great deal of freedom for signal
representation with a higher computational efficiency. A distinct advantage of the
GHWT is that it combines advantages of the short-time Fourier transform and the
CWT. The comparison between the GHWT and Morlet wavelet transform can be
found in (Simonovski and Boltezar 2003).

In this chapter, we utilised GHWT to design a wavelet-based bicoherence
statistic which uses a phase randomisation method to estimate the cross-frequency
interactions of neuronal population, the performance of which was evaluated using
a simple simulation study. In the following, this improved wavelet bicoherence was
applied to measure the phase coupling mechanism in neuronal oscillations during
waking and sleep states of rats and in scalp EEG signals recorded from human
during general anaesthesia.

11.2 Bicoherence Measures

11.2.1 Fourier Bicoherence

The bicoherence, as the normalised form of bispectrum, is a measure of the
amount of QPC that occurs in a signal. If a signal contains three components with
frequencies of fp, fq and fpC fq, and the corresponding phases satisfy the relationship
'(fp)C'(fq)D'(fpC fq)C const, the three waves are quadratic phase coupled, and
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the bicoherence value should be equal to 1, which will produce a peak in the
bicoherence matrix at the intersection between fp and fq; if no such relation is
satisfied, the bicoherence value is 0.

To estimate the bicoherence based on the Fourier transform, the data x(t) are
segmented into overlapping epochs. For the kth epoch xk(t), the mean is removed, a
Blackman window is applied, the Fourier transform is computed, and its bispectrum
is estimated as

BF
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�

D Xk
�
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(11.1)

where Xk .�/ is the Fourier transform of xk(t) and * denotes the conjugate operation.
The spectrum is computed as Pk .�/ D jXk .�/j

2. The bispectral and spectral estimates
are smoothed across multiple epochs, and the bicoherence is then estimated as
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where BF(fp, fq) is the average estimate of the bispectrum over multiple epochs and
P .�/ is the average estimate of the power spectrum.

11.2.2 Wavelet Bicoherence

The wavelet bicoherence can be seen as a generalisation of the Fourier bicoherence.
It can detect a temporally intermittent correlation due to its improved time resolution
(van Milligen et al. 1995).

The CWT provides a method for the time-scale analysis of a nonstationary signal.
By adjusting a wavelet function  (t), we generate a set of wavelets with different
time-scale properties. The wavelet coefficients describe the similarities between the
signal and the wavelet at different scales and time translations (Mallat 1999). In
CWT, several wavelet functions, such as Gabor, Morlet (Torrence and Compo 1998)
and general harmonic wavelet functions (Newland 1994a), may be selected. In this
chapter, the general harmonic wavelet function was adopted, which is defined as

 .t; �;A;B/ D wH .t;A;B/ ei�t (11.3)

and

wH .t;A;B/ D

(

AC B cos .� t/ ; jtj < 1
0; otherwise

(11.4)

In this study, the wH(t,A,B) is a Hanning window function and A D B D

1=
p
3 (Simonovski and Boltezar 2003). Given a series of centre frequencies
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fp (pD 1,2, : : : ,L) and its frequency bandwidth fb, the GHWT of a signal x(	 ) is
denoted as ax(fp, 	 ). The wavelet power spectrum in the frequency domain is defined
by
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where ax(fp, 	 ) is the GHWT of the signal and T is the finite time interval of the
signal.

In an analogous fashion to the Fourier bispectrum, a wavelet bispectrum (van
Milligen et al. 1995) is defined by
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The peaks in the wavelet bispectrum indicate phase and/or frequency interaction
at bifrequency (fp, fq) in the time interval T. The wavelet bispectrum, which is a
complex value, may be expressed by its magnitude A and biphase 'd:
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where the biphase 'd can be calculated by
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The normalised squared wavelet bicoherence (termed as WBIC) is defined by (van
Milligen et al. 1995)
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which characterises the QPC between different frequency components of the signal,
ranging from 0 to 1. If the signal to be analysed contains three components
(whose frequencies fp and fq and fpC fq) and the corresponding phases satisfy
the relationship '

�

fp
�

C '
�

fq
�

D '
�

fp C fq
�

; or the biphaseD 0, the wavelet
bicoherence should be close to unity, and the three waves of the different frequencies
are quadratic phase coupled; in contrast, if the relationship fails to hold, the wavelet
bicoherence is equal to zero, and the three waves are not quadratic phase coupled.
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11.2.3 Improved Wavelet Bicoherence

11.2.3.1 Phase Randomised Wavelet Bicoherence Method

The bicoherence-based QPC detector should meet the following requirements (Kim
et al. 2007): (I) If a complete QPC exists in the signal x(t) at bifrequency (fp,
fq), then the normalised squared bicoherence is equal to 1, i.e. (bxxx(fp, fq))2 D1,
and the biphase is equal to zero, i.e. 'd

�

fp; fq
�

D 0; (II) If no QPC in x(t), then
(bxxx(fp, fq))2 D0 and 'd

�

fp; fq
�

2 .��; �
. Generally, the traditional bicoherence
method does not meet the requirement II. In (Kim et al. 2007), a phase randomi-
sation method was proposed to improve the detection of bicoherence. The phase
randomisation for the bispectrum of each segment of a signal is defined as

QB
�
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�

D E
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ˇ

ˇX
�
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�

X
�

fq
�

X �
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fp C fq
�ˇ

ˇ ejR'd.fp;fq/
i
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where E[] denotes an expectation operator, X .�/ is the discrete Fourier transform
of the realisation of x(t), ejR'd.fp;fq/ is termed as the phase randomisation, and R
is a random variable. If the QPC is present in the signal, namely, 'd

�

fp; fq
�

D 0,

then ejR'd.fp;fq/ D 1 regardless of the value of R; if the QPC is not present in the

signal, 'd
�

fp; fq
�

2 Œ��; �
, then the E
h

ejR'd.fp;fq/
i

becomes close to zero, so the

bispectrum to zero.
In the study, we tried to move this idea to wavelet bicoherence. A new term

ejR'd.fp;fq;	/ is added to wavelet bispectrum for each time point 	 , so Eq. (11.6) can
be written as
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where R 2 .��; �
 is a random variable. If the QPC occurs at the time 	 , the biphase
'd
�

fp; fq; 	
�

D 0, and the random variable R has no effect on the bispectrum because

of the term ejR'd.fp;fq;	/ D1; in contrast, if the QPC does not occur at the time 	 ,
i.e. the biphase 'd

�

fp; fq; 	
�

¤ 0, R considerably reduces the bispectrum because

of ejR'	.fp;fq;	/ <1. Replacing the Bxxx in Eq. (11.9) by bBxxx, a new bicoherence

can be obtained and denoted as
�

bbxxx
�

fp; fq
�

�2

(termed as IWBIC). The estimated

bicoherence is indeed close to the ‘true’ QPC value as the addition of the term
ejR'd.fp;fq;	/ can effectively keep the QPC information and reduce the spurious QPC
information at the time 	 .
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11.2.3.2 Significance Test

To obtain a reliable measure of statistical significance for GHWT bicoherence, a
surrogate method is employed. The computational steps are as follows. First, the
biphase d(fp, fq) is calculated based on the wavelet bispectrum, and the summation
of both is used to generate a new biphase 0

d

�

fp; fq
�

D d
�

fp; fq
�

C� , where random
variable � 2 .��; �
; this step damages the condition of biphase d

�

fp; fq
�

D 0.
Replacing d(fp, fq) in Eq. (11.11) with 

0

d(fp, fq), a surrogated bicoherence can be
obtained, which only contains non-QPC due to the aggregation of random variables.
The above procedure is run 100 times, and the bicoherence values of each of the
100 samples are calculated at bifrequency (fp, fq). The 95 % statistical threshold
may be defined as the mean plus two standard deviations of all bicoherence values
at bifrequency (fp, fq). Note that the statistical threshold is based on the normality
assumption which may be verified using the Kolmogorov–Smirnov goodness-of-fit
test (Zar 1999). When the bicoherence estimated from the original data is greater
than the threshold, it means the QPC at bifrequency (fp, fq) is present and the value
will be preserved, otherwise the value is set to zero. After this thresholding, a filtered
bicoherence, Qbxxx

�

fp; fq
�

(termed as FIWBIC), can be obtained.
During the computation of the bicoherence, it is very hard to determine from

one epoch whether a phase coupling is present in the signal. A segment-averaging
approach (Hagihira et al. 2001) can still be used for GHWT bicoherence. It was
reported that the BIS could be considered as a marker of depth of sleep (Sleigh
et al. 1999), like the depth estimation of general anaesthesia. The commercial BIS
monitor calculates the bispectral value from 120 epochs (61.5 s) and overlap of
75 %, at a sampling rate of 128 Hz and epoch length of 2 s (Rampil 1998). In the
study, we utilised similar parameter values for GHWT bicoherence, with the length
and overlapping of epochs 2 s and 75 %, respectively.

11.2.3.3 Simulation Analysis

To demonstrate the performance of this method, a simulation study is presented to
show whether or not this method can effectively detect the QPC of a short-duration
time series. The model employed (Kim and Powers 1979) is

y.t/ D sin .2� f1tC 1/C sin .2� f2tC 2/C w
�

sin .2� .f1 C f2/ tC .1 C 2//

C .1 � w/ sin .2� .f1 C f2/ tC 3/
�

C ".t/

(11.12)

where j 2 U .��; �
 (jD 1,2,3) is a uniformly distributed random phase, w 2
Œ0; 1
 is the coupling coefficient, and "(t) is uncorrelated white noises with zero
mean and unit variance. The proportion of coupled energy at the sum frequency
(f1C f2) is called the true squared bicoherence b2

true(f1, f2), with b2true .f1; f2/ D

w2=
�

w2 C .1 � w/2
�

, which is a function of the w parameter. We conducted
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Fig. 11.1 Analysis of non-quadratic phase-coupled (top panel) and quadratic phase-coupled
(bottom panel) signals in the presence of additive Gaussian noise (SNR D 5 dB). (Aa and b) The
wavelet bispectrum, the peaks are at bifrequencies (6, 16 Hz) and (16, 6 Hz). The mixture of
frequency and/or phase interaction is indistinguishable. (Ba and b) The WBIC, many spurious
peaks appear in the quadratic phase-coupled signals and in the non-quadratic phase-coupled
signals. (Ca and b) The IWBIC, nondistinct peak in the non-quadratic phase-coupled signals, and
two significant peaks appear in the quadratic phase-coupled signals. (Da and b) The FIWBIC, two
isolated distinct peaks are in the quadratic phase-coupled signals (Db)

simulation experiments with the following configuration: f1D 6 Hz, f2D 16 Hz, with
the sampling rate of 256 Hz. The simulated signal has white noise added, denoted
by signal to noise ratio (SNR).

Figure 11.1 shows the wavelet bispectrum and wavelet bicoherence for the
non-phase-coupled (wD 0, SNRD 5) and phase-coupled signals (wD 1, SNRD 5).
The wavelet bispectra for non-phase coupling and phase coupling signals of 20
epochs are shown in (A). Two peaks at bifrequency (6,16Hz) and (16,6Hz) can
be found for both signals; the peak at bifrequency (16,6Hz) is derived from the
symmetrical characteristics of bispectrum. This result illustrates the limitations of
wavelet bispectral analysis as it is clearly not able to discriminate between peaks
generated by frequency coupling, as against those generated by phase coupling.
The normalised squared wavelet bicoherences (WBIC) of these two signals with
or without phase coupling are shown in (B). Many spurious peaks can be found,
so the direct application of the WBIC is also possible to generate some spurious
results. In contrast, the wavelet bicoherence with phase randomisation (IWBIC) of
these two signals is shown in (C). Two significant peaks can be found in (Cb), but
not in (Ca). This indicates that the IWBIC can eliminate the spurious peaks in the
bispectrum. Finally, the surrogate method is applied to filter the effect of noise in
wavelet bicoherence (FIWBIC). The reduction of the effect of noise can be seen in
(D), indicating the FIWBIC can effectively present the QPC in this simulation.

11.2.4 Characteristics of Bicoherence Matrix

There are a number of different possible approaches for constructing a measure that
can optimally extract information from the bicoherence matrix.
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An important characteristic of the bicoherence is the total bicoherence at the
frequency bands (fpL � fp � fpU and fqL � fq � fqU) (van Milligen et al. 1995),
which is defined as

b D
XX

b2xxx

�

fp; fq
�

(11.13)

where the summation is extended over all frequencies fp and fq at fpL � fp � fpU and
fqL � fq � fqU . This value is a measure of the degree of QPC between the oscillators
of different frequency bands and the one of high frequency band, which is much
more helpful for understanding the interaction dynamics of neuronal population,
such as the phase coupling between the delta and theta waves.

Another important characteristic of the bicoherence is the summed bicoherence
(van Milligen et al. 1995), and it is defined as

b.f / D
X

b2xxx .f1; f2/ (11.14)

where the summation is overall frequencies f1 and f2 and satisfies f D f1 ˙ f2. This
value can be used to measure the distribution of phase coupling as a function of
frequency f. To further compress this information into a unitary quantity, Shannon
entropy could be applied to the normalised form of the b(f), to quantify the flatness
of distribution of phase coupling.

