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Abstract Internal Model Control (IMC) is a popular control approach that inte-

grates the model of the plant into the controller. In most cases, it is common to

have a mismatch between the plant and the model due to noise and disturbance.

Actuator constraints may also be another source of instability or performance degra-

dation in IMC. This has lead to the development of IMC structure to sustain its

robustness against many different types of uncertainties. This note presents a stabil-

ity analysis of discrete-time IMC which is subject to saturation and a bounded uncer-

tainty. The stability is guaranteed via one of the discrete counterparts of Popov crite-

rion, namely Jury-Lee criterion (This work was supported by Fundamental Research

Grant Scheme (203/PELECT/6071267), Ministry of Education of Malaysia.).

1 Introduction

Internal Model Control (IMC) is an attractive control design strategy for inherently

stable plants that utilize the plant model in the formulation of the controller. The

advantage of such system was identified and compiled in a series of papers pre-

sented by Gracia and Morari [1–3]. While it gives an open-loop framework to check

closed-loop stability, it also suffers from performance limitation due to model uncer-

tainties, actuator constraints and non-minimum plant characteristic. IMC structure

has received a large amount of criticism due to its weak performance in saturating

system. This performance reduction is expected as the original IMC structure was

1
This work was supported by Fundamental Research Grant Scheme (203/PELECT/6071267),

Ministry of Education of Malaysia.

K. Choo (✉) ⋅ N.S. Ahmad

School of Electrical and Electronic Engineering, Universiti Sains Malaysia,

Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia

e-mail: kevin.choo92@gmail.com

N.S. Ahmad

e-mail: syazreen@usm.my

© Springer Science+Business Media Singapore 2017

H. Ibrahim et al. (eds.), 9th International Conference on Robotic, Vision, Signal
Processing and Power Applications, Lecture Notes in Electrical Engineering 398,

DOI 10.1007/978-981-10-1721-6_36

335



336 K. Choo and N.S. Ahmad

never intended to function as an anti-windup scheme. To overcome this issue, several

schemes or modifications have been introduced throughout the years [4–6].

In certain applications particularly when the IMC is combined with artificial

neural network [7], the transformation of the model into discrete-time setting is

required for the analysis of the system. The discrete-time model is also more appro-

priate when digital controllers are used in the loop. In this note, the focus is on the

stability analysis of discrete-time model of IMC which is subject to saturation and a

bounded uncertainty. The model is first converted into a Lur’e problem where the sta-

bility is guaranteed via one of the discrete counterparts of Popov criterion, namely

Jury-Lee criterion. Some examples are included to show that, in the presence of

saturation, Jury-Lee criterion provides a higher bound of the uncertainty in which

the system remains stable, as compared to the application of the conventional circle

criterion.

2 IMC Structures

This section presents the basic IMC structure and the structures when it is subject

to actuator constraint and a bounded uncertainty which leads to the plant-model

mismatch.

2.1 Basic IMC Structure

The basic IMC structure introduced in [1] is shown in Fig. 1 where G, G′
and Q

denote the plant, model of the plant and the controller respectively. The signal, d
refers to the unknown disturbance affecting the system. We can see that if there is no

external disturbance or mismatch between the plant and its model, then the system

becomes open-loop as there is no feedback, thus eliminating the usual stability prob-

lems relating to feedback. However, in practice, it is very unlikely that one can get

an exact representation of the plant. Plus, we can never get rid of any disturbances

Fig. 1 Basic structure of

IMC
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entering the system, and hence there will always be a mismatch between the model

and the plant. The design of IMC controller, Q depends on the phase of the plant,

G. If G is of minimum phase, it is sufficient to just invert G and augment it with a

linear filter that is tuneable for trade-off between robustness and performance. The

controller will then become Q = G−1f where f is in the form of f = (1−𝛼)z
(z−𝛼)n

[6, 8].

