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Abstract In this paper, a detailed mathematical model for a quadrotor is presented.

The quadrotor dynamics is defined using matrix notation and since the dyadic nota-

tion is not used, the equation is easy to be modeled and also to be considered for

controller design. Moreover, an adaptive controller is designed for a simple motion

of the quadrotor including taking-off, hovering and landing. The generated model

and the designed adaptive controller of an indirect scheme could be utilized as a

basis for further investigations.

Keywords Quadrotor dynamics and control ⋅ Adaptive control

1 Introduction

Quadrotors are agile aerial vehicles equipped by four vertical rotors with several

applications from military purposes to rescue projects. Recently, the quadrotors have

received considerable attention from researchers all around the world within diverse

disciplines. Studying the dynamic equations applied to the quadrotor motions is a

good starting point for the study [1, 2]. This can be continued by designing some
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Table 1 Comparison of different control techniques for quadrotor flight control

Control Technique Tracking

performance

Robustness against failure

and uncertainties

Control effort

PID controller Fair Very low Low

LQR controller Good Low Moderate

Nonlinear H-∞
controller

Good Low Moderate

Robust Controller Good High Moderate

Adaptive Controller Very good Very high Moderate

low-level controllers for the torque generation of electric motors and energy manage-

ment in the battery as well as designing a high-level controller for trajectory track-

ing or localization [3]. Different control methods has been studied for the quadrotors

[2], including PID [4], back-stepping control [5, 6], nonlinear H-Infinity control [7],

LQR controllers [8], nonlinear controllers and adaptive controllers [9]. Other class of

adaptive controllers which assume the indirect adaptive scheme [10–12] are poten-

tially applicable for a quadrotor control as it is a very highly nonlinear system. The

above control techniques are compared for their capability in quadrotor flight control

in Table 1. In this table, three parameters are considered. Tracking performance mea-

sures the ability of the controller to force the quadrotor to track an input command

for position or velocity. The ability of the controller to remain as effective as pos-

sible in presence of actuator or sensor failures as well as the model uncertainties is

considered in the second column of Table 1. The third column describes the amount

of effort and cost required by the controller to generate the control command. As can

be seen, designing an adaptive controller would be the most useful and affordable

choice.

The paper is organised as follows, first section describes the kinematics and

dynamics model for a quadrotor. The second section illustrates the validation of the

developed model using a PID controller to do the hovering motion. The third section

presents the adaptive control design using adaptive law with leakage integrator for

added robustness on the adaptation. The result is proven through simulation.

2 Quadrotor System Modelling

In this section, the quadrotor body and its four rotors as its corresponding actuators

are modeled.

2.1 Electric Rotor Model

The voltage balance and the torque balance in a brushless DC motor are given by

Vm = IRres + Vbemf (1a), JM𝜔̇M = 𝜏M − 𝜏d, 𝜏m = KiI (1b) (1)
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whereVm is the motor supply voltage, I is the motor supply current,Rres is the internal

resistance of the motor, 𝜏m is the traction torque of the electric motor and 𝜏d is the

drag torque which is expressed as 𝜏d =
1
2
𝜌CdAblade(r𝜔M)2 × r = Kd𝜔

2
M . Here, r is

the radius for each rotor blade, 𝜌 is the air density, Cd is the drag coefficient against

the blade rotation and Ablade is the blade cross section. The motor back electromotive

force or back emf can be expressed asVbemf = Kv𝜔m where𝜔m is the angular velocity

of the motor. Here, the internal inductance of the motor is neglected.

2.2 Thrust Force of Each Rotor

The thrust force for each electric motor is driven from the balance of energy

Pair = PMech = 𝜂Pelec = 𝜂VinI = 𝜂

Kv

Ki
𝜏m𝜔m (2)

where 𝜂 is the efficiency of the power generation in each electric motor and Pair is

the power induced to the air by the electric motor. Based on the momentum theory,

we have [2]

Pair =

√
T2

2𝜌Aswept
(3a) T = 3

√
(𝜂
Kv

Ki
𝜏m𝜔m)2 × 2𝜌Aswept (3b) (3)

where Aswept is the total area swept by each rotor blade and T is the thrust force.

2.3 Quadrotor Kinematics

A schematic for body diagram of the quadrotor and the corresponding reference

frames are shown in Fig. 1.

There are two frames required for defining the quadrotor dynamics. The inertia

frame (subscript I) is fixed in earth and the body frame (subscript B) which is fixed

to the quadrotor body is rotated by (𝜃, 𝜙, 𝜓) with respect to the inertia frame. These

angles are roll, pitch and yaw which are rotations about x, y and z axes respectively.