The bicoherence of one channel series is a symmetrical relative matrix to the
main diagonal, denoted as CDfbxxx(fp, fq)g. In accordance with the theory of linear
algebra, the eigenvalue decomposition of C is given by

Cvi D �ivi (11.15)

where �i is the eigenvalue and �1 � �2 � � � � � �M; vi is the eigenvector
corresponding to �i. The value of eigenvalue �i is proportional to the amount of
correlation in the direction of their associated eigenvectors. The eigenvalues can
provide information about the synchronisation between individual elements of the
matrix (oscillators). Two indices could be considered: (1) the maximal eigenvalue
(denoted as maxEigen) (Li et al. 2007) and (2) the S-estimator (denoted as SI). This
is the Shannon entropy of the eigenvalue distribution (Cui et al. 2010; Dauwels et al.
2010), which is defined as follows:

SI D �

XM

iD1
Q�i log

�

Q�i

�

log.M/
(11.16)

where Q�i D j�ij =
XM

jD1

ˇ

ˇ�j

ˇ

ˇ is the normalised absolute eigenvalue. These two

indices can be regarded as global phase coupling indices for the whole bicoherence
matrix.
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11.3 Application of Wavelet Bicoherence to Sleep Analysis

The functional correlates of different sleep stages remain a topic of much debate
(Marquet 2001; Stickgold and Walker 2005; Vertes and Siegel 2005). Current
evidence suggests that different stages of sleep may promote different types of
learning and memory (e.g. Gais and Born 2004; Pace-Schott and Hobson 2002;
Ribeiro and Nicolelis 2004; Spencer et al. 2007; Walker and Stickgold 2006). For
example, SWS may be associated with the consolidation of declarative memory,
while REM may be associated with non-declarative memory formation (Gais and
Born 2004; Rasch et al. 2006; Eschenko et al. 2008; Rasch et al. 2007). Exploration
of neural oscillations and synchronisation using the method described may provide
important tools for clarifying the unique neurophysiological functions of sleep
(Wolansky et al. 2006; Womelsdorf et al. 2007). In this study, this improved wavelet
bicoherence is applied to measure the comodulation of cerebral cortical oscillations
recorded from rats at the transitions between slow-wave sleep (SWS), rapid eye
movement (REM) sleep and awaking state (AWK).

11.3.1 Data Recordings

Four male Sprague–Dawley rats, weighting 300–400 g at the time of surgery,
served as subjects. The rats were maintained on a 12:12 h light–dark cycle, were
individually housed following surgery and had ad libitum access to food and water.
Ethical approval for this study was granted by the Ruakura and University of
Auckland Animal Ethics Committees.

Animals were anaesthetised with ketamine/xylazine (75/10 mg/kg, i.p.) and
mounted in a stereotaxic instrument with the skull held level. Four holes were
drilled in the exposed skull; three for stainless steel skull screws (positioned over
the cerebellum and bilaterally over the parietal cortex) and one for implantation
of a tungsten stereotrode (Micro Probe Inc., Potomac, USA) into the parietal
cortex for two-channel LFP recording. The stereotrode consisted of two insulated
microelectrodes (3 �m diameter) separated by 200 �m. The stereotrode was
lowered into the cortex to a depth of 0.5 mm and cemented to one of the anchor
screws with rapid setting glue. The skull screws also served as reference and ground
electrodes for the cortical local field potential recordings. Insulated wires from the
screws were terminated along with the stereotrode electrodes in a plastic nine-pin
socket, the base of which was embedded in dental acrylic (GC Corporation, Tokyo,
Japan). The animals were allowed to recover for at least seven days prior to testing.

The leads were connected to two differential amplifiers (A-M Systems Inc.,
Carisborg, USA) via a tether and electrical swivel (Stoelting Co, Illinois, USA),
allowing free movement of the animal around the recording enclosure. The two
cortical field potential channels were AD-converted at 10,000/s (CED Power 1401,
Cambridge, England), high- and low-pass filtered at 1 and 2500Hz, respectively,
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and 50Hz notch filtered. The data were displayed and recorded continuously on a
computer using Spike2 software (CED, Cambridge, England). The animals were
video recorded during all recording sessions to aid off-line sleep staging. The video
was synchronised with the electrophysiological recordings. Data were collected for
up to 6 h while the animals slept naturally. Sleep staging was performed off-line
using accepted electrophysiological and behavioural criteria (van Betteray et al.
1991). Transitions from SWS to REM and from REM to AWK were identified off-
line and 2 min of LFP spanning each transition point extracted for later analysis,
respectively.

In the following section, we use the improved wavelet bicoherence (denoted as
WBIC in the following) to describe the phase coupling dynamics of SWS to REM
and REM to AWK. To calculate the degree of quadratic non-linear interaction, each
LFP recording of 20 s during either SWS, REM or AWK is subdivided into epochs
of 2 s with an overlap of 75 %.

11.3.2 Results and Discussions

The wavelet spectrum and WBIC of the LFPs during SWS and REM are calculated
and plotted in Fig. 11.2a–b. As can be seen in the wavelet spectrum, a maximal
peak lies at 2 Hz (a typical slow wave). The presence of interactions between neural
activities during SWS can be observed by FIWBIC. The contour plot of WBIC
in (A) shows that the slow-wave band (0.5–4 Hz) is synchronised with the theta
(4–8 Hz) and alpha band (8–12 Hz), and a phase coupling occurs between the theta
bands. A main peak at the wavelet spectrum of (B) lies at 4–8 Hz for REM sleep.
A major difference between REM and SWS is that the waves at the theta band are
strongly synchronised in REM, and the phase coupling of other waves is restricted
to narrower bands during REM. The difference between the WBIC at the SWS and
REM can be directly revealed by the summed WBIC.

To further resolve the details of the interactions during SWS and REM, the
WBIC is divided into bands (delta 0–4 Hz, theta 4–8 Hz, alpha 8–12 Hz and beta
12–20 Hz). A statistical analysis of the estimated average synchronisation of WBIC
values at the different bifrequency bands was conducted on the 11 samples from
SWS and compared to REM. As is shown in (C), the strength of phase coupling
between delta and theta/alpha/beta waves during SWS is significantly stronger than
that during REM. Conversely, the phase coupling between theta bands during REM
is higher compared to SWS. At the same time, it is found that the variances of
phase coupling of the high frequency bands at the REM are smaller. The average
of the summed WBIC in SWS is higher than in REM, except in the theta band.
In addition, the global phase coupling strength at the frequency bands of 0–20 Hz
is higher in SWS compared to REM (p < 0.1). This finding is consistent with data
from human subjects, where the WBIC is higher during state II/III sleep compared
to awake (Bullock et al. 1997). One possible explanation for the finding of greater
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Fig. 11.2 The WBIC analysis of the transition from slow-wave sleep (SWS) to rapid eye
movement (REM) sleep. (a–b) The FIWBIC and the wavelet spectrum at the SWS (a) and REM
(b). (c) The statistical analysis of WBIC at the SWS versus REM at the local frequency bands
(delta 0–4, theta 4–8, alpha 8–12 and beta 12–20 Hz.) (n D 11)

WBIC during SWS is an effective decrease in corticocortical connectivity as SWS
progresses (Vyazovskiy et al. 2007). As a result, more oscillators with weak phase
couplings could be generated, and these oscillators will have more chances to create
‘resonance’, so the number of bicoherent peaks increases during SWS.

Figure 11.3a–b show the wavelet spectrum and WBIC during REM and AWK
have a high power of theta oscillations. However, it can be seen that there are small
differences between REM and AWK. (c) presents the statistical results of REM
compared to AWK at the different frequency bands for ten samples. The phase
coupling of the delta–delta bands in AWK is higher than in REM (pD 0.104), and
the variance of phase coupling at the AWK is smaller. The phase coupling of the
delta–delta and delta–alpha bands may discriminate between REM and AWK. The
total phase coupling in AWK is a little higher on average than in REM, but not
statistically significant. This small total difference in WBIC between the REM and
AWK indicates that the responsiveness to the outside world does not depend on the
phase synchronisation of different bands; this finding is consistent with Massimini’s
work (Massimini et al. 2005).
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Fig. 11.3 The WBIC analysis of the transition from REM to awake (AWK). (a–b) The WBIC and
the wavelet spectrum at the REM (a) and AWK (b). (c) The statistical analysis of WBIC at the
REM versus AWK at the local frequency bands (n D 10)

In summary, real neuronal populations were investigated by the IWBIC. The
main findings are as follows: (1) a phase coupling mechanism exists in the neuronal
populations of rats at the SWS, REM and AWK, and (2) the degree of phase
coupling in SWS is greater than in REM, and the degree in REM is less than
in AWK. The improved wavelet bicoherence method described may provide a
powerful tool to detect the QPC amongst the oscillations generated by neuronal
populations.

11.4 Application of Wavelet Bicoherence to EEG During
General Anaesthesia

The effects of general anaesthetics on the cerebral cortex and the thalamus (Musizza
and Ribaric 2010) cause a multitude of different EEG oscillations (Steriade 2006).
The EEG bicoherence has been found to be related to the concentration of anaes-
thetic drugs. Specifically, the bicoherence values in the alpha (at around 10 Hz) and
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delta–theta (at around 4 Hz) band along the diagonal line of the bicoherence matrix
were found to correlate well with the concentrations of isoflurane or sevoflurane
(Hagihira et al. 2002; Morimoto et al. 2006). Hayashi et al. (Hayashi et al. 2008)
found that sevoflurane caused bicoherence peaks in the alpha and delta–theta bands
along the diagonal line, as well as a third peak at the pair of alpha basal frequency
and its doubled frequency and that deeper anaesthesia shifted all peaks to lower
frequencies and caused increased bicoherence in the delta–theta region. Recently
Pritchett et al. (Pritchett et al. 2010) investigated bicoherence parameters across
equal band (i.e. delta–delta) and unequal band (i.e. delta–theta) bifrequency regions,
during different anaesthetic levels in routine clinical anaesthesia, and found that
bicoherence estimates for the delta–theta region were more sensitive to anaesthetic
changes. All these findings indicated that the bicoherence is a potential tool in the
estimation of the effects of anaesthetic drugs on the brain (Hagihira et al. 2002;
Hayashi et al. 2008). Here we applied the improved wavelet bicoherence method to
analyse the EEG during isoflurane anaesthesia, examining how different isoflurane
concentrations affected the bicoherence spectrum.

11.4.1 Data Recordings

The EEG signals (Hagihira et al. 2002) were obtained from 29 patients (9 men
and 20 women, age 34–77 years, ASA physical status I–II) who underwent elective
abdominal surgery under isoflurane general anaesthesia combined with epidural
anaesthesia, after obtaining institutional approval (Osaka Prefectural Habikino
Hospital, Osaka, Japan) and written informed consent from all participants. None
of these participants had any neurologic or psychiatric disorders, nor were they
receiving medication with any drugs known to influence anaesthetic or analgesic
effects. Thirty minutes before the admission to the operating room, each patient
received intramuscular premedication with 0.5 mg atropine. An epidural catheter
was placed at the appropriate spinal location (T7/8, T8/9, T9/10 or T10/11). After
confirming the effect of epidural analgesia, which was administered to minimise
the influence of surgical stress on EEG during surgery, anaesthesia was induced
with 3 mg/kg thiopental. After tracheal intubation, anaesthesia was maintained
with isoflurane, oxygen and nitrogen. Vecuronium was given as required. Lidocaine
1 % (80–110 mg/h; initial dose, 90–100 mg) was administered epidurally. Patients
received controlled ventilation to maintain adequate oxygenation and normocapnia.
To keep mean blood pressure at 60 mmHg, as required, 2–5 �g kg�1 min�1

dopamine was administered.
Five EEG electrodes (A1, A2, FP1, FP2 and FPz; according to the International

10–20 System) were attached to the patients before induction of anaesthesia. FPz
was used as body ground. EEG data were collected from a single lead FP1-A1

using a 514X-2 EEG telemetry system (GE Marquette, Tokyo, Japan). EEG signals
in the waking state were obtained before the induction of anaesthesia. Isoflurane
was initially increased to 1.5 % and then stepped down to 0.7 %. To achieve a
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steady state, the end-tidal concentration of isoflurane was purposely maintained at
set levels (1.5 %, 1.3 %, 1.1 %, 0.9 %, 0.7 %) for 30 min, then changed to another
concentration. The expired concentration of isoflurane was continuously monitored
using Capnomac (Datex, Helsinki, Finland), and recorded simultaneously. The EEG
segments with the ‘burst suppression’ pattern present were excluded from our
analysis.

The EEG data were down-sampled at 128 Hz and preprocessed by the following
steps: data points were rejected if the absolute amplitude values exceeded a
threshold, which was selected as the mean plus c (5 7) times the standard deviation
of the data analysed; a notch filter was used to remove the power signal of 50 Hz;
the stationary wavelet transform was applied to the EEG signals, and the wavelet
coefficients below 0.5 Hz were set to 0 to remove the effect of baseline drift.

11.4.2 Results and Discussions

Figure 11.4a shows the contour plots of wavelet bicoherence matrix at different
isoflurane concentrations. The bicoherence patterns change with increasing isoflu-
rane concentrations, and the changes are more distinct in the diagonal line and along
the horizontal lines at slow frequencies. (B) shows the bicoherence values in the
diagonal line (diag_bic) and the summed bicoherence values along the horizontal
line at slow frequencies of 0.5 and 1 Hz (low_bic). In the diag_bic, it is obvious that
isoflurane caused two main peaks at alpha and slow delta bands and that higher
concentrations of isoflurane shifted the alpha peak to lower frequencies. These
observations were consistent with the changes observed in the power spectrum with

Fig. 11.4 Typical bicoherence patterns from a sample EEG with isoflurane anaesthesia. (a)
Wavelet bicoherence matrix with increasing isoflurane concentrations of 0.3, 0.5, 0.7 and 0.9 %.
(b) The bicoherence along the diagonal line, the summed bicoherence values at slow wave (0.5–
1 Hz) along the horizontal line of the bicoherence matrix (grey shadows in (a)) and corresponding
power spectra
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Fig. 11.5 (a) Averaged power spectra (a), the peak frequencies and peak power values at alpha
band (b) for each study period from all the 29 subjects. (b) Averaged bicoherence values in the
diagonal line (fp D fq) (a), the peak frequencies and peak bicoherence values (b). (c) Averaged
summed bicoherence values at slow delta bands (0.5–1 Hz) (a), the peak frequencies and peak
bicoherence values (b)

deeper isoflurane concentration. The shift of alpha peak also appeared in the plot
of low_bic, and the summed bicoherence values at alpha peaks changes with drug
concentration.

