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Abstract A Classical Digital Phase-Locked Loop (CDPLL) is a hybrid system as it

contains both analog and digital components. For a CDPLL with an XOR-gate phase

detector (PD), it is useful to analyse its stability since its performance is affected by

the nonlinear behavior of the PD. This paper presents the stability analysis of CDPLL

in continuous and discrete-time domains. Four criteria are used, Circle and Popov

for continuous-time domain, and Tsypkin and Jury-Lee for the discrete-time domain.

Numerical examples are included to show the different stability margins provided by

the aforementioned criteria.
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1 Introduction

Phase locked-loop (PLL) has been widely used in communication systems and elec-

tronic applications particularly for clock generation, clock recovery and frequency

synthesis [1, 2]. There are different types of PLLs such as analog PLL, classical dig-

ital PLL (CDPLL), all-digital PLL (ADPLL) and software PLL (SPLL) [3]. Each

type is different based on the components integrated in the system.

A basic PLL can be easily constructed by using a phase detector (PD), a loop

filter (LF) and a voltage controlled oscillator (VCO) [4]. Its fundamental operation

is to synchronize the VCOs output frequency with the reference signals frequency

which typically comes from an oscillator. The PD plays a very important role in

comparing the frequencies and phases of the input and output signals as it needs to
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adjust its action in order to ensure the differences are minimized. The LF is used

to remove the high frequency components of the phase detector output and also the

high frequency noise. When the two signals (reference signal and oscillators output

signal) are equal in frequency, the error remains constant and the loop is said to be

in a locked condition.

Although many applications are based on linearized models of PLL [5, 6], the

approximation is not valid in general as the actual PLL is inherently nonlinear [7,

8]. This is mainly due to the behavior of the PD and the VCO. In this paper, the

focus is on the CDPLL with an XOR-gate type PD. The PD is considered as the main

source of nonlinearity and the VCO is assumed to be working in its linear range. It is

therefore useful to analyze the stability of the system as its performance is affected

by the nonlinearity. Since it is a hybrid system (i.e. the PD is digital while others

are analog), the CDPLL can be modeled either in continuous-time or discrete-time

domain with some limitations at high jitter frequency range [9, 10]. Both models

however can be generalized into a Lur’e system with sector bounded nonlinearity.

Various criteria have been developed to provide sufficient conditions for stability

of Lur’e systems in both discrete and continuous-time domain [11]. For nonlineari-

ties with sector-bound condition, the most common ones in continuous-time domain

are circle and Popov criteria [12], and their discrete counterparts are Tsypkin and

Jury-Lee respectively. In this note, these criteria will be used to analyze the stabil-

ity of CDPLL. The results will also be compared to show different stability margins

provided by the aforementioned criteria.

2 Preliminaries and PLL Basics

A basic block diagram of a PLL is shown in Fig. 1. The reference signal and the

VCO output can be either in the form of square wave or sine wave. Without loss of

generality, let the reference and VCO output signals be represented by [1];

Fig. 1 Block diagram of a PLL [13]
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Vi(t) = A1 sin −(𝜔it + 𝜃i) (1)

Vo(t) = A2 cos −(𝜔ot + 𝜃o) (2)

respectively. When they pass through the PD, the output signal Vd can be calcu-

lated as Vd(t) = −KmA1A2 sin −(𝜔it + 𝜃i) cos −(𝜔ot + 𝜃o), where Km is the gain of

the mixer. Via trigonometric identity, we have

Vd(t) =
KmA1A2

2
(sin −[(𝜔i + 𝜔o)t + 𝜃i + 𝜃o] + sin[(𝜔i − 𝜔o)t + 𝜃i − 𝜃o]). (3)

By including a low pass filter, the high frequency component which is sin[(𝜔i +
𝜔o)t + 𝜃i + 𝜃o] can be attenuated, leaving only low frequency component. Hence,

the output of the PD can be written as Vd(t) = Kd sin[(𝜔i − 𝜔o)t + 𝜃i − 𝜃o], where

Kd = (KmA1A2)∕2 is the gain in rad/V.

If the loop is locked, then 𝜔i = 𝜔o, and the output of the PD can be approximated

by Vd(t) ≈ Kd sin 𝜃d, where 𝜃d = 𝜃i − 𝜃o is the phase error. As for the VCO, the fre-

quency at which it oscillates is determined by the output signal of the loop filter.

