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Preface

The role of neuroinflammation, as a common denominator of diverse neurological
disorders including ageing, infections, trauma, stroke, demyelinating and degen-
erative diseases, was overlooked till recently since it lacked the classical markers of
inflammation elsewhere in the body. It was only after the tools and techniques of
molecular biology were utilized to investigate the pathophysiology of these con-
ditions that the tell-tale evidence of inflammation in all these pathologies came to
light. Not only inflammation was found to accompany these lesions but also it soon
became evident that neuroinflammation plays a critical role in the pathogenesis
of these conditions.

Over the years voluminous literature has accumulated on the subject but the
knowledge is dispersed and not available as a comprehensive overview. It was
realized that a number of neuroscientists in different parts of the country were
studying various aspects of neuroinflammation in specific disease entities. This
prompted us to bring together at one place the current knowledge on the subject (the
proverbial nine blind men and the elephant!).

This monograph has 13 chapters contributed by investigators from institutions in
different parts of the country. The first chapter is an overview providing a definition
of neuroinflammation, its biomarkers and its cellular and molecular components.
An attempt is made to answer a series of questions regarding its significance in
different pathologies and a brief mention is made on the role played by ageing,
obesity, metabolic disorders and systemic infection/inflammation. It outlines its
clinical implications. Patro and his colleagues (Chap. 2) elaborate the role of
microglia as the dominant player in initiating and promoting the inflammatory
cascade, while in the Chap. 3 Tiwari and Seth discuss the role of astrocytes in the
process. They specially highlight their role in pathogenesis of HIV-associated
neurodegenerative disorders. Dutta, Ghosh and Basu, in Chap. 4, elaborate the
dangerous liaison between infections and inflammation. They provide an account
of the immune responses (which form the basis of inflammation), to different types
of infections affecting the central nervous system. Chapter 5 by Singh and Das
Sharma deals with role of neuroinflammation in demyelinating disease. Tripathi and
Jana, in Chap. 6, present an overview of neuroinflammation related to neurode-
generative disorders, taking Huntington’s disease as an example. This is followed
by a chapter on neuroinflammation during Parkinson’s disease by Sinha et al.,
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amyotrophic lateral sclerosis (ALS) by Upadhyay et al., and by Alam et al.,
neuroinflammation in ischemic stroke. Irshad, Madan and Chosdol (Chap. 10) have
dealt with role of inflammation in augmenting tumour progression, angiogenesis,
promoting tumour cell proliferation and survival. Nivedita Chatterjee (Chap. 11)
discusses the dysfunction of glia as a cause of many retinal disorders. Kaur et al.
deals with, till recently unexpected, systemic disorder, obesity and its comple-
mentary role in augmenting neuroinflammation triggered by any aetiology. The
possible therapeutic implications of the new knowledge have been referred to by all
authors. The last chapter by Ghosh and Ghosh discusses the role of microglia in
adult neurogenesis.

The editors take this opportunity to thank all authors and their collaborators to
accede to their request to contribute to this book, which will hopefully be of great
utility to students and researchers interested in neurosciences.

Special thanks are due to our publisher “Springer” and persons associated with
production specially Madhurima Kahali and Muthu Rajan for their help and support
in bringing out this attractive publication.

Gurgaon, India Nihar Jana
Anirban Basu

Prakash Narain Tandon
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1Biology of Neuroinflammation:
A Common Denominator in Brain
Pathologies

Prakash Narain Tandon

Abstract
Neuroinflammation is a common denominator of diverse neurological diseases.
While acute inflammatory response is considered to be neuroprotective, chronic
inflammation induces cascades of inflammatory reactions that leads to neurode-
generation. The harmful effect of chronic inflammation in modulating the course
of disease has been well documented in a wide range of neurodegenerative
disorders like Alzheimer’s disease, Huntington’s disease, Amyotrophic lateral
sclerosis, etc., Overall goal of this review is to provide a broad description of the
current state of knowledge of neuroinflammation associated with various acute
and chronic neurological disorders.

1.1 Introduction

Oskar Fisher (1910) recognising the fact that the neuritic and glial changes asso-
ciated with the extra cellular fibrils in Alzheimer brain as a tissue reaction to a
foreign substance was surprised not to find the characteristic morphological signs of
inflammation, as described by Celsus in other tissues. He posed the question:
“Aber! wo bleibl dann die entzundliche Reaktion?” (However! where is then the
inflammatory reaction) {Quoted by Eikelenboom et al. 2002}. It is now common
knowledge that in the nervous system inflammation is a common denominator of
diverse neurological diseases not only of infective origin but others, like—trauma,
ischaemia, tumours, degeneration—but lacks its classical signs, “dolor, tumor, calor
and rubor” described by Celsus. It is the molecular evidence of response to an
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external or internal insult to the brain that constitutes neuroinflammation (Mc Geer
and Mc Geer 2001a, b). It is not just a response to the pathology but in many
instances it is responsible for augmenting and perpetuating the disease. While in the
acute phase of the disease inflammatory response may be neuroprotective, chronic
inflammation destroys the neurons which in turn perpetuates the inflammation.
Thus, the deleterious role of chronic inflammation in adversely affecting the course
of disease has been well documented in a wide range of conditions other than
infective disorders. Although probably triggered by many different initiating events
in the early stages, many neurodegenerative diseases share chronic immune acti-
vation as a common feature. Thus its role in accentuating the original insult as in
case of head injury, or stroke, or being responsible for neurodegeneration in Alz-
heimer’s disease, Huntington’s disease, Amyotrophic Lateral Sclerosis, Autism,
Multiple Sclerosis, even ageing, metabolic disorders has attracted a large number of
publications (Streit 2004, 2005; Chen et al. 2003; Eikelenboom et al. 2002;
Akiyama et al. 2000; Mc Geer and Mc Geer 2004). This review, while attempting to
provide a comprehensive account of the current state of knowledge is also aimed at
answering some important questions

– What constitutes the minimum markers of neuroinflammation?
– What is the critical role of different cells—microglia, astrocytes, neurons,

macrophages—and different cytokines and chemokines and complements in the
inflammatory response?

– What are the differences between neuroinflammation secondary to infections—
viral, bacterial, mycobacterial, fungal and neurodegenerative disorders?

– Are there differences between neuroinflammatory cascades in different neu-
rodegenerating disorders—ageing, Alzheimer’s disease (AD), Parkinson’s dis-
ease (PD), Amyotrophic lateral sclerosis (ALS), Multiple sclerosis (MS),
Autism disorders, Metabolic Syndrome?

– Is the temporal pattern and pathogenic mechanism identical in different
conditions?

– What are the therapeutic implications of this knowledge?

1.2 Markers of Neuroinflammation

Mc Geer and Mc Geer (2001a, b) remarked, “Even though inflammation is a well
recognised and well researched area the precise definition of inflammation remains
obscure”. This is so, in case of neuroinflammation, which is recognised not on basis
of the classical signs of inflammation elsewhere in the body, e.g., infiltration of
leucocytes, but on the basis of cytological and molecular evidence of innate
immune response as manifested by activated microglia and astrocytes and presence
of pro-inflammatory cytokines and chemokines. This may or may not be augmented
by involvement of the adaptive immune system with infiltration of circulating
leucocytes or macrophages depending upon the nature of pathological insult
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(Mc Geer and Mc Geer 2001a, b; Eikelenboom et al. 2002; Amor et al. 2010). It is
now generally accepted that despite the immune-privileged environment both innate
and adaptive immune responses occur in the central nervous system (CNS). While
invading microorganisms initiate adaptive immune response initially, endogenous
signals switch on the innate responses to start with. As disease progresses both
innate and adaptive responses come into play to varying extent in the inflammatory
process. Amor et al. (2010) in their Table 1 summarise immune responses in
neurodegenerative disorders.

1.3 Critical Role of Different Cells

1.3.1 Microglia

They are conventionally recognised as the resident macrophages and are responsible
for the innate immune mechanism in the brain. They kill invading microorganism in
the brain, remove debris, facilitate tissue repair after injury (Tandon 2007). They
become readily activated as a result of endogenous stimuli associated with ischae-
mic, demyelinating or degenerative disorders. They serve an immune surveillance
function. Microglia can sense subtle changes in micro-environment through a variety
of surface receptors (Nimmerjahn et al. 2005; Kreutzberg 1996; Barron 1995). While
the role of microglia in acute insults to the brain was well known, it is only in last
couple of decades that their involvement in neuroinflammation associated with
neurodegeneration has been brought into light. Block and Hong (2005) extensively
reviewed, “Microglia and Inflammation—mediated neurodegeneration”. Extensive
reviews are also available on the role of microglial involvement in neuroinflam-
mation associated with diverse CNS insults and diseases such as head injury,
infective disorders, stroke, neurodegeneration, autism, ALS, multiple sclerosis, brain
ageing. The trigger for activation of microglia is different in acute neurological
diseases and trauma and chronic neurodegenerative conditions. In the former it is the
ischaemic or necrotic lesions which trigger the activation while in majority of the
latter it is the accumulated abnormal proteins (Sherman and Goldberg 2001; Walker
and LeVine 2000). In order to detect potential insults microglia possess a vast array
of highly conserved pattern recognition receptors. While toll-like receptors (TLRs)
have received most attention, for their ability to recognise both pathogen-associated
molecular patterns (PAMPs) and endogenous danger-associated molecular patterns
(DAMPs), many other receptors that recognise specific molecular patterns have been
described (Lucin and Wyss-Conray 2009). Activated microglia are capable of
releasing a variety of soluble factors which are pro-inflammatory in nature and
potentially cytotoxic (Streit et al. 1999; Stoll and Jander 1999; Lucin and
Wyss-Conray 2009; Walter et al. 2007). Block and Hong (2005) enumerated more
than 30 such factors including NO, H2O2, OH, NOO, TGFβ, PGE2 and a variety of
interleukins which influence cell survival. They summarised, “Microglia are critical
actors of self-propelling mechanisms of neurotoxicity contributing mechanism to
degenerative disorders. And further, “thus, multiple triggers of microglia derived
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oxidative stress fuelling the progressive nature of several independent neurode-
generative diseases”. Since neuronal death itself can be a trigger for activating
microglia neuronal damage may continue even in absence of the original trigger as
has been observed in most degenerative disorders (Eikelenboom et al. 2002). There
is a common thread of microglial activation across numerous neurodegenerative
diseases though there can be diverse ways of activating microglia. The resulting
neuronal damage is itself responsible for a self-propelling cycle of neuronal death
(Block and Hong 2005).

While a great deal has been written about the neurotoxic effect of activated
microglia, enough investigations have not been done on their neuroprotective role.
Inflammation is an evolutionary—conserved defense strategy of the immune sys-
tem that can be mounted in response to injury or infection. Acute inflammation is
traditionally considered a beneficial mechanism to limit damage and invoke tissue
repair and resolution of injury (Cuartero et al. 2013). There is enough evidence that
microglia being the first line of defense following acute neuronal injury not only act
as a scavenger of the debris but also secrete a number of growth factors like BDNF,
EGF, NGF, etc., (Streit 2005; Lucin and Wyss-Conray 2009; Murray et al. 2015).
The molecular basis for neuroprotection has been detailed by Streit (2005). How-
ever, during chronic inflammation the activated microglia produce cytotoxic
molecules which leads to destruction of neurons. Similarly features of microglial
activation can result in diverse localization, pathology and clinical symptoms of
each unique disease (Block and Hong 2005). The intriguing question remains as to
how the generalised phenomena of microglial activation can result in diverse and
localised neurodegeneration. According to Lucin and Wyss-Conray (2009)
microglia heterogeneity exists during neurodegeneration and may influence disease
outcome. Chapter 2 in this book have discussed this subject further.

1.3.2 Astrocytes

It has been known for a long time that following damage, degeneration and loss of
neuronal tissue there is proliferation of the glial elements, particularly astrocytes, to
replace it. However, their role in neuroinflammation has been brought to light only
recently. Like microglia neuronal insult or damage also activates astrocytes which
then secrete a variety of cytokines which contribute to neuroinflammation (Miller
2005; Tandon 2007). Although neuroinflammatory function of microglia is not as
prominent as that of microglia (Streit et al. 1999) they become activated in response
to immunologic challenge or brain injury (Aloisi 1999). The relative role of
microglial and astroglial reactions to inflammatory lesions of experimental
autoimmune encephalomyelitis has been studied in details by Matsumoto et al.
(1992). They observed that microglia reacted to inflammatory foci at the very early
stage while astrocytes encased the lesions at the peak stage of EAE. However, total
neural tissue destruction produced by cold injury induces much faster and stronger
astrological responses than the autoimmune inflammation. This suggested that the
magnitude of astrological reaction is variable depending on the nature and severity
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of damage. In general in most degenerative disorders the role of astrocytes is much
less and later than microglia (Teismann et al. 2003; Vehmas et al. 2003). They
postulated that more than one chemotactic factor is produced for regulation of
different stages of inflammation. There is evidence for cross-talk between these
cells. Ultimately the glial responses results in deleterious—effects on the neurons
through production of pro-oxidant reactive species and pro-inflammatory cytokines
and prostaglandin (Teismann et al. 2003). Tewari and Seth have discussed the role
of astrocytes in neuroinflammation in this book.

1.3.3 Neurons

Contrary to the idea that neurons play only a passive role, recent findings indicate
that neurons themselves appear to be active players in neuroinflammation. Many of
their products, like increased expression of complement factors and the inducible
cyclooxinase2 (COX-2), as well as neuronal membrane proteins CD22, CD47,
CD200, CX3CLI (fractalkine), ICAM5, NCAM, Semaphorin all regulate inflam-
mation (Eikelenboom et al. 2002; Amor et al. 2010; Tian et al. 2009; Oka and
Takashima 1997; Hoozemans et al. 2001; Doll et al. 2014). In addition neurons are
capable of expressing COX-2 which has been found to be upregulated in early
stages of AD but down regulated in advanced stages. IL-1β induces COX-2
expression in neurons (Hoozemans and O’Banion 2005).

1.4 Infiltration of Cells from the Periphery (Role
of Adaptive Immune System)

Chronic activation of the microglial cells leads to recruitment of cells of adaptive
immune system into the CNS. Despite the otherwise immuno-suppressive envi-
ronment T-cells do enter and survive in the CNS as observed in substantia nigra in
PD patients, MS and traumatic brain injury (Mantovani et al. 2009; Ankeny and
Popovich 2009; Neumann et al. 2002). Most neurodegenerative disorders are
characterised by both local inflammation from resident cell types in the brain and by
the infiltration of leucocytes from the periphery (Mc Geer et al. 1989). Post-mortem
brain tissue from patients with AD shows an atypical inflammatory response
dominated by cells of the macrophages lineage, with activation of the resident
microglial cells and possible recruitment of monocytes from the blood (Perry et al.
2007). Table 1 of the review by Amor et al. (2010) summarises the literature on the
innate and adaptive responses in different neurodegenerative diseases. For reasons
not well understood the response is not identical. Several factors including CCL2
serve as a chemoattractant for the peripheral monocytes (El Khoury et al. 2007).
Many classical immune regulatory factors are produced by glial cells or neurons in
the CNS which are increased following injury. On the other hand neurodegenera-
tive changes in the brain appear to be associated with changes in the peripheral
immune system as observed in patients with AD, HD and PD. Elevated levels of
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IL-6 were observed in preclinical HD mutation carriers up to 16 years before the
onset of motor abnormalities and changes in the levels of 18 cellular communi-
cation factors in plasma predicted AD progression several years prior to clinical
manifestation (Lucin and Wyss-Conray 2009; Ray et al. 2007). Details of cerebral
infiltration of immune cells in neurodegenerative diseases are somewhat different in
different disorders. The precise role of resident microglia versus infiltrating
monocytes CD4, CD8, T-cells, etc., need further studies (Lucin and Wyss-Conray
2009).

1.5 Cytokines and Other Pro-inflammatory Molecules

Following a CNS insult, multiple cytokines are generated to cause, exacerbate,
mediate and/or inhibit cellular injury and repair (Allan and Rothwell 2003; Allan
et al. 2005). Primarily, produced by activated microglia these cytokines include
IL-1, TNFα, NO, PGE2, Superoxide among others. These are responsible for
chronic inflammation and self-perpetuating cycle of neural death (Block and Hong
2005; Swardfager et al. 2010; Murray et al. 2015). These have been extensively
studied in Alzheimer’s disease (Misiak et al. 2012; Swardfager et al. 2010; Vehmas
et al. 2003; Hoozemans and O’Banion 2005; Lue et al. 1996; Akiyama et al. 2000;
Mc Geer and Mc Geer 2001a, b), in Parkinson’s disease (Teismann et al. 2003;
Allan et al. 2010, Chap. 7 in this book), multiple sclerosis (Block and Hong 2005),
amyotrophic lateral sclerosis (Henkel et al. 2004), brain ischaemia and stroke (Doll
et al. 2014; Murray et al. 2015), physiological ageing (Lucin and Wyss-Conray
2009; Villeda et al. 2011), gliomas (Dikshit et al. 2013; Sen 2011), head injury
(Harish et al. 2015; Johnson et al. 2013; Gentleman et al. 2004). Pathological
studies have been shown that pro-inflammatory cytokine interleukin (IL)-1β is
over-expressed six folds in the brains of AD patients compared with control sub-
jects (Griffin et al. 1995).

A meta-analysis of cytokines (in blood and CSF) of patients with Alzheimer’s
disease concluded that, “these results strengthen the clinical evidence that AD is
accompanied by an inflammatory response, particularly higher peripheral concen-
tration of IL-6, TNF, IL-1β, IL-12 and IL-18 and higher CSF concentration of
TGF-β (Swardfager et al. 2010)”.

Release of these cytokines generates an inflammatory cascade, resulting in the
synthesis of various downstream mediators (Murray et al. 2015). IL-1 has been
reported to be the key pro-inflammatory mediator. It has two main ligands IL-1∝
and IL-1β. However, the relative role of other cytokines mentioned above and their
role in perpetuating the chronic inflammation has not been clearly defined.
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1.6 Complement System

Most complement components, nearly 30 of them, and their receptors are expressed
by microglia, astrocytes and neurons. This is particularly prominent in neurode-
generative disorders (Bonifati and Kishore 2007; Lucin and Wyss-Conray 2009).
The increase of these proteins in CNS in AD, ALS, Huntington’s disease, MS, PD
indicates a broad role for complement in neuronal degeneration (Amor et al. 2010).
An increase in complement proteins can initiate neuroinflammatory processes by
activating inflammatory cells, promoting their migration, and up-regulating
phagocytosis (Song et al. 2000).

During AD, PD, HD and prion disease the levels of various complement com-
ponents have been reported to be increased (Akiyama et al. 2000; Singh-rao 1999;
Dandoy-Dron et al. 1998).

1.7 Factors Predisposing/Influencing Neuroinflammation

Role of neuroinflammation in the pathogenesis of neuronal damage due to injury,
ischaemia or infection, endogenous toxins like accumulation of mis-folded proteins
as seen in various neurodegenerative disorders—AD, PD, HD, Prion diseases or
autoimmune diseases—is well established. It is not as well recognised that the
involvement of the CNS can be influenced by comorbidities. The important among
these are ageing, obesity, metabolic syndrome and diabetes.

1.7.1 Ageing

Microarrays of aged human and mouse brains show that genes related to cellular
stress and inflammation increase with age, while genes related to synaptic
functions/transport, growth factors and trophic support decrease (Lee et al. 2000; Lu
et al. 2004). However, it is unclear why inflammation increases with age. It has been
pointed out that microglia existing in ageing environment may be “a different beast
altogether” (Lucin and Wyss-Conray 2009). Age related neuron degeneration itself
activates microglia and promotes neuroinflammation. Ageing is the most common
risk factor for neurodegenerative diseases, it results in a significant increase in glial
activation, complement factors and inflammatory mediators (Lu et al. 2004; Streit
et al. 2008). To make matters worse neurogenesis also decreases with age-possibly
as a result of factors secreted by activated microglia (Carpentier and Palmer 2009).
On the other hand Streit et al. (2004) and Streit (2005) suggested that microglial cells
becoming increasingly dysfunctional with advancing age may result in a loss of their
neuroprotective properties that could contribute to the development of age-related
degeneration. Similarly advancing age is the single most important risk factors for
stroke. Increase in serum levels of inflammatory cytokines increases the vulnera-
bility of the aged brain to stroke (Jenny et al. 2002).
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1.7.2 Obesity, Diabetes, Metabolic Syndrome

Although a considerable number of pro-inflammatory cytokines come from
microglia and astrocytes, their peripheral source located in adipose tissue cannot be
excluded (Misiak et al. 2012). The contribution of comorbidities to inflammation
has been studied in details especially in relation to ischaemic stroke as also in AD.
Accumulating evidence from clinical and experimental studies suggest that
pre-existing inflammation and elevated levels of IL-1 can affect patient suscepti-
bility and severity of CNS injury (Murray et al. 2015; McColl et al. 2007, 2009; Lee
et al. 2008). A raised systemic inflammatory profile is a characteristic feature of
obesity, evidenced by raised serum levels of C-reactive protein (CRP) and IL-6
(Visser et al. 1999). Obesity alone is an independent risk factor for ischaemic stroke
(Suk et al. 2003; Yatsuya et al. 2010; Kurth et al. 2002; Terao et al. 2008). Adipose
tissue is considered to be a highly active endocrine organ that liberates several
cytokines and chemokines (collectively referred to as adipokines) that can produce
an inflammatory response in distant tissues (Trujillo and Scherer 2006), playing a
major role in pathogenesis of ischaemic stroke, by increasing its risk, contributing
to increased size of infarct and worst outcome. IL-1 plays the key role as a mediator
of acute neuronal injury. These adipokines may interact with central sub-clinical
inflammation and contribute to the initiation of the pathology underlying AD. In the
Framingham Heart Study, a high level of adiponectin was found to be a risk factor
for all types of dementia including AD (van Himbergen et al. 2012). Chapter 12
have contributed to this subject in this book.

Metabolic syndrome has been associated with AD, vascular dementia and with
cognitive decline (Panza et al. 2010). Insulin resistance, together with hyper
insulinemia has been reported to promote neurodegeneration and facilitate the onset
of AD. Excessive insulin production results in an increase in the level of Abeta and
inflammatory agents, effects that are exacerbated by age and obesity (Fishel et al.
2005).

1.7.3 Pre-existing Systemic Inflammation

Pre-existing inflammation can present either chronically (as in obese individuals or
in patients with rheumatoid arthritis) or as an acute event such as a viral infection.
A systemic inflammatory challenge in an animal with a chronic neurogenerative
disease leads to exaggerated brain inflammation, exaggerated sickness behaviour
and a significant increase in acute neurodegeneration (Perry et al. 2007). A raised
systemic inflammatory profile, a characteristic feature of obesity, metabolic syn-
drome and diabetes, is not only a risk factor for stroke but also increases the size of
the infarct and a poor outcome. The risk of first time stroke was found to be higher
after diagnosis of a systemic infection. This adverse effect of pre-existing systemic
infection has been attributed to elevated levels of IL-1 (Murray et al. 2015).
Systemic inflammatory challenges in mouse models of ALS, PD, prion disease lead
to exaggerated CNS inflammation and a significant increase in neurodegeneration
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(Cunningham et al. 2005; Misiak et al. 2012; Palin et al. 2008). Chronic systemic
expression of IL-1β in mouse models of PD was found to enhance CNS inflam-
mation and neurodegeneration (Godoy et al. 2008). Systemic infections and ele-
vated plasma levels of IL-1 expression of IL-1β were found to be associated with
increased rate of cognitive dysfunction in patients with AD (Holmes et al. 2003).
Evidence that systemic inflammation in general is a risk factor for the future
development of AD has been found in a number of studies. Inflammatory proteins
in plasma, notably C-reactive protein and IL-6 were found to be increased 5 years
before the clinical onset of dementia compared with age-matched individuals who
did not develop dementia (Engelhart et al. 2004; Dunn et al. 2005).

1.8 Are There Differences in the Inflammatory
Response in Different CNS Pathologies?

Voluminous information is now available regarding the role of inflammation as an
important element of most CNS diseases both acute and chronic. However, most
such studies deal with a single entity and are limited to only a few markers of
inflammation. Furthermore, the temporal sequence of appearance of these markers
is seldom described. The timing of cross-talk between the various cellular elements
involved or a complete picture of the various cytokines, chemokines or comple-
ments participating in the inflammatory process is generally not available. Hence to
say whether the inflammatory process involved in various CNS pathologies is
identical, similar or at variance is not obvious. If it is same process, involving
identical elements, following similar cascades of events, in same temporal
sequence, and hence amenable to a common therapeutic strategy defies a clear
answer.

That there would be differences is obvious from the standard neuropathological
studies. For example the inflammatory lesions caused by viral, bacterial,
mycobacterial, parasitic and fungal infections of the brain are quite distinct from
each other. These are, of course, totally different from the inflammation associated
with degenerative diseases. Similarly secondary inflammation following acute brain
insults, e.g. traumatic brain injury and ischaemic stroke have their own patho-
physiology. Whether at molecular level the pathogenetic mechanism of inflam-
mation in these conditions is identical or similar is not known.

Some information is available on the time of onset of inflammation, the temporal
sequence of involvement of various participants in the inflammatory process, e.g.
the microglia, astrocytes, blood derived cells in various diseases, but a predictable
generally applicable picture does not emerge. It is obvious that the triggers for
activation of microglia are different for acute lesions like infective conditions,
traumatic brain injury and stroke compared to most neurodegenerative disorders.
The former activate the adaptive immune responses earlier, while endogenous
signals in case of neurodegeneration switch on the innate responses to start with. As
the disease progresses both innate and adaptive immune systems come into play.
There appears to be a common thread of microglial activation across different
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neurodegenerative disease though there are diverse ways of activating microglial
cells which are known to possess a large number of surface receptors. Activated
microglia release a number of pro-inflammatory cytotoxic soluble factors and a
variety of interleukins. Do these play a specific role in determining the pathogenesis
or pathology in a particular degenerative disorder with its characteristic involve-
ment of well defined neuronal groups? Answer to such questions would require a
systems approach for future investigations.

There is yet another feature of neuroinflammation induced neurodegeneration as
observed in long-term effects of a single insult as seen in some cases of acute
traumatic brain injury which requires further investigations. As reported by
Gentleman et al. (2004) and Johnson et al. (2013), a single traumatic injury to the
brain is associated with increased risk of dementia and, in a proportion of patients
surviving a year or more from injury, there is development of hallmark Alzheimer’s
disease like pathologies (Guo et al. 2000; Plassman et al. 2000). Evidence of
persistent inflammation and ongoing white matter degeneration for many years after
a single traumatic brain injury has been well documented in humans as well as
animal models (Johnson et al. 2013; Gentleman et al. 2004; Pierce et al. 1998;
Holmin and Mathiesen 1999). The precise mechanism for development of this
condition and its temporal dynamics is ill-understood.

1.9 Clinical Consideration

The role of neuroinflammation in pathogenesis of diverse CNS pathologies has
been established beyond doubt during the last 2–3 decades. Various cellular and
molecular participants in this process have been carefully identified and dissected. It
prompted exploration as to how this knowledge can be utilised for therapeutic
purposes. The working hypothesis was that combating the inflammation should
result in prevention, impeding progression and amelioration of the primary disease
itself. While this strategy has been advocated for treatment of several CNS diseases
and disorders like autism (Vargas et al. 2005; Lv et al. 2013; Siniscalco et al. 2013),
traumatic and ischaemic CNS damage (Hailer 2008), multiple sceloris (Pluchino
et al. 2005), HD, AD (Chap. 6 in this book). Japanese encephalitis (Chap. 4 in this
book), has been subject of many detailed studies—epidemiological, pathological,
experimental, animal models and even clinical trials.

The observations that neuroinflammation, a common denominator in a large
number of CNS pathologies suggested it to be a possible therapeutic target. This
premise found support from a number of epidemiological studies showing slowing
down the development of AD among individuals receiving non-steroidal
anti-inflammatory drugs (NSAIDS) like those with rheumatoid arthritis (Beard
et al. 1991; Mc Geer and Rogers 1992; Breitner et al. 1994, 1995; Mc Geer et al.
1996; Int’Veld et al. 2001). This prompted a number of clinical trials for the
treatment of AD using different anti-inflammatory drugs—NSAIDS, Cortiosteroids,
Cox-1, COx-2 inhibitors, (Rogers et al. 1993; Rogers and O’Barr 1996; Rother
et al. 1998; Sainetti et al. 2000).
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Notwithstanding the very promising leads from molecular, pathological, and
in vitro studies (Hoozemans et al. 2001; Landreth and Heneka 2001; Mc Geer and
Mc Geer 2001a, b) and epidemiological studies mentioned earlier, clinical trials in
AD patients with anti-inflammatory drugs failed to slow the progression of
dementia in AD (Aisen et al. 2000; Sainetti et al. 2000; Van Gool et al. 2001).
Akiyama et al. (2000) and Hoozemans and O’Banion (2005) provide excellent
reviews on the subject. The reasons for this failure are not forthcoming.

Inflammation being an immune response attempts were made to try
immunotherapy both active and passive for this purpose. Immunisation with syn-
thetic Abeta 1-42 peptide against a key component of the pathological process,
amyloid beta-peptide was shown to be effective in a transgenic animal model of AD
(Schenk et al. 1999). On the other hand, Bard et al. (2000) and De Mattos et al.
(2001) demonstrated that peripherally administered antibodies against amyloid
beta-peptide entered the CNS and reduced pathology in a mouse model of AD. The
first clinical trial with Abeta vaccine in human beings was considered a success at
the end of one year. However, development of meningo-encephalitis in some
patients in a phase II trial resulted in its termination (Dodel et al. 2003).