Here, the rotation matrix is

R =
⎡⎢⎢⎣
C𝜓.C𝜙 C𝜓.S𝜙.S𝜃 + S𝜓.C𝜃 −C𝜓.S𝜙.C𝜃 + S𝜓.S𝜃
−S𝜓.C𝜙 −S𝜓.S𝜙.S𝜃 + C𝜓.C𝜃 S𝜓.S𝜙.C𝜃 + C𝜓.S𝜃

S𝜙 −C𝜙.S𝜃 C𝜙.C𝜃

⎤⎥⎥⎦ (4)

where C𝜓,C𝜙,C𝜃, S𝜓, S𝜙 and S𝜃 denote abbreviated trigonometric functions for

cos(⋅), sin(⋅) respectively. Each vector in body from, v, is transformed to the inertia
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Fig. 1 Body diagram for the quadrotor and the two reference frames [2]

frame by Rv. In addition, the angular velocity vector of the body frame (quadrotor)

in inertia frame is

𝜔 =
⎡⎢⎢⎣
𝜔x
𝜔y
𝜔z

⎤⎥⎥⎦ =
⎡⎢⎢⎣
1 0 sin𝜙
0 cos 𝜃 −cos𝜙. sin 𝜃
0 sin 𝜃 cos𝜙. cos 𝜃

⎤⎥⎥⎦
⎡⎢⎢⎣
̇
𝜃

̇
𝜙

𝜓̇

⎤⎥⎥⎦ (5)

where
(
̇
𝜃,

̇
𝜙, 𝜓̇

)
are the derivatives of roll, pitch and yaw angles. From the kinematics

of rigid bodies, we have

[a(Gi)]I = [r(OG)i]I × 𝜔̇ + 𝜔 × ([r(OGi)]I × 𝜔)

d
dt
[H(Gi)]I = [I(Gi)]I𝜔̇

(6)

in which [a(Gi)]I ∈ R[3×1]
is the acceleration of the center point of ith rotor, [r(OGi)]I ∈

R[3×1]
is the distance vector from the ith rotor set centroid to the quadrotor centroid,

[H(Gi)]I ∈ R[3×1]
is the angular momentum of the ith rotor set around its own centroid

and [I(Gi)]I ∈ R[3×1]
is the second moment of inertia matrix for ith rotor set around

its centroid and 𝜔̇ is the angular acceleration vector.

2.4 Quadrotor Dynamics

The quadrotor dynamics includes two main equations

∑4
i=1[Fi]I − [FD]I =

∑4
i=1 mi[a(Gi)]I∑4

i=1[Mo(i)]I =
∑4

i=1
d
dt
[H(Gi)]I +

∑4
i=1[r(OGi)]I × mi[a(Gi)]I

(7)
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where, [Fi]I ∈ R[3×1]
is the thrust force generated by the ith rotor, [FD]I ∈ R[3×1]

is the total drag force against the quadrotor motion, mi is each rotor set mass and

[Mo(i)]I ∈ R[3×1]
is the sum of moments from the ith rotor set around the quadrotor

centroid. Hence, the moment balance equation is

∑4
i=1[I(Gi)]I𝜔̇ +

∑4
i=1 mi[r(OGi)]I × ([r(OGi)]I × 𝜔̇) =

∑4
i=1[Mo(i)]I−

∑4
i=1 mi[r(OGi)]I × (𝜔 × ([r(OGi)]I × 𝜔))

(8)

By doing some algebra, we have

[r(OGi)]I × ([r(OGi)]I × 𝜔̇) = (([r(OGi)]I[r(OGi)]
T
I ) − ([r(OGi)]I .[r(OGi)]

T
I )I)𝜔̇ (9)

where ([r(OGi)]I[r(OGi)]
T
I ) is belonged to R[3×3]

and I ∈ R[3×3]
is the identity matrix.

Moreover, the superscript T is indication for vector or matrix transpose. Actually,

the triple vector product is changed to a matrix product. Hence, the left part of Eq. 8

is equal to

∑4

i=1
([I(Gi)]I + mi × (([r(OGi)]I[r(OGi)]

T
I ) − ([r(OGi)]I .[r(OGi)]

T
I )I))𝜔̇ (10)

Similarly, we have

(𝜔 × ([r(OGi)]I × 𝜔)) = ((𝜔.𝜔)I) − (𝜔𝜔T ))[r(OGi)]I (11)

where (𝜔𝜔T ) is belonged to R[3×3]
and again I ∈ R[3×3]

is the identity matrix. Hence,

the second term in the right hand side of Eq. 8 is equal to

∑4

i=1
mi[r(OGi)]I × (((𝜔.𝜔)I) − (𝜔𝜔T ))[r(OGi)]I) (12)