Figure 11.5a shows the mean power spectra from all the 29 subjects and the
peak frequencies and peak power values in the alpha band for each study period.
Isoflurane of 0.3 % caused a significant ’ peak at about 11 Hz, and when the
isoflurane concentration increased, the peak moved to a lower region, resulting in
peaks at about 7 Hz at 1.5 %. (B) summarises the mean bicoherence values in the
diagonal line and the peak frequencies and peak bicoherence values with changes
in isoflurane concentration. Consistent with the power spectra, the significant
’ peak at 11.3˙ 0.9 Hz tended to decrease to 7.1˙ 1.2 Hz, with increases in
isoflurane concentration from 0.3 % to 1.5 % (F(7114)D 12.416, p < 0.001, one-way
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ANOVA); the diag_bic alpha peak frequencies at lower isoflurane concentrations
were significantly higher than those at deeper isoflurane concentrations and also
than the no isoflurane condition (p < 0.05). These results indicated that the frequency
shift in the diag_bic is coincident with the peak frequency shift in power spectrum.
Bicoherence is a signal-processing technique capable of tracking changes in any
reentry system. It is a method of investigating phase relations between two input
signals with frequencies of f1 and f2 by examining an output signal with a
frequency of f1C f2 (Rampil 1998). With non-linear modulation – such as may
be seen in the thalamocortical reverberating system – the output signal from the
reverberating circuit is expected to reenter into the system as the input signal and
cause self-modulated characteristics. Because this results in QPC between input
signal components, bicoherence is expected to grow in these frequency components.
Therefore, when a certain rhythm is dominantly formed in a thalamocortical
reverberating network, a phase-coupled peak will often appear in the corresponding
bicoherence (Hayashi et al. 2008).

Figure 11.5c shows the mean summed bicoherence values in the slow delta
bands (low_bic), the peak frequencies and peak bicoherence values with changes in
isoflurane concentration for each study period. The significant alpha peak appeared
at a frequency of 10.8˙ 1.2 Hz at 0.3 % isoflurane, which slowed to 7.7˙ 0.7 Hz
at 1.5 % isoflurane (F(7114)D 6.767, p < 0.05). As the isoflurane deepened, the
summed bicoherence values tended initially to increase in amplitude, followed
by a decrease (F(7114)D 14.162, p < 0.001). Post hoc analysis showed that the
low_bic alpha peak frequencies at lower isoflurane concentrations (0.3–0.9 %) were
significantly higher than those at deeper isoflurane concentrations (1.1–1.5 %) and
also than during the period before induction (no isoflurane) (p < 0.05). This phase
coupling between slow delta and alpha oscillations may point to some commonality
between the states of natural sleep and general anaesthesia (Brown et al. 2010;
Murphy et al. 2011). In natural sleep a number of studies (Steriade et al. 1993;
Steriade et al. 1996; Mölle et al. 2002) have demonstrated that the cortically
generated slow oscillation acts through corticocortical and corticothalamic drives to
organise the faster rhythms; for example, spindle waves typically occur during the
so-called ‘up’ states of the slow oscillation (Steriade 2006). During the depolarising
phase of the slow oscillation, the synchronous firing of neocortical neurons impinges
upon thalamic RE pacemaker neurons, thus creating conditions for the formation
of spindles, which are transferred to TCR neurons and up to cortex, at which
level the spindles shape the tail of the slow oscillatory cycle (Steriade 2006). This
combination also results in the K-complex, and spectral analysis has shown the
periodic recurrence of human K-complexes, with main peaks at 0.5–0.7 Hz and
12–15 Hz (Amzica and Steriade 1997).

In conclusion, we investigated the EEG wavelet bicoherence patterns under
isoflurane general anaesthesia combined with epidural anaesthesia. In particular,
the alpha and delta waves were coupled after isoflurane induction, and the coupling
strength changed when the isoflurane concentration deepened. This phenomenon
of alpha–delta coupling suggests that slow cortical oscillations organise the higher
band activity, which is consistent with other studies in natural sleep.
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Chapter 12
Multivariate EEG Synchronization Strength
Measures

Dong Cui and Xiaoli Li

12.1 Introduction

The brain is a complex, nonlinear, nonstationary, massively interconnected
dynamical system (McKenna et al. 1994; Friston 2000; Breakspear and Terry 2002;
Le Van Quyen 2003). Electroencephalogram (EEG), local field potentials (LFP),
magnetoencephalogram (MEG), or calcium imaging can precisely describe the
dynamics of brain signals. Multivariate synchronization analysis is the technology
for giving the information of the interrelations in the dynamics between different
brain structures and synchronization phenomena of neural populations from these
multivariate brain signals (Lawrence 2003; Womelsdorf et al. 2007). The assessment
of the interdependence between signals can give new insights into the mechanisms
underlying pathophysiological diseases and primarily improve treatment strategies
especially for severe diseases (Lytton 2008; Van Albada and Robinson 2009; Van
Albada et al. 2009). It has been proposed to play an essential role in cognition too.
They are important approaches for understanding the overall dynamical properties
in the brain (Buzsáki 2004; Buzsáki and Draguhn 2004; Engel et al. 2001; Rosso
et al. 2001; Traub et al. 1998).

D. Cui
School of Information Science and Engineering, Yanshan University, Qinhuangdao, People’s
Republic of China
e-mail: cuidong@ysu.edu.cn

X. Li (�)
State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for
Brain Research, Beijing Normal University, Beijing 100875, People’s Republic of China

Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal
University, Beijing 100875, People’s Republic of China
e-mail: xiaoli@bnu.edu.cn

© Springer Science+Business Media Singapore 2016
X. Li (eds.), Signal Processing in Neuroscience, DOI 10.1007/978-981-10-1822-0_12

235

mailto:cuidong@ysu.edu.cn
mailto:xiaoli@bnu.edu.cn


236 D. Cui and X. Li

Existing linear and nonlinear methods to measure synchronization of neuronal
population activity include cross correlation, spectrum-based coherence (Clifford
Carter 1987; Gevins and Schaffer 1980), Granger causality (Granger 1969, 1980;
Buchel and Friston 2000; Brovelli et al. 2004), synchronization likelihood (SL)
(Stam and van Dijk 2002; Ferri et al. 2007; Stam and Reijneveld 2007; Mich-
eloyannis et al. 2006), mutual information (Shannon 1948; Steuer et al. 2002;
Kraskov et al. 2004; Darbellay and Vajda 1999; Min et al. 2003; Shabunin et al.
2002; Palus and Stefanovska 2003), nonlinear interdependence (Arnhold et al.
1999; Quian Quiroga et al. 2000, 2002; Schmitz 2000; Gandrzejak et al. 2003),
generalized synchronization ((Rulkov et al. 1995; Schiff et al. 1996; Abarbanel
et al. 1996; Quian Quiroga et al. 2000; Kramer et al. 2004), phase synchronization
(Rosenblum et al. 1996; Pikovsky et al. 1996, 2001; Osipov et al. 1997; David
et al. 2003; Engel et al. 2001; Varela et al. 2001; Lachaux et al. 1999; Tass et al.
1998; Shabunin et al. 2002; Palus and Stefanovska 2003; Mormann et al. 2000;
Bruns 2004; Rosenblum et al. 2001; Fine et al. 2010; Quian Quiroga et al. 2002;
Jamal et al. 2015) (where the phase of the time series is extracted by using the
Hilbert or the wavelet transform, respectively), and correntropy coefficient (Xu et al.
2008). But these synchronization analyses have been constrained to the bivariate
case. The examination of empirical multivariate data then was accomplished by
the simple repeated application of bivariate synchronization measures. A picture
of the bivariate synchronization measures of the ensemble can be obtained by
estimating the pairwise synchronization between every possible pair of channels
and then connecting the corresponding sites with lines of different thickness or color
according to the strength of their interaction (Rodriguez et al. 1999; Bhattacharya
et al. 2001). This approach gives detailed information on the topographic structure
of synchronization relations, but it has some drawbacks: The representation of
pairwise lines will get incomprehensible if the number of lines is large, and this
picture in itself gives no information on a common integrating structure among the
ensemble of electrodes. Another method is averaging the bivariate synchronization
index for all the possible pairs of electrodes of the ensemble (van Putten 2003; Haig
et al. 2000). But it cannot give the synchronization or topographic details and lose
the spatial resolving power.

Multivariate data contain more information than those inferable from multiple
bivariate examinations. In most neurological studies, it is interesting to investigate
the interactions in a group of multivariate channels such as the degree of overall syn-
chronization and the contribution of each channel. Moreover, bivariate techniques
are also hampered by their inability to differentiate direct and indirect interactions,
even when observing all important signals. It even shows the misleading results
(Schelter et al. 2006). So the multivariate synchronization analysis aiming at the
global information has been paid much more attention recently. It is a useful
technique for studying the interactions in a group of multivariate channels for the
understanding of overall dynamical properties in the brain.
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This chapter describes several multivariate synchronization analyses including
phase synchronization cluster analysis (Allefeld and Kurths 2004; Osipov and
Kurths 2001; Osipov et al. 1997; Kim et al. 2008; Bialonski and Lehnertz 2006),
S-estimator (Carmeli et al. 2005; Knyazeva et al. 2005; Boccaletti et al. 2002;
Bialonski and Lehnertz 2006; Jalili et al. 2007) and extended method correlation
matrix analysis (Gandrzejak et al. 2003; Allefeld et al. 2007; Seba 2003; Müller and
Baier 2005; Müller et al. 2006a, b; Schreiber and Schmitz 1996; Seba 2003), omega
complexity (Yoshimura et al. 2004), partial coherence (Bendat and Piersol 2000;
Gersch and Goddard 1970; Cohen et al. 1995; Kocsis et al. 1999; Lopes da Silva
et al. 1980; Mirski et al. 2003; Liberati et al. 1997; Tucker et al. 1986; Sun et al.
2004; Winterhalder et al. 2005, 2006; Albo et al. 2004) partial directed coherence
(PDC) and direct tranfer function (DTF) (Sameshima and Baccalá 1999; Baccalá
and Sameshima 2001a, 2001b; Kaminski and Blinowska 1991; Kus et al. 2004;
Fanselow et al. 2001; Schelter et al. 2005; Astolfi et al. 2005; Thuraisingham 2007;
Ding et al. 2000; Wu et al. 2011; Haufe et al. 2013), and complex network analysis
(Stam et al. 2007; Ponten et al. 2007; Stam and van Dijk 2002; Ferri et al. 2007; Stam
and Reijneveld 2007; Micheloyannis et al. 2006; Jamal et al. 2015). Throughout we
introduce the processing of these multivariate synchronization analyses and their
applications in neurophysiology. We compare the concept and methods and indicate
their advantages and disadvantages.

12.2 Multivariate Synchronization Algorithm

12.2.1 Phase Synchronization Cluster Analysis

The basic idea of phase synchronization cluster analysis (PSCA) is a single cluster
having a common rhythm, which is an average of the oscillations of each oscillator,
and its dynamics is described by a cluster phase ˆ. It conceives of the oscillators as
constituting a cluster in which they participate in different degrees ci ranging from
no to perfect agreement with the cluster dynamics, where the degree of participation
of each individual channel can be checked by assessing the phase synchronization
(PS) between the global and the individual phases:

ˆk D arg
X

j

cj exp
�

ijk
�

(12.1)

ci D f
�

RiC
�
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(12.3)
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where ˆk is the cluster phase of each realization. The participation indices ci are
calculated as a function of the synchronization strength between the oscillator and
the cluster RiC.

By introducing this mean field into the model equations, the dynamics of
the phase differences of each oscillator to the cluster phase can be formally
decoupled, assuming each oscillator is driven by noise independent of that acting
on the other oscillators. In this sense, the factorization of the matrix of bivariate
synchronization indices Rij is an empirical estimate of �ij D �iC�jC which can be

shown to be asymptotically normally distributed Rij � N
�

�ij; �
2
ij

�

where �iC is the

synchronization strengths of the ith signal to the cluster. The work of estimating
�iC can be regarded as the generally applicable multivariate phase synchronization
analysis. The maximum likelihood estimation of the �iC then reduces to minimizing
the sum of square weighted errors:

X

i;j>i

Eij
2; Eij D

Rij � �iC�jC

�ij
(12.4)

where �ij D
1
2n

�

1 � �iC
2�jC

2
�

.
This generic multivariate analysis in the field of phase synchronization is useful

in EEG studies where the assessment of overall synchronization of multivariate
data is the main goal. It is in contrast to other studies concerning the dynamics
and stability of clusters of perfect (phase) synchronization and the coexistence
and interaction of multiple clusters (Osipov and Kurths 2001; Osipov et al. 1997).
However, this method only can describe the form of a single statistical cluster
assuming the dynamics of the oscillators can be decoupled by introducing a mean
field. Its feasibility and decoupling are the most important. But even in cases where
the conditions are not perfectly adequate, it may serve as a first approximation and
specific deviations from the applied model and can be detected by large values of
the residual errors Eij.