1.10 Concluding Remarks

The role of inflammation in the pathogenesis of CNS damage in diverse patho-
logical conditions has been unequivocally established during the last 2–3 decades.
This is especially true for most of the degenerative disorders of the CNS—AD, PD,
HD, F-T dementia, MS, ALS-among others. The role of neuroinflammation in the
pathogenesis of these diseases was overlooked till recently because of the absence
of the classical signs of inflammation observed in inflammatory lesions in the
periphery. The established belief in CNS being immunologically privileged added
to this misconception. Advances in molecular biology and renewed interest in glial
biology finally led to unmasking neuroinflammation as a common denominator in
vastly diverse pathological conditions of the CNS.

Over the years the role of various cellular, molecular, biochemical factors
involved in neuroinflammation have been dissected. The reductionist approach
followed for this purpose has led to the accumulation of vast amount of informa-
tion. The relative role of both innate and adaptive immune responses has been
defined. A large number of cytokines, chemokines, complements and other
immunologically important molecules have been identified.

Notwithstanding the vast amount of new knowledge generated, it has not yet
resulted in major clinical advances, be it for early diagnosis, prevention, prognosis
or therapy. Like in many other fields of medicine the leads obtained from the
promising animal model studies have belied expectations in clinical trials. It
appears that time is ripe to utilize a systems approach to identify if the cascade of
events is identical for different pathologies or not, the significant differences if any
and whether more reliable leads can be identified for clinical purposes.
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2General Physiology
and Pathophysiology of Microglia
During Neuroinflammation

Ishan Patro, Aarti Nagayach, Shrstha Sinha and Nisha Patro

Abstract
Microglia are the immunocompetent resident macrophages of the central
nervous system and constitutes 15–20 % of the glial population. They provides
the first line of defence against any disease or insult and display enormous
structural and functional plasticity. Microglial cells are also well establised to
play a very important role in the pathogenesis of various neurological disorders.
Microglial activation not only protect and repair the damaged tissue by
eliminating the dying cell and assisting the restorative process but are also
implicated in inducing neurodegeneration. This review provides a comprehen-
sive account of development and various physiological states of microglia and
their role in healthy and disease brain.

2.1 Introduction

Our understanding of microglia has moved from being a ‘silent’ cell in healthy
brain to an actively involved component in brain physiology, neurogenesis, cog-
nition and behavioural functions. They are the surveyors of the healthy brain with
actively retracting and extending their processes and thus maintaining the pre- and
post-synaptic elements and fine tuning of the neuronal circuits. Thus, a disruption
of this homeostatic act of microglia becomes the prime cause of neuronal disorders.
Microglia are nomadic cells of the brain that continuously survey the central
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nervous system (CNS) with their highly motile extensions for any kind of brain
insult (Gehrmann et al. 1995) and constitute 15–20 % of the total glial population in
the central nervous system (Carson et al. 2006). They are the resident macrophages
of CNS and are immunocompetent phagocytic cells and constitute the first line of
defence against any disease or insult and exhibit structural and functional plasticity.
Microglia are considered responsible to maintain the homeostasis within the brain
and undergo appropriate structural transformations to perform various immuno-
logical functions. First recognized by Nissl in 1880, later Pio-del Rio Hortega, a
Spanish neuroanatomist, described microglia as resting ramified cells using silver
staining methods (Del Rio-Hortega 1932).

Microglial cells are now well recognized as an elementary contributor in the
pathogenesis of various neurological diseases and disorders (Heneka et al. 2010;
Parpura et al. 2012; Verkhratsky et al. 2014). As affiliate of brain defence system,
on any immune breaching or insult, microglia become activated (Saxena et al. 2007;
Patro et al. 2010a, b, 2013; Nagayach et al. 2014a, b, 2015; Sharma et al. 2015). On
activation, these immune cells get rapidly transformed into the reactive phenotype
and slack their highly ramified morphology not only to protect but also to repair the
damaged tissue by removing the dying cell debris and facilitating the healing
process (Hanisch and Kettenmann 2007; Kettenmann et al. 2011). On the contrary,
microglial activation is also responsible in aggravating the neurodegeneration
(Block and Hong 2005; Venero et al. 2011). Understanding of the imperative and
multitasking attribute of microglial cells, like its stature and response following
neuroinflammation deserves pertinent investigation.

2.2 Physiological States of Microglia

Morphologically, microglia have three major transitional stages that can be dis-
tinguished as: amoeboid, ramified or resting and reactive or activated (Fig. 2.1) and
these states perform varied functions in the brain.

Amoeboid microglia are round or irregular in shape. They are more prevalent
during development, originate from the yolk sac and populate the developing brain
early. Association of developmental neuronal cell death and microglia has been
reported in most parts of the CNS (Pont-Lezica et al. 2011). Because of phago-
cytosis as well as their ability to induce apoptosis in unwanted neurons in devel-
oping brain, microglia are important participant in the process of CNS
development. They also interact with the synapses and modulate synaptic plasticity
via pruning of excessive unwanted synapses and this is mediated by the comple-
ment pathway (Schafer et al. 2012; Ginhoux et al. 2013; Neiva et al. 2014).
Morphologically, they closely resemble the macrophages. Amoeboid microglia are
generated from primitive myeloid/ haematopoietic progenitor cells during the
embryonic and perinatal stage and sustain up to the early postnatal stages in rats
(Prinz and Mildner 2011; Gomez et al. 2013) and finally transform into ramified
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microglia (Kaur et al. 1985). The development of microglia and role of microglia in
brain development have been reviewed by Pont-Lezica et al. (2011) and Nayak
et al. (2014).

Ramified or ‘resting surveillent microglia’ of the adult CNS consist of small cell
body with short, wispy and fine processes. These processes extend into the brain
microenvironment creating a matrix-like structure that helps to better perceive the
CNS milieu. Yamasaki et al. (2014) have reviewed the available information on the
differentiation of the resident microglia and the monocytes in neuroinflammatory
states. Microglia are considered to be the critical effectors and regulators of changes
in CNS homeostasis in health and disease (Prinz and Priller 2014) as well as during
CNS development. Microglia even in healthy brain continuously survey the CNS
for any damage or insult as shown in in vivo time-lapse video microscopy and
hence they are never in a state of rest (Nayak et al. 2014). The studies of Hellwig
et al. (2013) have established the active role of such cells as depletion of ramified
microglia prior to experimental stroke exacerbated the damage, establishing the
active and protective role of the so called ‘resting microglia’.

Fig. 2.1 Microglial transformations both in terms of phenotype and secretory molecules with the
advancing age: In developing and adult brain, amoeboid and ramified microglia supports the
survival of healthy neurons. During state of insult microglia get activated and attain either of the
two phases of activation, i.e. M1 and M2 on the basis of severity and generation of secretory
molecules. M1 phase exacerbates microglial activation directed neuronal damage via releasing
plethora of pro-inflammatory molecules while M2 phase mitigates the neuroinflammation and
promotes tissue repair and neuron survival by secreting growth factors and anti-inflammatory
molecules. On disease progression and neuronal death, microglia turn deramified and phagocytic.
Gitter cells are the microglia crammed with the phagocytic debris
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Reactive microglia: Following any unfavourable stimuli ramified microglia get
transformed into a reactive or activated state. Such cells have thick and retracted
processes with a large and irregular shaped cell body. Reactive microglia even start
proliferating to ascertain better screening and support as a hallmark of microglial
activation (Niquet et al. 1994). Depending upon the stimulus and progression of the
diseased state, microglial activation acts in two ways; either help in efficacious
restoration of the injured brain cells or generate a threatening environment that
results in exaggerated brain damage. Recent studies with mouse models of neu-
rodegenerative disorders have helped us in better understanding to an extent the role
of microglia in health and disease (Hellwig et al. 2013). To overcome the confu-
sion, the activity-dependent microglial activation spectrum (Tang and Le 2015) was
developed on the basis of cytoactive factors released by the reactive microglia
(Fig. 2.1). The ‘classical activation (popularly known as M1 phase)’ represents the
initial innate immune response induced by Toll-like receptor (TLR) ligands and
interferon-c (IFN-c) followed by the generation of pro-inflammatory cytokines. The
reactive release of a plethora of pro-inflammatory molecules like tumour necrosis
factor-a (TNF-a), interleukin-6 (IL-6), interleukin-1b (IL-1b), interleukin-12
(IL-12), superoxide anions, nitric oxide synthase, redox molecules like nitrogen
dioxide 2 (NOX2), nitrogen dioxide1 (NOX1), a member of Rho family of
GTPases (RAC1), inducible nitric oxide synthase (iNOS), nitric oxide synthase 2
(NOS2) and excitotoxic molecules like group II metabotropic glutamate receptor
(MGluR2), glutamate transporter-1 (GLT-1), purinergic P2X7 receptor (P2X7-R),
etc. (Benoit et al. 2008). The next alternate phase of microglial activation is ‘M2 or
alternate activation’ phase, that dampen inflammation by switching over to the
anti-inflammatory state by secreting molecules like interleukin-4 (IL-4),
interleukin-3 (IL-13), interleukin-1 receptor antagonist (IL-1RA), scavenging
receptors and extracellular matrix molecules (Luo and Chen 2012). The cytoactive
molecules thus released mitigate the generation of pro-inflammatory molecules.
This accelerates the process of wound healing and damaged tissue repair (Martinez
et al. 2008). The third or subtype of M2 phase is ‘acquired deactivation’ associated
with deactivation of glial inflammation and uptake of apoptotic cells or oxidized
lipids via release of anti-inflammatory cytokines like transforming growth factor-b
(TGF-b) and interleukin-10 (IL-10; Gregory and Devitt 2004; Colton 2009).

2.3 Development of Microglia

The origin of microglia and its cell lineage still remains highly controversial and
debatable. Microglia arise early during development from precursor cells in the
embryonic yolk sac that seed the brain rudiment and appear to persist throughout
the life. Microglia are the only cell population in the CNS that originate outside the
brain. The differentiation of yolk sac macrophages into typical microglia is
dependent on transcription factors like IFM regulatory factor-8 (IRF-8; Ginhoux
et al. 2013; Prinz and Priller 2014). Bone marrow-derived progenitors or monocytes

20 I. Patro et al.



are also considered to be recruited for supplementing the microglial population
(Saijo et al. 2013; Ginhoux et al. 2013; Prinz and Priller 2014).

The neuroectodermal matrix cells and yolk sac cells are the two distinct sources of
microglial precursors (Saijo and Glass 2011). Prenatally, these cells invade the brain
through meninges, choroid plexus and ventricles (Boya et al. 1991; Ginhoux et al.
2010). This primeval microglial populationwas reported in human gestationweek 5.5
near the di-telencephalic fissure (Monier et al. 2006). First, the neuroectodermal and
yolk sac cells populate the brain during first two trimesters in humans and between
embryonic days 10/9.5–10.5 in rodents, and grow as amoeboid microglia (Ginhoux
et al. 2010). Subsequently in early days of postnatal development, the circulating
monocytes developed from blood borne precursors later give rise to amoeboid
microglia (Rezaie and Male 2002). The hematopoietic stem cells in developing and
adult brain have also been reported to transform into microglia (Alliot et al. 1991).
This has been supported by chimeric animal study following irradiation (Hickey et al.
1992) and in experimental model of allergic encephalomyelitis (EAE; Lassmann and
Hickey 1993). However, as a contrast, it has also been reported that microglia also
existed before brain vascularization and production of monocytes in hematopoietic
tissues indicating thereby that all microglia are not hematopoietic in origin (Shepard
and Zon 2000; Takahashi 2001). The perivascular microglia are the only cell popu-
lation that are continuously replaced in the adulthood by bone marrow-derived
haematopoietic precursors (Hickey and Kimura 1988). While we continue debating
the microglial lineage and origin, interestingly two independent reports claim that
microglia can themselves act like pluripotent stem cells and can also transform into
astrocytes, neurons and oligodendrocytes (Yokoyama et al. 2004; Matsuda et al.
2008) although the lineage of microglia is different than the astrocytes and neurons.
This is being actively investigated and remains to be established and explored.

2.4 Microglia in Healthy Brain

2.4.1 In Developing Brain

Brain development and maturation involves a continuous refinement of synapses
involving pruning of inappropriate synapses and strengthening of the established
ones. Microglia have been implicated as a major player for the developmental
synaptic pruning (Rakic and Zecevic 2000). The activated microglia surround the
regions undergoing developmental synapse turnover, and remove the unnecessary
synapses (Paolicelli et al. 2011). This happens in a complement-dependent manner.
During the embryonic and early postnatal life amoeboid microglia expressing
DNAX associated protein 12 (DAP12), complement and fractalkine receptors are
directed towards the developing synaptic sites. Such microglia engulf the com-
plement proteins (C1q and C3) and tagged synapses (Paolicelli et al. 2011; Schafer
et al. 2013). Thus, any kind of deviation in microglial involvement leads to deficits
in synaptic remodelling and maintenance, resulting in developmental disorders.
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Microglia are also believed to be involved in regulation of neuronal differentiation
(Farinas et al. 2002) and apoptosis (Miller and Kaplan 2001) by producing neu-
rotrophins (Nakajima et al. 2001) and the presence of microglia secreted basic
fibroblast growth factors (bFG; Bansal 2002) and cytokine IL-1b have been
reported to enhance proliferation and differentiation of oligodendrocytes and
astrocytes. Microglia undoubtedly play an authoritatively supportive and directive
role in both neurogenesis and gliogenesis in developing brain (Thored et al. 2009).

2.4.2 In Adult Brain

‘Ramified/(resting?) surveillent’ microglia reside at strategic locations throughout
the mammalian brain and spinal cord. Such microglia are unremittingly surveying
the healthy brain for any disparaging condition at a speed of 1.47 µm s−1 with their
long thin processes (Nimmerjahn et al. 2005). Recent in vivo studies have recorded
the region specific speed of process motility to be between 0.2 and 6.5 µm/min
(Tremblay et al. 2010). During such scrutiny microglial processes constantly
establish a direct contact with neuronal synapses (Wake et al. 2009). Such microglia
release various neurotrophic growth factors to promote the neuronal survival and
also to enhance neurogenesis (Ekdahl et al. 2009). In neurodegenerative diseases
and following brain insults the resident microglia get stimulated and transform into
activated or reactive state. In such circumstances microglia release numerous
inflammatory molecules, growth factors, matrix proteins, chemokines, prostanoids
and reactive free radicals (Fig. 2.2) either contributing to neuronal dysfunction and
cell death or to provide support in the healing process (Gomes-Leal 2012). The
detrimental or beneficial role of microglia depends upon the type and intensity of
the insult and associated microglia activation stature. This may even call for
microgliosis. Microglia in adult brain are not evidenced to have the ability of
restoring their normal density, if depleted experimentally from the pool of precursor
cells dispersed all over the brain (Parkhurst et al. 2013; Elmore et al. 2014), rather
than depending upon the influx from the peripheral bloodstream as reported pre-
viously (Hughes and Bergles 2014). This may be one of the mechanisms how the
old and/or damaged microglia are replaced with new healthy microglia during
progression of a disease and ageing conditions.

It is now clear that microglia are also important in both learning and synaptic
remodelling (Parkhurst et al. 2013) and take part in activity-dependent structural
remodelling both driven by sensory input and age-related factors (Wake et al. 2009;
Tremblay et al. 2012). Microglia in adult brain help in regulation of long-term
potentiation (LTP) and tuning of synaptic strength, which is responsible for con-
sistent long-term neural networks (Ben Achour and Pascual 2010; Kettenmann
et al. 2011). Microglia also maintain the synaptic plasticity by releasing various
soluble molecules responsible for regulating learning and memory and augmenta-
tion of N-methyl-D-aspartate (NMDA)-mediated LTP responses. It has been
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predicted that the absence of microglia-mediated fractalkine receptor CX3CR1
signalling and secretion of glycine and L-serine by experimental intervention results
in diminished learning and memory (Hayashi et al. 2006; Rogers et al. 2011).
Moreover, microglia also mediate the modulation of GABAergic transmission and
basal glutamatergic signalling via brain-derived neurotrophic factor (BDNF) and
adenosine triphosphate (ATP; Coull et al. 2005; Pascual et al. 2012). BDNF is
required for tyrosine kinase B (TrkB) phosphorylation responsible for synaptic
plasticity. This has now been established in mice models depleted of microglia that
have impaired ability in multiple learning tasks. Such mice also presented a
reduction in motor learning-associated synaptic formation.

Fig. 2.2 Microglial pathology following neuroinflammation: in response of immune breaching
and neuronal damage, a state of neuroinflammation developed inside the brain foremostly activates
the microglia. Ramified microglia get transformed into activated microglia and release various
neuroinflammatory molecules that leads to blood–brain barrier damage. Such damage promotes
the macrophagic infiltration that later on exaggerates the influx of inflammatory cytokines and
aggravate the existing neuroinflammatory state in CNS by causing secondary neuronal damage and
subsequent microglial activation
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2.4.3 In Aged Brain

The immune components in the ageing brain are equally affected with age-associated
challenges. The immune system in aged brain is also more susceptible towards
age-associated damage and dysfunction (Yung and Julius 2008). Microglial dys-
trophy has been noted as an indication of microglial senescence in brain (Streit et al.
2004; Kushwaha 2009; Patro et al. 2010c). With advancing age, microglia become
more reactive (Streit 2006; Godbout and Johnson 2009), exhibit an amoeboid-like
morphology and present an upregulation of major histocompatibility complex class
II antigens, toll-like receptors 4 (TLR4) and cluster of differentiation 14 (CD14)
receptors on their surface. Concomitantly, microglia also express an elevated pro-
(TNF-a, IL-1b, IL-6) and anti-(TGF-b, IL-10) inflammatory cytokines in the heal-
thy senile brain of aged mice (Sierra et al. 2007; Godbout and Johnson 2009).
However, it still remains to be established either such primed state is associated with
the ageing changes of the brain or ageing of the microglial cells themselves.

Ageing, age-associated exposure to stress and neurodegenerative diseases, all
induce a ‘priming’ stimulus to microglia. Microglial priming and impaired micro-
glial response is suggestive of age-related changes in microglial regulation (Wynne
et al. 2009). Amplified cytokine response by primed microglia has been related to
the behavioural distortions like maladaptive sickness response studied in aged
subjects exposed to peripheral stimulation (Dilger and Johnson 2008). Increased
cytokine secretion by such ‘primed’ microglia following altered immune reaction
also cause cognitive impairment in aged brain (Chen et al. 2008).

2.5 General Microglial Physiology

2.5.1 Ion Channels

Myriad of microglial patch-clamp studies in tissue slices and in cell culture showed
that microglia possess various ion channels, comprising K+, Ca2+ and Na+ channels.
These ion channels undoubtedly play a potential role in both regulation and main-
tenance of microglial functions (Färber and Kettenmann 2005, 2006a, b; Eder 2005;
Schilling and Eder 2007; Black et al. 2009). In general, ion channels in all living
cells may influence several cellular processes like, proliferation, migration, apop-
tosis, secretion and excitability, etc. via movement of cations or anions across the
membrane through hydrophilic pores. The functional stature of the microglia evi-
dently states the expression patterns of the ion channels. Expression of various
cytokines or immune molecules fluctuate the pH along the gradient and/or activation
of the G proteins or protein kinase C, that in turn could modulate the microglial ion
channels. The functional coherence and transforming ability of microglial ion
channels during various conditions make them a suitable target to study under
pathophysiological process like neuroinflammation that further contributes to the
onset or progression of neurological disorders.
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2.5.2 Sodium Channels

In the healthy CNS (in vivo) the evidential data regarding the functional activity of
voltage-operated Na+ channels in microglial cells is scanty (Black and Waxman
2012). However, in vitro study in rat microglia (Black et al. 2009) depicted the
three major isoforms of sodium channels enlisted as, Nav1.1, Nav1.6
(tetrodotoxin-sensitive) and Nav1.5 (tetrodotoxin-insensitive). Reportedly, Nav1.6
is the most abundant isoform that also participate in the modification of microglial
functions. In an experiment of primary cultures, mice lacking Nav1.6 express
decrement in the LPS-exposed phagocytosis (Craner et al. 2005).

2.5.3 Calcium-Permeable Channels

Expression of classical voltage-operated Ca2+ channels is considered to be absent in
microglia in the CNS (both in vivo and in vitro). Store-operated channels and
channels of TRP family are the two main types of Ca2+ permeable channels in
microglia. Similar to all other non-excitable cells, microglial cells also possess
store-operated Ca2+ entry that was mediated by the Ca2+ release activated channels,
i.e. TRP channels.

2.5.4 Calcium Signalling in Microglia

Calcium signalling is a homeostatic mechanism controlled by an evolutionary
conserved cascade of molecules, that directs both intracellular calcium buffering
and calcium transportation across the cellular membrane (Petersen et al. 2005). In
resting microglial cells, calcium signalling is triggered by the calcium entry through
ligand-gated plasmalemma and store-operated calcium permeable channels that
further direct the release of intracellular stored calcium (Färber and Kettenmann
2006a). Microglia constitute both type of intracellular calcium channels, i.e.
ryanodine receptors (RyRs) and inositol 1,4,5-trisphosphate (InsP3)-gated Ca2+

(InsP3Rs). Microglial calcium signalling is mainly initiated by InsP3Rs that further
activates the G-protein-coupled metabotropic receptors connected to phospholipase
C (PLC; Kettenmann et al. 2011).

2.5.5 Potassium Channels

Potassium channels (Kv) were credited as one of the first ion channels characterized
in the microglia (Kettenmann et al. 1990). Precisely, the inward rectifier Kv (KIR),
is the first marker channel identified as the marker of activated microglia. Potassium
channels in microglia have largely been studied in cultures and/or in tissue slices.
The inward rectifier K+ currents are the main source of membrane permeability in
invading amoeboid microglia during perinatal brain development. Such currents
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become almost undetectable as the cells get transferred to their ramified surveillance
(or so called resting) states (Boucsein et al. 2000).

2.5.6 Anion Channels

Microglial proliferation, phagocytic activity, the control of ramified morphology
mainly of cell volume and microglial resting potential are all considered to be
regulated by the volume-regulated Cl− channels. These channels are activated by a
hypo-osmotic state. Such channels have been largely studied in microglia cultures
and such cells also express the chloride intracellular channel-1 (CLIC-1). CLIC-1
play a major role in release of pro-inflammatory factors from microglia and have
been considered to play an important role in progression of brain disorders.

2.5.7 Proton Channels

Functionally H+ channels are considered to be associated with the regulation of
respiratory bursts in phagocytic states of microglia. These are voltage-operated
proton channels with single channel conductance having high selectivity to H+.
Extracellular pH is supposed to be regulating these channel expression in microglia
in culture. Activated states of microglia decrease the H+ current in cell culture
experiments. In respiratory bursts, activation of NADPH oxidase generates protons
and superoxide anions. These ions are effluxed by H+ channels and protect the
cytosol by regulating the intracellular pH.

2.6 Potent Immune Response During Brain Insult:
Neuroinflammation

Neuroinflammation is an essential biological progression that stands as the fore-
ground of various acute and chronic neuropathological conditions. Any alteration in
brain’s cellular and functional integrity grounds the incidence of neuroinflamma-
tion. Neuroinflammation as a defending responder aims to refurbish the tissue
homeostasis via inducing several repair processes (Goldszmid and Trinchieri 2012).
However, if the regulation of this mechanism remains uncontrolled then the initial
inflammatory response amplifies exceedingly and the protective mode shifts
towards the collateral destruction that would further result in severe disease
progression.

Neuroinflammation is a dynamic process in which both microglia and astroglia
may migrate, proliferate, release potentially harmful factors (i.e. cytokines and
reactive oxygen species), display different surface proteins (i.e. MHC-I/II, etc.) and
blend in functions such as antigen presentation and phagocytosis in response to
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signals like protein aggregates, neuronal degeneration and glial products (i.e. col-
ony stimulating factor and cytokines, etc.). Cytokine signalling following neu-
roinflammation is actively involved in the regulation of various brain functions like
synaptic signalling modulation, neurotransmission, neuroendocrine functions and
neural circuitry of behaviour and cognition (Camacho-Arroyo et al. 2009; del Rey
et al. 2013; Aprile-Garcia et al. 2013; Cuartas and Jorge 2014). Therefore, it is
relatively apparent to presume an altered behavioural and cognitive outcome as a
consequence of a dysregulation in cytokine signalling which might result in
depression, anxiety, behavioural deficits and cognitive dysfunction as observed
previously (Lynch 2002; Bains and Oliet 2007; Baune et al. 2008; McAfoose and
Baune 2009). Additionally in various cross-sectional and prospective population
studies, it was shown that any alteration in the level of these cytokines in hip-
pocampus lead to Alzheimer’s disease (AD), dementia and cognitive impairment
(Dik et al. 2005; Magaki et al. 2007; Holmes et al. 2009; Brosseron et al. 2014).

2.7 Microglia in Immune Regulation

Following injury (Patro et al. 2005, 2010a), inflammation (Patro and Patro 2004;
Patro et al. 2010b), blood–brain barrier (BBB) damage (Davies et al. 1998) or
metabolic disorder (Nagayach et al. 2014a, b) associated stimuli, microglia get
activated. Microglia have also been activated exogenously by various inflammatory
stimuli such as lipopolysaccharide (Rivest 2003; Sharma et al. 2015), b-amyloid
(Sondag et al. 2009), interferon-c (Chao et al. 1993), thrombin (Möller et al. 2006),
Poly I:C (Patro and Patro 2004), etc. for screening the stature and pathological role
of activated microglia. Such activated microglia release an array of immunocom-
petent molecules comprising of numerous chemokines like KC, MIP-1a
(Macrophage-Inflammatory Protein-1a), MIP-1b, MIP-2, MCP-1 (Monocyte
chemoattractant protein-1), RANTES (regulated on activation, normal T cell
expressed and secreted), IP-10 (IFN-c-inducible protein-10), and interleukins like
IL-1a/b, IL-3, IL-6, IL-10, IL-12, IL-15, IL-18, tumour necrosis factor a (TNF-a),
interferon gamma inducing factor (IGIF), inflammatory proteins, TGF-b, etc.
Collectively, these molecules not only control the inflammatory processes, but also
regulate immune response of the brain and even contribute to neuropathogenesis in
CNS inflammation. Activated microglia also promote neuroprotection by releasing
anti-inflammatory molecules and growth factors like nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), basic fibroblast
growth factor, etc. following immunological stimuli (Hanisch and Kettenmann
2007). In conclusion, microglia as immune regulators of the nervous system can
secrete several types of molecules or express various receptors that facilitate the
integration of microglial response towards the changing microenvironment (Saxena
et al. 2007; Neumann et al. 2008; Patro et al. 2014).
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2.7.1 Phagocytic Behaviour of Microglial Cells

Microglia that maintain homeostasis in normal cells that include phagocytic
clearance of neuronal damage products or debris. During early development they
are innate immune cells and clear the supernumerary synaptic processes and
apoptotic neurons. In the adult CNS this phagocytic ability becomes a boon fol-
lowing injury and associated frequent loss of neurons and microglial recruitment at
the site of injury. Such microglial presence does more than just debris clearance,
which includes axonal and myelin debris in spinal cord injury or multiple sclerosis,
amyloid-b deposits in AD, etc. Earlier in this review, we have explained how
inefficiency of microglia not only affects clearing up the injury site but also fail
reorganization of the neuronal circuits. With age, such inefficiency also enhances
the prevalence of neurodegenerative disease and inadequate regeneration. However,
the mechanism, action and consequence of microglial phagocytosis have not been
deciphered. Thus, there is now a call for considering new therapeutic avenues
involving the mechanisms of microglia-mediated tissue repair.

While phagocytosis is beneficial as it cleans up CNS and induces
anti-inflammatory response but also produces toxic ROS which we have discussed
above. For more details, we would refer you to Neumann and Takahashi (2007) and
Sierra et al. (2013). In physiological conditions the highly motile ramified processes
respond to the chemotactic ‘find me’ signals like fractalkine, ATP, UDP, etc. from
apoptotic cells. Subsequently ‘Eat me’ signals, i.e. the ligands for a plethora of
microglial receptors are produced by the apoptotic cells that manifest cutting and
engulfing of apoptotic debris. Following this the phagocytic microglia with the help
of lysosomes and other organelles finally degrade and digest the debris.

2.8 Microglial Pathophysiology Following
Neuroinflammation

2.8.1 ATP Signalling

Microglia gets activated through various signalling pathways including chemokine/
chemokine receptors, nucleotides/purinergic receptors (P1, P2X and P2Y) and
high-mobility group box (HMGB)/toll-like receptors. Consequently, activated
microglia may secrete various soluble factors that act in inflammatory, trophic or
protective manner (Suzuki et al. 2004; Di Virgilio et al. 2009). Microglia express
purinergic (P2) receptors by means of elevated concentrations of extracellular
ATP-induced intracellular Ca2+ elevation in a receptor-dependent manner (Fig. 2.3;
Ferrari et al. 1996). Different concentrations of purine mediate ATP- and
ADP-induced microglial chemokinesis and chemotaxis (Honda et al. 2001; Davalos
et al. 2005). ATP signalling plays a major role not only in normal CNS function but
also during the pathological states. Signals triggering microglia activation following
any insult are directed by the release of purine nucleotides, comprising ADP, ATP
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and UTP by damaged neuronal cells (Nimmerjahn et al. 2005; Domercq et al.
2013). These signals are received by the P2Y receptors present in both microglia
and astrocytes-mediating chemotactic response of microglia. During neuroinflam-
matory condition, the extracellular ATP concentration increase is noted that further
inhibit activation and overexpression of P2X7 receptors in microglial cells.

