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Abstract Reducing energy consumption is one of the most important for optimal
electric-driven chiller operation. Therefore, even small reduction in power con-
sumption will achieve significant energy savings. This paper adopts improved
particle swarm optimization (IPSO), which is aiming to reduce energy consump-
tion, and improve the performance of chillers. The method has been validated by
real case study, and the results have demonstrated the effectiveness for saving
energy and kept the cooling demand at satisfactory level.
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1 Introduction

According to the estimation of UN International Panel on Climate Change (IPCC)
for increasing the air temperature [1], Heating Ventilating Air-Conditioning
(HVAC) will act as source of pollutants and may contribute to increase in carbon
dioxide (CO2), if not maintained properly. Therefore, CO2 increases atmosphere
temperature and global warming.

The HVAC is used to provide air at a comfortable temperature for human being.
These equipment’s are major consumers for electrical energy. They reach up to
50 % of the overall energy consumption in buildings as reported by International
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Energy Agency (IEA) [2]. The electric-driven chillers are one of HVAC for facility
cooling in buildings.

A better way to save the electrical energy in a cooling plant is by optimizing the
chillers. The optimization is to enhance its performance that significantly keeps the
cooling demand satisfied [3]. Several techniques have been proposed, which use
searching algorithms inspired by the concepts of artificial intelligence.

In relation to optimal chiller loading (OCL) problem using swarm intelligence
(SI), Ardakani and Lee et al. [4, 5] proposed particle swarm optimization (PSO) to
solve a continuous problem of optimization parameters. The findings proved that
the PSO algorithm has the capability to execute convergence at low loads. Also,
simulated annealing (SA) has applied to chiller model, in order to adjust the
operation setting points under partial load. This method overcomes the deficiencies
of Lagrangian Multiplier (LM) for the convergence [6, 7]. SA is employed to
optimize variable control parameters, in order to reduce consumption of the
chilled-water plant by [8]. Lee et al. and Sulaiman et al. [9, 10] have utilized the
differential evolution (DE) and differential search (DS) algorithms to optimize and
solve the problem of optimal chiller loading. Also, an improved Firefly (IFF) al-
gorithm based on Gaussian distribution function has been suggested dos Santos
Coelho and Mariani [11]. This IFF can be used to accelerate the optimum in the
search solutions. In [12], an artificial cooperative search (ACS), this algorithm is
applied to solve the OCL problem.

For chiller efficiency, several control strategies have been suggested to maximize
its performance based on the probability distribution of PLR [13, 14]. Alessandro
Beghi et al. [15] employed PSO for efficient energy management to solve the OCL
problems based on two steps to estimate the cooling load by PSO, and to determine
which chiller to be ON or OFF according to the predicted and estimated load.
Moreover, Wei et al. [16] has utilized modified PSO to solve multi-optimization
objectives for HVAC. The objectives are used to minimize energy consumption,
room temperature, humidity, and CO2 concentration.

For reducing energy consumption (EC), Hamid et al. [17, 18] developed optimal
and control strategy to set-points of cooling demand. These are based on 2 Fuzzy
inference systems (FIS) for 24 h. This period was partitioned into four time zones,
with 6 h each. Insufficient operation is the one of the chillers problems, which
consumes more power. To overcome this problem and deficiencies of convergence
at low load, this work employs IPSO to solve the problem of OCL, to minimize EC,
and maximize efficiency.

2 Objective Function Formulation

In chiller-plant, the best performance can occur, when the chillers can be set under
Part Load Ratio (PLR) as in Eq. (1),
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Fi = a1 +⋯+ aNð Þ+ b1 +⋯+ bNð Þ.PLRi + c1 +⋯+ c5ð Þ.PLR2
i + ðd1 +⋯+ dNÞ.PLR3

i

+ e1 +⋯+ eNð Þ.PLR4
i

ð1Þ

For reducing energy consumption, the objective function can be expressed in
Eq. (2),

Ji = Minimize F1, F2, . . . , FNð Þ ð2Þ

where, Fi is a single objective, aN, bN, cN, dN, eN are the power curve coefficients of
ith chiller, and PLRi is Part Load Ratio of ith chiller. The cooling load capacity (Qi)
should be equal to the total cooling demand as expressed in Eq. (3) [19],

Qi = ∑N
i=1 PLRi *RTi, s.t.PLRLower

i ≤PLRi ≤PLRUpper
i ð3Þ

RTi is the capacity of ith chiller in (ton), and PLRi
Lower and PLRi

Upper to be
between (0.5–1.0) for cooling machines stability [9, 20]. The best performance for
the chiller when operates under PLR, where its coefficient of performance (COP) is
expressed in Eq. (4)

COP= JiðkWÞ Q̸iðtonÞ ð4Þ

The efficiency of the chiller at peak load at Air-Conditioning, Heating and
Refrigeration Institute (AHRI) standard, measured in kilowatts kW/ton. The power
input per capacity kW/ton also called the coefficient of performance (COP), which
can be measured at any given set of rating conditions. A lower COP rating indicates
higher efficiency and performance [21].

