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Abstract Point cloud source data for surface reconstruction is usually contaminated

with noise and outliers. To overcome this deficiency, a density-based point cloud

denoising method is presented to remove outliers and noisy points. First, particle-

swam optimization technique is employed for automatically approximating optimal

bandwidth of multivariate kernel density estimation to ensure the robust performance

of density estimation. Then, mean-shift based clustering technique is used to remove

outliers through a thresholding scheme. After removing outliers from the point cloud,

bilateral mesh filtering is applied to smooth the remaining points. The experimental

results show that this approach, comparably, is robust and efficient.

Keywords Point cloud ⋅ Denoising ⋅ Optimal bandwidth ⋅ Particle swarm

optimization ⋅ Bilateral filter

1 Introduction

In the past few decades, surface reconstruction has gained significant attention due

to the availability of commodity structured light sensors such as Microsoft Kinect.

Point cloud data acquired from these devices is usually contaminated with noise and

outliers [1], both of which could be caused by the lighting or reflective nature of the

surface or artifact in the scene. In recent years, a number of point cloud denoising

methods have been proposed [1, 2]. Most of the methods work only on certain type of

noise or outliers. Denoising algorithms such as data clustering [14, 15] are robust to

outliers but require prior knowledge about the input objects. Majority voting method
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[16] can detect several types of outliers cluster, but high computation time makes

it infeasible for large datasets. Smoothing algorithms such as moving least square

[7] and mean curvature flow [5] are also used to remove noise and outliers. These

methods treat outliers as point with large noise and project the noisy points to an

estimated surface. However, these methods are sensitive against large number of

outliers and oversmooth the data points.

In this paper, a point cloud denoising method to remove noise and outliers from

the data is proposed. This method consists of the following steps. First, the density

of the input data point using kernel density estimation (KDE) technique is evaluated.

The performance of KDE is highly influenced by the choice of smoothing parameter,

also known as bandwidth. Most of the bandwidth selection methods such as [6, 9, 11,

17] involved brute-force or exhaustive search strategies have expensive computation.

A particle swarm optimization (PSO) (proposed by Kennedy and Eberhart 1995)

aided bandwidth selection criterion using leave-one-out cross-validation (LOOCV)

for multivariate kernel density estimation is proposed. Because of the simple imple-

mentation and quick convergence rates of PSO, it has been adapted in many practical

applications [3]. The optimal bandwidth selection method ensures the robust perfor-

mance of density estimation. After estimating the density, the mean-shift clustering

algorithm is applied to detect the local maxima of the constructed density estimation.

One of the main advantages of using mean-shift algorithm is its ability to localize

cluster modes automatically without any prior knowledge of the number of clus-

ters. Once clustering is done, outliers can be removed by the proposed thresholding

scheme. After removing the outliers, bilateral mesh filtering is applied to smooth

out the rest of the points. Experiments on various point cloud datasets show that the

method used in this research gives better result than that of other approaches.

2 Our Method

In this section, an overview of the optimal bandwidth selection framework is pro-

vided, starting from a review of the classical bandwidth selection methods.

2.1 Bandwidth in Kernel Density Estimation

Kernel density estimation (KDE), also known as Parzen window estimation, is a

non-parametric way of estimating the underlying distribution or probability density

function for a data set. Given n data points Xi, i = 1,… , n, the kernel density esti-

mate obtained with multivariate kernel function KH(x) and bandwidth or smoothing

parameter H, which is a symmetric positive definite matrix, computed at the point x
is defined as:

̂fH(x) =
1
n

n∑

i=1
KH(x − Xi) (1)
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where x = (x1, x2, x3)T is the 3-dimension vector, KH(x) = |H|−1∕2K(H−1∕2x). The

resulting density through KDE depends more heavily on the choice of bandwidth

than that of the kernel. For the same data, different bandwidths can produce dif-

ferent results. Optimal bandwidth matrix—which minimizes the error between the

estimated density ̂fH(x) and the true density f (x) is estimated. The performance of

̂fH(x) can be determined by the risk function or integrated mean squared error (IMSE)

such as,

R(̂fH(x), f (x)) = E(L(̂fH(x), f (x))) (2)

where, L is the loss function and L(̂fH(x), f (x)) = ∫ [̂fH(x) − f (x)]2dx. The optimal

bandwidth can be obtained by minimizing the risk function, but since the true density

f (x) is unknown leave-one-out cross-validation is used to estimate the risk function.

Therefore, loss function can be expressed as a function of H.

L(H) = 1
n

n∑

i=1
log ̂fH,i(xi) (3)

where, ̂fH,i(xi) is the leave-one-out estimator, ̂f−i(xi) =
1

(n−1)
∑n

j=1
j≠i

KH(xi − xj)

denotes the density estimation of xi by using the other (n − 1) observed data points.