2.8.2 Sodium Channel Signalling

Microglial voltage-gated sodium channels (Nav) are involved in a wide range of
regulatory functions such as proliferation, morphological alterations, migration and
phagocytosis (Eder 2005; Black et al. 2009) in response to inflammatory stimulus.
Activated sodium channels stimulate a transient and rapid depolarization in
microglial cells. Such depolarization of microglial cell membrane triggers the
signalling cascades that further activates the microglial cell and subsequent immune
activation. Furthermore, activated microglial membrane depolarization is a critical

Fig. 2.3 Microglial physiology following neuroinflammation: Neuroinflammation mediated by
various brain insults result in neuronal damage. Dying neurons and activated microglia themselves
increases the level of extracellular ATP that further triggers the purinergic receptors (P2Y, P2X4

and P27) present in the microglial cells. Activation of these receptors trigger an inward cationic
current and initiate a cascade of second messenger signalling via G protein-phospholipase C
(PLC) signal transduction pathway. This further elevates intracellular calcium. Iontropic receptors,
P2X are involved in the expression, posttranslational processing and secretion of several
inflammatory molecules and reactive oxidative radicals (ROS, RNS). P2X7 receptors eventually
mediate apoptosis by caspase activation that also modulates the secretion of inflammatory
molecules. Excessive release of glutamate via dying neurons activates glutamate receptors in
microglia and exert inflammatory effect and aggravate the pro-inflammatory action
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participant in the conformational change of MHC I molecule, which is essentially
required for the antigen presentation functions (Bene et al. 1997). Studies on human
multiple sclerosis lesions and animal models of experimental autoimmune
encephalopathy (EAE), have indicated that expression of Nav 1.6 isoform of
sodium channel in activated microglia gets increased (Craner et al. 2005). Conse-
quently, the blocking of these channels was evidently used in developing the
antiepileptic therapies and drugs (Black et al. 2007).

2.8.3 Potassium Channel Signalling

Inward rectifier K+ currents are generally recorded in the activated states of
microglia in various pathological conditions. Insults to the nervous tissue like
ischemia, peripheral nerve damage have been recorded to induce a several fold
increase in the amplitudes of inward rectifier K+ channels (Boucsein et al. 2000).

The activated (delayed) receptor K+ channels in microglia are KV1.2, KV1.3
and KV1.5. The microglia in prenatal brain also express KV1.1 and KV1.2
channels. These channels are responsible for the increased delay rectifier currents in
the activated state of microglia. An increased expression of delayed rectifier
channels is considered as indicatives of functional responses of hyperactive
microglia and during active proliferation. Such increased expression have been
experimentally evidenced in microglial cells in cultures with LPS or interferon-c
(Norenberg et al. 1992), in situ following axotomy (Boucsein et al. 2000) and as a
reference to microglial activation following exposure to experimental condition like
in vitro exposure to LPS, interferon-c, b-amyloid or HIV-1 regulating protein Tat,
etc. (Norenberg et al. 1992; Boucsein et al. 2000). High conductance (BK) and
small conductance (KCNNG/KCa3.1/SK4/IK1) type Ca2+ dependent potassium
(KCa) channels are also considered to be responsible in regulation of activated state
of microglia in various pathological conditions (Schlichter et al. 2010). Interest-
ingly, studies have also reported that the stimulation of ATP-sensitive K+ channels
(KATP) decreases the probability of microglial activation and are neuroprotective in
several models of neurodegeneration involving neuroinflammation (Dolga and
Culmsee 2012; Ortega et al. 2012).

2.8.4 Calcium Signalling

Calcium receptor activation generates two intracellular second messengers, the
InsP3 and the diacylglycerol (DAG) in activated microglia which further in response
activates InsP3Rs of the endoplasmic reticulum, and thus directs calcium release that
regulates various cellular functions. In cell culture of rodent microglia, Ca2+ release
activates Ca2+ currents (ICRAC). In activated microglia, the amplification of such
currents gets decreased. ICRAC occurs after the activation of a complex of ORAI
(pore forming) and STIM (Ca2+ sensor) protein (Ohana et al. 2009). Microglial cells
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also express a range of TRPM, TRPV and TRPC channels considered to produce
intracellular Ca2+ signals regulating release of cytokines.

2.8.5 Neurotransmitter Receptors

Microglia express several neurotransmitter receptors (Färber and Kettenmann
2006a, b) such as glutamate receptors (AMPA/Kainate, NMDA receptors, meta-
botropic glutamate receptors, GABA, adrenergic, dopaminergic and cholintergic
receptors. Interestingly, the pathological and physiological role of these receptors in
microglial cells is still under investigation (Fig. 2.3). Although studies had depicted
that these neurotransmitters could exert inflammatory (both pro- and anti-) effects
on microglial cells (Hagino et al. 2004; Pocock and Kettenmann 2007). Like,
GABA receptors can modulate the interleukin (IL-6 and IL-12) release and gluta-
mate receptors are capable in controlling the TNF-a release. Microglial activation
of metabotropic glutamate receptors induces TNF-a and Fas ligand secretion which
further trigger the neuronal caspase-3 activation through Fas receptor and TNFR1
(also known as p55), leading to neuronal damage (Taylor et al. 2005). Via receiving
the signals from dying neurons microglia NMDA receptor gets activated and
triggers the secretion of neurotoxic factors through microglia directing towards the
microglia ability of inducing and aggravating the neurological damage (Kaindl et al.
2012). In the neurodegenerative diseases like hypoxia, AD and multiple sclerosis
the altered concentration and expression of glutamate receptors in microglia depict
the possibility of glutamate mediated toxicity in the progression of these patho-
logical states (Newcombe et al. 2008; Sivakumar et al. 2010). Furthermore, a
lipopolysaccharide (LPS) induced activated microglia culture study shows the
releases of pro-inflammatory molecules which was attenuated by the simultaneous
activation of the GABA(B) receptors directing towards the role of GABA(B)
receptors in the modulation of microglia immune response (Kuhn et al. 2004).

The role and relevance of ATP and calcium signalling and neurotransmitters in
microglia during neuroinflammatory conditions of several pathological diseases
makes them a valuable target for developing therapeutic strategies for neuropro-
tection. Aspects of neurotransmitter signalling in the pathophysiology of microglia
have been aptly reviewed by Domercq et al. (2013).

2.9 Microglia in Neurological Diseases

Neuroinflammatory mechanism is comprised of an organized set of interaction
between varied mediators like cytokines, chemokines and prostaglandins, etc.
Rather than pathological conditions, the secretion of inflammatory molecules fol-
lowing neuroinflammation is highly influenced by the microglial activation. In
response to any injury, insult or disparaged conditions, the apparent activation of
microglia triggers the secretion of inflammatory molecules (Fig. 2.2) that circum-
stantially become superfluous at chronic glial activation (Block et al. 2007).
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Microglia through various pattern–recognition receptors (like Toll-like receptors,
NOD-like receptors, receptors of cell wall components or DNA/RNA of patho-
gens), purinergic receptors, advanced glycation endproducts receptors and scav-
enger receptors receive signals from injured or dying cells and vascular damage
(Block et al. 2007; Brown and Neher 2010). Connections of these receptors initiate
a microglial activation cascade with the expression of various proteins, comprising
CD-45, COX-II, iNOS, MHC-II and various co-stimulatory molecules amongst
others. These molecules facilitate the microglial expression of antigens to T cells,
entered through the damaged BBB during neuroinflammation (Aloisi 2001; Carson
2005; Gertig and Hanisch 2014). Activity-dependent microglial morphological
heterogenity and population segregation has previously been discussed and
exemplified via the proliferative ability and/or release spectrum of the constitutive
or inducible mRNAs, proteins (e.g. major histocompatibility complex class II,
TNF-a, IL-6/12/1b, integrins, IGF-I, CD4/11c/34/40/86/45, FccRII, iNOS and
molecules of the neurotrophin family), superoxide anions, nitric oxide synthase and
proteases, etc. redox (NOX2, NOX1, RAC1, iNOS, NOS2, etc.) and excitotoxic
molecules (MGluR2, GLT-1, P2X7-R, etc.).

Furthermore, microglia also shares a bidirectional collaborative relationship with
neurons that assumed to be imperative in establishing a pertinent physiological,
behavioural and immunological response against any injury or disorder. Neurons
via a set of unique ligand-receptor pairs (CX3CL1-CX3CR1 and CD200-CD200R),
microRNA-124 (mir-124), neurotransmitters (GABA, glutamate, catecholamines),
peptides and/or growth factors, CD22, CCL21, fraktalkine (that act on receptors
present on microglial membrane) maintain and regulate the microglial activation
(Gomes-Leal 2012; Eyo and Wu 2013).

As described above, the secretion of pro-inflammatory cytokines following
microglia activation is the classic theory of neuroinflammation recognized and
reviewed widely (Carson et al. 2006; Luo and Chen 2012; Boche et al. 2013).
Microglia activation is generally accompanied by the proliferation of cells, mobi-
lization towards the damaged or dying cell and the expression and secretion of
pro-inflammatory cytokines, like IL-6, TNFa. IL-1b and chemokines, such as
cytokine (C-C motif) ligand (CCL)2, CCL3, CCL4, CCL5, CXCL10 and/or CCL12
(Olson and Miller 2004; Semple et al. 2010). Later on, inflammatory molecules
stimulate other astroglia and microglia leading to the exacerbation of glial (mi-
croglia and astroglia) activation. Furthermost alterations in cytokines expression are
a result of stimulation of the transcription factor NF-jB (nuclear factor kappa
enhancer of B cells) via phosphorylation-induced activation of IjB kinase (Brown
and Neher 2010). Neurotransmitter signalling in the pathophysiology of microglia
has been aptly reviewed by Domercq et al. (2013).

During pathological condition, cellular damage following activation of micro-
glial cells further initiates and perpetuates the state of excitoxicity and oxidative
stress within the brain. The oxidative stress and cell death caused by the microglial
activation are also contributing in the generation and propagation of
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pro-inflammatory cytokines as documented widely (Shi et al. 2013; Sandireddy
et al. 2014; Muriach et al. 2014). Furthermore, oxidative stress leads to the
excessive dicarbonyl glycation which further activates the calpain expression and
degrades the brain-derived neurotrophic factor (BDNF). This contributes to retard
the process of neurogenesis and synaptic plasticity and stimulates NFkB-dependent
inflammation and secretion of inflammatory molecules. Recurrent increment in
cytokine levels increases the permeability of BBB to peripheral immune molecules
and prolongs the central immune inflammatory response that generates an inordi-
nate environment of oxidative and inflammatory stresses, accelerating CNS damage
and elicits adverse structural and functional consequences. Intriguingly, reciprocal
relationship between neuroinflammation, cell death and microglial activation is
popularly considered as a prerequisite for the onset and pathogenesis of various
psychiatric disorders like AD, PD, dementia and bipolar disorder, etc. (Hojo et al.
2004; Enciu and Popescu 2013; Najjar et al. 2013; Watkins et al. 2014).

Interestingly microglia plays a dual role during various neurological insults
including neuroinflammation in CNS (Table 2.1). On the basis of secretory mole-
cules released by the activated microglial cells microglial activation is divided into
two major phases (Fig. 2.1), i.e. classical activation (M1 phase) and alternate
activation (M2 phase; Colton 2009). During classical activation, microglia get
triggered by the activated Toll-like receptors (TLRs) through intracellular proteins
or pathogen-associated molecular patterns (PAMPs) released from injured neurons
and release an array of inflammatory molecules (TNF-a, IL-6, IL-1b, IL-12), redox
molecules (NOX2, NOX1, RAC1, iNOS, NOS2) and excitotoxic molecules
(MGluR2, GLT-1, P2X7-R), nitric oxide synthase, superoxide anions, etc. (Ran-
sohoff and Brown 2012; Boche et al. 2013) that further resulted in blood–brain
barrier (BBB) disruption. The BBB damage promotes the infiltration of macro-
phages which later on exaggerate the influx of inflammatory cytokines and
aggravate the existing neuroinflammatory state in CNS (Fig. 2.2; Zipser et al. 2007;
Lassman et al. 2012; Obermeier et al. 2013). While in alternate activation, microglia
secrete molecules like trophic growth factors, IL-4, IL-13, IL-1RA, scavenging
receptors and extracellular matrix (Luo and Chen 2012; Cherry et al. 2014).
Considering the imperious role of microglia in neuroinflammation, a particular
attention is warranted on the microglia mediated neuro-immunological aspects of
neurodegeneration and neuroregulation.

In conclusion, brain function and dysfunction, without any reservations, has a
direct connection with microglial forms and functional states. They contribute to the
pathogenesis and progression of various neurological disorders. Microglial acti-
vation also acts as a defence mechanism for various insults to the brain including
infections. Being the immune cells of the CNS, they protect and repair the damage
as also facilitate the healing process. Our understanding even today on microglial
functions in normal and diseased brain is limited. Further insights on the physiology
and pathophysiology of microglia using in vivo models are likely to contribute to
our knowledge on the mechanisms and role of neuroinflammation for prevention or
progression of brain disorders.
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3Astrocytes in Neuroinflammation
and Neuronal Disorders: Shifting
the Focus from Neurons

Manju Tewari and Pankaj Seth

Abstract
Glial cells have emerged as essential participants in most aspects of brain
development, behaviour and disease. Renewed interest into astrocyte biology has
transpired due to the fact that astrocytes are active participants with neurons in
activities ranging from neural circuit formation, brain information processing,
metabolic support to synaptogenesis and synaptic activity. Any perturbations in
astrocyte function especially during pathological conditions may thus have
profound effects on the optimal functioning or even survival of neurons. In this
chapter, we provide a brief history about the discovery of astrocyte, discuss basic
questions such as; what do astrocytes do? How astrocytes respond to inflamma-
tion? and their role in neuroinflammatory disorders?More specifically, the chapter
details the role of astrocytes in the pathogenesis of Human Immuno Deficiency
Virus (HIV) associated neurocognitive disorders. The chapter also discusses how
changes in astrocyte morphology and function results in dysregulation of
astrocytic responses during inflammatory injury and its repercussions that
ultimately leads to neuronal dysfunction or death. Finally, we discuss recent
advances in how the knowledge about astrocytes has fostered newer ideas about
brain functions and disease, which offer therapeutic leads to treat neuroinflam-
matory disorders. In summary, recent studies have provided novel insights into the
role of astrocytes in a wide variety of neuroinflammatory and neurocognitive
diseases, and future research on astrocyte pathophysiology is expected to provide
new perspectives on importance of astrocytes in healthy and diseased brain.
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Abbreviations
HIV Human immunodeficiency virus
GFAP Glial fibrillary acidic protein
GLT-1 Glutamate transporter-1
EAAT1 Excitatory aminoacid transporter1
AQP4 Aquaporin4
PDGF Platelet derived growth factor
ATP Adenosine triphosphate
LIF Leukaemia inhibitory factor
NT Neurotrophin 3
CNTF Ciliary neurotrophic factor
IGF Insulin-like growth factor
CNS Central nervous system
BDNF Brain-derived neurotrophic factor
GDNF Glial cell line-derived neurotrophic factor
GABA Gamma amino butyric acid
bFGF Basic fibroblast growth factor
BBB Blood brain barrier
ADP Adenosine diphosphate
SOD-1 Superoxide dismutase-1
TNF-a Tumour necrosis factor alpha
IL Interleukin
AMPAR a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor
NMDAR N-methyl-D-aspartate receptor
LTR Long terminal region
HDAC Histone deacetylases
DDX1 DEAD (Asp-Glu-Ala-Asp) Box Helicase 1
TCF 4 Transcription factor 4
CCL5 Chemokine (C-C Motif) Ligand 5

3.1 Astrocytes: An Introduction

3.1.1 Historical Aspects of Astrocytes

On the basis of histological techniques developed by Camillo Golgi, Ramón y Cajal
proposed the neuronal doctorine that the neuron is the basic structural and func-
tional unit of the nervous system. For this Cajal and Golgi were awarded Nobel
Prize in 1906; however, they both disagreed about the basic structure of the nervous
system. Cajal’s discovery is said to be one of the most important one for the
neuroscience.
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Another breakthrough in the field of neuroscience occurred, with the discovery
of an important brain cell in 1824 which was termed as nervenkitt or neuroglia in
1856 by famous German neuropathologist Rudolf Virchow. Thirty years later in
1885, using black chrome silver reaction, Golgi confirmed the presence of glial
cells in the brain which were undoubtedly different from neurons and were later
termed as radial glia and multipolar glia. In 1893, two other type of glial cells;
protoplasmic glia in the grey matter and fibrous glia in the white matter were
distinguished by Andriezen and speculated to originate from mesoderm and ecto-
derm, respectively. It was Ramon y Cajal who in 1913 visualized these cells by
using specific gold sublimate stain and termed these cells as astrocytes and con-
sidered both of them to be of ectodermal origin. In 1920 Pio del Rio Hortega, a
student of Cajal classified glia into four types (i) ectodermal protoplasmic neuroglia
of grey matter (ii) ectodermal fibrous neuroglia of white matter (iii) mesodermal
microglia (iv) interfascicular glia now known as oligodendrocytes (Andriezen 1893;
Somjen 1988).

Astrocytes play an important role in human brain evolution and it has now been
proved by anatomical, genetic and functional studies on human and other mam-
malian brains that astrocytes are critical for improved cognitive abilities in humans
(Robertson 2014; Zhang and Barres 2013). A very interesting fact about glial cells
came to light in 1980 when famous scientist Albert Einstein’s brain was studied by
Marian Diamond, an anatomist in University of California, in an attempt to
understand if there was anything specific in Einstein’s brain which made him so
intelligent. It was found that there was nothing different in Einstein’s brain, neither
the brain was large nor it had more number of neurons than others. Rather it
contained more number of glia in association cortex, an area of brain which is
involved in complex thinking and imagination (Diamond et al. 1985). This was a
great surprise to scientists who earlier believed that glia are only passive and
supportive cells in the brain.

3.1.2 Origin and Markers of Astrocytes

During brain development astrocytes develop from three different sources: from
radial glia, from stem cell itself and from A2B5+/GFAP—precursor cells (Barry
and McDermott 2005; Doetsch 2003; Fok-Seang and Miller 1992; Kessaris et al.
2008). Astrocytes are identified by their characteristic star shaped morphology and
the presence of their prototypic marker glial fibrillary acidic protein (GFAP) which
is found in almost all reactive astrocytes during central nervous system (CNS) in-
jury. However, some mature astrocytes have undetectable label of GFAP in healthy
brain which is attributed to the heterogeneity of astrocytes within the same area or
different areas of the brain (Oberheim et al. 2012). GFAP is present more in white
matter astrocytes as compared to the grey matter astrocytes. Other putative markers
for astrocytes are S100B and glutamine synthetase (GS) (Anlauf and Derouiche
2013; Walz and Lang 1998), however these are also not exclusive for astrocytes.
A list of other markers used for identification of astrocytes includes glutamate
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transporter (GLT-1) and excitatory aminoacid transporters (EAAT1) which are
glutamate transporters, inward rectifying potassium channel (Kir4.1), Aquaporin-4
water channel (AQP4) and glycogen granules. One more promising marker dis-
covered from transcriptome database for astrocyte identification is Aldehyde
dehydrogenase-1 family member Aldh1L1 which has a broaden pattern for astro-
cyte expression than GFAP (Cahoy et al. 2008).

3.1.3 Functions of Astrocytes

Astrocytes were once believed to be mere passive, non-excitable, non-neuronal
cells that provide structural and trophic support to neuron. Over last decade the list
has been expanded several folds and astrocytes are now believed to be indispensible
cells for neuronal function. Recently, the importance of astrocytes in normal CNS
physiology and pathophysiology has been redefined (http://annalsofneurosciences.
org/journal/index.php/annal/article/viewArticle/155/381). Recent discoveries into
glial cell biology, particularly those of astrocytes, suggest dynamic crosstalk
between astrocytes and neurons to be pivotal to normal brain physiology and
function. Currently, the new field of neuron-glia crosstalk has gathered the interest
of both basic and clinical neuroscientists. Many critically important functions of the
brain physiology as well as pathophysiology are executed by astrocytes, making
astrocyte one of the most important cell types in brain.

Astrocytes are most abundant cell type found to be present in all regions of the
brain in a non-overlapping manner. They interact with all other cell types present in
the brain and regulate their functions in several ways. They play an important role
in maintaining the integrity of blood brain barrier by interacting with endothelial
cells and acting as a blood–nervous system interface, maintain pH, ionic and water
homeostasis and participate in neurotransmitter uptake and release during neuronal
activity, provide metabolic support to neurons by making available lactate and help
in neuronal transmission and brain information processing, synaptic function and
plasticity. Astrocytic processes envelope the neuronal synapse (made by presy-
naptic and post synaptic neuron) and give rise to a structure called tripartite
synapse. The concept of tripartite synapse has helped in improved understanding of
neuron-glia crosstalk and has further nurtured our appreciation for role of astrocytes
in neuronal activity. Astrocytes send their signals to neighbouring astrocytes in the
form of calcium waves; however, signal to neuron is passed via calcium dependent
glutamate release, thus regulating the electrical impulses in the brain (Perea et al.
2009). Several lines of evidence suggest the role of astrocytes in modulating
neuronal activity; one such example came from the fact that the synaptic activity
increased by 10–100-fold in presence of astrocytes or astrocyte conditioned media
(Pfrieger and Barres 1997). Various soluble factors released by astrocytes have
been shown to promote the formation and maturation of excitatory and inhibitory
synapses (Bolton and Eroglu 2009). Astrocytes also interact with oligodendrocytes.
ATP released from neurons acts on nearby astrocytes and releases cytokine leu-
kaemia inhibiting factor (LIF) which promotes myelination activity of
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oligodendrocyte (Cohen and Fields 2008). Various factors released by astrocytes,
e.g. PDGF, LIF, NT-3, NT-4, CNTF and IGF-1 promote differentiation, prolifer-
ation and survival of oligodendrocyte precursor cells. These also help in myelin
formation and remyelination following injury (Gard et al. 1995). The interaction of
astrocytes with other brain cells is shown in Fig. 3.1.

Astrocytes maintain a dynamic crosstalk with neurons to serve important brain
function at the “tripartite synapse” hence it is obvious that astrocytes dysfunction

Fig. 3.1 Astrocytes interaction with other brain cells: a Astrocyte–neuron interaction: Astrocytes
in close proximity with the presynaptic and postsynaptic neuron form the tripartite synapse. At the
tripartite synapse a bidirectional communication occurs between astrocytes and neurons. During
neuronal activity, the astrocyte detects the neurotransmitter released from neurons and in turn
releases gliotransmitters (glutamate, ATP, D-serine) that modulates synaptic activity. Astrocytes
release growth factors (BDNF, TGF-b) and energy substrates (lactate) to provide trophic and
metabolic support to neurons. Astrocytes maintain the ionic and water homeostasis by removing
H2O and K+ ion from the extracellular space. b Astrocyte–astrocyte interaction: Astrocytes send
their signals to nearby astrocytes in the form of calcium waves. Short range calcium signalling
occurs as a gap junction mediated metabolic coupling in the form of IP3. However, the long range
calcium signalling occurs through the release of ATP from astrocytes. c Astrocyte: microglia
interaction: Microglia express purinergic receptors that are stimulated by ATP, released from
astrocytes. ATP mediated calcium signalling act as a mode of communication between astrocytes
and microglia. Astrocytes also play a regulatory role for differentiation and deactivation of
microglial cells. d Astrocyte–oligodendrocyte interaction: Astrocytes release leukaemia inhibitory
factors (LIF) which promotes myelination activity of oligodendrocytes. Various factors released by
astrocytes like PDGF, CNTF, IGF promote survival and differentiation of oligodendrocyte
precursor cells. e Astrocyte-endothelial cells interaction: Astrocytes send their end feet to enwrap
the endothelial cells at the blood brain barrier. Various soluble factors released from astrocytes
help in development and strengthening of tight junction between endothelial cells and regulate the
entry and exit of various factors of the brain
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may lead to neuronal impairment. Various functions of astrocytes have been
explored, however, the precise cellular and molecular mechanisms that contribute to
astrocyte functions are still not well understood. A better understanding of the
cellular and molecular mechanisms of astrocyte functions will help to approach the
astrocytes for pharmacological targeting. Identifying the role of astrocytes in CNS
pathologies is currently an area of active research and preventing astrocyte damage
might prove an important strategy to save the dying neuron in neurological dis-
orders. Some of the important functions of astrocytes are listed in Table 3.1.

Table 3.1 Functions of astrocytes in brain

Functions Functional components

pH maintenance Na+/H+ exchanger, bicarbonate transporter

Water homeostasis AQP4

Potassium (ion homeostasis) Kir 4.1

Neurotransmitter uptake and
release

Uptake via Glutamate, GABA and glycine transporters,
calcium dependent vesicular release of ATP and Glutamate

Blood flow control Secrete prostaglandins, arachidonic acid and nitric oxide to
increase and decrease blood vessel diameter

Trophic support Release BDNF, GDNF, bFGF and neurosteroids

Metabolic support Convert glutamate to glutamine, convert glycogen to lactate to
provide energy to neuron, synthesize cholesterol, produce ATP

Detoxification Prevent neurons by scavenging free radicals released by
neurons

Development Synapse formation and maturation by thrombospondin and
pruning by releasing C1q, axonal guidance

Pathologic Astrocyte dysfunction is associated with neurological disease
like Stroke, Glioma, Alzheimer’s, Pain, Amyotrophic Lateral
Sclerosis, epilepsy, Huntington disease, Autism Spectrum
Disorder, Schizophrenia and Parkinson’s disease

Maintenance of blood brain
barrier (BBB)

Release soluble factors affecting endothelial cells to influence
BBB integrity. Release sonic hedgehog to promote BBB
formation and integrity, induce immune quiescence

Structural Astrocytes are in close contact with neurons and form tripartite
synapse, regulate transmission of electrical impulse in the brain

Modulate synaptic
transmission

Release ATP which gets converted to ADP and suppress
neuronal activity, release glutamate to enhance neuronal
activity

Neuronal protection and
nervous system repair

Form glial scar at the site of injury to protect healthy tissue,
contain antioxidant system like—GSSG-GSH system and
antioxidant enzyme like SOD-1 and catalase

Phagocytosis ced-1/Draper—ced-7—ced-6 phagocytosis pathway for
synapse pruning. Also had ced-2—ced-5—ced-12 pathway of
phagocytosis

Regulation of neural stem cells Activate neural stem cells to allow neurogenesis by dampening
ephrin A-2 and ephrin A-3, which otherwise keep stem cells in
a dormant state
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3.2 Neuroinflammation, Response or Cause of Pathology

Central Nervous System (CNS) is immunologically privileged where the brain
immune cells-like microglia or astrocytes are maintained in a quiescent state. The
entry of peripheral immune cells into the brain is restricted by the blood brain
barrier. However, during a pathological insult that may include viral or bacterial
infection or neuronal injury, the microglia and astrocytes get activated and release
various proinflammatory cytokines or chemokines as an acute neuroinflammatory
response to fight against the infection and to restore the normal functioning of brain.
Thus, acute neuroinflammation acts as a protective mechanism to neutralize toxic
signals and minimize further injury to the brain. However, when inflammation fails
to combat the neurological insult and persists for longer period, the chronic neu-
roinflammation leads to uncontrolled release of proinflammatory cytokines and
chemokines release from these activated glial cells. Unprecedented
cytokine/chemokine release from activated glial cells creates detrimental environ-
ment for neighbouring neurons affecting their normal activity and contributing to
severe neurological disorders. Hence, special attention is required on the role of
chronic neuroinflammation in brain pathology. Many neurodegenerative disorders
including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and
HIV-associated neurocognitive disorders are associated with inflammation. The role
of astrocytes in the CNS disorders with special emphasis on their role in neu-
roinflammation and their pathogenesis is discussed in detail.

3.2.1 Role of Astrocytes in CNS Inflammation

Astrocytes ensheath the brain microvascular endothelial cells and help in main-
taining the integrity of blood brain barrier (Abbott 2002). Their position at BBB
makes them an ideal candidate to influence the entry of peripheral immune cells
into the CNS during disease process and in modulating their activity once these
cells enter the CNS parenchyma. During inflammation, astrocytes play a protective
function in the brain through release of several trophic factors. Thus, impairment of
astrocytic function may have immense potential to contribute to neurological dis-
ease. Neuroinflammation can damage astrocytes or influence astrogliosis and scar
formation in the CNS. Astrocytes respond to CNS injury by a process known as
reactive astrogliosis characterized by increase in the number and size of GFAP
expressing cells which act as a major pathological hallmark of astrocytes dys-
function during CNS pathology. Reactive astrogliosis is assumed to be a conse-
quence of increased proliferation of astrocytes or migration of GFAP positive
astrocytes from nearby region to the site of pathology (Sofroniew 2009). However,
both these phenomenon do not contribute significantly to the total increase in GFAP
positive cells, in fact it was found to be a result of phenotypic changes in local
astrocytes which otherwise have undetectable level of GFAP (Serrano-Pozo et al.
2013).
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As a response to neuroinflammation, astrocytes secrete different cytokines and
chemokines. A recent report has analysed the cytokine secretome profile of human
astrocytes and demonstrated that astrocytes express distinct set of cytokine and
chemokines under normal and inflammatory conditions and are direct target of
nuclear transcription factor NF-jB (Choi et al. 2014). The report demonstrated that
while some cytokines/chemokines were upregulated in active astrocytes other new
cytokines also get expressed.

Centrally or peripherally induced CNS inflammation motivates astrocytes to
migrate towards the site of injury and form glial scar that prevents the spread of
inflammation to adjacent healthy tissue. Controversial views are presented by
various studies performed on the role of glial scar formation. Some studies suggest
that reactive scar forming astrocytes act as a barrier for leukocytes through the
blood brain barrier as observed in experimental acute encephalitis (EAE) (Voskuhl
et al. 2009), thus preventing peripheral immune cells to enter the CNS. Various
molecules released by astrocytes promote angiogenesis, interaction with other
extracellular molecules regulate vascularisation and clearance of dying cells. Other
studies suggest that they promote neurite growth; however, the scar formed also
arrest the growth of axon in the vicinity of reactive astrocytes thus halting regen-
erative process after injury (Silver and Miller 2004). However, there is an active
debate on the beneficial or detrimental effect of astrocyte activation and scar for-
mation (Wee Yong 2010). The beneficial and detrimental aspect of astrocytes
during neuroinflammation is shown in Fig. 3.2.