3 Particle Swarm Optimization

PSO is an optimization technique proposed by Kennedy and Eberhart in 1995 [22].
Basically, PSO simulates the food searching of a swarm of birds and fishes (par-
ticles), and each particle has location and velocity. These particles move around the
search space looking for the optimal solution. Each particle tries to modify its
velocity and position based on its own previous experience, and the other neigh-
boring particles of the swarm. For example; the particle i is randomly placed in two
dimensional search space at the point Xi

K, this particle flies through the problem
search space with a random velocity Vik. The particle remembers the best position
achieved so far and stores it as Pbesti

k. Then, each particle shares the information
with the neighboring particles. In other words, each particle compares its best
position with those attained by other particles. Finally, each particle stores the best
position achieved in the whole swarm called Gbesti

k [23]. PSO depends on the
movement behavior of birds and fish according to,
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Vk+1
i =W*Vk

i + c1r*1 Pbestki −Xk
i

� �
+ c2r*2 Gbestki −Xk

i

� �
, ð5Þ

Xk+1
i = Xk

i +Vk +1
i i 1, 2, . . . , Mswarm ð6Þ

where, Vi
k+1 is the particle’s updated velocity at (k + 1)th iteration, W is the inertia

weight factor, c1 and c2 are the weighting factors which are used to accelerate PSO
performance to find Pbesti

k and Gbesti
k, also r1 and r2 are the random numbers (0–1),

and Xi
k+1 is the updated particle’s current position [23–25]. The Eqs. (5) and (6) do

not rightly reflect the process search to find out the optimum best local and global
values [26]. Accordingly, the velocity can be modified by a constriction factor
(K) as Vk+1 = KVk [27]. This factor (K) improves PSO performance, where it
selects between (0 and 1), which can be calculated from,

K =
2

2− 2φ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4φ−φ2

p ð7Þ

where, φ = C1 + C2 <= 4, in order to ensure the algorithm convergence, the
velocity cannot exceed the set of specific range as can be expressed in,

Vk+1
i =K W*Vk

i + c1r*1 Pbestki −Xk
i

� �
+ c2r*2 Gbestki −Xk

i

� �� � ð8Þ

Based on the experiments, a large inertia weight is facilitating the global search
and does not rightly reflect the process search to find out the optimum best local and
global values [26]. While a small inertia weight facilitates the local research for the
particles swarm. The inertia weight can be expressed,

W =Wmax − Wmax −Wminð Þ i̸termax½ �*iter ð9Þ

where W is the inertia weight factor, Wmax is the inertia weight initial value, Wmin is
the inertia weight final value, itermax is the maximum iteration and iter is the current
iteration number. The PSO parameters and its values as shown in Table 1.

4 Fuzzy Inference System

Fuzzy Inference System (FIS) can be used to adjust and evaluate C1 and C2.
Among many trails, it was found that the membership function with the values of
C1 = 1.2, C2 = 0.4 (if K = 0.632 and W = 0.55). Therefore, PSO calls these

Table 1 PSO parameters C1 C2 Wmin Wmax Swarm iter itermax
1.2 0.4 0.25 0.85 25 100 200
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weighting factors based on K and W to accelerate and improve its performance,
among 10 evaluator’s Fuzzy rules as seen its membership in Fig. 1.

The steps of the implementation of IPSO on OCL problem are given below.

Step: 1 initialize the swarm (S) from solution space
Step: 2 generate a variable decision of PLRi
Step: 3 evaluate the fitness of each particle, i, Eq. (2)
Step: 4 adjust constriction factor (K) using Fuzzy inference system
Step: 5 update individual and global bests (Pbest i and Gbest i),
Step: 6 update the inertia according to Eq. (9)
Step: 7 update velocity and position of each particle (Vi and Xi), Eqs. (6) and

(8)
Step: 8 go to step 3 and repeat until the termination occurs.

To explain the algorithm steps in the above mentioned, Fig. 2 shows the flow
chart of all steps for the proposed method implementation.