12.2.2 S-estimator and Correlation Matrix Analysis

12.2.2.1 S-estimator

S-estimator is a new and simple measure based on the PCA embedding technique
(Carmeli et al. 2005; Knyazeva et al. 2005; Bialonski and Lehnertz 2006). It can
measure the amount of synchronization over a region of the cortex by an information
theory-inspired measure defined as the complement of the entropy of the normalized
eigenvalues of the corresponding correlation matrix. Such quantity is proportional
to the embedding dimension of the dynamical phenomenon.
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First we perform PCA meaning that we eigendecompose the covariance matrix
of the data. From the diagonal elements �i of the eigenvalue matrix �, we compute
the normalized eigenvalues �

0

i as follows:

�i
0 D

�i

M
X

iD1

�i

D
�i

tr.C/
(12.5)

where �i
0 is the corresponding normalized eigenvalue and tr(C) is the trace. Then

we can compute the S-estimator:

S D 1C

M
X

iD1

�i
0 log

�

�i
0
�

log.M/
(12.6)

S-estimator is a measure inversely proportional to the embedding dimension
of the observed dynamical phenomenon, thus proportional to the amount of
synchronization.

Applications to simulated coupled oscillators and to EEG data indicated that S
appears at least as reliable and robust as other nonlinear measures of synchronization
(Boccaletti et al. 2002). S-estimator is spectrum wide and not frequency specific.
It addresses the investigations of broadband synchronization phenomena. More
importantly, S is naturally multivariate, which makes it particularly suitable for
high-density surface sampling EEG analysis, currently replacing conventional EEG
methods, both in research laboratories and in clinics. However, it can only give the
global synchronization index without the details. The contributions of each channel
to the group are not acquired.

12.2.2.2 Correlation Matrix Analysis

This novel method correlation matrix analysis (CMA) is based on random matrix
theory (RMT) (Seba 2003; Müller and Baier 2005; Müller et al. 2006a, b), equal-
time correlation, correlation matrix analysis (Allefeld et al. 2007), and surrogate
resampling (Schreiber and Schmitz 1996). It is able to quantify and describe
properties of synchronization of population neuronal activity recorded simulta-
neously from multiple sites such as number and composition of clusters, global
synchronization, and how synchronization patterns change with time.

Firstly, to provide the same scale for all of neuronal population activity, the
data set is normalized and an equal-time correlation matrix C is constructed. The
eigenvalue decomposition of C is given by

Cvi D �ivi (12.7)
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Secondly, we randomize all channels of the time series, thereby destroying all the
equal-time correlations that exist. In the present work, we randomize the phase
relationship using the amplitude-adjusted Fourier transform (AAFT) (Schreiber and
Schmitz 1996) and get a surrogate correlation matrix R; the eigenvalues of this
matrix R can be obtained as �

0

k, k D 1; : : : ;M. Repeating this randomization by N,

the mean and standard deviation of eigenvalues are �
0

k and SDk.
Then the normalized synchronization can be computed by the following

equation:

Syn_Indexk D

( �

�k � �
0

k

�

=
�

M � �
0

k

�

; �k >
�

�
0

k C K � SDk

�

0; otherwise
(12.8)

Syn_Index ranges from 0 to 1, where 0 denotes no synchrony, and 1 denotes perfect
synchrony among the time series. The maximal value is called the synchronization
index (SI) and gives an indication of global synchronization throughout the
population of neurons from which recordings have been made. The value of KD 3
is for an overall significance of 0.01.

The equation to compute the number of clusters is expressed as

NoCluster D
X

k

sgn
�

�k >
�

�
0

k C K � SDk

��

(12.9)

where sgn is a sign function.
The eigenvalue can indicate the strength of a cluster. Corresponding to the

eigenvalue, the eigenvector can describe its internal structure. Thus, qualification
of the structure of synchronized clusters should be described by combining the
eigenvalues and eigenvectors, in a variable called the participation index (Allefeld
et al. 2007), which is defined as

PI D �kv2ik (12.10)

We have therefore tested the procedure using the chaos system of coupled Lorenz-
type oscillators and low-calcium in vitro model of epilepsy (Li et al. 2007). The
results show that the technique can successfully identify synchronization of activity
in small groups of neurons consisting of independent clusters of synchronous
activity. Moreover, the participation index can be used to demonstrate how the
distribution of clusters changes with time. The transition to an electrographic seizure
is shown by an increase in the synchronization index as progressively more regions
in the hippocampal slice are activated simutaneously.

CMA can be applied to the analysis of neurophysiological data recorded simulta-
neously from multiple sites. In principle, application of the method to neuronal data
is very simple: A high eigenvalue indicates a high level of correlation, and a low
level indicates poor correlation based on RMT. It is thus possible to identify clusters
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of local synchrony in which activity is synchronized and to determine whether that
activity is independent of activity in other subpopulations within the recording area.

The matrix C could, however, be composed from very different correlations,
such as phase synchronization, linear cross correlation, or event synchronization,
depending on the nature of the activity being analyzed (Pereda et al. 2005).

Based on the description of the SI method, global synchronization index (GSI)
for measuring global synchronization of multiple time series was proposed (Cui
et al. 2010). We used the equal-time correlation method to get the correlation matrix
C, the surrogate correlation matrix R, and their eigenvalues, like the SI method.
In the GSI method, the eigenvalues of matrix C are normalized by dividing the
eigenvalues of matrix R to reduce the influence of random component. The GSI is
defined as

GSI D 1C

M
X

iD1

�i log .�i/

log.M/
(12.11)

where �i is the normalized eigenvalues and computed as

�i D
�i=�

s
i

M
X

iD1

�i=�
s
i

(12.12)

where �
s
i represents the mean values of the eigenvalues of matrix R. M represents

the number of time series like the SI mentioned. To understand how this estimator
works, two cases should be considered. If there is no genuine correlation, the
normalized eigenvalues are all equal to 1/M, so GSID 0; on the contrary, if all the
time series are correlated completely, the largest normalized eigenvalue should be
M, and the others are equal to zero; at this point, GSID 1.

12.2.3 Omega Complexity

Omega complexity is a measurement based on principal component analysis
(Yoshimura et al. 2004), which is similar to S-estimator. Firstly, eigenvalue decom-
position is made on the covariance matrix C of the data matrix. Then the obtained
eigenvalues are normalized. Omega complexity is defined as

� D exp

 

�

M
X

iD1

�i
0 log

�

�i
0
�

!

(12.13)
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If a signal xi(k) was completely synchronized, having the largest eigenvalue M and
other eigenvalue 1, then � D 1. On the other hand, if all the eigenvalues were 1,
then � D M. Therefore, omega complexity is a nonsimilarity measurement, and its
value is not normalized. Because the algorithm of omega complexity is similar to
S-estimator, the performance of them is also similar.

12.2.4 Partial Directed Coherence and Directed Transfer
Function

12.2.4.1 Partial Coherence

The first extension of bivariate analysis was made by a nonparametric analysis tech-
nique: partial coherence (PC), which introduced a third signal into the estimation
of a new coherence measure. It was introduced to differentiate direct and indirect
linear relationship.

For signals X, Y, and Z, the underlying idea of PC is to subtract linear influences
from other processes to obtain the partial cross spectrum between X and Y:

Sxyjz .f / D Sxy.f / � Sxz.f /Szz
�1.f /Syz.f / (12.14)

Then the squared partial coherence is estimated as follows (Bendat and Piersol
2000):

�2xyjz .f / D

ˇ

ˇ

˝
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2

ˇ

ˇ

˝

Sxxjz .f /
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ˇ

ˇ

ˇ

˝

Syyjz .f /
˛ˇ

ˇ

2 Œ0; 1
 (12.15)

where Sxxjz(f ) and Syyjz(f ) are partial auto-spectra and h�i indicates average over data
segments. The �2

xyjz(f ) represents the partial coherence between X and Y that is not
shared with Z.

And the partial phase spectrum is

ˆxyjz .f / D arg
�

Sxyjz .f /
�

(12.16)

The direction of interrelations can be inferred from the partial phase spectrum if
there is a strict linear phase relation.

PC measure is a nonparametric method which is robust in detecting relationships
in multivariate systems. The statistical properties are well known and critical values
for a given significance level can be calculated (Winterhalder et al. 2005, 2006).
This is an important fact especially in applications to noisy neural signal transfer as
measured by, e.g., EEG recordings. But recent study demonstrates that PC measure
is very sensitive to noise contamination (Albo, et al. 2004). It must be noted that
PC is based on the assumption of linearity. Although direct and indirect influences



12 Multivariate EEG Synchronization Strength Measures 243

can be distinguished in the example of the nonlinear stochastic Roessler system
(Winterhalder et al. 2005), but in other nonlinear system (e.g., some neural signals)
might cause errors in its applications. Furthermore the direction of interrelations
can be inferred if and only if there is a strict linear phase relation. A shortcoming of
PC and partial phase spectrum is that reliable assessment of the phase spectrum has
rigorous conditions such as highly significant coherence value and broad range of
frequencies (Winterhalder et al. 2006). So the ability to distinguish direction of PC
is weak.

12.2.4.2 Partial Directed Coherence and Directed Transfer Function

Partial directed coherence (PDC) is a frequency domain description of Granger
causality between multivariate time series. This linear and parametric method was
introduced by Baccalá and Sameshima (Sameshima and Baccalá 1999; Baccalá
and Sameshima 2001a, b). PDC is based on modeling time series by multivariate
autoregressive (MAR) process. Consider an m-dimensional MAR model with order
p as follows:
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In this model, time series xi(n) depends on its own past values xi .n � r/ through
the coefficients aii(r) of Ar , while xi(n) dependence on the past values of other
series xj .n � r/ is through coefficients aij(r). As such, the time series xj(n) only
Granger-causes xi(n) if we can statistically show that aij.r/ ¤ 0 for some values of
r. Or equivalently rejecting the null hypothesis of aij.r/ D 0 means that xj(n) does
Granger-cause xi(n).

Let A(f ) be essentially the Fourier transform of the coefficients Ar

A.f / D
p
X

rD1

Arz
�r jzDej2� f (12.19)
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Let A.f / D I � A.f / D Œa1.f /a2.f / � � � am.f /
. āi(f ) is the ith column of the matrix,
and āij(f ) expresses the i, jth element of Ā(f ):

aij.f / D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

1 �

p
X

rD1

aij.r/e�j2�rf ; if i D j

�

p
X

rD1

aij.r/e�j2�rf ; otherwise

(12.20)

The PDC measure from signal j to signal i at frequency f is defined as

�ij.f / D
aij.f /

q

aH
j .f /aj.f /

(12.21)

The PDC � ij(f ) represents the direct frequency domain Granger causality test
(relative coupling strength) from j to i channels. For i D j the PDC represents how
much of xi’s own past contributes to the evolution on itself that is not explained by
other signals.

Directed transfer function (DTF) which is a very similar measure of causal
influence was introduced as follows (Kaminski & Blinowska 1991):

DTFij.f / D �ij.f / D
Hij.f /

q

hH
i .f /hi.f /

(12.22)

where the superscript .�/H indicates the Hermitian transpose. H.f / D A
�1
.f / D

ŒI � A.f /
�1 is called the transfer function matrix.
DTF provided a physiologically interesting frequency domain picture as well.

But due to intrinsic aspects of DTF’s definition, structural inference based on its
computation did not always agree with the result of Granger causality tests (GCT)
(Baccalá and Sameshima 2001a). DTF can’t differentiate the interactions between
direct or indirect. On the contrary, PDC can clearly indicate the direct interactions
and expose the feedback structure. At this point, DTF can provide complementary
information for PDC. PDC and DTF causality measures are meaningful only in
statistical sense. The statistical properties of PDC and significance level for testing
nonzero PDC at a given frequency were proposed (Schelter et al. 2005). But there
is no analytical significance level for testing for nonzero DTF. Thus, interpretation
of the results obtained by the DTF is more complicated than PDC. Furthermore the
computation of PDC does not involve any matrix inversion. It is computationally
more efficient and more robust than DTF for avoiding numerical imprecision
that results from possible ill-conditioning of Ā(f ) at some frequencies in DTF
estimation. An important difference between DTF and PDC since DTF � ij(f ) is
normalized with respect to the structure that receives the signals (the total inflow
of information), whereas PDC � ij(f ) is normalized with respect to the structure that
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sends the signals (the total outflow of the information). So the PDC is in much
common use than DTF. The comparative results between the two methods can also
be seen (Baccalá and Sameshima 2001a, b; Kus et al. 2004).

In practice, the successful estimation of them depends primarily on the reliability
of the MAR model, since all the necessary information depends completely on
the estimated model parameters. The parameter estimation methods for coefficient
matrices Ar in common use are multivariate Yule-Walker equations, least squares
estimates, or fast maximum entropy methods.

The order in an autoregressive process is the number of immediate previous
values that have a direct effect on the current value. The studies (Thuraisingham
2007) indicated that coherence provides an accurate estimate of the order unlike the
spectral density, which underestimated the value of the order leading to inaccurate
values for the PDC. The order of the model p can also be inferred using Akaike’s
AIC criterion. But the choice of an optimal model order is awfully difficult now.

How to choose the window size properly is another crucial difficulty. The length
of the data has a statistically significant influence on the accuracy of PDC connec-
tivity pattern estimation (Astolfi et al. 2005). However, the data in neurophysiology
usually are nonstationary signals. The window of signal was limited and influenced
the accuracy of PDC. Furthermore if the signals are found to be nonstationary, time-
varying MAR model parameter estimation must be adopted such as the recursive
least squares algorithm (RLS) and short-window-based adaptive MAR approach
(Ding et al. 2000). The ability of PDC to deal with the nonstationary data has not
been validated well.