Neuroinflammation not only leads to activation of astrocytes but also induces
astrocytic apoptosis. Loss of astrocytes has been reported in major depressive
disorders, neuromyelitis optica and Rasmussen’s encephalitis, whereas astrogliosis
is observed in diseases like multiple sclerosis and HIV-1 dementia (Bien et al. 2005;
Holley et al. 2003; Parratt and Prineas 2010; Ton and Xiong 2013).

3.3 Inflammation, Astrocytes and Neurological Disease

Inflammation and proinflammatory cytokines have been implicated in various
neurological disorders, mood disorders and in declined cognitive function (Xanthos
and Sandkuhler 2014). Inflammatory response induced by astrocytes is important
mediator of neuronal loss in brain pathology. Some of the neuroinflammatory
diseases are discussed below in brief:

3.3.1 Alzheimer’s Disease

Alzheimer’s disease (AD) is a chronic neurological disease and is a leading cause of
dementia, generated due to deposition of neurotoxic peptide b amyloid (Ab) in brain.
Formation of neuritic plaque and neurofibrillary tangles occurs subsequent to Ab
deposition and acts as a pathological hallmark of the disease. Neuroinflammation
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occurs in the AD brain as a consequence of astrocytes and microglia activation.
Dementia due to neuronal loss is a major consequence of the disease but the
importance of astrocytes in its pathogenesis cannot be ignored as they play a key role
in accelerating neuronal apoptosis during disease progression. During Alzheimer’s
disease robust changes in astrocytes morphology and astrocytes activation occur
leading to reactive astrocytes (Fu et al. 2015). Ab activates astrocytes and induces
release of cytokines and chemokines like (C-C motif) ligand 2 (CCL2) and RANTES
that act as a chemoattractant for circulating microglia and macrophage. These
microglia and macrophage secrete various cytokines generating ROS when they
come in close proximity to plaque thus contributing to neurodegenerative process of
AD (Johnstone et al. 1999). Reactive astrocytes also induce secretion of
proinflammatory cytokines like IL-1b, IL-17 and IP-10 which accelerates
Ab-induced neurotoxicity via caspase-3 activation leading to tau phosphorylation
and truncation in neurons (Garwood et al. 2011; Zheng et al. 2002). Deregulation of
calcium signalling and calcium homeostasis in astrocytes is another important factor
underlying Ab-mediated neuronal loss (Lim et al. 2014). Thus astrocytes can
mediate indirect neuronal death during Alzheimer’s disease, however, Ab25-35 also
leads to astrocytes cell death via increased calcium mobilization from endoplasmic
reticulum (Oseki et al. 2014).

3.3.2 Huntington Disease

Huntington disease (HD) is an autosomal dominant disorder which arises due to
expansion of CAG repeats in Huntington (Htt) gene and causes neurodegeneration
of striatal neurons. The resultant mutant form (mHtt) aggregates in astrocytes and

Fig. 3.2 Dual role of astrocytes during neuroinflammation
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neurons affecting brain function. The major neuronal loss occurs in cortex and
striatum giving rise to cognitive decline and movement disorders ultimately leading
to death of the affected individual (Kim et al. 2014; Nana et al. 2014). During
Huntington disease, astrocytes participate in chronic inflammation by prolonged
activation of NF-jB pathway leading to increased release of proinflammatory
cytokines from astrocytes resulting in neuronal damage (Hsiao et al. 2013). Dis-
turbance in astrocytes-mediated potassium homeostasis also contributes to disease
pathogenesis. In HD patients and HD mouse model functional expression of Kir4.1
channel is reduced which results in increased K+ concentration in the extracellular
space and increased excitability of medium spiny striatal neuron (Tong et al. 2014).
Augmented glutamate production and its release from astrocytes through calcium
dependent exocytosis, decreased expression of GS (which converts glutamate to
glutamine) in astrocytes, along with decrease in glutamate uptake due to reduced
expression of glial glutamate transporter EAAT2 (GLT-1) culminates in HD pro-
gression (Lee et al. 2013; Lievens et al. 2001). Conversely neuroprotective func-
tions of astrocytes are also observed in vitro in Q111 striatal cells and in vivo model
of HD using R6/1 mice, where it was shown that glial conditioned media protects
striatal and nigrostriatal dopaminergic neurons much more effectively than neu-
rotrophic factors (Perucho et al. 2013; Ruiz et al. 2012; Zheng et al. 2002).

3.3.3 Parkinson Disease

Parkinson disease (PD) is caused by degeneration of dopaminergic neurons in the
substantia nigra pars compacta (SNpc) causing characteristic movement disorders.
Active microglia and to a lesser extent active astrocytes are found at a site of
neuronal loss. Increase immunoreactivity to GFAP and increase in number of
astrocytes has been observed in some PD cases; however, the neuronal loss was
more in those sites having fewer GFAP expressing astrocytes. Increased levels of
proinflammatory cytokines like TNF-a, IL-1b, IL-6 and decreased neurotrophins
has been reported in patients with PD (Nagatsu et al. 2000). In 1-methyl-4-
phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) model of Parkinson disease, astrocytes
activation with marked upregulation of GFAP occurs after neuronal death. How-
ever, unlike deleterious effect of microglial activation, activation of astrocytes
provides neuroprotection in PD, as documented in a study (Ishida et al. 2006),
proteases activated receptor (PAR-1) expression increased in SNpc which provided
neuroprotection against noxious stimuli-induced death of dopaminergic neurons.
Another mechanism for neuroprotection is scavenging of reactive oxygen species
(ROS) released by damaged or dying neurons and neutralizing the deleterious
effects of activated microglia. Local activation of astrocytes in substantia nigra also
protects dopaminergic neurons from deleterious effect of 6-hydroxy dopamine
(Saura et al. 2003).

Astrocytic response to some of the neurodegenerative diseases is summarized in
Table 3.2.
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3.3.4 HIV-Associated Neurological Disorder

HIV-associated neurocognitive disorder (HAND) is a phenomenon that leads to
cognitive, motor and behavioural deficits in approximately 50 % of individuals
suffering from AIDS. Central nervous system infection by HIV-1 is characterized
by activation of microglial cells, formation of multinucleated giant cells, myelin
pallor, breaching of blood brain barrier, astrocyte dysfunction and neuronal loss
(Elbirt et al. 2015; Pant et al. 2012).

Using antiretroviral therapy almost complete eradication of systemic HIV-1
infection is made possible; however, the virus still persists in immunologically
protected CNS. This is an area of major concern. In this chapter, we have attempted
to highlight the role of astrocytes in HIV-1 infection culminating in neuroAIDS.

The CNS allows the persistence of HIV-1 virus despite highly effective
antiretroviral therapy. Cells-like microglia, macrophages and astrocytes act as a
reservoir of the infection in the brain and later on contribute to chronic inflam-
mation in the infected brain, even in absence of viral load (Churchill and Nath
2013). CNS is immunologically protected site for the virus. Glial cells release
several viral and cellular factors which either directly affect neurons by acting on
their membrane or act on the uninfected cells contributing to neuronal damage.
Macrophages/microglia are believed to be key players/candidate in HIV infection.
HIV virus enters these cells by binding to CD4 and CCR5 receptors (Soulie et al.
2012). However, in astrocytes it enters in a CD4 independent manner relying on the
presence of other membrane receptors (Zhuang et al. 2014). HIV virus infects glial
cells which release various soluble factors. The virus jeopardizes the function of
neurons. Oligodendrocytes also get productively infected (Albright et al. 1996), but
the viral tropism is severely restricted to microglia only. The pathological response
of various glial cells to HIV infection is shown in Fig. 3.3.

3.3.4.1 Viral Reservoir in CNS
The main stumbling block in complete eradication of HIV is the persistence of virus
in the brain. Even in presence of HAART the virus escapes from the attack of
immune cells and hide in CD4+ T lymphocytes, haemopoietic progenitor cells and
CNS. However, in advance stages of infection decrease in CD4+ T lymphocyte
occurs and at that stage macrophages serve as a leading source of HIV infection in
the CNS. In the CNS, cells-like macrophage/microglia and astrocytes act as
reservoir for latent HIV infection. All these cells have a long life span thereby they
act as a long term reservoir of HIV infection. This provides the virus with an
excellent opportunity to reside and replicate within these cells and spread the
infection to uninfected cells. Moreover, as the virus hides in these reservoirs, the
antiretroviral drugs become ineffective over time because of incomplete suppression
of viral replication, which may develop antiretroviral drug resistance that further
compounds the problem of neuroAIDS.

The following account deals with the role of astrocytes in HIV-1 neuropatho-
genesis (Fig. 3.4), how the virus infects the astrocyte and what are the various
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causes of viral latency or restricted infection in astrocytes. Finally, we will take a
closer look on astrocyte response to virus infection which ultimately culminates
into neuronal death.

3.3.4.2 Astrocyte Infection with the Virus
Post-mortem studies from HIV-infected brain tissue revealed that a small proportion
of astrocytes is non-productively infected by the HIV that contributes to its neu-
ropathogenesis (Gorry et al. 2003). Various HIV strains are permissive to astrocytes
in vivo as well as in cultures of human foetal brain derived astrocytes and astro-
cytoma cell lines (Nath et al. 1995). However, highly sensitive techniques are
required to detect HIV RNA and proviral DNA. About 19 % of GFAP+ cells in
patients with HIV-1 associated dementia are found to be infected with the virus
(Churchill et al. 2009). The frequency of astrocyte infection correlates with severity
of HIV encephalitis and was more in cells surrounding perivascular macrophages.
Using human foetal brain-derived astrocytes it was proposed that low level HIV

Fig. 3.3 Involvement of glial cells in HIV-1 infection: HIV-1 affects the different glial cells-like
microglia, astrocytes and oligodendrocytes up to varying extent. The activated or infected glial
cells release several viral factors, neurotoxins, cytokines and chemokines which ultimately
contribute to indirect neuronal damage, a major pathological hallmark of HIV associate dementia
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infection in astrocytes occurs in three stages which were also confirmed by
HIV-infected autopsy brain tissue (Messam and Major 2000; Takahashi et al.
1996). These stages are as follows:

Productive phase: In this stage astrocytes produce the infectious viral progeny
in a cytopathic manner. Production of viral structural and regulatory proteins occurs
efficiently.

Latent phase: Loss of mRNA of structural protein followed by loss of viral
regulatory proteins except Nef.

Reactivation phase: Occurs due to treatment of astrocytes with cytokines or
culturing astrocytes with CD4+ cells. It resembles the productive phase, however,
to a lesser extent. In this phase the predominant mRNA transcripts are Tat, Rev and
Nef (Tornatore et al. 1994).

Fig. 3.4 Pathophysiological role of astrocytes (Cell-Cell Interaction) in HIV Neuropathogenesis:
The extent of viral infection in astrocytes is very low. Despite the limited rate of infection
astrocytes influence the physiological activities of nearby astrocytes, neurons and endothelial cells
via several mechanisms. a HIV-1 infected/activated astrocytes send their toxic signal to nearby
uninfected astrocytes via the gap junction channels in the form of diffusing IP3 and Ca2+ waves. b
The altered expression of gap junction channels is also responsible for decreased blood brain
barrier integrity and permeability through modulation of tight junction protein and junctional
adhesion molecules. The activated astrocytes release Monocyte Chemoattractant Protein (MCP-1)
which helps in transmigration of infected monocytes into the brain through the blood brain barrier.
c Astrocyte-microglia crosstalk profoundly affects the inflammatory environment in the brain
through the release of various cytokines and chemokines. d The infected/activated astrocytes exert
neurotoxic affects on the nearby neurons by releasing viral proteins and neurotoxins. The virus or
the released viral proteins reduce the expression of glutamate transporters and increase the release
of glutamate from the astrocytes. The excess glutamate activates the NMDAR activity on neurons
increasing intracellular calcium subsequently causing synaptic loss and neuronal apoptosis
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3.3.4.3 Route for HIV Entry in Astrocytes
Astrocytes lack cell surface CD4 expression, however, they posses CXCR4, CCR5
and other co-receptors that are required for a successful HIV-1 infection in addition
to CD4 receptors. Some strains of HIV-1 have been shown to infect CD4 negative
cells via CXCR4 and CCR5 co-receptors (Edinger et al. 1997; Picard et al. 1997).
The CD4 independent entry of virus in the brain is also shown in new non-human
primate model of R5 SHIV-induced encephalitis in which the virus infects
microglia in a CD4 independent way and even CD4 negative astrocytes were shown
to be infected by the virus (Zhuang et al. 2014). However, the CXCR4 and CCR5
co-receptors do not play a significant role in mediating HIV infection in astrocytes.
It is well documented that astrocytes are preferentially infected by T-tropic strain of
HIV-1; however, the M-tropic strain also infects astrocytes, though less efficiently.
HIV-1 enters astrocytes in a CD4+ independent manner with an alternate mode
using galactosyl ceramide receptor; as antibodies against GalC inhibits viral
internalization and infection in CD4 negative cell lines (Harouse et al. 1991a, b).
However, in human foetal astrocytes a CD4 and cerebroside independent pathway
occurs which requires the presence of surface molecules that act as receptor for
HIV-1 infection (Hao et al. 1997). Several studies have indicated efficient viral
(M-tropic and T-tropic strain) entry through receptor mediated endocytosis using
astrocyte membrane receptors (Chauhan et al. 2014). HIV–gp120 protein acts as a
ligand for membrane protein having molecular weight of 65 kDa and hence named
p65 as a receptor for HIV (Hao and Lyman 1999). In these studies, HIV virions
were recognized to be present in clathrin coated pits suggesting clathrin to be
associated with the endocytic pathway. Another study suggests surface molecule of
260 kDa to be a receptor for gp-120 binding as antibody to this molecule can inhibit
astrocyte infection but the antibodies against galactocerebroside and CD4 receptor
had no effect (Ma et al. 1994). It was hypothesized that it may be possible that
260 kDa may be a tetramer complex of 65 kDa molecule. Involvement of human
mannose receptor has also been identified in HIV-1 infection of astrocytes and
suggests that HIV-1 interaction with these receptors play an important role in HIV-1
neuropathogenesis (Liu et al. 2004). Cell to cell contact between HIV-infected CD4
+ cells and CD4 negative astrocytes is also another possible mechanism for HIV
infection, whereby astrocyte spread the infectious virus to CD4+ cells without de
novo production using CD81 vesicles (Clarke et al. 2006; Gray et al. 2014).

Thus astrocytes act as a source of virus dissemination and persistence in the
brain. Moreover, HIV itself has the capability to infect CD4 negative cells via
envelope protein (Env) and then interact with cells-like astrocytes in CD4 inde-
pendent manner (Zhuang et al. 2014). A recent report showed that HIV-1 infects
astrocyte naturally through endocytosis via Rab protein, independent of CD4,
CXCR4 and CD11a co-receptors. It causes low level infection that leads to per-
sistent and minimally productive infection in astrocytes (Chauhan et al. 2014).
Another study by Gray et al. demonstrated that astrocytes harbour virus for a short
term period of 72 h and during this period the virus resides in vesicles and suggests
that vesicles may be responsible as entry site for the virus in astrocytes. They also
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demonstrate that astrocyte protect the virus and can transfer the infection to T cells,
thus helping in propagation of viral infection (Gray et al. 2014) (Table 3.3).

3.3.4.4 Limited Viral Replication in Astrocytes (Latent Infection)
Chronically infected astrocytes show very low level of viral replication as compared
to fibroblasts and T lymphocyte cells. Limited viral replication in astrocytes results
from the low level of viral entry, transcription, viral protein processing, and virion
maturation (Schweighardt and Atwood 2001). The virus thus remains in a latent
state in the astrocytes. One of the mechanisms for low transcription of the viral
transcript is the epigenetic silencing of HIV-1 LTR activity through the class I
HDAC’s and histone methyl transferase (HMT) (Narasipura et al. 2014).

Astrocytes produce very low amount of virus due to inefficient translation of
HIV structural proteins gag, env, and nef. However, the expression of Tat and Rev
proteins occurs efficiently (Gorry et al. 1999). Low level expression of Nef protein,
despite high levels of mRNA, blocks the translation of multiple spliced HIV mRNA
in astrocytes and contributes to persistent and restricted HIV replication in astro-
cytes (Gorry et al. 1998). During persistent viral infection astrocytes express Nef
and Rev, predominantly Nef; but no viral structural protein. However, when per-
sistent state of infection in astrocytes is reactivated by cytokines like TNF-a and
IL-1b, i.e. when low viral replication occurs in astrocytes, they start expressing Tat
and Rev also along with Nef protein. These studies suggest that viral persistence
occurs due to accumulation of viral regulatory protein over viral structural protein.
Furthermore, via negative regulatory element (NRE) Nef also mediates suppression
of exogenous HIV-LTR activity thus restricting virus production (Brack-Werner
et al. 1992; Ludvigsen et al. 1996), Thus in absence of virus production, astrocytes
may contribute to the HIV pathogenesis by production of viral regulatory protein.

Restricted HIV infection occurs not due to low expression of Rev, but perhaps
due to block in Rev-Rev response element (RRE) function (Neumann et al. 1995).
Altered expression of Rev cellular cofactor DDX1 creates unfavourable environ-
ment for Rev function in astrocytes and contributes to restricted replication in these
cells (Fang et al. 2005). It also allows the sequestration of Rev towards cytoplasm.
These studies suggest that diminished function of Rev is a hallmark of limited virus
production in astrocytes. Rev stimulates synthesis of HIV structural proteins in
astrocytes with only 10 % efficiency of that in non-glial cells (Table 3.4).

Table 3.3 Route of entry of
HIV virus in astrocytes

• CD4+ independent

• Receptor mediated endocytosis

• Galactosyl Ceramide receptor

• Mannose receptor

• Cell to cell contact between CD4+ T cells and CD4− astrocytes

• Direct interaction by viral envelope protein (Env)
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3.3.4.5 Astrocyte Response to HIV-1 Infection
During acute stages of HIV-1 infection astrocytes and other glial cells also exert
some neuroprotective mechanism. For example HIV-1 infected astrocytes express
tissue inhibitor of metalloproteinase-1 (TIMP-1) which protects the neurons from
apoptosis. It acts via inhibiting the opening on mPTP and modulating the Bcl-2
family of proteins (Ashutosh et al. 2012). Upon gp120 exposure, the astrocytes up
regulate their antioxidant defence mechanisms by increasing the expression of the
nuclear factor erythroid-derived 2-related factor 2 (Nrf2) thus exhibiting a protec-
tive effect on neurons. But, on chronic inflammation the astrocyte protective
mechanism fails and dysfunction of astrocytes then leads to neuronal apoptosis.
Astrocytes respond to HIV-1 infection by astrogliosis and undergo morphological
changes along with increase in levels of GFAP (Repunte-Canonigo et al. 2014)
which also occurs via viral proteins and factors secreted by infected macrophages. It
is one of the major pathological hallmarks of HIV-infected brain. Early HIV
infection in astrocytes augments telomerase activity and telomerase length, whereas
during advanced stages HIV telomerase activity reduces to the level of uninfected
cells which is one of the reason of increased GFAP expression showing astrocytes
activation which further leads to neuronal damage (Ojeda et al. 2014). In astrocytes
the entry of the virus is limited and also the astrocytes are minimal viral productive
cells thus not contributing to increase viral load during HIV-1 infection. However,
they cause neuronal damage via release of several viral proteins, neurotoxins and
cytokines/chemokines.

The exact mechanism of how the astrocytes cause the indirect death of neurons
is not very well understood and needs further exploration. According to the liter-
ature some of the mechanisms which may contribute to the astrocyte induced
neuronal injury are as follows:

Glutamate-Induced Excitotoxicity
Failure of maintaining the extracellular glutamate concentration by astrocyte is one
of the major contributors of neuronal damage. Under physiological conditions
neurons release the excitatory neurotransmitter glutamate during neuronal activity
which acts on post synaptic neuron via glutamate receptors. The excess of the
glutamate is taken up by astrocytes through glutamate transporters EAAT1 and
EAAT2 which then convert it to glutamine in the presence of enzyme glutamine
synthase, thus maintaining glutamate homeostasis. However, during HIV-1 infec-
tion the virus or the viral proteins reduced the expression of EAAT1 and EAAT2 on
astrocytes (Wang et al. 2003; Zhou et al. 2004). The excess glutamate then binds to

Table 3.4 Reasons for limited viral production/replication in astrocytes

• Inefficient translation of HIV structural proteins gag, env, and nef

• Nef mediated suppression of exogenous HIV-LTR activity via negative
regulatory element (NRE)

• Block in Rev RRE function and sequestration of Rev toward cytoplasm
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NMDAR receptor on neurons and increases the intracellular calcium ion concen-
tration. Increased calcium leads to further release of glutamate from astrocytes thus
adding on to the glutamate concentration in an autocrine manner. Thus, increased
glutamate releases from neurons and decreased glutamate uptake by astrocytes
collectively increases the extracellular glutamate concentration and causes
glutamate-induced excitotoxicity leading to neuronal apoptosis (Kaul et al. 2001).

Spread of Toxic Signals via Gap Junction Channels
In the CNS astrocytes connect to one another or to nearby neurons via gap junction
channels. The gap junction channel and the extracellular ATP signalling are the two
major signalling modes by which the astrocytes propagate the signal to the distant
astrocytes in the form of calcium waves. It is documented that the expression of
these gap junctions especially connexin 43 get enhanced during HIV infection.
During HIV-1 pathogenicity the virus protects the infected astrocytes from apop-
tosis; however, it propagates the neurotoxic signals to uninfected astrocytes and
neurons via gap junction channels. Dysregulation of IP3 and Ca2+ is found to be
responsible for bystander killing of uninfected cells (Eugenin and Berman 2013). It
opens connexin 43 hemichannel promoting dysregulated secretion of dickkopf-1
protein (DKK1) affecting stability of neuronal process (Orellana et al. 2014).
Blocking the gap junction channel has been found to reduce neuronal apoptosis
during HIV neuropathogenesis. The astrocytic gap junction also reduces the
integrity of blood brain barrier thus allowing the infected cells to enter the brain
adding on to the neuroinflammation and neurotoxicity.

Purinergic Receptors
Purinergic receptors are ligand gated or metabotropic receptors which get activated
upon binding of ATP or its analogs to the receptors (Burnstock 2013; Tewari and
Seth 2015). Different purinergic receptors vary in their efficiency for ligand binding.
Recent data related to purinergic receptors and HIV infection suggest that when
HIV envelope protein interacts with the CD4+ target cells (PBMC’s), the cell
releases ATP via pannexin hemichannels. The released ATP then binds to P2Y2
receptor and facilitate the HIV infection by activating proline-rich tyrosine kinase 2
(Pyk2) (Seror et al. 2011). Another study suggests that purinergic receptors are also
required for HIV infection of primary human macrophage (Hazleton et al. 2012).
They suggested that the binding of HIV to macrophage leads to release of
ATP. ATP further binds to and activates the purinergic receptors present on cell
surface in an autocrine manner to help in viral entry and replication. It was found
that activation of different purinergic receptors was responsible for viral entry
(P2X1) and viral replication (P2X1, P2X7 and P2Y1) within these immune cells.
The role of released ATP from macrophages is not only limited to the population of
macrophages but it also exerts detrimental effects on the neurons. The ATP released
from macrophages acts on purinergic receptors on the neuron and leads to excessive
release of glutamate from the neuron thus affecting the glutamatergic signalling and
reducing the spine density on neurons. Recent study from our lab has also shown
the involvement of purinergic receptor in HIV-1 induced direct and indirect
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neuronal damage. We have found that HIV viral protein Tat leads to neuronal
apoptosis via P2X7R as blocking the P2X7R on astrocytes or directly on neurons
by its pharmacological antagonists or using siRNA approach reversed the neuro-
toxic effect of Tat. In addition to the role of P2X7R in astrocyte induced indirect
neuronal death, we have also found that P2X7R on astrocytes also regulates the
release of Tat-induced MCP-1 release. MCP-1 is a major neuroinflammatory bio-
marker in the brain of HIV-1 infected patients thus suggesting that P2X7R present
on astrocytes acts as one of the contributor to neuroinflammation in HAND (Tewari
et al. 2015).

Wnt/b Catenin Signalling
Analysis of spatial relationship between astrocytes and neuron suggests that with
increasing severity of HIV-associated dementia astrocytes interact more with sur-
viving interneurons as compared to surviving pyramidal neurons in the superior
frontal gyrus (Roberts et al. 2013). Tat B inhibits Wnt/b catenin signalling in
astrocytes through its dicysteine motif and enhances HIV replication in infected
astrocytes. Simultaneously it also dysregulates the neighbouring uninfected cells,
contributing to viral pathogenesis. In contrast to this Tat C, due to absence of
dicysteine motif was unable to suppress Wnt signalling (Henderson et al. 2012).
Thus, basal level of HIV transcription in astrocytes was affected by modulation of
the b-catenin/TCF-4 axis, which may drive low level/persistent HIV in astrocytes
contributing to brain inflammation (Aldhous and Anderson 1990).

Release of Proinflammatory Cytokines and Chemokines from
Astrocytes
CNS inflammation is a major problem in HAD which is caused by imbalance of
various cytokines/chemokines released by glial cells (Tavazzi et al. 2014). Astro-
cytes respond to the cytokines released by the infected microglial/macrophage and
in turn also release other proinflammatory cytokines which further leads to increase
in inflammation in the brain. The proinflammatory cytokines released from astro-
cytes include IL-8, TNF-a and IL-1b. In addition to this various chemokines and
their receptors were also up regulated in patients of HIV with or without
encephalitis. The role of the upregulated chemokines are elegantly reviewed by
Gonzalez-Scarano and Martin-Garcia (2005). Few of these cytokines and
chemokines are discussed below in brief.

CXCL-8
CXCL8 (Interleukin 8 or IL-8) levels are high in CSF of patients with HAD. It is
released by macrophages, microglia or astrocytes. Immune-activated macrophages
release IL-1b and TNF-a which induced the production of CXCL8 from human
astrocytes in a MAPK dependent pathway (Zheng et al. 2008). CXCL8 also pro-
motes the productive virus infection in macrophage and microglia through CXCR1
and CXCR2 receptors (Mamik and Ghorpade 2014).
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Stromal Derived Factor (SDF-1) and C-C Motif Ligand 2 (CCL2)
Exogenous addition of HIV-1 Tat induces CCL2 from monocytes-derived macro-
phages (MDM) and astrocytes (Conant et al. 1998; Lim and Garzino-Demo 2000;
Mengozzi et al. 1999). Increased expression of inflammatory cytokines like TNF-a
in HIV-1 infected macrophages also enhances CCL2 release from nearby astrocytes
(Muratori et al. 2010). The IL-1b released from macrophage also regulates the
release of stromal derive factor-1 (SDF-1) and CCL2 from astrocytes and enhances
the proliferation, differentiation and migration of neural progenitor cells (Wu et al.
2012). The neural progenitor cells then migrate towards the site of IL-1 b injection.
These chemokines also attract inflammatory cells into the brain parenchyma that
complicates the brain environment by triggering an inflammatory response.

CCL5
In the hippocampus viral protein R (Vpr) released from astrocytes acts as a neu-
rotoxin and impairs hippocampal dependent learning (Torres and Noel 2014). HIV
viral protein Tat and Vpr induce proinflammatory cytokine CCL5 in astrocytes in a
PI3 K and MAPK dependent manner (Gangwani et al. 2013; Nookala et al. 2013).
CCL5 attracts monocytes to the brain parenchyma and is one of the mechanisms
leading to HIV induced neurotoxicity.

Nitric Oxide Synthase (NOS) and Arachidonic Acid (AA)
Viral proteins like gp-120 induce cPLA2 and nNOS, however cPLA2
derived-arachidonic acid (AA) from astrocytes decline nNOS and enhance iNOS
leading to NO and IL-1 b release through NF-jB activation which could contribute
to neuronal death (Persichini et al. 2014). Another study suggests that treatment of
metabolite of arachidonic acid, leukotriene C4 (LTC4), an eicosanoid to astrocytes
help in transmigration of infected CD4+ T cells across blood brain barrier by
release of chemokine CX3CL1/fractalkine, which supports in HIV-1 disease pro-
gression (Bertin et al. 2014).