5 Case Study

The industry selected in this paper is a Glove factory with five electric-driven
chillers. Each of them with a capacity 200 Refrigerant tonnage (RT). These chillers
have been operating at full load condition, with the total power consumption of
690 kW and produce 5 × 180 ton of the chilled-water so that, the chilled-water
supply temperatures (TCHWS) are same for chillers (10 °C) and chilled-water return
temperature (TCHWR) between (16.8–18.7 °C). Table 2 shows the model and
operating conditions of the existing system for chillers plant.
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Fig. 1 Acceleration factors membership
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6 Results and Discussion

The power consumption of electric-driven chillers is about 690 kW for normal
operation for the existing system when all chillers operate at full and partial load.
Figure 3 shows the power consumption for the normal operation at 100 % and the

Adjust k using Fuzzy 

Evaluate individual, Fi

Initializing Vi & Xi

For each particle, i

PSO initialization; clc, 
iter, swarm_size 

           IF
F1(x) < F(Pbest), i>1i = i + 1 

Set Pbest = Xi

             IF
F1(x) < F (Gbest), i>1

Set Gbest = Xi

Yes 

Yes 

No  

No  

Update the Vi and Xi,
Eqs. (8) and (6) 

Update & modify 
function W, Eq. (9) 

J= Min Fi, Eq. (2) 
Gbest = xi

No  

Iteration = iteration +1

Check to satisfy  
Stopping criterion 

No  Yes Print optimal 
power   

End 

Start 

Gen, PLR1 = PLR1
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Fig. 2 Flow chart of improved PSO algorithm
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consumption at partial load (50–90) % for three methods which are AVL, PSO, and
IPSO.

From results, the existing system, the proposed method saves power at 100 %
32.049 which is (690–657.951) kW, at 90 % saves 34.995 kW, at 80 % saves
30.597 kW, at 70 % saves 27.61 kW, at 60 % saves 28.325 kW, and at 50 % saves
23.509 kW. The average percentage of saving (IPSO) is 35.18 %. Similarly, PSO
saves 33.23 % and AVL saves 33.59 %.

Table 3 shows the results of AVL, PSO, and the proposed method (IPSO). For
comparison, the cooling load demands are used to simulate which are 900 RT (a
total capacity of 5 chillers at full load), 810 RT for 90 %, 720 RT for 80 %, 630 RT
for 70 %, 540 RT for 60 %, and 450 RT for 50 %. In 900 RT the input power is
same 657.766 kW for AVL and PSO, whilst, 657.9507 kW for IPSO. In 810 RT,
the input power is 587.075 kW for AVL, 586.395 kW for PSO, whilst 586.005 kW
for IPSO. In 720 RT, the input power is 521.967 kW for AVL, 523.138 kW for
PSO, whilst 521.4025 kW for IPSO. In 630 RT, the input power is 457.005 kW for

Table 2 The quadratic model and operating conditions and of chillers

Chillers 1 2 3 4 5

ai 2.3232 75.802 58.958 22.424 72.414
bi 128.58 −462.57 −239.97 −0.341 −346
ci −55.603 1612.5 835.35 257.43 1100.3
di 144.88 −1851.8 −811.55 −213.58 −1068.7
ei −90.651 762.04 288.03 64.381 373.38
R2 0.9998 0.9985 0.9992 0.9999 0.9993
Stand. error 0.5324 % 1.0764 % 0.6533 % 0.2949 % 0.5885 %
RTi (ton) 180 180 180 180 180
TCHWS (°C) 10 10 10 10 10
TCHWR (°C) 16.8 18.7 17.3 17 18
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Table 3 Methods comparison for the power consumption

Qi

RT%
Normal operation system (A) Average loading AVL (B)

Chiller PLRi RTi kWi COPi PLRi RTi kWi A–B

900
100 %

1 1 180 690 0.7667 1 180 657.766 32.234

2 1 180 1 180

3 1 180 1 180

4 1 180 1 180

5 1 180 1 180

810
90 %

1 0.9 162 621 0.7667 0.9 162 587.075 33.925

2 0.9 162 0.9 162

3 0.9 162 0.9 162

4 0.9 162 0.9 162

5 0.9 162 0.9 162

720
80 %

1 0.8 144 552 0.7667 0.8 144 521.967 30.033

2 0.8 144 0.8 144

3 0.8 144 0.8 144

4 0.8 144 0.8 144

5 0.8 144 0.8 144

630
70 %

1 0.7 126 483 0.7667 0.7 126 457.005 25.995

2 0.7 126 0.7 126

3 0.7 126 0.7 126

4 0.7 126 0.7 126

5 0.7 126 0.7 126

540
60 %

1 0.6 108 414 0.7667 0.6 108 389.845 24.155

2 0.6 108 0.6 108

3 0.6 108 0.6 108

4 0.6 108 0.6 108

5 0.6 108 0.6 108

450
50 %

1 0.5 90 345 0.7667 0.5 90 321.495 23.505

2 0.5 90 0.5 90

3 0.5 90 0.5 90

4 0.5 90 0.5 90

5 0.5 90 0.5 90

Qi

RT %
PSO (C) IPSO (D)