Then the optimal bandwidth matrix H∗
can be estimated by,

H∗ = argmax
H

1
n
L(H) (4)

Several classes of parameterizations of the bandwidth matrix are available in the

literature. Some popular choices include full bandwidth matrix, a diagonal matrix

with positive elements, or using a single bandwidth. In the application, the diagonal

bandwidth matrix,H = diag(h21, h
2
2, h

2
3), is employed since it is computationally more

efficient than the full bandwidth matrix.

2.2 PSO for Optimal Bandwidth Selection

The PSO technique is proposed to carry out the bandwidth selection for better

approximation of kernel density estimation. PSO is a nature-inspired meta-heuristic

non-linear stochastic optimization technique. PSO is popular for its ability to opti-

mize complex non-linear functions and for its simple implementation. PSO consists

of a swarm of particles that fly through hyperspace of the of objective function’s

landscape. The pipeline of the optimal bandwidth selection method shown in Fig. 1.

The optimization problem is solved from Eq. 4 using PSO, where H = [h1, h2, h3]T
is a 3-dimensional vector to be optimized and L(∙) is the cost function. Here are

the steps of PSO algorithm to find the optimal bandwidth; where Ht
i is the potential

solution of the ith particle at iteration t.
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Fig. 1 The pipeline of the optimal bandwidth selection method, using PSO

1. Swarm Initialization: Set the iteration index t = 0. S is the total number of par-

ticles, where {Ht
i}

S
i=1 randomly generated particles in solution space.

2. Swarm Evaluation: Each particle denoted as pti remembers its best position vis-

ited so far, which provides the cognitive information. Every particle denoted as

ptg also knows the best position visited so far among the entire swarm, which pro-

vides the social information. The cognitive information pti and the social infor-

mation ptg are updated at each iteration as follows:

if L(Ht
i ) < L(pt−1i ) then

pti ← Ht
i

end if
if L(pti) < L(pt−1g ) then
ptg ← pti
end if

3. Swarm Update: Each particle Ht
i has a velocity, denoted as vti. The velocity and

position of the ith particle are updated in each iteration according to:

vti = 𝜔vt−1i + CcU[0, 1](Ht−1
i − pt−1i ) + CsU[0, 1](Ht−1

i − pt−1g ) (5)

Ht
i = Ht−1

i + vti (6)

Here U[0, 1] uniform random number between 0 and 1 and inertia weight (pro-

posed by Shi and Eberhart [13]) sets to 𝜔 = U[0, 1]. Cc and Cs are constants and

called cognitive learning rate and social learning rate, respectively. It controls

a particles learning behavior. Large value of Cc causes particles scatter around

and slow convergence. On the other hand, large value of Cs causes fast conver-

gence, and sometimes it can cause the swarm to converge to local optima. These

parameters are chosen carefully so that global optima can be attained without

compromising convergence speed. In this application, the parameters Cc reduced

from 2.5 to 0.5 and Cs varied between 0.5 and 2.5 according to Cc = 2.5 − 2t∕T
and Cs = 0.5 + 2t∕T [12].
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The global best position pg of all particles during the previous three steps is

defined as pg = argmax
pi

[L(Hi)], where pi = Hi. Once the maximum number of iter-

ations reached algorithm stopped and return the solution pg.
Searching the solution depends highly on the number of selected particles. The

number of particles increases the chances of finding global optimal solution, but it

also increases the computation expenses significantly. To identify the number of par-

ticles suitable for solving the current problem, a method also known as population

manager [10] is adopted. The idea behind the population manager is to adjust the total

number of particles in PSO according to the solution-search status. The population

manager determines the number of suitable particles in the following ways: Assum-

ing k is population-manager activating threshold. For k consecutive generations, if

there is no update in pg and current population size does not exceed the maximum

population size, then a new particle will be added to the swarm. This new particle

will be added by combining the information from randomly selected two particles

in previous best solutions. If population size is equal to the maximum population

and there is no update in pg, then remove a particle with poor performance to make

space for new potential particle. On the other hand, in k consecutive generations, if

pg update multiple times, then remove a particle with poor performance. Figure 2a

demonstrates how population manager dynamically adjust the particle in order to

facilitate the searching process.

The initial population size in this application is set as one, and the maximum

population size is set as 45. To evaluate the PSO based bandwidth selection method,

a method to different types of point cloud models is applied (Fig. 2b). As the number

of iterations increases, the mean square error (MSE) gradually converges to zero and

becomes steady once the optimal bandwidth is found.