3.4 Conclusions

A critically important area of neuroscience research today is to understand the role
of glia, particularly astrocytes in its relation to function of neurons in human brain.
Unfortunately, astrocytes were overlooked as researchers focused on neurons as key
components of the CNS. Only recently, astrocytes have gathered the due attention,
and their role has been duly recognized in normal CNS and brain pathology. Glial
cells-like astrocytes are in limelight because of recent pioneer discoveries of their
function in brain information processing, neuronal activity and synaptic plasticity.
Currently, astrocytes are believed to be indispensible for optimal neuronal function.
In fact there is a dynamic relationship between astrocytes and neurons that is
modulated through an active neuron-glia crosstalk which is critical for physiolog-
ical brain function. Glial cells are of particular interest due to their ability to respond
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to insult in brain. Astrocytes and microglial cells are the only cell types capable to
tackle an event of bacterial or viral infection or injury. They do so by mounting an
inflammatory response that is initially controlled and beneficial of the host cells but
under uncontrolled conditions may lead to neuroinflammation that may culminate
in neuronal injury. Neuroinflammation in brain is mainly due to the activation of the
immune cells-like microglial, though the contribution of astrocytes cannot be
considered less important. At the early stages of infection the astrocytes serve to
protect the neurons from the noxious stimuli, however, on persistent action of the
virus or due to chronic infection in a later stage, these cells fail to combat the
harmful effect of the virus and become dysfunctional. Astrocyte dysfunction dis-
turbs the homeostasis mechanisms for proper neuronal functioning ultimately
leading to neuronal injury or neuronal apoptosis. Neuroinflammation has been
implicated in several neurodegenerative disorders and claimed to be one of the
possible therapeutic targets. As a follow-up of these findings, anti-inflammatory
drugs have been tested for their neuroprotective abilities in clinical trials with
modest success. Hence it is necessary to direct sincere efforts in the field of glial
biology with special emphasis on understanding their role in neuroinflammation.
Perhaps in near future neuroprotection will be attempted via “gliaprotective”
strategies which may be possibly more rewarding as astrocytes are pivotal to
neuronal health and function.
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4Infections and Inflammation
in the Brain and Spinal Cord:
A Dangerous Liaison

Kallol Dutta, Sourish Ghosh and Anirban Basu

Abstract
Unicellular microorganisms developed on Earth approximately 3–4 billion
years ago, and since the evolution of modern man (Homo sapiens) about
200,000 years ago, there been a close interaction between them which has not
always been beneficial for the host. Diseases resulting from microbial infections
have for long been a bane of human society and with the discovery of viruses
and prions, the array of infectious agents has further widened. An infectious
agent may target either specific or multiple cell types, organs, or organ systems.
As a response to the infections, the body ‘fights back’ with its own set of
defenders, i.e., the immune system. In this chapter, we focus on the various types
of infections that can affect our central nervous system (CNS), arguably the most
complicated organization of matter that we have the knowledge about, and the
immune responses against them. The CNS had been long considered to be
‘immune-privileged’ due to its apparent separation from the rest of the body by
specialized barriers. However, these barriers have been found to be dynamic in
nature, regulating the flow of material across them. Also, the cells in the brain
are themselves equipped with various mechanisms to detect the presence of the
infectious agents and respond accordingly to contain or neutralize the threat
posed by them. The response mechanism often results in a condition termed as
inflammation, which in itself is a complex process involving multiple mediators.
Inflammation is often referred as ‘double-edged’ sword as, if un-controlled, it
results in severe damage to the host itself. In a non-regenerating organ system
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such as the CNS this has detrimental ramifications that are commonly termed as
neurodegeneration. Thus, in this chapter we have strived to provide the reader
not only on the different types of pathogens infecting human CNS but also the
immune response associated with them. More specifically, we have tried to
provide information about how these pathogens are detected/recognized by cells
of the CNS, how the cells respond following the detection, and how is the
response regulated (if there is any regulation at all). Even though we have
separated the response against bacteria, viruses, fungi, parasites, and prions in
different sections, the readers will no doubt notice a certain degree of overlap in
the mechanism of response of these different types of pathogens indicating the
plasticity of the immune system. However, there is some uniqueness associated
with each pathogen infection which makes the immune systems task even more
difficult. In this chapter, we have strived to incorporate multitude of information
in a concise manner; however, we do stress that this is by no means all-
encompassing. Hence, the readers are encouraged to follow-up any particular
point of interest from the cited publications.

4.1 The Brain and the Barriers

With about 86 billion neurons (Herculano-Houzel 2009) and innumerous glial cells,
the brain–spinal cord unit, is arguably the most complex organ system of the human
body. The cellular content of the CNS is varied. The key cell-type is the neuron
although this only constitutes around 5 % of the cellular total and can vary between
regions of the brain. In addition to neurons, there are the glial cells that support
neurons through a range of functional phenotypes. Astrocytes assist in sustaining
neuronal metabolism and neurotransmission. Oligodendrocytes have elongated
processes that surround axons and produce myelin, which effectively insulates
axonal processes and enables efficient electrical transmission along axons. Finally,
microglia provide an immune function within the CNS, acting as the resident
macrophage population removing dead cells, and are particularly important in the
development of the fetal brain.

Protected by the calvarium, dura and blood–brain barrier (BBB), or the blood–
spinal cord barrier (BSCB), the brain or the central nervous system (CNS) as a
whole, is quite well guarded. The BBB is a dynamic multicellular interface of glial
and vascular cells that tightly restricts the movement of solutes and cells in the
circulation into the CNS parenchyma. The BBB, that is present over 99 % of the
brain vasculature, also protects the CNS from potential pathogens or other harmful
substances while regulating transport of essential molecules and maintaining a
stable environment. It is composed of a network of vessels that form structural and
chemical barriers between the brain and systemic circulations. The neurons, the
extracellular matrix, and non-neuronal cells including astrocytes, pericytes, and
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vascular endothelial cells function as a neurovascular unit to regulate BBB per-
meability and maintain the integrity and function of the CNS. The BSCB is the
functional equivalent of the BBB in the sense of providing a specialized
microenvironment for the cellular constituents of the spinal cord. Even if intuitively
the BSCB could be considered as the morphological extension of the BBB into the
spinal cord, evidence suggests that this is not so. The BSCB shares the same
principal building blocks with the BBB; nevertheless, it seems that morphological
and functional differences may exist between them (Fig. 4.1). However, there are

Fig. 4.1 Structural comparison of the BBB and BSCB. The blood brain barrier (a) and
blood-spinal cord barrier (b) shares the same principal building blocks but may differ
morphologically or functionally. There are glycogen deposits only on BSCB microvessels; the
BSCB also has decreased tight junction (ZO-1, occludin) and adherence junction protein
(VE-cadherin, β-catenin) expression than the BBB
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regions in the CNS, where the BBB is not well defined. These regions (commonly
termed as the circumventricular organs see Box 1) facilitate the passage of larger
molecules into the CNS that would normally be screened by the BBB. The
downside of this is that these regions allow unhindered access to certain pathogens
into the CNS, as we see later in this chapter.

Box 1: Circumventricular Organs (CVOs)

• Pineal body.
• Neurohypophysis (posterior pituitary).
• Area postrema.
• Subfornical organ.
• Vascular organ of the lamina terminalis.
• Median eminence.

The cerebrospinal fluid (CSF) that covers the brain and the spinal cord is a good
indicator of infection in the CNS. The CSF, previously regarded as an ultrafiltrate of
plasma, is, in fact, actively produced by the secretory epithelium of the choroid
plexus. CSF circulates from the ventricles through the subarachnoid space, which is
located between the arachnoid and the pial membranes, and is mainly resorbed into
venous blood through the arachnoid villi, which are “outpouchings” of the arach-
noid membrane that extend into the venous sinuses of the cerebral hemispheres.
Formation and absorption of CSF are extensive processes—the human CSF volume
turns over approximately four times each day (Strazielle and Ghersi-Egea 2000).
Components of the CSF are major indicators of neuroinflammatory reactions. The
normal ranges of these components are shown in Tables 4.1 and 4.2 give an idea
how these components are altered in disease conditions.

In the past, CNS was considered an immune-privileged site, a term first coined
by Peter Medawar, resulting from the observation that allografts placed in certain
locations, such as the eye or brain was not rejected by the immune system with the
rapidity observed in other organs (Barker and Billingham 1977). The cause of this
privilege has been attributed almost exclusively to the BBB. In addition, there are
no lymphatic vessels within the parenchyma of the brain that would provide a
conduit for antigen presenting dendritic-cells to move directly to lymphoid tissue.
However, it would be wrong to assume that the absence of comparable cells and
structures found in the periphery represents an absence of these functions.
Numerous studies have now identified the multiple mechanisms of immune
surveillance that support the CNS, initiating both protective and damaging immune
responses. Likewise there are now defined routes by which immune cells can enter
the CNS, particularly in response to infection (Ransohoff et al. 2003). Within the

74 K. Dutta et al.



CNS the immune mechanisms are mainly coordinated by the glial cells but neurons
themselves were classically believed to be non-immunogenic. However, recent
studies are producing results which indicate that following pathogenic (or antigenic)
challenge, neurons also activate responses that coordinate defense against the insult
and facilitate antigen clearance. It has been shown that neurons possess functional
pattern recognition receptors (PRRs) (Peltier et al. 2010) which are necessary for
pathogen detection and activation of a protein signaling cascade that ultimately
leads to the generation of immune (innate) responses. The appropriate and timely
orchestration of these events is critical in responding to viral infection particularly
in the early chemokine and cytokine signals that trigger the innate immune
response.

Table 4.1 Normal CSF values of importance in infectious diseases of the nervous system
(Hasbun 2014)

Parameter Adult Term infants Premature infants

Cell count (per cubic millimeter) <5 9a 9a

Percent polymorphonuclear lymphocytes 0b 61b 57b

Protein (mg/dL) (lumber)

Mean 30 90 115

Range 9–58 20–170 65–150

Glucose (mg/dL)

Mean 62 52 50

Range 45–80 34–119 24–63

CSF blood-glucose ratio

Mean 0.6 0.81 0.74

Range 0.5–0.8 0.44–2.4 0.55–1.55
aRepresents mean value. The range of cell counts in normal neonates is 0–32 cells/mm3 and in
premature infants it is 0–29 cells/mm3

bRare polymorphonuclear lymphocytes may be seen in cytocentrifuged samples of CSF from
normal adults if CSF leucocyte count falls below 4 cells/mm3 or less even if protein or glucose
levels are normal

Table 4.2 CSF components in CNS infections

Purulent
meningitis
(acute bacterial)

Viral
meningo-
encephalitis

Granulomatous meningitis (tuberculosis,
fungal meningitis, sarcoid, syphilis, listeria,
brucella, etc.)

WBC’s More than
1000/cu mm

Less than
500/cu mm

Less than 200/cu mm

Protein High Normal or
slightly
elevated

High

Glucose Low (often less
than 20 mg%)

Normal Low (rarely as low as in bacterial meningitis)

Adapted from: http://www.dartmouth.edu/*dons/figures/chapt_25/Table_25-5.htm
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Specific anatomical features seem to have altered the nature of immune and
inflammatory responses in the CNS. Firstly, as the CNS is encased in rigid bone and
is covered by an inelastic dural lining, the total volume of the CNS is not flexible.
An increase in the volume of extracellular fluid, as commonly observed with
inflammatory swelling, would increase tissue pressure, and subsequently oppose
arterial influx, thereby threatening secondary ischaemic damage. Secondly, the
function of the CNS depends on the viability of neurons, which are mainly
post-mitotic and non-regenerating. Given these constraints, it is perhaps predictable
that the CNS has a limited capacity for inflammatory and immune reactivity (Perry
and Andersson 1992). In addition to the absence of tissue lymphatics, there is a low
level of expression of MHC class II molecules in the intact human brain (Ebner
et al. 2013) and it is restricted to reactive microglia and phagocytic macrophages
cells with limited capacity for antigen presentation to naive cells; no resident
dendritic-cell population has been detected in the brain parenchyma. It is not sur-
prising, therefore, that immune and inflammatory responses in the CNS are different
from those in other internal organs. Thus, the claim that the CNS is a site of
immune privilege has now been modified, and it is now proposed that the CNS is a
site of selective and modified immune reactivity.

4.2 Meningitis, Encephalitis, Abscesses and Myelitis—
Outcome of Central Nervous System Infections

The organisms that are involved in CNS infection could be bacterial, viral, fungal or
parasitic in nature. Additionally, prions represent an unusual class of infectious
agent that can damage the brain. A role for innate immunity in inflammation of
CNS is being increasingly evidenced. Cells of the CNS such as neurons, astrocytes,
and microglia along with pattern recognition receptors, cytokines, chemokines,
complement, peripheral immune cells, and signal pathways form the basis for
neuroinflammation. Local synthesis of a number of innate immune humoral factors
within CNS offers an opportunity for therapeutic intervention. Furthermore,
excessive activation of immune system is thought to be destructive to tissues
whereas, simultaneously, it opens up possibilities to harness this activation in a
controlled manner to obtain desired therapeutic or preventive strategies in CNS
diseases. A detailed understanding of the processes and mechanisms involved in the
etiopathogenesis of CNS diseases as well as normal functioning of CNS immunity
is essential. Infections of CNS usually result in meningitis, encephalitis, and/or
abscesses.

In order to better understand meningitis, one must first have the knowledge
about the structures surrounding the brain (see Box 2). Beneath the inner surface of
the skull, the brain is surrounded by a membranous covering known as the
meninges. A fluid known as cerebrospinal fluid (CSF) circulates around the brain
and serves to cushion the brain against injury. Meningitis is an inflammation of the
meninges due to infection (see Box 3). It occurs when a foreign pathogen invades
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the subarachnoid space and populates the CSF. The foreign microorganisms can
either be bacteria or viruses. Accordingly, meningitis can be classified as either
bacterial or viral or in rare cases may result due to fungal infections. Generally,
bacterial meningitis is more dangerous than the viral form and can constitute a
medical emergency. Bacterial meningitis is an infection of the pia and arachnoid
and adjacent cerebrospinal fluid. The outer arachnoid serves as a barrier to the
spread of infection, but involvement of the subdural space can occur, resulting in a
subdural empyema. This complication is more common in children than adults. The
most common organisms involved are Hemophilus influenza, Neisseria meningi-
tides (Meningococcus), and Streptococcus pneumoniae. Patients present with fever,
headache, seizures, altered consciousness, and neck stiffness.

Box 2: The Meninges
The meninges consist of three layers: the dura mater, the arachnoid mater, and
the pia mater

Image from: http://en.wikipedia.org/wiki/Meninges

Box 3: Complications of Meningitis

• Communicating hydrocephalus
• Loculated CSF collections
• Subdural effusion/empyema
• Cerebral infraction
• Dural sinus thrombophlebitis

Encephalitis refers to a diffuse parenchymal inflammation of the brain that
occurs when a virus directly infects the brain or when a virus, vaccine, or something
else triggers inflammation. The spinal cord may also be involved, resulting in a
disorder called encephalomyelitis. Encephalitis due to bacterial infection is usually
as part of bacterial meningitis (meningoencephalitis). Protozoa, causing cerebral
toxoplasmosis, or causing cerebral malaria, can also infect the brain and cause
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encephalitis. Symptoms of encephalitis start as nausea, vomiting, diarrhea, or
abdominal pain and may gradually develop into flu-like features such as cough,
fever, a sore throat, a runny nose, swollen lymph nodes, and sensorial impairment is
an essential feature of encephalitis. In severe cases there could be personality
changes or confusion, seizures, paralysis or numbness, and sleepiness that can
progress to coma and death. Acute encephalitis of the non-herpetic type presents
with signs and symptoms similar to meningitis, but with the added features of any
combination of convulsions, delirium, altered consciousness, aphasia, hemiparesis,
ataxia, ocular palsies, and facial weakness.

Post-infectious encephalitis, also known as acute disseminated
encephalomyelitis (ADEM), is an acute demyelinating disease thought to represent
an immune-mediated complication of infection, rather than a direct viral infection
of the CNS. The clinical presentation is one of confusion, seizures, headaches, and
fever. Ataxia may occur. Spinal cord involvement may lead to paraplegia or
quadriplegia. The most common viruses implicated are measles and chicken pox. It
occasionally is seen after vaccination for rabies or smallpox or following nonde-
script respiratory infections. MR demonstrates lesions in the white matter of the
cerebrum, cerebellum and brainstem, often while CT is normal or non-diagnostic.
The lesions may be patchy and involve the subcortical white matter. Involvement of
the deep gray matter has also been reported. Recovery following the encephalitis is
varied. Many people come through the illness with little or no difficulties, yet a
plethora of manifestations may affect other cases as shown in Fig. 4.2.

A brain abscess is a circumscribed region of infection within the substance of the
brain. The abscess is initially characterized by an area of necrotic brain tissue
surrounded by a zone of cerebritis (local inflammation of brain cells). As the
abscess develops, the necrotic area becomes filled with pus and a ring of cells
surrounds the area. A mature abscess is characterized by an encapsulated necrotic
puss-filled region of brain tissue, surrounded by an area of cerebritis.

A brain abscess forms as the result of the spread of an infection into brain tissue
from elsewhere. There are three possible origins of this infection:

1. An abscess most commonly arises via the direct extension into the skull of a
local infection in the paranasal sinuses or in the middle ear. In India it is mostly
secondary to middle ear infection, while in the west it is generally an extension
of sinusitis.

2. Microorganisms can also be spread by the blood during a systemic infection. In
this case, bacteria are carried to the site of abscess from a distant source, typ-
ically the lungs, mouth, or heart valves. Under these circumstances, there may
be multiple abscesses in the brain.

3. Lastly, a brain abscess can result from a compound head trauma. An infection
can arise from a wound penetrating the skull. In this case inoculation with
bacteria occurs from infected bone fragments or debris from the penetrating
instrument.
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Symptoms resulting from a brain abscess depend on the size and the location of
the infection. Only 50 % of patients with a brain abscess present with a fever and,
when present, fever is often chronic low-grade. A brain abscess usually presents
with symptoms typical of any space-occupying mass within the substance of the
brain, i.e., increased intracranial pressure, seizures, and a focal neurological deficit.
The commonly observed deficits include weakness on one side of the body
(hemiparesis), impaired speech production (dysphasia), visual field deficits, and an
inability to smoothly coordinate muscle movements, such as during walking
(ataxia).

Fig. 4.2 Long-term problems associated with encephalitis. Encephalitis affects each person
differently depending on the brain regions affected and the type of encephalitis, in addition to an
individual’s support system and access to treatment. The long term effects are mostly cognitive
impairment affecting attention, memory, language, problem solving, decision making, planning,
and organization apart from actual physical problems, mostly characterized by motor dysfunctions
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The term myelitis refers to inflammation of the spinal cord. Transverse myelitis
is a neurological disorder caused by inflammation across spinal cord at one level, or
a segment. Inflammation can damage or destroy myelin leaving a scar that interrupt
communications between in the spinal cord and the rest of the body. This
inflammation can be due to infections or as autoimmune disorder. Suspected
infectious agents causing myelitis include varicella zoster, herpes simplex, cyto-
megalovirus, Epstein-Barr, influenza, echovirus, HIV, hepatitis A, and rubella.
Bacterial skin infections, middle-ear infections (otitis media), and Mycoplasma
pneumoniae (bacterial pneumonia) have also been associated with the condition
(Cree 2014).

4.3 Bacterial Infections of the CNS

Bacterial infections of the CNS are life-threatening conditions resulting commonly
in meningitis, with a high mortality rate. Highly immunogenic substances such as
cell wall fragments, peptidoglycans, or lipoteichoic acid (from Gram-positive
bacteria) or lipopolysaccharide (from Gram-negative bacteria) are released
post-replication of these microorganisms resulting in a severe inflammatory
response in he host—(Sellner et al. 2010). There are several pathogens that can
cause bacterial meningitis and age seems to be an important determinant for some
types of bacterial infection as shown in Table 4.3.

Apart from the ones listed in the Table 4.3, there are other bacteria that also have
the capacity to infect the CNS causing meningitis or encephalomeningitis. CNS
tuberculosis (most prominently caused by Mycobacterium tuberculosis) is one of
the most devastating clinical manifestations of tuberculosis (TB). CNS involvement
is noted in 5–10 % of extrapulmonary TB cases, and accounts for approximately
1 % of all TB cases (Cherian and Thomas 2011). It carries a high mortality and a
distressing level of neurological morbidity, and disproportionately afflicts children
and immune-compromised subjects such as individuals suffering from human
immunodeficiency virus (HIV) infections (Woldeamanuel and Girma 2014). CNS
tuberculosis manifests itself primarily as tuberculous meningitis and less commonly

Table 4.3 Common causes of bacterial meningitis across various age groups

Age groups Causes

Newborns Group B Streptococcus, Escherichia coli, Listeria monocytogenes

Infants and children Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus
influenzae type b

Adolescents and young
adults

Neisseria meningitidis, Streptococcus pneumoniae

Older adults Streptococcus pneumoniae, Neisseria meningitidis, Listeria
monocytogenes

Accessed and adapted from: http://www.cdc.gov/meningitis/bacterial.html
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as tubercular encephalitis, intracranial tuberculoma, or a tuberculous brain abscess
(see Box 4). It has been suggested that CNS tuberculosis develops in two stages.
Initially small tuberculous lesions (Rich’s foci) develop in the CNS, either during
the stage of bacteraemia of the primary tuberculous infection or shortly afterwards.
These initial tuberculous lesions may be in the meninges, the subpial or
subependymal surface of the brain or the spinal cord, and may remain dormant for
years after initial infection. The location of these foci and the capacity to control
them ultimately determine which form of CNS tuberculosis occurs. Rupture or
growth of one or more of these small tuberculous lesions produces development of
CNS tuberculosis which manifests itself primarily as tuberculous meningitis
(TBM) and less commonly as tubercular encephalitis, intracranial tuberculoma, or a
tuberculous brain abscess (Rich and McCordock 1933; Berger 1994; Rom and
Garay 2004).

Box 4: Classification of CNS Tuberculosis (Adapted From Cherian
and Thomas 2011)

Intracranial

• Tuberculous meningitis (TBM)
• Tuberculous encephalopathy
• Tuberculous vasculopathy
• CNS tuberculoma (single or multiple)
• Tuberculous Brain Abscess

Spinal

• Pott’s spine and Pott’s paraplegia
• Non-osseous spinal tuberculoma
• Spinal meningitis

Staphylococcal meningitis is rare, can be community- or hospital-acquired, and
usually results in severe disease. Staphylococcal meningitis is caused by either
Staphylococcus aureus or Staphylococcus epidermidis with reported cases of S.
aureus-associated meningitis and brain abscesses increased in recent years (Ped-
ersen et al. 2006). S. aureus has been demonstrated to efficiently adhere to and
invade human brain microvascular endothelial cells by means of lipoteichoic acid,
thereby gaining access to the CNS (Sheen et al. 2010). Borrelia burgdorferi, the
cause of Lyme disease, is a tick-borne spirochete associated with chronic menin-
gitis or meningoencephalitis, and cranial or peripheral neuropathy. Meningitis
occurs in the earlier stages of disease from direct spirochetal invasion of the CSF.
Multifocal white matter lesions from the encephalitis can mimic multiple sclerosis
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(Bockenstedt and Wormser 2014). Sarcoidosis is a granulomatous inflammatory
disease of unknown etiology affecting multiple organs in the body, but mostly the
lungs and lymph glands. It has been suggested that bacteria of a variety called cell
wall deficient (CWD), or L-Forms, or coccoid forms may be involved in the
development of this disease (Cantwell 1982; Almenoff et al. 1996; Saidha et al.
2012). However, it is probable that microbes are a likely trigger (but not as an
infection) in a genetically predisposed individual and that this initial event culmi-
nates in the sarcoidosis granulomatous response (du Bois et al. 2003). In approx-
imately 5 % of cases, the CNS is involved as a granulomatous infiltration of the
meninges and underlying parenchyma, most notably at the base of the brain. It may
also affect cranial or peripheral nerves as isolated disease. Cranial nerve palsies,
chronic meningitis, and hypothalamic—pituitary dysfunction are frequent mani-
festations. A particularly interesting form of meningeal sarcoid results in thick
meningeal plaques, often over the convexities mimicking meningiomas.

4.3.1 Bacterial Entry into the CNS

Colonization of the mucosal membranes is an important feature of most pathogens
causing community-acquired meningitis. After colonization, bacteremia allows the
microbes to reach the BBB and enter the CNS. A high load of bacteria circulating in
the blood is thought to be necessary for the invasion of the CNS, and is therefore a risk
factor for developing meningitis. Bacteria can cross the BBB either by transcellular
migration or para-cellular migration and/or by “hitch-hiking” inside infected mac-
rophages. Using transcellular migration, pathogens can cross the BBB without any
evidence of intercellular tight-junction disruption or detection of microorganisms
between endothelial cells (Kim 2008). Streptococcus agalactiae, Streptococcus
pneumoniae,Escherichia coli, andNeisseria meningitidis reach the CNS through this
mechanism. The paracellular traversal mechanism involves the penetration of the
pathogen between barrier cells, with or without evidence of tight-junction disruption.
Borrelia sp and Treponema pallidum cross the BBB through this mechanism. Other
pathogens can cross the BBB using macrophages as ‘Trojan horses’ (Lopez-Castejon
et al. 2012). Mycobacterium tuberculosis, residing in the phagosomes of macro-
phages, (Bobadilla et al. 2013) may utilize the cell as a Trojan horse to cross the BBB;
however, it has also been shown in animal models that free mycobacteria enter the
CNS hematogenously and that cellular carriers may not be required for this transport
(Wu et al. 2000a, b). Further proof of this came by infecting an in vitro model of
human BBB with M. tuberculosis that showed host cell actin cytoskeletal rear-
rangements were necessary for successful dissemination of the bacteria into the CNS
(Jain et al. 2006). Post transport into the CNS M. tuberculosis have been reported to
preferentially infect microglia (Spanos et al. 2015) but astrocytes (Rock et al. 2005)
and neurons (Randall et al. 2014) are also potential targets.

Bacterial pathogen-associated molecular patterns (PAMPs; such as peptidogly-
cans, cell wall fragments, lipopolysaccharides, and lipoteichoic acid), can be rec-
ognized by cells in CNS following interactions with various pattern recognition
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receptors (PRRs). Toll-like receptors (TLRs) are evolutionarily conserved receptors
present in multiple cell types. In the CNS also different types of TLRs are expressed
subserving specific needs. In general, all TLRs (except TLR3) transduce their signal
through the MyD88 pathway. (Ichiyama et al. 2002). The end result of this pathway
is the activation of MAP kinases or NF-κB, resulting in initiation of transcription of
multiple genes associated with inflammation (Tato and Hunter 2002; Koedel et al.
2000; Kastenbauer et al. 2004).

Another group of intracytoplasmic PRRs is the NLR (NOD-like) family, with 23
proteins present in the human genome (Creagh and O’Neill 2006). The NLRs have
a tripartite structure with an N terminus containing an effector domain, that is, either
Pyrin or apoptotic speck-containing (ASC) protein, with a procaspase-1 recruitment
domain (CARD), a central nucleotide binding domain (NACHT), and C terminal
region composed of leucine-rich repeats that are responsible for detecting pathogens
and autoregulation. The crucial step in NLR function is oligomerization of the
NACHT domain to form an inflammasome, a structure composed of NLRP, and
ASC containing a CARD-processing procaspase-1. TLR activation has an impor-
tant role in the capacity of the inflammasome to process PAMPs such as LPS. The
expression of NLR by BBB and CNS cell is not well documented, but the NLR
(NOD2) is expressed by microglia and astrocytes in response to N. meningitidis
(Chauhan et al. 2009). Activation of the NRLP3 inflammasome by bacteria, RNA,
DNA, and ATP initiates transcription of IL-1α, IL-18, TNF-α, and chemokines for
neutrophil chemoattraction and also mediates cleavage of pro-IL-1β into IL-1β. The
same cytokines are elevated in CSF from bacterial meningitis cases and correlate
with neutrophil numbers and clinical outcome. Furthermore, low levels of NLR
increased the severity of sepsis and mortality in a number of bacterial infections,
thereby emphasizing the importance of the inflammasome for regulating the
severity of inflammation in bacterial meningitis (Osawa et al. 2011). IL-1β has been
reported to stimulates microglia and subsequently robustly induces Krüppel-like
factor 4(Klf4) via PI3 K/Akt pathway which positively regulates the production of
endogenous IL-1β as well as other pro-inflammatory markers, cyclooxygenase-2,
monocyte chemoattractant protein-1 and IL-6. Klf4 also negatively regulates the
expression of inducible nitric oxide synthase, thereby playing a key role in regu-
lating the immunomodulatory activities of microglia (Kaushik et al. 2010, 2012,
2013). Immune response against S. aureus, L. monocytogenes, Klebsiella pneu-
moniae, and E. coli have been shown o be mediated via NLRP3 (Davis et al. 2011).

Box 5: Expression of TLRs in CNS Cell Types

Microglia expresses all TLRs identified to date,
Astrocytes express TLR 2, 3, 5, and 9,
Neurons express TLR 3, 7, 8, and 9 and
Oligodendrocytes express TLR 2 and 3.
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Macrophages present in the meninges express glycoproteins SRA-1 (CD204)
and SRA-2, both of which detect pathogens using polyanions on the cell wall
instead of PAMPs (Mukhopadhyay et al. 2006). These SRAs also regulate the
antipathogen inflammatory response through interaction with TLR2 and TLR4 by
reducing NO and inflammatory cytokine synthesis, together with increased clear-
ance of apoptotic cells by stimulating macrophages expressing CD36 (Baranova
et al. 2008). Dendritic cell-specific intercellular adhesion molecule grabbing non-
integrin (DC-SIGN) is a known PRR expressed by dendritic cells as part of the
innate immunity for the recognition of M. tuberculosis (Tailleux et al. 2003).
DG-SIGN induction has also been reported from stimulated microglia (Lambert
et al. 2008) and thus may be involved in microbial response post M. tuberculosis
infection.

The meninges, choroid plexus, and ependyma express CD14 (a multifunctional
scavenger receptor, that detects Gram-negative bacteria endotoxins in CSF and
serum by interacting with TLR4, increasing inflammatory cytokines (Guo et al.
2009) and promoting phagocytosis of apoptotic neutrophils in the CSF to reduce the
severity of tissue inflammation (Lacroix et al. 1998). At the CVO, circulating
endotoxin may come into direct contact with cells of the CNS (Laflamme et al.
2001). Microglia expressing both TLR4 and CD14 are present in the CVO and
upon sensing the presence of endotoxinupregulate proinflammatory mediators and
TLR2 gene expression throughout the brain parenchyma as an attempt to kick-start
a rapid CNS-wide neutrophil-independent antipathogen inflammatory response,
before pathogens actually enter the CSF (Rivest 2009). In response to this, poly-
morphonuclear leukocytes cross the BBB by binding to selectins E and P along
with IL-8. TNF-α, one of the secreated proinflammatory cytokine, induces pro-
duction of adhesion molecules ICAM-1 and ICAM-2, which further facilitates
extravasation of the leukocyte along chemoattractant concentration gradients. These
leukocytes work to eliminate the invading pathogen through a rapid and robust
production of reactive oxygen species (ROS). They release high amounts of
superoxide anion (O�

2 ) and nitric oxide (NO), generating peroxynitrite (ONOO−)
(Klein et al. 2006). These molecules mediate cell death by membrane peroxidation,
breakdown of protein structure, DNA damage, and subsequent activation of poly
(ADP)-ribose polymerase (PARP) leading to energy depletion.