Chiller PLRi RTi kWi PLRi RTi kWi COPi A–D

899.64
100 %

1 1 180 657.766 1 180 657.9507 0.7311 32.05

2 0.9999 179.82 0.9997 179.94

3 1 180 1 180

4 1 180 1 180

5 0.9999 179.82 1 180

809.98
(90 %)

1 1 180 586.395 1 180 586.005 0.7234 34.99

2 0.6182 111.28 0.5453 98.154

3 1 180 1 180

4 1 180 1 180

5 0.8817 158.71 0.9546 171.83
(continued)
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AVL, 456.327 kW for PSO, whilst 455.3899 kW for IPSO. In 540 RT, the input
power is 389.845 kW for AVL, 388.258 for PSO, whilst 385.6747 kW for IPSO.
And in 450 RT, the input power is 321.495 kW for AVL, 324.232 kW for PSO,
whilst 321.4905 kW for IPSO. The proposed method (IPSO) has demonstrated the
effectiveness for saving power of 35.19 % compared to other methods. This per-
centage of saving can be analyzed from these tables as in Eq. (9),

Saving=
Consumption of ðNormal operation− ProposedmethodÞ

Consumption of Normal operation
* 100% ð9Þ

For instance, the percentage saving of IPSO with respect to the existing system

Table 3 (continued)

Qi

RT %
PSO (C) IPSO (D)

Chiller PLRi RTi kWi PLRi RTi kWi COPi A–D

719.98
(80 %)

1 0.9101 163.82 523.138 0.9684 174.31 521.4025 0.7242 30.60

2 0.5651 101.72 0.6101 109.82

3 0.9711 174.79 0.8842 159.15

4 0.8880 159.84 0.8787 158.16

5 0.6656 119.81 0.6585 118.53

630.04
(70 %)

1 0.7241 130.34 456.327 0.9255 166.59 455.3899 0.7230 27.61

2 0.6402 115.23 0.3202 57.636

3 0.8732 157.17 0.9165 164.97

4 0.6823 122.81 0.7345 132.21

5 0.5804 104.47 0.6023 108.41

540.18
(60 %)

1 0.6 108 388.258 0.9979 179.62 385.6747 0.7143 28.33

2 0.4052 72.936 0.4613 83.034

3 0.8 144 0.4485 80.730

4 0.6272 112.89 0.5918 106.52

5 0.5686 102.35 0.5 90

449.98
(50 %)

1 0.8905 160.29 324.232 0.6304 113.47 321.4905 0.7144 23.509

2 0.3101 55.818 0.4122 74.196

3 0.4989 89.802 0.5206 93.708

4 0.3999 71.982 0.5171 93.078

5 0.4005 72.090 0.4196 75.528

Table 4 Comparison of
methods for saving, efficiency
and computational time

AVL PSO IPSO

Percentage saving (%) 33.59 33.23 35.18
Average of COP 0.76667 0.72423 0.72171
Computational time (s) 2.97243 1.68045 2.28563
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Saving at 100%=
ð690− 657.9507Þ

690
*100%=4.645%

Saving at 90%=
ð621− 586.005Þ

621
*100%=5.635%

Saving at 80%=
ð552− 521.4025Þ

552
*100%=5.543%

Saving at 70%=
ð483− 321.4905Þ

483
*100%=5.716%

Saving at 60%=
ð414− 385.6747Þ

414
*100%=6.842%

Saving at 50%=
ð345− 321.4905Þ

345
*100%=6.814%

Compared to existing system, energy has been saving a 35.19 % using IPSO
(full load + partial load) The analysis also was done for AVL and PSO techniue.

Table 4 the saving of AVL and PSO are 33.59 % and 33.23 %, respectively. It’s
shown that AVL achieved better results in terms of saving, but PSO has achieved
better results in terms of efficiency (COP) and computational time compared to
AVL. This calculation time (in second) is according to Intel (R) Core™ i5-3470
CPU@3.20 GHz 3.20 GHz.

7 Conclusion

This paper employs an improved particle swarm optimization (IPSO) to minimize
energy consumption, and to improve chillers efficiency. A typical case study of
optimal searching using 5 chillers is carried out. The findings have demonstrated
that IPSO has achieved a lower consumption and higher performance according to
COP which considered a better than existing operating system. Also, it has met the
cooling demand and saved by 35.19 %.
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