The angular frequency is given by 𝜔2(t) = 𝜔o + KoVf (t), where 𝜔o is the center fre-

quency of the VCO and Ko is the VCO gain in rad s
-1

V
-1

. The phase of the VCO

output is 𝜃o(t) = Ko ∫
t
0 Vf (t)dt, which is equivalent to 𝜃o(s)∕Vf (s) = Ko∕s in Laplace

domain. Due to this, the PLL will have at least one pole at the origin in the loop as

illustrated in Fig. 1.

If the phase error is sufficiently small, then linear approximation can be used and

the relationship between the input and output is given by 𝜃o(s)∕𝜃i(s) = KdKoF(s)∕
(s + KdKoF(s)). In this case, the Nyquist criterion can be used to test the stability of

the system. However if the phase error is large enough, linear approximation will no

longer be valid.

For the purpose of stability analysis, the components in Fig. 1 are rearranged as in

Fig. 2 where all linear components are placed in the forward path and the nonlinear

component, denoted by 𝜙, is placed in the feedback path. The nonlinearity function

Fig. 2 Rearrangement into linear and nonlinear components in phase space



430 S.J. Abu Bakar and N.S. Ahmad

Fig. 3 Digital phase

detector/XOR gate PD

𝜙, which comes from the characteristic of the XOR-gate, belongs to the first and

third quadrants of the plane as shown in Fig. 3 [1]. Its input, represented by 𝜃d, is the

phase difference between 𝜃i and 𝜃o.

3 Stability Analysis of CDPLL

Based on Fig. 2, the state space of the LTI block is given by H ∼ (A,B,C, 0) and the

static, memoryless nonlinearity 𝜙 ∶ ℝ ⟶ ℝ satisfies the sector condition:

0 ≤
𝜙(y)
y

≤ K, ∀y ≠ 0 (4)

where K > 0 is the upper sector bound and 𝜙(0) = 0. Its slope bound can also be

described as:

− K ≤
𝜙(y) − 𝜙(x)

y − x
≤ K, ∀y ≠ x. (5)

The stability criteria suitable for such a system in both continuous and discrete-time

settings are presented separately in the following subsections.

3.1 Continuous-Time Domain

Consider the feedback system as shown in Fig. 2, where the nonlinearity 𝜙(y) is

described as in (4). The system is stable if:

Re[G(j𝜔) + K−1] > 0, ∀𝜔 ∈ ℝ. (6)
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The condition in (6) corresponds to the circle criterion which is applicable for Lur’e

system with a nonlinearity that is sector-bounded, and possibly time-varying. If the

nonlinearity is additionally static and time-invariant, then the condition:

Re[(1 + j𝜔q)G(j𝜔)] + K−1] > 0, ∀𝜔 ∈ ℝ, q ∈ ℝ (7)

is sufficient to provide the stability of the system. The condition (7) corresponds to

the Popov criterion where it reduces to circle criterion when q = 0 [14].

3.2 Discrete-Time domain

In discrete-time domain, the loop filter and voltage controlled oscillator is combined

together and transformed directly into z-domain via impulse invariant method [15].

Similar to the Circle criterion, its discrete-time counterpart namely Tsypkin criterion

is stated as follows [16]:

Re[G(z) + K−1] > 0 ∀|z| = 1 (8)

where G(z) is the LTI system in discrete-time settings.

With regard to Popov criterion, one of its discrete-time counterparts suitable for

such a system is as follows:

Re[K−1 + (1 + (z − 1)n)G(z) − n
2
∣ (z − 1)G(z) ∣2] > 0 ∀|z| = 1 (9)

where n ∈ ℝ [17]. Unlike Popov criterion, the condition derived in (9) is also based

on the slope restriction of 𝜙, as described in (5).

4 Numerical Examples

In this section, we analyze the maximum loop gain of CDPLL for which the sys-

tem remains stable. This is also equivalent to searching for maximum sector/slope

bound (i.e. K) of the system. For the first example, consider the feedback system in

Fig. 2 consisting of a third order Butterworth filter and a VCO, the corresponding

continuous-time transfer function is given by:

H1(s) =
1
s
[ 1
s3∕𝜔3

c + 2s2∕𝜔2
c + 2s∕𝜔c + 1

] (10)

where 𝜔c = 10Hz is the cut-off frequency. The discrete-time model is obtained by

transforming H1(s) into H1(z) via impulse invariant method with sampling time of

0.1 s. For the second example, the same feedback system is considered but with a

fourth order Butterworth filter. The transfer function is then:
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Table 1 Comparison results

Stability criterion Maximum gain K
H1(.) H2(.)