4.3.2 Bacterial Virulence Factors

Inflammatory response in the host varies according to the various bacterial viru-
lence factors (Scheld et al. 2002; Gerber and Nau 2010) such as exo- or endotoxins,
cell surface proteins that mediate bacterial attachment, cell surface glycoproteins
that protect a bacterium, and enzymes that may contribute to the pathogenicity of
the bacterium. Components of bacterial cell wall have been reported to trigger
inflammatory response in the host and mediate caspase-dependent apoptosis by
activating the p53 pathway. Peptidoglycans and lipotechoic acids from Gram +ve
bacterial cell wall is recognized in CNS by TLR2. The capsule of pathogens such as
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S. pneumoniae, N. meningitidis, E. coli K1, and H. influenzae prevents phagocytosis
by inhibiting binding with iC3b (a phagocytosis stimulating complement factor)
and Fc, that stimulate receptor-mediated phagocytosis and thus acts as virulence
factors (Jonsson et al. 1985; Gilsdorf et al. 2004; Mitchell et al. 2004; Mitchell and
Mitchell 2010; Raymond 2012). Listeria monocytogenes is another pathogen which
is capable of escaping from cellular phagosomes and its lipoteichoic acids are
recognized by TLR2 with the help of CD14 and TLR6 (Flo et al. 2000; Janot et al.
2008) and its protein flagellin is recognized by TLR5 (Hayashi et al. 2001).

The virulence of some other bacteria is based on the production of enzymes such
as coagulase, proteolytic enzymes, hyaluronidase, neuraminidase, and catalase.
Hemolysin and cytolysin from Streptococcus have the ability to cause inflammatory
activation, and these same enzymes produced by S. agalactiae induce chemokines
and ICAM-1 in brain microvascular endothelium cells (Mitchell et al. 2004).
Pneumolysin (recognized by TLR4) and H2O2 are produced and released by
pneumococcus, which causes mitochondrial damage and subsequent neuronal death
by caspase-independent pathway involving apoptosis-inducing factor (AIF) (Braun
et al. 2002). Endotoxins such as lipopolysacchride are produced by Gram-negative
bacteria such as E. coli and Neisseria meningitides which is recognized by TLR4
and causes damage to the microvascular endothelial cells that constitute the BBB in
the human brain (Khan et al. 2012). Streptococcus pyogenes, a Gram-positive
bacteria associated with brain abscess, produces a wide array of virulence factors
including M protein, fibronectin-binding protein (Protein F), and lipoteichoic acid
for adherence; hyaluronic acid capsule as an immunological disguise and to inhibit
phagocytosis; invasions such as streptokinase, streptodornase (DNase B), hyalur-
onidase, and streptolysins and other exotoxins (Cole et al. 2011).

The virulence factors of M. tuberculosis are varied and complex. This bacterium
does not have classical virulence factors like those which are the major causes of
diseases due to other bacterial pathogens. Instead, its virulence can be defined by
the factors that are important for the progression of tuberculosis. Be its special
mechanism for cell entry, or it slow rate of generation, or its lipid-rich cell wall, all
of these contribute to the virulence of this highly pathogenic microorganism. Added
to this are the mechanisms that they possess to escape phagolysosomal killing,
either by involving its adenylate cyclase enzyme that intoxicates the internalizing
cells (Agarwal et al. 2009) and/or by detoxification of oxygen radicals that are
produced intracellularly in response to infection. A detailed description of M.
tuberculosis virulence factors is beyond the scope of this chapter, but interested
readers could get more information from a recent review article by Forrellad and
collegues (Forrellad et al. 2013).

4.3.3 Role of the Complement System in Bacterial Meningitis

The importance of the complement (C) system in bacterial meningitis can be
gauzed from the fact that persons who are genetically deficient of functioning
complement system are predisposed to such infections (Skattum et al. 2011). Cells
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of the meninges, ependyma, and choroid plexus are exposed constantly to the CSF
and express all the components of classical C system (Roos et al. 2004). C1q is the
first component of the C system and functions as PRR capable of detecting PAMPs
and activating the classical pathway (Gasque 2004). Mannose-binding lectin binds
to mannose groups on bacteria, and activates C through mannose-binding
lectin-associated serine proteases (Eisen and Minchinton 2003). Activation of the
C pathway through C1q binds to LPS, IgG, DNA, and RNA, whereas pathogen
binding directly to C3b activates alternative C pathways (Arlaud et al. 2002;
Blom et al. 2009). The final common pathway for both classical and alternative
C pathways is the generation of (C5-9) membrane attack complex, which is capable
of lysing bacteria (Gasque 2004). The formation of opsonins C3b and iC3b also
targets pathogens to promote phagocytosis by A integrin receptors CR3 and CR4
present in the meninges, choroid plexus (Kolmer) cells, and microglia (Singhrao
et al. 1999). Regulation of C activation prevents self-destruction and is the
responsibility of Cregs (C1 esterase inhibitor, CD46, CD55, CD35, and factor H)
expressed by glia, neurons, and BBB endothelium. Complement regulators reduce
C activation by pathogens by inhibiting the cytolytic membrane attack complex and
anaphylatoxin receptor (C3aR and C5aR) generation. The overall effect is to reduce
inflammatory cytokine expression and neutrophil infiltration. Importantly, the Cregs
are also expressed by endothelial, choroid plexus, and ependymal cells in contact
with the CSF and are strategically placed to regulate C activation and intraven-
tricular inflammation after detection of systemic and intraventricular bacteria
(Gasque et al. 1998).

4.3.4 Immunoregulation in CNS Following
Bacterial Infections

So far we have seen that the CNS innate immune response relies upon the resident
cells expressing both phagocytic and scavenger receptors capable of distinguishing
“self” (host) from “nonself” (neurotoxic proteins, pathogens, apoptotic cells) and so
reduce bystander injury. Neurons and glia also express “death signals” to initiate
apoptosis in damaged neurons and inflammatory cells, transforming them into “safe
targets” for rapid clearance from the CNS by glial cells expressing phagocytic
receptors (Elward and Gasque 2003). If apoptotic cells remain undetected and not
cleared from inflamed tissues, they will undergo lysis with the release of neurotoxic
enzymes, contributing to secondary host tissue necrosis. The components of the
C pathway facilitate pathogen and apoptotic cell phagocytosis, as well as inflam-
matory cell migration into areas of tissue damage (Griffiths et al. 2009). The reg-
ulation of the destructive arm of the “double-edged sword” is vital and relies upon
serpins (self-defence proteins), regulators of complement activation (Cregs) and
various “don’t eat me” signals termed neuroimmunoregulatory molecules (NIRegs).
NIRegs act at the cellular level (microglia, macrophages, BBB, and endothelium) to
regulate brain inflammation. The range of NIRegs regulating microglia activity is
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expanding and includes CD200 (and its receptor CD200R), the integrin CD47 with
its receptor CD172, together with the semaphorin Sema 3A and CD22.

During a bacterial infection, the BBB endothelium increases expression of cyclic
AMP, in response to overactivation of inflammatory genes, increased endothelial
IFN-γ, TNF, NO expression, resulting in a downregulation of endothelial inflam-
matory cytokines. This is mediated by the expression of suppressors of cytokine
signaling proteins 1 and 3 (SOCS 1 and 3) (Qin et al. 2012). As a NIReg, SOCS
inhibit microglial and macrophage responses to both pathogens and LPS by reg-
ulating the JAK/STAT signaling pathway, resulting in reduced NO, IL-1α, and
IFN-γ levels and stabilizing the BBB through cadherin at interendothelial cell
junctions (Hernangomez et al. 2014).

CD200 is a 41–47 kd surface molecule and a member of the Ig supergene (IgSF)
family characterized by two IgSF domains that represent the most commonly found
domain type in the leukocyte membrane. The presence of two IgSF domains
suggests that this molecule is related to cell adhesion and regulation. As a glyco-
protein, CD200 is located on the membrane of myeloid cells, cerebellar neurons,
retinal neurons, and vascular endothelium. The counter receptor to CD200,
CD200R, also contains two IgSF domains and is expressed by myeloid cells and
rodent brain microglia (Broderick et al. 2002; Koning et al. 2009). The presence of
the NIReg CD200 provides a ‘‘don’t eat me’’ signal and, on binding to CD200R,
reduces microglial activation (Pietila et al. 2012). Mesenchymal stem cell expres-
sion of CD200 is responsible for inhibiting macrophage TNF expression, an effect
mediated through the CD200-CD200R pathway, providing a mechanism to increase
their survival by inhibiting host microglial phagocytosis (Pietila et al. 2012).

Another member of the IgSF protein family, CD47 is constitutively expressed by
endothelium, neurons, macrophages, and dendritic cells (Hoarau et al. 2011). The
counter receptor for CD47 is signal regulatory protein SIRP alpha (CD172), a
plasma membrane protein expressed by myeloid cells and neurons (Brown and
Frazier 2001). The interaction between CD47 on a host cell with a myeloid cell
expressing CD172a recruits the tyrosine phosphatases SHP-1 and SHIP-2 resulting
in the downregulation of macrophage phagocytosis, the prevention of neutrophils
migrating across the BBB, an increase of anti-inflammatory TGF-β, expression and
a reduction of interferon α levels, all contributing to the reduction of the severity of
any inflammatory response (de Vries et al. 2002). CD47 also interacts with a further
counter receptor, thrombospondin TSP, expressed by microglia, astrocytes, and
smooth muscle cells. Mouse models of endotoxemia or other bacterial infections
have shown that CD47-CD172a are available at a constant level in the CNS, but if
the coreceptor level falls, this initiates an regulated inflammatory response,
including phagocytosis of host cells (Okazawa et al. 2005). Neutrophil migration
into inflamed tissue is inhibited by PAMPs activating TLR2; this response is fine
tuned by the NIReg CD47 by either stabilizing TLR2 expression at the cell surface
or acting as a neutrophil microbial sensor (Chin et al. 2009).

Sialic acid-binding immunoglobulin-like lectins (Siglecs) are NIRegs expressed
by host cells and not bacteria, providing a marker helping to distinguish self (sialic
acid-positive) from non-self (no sialic acid, as for pathogens and apoptotic cells).
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The importance of Siglecs as a regulator of brain inflammation in BM is empha-
sized by the number of common CNS meningitis pathogens (N. meningitidis,
Haemophilus influenzae, group B Streptococcus, and E. coli) that express sialic
acid, incorporated into their cell walls. This represents a molecular mimic because
the sialic is a ‘‘self’’ or ‘‘don’t eat me’’ signal and is detected by a host Siglec
receptor (Macauley et al. 2014).

In bacterial meningitis, brain hypoxia, cell necrosis, and ischemic infarction
increase the release of DAMPs into the extracellular space. DAMPs (damage-
associated molecular patterns) also known as alarmins, are molecules released by
stressed cells undergoing necrosis that act as endogenous danger signals to promote
and exacerbate the inflammatory response. The best known neurotoxic DAMPs are
high mobility group box-1 (HMGB1), heat shock proteins, and ATP. These
exacerbate the CNS inflammation by activating TLR and NLR pathways (Kigerl
et al. 2014). Thrombomodulin (CD141) is an anticoagulant and represents a NIReg
located strategically on endothelial cell surfaces and is expressed by microglia. Its
N-terminal lectin-like domain binds to HMBG-1 and prevents subsequent binding
to TLRs, reducing the activation of PMN and severity of inflammation (Abeyama
et al. 2005; Yu et al. 2006).

4.4 Viral Infections of the Human CNS

It is a fact that the number of people affected by viral infections to the CNS each
year is greater than all bacterial, fungal, and protozoal infections combined
(Romero and Newland 2003). The magnitude of viral diseases in humans is difficult
to explain within the limits of this chapter; however, in the following sections, we
shall endeavor to provide a succinct account of the patho-physiological processes
involved.

4.4.1 Entry of Viruses into CNS

Mechanisms of viral entry into the CNS do not differ greatly from those that have
already been discussed for bacterial infections of CNS. A comprehensive list of
viruses that can cause CNS infections can be found in Table 4.4. Air-borne viruses
(measles and mumps) or the ones that gain entry through the oral route (human
enteroviruses) are able to move quickly past mucosal epithelial barriers and
establish infection in oropharyngeal or lymphoid tissues in small intestine (Reuter
and Schneider-Schaulies 2010; Rhoades et al. 2011; Bale 2014). Arboviruses are
taken up by Langerhans cells post intradermal entry following insect bites, and then
migrate to the draining lymph node (Johnston et al. 1996; Wu et al. 2000a, b). Once
in secondary lymphoid tissues, viruses are often shed into the blood stream,
resulting in systemic infection. Some viruses directly infect vascular endothelial
cells of BBB, which allow direct passage into the CNS (Chaudhuri 2000). A key
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determinant of BBB function is the proper assembly of tight-junctions (TJs) and
adherens junctions (AJs) between brain microvascular endothelial cells (BMECs).
Neurotropic viral infections have been shown to alter junction protein expression
and function in several ways, including direct mechanisms via viral proteins and
downstream immune-mediated regulation of junction integrity. The effects of
retroviruses on BBB junctions have been the most extensively characterized and
several retroviruses, including HIV-1, human T-lymphotropic virus (HTLV-1),

Table 4.4 Classification and entry routes of viruses that can cause CNS infections

Genome Virus family Specifics Viruses CNS entry

dsDNA Adenoviridae MAV-1 BBB and BMVECs

Herpesviridae Alpha
herpesvirus

HSV-1, HSV-2,
VZV, PRV, and
BHV

Sensory nerve endings
and ORN

Beta
herpesvirus

HCMV BBB and BMVECs

Gamma
herpesvirus

EBV BBB and BMVECs

Polyomaviridae JCV BBB and BMVECs

dsRNA Reoviridae Mouse
model

T3 BBB; peripheral nerve?

(+)ssRNA Coronaviridae Mouse
model

MHV Peripheral nerve and
ORN

Flaviviridae Hepacivirus HCV BBB and BMVECs

Zoonotic WNV and JEV Peripheral nerve, BBB,
ORN, and BMVECs

Picornaviridae Enterovirus Poliovirus and EV71 NMJs and BBB

Mouse
model

TMEV BBB

Togaviridae Zoonotic CHIKV ORN?

Mouse
model

SINV ORN

(–)ssRNA Arenaviridae Zoonotic LCMV BBB

Bornaviridae Zoonotic BDV ORN

Bunyaviridae Zoonotic LACV ORN and BBB?

Orthomyxoviridae Zoonotic Influenza A Peripheral nerve and
ORN

Paramyxoviridae Morbilivirus MV BBB

Rubulavirus MuV BBB

Henipavirus
(zoonotic)

HeV and Nipah BBB and ORN?

Rhabdoviridae Zoonotic RabV and VSV and
Chandipura virus

NMJs and ORN

ssRNA-RT Retroviridae Lentivirus HIV and HTLV BBB

Adapted from Koyuncu et al. (2013)
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simian immunodeficiency virus (SIV), and feline immunodeficiency virus
(FIV) have been shown to diminish expression of BBB TJ proteins in vitro and
in vivo (Miller et al. 2012). The HIV-1 protein Tat has been shown in numerous
studies to activate BBB endothelium, decrease TJ protein expression, and degrade
junctions via MMP-9 and RhoA-mediated cleavage of the TJ protein occludin
(Strazza et al. 2011). Similarly, the HIV-1 virion envelope protein gp120 has been
shown to enhance BBB permeability by decreasing expression of several TJ pro-
teins, including claudin-5 and Zo-1, and by inducing proteosome-mediated degra-
dation of Zo-1 and Zo-2 (Kanmogne et al. 2005; Nakamuta et al. 2008; Louboutin
et al. 2010). In addition to viral proteins, reports also suggests that elevated CCL2
levels during HIV-1 infection also possibly contribute to BBB breakdown and
junction disruption via multiple mechanisms, including disruption of AJs in brain
endothelium via phosphorylation and sequestration of β-catenin (Roberts et al.
2012). Other studies have linked CCL2 to endothelial barrier disruption in the
context of mouse adenovirus and Dengue virus infections as well (Lee et al. 2006;
Gralinski et al. 2009). Apart from retroviruses, interest in the impact of flaviviruses
on BBB junctions is also well documented (Mishra et al. 2009; Verma et al. 2009;
Suen et al. 2014). However, in many cases of flaviviral infections, the BBB
breakdown may occur more indirectly through the action of inducible inflammatory
mediators, as opposed to directly via viral proteins (Chen et al. 2014; Li et al.
2015). Indeed, inflammatory cytokines and chemokine expression via multiple
cellular sources has been linked to suppression of BBB junction protein expression
and degradation of existing junctions during many viral infections, including
studies using retroviruses, RabV-1, MAV-1, and others (Gralinski et al. 2009; Chai
et al. 2014, 2015).

Additionally, there are areas of the CNS such as the CVOs that are not com-
pletely protected by the BBB and serve as entry points for several viruses
(Wolinsky et al. 1974; van Den Pol et al. 1999; Preuss et al. 2009; Wuerfel et al.
2010). Infected hematopoietic cells are also used as ‘Trojan horses’ to transport
virus into the CNS via the blood supply (Kim et al. 2003; Tabor-Godwin et al.
2010; Bielefeldt-Ohmann et al. 2012; Meier et al. 2012). The picornavirus enter-
ovirus 71 (EV71) (Solomon et al. 2010) and a ubiquitous human polyomavirus, JC
virus (JCV) (Boothpur and Brennan 2010), can also infiltrate into the CNS by the
Trojan horse mode of entry. In the case of JCV infection, infiltration of infected
B-cells into the CNS in immune suppressed patients can result in the infection of
oligodendrocytes (the myelin producing cells) and astrocytes, leading to a fatal
inflammatory disease in the brain called progressive multifocal leukoen-
cephalopathy (PML). Finally, systemic viral infection can lead to inflammation-
induced breakdown of the BBB, allowing viruses to literally slip through the cracks
into the CNS (Conant et al. 2012; Savarin et al. 2013; Williams et al. 2013; Chai
et al. 2014; Johnson et al. 2014).

However, some viruses also have another unique way of infecting the CNS
wherein they infect and migrate through peripheral nerves. After entry into the host
through a bite from infected animal, (rabies) or after ingestion (polio), the virus
initially infects myocytes and mucosal epithelial cells, respectively. Neuromuscular
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junctions (NMJs) are specialized synapses between muscles and motor neurons that
facilitate and control muscle movement. NMJs can be gateways for many viruses to
spread into the CNS. Most motor neurons have their cell bodies in the spinal cord,
which, in turn, are in synaptic contact with motor centers in the brain. Poliovirus
and RabV infections spread into the CNS through NMJs. While RabV particles
enter the NMJ directly after a bite from infected animal, poliovirus particles reach
the NMJ by a more circuitous route (Racaniello 2006). Later, both of these viruses
use these peripheral motor neurons to make their way into the CNS (Ohka et al.
2012; Gluska et al. 2014). Herpes simplex virus (HSV)-1 initially infects ker-
atinocytes before migrating to peripheral sensory neurons (Price 1986). HSV-1 has
also been proposed to reach the CNS via olfactory sensory neurons whose dendrites
are directly exposed to airways in the nose (Mori et al. 2005) and in experimental
model of the disease optic route of infection is also possible (Garner and LaVail
1999). Nipah virus, influenza virus, and rabies virus have also been shown to enter
the CNS via olfactory nerves (Lafay et al. 1991; Munster et al. 2012; van Riel et al.
2015). However, it is important to note that while some viruses have a preference
for the hematogenous or peripheral nerve route to enter CNS, other viruses are able
to take advantage of both (Swanson and McGavern 2015). Once viruses gain access
to the CNS, they spread to various regions (see Table 4.5) and the ensuing immune
response combines to shape the resulting disease and inflammation.

4.4.2 Viral Recognition in the CNS

The innate immune system is the host’s first line of defence against invading
pathogens. Important components of innate immune system including the macro-
phages, dendritic cells, natural killer cells, mast cells, neutrophils, and the C system
play complementary roles in limiting viral replication and dissemination, as well as
in initiation of adaptive immune response. Cellular components of innate immune
system limit viral infection either by direct phagocytic activity or by releasing type I
interferon and inflammatory mediators after sensing various viral components.
Sensing of these viral components is mainly achieved through highly conserved
germline encoded family of proteins—the pattern recognition receptors (PRRs).
Viral PAMPs (pathogen-associated molecular patterns) that are detected by these
PRRs include genomic DNA, single-stranded RNA (ssRNA), double-stranded
RNA (dsRNA), RNA with 5′-triphosphate ends, and viral proteins.

Several TLRs have been demonstrated to specifically recognize viral motifs,
including TLRs 2, 3, 7, 8, and 9. While TLR2 is best known to bind a variety of
microbial cell wall component (bacterial lipoproteins, peptidoglycans, and lipotei-
choic acid or yeast cell wall zymosan), it can also recognize as yet unidentified,
viral motifs (Cai et al. 2012). In contrast, endosomal TLRs such as TLR3 recognize
viral double-stranded RNA (dsRNA) and its synthetic analog, poly(I:C)
(polyinosine-deoxycytidylic acid), while TLR7 and TLR8 mediate responses to
GU-rich single-stranded RNA (ssRNA) produced in virus-infected cells. TLR4 is
well known for its response to LPS but has been reported to be involved in
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generating immune response against HIV (Suh et al. 2009). In non-neuronal cell
types HIV glycoprotein gp120 has been reported to activate TLR4 pathway (Her-
nandez et al. 2012; Nazli et al. 2013).

Finally, TLR9 detects viral DNA with unmethylated CpG motifs (Kawai and
Akira 2011). Signaling downstream of TLRs relies on the recruitment of TIR
adaptor proteins MyD88, MyD88 adaptor like/TIR domain-containing adaptor
protein (Mal/TIRAP), Toll/IL-1 receptor domain-containing adaptor inducing
IFN-β (TRIF) and TRIF-related adaptor molecule (TRAM) (O’Neill and Bowie
2007). MyD88, the prototypical member of the TIR group, is utilized by all TLRs

Table 4.5 CNS regions (or cells) affected by viruses that cause meningitis and/or encephalitis

Cortical neurons Alphaviruses
Bunyaviruses
Herpes simplex virus (HSV)
Japanese encephalitis virus (JEV)
Measles virus
St. Louis encephalitis virus (SLEV)
Tick-borne encephalitis virus (TBEV)
West Nile encephalitis virus (WNV)

Microglia Human immunodeficiency virus (HIV)

Oligodendrocytes John Cunningham virus (JCV)

Thalamus Human enteroviruses
Rabies virus (RabV)
West Nile encephalitis virus

Hippocampus Human enteroviruses
Rabies virus
West Nile encephalitis virus

Brainstem Human enteroviruses
Rabies virus
West Nile encephalitis virus

Cerebellum Human enteroviruses
West Nile encephalitis virus

Ependyma/choroid plexus Cytomegalovirus (CMV)
Human enteroviruses
Lymphocytic choriomeningitis virus (LCMV)
Mumps

Meninges/perivascular Human enteroviruses
Human immunodeficiency virus
Japanese encephalitis virus
Lymphocytic choriomeningitis virus
Measles virus
Mumps virus
Nipah virus

Motor neurons Human enteroviruses
Japanese encephalitis virus
Rabies virus
West Nile encephalitis virus
Tick-borne encephalitis virus
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(except TLR3, which uses TRIF). Engagement of TLRs triggers TIR adaptor
recruitment to activate IkB kinases (IKK)s such as TANK binding kinase 1 (TBK1)
and IKKb resulting in the activation of NFkB and IRF family members culminating
in the expression of genes whose products (interferon) help in viral elimination.
Interferons activate the upregulation of a large number of proteins that act to control
infection at the cellular level and attract immune effector cells. Three mechanisms
of direct inhibition of virus replication have been identified. Activation of protein
kinase R (PKR) in response to double-stranded RNA (as in virus replication
intermediates) which inhibits eukaryotic translational factor 2 that in turn restricts
synthesis of viral proteins. Activation of 2′5′ oligoadenylate synthetase (OAS),
which activates RNase L and in turn degrades viral RNA. Finally, the Mx family of
proteins are activated that target nucleocapsids.

Sterile alpha and TIR motif-containing protein (SARM) is the fifth member of
the TIR adaptor protein family that also comprises MyD88, Mal/TIRAP, TRIF, and
TRAM. In mice, SARM is expressed mainly in the CNS where it appears to have
TLR- independent functions even though it contains a TIR domain (Kim et al.
2007). SARM has been reported to contribute to the pro-inflammatory response to
VSV in the CNS by mediating cytokine production by neurons, and this process
was shown to be dependent on the presence of microglia, indicating an important
role for cell communication in the antiviral functions of SARM in the CNS.
Interestingly, mice lacking SARM show reduced inflammation and improved sur-
vival in response to the virus (Hou et al. 2013). Therefore, SARM in this case can
be regarded as a mediator of immunopathology during VSV infection where the
absence of SARM reduces the inflammatory response to the virus, thus improving
survival. It was recently reported that SARM mediates apoptosis in neurons in
response to La Crosse virus, a member of the bunyavirus family and a leading cause
of pediatric encephalitis. In neurons SARM localizes to mitochondria, binds ATP
synthase following viral infection, and leads to the production of ROS, resulting in
oxidative stress and apoptosis (Mukherjee et al. 2013).

WNV recognitions have been reported to occur via TLR3 in the CNS. WNV
infection leads to a TLR-dependent inflammatory response, which is involved in
brain penetration of the virus and neuronal injury (Wang et al. 2004). However, this
has been contested and studies by others have shown that on the contrary WNV is
recognized by RIG-1 and MDA5 (Daffis et al. 2008). This could be plausible as
WNV’s closest cousin, the JEV, has been shown by us to be recognized by RIG-1
and thereby activating its downstream cascade of inflammatory events (Nazmi et al.
2011, 2012). Interestingly, ablating RIG-1 or its downstream adapter did not com-
pletely block antiviral innate immune responses leading us to believe multiple
recognition pathways could exist for the same virus. Concomitantly, we later found
out that TLR7 was also involved in detecting the viral PAMP and generating
antiviral defense mechanism (Nazmi et al. 2014). Also, another recent study using
TLR3 knockout mice showed increased susceptibility to JEV along with severe CNS
inflammation characterized by early infiltration of inflammatory CD11b+Ly-6Chigh
monocytes along with profoundly increased viral burden, proinflammatory
cytokine/chemokine expression as well as BBB permeability (Han et al. 2014).
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More recently though, immune response against a mutant strain of WNV has been
shown to be mediated via TLR7 (Xie et al. 2013). Another interesting case where a
single virus is recognized by 2 different PRR is found in case of TMEV. The
single-stranded RNA genome of TMEV is believed to bind to TLR7 and its
double-stranded replication intermediate to TLR3 on the endosomes and lysosomes
of host cells (Hause et al. 2007). TLR3 present on astrocytes has been reported to
sense HSV-2 infection immediately after entry into the CNS, possibly preventing
HSV from spreading beyond the neurons mediating entry into the CNS (Reinert et al.
2012). On the contrary, reactivation of HSV-1 at the CNS would likely induce and
activate TLR2 and TLR4 receptors directly through interaction of astrocytes with the
pathogen and also indirectly by endogenous ligands produced locally, such as serum
amyloid protein, potentiating the neuroinflammatory response (Villalba et al. 2012).
Neurovirulence of Langat virus (LGTV), a ssRNA tick-borne flavivirus, has been
reported to be TLR7 mediated. It was observed that TLR7 is not essential in con-
trolling LGTV pathogenesis, but it is important in controlling virus infection in
neurons in the CNS, possibly by regulating neuroinflammatory responses (Baker
et al. 2013). Similar observations were also made in case of a polytropic retrovirus
infection. TLR7 was found to be necessary for the early production of certain
cytokines and chemokines and was also involved in the early activation of astro-
cytes. However, it was not necessary for cytokine production and astrocyte activa-
tion at later stages of infection and did not alter viral pathogenesis or viral replication
in the brain. This suggested that other PRRs may be able to compensate for the lack
of TLR7 during retrovirus infection in the CNS (Lewis et al. 2008). Ablation studies
have also revealed that immune response against RabV may also be mediated via
TLR7 (Li et al. 2011). The recently characterized endosomal TLR, TLR13, is
expressed in mice but not humans and requires MyD88 for signaling. This TLR was
shown to sense vesicular stomatitis virus (VSV) (Shi et al. 2011).

4.4.3 Inflammation in CNS Following Viral Infection

Post detection/recognition of the viral PAMPs by PRRs present in the CNS, the
innate immune responses are activated triggering the production of type I inter-
ferons, a key element in controlling virus replication and spread (Randall and
Goodbourn 2008). Type 2 interferons are produced exclusively by lymphoid cells,
which are absent early in infection but contribute to later control of pathogens.
While the CNS has unique immunological status, there is increasing evidence that
there is a vigorous innate immune response to viral infection of cells within it
(Savarin and Bergmann 2008). For example, TLRs are selectively upregulated in
the brain in response to infection with different viruses (McKimmie et al. 2005).
Microglia, respond to either activation stimuli or direct viral infection to release an
array of cyto/chemokines and other mediators that are primarily responsible for the
generation of the inflammatory milieu within the CNS (Das Sarma 2014). Astro-
cytes also play a critical role in regulating CNS inflammation by chemical cross-talk
with microglia (Shih et al. 2006; Farina et al. 2007), but interestingly, they may also
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serve as viral reservoirs in CNS (Thompson et al. 2011; Sips et al. 2012; Palus et al.
2014). Neurons can produce a range of innate immune-associated proteins
including type 1 interferons in response to infection with rabies virus (Prehaud et al.
2005), Theiler’s virus, La Crosse virus (a member of the bunyavirus family)
(Delhaye et al. 2006) and JEV (Nazmi et al. 2011, 2012, 2014).