Another problem is the ability of PDC in dealing with nonlinear system; as we
all know PDC was based on linear VAR model. Winterhalder applied PDC to the
nonlinear coupled stochastic Roessler system with pronounced frequencies. PDC
was found to be sensitive in detecting interactions in nonlinear multivariate systems.
But a higher order of the model is required, and followed by a larger amount
of computation (Winterhalder et al. 2006). And the performance of PDC to other
nonlinear system and real neurophysiology has not been studied.

Furthermore the PDC or DTF can only give the information of causality for one
signal to another. If we want to obtain the interaction details in M channels, we must
give M2 pictures of PDC or DTF. It is seemed deduced to the bivariate measure case.
The global interaction information which is our motive is not obtained directly too.
How the preprocessing gives the influence to PDC is not solved as well.

12.2.5 Complex Network Analysis

The first step in applying complex network analysis (CNA) is to use the bivariate
synchronization measures to construct a matrix, which describe details of the brain
function connection. Given a threshold the synchronization matrix converts to a
binary graph. Then the graph theoretic analysis and complex network analysis
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are used to find the network connection characteristic and give the details of
synchronization information (Stam et al. 2007; Ponten et al. 2007).

The matrix is mostly constructed by the synchronization likelihood (SL), which
is a recently introduced measure of statistical interdependencies within a dynamical
systems framework (Stam and van Dijk 2002), and other bivariate synchronization
index can be used as well. The cluster coefficient C and the characteristic path length
L are computed with a different threshold. The cluster coefficient C is the ratio of all
existing edges between the neighbors and the maximum possible number of edges
between the neighbors which range between 0 and 1. It is a measure for the tendency
of network elements to form local clusters. The characteristic path length L is the
average shortest path connecting any two vertices of the graph; the length of a path
is indicated by the number of edges it contains. It is an emergent property of the
graph, which indicates how well its elements are integrated/interconnected.

CNA is quite general and could also be applied to connectivity matrices based
upon reconstructed sources in future studies. It can characterize the whole network
in terms of local and global integration and to determine which aspect might be
affected. However, there is no unique way how to determine threshold, and only one
cluster can be described by this approach.

12.3 Applications

Multivariate EEG synchronization measures have been widely used for studying
the relationship among neural signals at present. Partial coherence (PC) is the
first attempt to analyze the signals more than two channels and has been applied
popularly in neurophysiology. In neurophysiology, PC was first applied to identify
epileptic focus with three electrodes (Gersch and Goddard 1970). To this date, it
has been used to study the nature of connectivity and causal information in various
neural signals from spike trains (Cohen et al. 1995), hippocampal field oscillations
(Kocsis et al. 1999), intracortical EEG (Lopes da Silva et al. 1980; Mirski et al.
2003), scalp EEG (Liberati et al. 1997; Tucker et al. 1986), and functional magnetic
resonance imaging (fMRI) data (Sun et al. 2004).

PDC was defined by Baccalá and Sameshima ((Sameshima and Baccalá 1999;
Baccalá and Sameshima 2001a, b). It was first used to neural spike train data
(Sameshima and Baccalá 1999). The spike trains are convolved with a Gaussian
kernel and are sampled, leading to discrete time series. The author observed
short-lived and frequency-altering feedback from the thalamus to cortex. Another
PDC study showed a clear directional preference from somatosensory cortex to
medial thalamic nucleus during whisker twitching than other behaviors in freely
moving rats (Fanselow et al. 2001); Winterhalder et al. used the data obtained from
experimental recordings of deep sedation with burst suppression patterns (BSP) to
analyze electrophysiological signals from thalamic and cortical brain structures. A
clear depiction of the system generating such burst patterns is given (Winterhalder
et al. 2005). Baccalá and Sameshima illustrate PDC in connection to local field
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potentials recorded from a rat in exploratory behavior. The simultaneously pro-
cessed structures comprise the hippocampal CA1 field, somatosensory (A3) and
motor (A10) cortical areas, and the dorsal raphe (DR), where rhythmic oscillations
in the theta range are observed during desynchronized sleep and alert states. The
experiment portrays the distinct and potentially interesting functional connectivity
patterns that characterize different behavioral states and indicate that DR is possibly
an important role (source reversal to an information sink) (Baccalá and Sameshima
2001a). In the application to essential tremor, directions of the interrelations are
determined using partial directed coherence analysis. Both directions from the
cortex to the muscles and vice versa are observed. It could be shown that the cortex
imposes its oscillatory activity on the contralateral muscles via the corticospinal
tract and that additionally muscle activity is reflected to the contralateral cortex via
proprioceptive afferences (Schelter et al. 2005). Astolfi used PDC to actual event-
related recordings: The activity noted in the supplementary and primary motor areas
in the present study is consistent with the role that such cortical areas have in the
organization and in the performance of simple foot movements (Astolfi et al. 2005).

The DTF was defined by Kaminski and Blinowska (Kaminski and Blinowska
1991). Babiloni et al. applied DTF to study the direction of information flux within
EEG functional coupling at electrode pairs in normal elderly, amnesic MCI, and
mild AD subjects at rest condition (closed eyes). They found that parietal to frontal
direction of the information flux within EEG functional coupling was stronger in
normal elderly than in MCI and/or AD subjects, namely, alpha and beta rhythms
(Babiloni et al. 2009).

Phase synchronization cluster analysis (PSCA) is a genuine multivariate syn-
chronization analysis method which is essentially different with partial coherence
and partial directed coherence (PDC). It was introduced by Allefeld and Kurths
in 2004, who introduced the concept of a statistical phase synchronization cluster
and derive a method to identify this structure in a given data set (Allefeld and
Kurths 2004). PSCA has been applied to different experimental situations in some
fields. Allefeld and Kurths applied it to human EEG data from a visual attention
psychological experiment in a time- and frequency-specific way, resulting in a
common topography of synchronized behavior, but showing differences in the
overall strength of synchronization between experimental conditions (Allefeld and
Kurths 2004). Based on the theory of multivariate phase synchronization, it is
feasible to propose the strategy to find groups of genes according to the specific
biological process by analyzing cell cycle-specific gene expression data (Kim et al.
2008).

S-estimator was proposed by Carmeli et al. (2005). It was applied to high-density
EEG recordings of nine adult with two different vision stimuli in wide spectrum
or specified spectrum. S-estimator appeared to cause a complex rearrangement of
synchronous neuronal assemblies distributed over the cortex, in particular over
the visual cortex (Carmeli et al. 2005). Jalili et al. applied S-estimator to reveal
a whole-head synchronization topography in schizophrenia to the resting dense
array (128 channels) EEG obtained from 14 patients and 14 controls; they found
bilaterally increased synchronization over temporal brain regions and decreased



248 D. Cui and X. Li

synchronization over the postcentral/parietal region neighboring the midline. Its
application to schizophrenia research shows that schizophrenia can be explained
within the concept of neural disconnection across and within large-scale brain
networks (Jalili et al. 2007).

Based on equal-time correlation, correlation matrix analysis, and surrogate
resampling, Li et al. develop a new method called correlation matrix analysis (CMA)
at 2007, which is able to quantify and describe properties of synchronization of
population neuronal activity recorded simultaneously from multiple sites. They
applied CMA to the data recorded from an in vitro model of epileptic seizures.
The results demonstrate that this novel method can be successfully used to analyze
synchronization between multiple neuronal population series (Li et al. 2007).
Cui et al. developed the CMA method to estimate the genuine and random
synchronization, denoted as GSI (genuine synchronization index) and RSI (random
synchronization index) in multivariate neural series by means of a correlation matrix
analysis and surrogate technique. The proposed method is applied to analyze a 21-
channel scalp electroencephalographic recording of a 35-year-old male who suffers
from medial temporal lobe epilepsy. The GSI and the RSI at different frequency
bands during the epileptic seizure were shown (Cui et al. 2010). Lee et al. analyzed
the EEG of AD patients by using the SI method. They found that the global SI values
in the beta1 (12–18 Hz), beta2 (19–21 Hz), beta3 (22–30 Hz), and gamma (30–
50 Hz) bands were significantly lower in AD patients than in normal control. The
global SI values in the beta and gamma bands were positively correlated with the
MMSE scores in all participants (AD and normal control) (Lee et al. 2010). Cui et al.
applied S-estimator, synchronization index (SI), and global synchronization index
(GSI) to analyze the synchronization in five ROIs of sLORETA sources of resting
eyes-closed EEG data which were recorded in eight aMCI subjects and 11 age-
matched controls in T2DM. They found that aMCI group had lower synchronization
values than control groups in parietal delta and beta2 bands, temporal delta and
beta2 bands, and occipital theta and beta2 bands significantly (Cui et al. 2014).

In this chapter, an example of analyzing the epileptic data is used to illustrate the
application of CMA method. The multiple field potentials (MFP) were recorded,
in vitro, from the CA1 region of the hippocampus. Transverse hippocampal slices
(400 �m) were prepared from male Sprague-Dawley rats (150–300 g). Spontaneous
seizure-like events were induced by perfusion with low-calcium, high-potassium
artificial cerebrospinal fluid consisting of (in mM) 125NaCl, 26NaHCO3, 5KCl,
0.2CaCl2, 1.0MgCl2, 1.25NaH2PO4, and10 glucose, bubbled with 95%O2-5%CO2

mixture. Extracellular field potentials were recorded using nine Pt/Ir wire electrodes
(25 �m in diameter), positioned individually on the surface of stratum pyramidale
along the long axis of CA1. The spacing of adjacent electrodes was about 200
�m. Signals were amplified (�500), low-pass filtered (3 kHz), and digitized with
sampling frequency of 2.5 kHz (Li et al. 2007).

The signal waveform is shown in Fig. 12.1. The data length is 40s. The different
states in epilepsy seizures are shown in Fig. 12.1. Rat data in vitro slicing is very
clear, noise and delay are small, and so the simple cross correlation method is
selected to construct the synchronization matrix. Surrogate data are obtained by
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Fig. 12.1 Multiple field potential recordings of nine channels. The different stages including
interictal state, pre-ictal state, and ictal state in epilepsy seizures are shown

using the AAFT method. After repeating 50 times, the surrogate eigenvalues and
their mean values are obtained.

In order to analyze epileptic seizures synchronizing characteristics and typical
correlation structure at different stages in detail, we extract and analyze the 1 s
EEG data recording at interictal state (12 s), pre-ictal state (14 s) and ictal state 1
(18.5 s), and ictal state 2 (21 s). Data waveform, correlation matrix, data eigenvalues,
and surrogate eigenvalues of correlation matrix at the four states are displayed,
respectively, in Fig. 12.2. During the interictal state (Fig. 12.2a), the multichannel
field potential performs low-amplitude high-frequency behavior, and the correlation
matrix shows no obvious synchronization, also any significant eigenvalue. The
global synchronization index of interictal state is 0.0019.

During the pre-ictal state of epileptic seizures (Fig. 12.2b), the high-amplitude
rhythmic activity is clearly visible on former several channels. The synchronization
matrix shows a synchronization cluster composed of the channels 1–4. The biggest
eigenvalue of data correlation significantly exceeds the means of surrogate eigen-
values. The GSI of pre-ictal state is 0.181. 1–4 channels can be thought as the main
area that causes seizures.

Figure 12.2c, d show two different correlation structures in epileptic ictal state.
High-amplitude activity and two significant eigenvalues are shown at both ictal
states. GSI is 0.2314 and 0.2535, respectively. The synchronization is more obvious
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Fig. 12.2 The signal waveform and correlation structure during the different ictal states: (a)
interictal state, (b) pre-ictal state, (c) ictal state 1, and (d) ictal state 2

than the interictal and pre-ictal stage. The two different correlation matrixes show
different synchronization clusters, which show the propagation of epilepsy.

In order to trace the synchronization of the MFP series over time, a moving
window technique is applied. The width of the moving window is 1 s with the
overlap of 0.5 s. Figure 12.3a shows the number of clusters that varies at different
state. There is zero or one cluster during interictal state, but two or three clusters
during the pre-ictal and ictal stage and one or two clusters during late ictal stage.
Figure 12.3b shows GSI changes over time. The GSI values obviously increase
from interictal to ictal state, which showed greater synchronization at ictal state.
Figure 12.3c, d show the first and second participation index PI9 and PI8. The red
color indicates the greater PI values, and blue indicates smaller values. The former
channels and latter channels form two different synchronization clusters at the ictal
state, and the strengths of the two synchronization clusters alternate, which show
the propagation of epilepsy.
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Fig. 12.2 (continued)

Omega complexity was applied to help early diagnosis of Alzheimer’s disease.
Results showed that omega complexity showed significantly higher values than the
control group. The omega complexity values were highly correlated with the Mini-
Mental State Examination scores and the full IQ and performance IQ scores of the
Japanese Wechsler Adult Intelligence Scale-Revised (Yoshimura et al. 2004).

Complex network analysis has been used in the study of models of neural
networks, anatomical connectivity, and functional connectivity based upon fMRI,
EEG, and MEG. There is also increasing evidence that various types of brain disease
such as Alzheimer’s disease, schizophrenia, brain tumors, and epilepsy may be
associated with deviations of the functional network topology from the optimal
small-world pattern (Stam et al. 2007; Ponten et al. 2007; Ferri et al. 2007; Stam and
Reijneveld 2007; Jamal et al. 2015). Kim et al. applied SL-based graph theoretic
analysis over the electrode array to assess network properties. They found that
the clustering coefficient and global efficiency were decreased in bipolar disorder
(BD) patients, whereas the characteristic path length increased, and the normalized
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Fig. 12.2 (continued)

characteristic path length and small worldness were significantly correlated with
depression scores in BD patients (Kim et al. 2013).