In addition, the first term in the right hand side of that equation is

∑4
i=1[Mo(i)]I =

∑4
i=1 R[𝜏i]B

[𝜏1]B =
⎡⎢⎢⎣

0
−LF1
M1

⎤⎥⎥⎦ , [𝜏2]B =
⎡⎢⎢⎣
LF2
0
M2

⎤⎥⎥⎦ , [𝜏3]B =
⎡⎢⎢⎣

0
LF3
M3

⎤⎥⎥⎦ , [𝜏4]B =
⎡⎢⎢⎣
−LF4
0

−M4

⎤⎥⎥⎦
(13)

where L is the length of quadrotor arm, Fi is the ith rotor thrust, Mi is the ith rotor

torque and R is the rotation matrix. It should be noted that two diagonal positioned

motors rotate in the same direction while the two motors positioned along the other

diametric line rotate in the reverse direction with respect to the first two motors.

This causes two motors to generate negative torque while the other two motors have

positive torque. Finally, Eq. 8 could be solved in a recursive manner to determine 𝜔.
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𝜔̇ = [
∑4

i=1[I(Gi)]I + mi × (([r(OGi)]I[r(OGi)]
T
I ) − ([r(OGi)]I .[r(OGi)]

T
I )I))]

−1 [
∑4

i=1

R[𝜏i]B − mi[r(OGi)]I × (((𝜔.𝜔)I) − (𝜔𝜔T ))[r(OGi)]I]
(14)

Moreover, the equation for force balance (Eq. 7) is solved in a similar recursive algo-

rithm by the initial value of [0 0 0]T for linear position of the quadrotor

[a(Gi)]I =
⎡⎢⎢⎣
ẍ
ÿ
z̈

⎤⎥⎥⎦ =
1

Mtotal
[
∑4

i=1
R[Fi]B − [FD]I −Mtotalg] , [Fi]B =

⎡⎢⎢⎣
0
0
Fi

⎤⎥⎥⎦ (15)

where [FD]I is the total drag force against the quadrotor translation in all direction

and can be determined by [2]

[FD]I = 0.5𝜌CDAT

⎡⎢⎢⎣
ẋ
ẏ
ż

⎤⎥⎥⎦ = k∗d
⎡⎢⎢⎣
ẋ
ẏ
ż

⎤⎥⎥⎦ (16)

All the above equations are modeled in MATLAB/SIMULINK to have a physical

model for quadrotor motion.

3 Adaptive Control Design

In this section, we want to control a simplified motion including taking-off, hovering

and landing of the quadrotor in presence of missing some data about the quadrotor

model. Hence, the following assumptions are drawn:

3.1 Assumptions:

Assumption 1 Only the vertical displacement is considered and therefore four

rotors are assumed to generate the same thrust, i.e. requiring an equal synchronised

input voltage and consequently the similar rotation speed of each electric motor

[F]B = [F1]B + [F2]B + [F3]B + [F4]B =
⎡⎢⎢⎣

0
0

4F0

⎤⎥⎥⎦ (17)

Assumption 2 since all the electric motors rotate in same angular speed (same input

voltage), the total torque implemented on the quadrotor would be zero
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[𝜏]B =
⎡⎢⎢⎣

0
−LF0
M0

⎤⎥⎥⎦ +
⎡⎢⎢⎣
LF0
0

−M0

⎤⎥⎥⎦ +
⎡⎢⎢⎣

0
LF0
M0

⎤⎥⎥⎦ +
⎡⎢⎢⎣
−LF0
0

−M0

⎤⎥⎥⎦ =
⎡⎢⎢⎣
0
0
0

⎤⎥⎥⎦ (18)

Assumption 3 since only a translation motion is considered, the amount of quadro-

tor rotation around each axis of inertia frame is neglected.

Assumption 4 the internal resistance (Rres) for each electric motor and the moment

of inertia (JM) are negligible. Hence, the relation between the generated thrust force

T and the input voltage Vin(t) based on the electrical equations presented before is

𝜏m = 𝜏d = Kd𝜔
2
M , 𝜔M = Vin(t)

Kv

F0 = T = 3

√
(𝜂 Kv

Ki
𝜏M𝜔M)

2
× 2𝜌Aswept = KT𝜔

2
M = KT

K2
v
Vin(t)2

(19)

Finally, the simplified quadrotor model based on the above assumptions is a

single-input and single-output system

z̈(t) = − k∗d
Mtotal

ż(t) − g + 4KT
MtotalK2

v
Vin(t)2 = −ż(t) + 𝛽u(t) − g

u(t) = Vin(t)2 ,  = k∗d
Mtotal

, 𝛽 = 4KT
MtotalK2

v

(20)

Both  and 𝛽 above, includes the uncertainty values. The control signal, u(t),
should be designed in such a way that the model track the reference signal at least

asymptotically.