Both virus-infected and uninfected glial cells, predominantly astrocytes, provide
the early inflammatory signals (Lane et al. 2000). Pro-inflammatory cytokines,
IFN-γ, and TNF-α, are markedly increased in CNS tissues during HSV-1 infection
in the brain and microglia have been shown to respond to HSV-1 by secreting
pro-inflammatory and chemotactic molecules such as TNF-α, IL-1β, IL-6, IL-12,
CCL7, CCL8, CCL9, CXCL1, CXCL2, CXCL4, and CXCL5 (Lokensgard et al.
2001). Human microglia have also been shown to respond to RNA viruses
including WNV by producing cytokines and chemokines (Cheeran et al. 2005).
Elevated levels of IL-1β are readily detectable in neural tissue from WNV
encephalitis patients and cultured human glia produce this potent inflammatory
cytokine in response to WNV challenge (van Marle et al. 2007). In case of JEV
infection also, such responses have been observed (Ghoshal et al. 2007). Enhanced
or sustained viral replication is associated with raised levels of TNF-α and IL-6
although TNF-α does not seem to play direct antiviral roles; rather its effects are
concentrated on disrupting the BBB (Wang et al. 2004). MHV infection induces a
robust CNS inflammatory response comprising both the innate and adaptive
immune components. CNS infection is initially presented by fast, active and
coordinated expression of matrix metalloproteinases (MMPs), chemokines, a tissue
inhibitor of MMPs (TIMP-1) and proinflammatory cytokines viz. IL-1α, Il-1β,
TNF-α, IL-6, and IL-12 primarily in microglia and astrocytes (Bergmann et al.
2006).

Activated peripheral lymphocytes contribute in upregulating adhesion molecules
and chemokine receptors, both facilitating the entry of circulating lymphocytes into
the CNS. Together, these molecules facilitate BBB disruption and attract innate
immune effectors, which further enhance the expression of inflammatory factors.
Once the CNS integrity is compromised, MMP expression ushers tissue influx of
inflammatory cells, activation of cytokine secretion and CNS damage (Yong et al.
2001). In neurotropic canine distemper virus infection, a morbillivirus related to
human measles virus, induction of MMP-2 expression in astrocytes and MMP-9 in
neurons was noted (Khuth et al. 2001). Apoptotic neurons induce microglial cells to
release neuroprotective molecules, such as anti-inflammatory cytokines and growth
factors, while inhibiting synthesis of nitric oxide (NO) and pro-inflammatory
cytokines (Minghetti et al. 2005). Paramyxoviruses, measles virus (MV) and mumps
virus (MuV) can also lead to serious CNS infections. Primary MV and MuV infec-
tions begin in the upper respiratory tract, and infection of lymphoid tissue causes
viremia and spread to other tissues. MuV is highly neurotropic and can result in high
incidence of acute encephalopathy in children. Elevated levels of multiple cytokines
were detected in cerebrospinal fluids of children diagnosed with MuV-associated
acute encephalopathy (Watanabe et al. 2013). Unlike MuV, MV infection spreads to
the CNS in approximately 0.1 % of the cases, causing several types of devastating
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neurological diseases, such as fatal subacute sclerosing panencephalitis, which
manifests weeks to years after infection (Buchanan and Bonthius 2012). Cumula-
tively, these observations therefore indicate a molecular cross-talk that is apparent
between glial cells and neurons such that stressed neurons under a viral attack can
protect themselves from further damage by activated microglia.

MicroRNAs (miRNAs) are an abundant class of small noncoding RNA mole-
cules that play an important role in the regulation of gene expression at the post-
transcriptional level. Altered expression of several miRNAs has been associated
with various conditions that result in neuroinflammation (Guedes et al. 2013).
Several studies suggest a role for miRNAs as modulators of M1 and M2 polar-
ization in microglia. MiR-155, broadly considered a proinflammatory miRNA, was
one of the first miRNAs to be directly linked to the M1 phenotype. This miRNA
was shown to be upregulated in microglia in response to several proinflammatory
stimuli, with consequent targeting of microglial anti-inflammatory events such as
the suppressor of cytokine signaling 1 (SOCS-1), leading to the upregulation of
several inflammatory mediators characteristic of the M1 phenotype, including the
inducible nitrogen synthase (iNOS), IL-6, and TNF-α (Cardoso et al. 2012). Thus, it
is absolutely plausible that miRNAs would also be involved in regulation of CNS
inflammation following viral infections. In case of HCMV infection it has been
reported that miR-21 attenuates the viral replication in neural cells by targeting a
cell cycle regulator Cdc25a (Fu et al. 2015). In case of HIV infections, microglia-
mediated oxidative damage induced by the viral Tat protein has been shown to be
mediated by miR-17 (Jadhav et al. 2014) and in case of in vitro SIV infections,
several miRNAs have been found to inhibit the viral replication (Sisk et al. 2013).
In mouse model of rabies virus infection, miRNAs have been shown to play critical
roles. Microarray analysis showed that miRNA expression becomes modulated in
the brains of mice infected with rabies virus and functional analysis showed the
differentially expressed miRNAs to be involved in many immune-related signaling
pathways, such as the Jak-STAT signaling pathway, the MAPK signaling pathway,
cytokine–cytokine receptor interactions, and Fc gamma R-mediated phagocytosis
(Zhao et al. 2012). Finally, in case of JEV infections, miR155 has been shown to
regulate microglia-mediated inflammation (Thounaojam et al. 2014) and down-
regulate innate immune responses (Pareek et al. 2014). Interestingly, miR146a has
also been recently shown to suppress cellular immune responses following JEV
infection (Sharma et al. 2015).

Box 6: HIV Brain Infection

Neurological symptoms in 40 % of cases
At autopsy, 75–80 % of brains are involved
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4.4.4 HIV-Associated Neurocognitive Disorder or Neuro-AIDS

Over 40 million people worldwide are infected by HIV, and, while it is most well
known for its devastating effects on the immune system and the resulting acquired
immunodeficiency syndrome (AIDS), it can also cause several neurological dis-
orders, collectively known as AIDS dementia complex (ADC), or HIV-associated
dementia (HAD) (see Box 6). Complications include encephalitis, behavioral
changes, and a gradual decline in cognitive function, including trouble with con-
centration, memory, and attention. Milder cognitive complaints are common and
are termed HIV-associated neurocognitive disorder (HAND) that are characterized
by motor, and behavioral abnormalities (Kaul et al. 2005). Neuropsychologic
testing can reveal subtle deficits even in the absence of symptoms. Infants, infected
intra-utero with HIV, are asymptomatic at birth, presenting in time with develop-
mental delay and recurrent infections. Later on at about 2–3 years of age, a pro-
gressive clinical syndrome evolves, manifested by seizures, motor deficits, acquired
microcephaly, and behavioral and cognitive decline. However, in adults HIV can
behave more insidiously than previously seen. In a recent study it has been shown
that the virus can settle in infected person’s brains as early as 4 months after
infection. In turn, HIV in the brain can genetically mutate—differentiating itself
from the type circulating in the blood—which means that certain drugs used to treat
the virus may not work as well in the CNS as they do in other parts of the body.
Over time, untreated HIV can cause negative neurological and mental-health
effects, such as brain swelling and a form of dementia. A study examined 72
individuals in San Francisco—almost all adult males—who had recently tested
positive for HIV. Samples of their blood and CSF were taken and paired and the
results showed that HIV had invaded the CNS in over 70 % of the subjects within
the first few months of infection. However, the more alarming observation was that
during the second year of infection, the virus had started replicating itself in the
CNS independently from viral populations in the blood in up to 25 % of these
subjects. This process is known as compartmentalization, when a virus “sets up
shop” in a discrete part of the body and begins to reproduce there on its own
(Sturdevant et al. 2015).

Other AIDS-related disorders of the nervous system may be caused directly by
the HIV virus, by certain cancers and opportunistic infections (illnesses caused by
bacteria, fungi, and other viruses that would not otherwise affect people with
healthy immune systems), or by toxic effects of the drugs used to treat symptoms.
Moreover, neuro-AIDS disorders of unknown origin may be influenced by but are
not caused directly by the virus. In Table 4.6 we have discussed these problems,
briefly.
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Table 4.6 Associated problems in Neuro-AIDS

CMV infection • Major cause of non-Epstein-Barr virus infectious mononucleosis
in patients with AIDS

• Remain latent in host post infection but reactivates following
immunosupression in AIDS (Cheung and Teich 1999)

• Causes radiculopathy, a spinal cord syndrome characterized by
lower extremity pain and weakness, spasticity, areflexia, urinary
retention, and hypoesthesia (Miller et al. 1990)

• Subacute encephalitis in conjunction with isolation of CMV from
brain tissue or CSF has been reported (Hawley et al. 1983). (refer
to Sect. 4.5 for more information)

CNS lymphomas • Cancerous, diffuse, large-cell non-Hodgkin lymphoma of B-cell
origin that usually occurs in the brain (rarely in the spinal cord)
(Knowles 2003)

• Almost always associated with the Epstein-Barr virus (belonging
in the herpes family) (Corcoran et al. 2008)

CNS tuberculosis • At least one-third of people living with HIV worldwide in 2013
were infected with TB; approximately 25 % of deaths among
HIV-positive people are due to TB (http://www.who.int/
mediacentre/factsheets/fs104/en/)

• Immunosuppression increases susceptibility for acquiring or
reactivating TB

• may manifest as meningitis, tuberculoma, abscess, or other forms
of disease. (refer to Sect. 4.3 for more information)

Cryptococcosis • Cause of the most common life-threatening meningitis in AIDS
• Responsible fungus is classified into a complex that contains two
species (Cryptococcus neoformans and C. gattii) with eight major
molecular types

• The fungus first invades the lungs and spreads to the covering of
the brain and spinal cord, causing inflammation (Antinori 2013).
(refer to Sect. 4.6 for more information)

Neuropathy • Late stages of infection could lead to Peripheral (Stavros and
Simpson 2014) or Distal sensory polyneuropathy (Nicholas et al.
2007)

Progressive multifocal
leukoencephalopathy

• Affects nearly 5 % of people with AIDS
• Caused by the JC virus, which travels to the brain, infects multiple
sites and causes demyelination

• Post HAART rate of recovery is greater (Lima 2013)

Toxoplasma encephalitis,
(also called cerebral
toxoplasmosis)

• Caused by the parasite Toxoplasma gondii
• Clinical CNS toxoplasmosis occurs in 3–15 % of patients with
AIDS in the United States; 50–75 % of patients in some European
countries and in Africa

• Usually a complication of the late phase of the disease. (refer to
Sect. 4.7 for more information)

Vacuolar myelopathy • Chronic myelopathy associated with HIV infection
• Occurs during the late stages of HIV infection, when CD4+

lymphocyte counts are very low, often in conjunction with ADC,
peripheral neuropathies, and opportunistic infections or
malignancies (Anneken et al. 2006)
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4.5 Fungal Infections of the Human CNS

Systemic mycoses (fungal infections of animals including humans) caused by
primary or opportunistic fungal pathogens pose significant medical problems to
public health, mainly due to the growing number of aging persons, and immuno-
compromised individuals who undergo solid organ transplantation and
anticancer-chemotherapy, or have HIV infection. Although fungal infections con-
tribute substantially to human morbidity and mortality, the impact of these diseases
on human health is not widely appreciated. The following Table 4.7, adapted from
a recent review article (Brown et al. 2012) gives an idea on the magnitude of the
problem of mycoses in humans.

Table 4.7 Statistics of 10 most significant of invasive fungal infections

Disease (most common
species)

Location Estimated life-threatening
infections/year at that
location

Mortality rates
(% in infected
populations)

Opportunistic invasive
mycoses

Aspergillosis (Aspergillus
fumigatus)

Worldwide >200,000 30–95

Candidiasis (Candida
albicans)

Worldwide >400,000 46–75

Cryptococcosis
(Cryptococcus
neoformans)

Worldwide >1,000,000 20–70

Mucormycosis (Rhizopus
oryzae)

Worldwide >10,000 30–90

Pneumocystis
(Pneumocystis jirovecii)

Worldwide >400,000 20–80

Endemic dimorphic
mycoses

Blastomycosis
(Blastomyces
dermatitidis)

Midwestern and
Atlantic United
States

*3000 <2–68

Coccidioidomycosis
(Coccidioides immitis)

Southwestern
United States

*25,000 <1–70

Histoplasmosis
(Histoplasma
capsulatum)

Midwestern
United States

*25,000 28–50

Paracoccidioidomycosis
(Paracoccidioides
brasiliensis)

Brazil *4000 5–27

Penicilliosis (Penicillium
marneffei)

Southeast Asia >8000 2–75
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More than hundred thousand fungal species are recognized by now and only a
couple of hundreds are found to be pathogenic to humans. Fortunately, only about
10–15 % of pathological fungi usually produce systemic/CNS mycosis (Raman
Sharma 2010). Table 4.8 gives a brief idea about the incidence of CNS involvement
associated with invasive fungal infection (Kethireddy and Andes 2007). With the
exception of Candida albicans, that is, present as a commensal on the human body,
most fungal elements gain entry into the human body via the respiratory tract or
through exposed wounds. The fungal pathogens reported till date to cause human
CNS infections are Cryptococcus neoformans, Coccidioides immitis, Histoplasma
capsulatum, Blastomyces dermatitidis, Paracoccidioides brasiliensis, Sporothrix
schenckii, Penicillium marneffei, Candida species, Aspergillus species, Zygomy-
cetes, Pseudallescheria boydii, and those causing Phaeohyphomycosis and
Hyalohyphomycosis (Romani 2011). Most of these organisms, with the exception
of Candida species, are found in soil specifically where it is mixed with dead or
decaying organic matter and animal or bird droppings. Fungal invasion of the CNS
can cause one or more pathologies such as acute or chronic meningitis, abscesses or
granuloma, encephalitis, stroke, parenchymal brain, or myelopathy (Jellinger et al.
2000; Baddley et al. 2002). A brief idea of the different fungi known to infect the
human CNS is given in Box 7.

4.5.1 Immunopathogenesis of CNS Fungal Infections

Immunopathogenesis of CNS post-fungal infections is not a very well-elucidated
area of host–pathogen interaction studies given the rarity of occurrence of most of
the infections. As in most cases the fungi are disseminated from the periphery, a
general immune response against the invading pathogen is common.

Apart from the physical barriers and the constitutive defence mechanisms and
opsonic recognition, pattern recognition receptors (PRRs) such as Toll-like recep-
tors (TLRs), C-type lectin receptors (CLRs) and the galectin family proteins (van de
Veerdonk et al. 2008)—that could sense pathogen-associated molecular patterns
(PAMPs) in fungi. Figure 4.3 gives a concise idea about the involvement of the

Table 4.8 Fungal infections and incidence of CNS involvements

Organism CNS involvement (%) Mortality (%)

Invasive candidiasis 3–64 11–67

Invasive aspergillosis 4–6 80–90

Cryptococosis 67–84 7–12

Histoplasmosis 5–20 20–40

Coccidioidomycosis 25 26

Blastomycosis 40 4.3–22

Zygomycosis 12 79–98

Dematiacious (cladophialophora) 100 71–74
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various PRRs in fungal pathogen recognition and the consequent downstream
signaling cascades.

Reports about the role of TLRs in CNS fungal infections are limited. It is known
that immune signaling by Candida albicans and Aspergillus fumigatus essentially
occurs via TLR2, TLR4, and TLR9 downstream pathways that are implicated in
different ways to control the infections. In addition, Aspergillus hyphae, unlike
conidia and Candida hyphae and yeasts, seem to be sensed through TLR4, which
indicates that TLRs discriminate between distinct fungal morphotypes (Romani
2011). Expression of TLRs (Hanke and Kielian 2011) and various galectin proteins
(Sakaguchi and Okano 2012; Shin 2013; Zanetta 1998) in various cells types in the
CNS is quite well elucidated. Recent studies have also indicated the presence of
CLRs in the brain (Lech et al. 2012). Thus, it would not be too farfetched to
imagine a critical role of these PRRs following a CNS invasion by any fungal
pathogen.

Fungal infections of the CNS also evoke humoral and cellular responses as in
bacterial infections with the possibility to enable the host to eliminate the pathogen.
Activation of the resident brain cells by fungi combined with relative expression of
immune-enhancing and immune-suppressing cytokines and chemokines which play
a determinant role and partially explain the immunopathogenesis of CNS fungal
infections. Activated resident brain cells such as microglia, astrocytes, and
endothelial cells express major histocompatibility complex (MHC) Class I and
Class II molecules and therefore act as antigen presenting cells. In addition, they
express complement receptors, produce cytokines, chemokines, and molecules with
antifungal activity, such as nitric oxide (NO) and are capable of phagocytosis.
Microglia, acting as antigen presenting cells, stimulates T-cell proliferation and
cytokine secretion, which in turn stimulate these semiprofessional phagocytes to
ingest and more effectively kill invading fungi (Klein and Sato 2000). The precise
mechanisms that explain the association of CNS fungal infection with the particular
MHC molecules are unknown. However, several models have been proposed,
including the direct involvement of human leukocyte antigen (HLA) molecules and
the involvement of closely linked genes. In an immunocompetent host, during the
initial immune response to a fungal pathogen, HLA molecules must bind to pep-
tides derived from fungal proteins and the T-cell repertoire must include clones that
can be activated by such HLA-bound peptides. Nevertheless, non-fulfillment of
either of these requirements may render a host carrying a particular combination of
HLA alleles more susceptible to certain infections than another who has a different
combination of alleles. Especially in CNS involvement of paracoccidioidomycosis,
the MHC molecules are not expressed in a constitutional way in the CNS, at least at
the level found in the majority of other tissues. In addition, in situations with an
immunological stimulation there is an increase of expression of these molecules (de
Almeida et al. 2005).
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Box 7: Mycoses Affecting Human Central Nervous System

Cryptococcosis is the most common CNS fungal infection in AIDS, occur-
ring in 8.7–13 % of patients. Cryptococcus neoformans has a peculiar
propensity to affect individuals with cell mediated immunity, and it usually
produces meningitis. The cryptococcal organisms may enter the brain via the
VR spaces at the base of the brain. Proliferation of the organisms within the
VR spaces produces gelatinous pseudocysts of variable size to give a mottled
appearance on imaging studies. Meningeal enhancement is not often present
unless a chronic inflammation has developed. A chronic relapsing infection
can result in cryptococcal brain abscesses (Tien et al. 1991). Coccid-
ioidomycosis (also known as Valley fever), caused by Coccidioides, begins
as a primary pulmonary infection after inhalation of the organism. Most
patients remain asymptomatic, and less than 0.2 % of primary infections
disseminate. Occasionally, this fungus may reach the meninges, either by
hematogenous spread or by direct extension from osteomyelitis of the skull or

b Fig. 4.3 Molecular events associated with recognition of fungal pathogens. Pathogen-associated
molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) that are present
during fungal infections are recognized by pattern recognition receptors (PRRs). The major PRRs
are Toll-like receptors (TLRs); C-type lectin receptors (CLRs; such as dectin 1 (also known as
CLEC7A), dectin 2 (also known as CLEC6A), DC-specific ICAM3-grabbing non-integrin
(DC-SIGN), mincle and the mannose receptor); galectin family proteins (such as galectin 3) and
receptor for advanced glycation end-products (RAGE). TLRs and CLRs activate multiple
intracellular pathways upon binding to specific fungal PAMPs, including β-glucans (especially
β-(1,3)-glucans with varying numbers of β-(1,6) branches), chitin, mannans linked to proteins
through N- or O-linkages, β-(1,2)-linked oligomannosides and fungal nucleic acids. These signals
activate canonical or non-canonical nuclear factor-κB (NF-κB) and the NOD-, LRR- and pyrin
domain-containing 3 (NLRP3) inflammasome, and this culminates in the production of defensins,
chemokines, cytokines, reactive oxygen species (ROS) and indoleamine 2,3-dioxygenase (IDO).
Complement receptor 3 (CR3) and members of the scavenger receptor family (such as CD36)
mediate recognition of β-glucans and the fungal adhesin BAD1 (Blastomyces adhesion 1).
After TLR activation, protease-activated receptors (PARs) sense proteolytic virulence factors and
tissue injury and contribute to fungal recognition through a dual sensor system. In addition, the
alarmin S100B, through the spatiotemporal integration of signals from TLRs and RAGE, allows the
immune system to discriminate between pathogen-derived and endogenous danger signals. By
forming complexes with various TLR2 ligands, S100B inhibits TLR2 through a paracrine epithelial
cell- and neutrophil-mediated regulatory circuit, and this accounts for its anti-inflammatory activity.
However, the ability of S100B to bind nucleic acids results in the activation of intracellular TLRs
that signal through TIR domain-containing adaptor protein inducing IFNβ (TRIF; also known as
TICAM1) and this eventually resolves damage-associated inflammation through transcriptional
downregulation of S100B gene expression. ASC; apoptosis-associated speck-like protein
containing a CARD; BCL-10, B cell lymphoma 10; CARD9, caspase recruitment domain-
containing protein 9; ERK, extracellular signal-regulated kinase; FcRγ, Fc receptor γ-chain; IL,
interleukin; IRF3, IFN-regulatory factor 3; MALT1, mucosa-associated lymphoid tissue lymphoma
translocation protein 1; MYD88, myeloid differentiation primary response protein 88; SYK, spleen
tyrosine kinase. Adapted by permission from Macmillan Publishers Ltd: (Romani L, Nature
Reviews Immunology 11, 275–288 (April 2011) | doi:10.1038/nri2939), copyright (2011)
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vertebrae. Symptoms of chronic meningitis are most common (Mischel and
Vinters 1995) but there are cases in which brain involvement occurs without
meningitis; however this presentation is unusual (Mendel et al. 1994;
Banuelos et al. 1996). Spinal arachnoiditis with obstructive hydrocephalus
and cerebral vasculitis with infarcts have been reported. Histoplasmosis is an
infection caused by the fungus Histoplasma. Humans can get histoplasmosis
after inhaling the microscopic fungal spores from the air, often after partic-
ipating in activities that disturb the soil. Most of the people infected have
minimal symptoms, and dissemination occurs only rarely. When dissemina-
tion does occur, it has been estimated that between one tenth and one fourth
of patients have CNS involvement. Although granulomas and other brain
parenchymal lesions have been described, most patients with CNS lesions
present with meningitis. Patients with histoplasma meningitis develop epi-
sodes of dizziness and tinnitus with gradually progressive confusion, nausea,
and fever (Couch and Romyg 1977). Patients with Blastomycosis have
subclinical disease, and dissemination occurs rarely. Disseminated blasto-
mycosis is characterized by granulomatous or suppurating lesions (or both) of
the lung, bone, and skin. In some series, blastomycosis has been reported to
involve the brain in 6–33 % of disseminated cases. Although patients with
CNS blastomycosis usually present with evidence of infection at other sites,
occasionally meningitis is the initial presentation, without evidence of
extraneural disease (Gonyea 1978; Kravitz et al. 1981). Although CSF cul-
tures are rarely positive, chronic neutrophilic pleocytosis is a common finding
in blastomycotic meningitis (Harley et al. 1994). In Paracoccidioidomycosis,
the lung is the primary location for initial infection; a few patients have
widely disseminated disease that involves the CNS, but rarely has the
infection been reported to involve only the CNS. Meningitis is an unusual
manifestation of infection but occurs occasionally in normal hosts (Dantas
et al. 1990). The host response against this microorganism remains poorly
understood. Sporotrichosis is an infection caused by a fungus called Spor-
othrix schenckii. Pulmonary disease from inhalation of spores is uncommon.
Dissemination beyond the skin, lung, and joints is rare; only approximately a
dozen cases of Sporothrix meningitis have been reported (Scott et al. 1987;
Mahajan 2014). Most of the patients with meningitis do not have overt
extraneural disease at presentation with diagnosis of this infection extremely
slow and difficult. Penicilliosis caused by Penicillium marneffei infection has
been emerging as a public health problem, especially among HIV-infected
patients in the areas of endemicity in Southeast Asia, India, and China.
Within these regions, P. marneffei infection is regarded as an AIDS-defining
illness, and the severity of the disease depends on the immunological status of
the infected individual (Vanittanakom et al. 2006; Le et al. 2010). Selected
members of the other 225 Penicillium species are also reported to cause CNS
disease. Penicillium commune was isolated from multiple brain and lung
autopsy specimens from a patient with acute leukemia who was receiving
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antibiotics and steroids (Huang and Harris 1963); Penicillium chrysogenum
was isolated from CSF and brain biopsy samples of 2 nonimmunocompro-
mised individuals with CNS symptoms (Lyratzopoulos et al. 2002; Kantar-
cioglu et al. 2004). An unidentified Penicillium species was isolated from
multiple brain lesions of a patient with chronic liver disease at autopsy
(Noritomi et al. 2005). Candidiasis is caused in humans when members of
this species gain access to the blood stream and then the CNS, via contam-
inated intravenous procedures (del Pozo et al. 1998). Neonates, (Arisoy et al.
1994; Huttova et al. 1998a) neutropenic subjects (Huttova et al. 1998b), and
patients recovering from major surgery (Casado et al. 1997; Sakaguchi and
Okano 2012) are particularly susceptible to invasive candidiasis, including
CNS involvement. Based on autopsy studies, Candida species are the most
common fungi to invade the CNS (Parker et al. 1978; Mori and Ebe 1992;
Liu et al. 2011; Shin 2013). Candida may cause meningitis (Buchs and Pfister
1983), ventriculitis (Jamjoom et al. 1992), or parenchymal lesions such as
abscesses or granulomas. C. albicans is the species implicated in most CNS
infections, but other species such as Candida tropicalis, Candida lusitaniae,
and Candida parapsilosis, also occasionally produce CNS infection (Chad-
wick et al. 1980; Faix 1983; Sarma et al. 1993). Aspergillosis is an
aggressive opportunistic fungal infection caused by organisms of Aspergillus
species which gains entrance with inhalation of infected grains or dusts and
results in primarily a pulmonary infection. Pathologic changes include a
combination of suppuration and granulomas. Dissemination to the CNS may
start as basal meningitis, but the organism readily invades vascular structures
and extends into the brain parenchyma (Walsh et al. 2008). Zygomycosis
results due to infection with fungi of the class Zygomycetes that are wide-
spread in the environment. Infection is usually due to inhalation of spores.
The genus Rhizopus is responsible for most infections caused by this
group. CNS infection in compromised hosts can occur by direct extension
from the paranasal sinuses through hematogenous spread such as illicit
intravenous drug use or even by spread up nerve roots into the CNS (Skiada
et al. 2009). Pseudallescheria boydii has emerged over recent years as the
cause of fatal disseminated infections in individuals with neutropenia, AIDS,
diabetes, renal failure, bone marrow or solid organ transplants, systemic lupus
erythematous, and Crohn’s disease; in those undergoing corticosteroid
treatments; and in leukemia and lymphoma patients. Near-drowning incidents
and natural disasters, such as the Indonesian tsunami in 2004, have shown
P. boydii and the related species Scedosporium apiospermum and Sce-
dosporium aurantiacum to be the causes of fatal CNS infections and pneu-
monia in immunocompetent victims who have aspirated polluted water
(Thornton 2009). Presumably, this fungus penetrates through the cribriform
plate during water immersion or establishes a pulmonary focus with later
dissemination to the CNS, producing meningitis or brain abscesses (Kershaw
et al. 1990; Hornbeek et al. 2012). Phaeohyphomycosis refers to infections
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caused by one of several genera and species of pigmented fungi of the family
Dematiaceae. Several fungal genera have been reported to affect people and
other animals, including Alternaria, Bipolaris, Cladophialophora (Xylohy-
pha, Cladosporium), Curvularia, Exophiala, Fonsecaea, Moniliella, Phia-
lophora, Ramichloridium, and Scolecobasidium. This group of fungi has
occasionally caused CNS infection, and for certain species, it appears that
there is some neurotropism. Cladosporium trichoides, also known as Xylo-
hypha bantiana and renamed as Cladophialophora bantianum, is the most
common isolate of this class of fungi found in CNS infections; the infection
usually manifests as a brain abscess, although meningitis has been described
(Heney et al. 1989; Osiyemi et al. 2001; Al-Tawfiq and Boukhamseen 2011;
Jung and Kim 2014; Sood et al. 2014; Suri et al. 2014). Meningitis caused by
other species of these “black molds” is also reported occasionally, and it has
even been caused by contaminated corticosteroid injections around the spine
(Chen et al. 2013; Chowdhary et al. 2014). Hyalohyphomycosis is infection
caused by nonpigmented fungi (other than the genera Aspergillus or Peni-
cillium or the class Zygomycetes) that in tissue form hyphal elements with
hyaline or clear walls. Examples of genera causing hyalohyphomycosis in
people and other animals include Acremonium, Fusarium, Geotrichum,
Paecilomyces, Pseudallescheria, Sagenomella, Phialosimplex, Geosmithia,
Geomyces, and Scedosporium. Hyalohyphomycosis is far less common than
phaeohyphomycosis. In severely neutropenic patients, the soil saprophytes,
Fusariumspecies, can produce CNS lesions. Because of similar histopatho-
logical features, Fusarium infection can be confused with aspergillosis unless
cultures are performed. In the growing immunosuppressed population, Tri-
chosporon infection, which usually involves only superficial skin or hair
shafts, can disseminate to the brain. CNS infections with both T. beigelii
(Surmont et al. 1990), and Blastoschizomyces capitatus (Geotrichum capi-
tatum) (Girmenia et al. 1991) have been reported.