Fig. 2 a Change in the number of particles using Population manager. b Estimation performance

of our optimal bandwidth selection method
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3 Noise and Outliers Removal

3.1 Algorithm for Outlier Removal

Mean-shift-based clustering algorithm [4] is a non-parametric unsupervised clus-

tering technique that does not require any prior information about the number of

clusters. It is applied to the kernel density estimate to identify each local maxima or

mode which represents one cluster. The mode of the density function are located at

the zeros of the gradient function ▽f (x) = 0. For each data point, say x, the mean-

shift procedure generates a sequence of points {yj}j=1,2,… with

yj+1 =

∑n
i=1 xig

(‖‖‖
yj−xi
hi

‖‖‖
2)

∑n
i=1 g

(‖‖‖
yj−xi
hi

‖‖‖
2) j = 1, 2,… . (7)

and y1 = x. This sequence converges to a mode of density. The point x belongs to the

cluster corresponding to this mode.

After the clustering is done, the outliers need to be determined. For each point p
in a cluster, where xp is the original location of p, the average distance (x̄) of all its

neighboring points using k-nearest neighbor (kNN) is calculated. Then the point p is

shifted iteratively to a new position x̄. After that, the distance between two positions,

||x̄ − xp||, is calculated. If the difference between ||x̄ − xp|| and the average distance

between its shifted neighbors below a certain threshold, then point p is considered

outlier (Fig. 3b). The outliers are discarded, leaving behind a new set of points, which

have better representation of the true shape of the cluster. Figure 4 demonstrates the

results of the outliers removal algorithm in different models.

Fig. 3 Results of outliers removal on horse model. a The original point cloud with outliers. b
The outliers detected by our method demonstrated in red color. c The resultant point cloud after

removing outliers (see the back side of the horse in zoom-views)
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Fig. 4 Results of the outliers removing algorithm: a Left Bunny point cloud with uniformly dis-

tributed noise, Right Corresponding point cloud after using the method used in this research, b
Point cloud model of a car with outliers data, Right Car model after removing outliers

Table 1 Computation time of the optimal bandwidth selection and outliers removal method for

various models

Data Input points Filtered points Th Tf
Bunny 330 K 293 K 29 s 30 s

Car 720 K 600 K 1 m 45 s 1 m 25 s

Horse 364 K 214 K 44.43 s 18.45 s

Gargoyle 2.1 M 796 K 3m 2s 4 m 44 s

Head 1.9 M 1.2 M 2 m 5 s 3 m 25 s

3.2 Experimental Results and Analysis

In order to validate the performance and effectiveness of the proposed method, the

estimated performance in both synthetic and real world dataset is tested. This pro-

gram is written in Python, and the data obtained from the research is from the tests

running on Intel Core-i7 CPU 860 at 2.80 GHz plus 4 GB RAM PC. Figure 4 demon-

strates some of the results of this method (standford bunny and car models). To evalu-

ate the applicability of this method, both raw and synthetic noise was tested. Table 1

summarizes timings and the parameters used to generate the results. Th and Tf is

the computation time for the optimal bandwidth selection using PSO and outliers

removal using thresholding scheme respectively.

Results of the denoising approach on scanned data show that it has good perfor-

mance on different types of scanned data. Experiments illustrate the capability of

this method in removing outliers.

3.3 Algorithm for Noise Removal

After removing outliers, triangular mesh for the rest of the points is calculated.

After that, the noise from the mesh by applying bilateral mesh filter [8] is removed.
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Bilateral mesh filter is popular for its ability to remove noise and preserve features

at the same time. For denoising a point p, other points around its neighborhood {qi}
is identified; where, ||p − qi|| < 𝜌 = |2𝜎c|, here 𝜎c is the radius of the neighborhood

of point p. To determine a desire value for 𝜎c, the average distance of all adjacent

triangles in an input mesh is used. The bilateral filters in this method also have two

parameters, 𝜎c and 𝜎s. The 𝜎s is the standard deviation of the offsets in the selected

neighborhood. The result of bilateral mesh filtering operation on the input model is

illustrated in Fig. 5.

Fig. 5 Point cloud denosing results: The first column is the point cloud models after removing

outliers; second column represents the triangular mesh representation of the point cloud and third
column is the models after applying bilateral mesh denoising
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4 Conclusion

In this paper, a density-based approach for denoising point cloud data is proposed. In

particular, particle swarm optimization technique is used for estimating the optimal

bandwidth matrix of kernel density estimation, and mean-shift clustering technique

to remove outliers. To remove noise from remaining points, bilateral mesh denoising

method is applied. Our method is very robust with highly noisy dataset, as can be

seen from the examples shown. While this research illustrates only a few applications

of the method within the domain of point cloud data, it is believed that its simplicity

and effectiveness will lead to its application in other domain.
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