The filter order n is chosen large enough to make Q proper or strictly proper while 𝛼

is a tuning parameter which determines the response speed [8]. Increasing 𝛼 slows

down the response speed while decreasing does the opposite. However, if the plant

G is of non-minimum phase, the suggested design technique is to factorize the plant

as G = G+G− where G+ contains all the non-minimum phase part of G while G−
contains all the minimum phase part of G. The IMC controller is then obtained as

Q = G−1
− [8].

2.2 IMC with Saturation

Actuator constraint can be one of the causes of performance degradation which is

depicted in Fig. 2a where 𝜙(v) represents the saturation function with

𝜙(v) =
⎧
⎪
⎨
⎪
⎩

1 if v > 1
u if − 1 ≤ v ≤ 1
−1 if v < −1.

(1)

Although this structure guarantees closed loop stability in the absence of model mis-

match, it suffers from poor nonlinear performance as the controller parameter Q is

unaware of its effect on the variable, u as to when and if it has become saturated.

For some cases, a better performance may be obtained when the parameter Q
is partitioned in terms of Q1 and Q2 such as shown in Fig. 2b. In the absence of

saturation (i.e. in the linear case), it simply becomes

Q = (I + Q2)−1Q1 (2)

Fig. 2 Development of IMC structure for windup problem. a Conventional IMC structure for

windup problem. b IMC structure with factorization of Q
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Fig. 3 IMC with saturation and uncertainties

Several methods have been proposed to factorize Q into Q1 and Q2 in the literature,

and the commonly used ones are as follows:

1. Method 1 [5]: Q1 = Q(∞) and Q2 = Q(∞)Q−1 − I.
2. Method 2 [4]: Q1 = Q and Q2 = 0 which reduces to the structure in Fig. 2a.

3. Method 3 [5]: Q1 = 𝛬Q + (1 − 𝛬)Q(∞) with 𝛬 ∈ [0, 1]. This reduces to Meth-

ods 1 and 2 when 𝛬 = 1 and 𝛬 = 0 respectively.

4. Method 4 [5]: Q1 = fAGQ where fA is a non-causal filter that is chosen based on

the criteria that fAGQ is of minimum phase and fAG|z=∞ = I.

2.3 IMC with Saturation and Uncertainties

Model mismatch in IMC may be due to many sources such as noise and distur-

bance, particularly during the modeling process. An extension of the anti-windup

IMC structure to accommodate the mismatch is shown in Fig. 3 where W, and 𝛥(z)
represent a known frequency weighting function and an uncertainty with ||𝛥||∞ ≤ 𝛽

respectively. In this note, we consider the cases when the system is perturbed by an

additive uncertainty (i.e. W = 1) and when it is perturbed by an input multiplicative

uncertainty (i.e. W = G).

3 Stability Analysis

For stability analysis purposes, the IMC structure shown in Fig. 3 is converted into

Fig. 4. The corresponding linear block of the system is given by H(z)

where

H(z) = Q1(G − G′) + Q2 ∼ (Ah,Bh,Ch, 0) (3)
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Fig. 4 Equivalent

representation of Fig. 3 in

Lur’e structure

Note that for additive uncertainty, we get

H(z) = Q1𝛥 + Q2, (4)

whereas for input multiplicative uncertainty, we get

H(z) = Q1G𝛥 + Q2. (5)

Since 𝜙 is static, sector- and slope-bounded such that

𝜙(0) = 0, and 0 ≤
𝜙(y) − 𝜙(x)

y − x
≤ 1; ∀y ≠ x (6)

the stability of the feedback system can be guaranteed if there exist R1,R2 ≥ 0 such

that

Re [(1 + R1(1 − z) + R2(1 − z−1))(1 + H(z))] > 0 (7)

which is derived via one of the Jury-Lee criteria for monotonic slope-restricted non-

linearity [9]. Define

MP =
⎡
⎢
⎢
⎣

AT
hP11Ah − P11 −AT

hP11Bh AT
hP12

−BT
hP11Ah BT

hP12Ah − P22 −BT
hP12

PT
12Ah −PT

12Bh P22

⎤
⎥
⎥
⎦

(8)