12.4 Conclusions

Synchronization is an important feature for communication in the brain. Multi-
variate synchronization algorithms provide us a new and global perspective to
understand the synchronization mechanism, whether it is in the normal human brain
cognitive state or under pathological conditions.
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Chapter 13
Cross-Frequency Coupling in Neural
Oscillations

Juan Wang and Xiaoli Li

13.1 Introduction

Electrophysiology is typically described in terms of rhythmic activity. The rhyth-
mic activity is divided into bands by frequency, known as delta (<4 Hz), theta
(4–7 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (>30 Hz). Within the
brain network research, a general principle of the functional role of oscillations
in various frequency bands was considered—slow oscillations (e.g., delta/theta) are
involved in further distance information transformation, and fast oscillation (e.g.,
alpha/beta/gamma) are more likely to be restricted to local circuits (Moran and Hong
2011). Many known brain functions are associated with activities from different
brain regions; it is natural to spur researchers to investigate the cross-frequency
coupling between different frequency oscillations.

Previous studies have proposed some theories to model the interaction between
the slow and fast oscillations, and they formed based on perspectives of either
network or coding. The former one suggested that fast oscillations synchronize
cell assemblies over relatively short spatial scales representing functional networks
while slow oscillations synchronize network over long distances; the integration of
different functional networks or spatial integration involved slower oscillations (von
Stein and Sarnthein 2000; Buzsaki and Draguhn 2004). The latter assumed that slow
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oscillation is a carrier for the fast oscillation as active brain representations involving
fast oscillations are encoded at different phase of the slow oscillations (Mc 1959),
and it has been supported by some experiments (Lisman and Idiart 1995).

13.2 Background

13.2.1 The Phase of Neural Oscillations

Oscillations can be described in terms of phase, frequency, and amplitude. The phase
of neural oscillations represents the timing of neuronal activity (Klimesch et al.
2007). Differences in phase are related to differences in the excitability of neurons
and, thus, to differences in the probability of the generation of action potential. A
directly founding is that CA1 cells fire when an animal is at a particular place in its
environment, and these place cells fire at a particular sequence in time that is related
to the phase of the ongoing theta rhythm (O’Keefe and Dostrovsky 1971). Not only
in animal studies, but also in many human event-related potential (ERP) studies, the
phase reset is an important mechanism of brain cognitive function (Hanslmayr et al.
2007; Yin Fen and Daniel 2009).

13.2.2 The Amplitude of Neural Oscillation

The amplitude of neural oscillation plays an important role in characterization of
the extent of task involvement (Klimesch et al. 2007). Large amplitudes reflect a
pronounced influence of an oscillation for a certain kind of neural process that
is related to certain aspects in the processing of a task. Small amplitudes reflect
minimal involvement in processing of a task. It is important to emphasize that the
influence of amplitude also is related to the timing of neural activity.

13.3 Cross-Frequency Coupling Methods Review

According to the wording of “cross-frequency coupling,” the oscillations in a lower
and a higher frequency band consequently were involved in the interaction process.
How do the oscillations in these frequency bands interact?

Recently, three types of cross-frequency interaction, including power-to-power,
phase-to-phase, phase-to-frequency, and phase-to-power were involved in brain
mechanism investigation. Previous studies have done neurophysiological research
by estimating the above analysis. However, according to Canolty et al. (Canolty
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et al. 2006), the phase-to-power coupling, also named as phase-amplitude coupling
(PAC), is sensible from a physiological perspective. They argued that, if high-
frequency oscillations in a network are modulated by the low-frequency oscillations
and the low-frequency oscillation is produced from the network or another network,
the excitability and the dynamics of the cells producing high-frequency oscillations
in the network can be guaranteed by the low-frequency oscillations phase modula-
tion even if there are no fluctuations in the low-frequency oscillations. The above
inference has been supported by the network model which occurred in slow and fast
GABAergic feedback (White et al. 2000).

Recently, much neurophysiological research has revealed that the PAC between
slow and fast oscillations is involved in the cognitive processes, such as memory pro-
cesses (Canolty et al. 2006; Jensen and Colgin 2007) and speech perception (Wang
et al. 2014). PAC can be used a marker for clinical diagnosis of memory-related
psychiatric disorders (Jelic and Kowalski 2009). In these studies, the cognitive
model, allowing for top-down modulation of bottom-up sensory inputs, is involved
in the information process in the brain. Brain oscillation has typically been divided
into specific frequency ranges that are associated with different cognitive processes.
Indeed, previous studies have suggested that feed-forward bottom-up information
is indexed through high-frequency cortical activity (above 30 Hz), whereas top-
down feedback information is marked by low-frequency cortical activity (Wang
2010; Arnal et al. 2011). There is growing evidence that perception involves the
coordination of slow and fast brain oscillations, typically theta-gamma coupling
(Buzsaki and Draguhn 2004; Canolty et al. 2006). How oscillations in low- and
high-frequency bands interact with each other has received an increasing amount of
attention in recent years, and a number of methods have been developed to measure
the PCA.

In order to estimate the coupling strength between the high- and low-frequency
oscillations, the corresponding components should be extracted from the brain
neuronal activity. In this step, the band-filter, Hilbert transform, and complex
wavelet methods were commonly used. When the phase of neural oscillations was
analyzed, the two-way, least-squared finite impulse response filter (e.g., eegfilt.m
included in EEGLAB toolbox (Delorme and Makeig 2004)) was used to avoid
distortions of the phase value during filtering. Then, the Hilbert transform was
performed to compute the phase time series and amplitude envelope time series
corresponding low- and high-frequency oscillations. The next step was to estimate
the coupling strength between the high- and low-frequency oscillations. According
to the present research, four types of method have been proposed.

We firstly review the method based on quantization of the phase-amplitude distri-
bution (Tort et al. 2010), and this method can be briefly described as follows. Step 1:
A complex-valued signal composited by phase time series of low-frequency oscil-
lations and amplitude time series of high-frequency oscillations was constructed as
[L(n), aH(n)]. Step 2: The phase time series L was binned into M intervals, and
the mean amplitude haHiL

.j/ in each bin (p(j), j D 1; 2; : : : ;M) was derived, and
the phase-amplitude distribution was constructed. Step 3: The normalized values
were obtained by dividing each bin value by sum across all bins. Step 4: The



264 J. Wang and X. Li

asymmetry degree of the distribution was estimated as the mutual information
shared by phase and amplitude time series, and this parameter was defined as the
coupling strength between the low-frequency phase and high-frequency amplitude

as follows: MIKL D
log.M/�H

log.M/ , in which H D
XM

jD1
p.j/ log Œp.j/
.

The second method is based on the average vector length of the composite
signals (Canolty et al. 2006). Similarly, a complex-valued signal z.n/ D aH.n/eiL.n/

composited by phase time series of low-frequency oscillations L and amplitude
time series of high-frequency oscillation aH is constructed. Then the composite
signal takes on some particular values in the complex plane. If the probability
density function of the composite signal is not radially symmetric, the phase and
the amplitude time series will share mutual information, or the distribution of the
phase time series will be nonuniform. Accordingly, the degree of asymmetry of the
probability density function was estimated by computing the mean of the composite
signal as coupling strength between the phase and amplitude time series.

The third method is based on the quantization of the low-frequency oscilla-
tion and amplitude from the high-frequency oscillation synchronization. Cohen
(2008) and Mormann et al. (2005) have proposed the phase locking value (PLV)
estimation; this method computes the two phase time series obtained from the low-
frequency oscillation and the envelope of high-frequency oscillation. And another
method computes the correlation between low-frequency oscillation and envelope of
high-frequency oscillation. Furthermore, Colgin proposed that instead of the low-
frequency oscillation, using its cosine transform of phase time series can remove
the effect of amplitude from low frequency to the coupling estimation (Colgin et al.
2009).

The fourth method is based on the general linear model to quantify the coupling
strength between the low-frequency phase time series and high-frequency amplitude
time series (Penny et al. 2008). In this measure, high-frequency amplitude is
modeled by a multiple regression, and the design matrix is comprised of three
columns, in which these first and second columns correspond to the cosine and
sine transforms of low-frequency phase, respectively, and the third column is a
column of 1 s. Then the proportion of variance explained by the model is defined
as the coupling strength between the low-frequency phase and the high-frequency
amplitude.

In actual application, the surrogate method was performed to reduce the effect
of artifacts and the marginal distributions of low-frequency phase and the high-
frequency amplitude on the above coupling estimation, especially for the first and
second method. So we can obtain a set of surrogate coupling estimations. Then
raw coupling estimations were normalized by the mean and the standard of the
surrogate coupling estimation, and this normalized value was used to estimate the
coupling strength between the low-frequency phase and high-frequency amplitude.
One way to accomplish this is to shuttle the corresponding time point of the phase
and amplitude time series in the composite signal; another way is to randomize the
phase or amplitude time series blocks for tasking-state signals; this performance
ensures the phase and amplitude time series come from different recording blocks.
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Some studies have compared the performance of the above methods. The paper
(Penny et al. 2008) performed comparatively overall analysis by using sigmoidal
coupling model. In this paper, four variables participated in the comparison,
including the coupling strength, noise intensity, the length of signal, and the
coupling phase. The result suggested that when the coupling strength changed,
the above all methods can distinguish the coupled and uncoupled mode; however,
only the first and second type of methods can distinguish the different coupling
strength; the second type of method has better noise immunity than the other
methods; all methods are sensitive to the signal length, and the surrogate method
was recommended to reduce the effect of signal length; lastly, only the envelope-
signal correlation method was effected by the coupling phase.

13.4 Application

13.4.1 Data Recording and Analysis

We investigate how the interaction of different brain oscillations (particularly theta-
gamma coupling) modulates the bottom-up and top-down processes during speech
perception. A speech perception paradigm was employed that manipulated the
congruency between a visually presented picture and an auditory stimulus, and
participants were asked to judge whether they matched or mismatched. Seventeen
children (ND 17; 12 female, mean age 10 years 5 months, SDD 1 year 2 months)
participated in this study, and their electroencephalographic (EEG) data were
recorded while performing a picture-word matching task. In each trial, a fixation
cross was followed by a picture of an object that appeared on a screen for 1500 ms.
While this item remained on the screen, subjects heard an auditory word that either
matched or mismatched the picture. They were asked to judge, indicating their
response via button press, whether the auditory word matched or mismatched the
picture present on the screen. We derived mismatches that were different in tone,
onset, rhyme, all segments but not tone, or all segments and tone. The data were
amplified at gain of 500 using a SynAmps2 amplifier and filtered online using 50 Hz
notch and 0.1–100 Hz band-pass filters. The EEG data were then segmented into
epochs spanning from 250 ms pre-stimulus to 3000 ms post-stimulus onset and time
locked to the onset of the visual picture stimulus. The detailed description can be
seen (Wang et al. 2014).

For the coupling of theta phase and gamma amplitude, briefly, five steps were
needed. Step 1: A FIR filter was applied to obtain the real-value band-pass gamma
component xfA(t) (see Fig. 13.1b) and theta component xfP(t) (Fig. 13.1c) from
epochs xraw(t) (see Fig. 13.1a). Step 2: The amplitude envelope of AfA(t) (see
Fig. 13.1f) and phase ®fP(t) (see Fig. 13.1g) at each time point was estimated by
the Hilbert transform, with values between [0, <2*pi>] radians. Step 3: The phase
®fP(t) was binned into eighteen 20ı intervals, and the mean AfA(t) in each bin



266 J. Wang and X. Li

was derived (see Fig. 13.1h). Step 4: The normalized values fpi; i D 1 : : : 18g were
obtained by dividing each bin value by the sum across all bins; then, the entropy

measure H was calculated by H D �
nD18
X

iD1

pi log pi and normalized by the maximum

entropy value Hmax, defined as MI (MI D Hmax�H
Hmax

), in which Hmax D log n (see
Fig. 13.1j). To reduce the effect of artifacts on the MI, 100 surrogated MI values
were obtained by shuffling trials (see Fig. 13.1i). Step5: The significant threshold
MIsurr D meanC 1:96 � std (p < 0.05) was used to then post-process MI (termed as
true MI: MItrue) as defined by MItrue D MI�MIsurr (see Fig. 13.1k). Finally, the true
MI values were summed together in the frequency bands of 30–70 Hz and 4–8 Hz
within the segmented time window of each trial for further analysis (see Fig. 13.1l).
An example of theta phase and gamma power modulation in the 1000 ms EEG
signal from channel F8 of one subject was given in Fig. 13.1 to demonstrate its flow
path of computation process. The normalized time-frequency instantaneous power
of the gamma activity was illustrated in Fig. 13.1d, e indicated phase convergence
between the theta and gamma activity to a certain extent. In addition, the coupling
strength between the oscillations was the highest in the frequency band of 3–8 Hz
and the 30–70 Hz, as can be seen in Fig. 13.1l.