Continuous-time Circle 2.0003 0.2959

Popov 5.5275 1.4161

Discrete-time Tsypkin 3.4592 3.0221

Jury-Lee 7.5093 5.7195

Nyquist 7.5758 5.7471

H2(s) =
1
s
[ 1
s4∕𝜔4

c + 2.6132s3∕𝜔3
c + 3.4143s2∕𝜔2

c + 2.6132s∕𝜔c + 1
] (11)

and the discrete-time model for H2(z) is obtained via the same method.

The results are compared in Table 1. For both examples, the result via linear

approximation method (Nyquist criterion) is included to show the highest gain K
that may be achieved. From the results, both examples show that the gain K obtained

via Tsypkin and Jury-Lee criteria are higher compared to Circle and Popov criteria.

The gain K for Jury-Lee is higher than Popov criterion due to the fact that the slope

restriction of the nonlinearity is included in its derivation of criterion, making it less

conservative than Popov criterion.

5 Conclusion

In this work, we have shown four different criteria (Circle, Popov, Tsypkin and Jury-

Lee) which are suitable to analyze the stability of CDPLL when the nonlinearity

is taken into account. As the CDPLL is considered as a hybrid system, it can be

modeled either in s-domain or z-domain for stability analysis purposes. Based on

the examples given, it is demonstrated that the discrete-time criteria can give much

better stability margins as compared to their continuous-time counterparts. For future

works, the result can be used to design the CDPLL such as the filter with certain

performance specifications.

Acknowledgments This work was supported by FRGS (203/PELECT/6071267), Ministry of Edu-

cation of Malaysia.

References

1. Abramovitch D (2002) Phase-locked loops: a control centric tutorial. In: Proceedings of the

2002 American control conference, vol 1, pp 1–15

2. Abramovitch DY (1990) Lyapunov redesign of analog phase-lock loops. IEEE Trans Commun

38:2197–2202



Stability Criteria for Classical Digital Phase-Locked Loops 433

3. Wickert MA (2011) Phase-locked loops with applications, ECE 5675/4675 Lecture Notes

4. Best RE (1993) Phase-locked loops: theory, design, and applications. McGraw-Hill, New York

5. Li W, Meiners J (2000) Introduction to phase-locked loop system modeling. Analog Appl J

510

6. Hsieh GC, Hung JC (1996) Phase-locked loop techniques—a survey. IEEE Trans Ind Electron

43(6):609–615

7. Kuznetsov NV, Leonov GA, Yuldashev MV, Yuldashev RV (2014) Nonlinear analysis of

classical phase-locked loops in signals phase space. In: IFAC proceedings volumes (IFAC-

PapersOnline), vol 19, pp 8253–8258

8. Gardner FM (2005) Phaselock techniques, 3rd edn. Wiley, New York

9. Laboratories S (2010) Jitter attenuation—choosing the right phase-locked loop bandwidth,

AN513 Rev 0.1 6/10

10. Lu J, Grung B, Anderson S, Rokhsaz S (2001) Discrete Z-domain analysis of high order phase

locked loops. In: Proceedings of IEEE international symposium on circuits and systems, vol

1, pp 260–263

11. Park P, Kim SW (1998) A revisited Tsypkin criterion for discrete-time nonlinear Lur’e systems

with monotonic sector-restrictions. Automatica 34:1417–1420

12. Wu NE (1998) Circle/Popov criteria in phaselock loop design. In: Proceedings of the 1998

American control conference, AACC. IEEE, Philadelphia, Pennsylvania, pp 3226–3228

13. Best RE (2003) Phase-locked loops: design, simulation, and applications, 5th edn. McGraw-

Hill

14. Vidyasagar M (1993) Nonlinear systems analysis, 2nd edn. Prentice Hall, New York

15. Hein J, Scott J (1988) Z-Domain model for discrete-time PLL’s. IEEE Trans Circuit Syst

35(11):1393–1400

16. Tsypkin YZ (1962) On the stability in the large of nonlinear sampled-data systems. Doklady

Akademii Nauk SSSR 145:5255

17. Jury EI, Lee BW (1964) On the stability of a certain class of nonlinear sampled-data systems.

IEEE Trans Autom Control 9:51–61


	Stability Criteria for Classical Digital Phase-Locked Loops
	1 Introduction
	2 Preliminaries and PLL Basics
	3 Stability Analysis of CDPLL
	3.1 Continuous-Time Domain
	3.2 Discrete-Time domain 

	4 Numerical Examples
	5 Conclusion
	References