M1 =
⎡
⎢
⎢
⎣

0 0 (Ah − I)TCT
h R

T
1

0 −R1 −BT
hC

T
h R

T
1 + RT

1
R1Ch(Ah − I) −R1ChBh + R1 −R1

⎤
⎥
⎥
⎦

(9)

M2 =
⎡
⎢
⎢
⎣

0 −(Ah − I)TCT
h R

T
2 0

−R2Ch(Ah − I) −R2 + R2ChBh + BT
hC

T
h R2 RT

2
0 R2 −R2

⎤
⎥
⎥
⎦

(10)

M3 =
⎡
⎢
⎢
⎣

0 0 AT
hC

T
h

0 0 −BT
hC

T
h

ChAh −ChBh −2I

⎤
⎥
⎥
⎦

. (11)
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The LMI search for stability analysis of IMC can then be stated as follows:

Proposition 1 Given the IMC structure as shown in Fig. 3 where G is the discrete-
time plant, G′ is the model of the plant, W is a known weighting function and 𝛥 is the
uncertainty with ||𝛥|| < 𝛽. Q1 and Q2 are the parameters of the IMC. If there exist
P, R1 ≥ 0 and R2 ≥ 0 such that

MP +M1 +M2 +M3 < 0 (12)

where MP,M1,M2 and M3 are the matrices as defined in (3), and (8)–(11), then 𝛽 is
the maximum size of the allowable uncertainty for which the system remains stable.

Proof The LMI in (12) can be derived via the application of KYP Lemma [10] on

the frequency domain condition in (7).

When R1 and R2 are set to zero, then the condition above reduces to the circle

criterion. It is also worth noting that the small gain theorem [11] can also provide a

stability test where the condition ||H||∞||𝜙||∞ < 1 must be satisfied. Since ||𝜙||∞ <

1, the stability of the closed-loop system is guaranteed if and only if ||H||∞ < 1.

Thus, minimization of ||H||∞ results in the maximization of the size of allowable

uncertainty 𝛥(z) for which the system remains stable.

4 Applications

Consider a second-order discrete-time plant given by G(z) = 1
z2+0.7z+0.3

which is sub-

ject to saturation. The parameter Q is constructed via Method 1 above such that

Q1(z) = 0.25; Q2(z) =
−1.7z − 0.005
z2 + 0.7z + 0.3

. (13)

The corresponding LTI system for the Lur’e structure is constructed as follows:

H1(z) = 0.25𝛽
z
− 1.7z + 0.005

z2 + 0.7z + 0.3
(14)

In this example, the circle criterion and the small gain theorem do not show any sta-

bility for any values of 𝛽. However, applying the LMI from Proposition 1, we get a

maximum 𝛽 of 3.7307. By simulation, the maximum value before the system goes

unstable is 3.8. This is very close to the result obtained from Proposition 1. The step

response for this example is shown in Fig. 5 with 𝛽 = 2. It is shown that the plant out-

put can track back the input when it is subject to disturbance with different step sizes.

As for the second case where W = G, the LTI system is constructed as such that

H2(z) = 0.25 𝛽

z(z2+0.7z+0.3)
− 1.7z+0.005

z2+0.7z+0.3
. The maximum value of 𝛽 obtained from the
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Fig. 5 Step response for the first example when the plant is subject to disturbance with different

step sizes

application of Proposition 1 is 1.99. Similar to the previous case, the circle criterion

and small gain theorem do not support stability for any values of 𝛽.

5 Conclusions

In this note, the stability analysis of discrete-time IMC which is subject to saturation

and a bounded uncertainty is presented. The stability condition is derived via the

frequency domain Jury-Lee criterion which is then converted into an LMI search.

It is also shown from the numerical examples that Jury-Lee criterion can provide

stability condition when the circle criterion and small gain theorem fail to do so.

For future work, a more general result can be derived for unstructured uncertain-

ties in the plant model where only their infinity bounds are known. This may be done

via integral quadratic constraint method which is a systematic approach to deal with

different types of uncertainties including the nonlinearities in the loop.
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