For statistical analysis, the mean and the standard deviation of the whole brain
for the baseline were used to convert the MI after stimulus into normalized values
for each person to eliminate the variance between subjects. In addition, once the
coupling strength below the average value of the whole brain, it was marked
negatively, while it was marked positively. The MI values were averaged within five
brain regions (frontal, parietal, occipital, left temporal, and right temporal). Five
time windows (pre-visual (�250� 0 ms), visual_1 (0–1000 ms), visual_2 (500–
1500 ms), auditory_1 (1500� 2500 ms), and auditory_2 (2000� 3000 ms)) were
chosen for further analysis. To investigate the role of each brain region at different
time windows during the visual stimulus interval, a two-way repeated measures
analysis of variance (ANOVA) with the factors Brain Region (frontal, parietal,
occipital, left temporal, right temporal) and Time Window (pre-visual, visual_1,
visual_2) was applied. A similar two-way repeated ANOVA analysis with the factors
Brain Region (the same 5 regions as the above) and Time Window (auditory_1,
auditory_2) was also applied to the auditory stimulus interval. In addition, a three-
way repeated measures ANOVA was performed during the auditory interval with
the factors Condition (2 conditions: match and mismatch), Brain Region (the
same 5 regions as the above), and Time Window (2 windows: 1500� 2500 ms,
2000� 3000 ms) used to investigate the condition effect according to brain region
and time. Post-hoc two-tailed t-tests were used to compare different brain areas,
time windows, or conditions when a simple effect was significant. The Bonferroni
correction was applied to correct for multiple comparisons.
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Fig. 13.1 Steps in the computation of the modulation index (MI). The raw signals (a) were filtered
at the amplitude (b) and phase (c) frequency ranges of interest. The spectral distribution of the high-
frequency component was illustrated in (d), and the relation of the gamma envelope (red) and the
theta component (blue) was shown in plot (e). Next, the gamma amplitude (f) and the theta phase
(g) time series were calculated from the filtered signals by using the Hilbert transform. Then a
composite time series was constructed and used to obtain the mean amplitude values at each 20ı

phase bin (h), and the same calculation was for the surrogate composite time series (i). The MI
was finally obtained by applying a normalized entropy measure to the mean amplitude vector (j).
Finally, the significant threshold MI was obtained, and true MI value was defined as the difference
between the MI and the MIsurr (k). The statistically significant modulation plot of low-frequency
phase and high-frequency amplitude showed an evident coupling between the oscillation in 3–8 Hz
and in 30–70 Hz (l)
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13.4.2 Results of EEG Data

A two-way repeated measures ANOVA on the theta-gamma coupling (i.e., MI
values) revealed significant main effects of Brain Region (F4,64D 9.494, p < 0.001)
and Time Window (F2,32D 4.601, p < 0.05) as well as a significant interaction
effect of Brain Region�Time Window (F8,128D 3.542, p < 0.01).

To further understand the interaction effect, an analysis of the simple main effects
was performed, revealing a significant difference in the level of coupling across
the three time windows in the frontal (F2,32D 9.06, p < 0.01) and left temporal
(F2,32D 17.99, p < 0.01) areas but not in the occipital, parietal, and right temporal
areas. Further post-hoc t-tests (Fig. 13.2a) showed that the modulation level in the
frontal area for the pre-visual interval was significantly lower than for the first
time window in the visual interval (pre-visual vs. visual_1: t16D�4.764, p < 0.003
Bonferroni corrected). For the left temporal area, the modulation level in the first
time window of the visual interval was significantly higher than in the pre-visual
interval (t16D 4.232, p < 0.003 Bonferroni corrected) as well as in the second time
window of the visual interval (t16D 6.064, p < 0.003 Bonferroni corrected).

We next examined the theta-gamma phase-amplitude coupling levels during the
auditory interval. A two-way repeated measures ANOVA on MI values revealed a
significant main effect of Brain Region (F4,64D 3.976, pD .006) and a significant
interaction of Brain Region�Time Window (F4,64D 3.913, p < 0.01). To further
understand the interaction effect, an analysis of the simple effect (see Fig. 13.2b)
was performed, which showed that the theta-gamma coupling was significantly
lower for the first time window compared to the second time window in the frontal
(F1,16D 6.23, p < 0.05) and occipital areas (F1,16D 4.56, p < 0.05). The increase
of theta-gamma coupling was mainly driven by match condition in the frontal area
while mainly driven by mismatch condition in the occipital area (see Fig. 13.2d).
Alternatively, the left temporal area showed significantly higher coupling strength
for the first time window compared to the second time window (F1,16D 5.60,
p < 0.05). The increase of theta-gamma coupling for the first time window in the
left temporal area was mainly driven by mismatch condition (see Fig. 13.2c).

To investigate the theta-gamma coupling difference for the match vs. mis-
match conditions, a three-way repeated measures ANOVA for MI values was
performed, which showed a significant three-way interaction of Condition�Brain
Region�Time Window (F4,64D 4.218, p < 0.01) and a significant two-way inter-
action of Condition�Brain area (F4,64D 3.742, p < 0.01). An analysis of the
simple effect was performed to further understand the three-way interaction effect.
As shown in Fig. 13.2c, in the first time window, the theta-gamma coupling in
the right temporal region was significantly higher for the match than for the
mismatch condition (F1,16D 6.44, p < 0.05), and the left temporal region showed
significantly higher coupling strength for the mismatch compared to the match
condition (F1,16D 20.08, p < 0.001), whereas in the second time window, as shown
in Fig. 13.2d, a coupling difference between conditions was only shown in the
frontal area (F1,16D 4.88, p < 0.05).
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Fig. 13.2 The statistical differences among the brain areas for the pre-auditory interval (a)
(including pre-visual: �250 � 0 ms, visual_1: 0 � 1000 ms, visual_2: 500–1500 ms) and auditory
interval (b) (including auditory_1: 1500 � 2500 ms, auditory_2: 2000 � 3000 ms) were given.
Then, the statistical differences in theta-gamma coupling levels in different brain areas between
the match and mismatch conditions during the auditory_1 (c) and auditory_2 (d) intervals were
presented. The statistical results were reported as the mean Z-score of theta-gamma coupling with
respect to the average values across all electrodes. Brain region labels: F frontal, P parietal, O
occipital, L_T left temporal, R_T right temporal (*: p < 0.05,***: p < 0.001)

As can be seen In Fig. 13.3a, the brain-behavior correlation analysis revealed
significantly negative correlation between RT difference and the theta-gamma
coupling difference between the match and mismatch conditions in the frontal
(rD�0.5764, pD 0.0154), but not in the left and right temporal areas. However,
the RT is negatively correlated with the coupling in the left temporal area for
the mismatch condition (rD�0.547, pD 0.023) (see Fig. 13.3b), but not match
condition, while the RT is negatively correlated with the coupling in the right
temporal for the match condition (rD�0.688, pD 0.002) (see Fig. 13.3c), but not
mismatch condition.
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Fig. 13.3 The correlation between the theta-gamma coupling difference in frontal and the
response time (RT) difference between the match and mismatch conditions during the auditory_2
interval was presented in (a), and the correlation between the coupling strength in the left temporal
and the RT for the mismatch condition during the auditory_1 interval was depicted in (b), and the
correlation between the coupling strength in the right temporal and the RT for the match condition
was demonstrated in (c)

To investigate whether there is a symmetry pattern across hemispheres
between the match and mismatch conditions, the distribution of theta-gamma
coupling between the hemispheres for the two conditions was calculated. In
this process, the relative distribution between hemispheres was calculated in
order to reduce the amount of calculation. That is, the mean MI values of each
channel in the right hemisphere were subtracted from the mean MI values of
the corresponding channel in the left hemisphere, and the resulting MI values
(rMI) were used to assess the strength of the hemisphere lateralization effect.
As shown in Fig. 13.4a, a two-way repeated measures ANOVA revealed a
significant interaction of Condition�Electrode Pair (F10,160D 2.456, p < 0.01)
and a significant main effect of Condition (F1,16D 24.078, p < 0.001) in the first
time window. Further analyses of the simple main effects revealed significant
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Fig. 13.4 The hemispheric asymmetry in theta-gamma coupling level (left electrode and right
electrode) for the match and mismatch conditions averaged over 17 subjects for the auditory_1
(a) and auditory_2 (b) intervals. Positive values depict higher coupling levels for the left electrodes
than the right electrodes, and negative values depict higher coupling levels for the right electrodes.
The bar plots show the trend from an obvious divergence between match and mismatch conditions
in the 1500–2500 ms window to a convergence in the 2000–3000 ms window. Note that significant
differences (labeled by stars) are located in frontal, temporal and parietal areas (*: p < 0.05,
***: p < 0.001)

difference in hemisphere lateralization between conditions, mainly in the frontal
(F7–F8: F1,16D 5.40, p < 0.05; F3–F4: F1,16D 5.25, p < 0.05), temporal (FT7–
FT8: F1,16D 8.31, p < 0.05; T7–T8: F1,16D 6.97, p < 0.05), parietal (C3–C4:
F1,16D 24.15, p < 0.001; CP3–CP4: F1,16D 6.31, p < 0.05; P7–P8: F1,16D 7.28,
p < 0.05; P3–P4: F1,16D 5.35, p < 0.05), and occipital areas (O1–O2: F1,16D 6.87,
p < 0.05). Higher coupling was found in the right hemisphere for the match
compared to the mismatch condition. However, a higher left-hemispheric coupling
level was shown in the mismatch condition compared to the match condition. In
the second time window, a similar two-way repeated measures ANOVA analysis
showed no significant effects. As shown in Fig. 13.4b, for these two conditions, the
lateralization tendency vanished.
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13.5 Conclusion

In this chapter, the relative knowledge on cross-frequency coupling was briefly
overviewed. The interaction of top-down and bottom-up processes based on the
coupling of theta phase and gamma amplitude in speech perception in a group of
children was demonstrated. These findings challenge previous studies indicating
weak top-down modulation in children (Bitan et al. 2006, 2009; Cao et al. 2011).
Specifically, in comparison with mismatch, prior information match facilitated
speech perception by eliciting stronger theta-gamma coupling in the frontal com-
pared to the left temporal area. In addition, different hemispheric patterns were
revealed with higher theta-gamma coupling in the match condition in the right
hemisphere, compared to higher theta-gamma coupling in the mismatch condition
in the left hemisphere. This asymmetry indicates that a fast global processing
strategy and a slow detailed processing strategy were adopted in the congruent
and incongruent conditions, respectively. These results provide neuroanatomical
evidence for theories of speech perception allowing for top-down feedback con-
nections and also provide insight into children’s speech perception development. In
addition, our findings indicate that the interaction of different oscillatory activities
could be exploited to investigate the bottom-up and top-down mechanisms in speech
perception.
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Chapter 14
Nonnegative Matrix and Tensor Decomposition
of EEG

Fengyu Cong

Nonnegative matrix factorization (NMF) and nonnegative tensor factorization
(NTF) are multichannel source separation algorithms with the constraints of
nonnegativity and sparsity on signals (Cong et al. 2010). They can be used in many
disciplines, including image recognition, language modeling, speech processing,
gene analysis, biomedical signal extraction and recognition, and so on. Researchers
from various research fields are interested in different, usually very diverse, aspects
of NMF and NTF. We applied NMF and NTF into EEG feature extraction. In fact,
in the past few years, researchers have used NMF and NTF to extract or separate
useful information from superimposed biomedical data corrupted by a large level of
noise and interference and, then, by using noninvasive recordings of human brain
activities targeted at understanding the ability of the brain to sense, recognize, store,
and recall patterns and comprehending crucial elements of learning: association,
abstraction, and generalization (Cichocki et al. 2009).

14.1 Introduction of Nonnegative Matrix Factorization

Signal processing, data analysis, and data mining are pervasive throughout science
and engineering. Extracting interesting knowledge from experimental raw datasets,
measurements, and observations and understanding complex data have become
an important challenge and objective. Often datasets collected from complex
phenomena represent the integrated result of several interrelated variables, or they
are combinations of underlying latent components or factors. Such datasets can be
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first decomposed or separated into the components that underlie them in order to
discover structures and extract hidden information (Cichocki et al. 2009).

In many cases, the primitive datasets or observations are organized as data
matrices and described by linear combination models, whereupon the formulation
of dimensionality reduction can be regarded as, from the algebraic perspective,
decomposing the original data matrix into two factor matrices. The canonical
methods, such as principal component analysis (PCA), linear discriminant analysis
(LDA), independent component analysis (ICA), vector quantization (VQ), etc., are
the exemplars of such low-rank approximations. They differ from one another in
the statistical properties attributable to the different constraints imposed on the
component matrices and their underlying structures; however, they have something
in common that there is no constraint in the sign of the elements in the factorized
matrices. In other words, the negative component or the subtractive combination is
allowed in the representation.

Often the data to be analyzed is nonnegative, and the low-rank data are further
required to be comprised of nonnegative values in order to avoid contradicting
physical realities. Classical tools cannot guarantee to maintain the nonnegativity.
The approach of finding reduced rank nonnegative factors to approximate a given
nonnegative data matrix thus becomes a natural choice. This is the so-called
nonnegative matrix factorization (NMF) problem which can be stated in generic
form as follows:

NMF Problem Given a nonnegative matrixV 2 Rm�n and a positive integer r <
min fm; ng, find nonnegative matrices W 2 Rm�r and H 2 Rr�n to minimize the
functional

f .W;H/ D
1

2
k V �WHk2F (14.1)

The product WH is called an NMF of V, although V is not necessarily equal to
the product WH, Clearly the product WH is an approximate factorization of rank at
most r. An appropriate decision on the value of r is critical in practice, but the choice
of r is very often problem dependent. In most cases, however, r is usually chosen
such that r
 min fm; ng in which case WH can be thought of as a compressed form
of the data in V. The algorithms construct approximate factorization of the form

Vm�n 	 Wm�rHr�n;W � 0; H � 0: (14.2)

As a matter of fact, the notion of NMF has a long history under the name “self-
modeling curve resolution” in chemometrics, where the vectors are continuous
curves rather than discrete vectors. NMF was first introduced by Paatero and Tapper
(1994; Paatero 1997) as the concept of positive matrix factorization, which con-
centrated on a specific application with Byzantine algorithms. These shortcomings
limit both the theoretical analysis, such as the convergence of the algorithms or
the properties of the solutions, and the generalization of the algorithms in other
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applications. Fortunately, NMF was popularized by Lee and Seung (1999, 2001)
due to their contributing work of a simple yet effective algorithmic procedure and
more importantly the emphasis on its potential value of part-based representation.