3.2 Controller Design Without Considering Any Uncertainty

First, we design the controller considering the values of  and 𝛽 in Eq. 20 are known

(0.0016 for  and 5.8827e3 for 𝛽). The control signal is defined as

u(t) = 1
𝛽

g + Kpe(t) + Kdė(t) , e(t) = zr(t) − z(t) (21)

where zr is the reference signal for the vertical displacement of the quadrotor. By

replacing Eq. 21 in Eq. 20 and using Laplace transform, we have

z(s)
zr(s)

=
𝛽Kds + 𝛽Kp

s2 + ( + 𝛽Kd)s + 𝛽Kp
(22)
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Requesting for less overshoot and the sufficient settling time, the values for the

controller gains can be determined as

Kp = 0.0034 , Kd = 0.0025 (23)

3.3 Controller Design Considering the Uncertainties

Here an adaptive controller is designed to consider the uncertainties in  and 𝛽. The

adaptive controller employed in this paper is of an indirect adaptive scheme, i.e., both

the convergence of the parameters estimation error and tracking error to zero can be

guaranteed. Moreover, it has been proven recently that an indirect scheme allows the

control designer to flexibly enhance the adaptive law (for estimating unknown para-

meters) to allow the convergence at a faster rate for. e.g. finite-time estimation in [10].

However, for brevity, this paper demonstrates only the gradient-based adaptive law

which is well known for asymptotical convergence properties [13]. The control sig-

nal is same as the one generated in previous section. Only, the unknown parameters

are estimated before the generation of control signal. Equation 20 can be rearranged

as follows by using the Laplace transform

s2z(s) + g = −sz(s) + 𝛽u(s)

s2

s3+1
z(s) + 1

s3+1
g = 

−s
s3+1

z(s) + 𝛽

1
s3+1

u(s)
(24)

where, the equation is divided by
1

s3+1
(the filter operator) to avoid using the deriva-

tive of signals, i.e. differentiating noisy signal may cause instability. Hence, a filtered
linearly-parameterized model can be formulated as

Y = 𝛩

T
𝛷 (25)

where the unknown parameter vector𝛩 can be defined as𝛩 = [ 𝛽]T and the asso-

ciated filtered regressor vector 𝛷 can be defined 𝛷 = [𝜙T
1 𝜙

T
2 ] with 𝜙1 =

−s
s3+1

z(s)
and 𝜙2 =

1
s3+1

u(s).
Now, we are to search the unknown parameters  and 𝛽 in 𝛩 ∈ ℝ2

by virtue of

the gradient-based adaptive law (normalised version),

̇
̂
𝛩 = 𝛾𝛷𝜖

1 +𝛷
T
𝛷

𝛩0 =
[

0
1000

]
(26)

where, 𝜖 = Y − 𝛩

T
𝛷 is the parameter estimation error, 𝛾 is the adaptive gain to be

designed by the Lyapunov stability approach. Differentiating a Lyapunov candidate

chosen as  = 1
2
̃
𝛩

T
𝛾

−1
̃
𝛩 will lead to ̇ ≤ −𝛼 to be negative definite with asymp-

totical convergence rate 𝛼 of parameter estimation error ̃
𝛩 = 𝛩 − ̂

𝛩 to zero.
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The initial condition (𝛩0) for running the estimation process can be defined based

on the prior knowledge about the order of unknown parameters.

4 Simulation Results

In this section, the simulation results for performance of the designed adaptive con-

troller implemented on the nonlinear quadrotor plant are presented. The quadrotor

specification are presented in Table 2. As can be seen the estimation process is per-

formed in about 30 seconds and after that the reference signal is tracked appropriately

(Fig. 2). Moreover, the estimated values for unknown parameters are very close to

the real values (Fig. 3).

Table 2 Quadrotor Specifications

Spec. Value Spec. Value

Kv 5e − 5 JM 2e − 6 kgm2

Ki 5e − 7 𝜂 0.9
Rres 1e − 3mΩ L 0.2m
𝜌 1.2 kg∕m3 I for each motor 5e − 3 kgm2

Cd 0.1 m for each motor 0.05 kg
Ablade 1e − 4m2 M for quadrotor frame 1 kg
r 0.05m

Fig. 2 Vertical displacement of the quadrotor (left), control signal for each electric motor (right)

Fig. 3 Estimated values of

unknown parameters
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5 Conclusion

In this paper, a complete mathematical model for a quadrotor is presented. The

dynamics and kinematics equations are defined in such a way that the modeling

process and controller designing can be performed without any complexity. In addi-

tion, an indirect adaptive controller is designed for the taking-off, hovering and land-

ing of the quadrotor. The controller includes a linear parameter estimation procedure

based on Lyapunov stability theory. The simulation results show that the unknown

parameters are estimated accurately and quickly. Moreover, the tracking performance

of the controlled plant is acceptable.
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