14.1.1 Classic Basic NMF Optimization Framework

The prototypical multiplicative update rules originated from Lee and Seung. Their
multiplicative update algorithm with the mean squared error objective function is
provided below:

Wmr  Wmr

X

n

Vmn

.WH/mn
Hrn (14.3)

Wmr  
Wmr
X

j
Wjr

(14.4)

Hrn  Hrn

X

m
Wmr

Vmn

.WH/mn
(14.5)

The iterative algorithm for nonnegative matrix factorization is as the following.
Starting from nonnegative initial condition for W and H, iteration of these update
rules for nonnegative V finds an approximate factorization V 	 WH by converging
to a local maximum of the objective function. The fidelity of the approximation
enters the updates through the quotient V mn/(WH)mn. Monotonic convergence can
be proven using techniques similar to those used in proving the convergence of the
EM algorithm (Dempster 1977; Saul and Pereira 1997). The update rules preserve
the nonnegativity of W and H, and also contrain the columns of W to sum to unity.
This sum constraint is a convenient way of eliminating the degeneracy associated
with the invariance of WH under the transformation W ! �W; H ! ��1H, where
� is a scalar.

14.1.2 Applications of Nonnegative Matrix Factorization
(NMF) of EEG Signals

We apply NMF to process and analyze EEG signals, and the purpose is often source
localization of brain activity (Becker et al. 2014), research questions of cognitive
neuroscience (Cong et al. 2012), or clinical neuroscience.

The EEG data was collected at the First Affiliated Hospital of Dalian Medical
University. The dataset included 48 people with mean age of 46 years, 23 patients
with insomnia, and 25 normal as contrast. They were collected as resting state of
EEG, and frequency range was 13 to 80Hz. The sampling frequency was 500 Hz
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and an analog band-pass of 0.1–80 Hz was performed on the raw data. Sixty-four
electrodes were placed over the standard sites. Electrodes included frontal (F3, Fz,
F4, etc.), central (C3, Cz, C4, etc.), parietal (Pz, etc.), and mastoid (M1 and M2)
placements. After the preprocessing, the power spectrum of each channel’s data
was calculated, and the data were stacked in the space mode for the group-level
EEG spectral analysis.

14.1.2.1 Group Component Analysis and Feature Extraction

For this nonnegative matrix, the row is for the channel/space component, and the
column corresponds to the frequency bins of the power spectrum. It could be
factorized into two parts: one represents power spectrum and another represents
space information, i.e., brain topographic map.

When low-rank NMF HALS (lraNMF_HALS) (Zhou et al. 2012) was applied on
the EEG data, we could use principal component analysis method to calculate the
variance below. Through Fig. 14.1, we chose the number of components to extract
as eight. So the dataset was factorized into two parts. One contained eight frequency
components and another eight spatial components.

Figure 14.2 shows the result of lraNMF_HALS. Every row shows the same
component. The first column shows frequency waveforms that were factorized.
The second column shows brain map of people with insomnia (PI, people with
insomnia). The third column shows normal people brain map. We can find the
differences in brain areas on the same frequency band.

For group analysis, we could use analysis of variance (ANOVA) to compare the
difference between different groups. ANOVA is a collection of statistical models
used to analyze the difference among group means and their associated procedures.
First, we should select power spectrum from spectrum components, for example, �
band. And then choose interesting locations of electrodes from space components
for statistical analysis.

Fig. 14.1 Eigenvalue of the data
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Fig. 14.2 Example of lraNMF_HALS of EEG includes 23 insomniac and 25 normal people.
The first column shows eight spectral components and the second column shows eight spectral
components taking the logarithm. The third column shows eight spatial components of insomniac
(average overall subjects), and the fourth column shows eight spatial components of normal people
(average overall subjects)
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14.2 Introduction of the Tensor Decomposition

14.2.1 Introduction to Tensor

A multi-way data array is called a tensor. Tensors are usually denoted by capital
boldface letters with underline, e.g., Y 2 R

I1�I2�����IN . A third-order tensor (or three-
way array) has three modes as shown in Fig. 14.3 (Cichocki et al. 2009).

Tensor decomposition has been used in many fields such as chemistry (Bro 1998;
Kroonenberg 2008), psychometrics (Harshman 1969; Carroll and Chang 1970), and
brain science (Beckmann et al. 2005; Cichocki 2013). Canonical polyadic (CP)
model and Tucker model are two mainly tensor decomposition methods. Canonical
polyadic model could be traced back to 1927, and Tucker model was proposed
in 1966 (Tucker 1966). For the electroencephalograph (EEG) data in event-related
potential (ERP) experiments, there are many modes, including stimulus, time, space,
frequency, trial, and participant, so the ERP data could be assembled as tensor, and
tensor decomposition method could be used to analyze ERP data.

14.2.1.1 Basis of Tensor Algebra

14.2.1.1.1 Inner Product

For two-column vectors a D Œa1; a2; a3

T and b D Œb1; b2; b3


T , the inner product is
defined as

x D aT � b D a1 � b1 C a2 � b2 C a3 � b3 (14.6)

Fig. 14.3 Third-order tensor
(Cichocki 2009)
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14.2.1.1.2 Outer Product

For two tensors Y 2 R
I1�I2�����IN and X 2 R

J1�J2�����JM ; the outer product is defined
as

Z D Y ı X 2 R
I1�I2�����IN�J1�J2�����JM ; (14.7)

where

zi1;i2;:::iN ;j1;j2;:::jM D yi1;i2;:::iN xj1;j2;:::jM :

The outer product of two vectors a 2 R
I and b 2 R

J yields a rank-one matrix:

A D a ı b D abT 2 R
I�J (14.8)

and the outer product of three vectors a 2 R
I , b 2 R

J; and c 2 R
I yields a third-

order rank-one tensor:

Z D a ı b ı c 2 R
I�J�Q (14.9)

where

zijq D aibjcq: (14.10)

14.2.1.1.3 Kronecker Product

The Kronecker product of two matrices A 2 R
I�J and B 2 R

T�R is denoted as
A˝ B 2 R

IT�JR and defined as

A˝ B D

2

6

6

6

4

a11B a12B
a21B a22B

� � � a1JB
� � � a2JB

:::
:::

aI1B aI2B

: : :
:::

� � � aIJB

3

7

7

7

5

D Œa1 ˝ b1 a1 ˝ b2 a1 ˝ b3 � � � aJ ˝ bR�1 aJ ˝ bR
 (14.11)

14.2.1.1.4 Hadamard Product

The Hadamard product of two equal-size matrices is denoted by � and defined as

A � B D

2

6

6

6

4

a11a11 a12a12
a11a21 a22a22

� � � a1Ja1J

� � � a2Ja2J
:::

:::

aI1aI1 aI2aI2

: : :
:::

� � � aIJaIJ

3

7

7

7

5

(14.12)
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14.2.1.1.5 Khatri-Rao Product

The Khatri-Rao product of two matrices A 2 R
I�J and B 2 R

T�J with the same
number of column is denoted byˇ and is defined as

Aˇ B D Œa1 ˝ b1 a2 ˝ b2 � � � aJ ˝ bJ
 (14.13)

14.2.1.1.6 Mode-n Tensor-Matrix Product

The mode-n tensor-matrix product X D G�nA of tensor G 2 R
J1�J2�����JN and

matrix A 2 R
In�Jn is tensor X 2 R

J1�J2�����Jn�1�In�JnC1�����JN with the following
elements:

xj1j2:::jn�1injnC1:::jN D

Jn
X

jnD1

gj1j2:::jN ain;; jn:

14.2.2 Canonical Polyadic Decomposition (CPD) Model

Generally, for an nth-order tensor X 2 R
I1�I2�����IN , the CPD is defined as

X D
R
X

rD1

u.1/r ı u.2/r ı � � � ı u.N/r C E D
R
X

rD1

Xr C E D OXC E (14.14)

where Xr D u.1/r ı u.2/r ı � � � ı u.N/r ; r D 1; 2; : : : ;R OX approximates to X, E 2

R
I1�I2�����IN is residual, and k u.n/r k2 D 1,for n D 1; 2 : : : ;N � 1.
For the ERP data, channel, time, and frequency could be assembled as three-order

tensor as in Fig. 14.4. For two-component CPD, it could be shown in Fig. 14.5 (Bro
1998).

X 	 a1 ı b1 ı c1 C a2 ı b2 ı c2 D X1 C X2 (14.15a)

In this application, the first temporal component a1, the first spectral component
b1, and the first spatial component c1, their outer product produces rank-one tensor
X1 means the component #1. The second component in the time, frequency, and
space modes is associated with one another, and their outer product generates rank-
one tensor X2. The sum of rank-one tensor X1 and X2 approximates original tensor
X.
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Fig. 14.4 Three-order tensor
by channel, time, and
frequency

Fig. 14.5 Model of two-component CPD (Bro 1998)

14.2.3 Tucker Decomposition Model

For an nth-order tensor X 2 R
I1�I2�����IN , the Tucker decomposition is defined as

follows:

X D
R1
X

r1D1

R2
X

r2D1

: : :

RN
X

rND1

gr1r2:::rN u.1/r1 ı u.2/r2 ı � � � ı u.N/rN

C E D
R1
X

r1D1

R2
X

r2D1

: : :

RN
X

rND1

gr1r2:::rN Xr1r2:::rN
C E (14.15b)

where rank-one tensor Xr1r2:::rN
D u.1/r1 ıu.2/r2 ı � � � ıu.N/rN ; and gr1r2:::rN denotes the core

tensor G 2 R
I1�I2�����IN .

Therefore, the Tucker decomposition is the sum of rank-one tensors plus the error
tensor. In the tensor-matrix form, the equation could be transformed into

X D G�1U.1/�2U.2/�3 � � � �NU.N/ C E D OXC E (14.16)

where U.n/ D
h

u.n/1 ; u
.n/
2 ; : : : u

.n/
Rn

i

2 R
In�Rn .n D 1; 2; : : : ;N/ denotes the compo-

nent matrix.
We could understand Tucker decomposition clearly as shown in Fig. 14.6 (Zhao

et al. 2013), if the tensor stands for ERP data, and each order means time, channel,
frequency (Fig. 14.4). The matrix U(1) means all components at temporal courses,
each column means a component. The matrix U(2) means all components at the
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Fig. 14.6 Tucker decomposition (Zhao et al. 2013)

spatial domain, and each column means a component; we could draw a spatial map
for each component. The matrix U(3) means all components at frequency domain,
each column means a component at frequency domain.

14.2.4 Demo

When tensor decomposition is used to factorize a nonnegative tensor, nonnegative
constraints are often applied. The CPD model with nonnegative constraints is called
nonnegative CPD (NCPD) (Cong et al. 2013, 2014), and the Tucker model with
nonnegative constraints is called nonnegative Tucker decomposition (NTD) (Cong
et al. 2012; Phan and Cichocki 2011). One of the properties of time-frequency
representations (TFR) of ERP data is nonnegative. The previous study (Cong et al.
2014) shows that more reasonable ERP components could be extracted, so we will
mainly use nonnegative tensor decomposition later.

The size of the data is 71*60*9*42 that means each frequency course has 71
points, each time course has 60 points, and each spatial map has nine channels; there
are 42 participants together, 21 of them with reading disability (RD) and 21 with
attention deficit (AD). The tensor could be reshaped as a matrix (38340*42) that
means time, frequency, and channel are merged; we could use principal component
analysis method to calculate the variance below. Through the Fig. 14.7, we chose
the number of components to be 36.

14.2.4.1 Canonical Polyadic Decomposition (CPD)

14.2.4.1.1 Feature Extraction

For a fourth-order ERP tensor assembled with course of time, frequency, space, and
different participants, it could be decomposed by the following equation where U(t),
U(s), U(c) means time, spectrum, and channel component matrix, respectively.
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Fig. 14.7 Eigenvalue of the data
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X D I�1U.t/�2U.s/�3U.c/�1FC E D
R
X

rD1

u.t/r ı u.s/r ı u.c/r ı fr C E (14.17)

Figure 14.8 shows the result of NCPD. The first column shows the features of
component of AD and RD, that also the difference of AD and RD. The second
column shows the waveform of component, the third column shows the spectrum of
component, and the last column shows the brain map. There has to be mentioned that
for the same component, different participants share the same brain map, the same
time course, and the same spectrum, and just the strengths of different subjects are
different.
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14.2.4.2 Tucker

14.2.4.2.1 Feature Extraction

Using the NTD to analyze the same data with the equation below:

X D F�1A.t/�2A.s/�3A.c/ C E (14.18)

we could get three component matrices as shown in Fig. 14.9. The components of
different modes are interacted with each other. The number of spectral components
is three, the number of temporal components is eight, and the number of spatial
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Fig. 14.9 Result of NTD. (a) Temporal components. (b) Spectral components. (c) Spatial
components
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components is four in this study. Choosing different numbers of components for
different modes, the result could be different. Therefore, the number of components
of Tucker decomposition for each mode is challenging, which should be solved in
further study.

14.2.4.2.2 Feature Selection and Analysis

It is similar with matrix decomposition like ICA and PCA. After decomposition,
we have to select components by their properties of each mode. For the data in the
demo, we have to think about temporal, spectral, and spatial properties; when they
meet the theoretical requirements of ERP, the corresponding feature could be further
analyzed to find the difference between AD and RD.

For group analysis, we could use analysis of variance (ANOVA) to compare the
difference between AR and RD. ANOVA is a collection of statistical models used
to analyze the difference among group means and their associated procedures. For
this case one-factor statistical analysis is applied because the feature mode includes
just one factor.
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