4.5.1.1 Role of Cyto/Chemokines Following CNS
Infection by Fungi

The resident glial cells of the brain are responsible for the release of an array of
cyto/chemokines, (immunoenhancer and immunosuppressant) (Licinio and Wong
1997). The actions of cytokines on the vasculature in the brain also may be of
pathophysiological relevance. There is increasing evidence that a variety of
cytokines such as interleukin (IL)-1α, IL-1β, IL-4, IL-6, IL-10, IL-12, IL-18,
transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α) are
constitutively expressed in the brain of animal models with CNS fungal infections.
In addition, a variety of chemokines such as IL-8, macrophage inflammatory
protein-1α (MIP-1α) and -1β (MIP-1β) and monocyte chemoattractant protein-1
(MCP-1) are also involved in the immunopathogenesis of CNS fungal infections
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(Ashman et al. 1995). However, the cytokine/chemokine profile is not suggestive of
a polarized Th1 or Th2 response and may simply indicate that CNS fungal infection
is the result of an ineffective immune response; possibly due to an insufficient
antifungal effector function of endogenous glial cells resulting from competing pro-
and anti-inflammatory cytokines. A CNS-specific and TNF-α-dependent role for
IL-6 and IL-1β in protection against cryptococcosis was suggested by findings with
TNF/lymphotoxin-α-deficient mice (Blasi et al. 1995). In patients with AIDS and
meningeal cryptococcosis as well as in experimental murine cryptococcal menin-
goencephalitis, cytokines IL-1α, IL-1β, IL-6, TNF-α, IFN-γ, IL-4, and IL-10 and
molecules with bactericidal activity, such as NO and inducible nitric oxide synthase
(iNOS) were induced above baseline levels, in the brain during the course of
cryptococcal infection (Lortholary et al. 1999; Maffei et al. 2004). Interestingly, it
was observed that the concomitant expression of TGF- β1, IL-4 and IL-10 was able
to act as immunosuppresant, allowing the continuation of the infectious process.
Additionally, although in the early stages of infection NO contributes to the killing
of yeasts, the expression of iNOS by endogenous cells may have been modulated
by the immunosuppressive cytokines or NO may cause immunosuppression itself,
thereby permit progression of the infection. The paradoxical depression of iNOS
may happen in the brain as a result of the neuroprotective action of microglia,
expressing suppressive cytokines, such as TGF- β1, to a greater degree than
proinflammatory cytokines IL-1 β, IL-6, IL-12, IFN-γ and TNF- α under natural
conditions (Loddick et al. 1997).

IFN-γ has been reported to play an important role against C. neoformans CNS
infections. IFN-γ was found to be essential for optimal growth inhibition in a
murine model when C. neoformans was introduced directly into CNS. Protection
mediated via IFN-γ is presumably due to the activation of effector cells already
present at the site of infection or recruited to the site, as IFN-γ activates macro-
phages to better kill cryptococci (Mody et al. 1991; Buchanan and Doyle 2000).

4.5.1.2 Complement System and CNS Fungal Infections
In a variety of CNS diseases (either pathogen induced or neurodegenerative), the
complement (C) system contributes to the inflammatory process and plays a central
role in host defense against pathogens (Bonifati and Kishore 2007). A few reports
are available concerning the role of C system in fungal infections of the brain
(Speth et al. 2008). In cases of cerebral aspergillosis increased complement syn-
thesis, a prerequisite for strengthened antifungal potency was visible in resident
astrocytes, neurons, oligodendrocytes as well as in infiltrating macrophages after
fungal infection. Surprisingly, microglia, although regarded as major immune cells,
only marginally participated in synthesis of most complement proteins (Rambach
et al. 2008). In in vitro models, C. neoformans has been shown to be an activator of
the alternative complement pathway. Studies with complement deficient guinea
pigs and mice indicate that the complement system plays an essential role in
resistance to cryptococcosis. It is likely that the complement system contributes to
host resistance by opsonization of the yeast to facilitate attachment and ingestion by
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phagocytic cells, as well as by releasing chemotactic fragments of the complement
cascade which contribute to the inflammatory response (Kozel 1993).

4.6 Parasitic Infections of the Human CNS

Protozoa and helminths are unique infectious agents that contribute significantly to
human morbidity and mortality. Although these agents are referred to as parasites—
implying a dependent way of life, they in this context do not differ from other
pathogens like bacteria and viruses. Protozoa are single-cell organisms widely
distributed in nature. Protozoal infections, though endemic to certain geographic
regions for reasons of climate and availability of intermediate hosts to transmit them
to man, are also seen outside their original geographical areas, probably facilitated
by globalization including increase in international travel and migration of people
from their native countries (Chimelli 2011).

Because of the variability of their size (50 μm–15 cm), metazoan (multicellular)
parasites pose a unique problem for host immunity (Mulcahy et al. 2005). The
helminthic species responsible for CNS disease are diverse. Each of the organisms
has a complex life cycle involving human and nonhuman animal hosts in different
stages of its development. The helminthic parasites that would be included in the
flowing discussion have been grouped according to their class, i.e., as cestodes
[tapeworms], nematodes [roundworms], or trematodes [flukes] as members of the
same class share common features of development and often produce similar
pathology in the CNS (see Table 4.9).

Table 4.9 List of parasitic infections of the CNS

Protozoan infections Helminthic infections

Cestodes Nematodes Trematodes

Cerebral Malaria Cysticercosis Disseminated
Strongyloidiasis

Schistosomiasis

Cerebral
Toxoplasmosis

Echinococcosis
(Hydatid
Disease) and
Sparganosis

Trichinosis Paragonimiasis
and Fascioliasis

Trypanosomiasis Eosinophilic Meningitis:
Angiostrongyliasis,
Gnathostomiasis, and
Visceral Larva Migrans

Primary Amebic
Meningoencephalitis
and Granulomatous
Amebic Encephalitis

Cerebral Amebiasis
due to Entamoeba
histolytica
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Difficulty in combating protozoal diseases is attributed to an incomplete
understanding of their pathogenesis and pathophysiology. In particular, it is not
clear how protozoa cross the BBB, a key step in the development of CNS infections
caused by these parasites. It is believed that at the cellular level, the strategies used
by neuropathogenic protozoa to traverse across the blood–brain barrier include:

1. paracellular route by disrupting the tight junctions,
2. transcellular route while maintaining the integrity of the endothelial cell

function,
3. by means of infected cells (Trojan horse mechanism) and/or
4. by inducing injury to the cerebral endothelium resulting in the disintegration of

the blood–brain barrier (Elsheikha and Khan 2010).

Transcellular traversal involves penetration of protozoa through the brain
microvascular endothelial cells (BMEC). This mode of invasion has been suggested
for Trypanosoma spp. The paracellular route involves protozoa crossing of the BBB
between the endothelial cells, by degrading the tight junction proteins. Several
protozoa target the paracellular route including Plasmodium falciprum, Try-
panosoma spp., Toxoplasma gondii, Acanthamoeba spp., Balamuthia spp., and
Babesia spp. Leucocyte-facilitated entry into the CNS, using the Trojan horse
mechanism, has been suggested for T. gondii. In addition, Acanthamoeba and
Balamuthia produce BMEC death resulting in blood–brain barrier perturbations. In
the aforementioned, the BMEC layer is the principal target of these protozoa.
Therefore, mechanisms by which protozoal infections manipulate the BMEC
structure and function is a topic of particular importance (Elsheikha and Khan 2010).
Table 4.10 gives a complete idea of how different parasites gain access to the CNS.

Parasites can reach the CNS through CVOs via the bloodstream even without
invading the brain parenchyma and/or prior to neuroinvasion. From the CVOs
parasites can potentially affect neuronal functions at distinct brain sites, through
humoral parasite–host interaction and/or axonal retrograde signaling. A detailed
experimental model provided by Trypanosoma brucei showed, that the parasites
reside for some time within the CVOs before crossing the BBB (Kristensson et al.
2010).

4.6.1 CNS Inflammation Due to Protozoal Infections

Every year, with over 500 million clinical cases, cerebral malaria is the most severe
neurological complication of infection with Plasmodium falciparum. Cytokines and
chemokines play a complex role in its pathogenesis and have both protective and
harmful effects on the brain.

Parasite antigens released at schizogony trigger the release of both pro- and
anti-inflammatory cytokines and a critical balance between these mediators is
critical for parasite control (Idro et al. 2010). It has been reported that TNF-alpha,
upregulates ICAM-1 expression on the cerebral vascular endothelium, thereby
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increasing the cytoadhesion of the parasitized RBCs. Near areas of sequestration,
there is increased local synthesis. The timing of this is important since early in
disease, TNF may be protective but prolonged high levels contribute to compli-
cations (Hunt and Grau 2003) including dysregulation of synaptic transmission
(strength, scaling and long-term potentiation) (Clark and Alleva 2009). Several
other cytokines and chemokines are important and in particular, IL-1b, IL-6, and
IL-10 (John et al. 2008), but low levels of the chemokine RANTES is indepen-
dently associated with mortality (John et al. 2006). The role of nitric oxide (NO) is
controversial. The association between NO activity and inducible nitric oxide
synthase with pathogenesis has been inconsistent (Anstey et al. 1996; Cramer et al.
2005). Other inflammatory products such as the metabolites of the kynurenine
pathway—quinolinic (NMDA receptor agonist and an excitotoxin) and kynurenic

Table 4.10 Portals of entry into the host and routes for spread to the CNS of selected human
parasites

Parasite Mode of entry Route of spread to CNS BBB interaction

Schistosoma spp. Schistosoma
spp. Skin, larval
penetratio

Bloodstream as migrating
worms or seeding of eggs

Egg embolization

Plasmodium spp. Skin, mosquito bite Bloodstream in
erythrocytes

Infected erythrocytes
attach to endothelia

Babesia Skin, tick bite Bloodstream Infected erythrocytes
attach to endothelia

Taenia solium Intestine, larval
penetration

Bloodstream Lodge in small cerebral
vessels

Toxocara canis Intestine Bloodstream Choroid plexus; Cross
BBB

Angiostrongylus
cantonensis

Intestine Bloodstream Cross BBB

Gnathostoma
spinigerum

Intestine Along peripheral nerve
roots

?

Acanthamoeba Respiratory tract,
skin

Bloodstream Cross BBB

Balamuthia
mandrillaris

Respiratory tract,
skin

Bloodstream Degrade and cross BBB

Trypanosoma
brucei

Skin, tsetse fly bite Bloodstream Choroid plexus, CVOs
Cross BBB similar to T
cells

Toxoplasma
gondii

Intestinal epithelia Bloodstream in
monocytes

Cross in infected
monocytes

Trypanosoma
cruzi

Skin, bug bite Bloodstream Cross BBB, probably
within monocytes

Encephalitozoon
cuniculi

Respiratory,
intestinal tracts

Bloodstream ?

Naegleria fowleri Nasal cavity Olfactory route No

Adapted from Kristensson et al. (2013)
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acid (NMDA receptor antagonist)—may also be important in pathogenesis.
Quinolinic acid causes seizures in animal models of brain disease while kynurenic
acid is generally thought of as neuroprotective. Excitation by quinolinic acid may
contribute to convulsions in cerebral malaria. In children, there are graded increases
in cerebrospinal fluid concentration across outcome groups of increasing severity.
Because of the role of NMDA receptors in modulating neurotransmission and as
agonists, high levels of quinolinic acid may have long-term deleterious effects on
cognitive functions (Dobbie et al. 2000; Medana et al. 2002). In mouse model of the
disease, an accumulation of activated/effector CD8+ lymphocytes has been
observed that have a duplicitous role in malaria infection—both helping to clear the
parasite from the liver and blood and in orchestrating the damaging
neuro-inflammation seen in cerebral malaria (Lamb et al. 2006).

Toxoplasmosis is caused by the parasite Toxoplasma gondii that can infect
humans in 3 different ways

(a) by ingesting T. gondii tissue cysts (containing bradyzoites) present in the
undercooked meat (especially lamb and pork) of infected animals;

(b) by ingesting highly infectious oocysts (containing sporozoites) present in
water, garden soil, children’s sandboxes, etc., contaminated by infected cat
feces; or

(c) through congenital transplacental transmission of rapidly replicating tachy-
zoites from mothers who become infected during pregnancy (e.g., by changing
the cat litter) and pass the infection to the fetus. Infected fetuses have a high
incidence (almost 50 %) of CNS involvement. Early infection before
20 weeks of pregnancy is associated with severe, persistent neurologic
abnormalities, whereas late infection after 30 weeks is rarely associated with
deficits (Carruthers and Suzuki 2007).

Cerebral toxoplasmosis is an opportunistic infection which typically affects
patients with HIV/AIDS, and is the most common cause of cerebral abscess in these
patients, but in immunocompetent patients, acute encephalitis is rare. After pro-
liferation of tachyzoites in various organs during the acute stage, the parasite forms
cysts preferentially in the brain and establishes a chronic infection, which is a
balance between host immunity and the parasite’s evasion of the immune response.
A variety of brain cells, including microglia, astrocytes, and neurons, can be
infected (Jones et al. 1986; Chao et al. 1993; Fischer et al. 1997b; Halonen et al.
1998). In these cells TLR11 has been reported to be involved in recognition of the
parasite in an experimental model of the disease, leading to generation of down-
stream immune responses (Atmaca et al. 2014). Among the cytokines produced in
response to T. gondii infection, IFN-γ, which is released by T-cells that infiltrate
into the brain following infection, is the most important (Schluter et al. 1995). In
addition to IFN-γ, infection with T. gondii induces a variety of other proinflam-
matory (e.g., IL-1 and TNF-α) and anti-inflammatory (e.g., IL-10 and TGF-β)
cytokines by microglia, astrocytes, and neurons (Fischer et al. 1997a; Schluter et al.
1997, 2001). These cytokines appear to play an important role in regulating the
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resistance of hosts against T. gondii infection in the brain. Other than T cells B cells
(Schluter et al. 1998), NK cells (Schluter et al. 1995), macrophages (Suzuki et al.
2005), and dendritic cells (Fischer et al. 2000) also infiltrate into the brain after
infection.

Human African trypanosomiasis (sleeping sickness; HAT), caused by proto-
zoan parasites of the genus Trypanosoma comes in two variants: East African
(caused by Trypanosoma brucei rhodesiense) and West African (caused by Try-
panosoma brucei gambiense). It has emerged over the last few decades as a major
threat to human health in Africa (currently occurring in 36 countries in sub-Saharan
Africa with about 60 million people at risk of developing the disease) (Kennedy
2004). The clinical course of this disease has two stages. In the first stage, the
parasite is found in the peripheral circulation, but it has not yet invaded the CNS.
Once the parasite crosses the BBB and infects the CNS, the disease enters the
second stage. In T. b. rhodesiense a few weeks after infection, the parasite invades
the CNS and eventually causes mental deterioration and other neurologic problems
leading to death within a few months. However, in case of T. b. gambiense after
1–2 years, following infection, there is evidence of CNS involvement, with per-
sonality changes, daytime sleepiness with nighttime sleep disturbance, and pro-
gressive confusion. Other neurologic signs, such as partial paralysis or problems
with balance or walking may occur, as well as hormonal imbalances. The course of
untreated infection rarely lasts longer than 6–7 years and more often kills in about
3 years. The pathologic substrate of late-stage sleeping sickness is a meningoen-
cephalitis in which cellular proliferation occurs in the leptomeninges, and a diffuse
perivascular white matter infiltration consisting of lymphocytes, plasma cells, and
macrophages is prominent. The perivascular cuffs and adjacent parenchyma contain
markedly activated astrocytes and macrophages, and the white matter contains
pathognomonic morular or Mott cells, which are thought to be modified plasma
cells containing eosinophilic inclusions comprising of IgM (Adams et al. 1986).

Alteration of cytokine levels has been detected in patients with CNS sleeping
sickness. Elevated IL-10 levels were detected in both the plasma and CSF in both
early- and late-stage rhodesiense disease and total, but not free, plasma TNF-α level
were also higher in late-stage disease. However, the source of IL-10 elevation is
unclear. Similar studies in patients with gambiense infection have also reported
elevations of CSF IL-10 levels in late-stage disease, as well as a rise in IL-6 and
IL-8 (MacLean et al. 2001; Lejon et al. 2002). Other abnormalities which have been
reported in patients with CNS HAT include very high CSF levels of prostaglandin
D2 in CSF (Pentreath 1995), which may be related to the marked somnolence, and
raised blood and CSF endotoxin levels that may also contribute to the CNS
pathology (Pentreath 1989). In a mouse model of HAT it has been reported that
astrocytes are activated 14–21 days after infection and prior to the development of
the inflammatory response (Hunter et al. 1992), and those transcripts for several
cytokines such as TNF-α, IL-1, IL-4, IL-6, and IFN-γ can be detected in the brain at
this time (Hunter et al. 1991). Thus, it seems that early astrocyte activation is likely
to be critical regulator in generating the CNS inflammatory response. There is also
evidence for the role of various chemokines such as macrophage inflammatory
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protein (MIP)-2, RANTES, and MIP-1α produced by astrocytes, microglia, and T
cells early in the CNS infection in a rat model (Sharafeldin et al. 2000).

Another form of human trypanosomiasis called Chagas disease is caused by the
parasite Trypanosoma cruzi, which is transmitted to animals and people by insect
vectors that are found only in the Americas; hence, this disease is also referred to as
American trypanosomiasis. CNS involvement is rare, however not unknown in
immunocompromised people (Leiguarda et al. 1990; Pittella 2009). During the
acute phase, amastigotes are rarely found, but inflammatory infiltrates are scattered
throughout the CNS. Moreover, peripheral lymphocytes and antibodies recognizing
neural components were described, suggesting the participation of the immune
system in the genesis of neural lesions. In a mouse model, the disease inflammatory
infiltrates were observed during the acute phase that did not correlate with the
presence of detectable T. cruzi antigens. Infiltrates consisted mainly of CD8+
lymphocytes, although macrophages and a few CD4+ cells were also observed. In
the chronic stage of infection, although neuropathies were a common finding, only
mild inflammatory infiltrates were detected. The results suggested that the presence
of CNS inflammatory infiltrates is not directly related to the presence of parasite
antigens, which in turn indicates that encephalitis resolves during the acute phase of
Chagas’ disease (Silva et al. 1999).

Amebic meningoencephalitis, an extremely rare and sporadic CNS (CNS) in-
fection, is caused by free-living amoebae; specifically, Naegleria fowleri (Cermeno
et al. 2006) and Balamuthia mandrillari (Bakardjiev et al. 2003) as well as species
of Acanthamoeba and Sappinia (Marciano-Cabral 2009). These free-living amoebas
are found in stagnant fresh water pools and can infect humans swimming in the
pools via the nasal route. The infection is nearly always fatal likely because of the
difficulty of diagnosis and poor to marginal response of patients to therapy.
Granulomatous amebic encephalitis (GAE) is equally rare, and usually fatal
infection of the CNS is caused by Acanthamoeba species or Balamuthia man-
drillaris. It usually occurs in people with an impaired immune system or generally
poor health. GAE apparently results from either acanthamebic keratoconjunctivitis,
via an uncommon phenomenon in which amoebae spread from the cornea to the
CNS, or from the hematogenous spread of the ubiquitous organisms from primary
inoculation sites in the lungs or skin to the CNS, where abscesses and focal
granulomatous infections result. Characteristic granulomatous lesions in the CNS
are a result of the host immune response and are most likely composed of CD4+
and CD8+ T cells, B cells, and infiltrating macrophages. The localization of
immune cells in the brain suggests the involvement of multiple cyto/chemokines in
protection as well as in pathophysiological complications. IFN-γ is one of the
earliest cytokines to be involved and may play an important role in the activation of
immune cells. IFN-γ, through the pro-inflammatory network, upregulates the
release of specific cytokines, including TNF-α, IL-6, IL-β and IL-1α, which may
initiate the immune response to the parasite in the brain (Benedetto et al. 2003).
Other studies showed that microglial cells secrete IL-β, IL-α and TNF-α in response
to the parasite (Marciano-Cabral et al. 2000). Interestingly, it has been observed that
microglia primed with IFN-γ and TNF-α exhibit amoebicidal effects, but when
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primed with IFN-γ and IL-6, exhibit amoebistatic effects (Benedetto and Auriault
2002a, b). Cerebral amoebic abscess caused by Entamoeba histolytica infection, is
very rare and not related to immunodeficiency that causes cerebral abscess fol-
lowing haematogenous spread from liver (Stauffer and Ravdin 2003).

Visceral leishmaniasis (Leishmania donovani) is a relatively common infection
and spreads haematogenously in the body but CNS involvement is extremely rare.
Experimentally, L. amazonensis can cause encephalitis with parasites in the cerebral
parenchyma (Abreu-Silva et al. 2003) and there is only one recorded case of CNS
infection by L. donovani in human. A child with drug-refractory visceral leish-
maniasis had meningitis associated with the presence of the parasites in the CSF
(Prasad and Sen 1996).

4.6.2 CNS Inflammation Due to Metazoan
(Helminthic) Infections

Neurocysticercosis is the most frequently encountered parasitic infestation of the
CNS. Originally endemic in underdeveloped countries, predominantly Latin
America, Africa, Asia, and some portions of Eastern Europe, it is becoming
increasingly frequent in North America in immigrant populations. Humans become
accidental hosts for the larval stage of Taenia Solium, (pork tapeworm), by
ingesting contaminated material. The eggs hatch in the stomach and larvae burrow
through the gut wall and become distributed by the circulatory system. There is a
predilection for involvement of the brain. Patients most often present with seizures,
elevated intracranial pressure, focal neurologic abnormalities, and altered mental
status. Asymptomatic infections are also common. Four forms of neurocysticercosis
are described: meningeal, parenchymal, ventricular and mixed. The cysticerci
(hatched larva) are able to survive in the human brain by disarming host defenses.
They secrete prostaglandins and other compounds (paramyosin, taeniastatin, sul-
fated polysaccharides) that inhibit or divert complement activation and cytokine
production, resulting in only minimal host inflammation around the viable cys-
ticercus. In addition, humoral antibodies do not kill the mature metacestode. Tae-
niastatin and other poorly defined factors may also interfere with lymphocyte
proliferation and macrophage function, inhibiting normal cellular immune defenses
(White et al. 1997; Terrazas 2008). The clinical manifestations commonly result
when an inflammatory response develops around a degenerating cysticercus after it
has died that can lead to an encephalitic syndrome in many patients, with temporary
clinical deterioration (Garcia et al. 2003). In mouse model of neurocysticercosis, an
upregulation of all known TLRs, except TLR5, has been reported (Mishra et al.
2006). In another model utilizing Taenia crassiceps, it was reported that specifi-
cally, TLR2-dependent signaling pathways are involved in the recognition of the
parasite and in the subsequent activation of the innate immune system and pro-
duction of inflammatory cytokines, which appear to be essential to limit infection
during experimental cysticercosis (Reyes et al. 2011).

114 K. Dutta et al.



Echinococcosis is a parasitic disease caused by infection with tiny tapeworms of
the genus Echinocococcus. Infection with larvae of E. granulosus causes cystic
echinocccosis and that of E. multilocularis causes alveolar hydatid disease. Both of
the parasites are known to infect brain and form cysts or parasitic tumors. Cyst
rupture is most frequently caused by trauma or during surgical procedures and may
cause mild to severe anaphylactic reactions, even death, as a result of the release of
cystic fluid. Not much is known about the immune reaction in CNS in response to
these cysts; however, systemic reactions are known to happen in case of cyst
rupture (Salunke et al. 2014).

Trichinosis is infection caused by the roundworm Trichinella spiralis. The
parasite gains entry into the body by ingestion of contaminated meat of various
animals. The parasite can infect several organs before it gains entry into the CNS
where it results in encephalitis and meningitis. Trichinella larvae can migrate in
CNS and cause diffuse lesions, obstruction of the blood vessels, and inflammatory
infiltrate. Among the infiltrating cells, eosinophils stimulated by either chemotactic
factor or cytokines, such as interleukin 5, have been reported to kill the larvae and
cause vascular injuries (Bruschi et al. 2008) and TNF-alpha has been reported to
regulate the eosinophil toxicity (Taratuto and Venturiello 1997).

Eosinophilic meningitis can be the result of noninfectious causes or infectious
agents. Among the infectious agents, Angiostrongylus cantonensis (also known as
the rat lungworm) and Gnathostoma spinigerum are the most common. The
infection results in meningitis with a high percentage of eosinophils in the CSF
(Graeff-Teixeira et al. 2009). Pathologically, eosinophilic meningitis is defined as
the presence of ≥10 eosinophils/µL in CSF or at least 10 % eosinophils in the total
CSF leukocyte count (Kuberski 1979, 1981). As eosinophils are not normally found
in the CSF, their presence is suggestive of a number of different etiologies such as
other infections, including Baylisascaris infection, toxocariasis, and neurocys-
ticercosis; malignancies; medications; and the presence of intracranial foreign
bodies (Lo Re and Gluckman 2003). Eosinophils are specialized in exocytotic
degradation of large parasites, through the extrusion of cellular granules and con-
tents. They are considered important effector cells of the adaptive immune response.
Specifically, they are involved in the Th2-type response, which is mediated by a
complex array of cytokines (interleukins 2, 4, 5, 10, 12, 13, 16, and 18 and
transforming growth factor), chemokines (RANTES and eotaxins), and lipid
mediators (platelet-activating factor and leukotriene C4) (Hogan 2007).

Larva migrans is a group of clinical syndromes that result from the movement of
parasite larvae through host tissues. Visceral larva migrans occurs when parasitic
larvae migrate through the internal organs of the host, CNS infections being the
most serious form of the disease. Toxocara canis and T. cati are the most important
causes of visceral larva migrans in humans, even though Baylisascaris procyonis,
and Ascaris suum have also been reported to be involved (Beaver 1959). Infections
with these parasites are manifested as acute eosinophilic meningoencephalitis
(Othman 2012).

Strongyloidiasis is caused by the nematode Strongyloides stercoralis. Other
Strongyloides include S. fülleborni, which infects chimpanzees and baboons and
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may produce limited infections in humans. The larvae of the parasite may some-
times develop rapidly into the infective stage in the gut where they penetrate the
intestinal lining instead of passing out of the body in the feces, as occurs normally.
This modification of the life cycle, called internal autoinfection, explains persistent
strongyloidiasis, which can last as long as 40 years in people who have moved to
areas where the infection is not generally found (Pittella 2013). Autoinfection may
produce heavy infections, dissemination to other organs and severe disease, espe-
cially in people with reduced immunity such as those receiving corticosteroids or
other immunosuppressive therapy, or those with acquired immune deficiency due to
retroviruses such as human T cell lymphotropic virus-1 (HTLV-1) (Takayanagui
et al. 1995). CNS involvement includes parasitic meningitis (eosinophilic), brain
abscess, and diffuse invasion of the brain (Dokmeci et al. 2013; Woll et al. 2013).
S. stercoralis antigens activate eosinophils; induce the expression of MHC class II
and T-cell co-stimulatory molecules. Activated eosinophils in turn stimulate the
infiltrating T cells for antigen-specific immune responses (Padigel et al. 2006).
Eosinophils are also believed to function as APCs for the induction of the primary
and secondary Th2 immune responses to S. stercoralis (Padigel et al. 2007) indi-
cating an essential role for eosinophils in the interface between innate and adaptive
immune responses. Reports have shown that both eosinophils and neutrophils were
found to be required in the protective innate immune response while only neu-
trophils were necessary for the protective adaptive immune response to larval
S. stercoralis (Galioto et al. 2006).

Schistosomiasis is an acute and chronic parasitic disease caused by trematodes
of the genus Schistosoma. There are two major forms of schistosomiasis—intestinal
(caused by Schistosoma mansoni, Schistosoma japonicum, Schistosoma mekongi,
Schistosoma guineensis and related S. intercalatum) and urogenital (caused by
Schistosoma haematobium). Found predominantly in tropical and sub-tropical cli-
mates, schistosomiasis infects 240 million people in as many as 78 countries, with a
vast majority of the burden occurring in Africa. Schistosomiasis ranks second only
to malaria as the most common parasitic disease. Neuroschistosomiasis is an
ectopic form of the disease that occurs when ova and or adult worms reach the CNS
either when the ova are carried to the CNS through arterial or retrograde venous
blood flow via the valveless perivertebral plexus of Batson, being deposited any-
where along the path of the blood flow, or the ova are deposited in situ after the
anomalous migration of adult worms (Ferrari and Moreira 2011). Neuroschisto-
somiasis is mainly associated with S. japonicum infection. Involvement of the CNS
in S. mansoni infection is neglected and underestimated. Neuroschistosomiasis can
be classified into cerebral, spinal, and encephalomyelitic forms in the course of an
acute or chronic infection (Vale et al. 2012). The most common site of clinically
significant NS is the spinal cord where the pathological findings include a granu-
lomatous intramedullary mass in the caudal spinal cord, radicular involvement with
granulomatous changes surrounding the conus medullaris and nerve roots of the
cauda equina, necrotic exudative granulomas and hemorrhage, and asymptomatic
deposition of ova in the spinal cord (Scrimgeour and Gajdusek 1985; Carod Artal
et al. 2004). The granulomatous reaction of the host to the presence of the ova is the
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major factor in the pathogenesis of schistosomiais. Granulomas are strictly medi-
ated by CD4+ T helper (Th) cells specific for egg antigens and can occur in
environments dominated by either Th-1 or Th-2 type cytokines. The immune
response to the antigens released from the ova is at a maximum intensity in the early
stages of infection, leading to the formation of necrotic-exudative granulomas and
the immune response declines over the course of the infection. It is followed by a
spontaneous downregulation of the granulomatous response, characterized by
delayed dermal reaction and production of cytokines and macrophage inhibitory
factor. Even in presence of strong eosinophil stimulation promoter cytokines pro-
duction declines concurrently with the waning of the granulomatous inflammation;
this waxing and waning phase is followed by fibrosis which cumulative and mostly
irreversible. Thus, the three stages of the granulomatous reaction (necrotic-
exudative, productive and fibrotic) are strictly dependent on the evolution of the
immunological response and the interaction between host and infection
(Nascimento-Carvalho and Moreno-Carvalho 2005).

Paragonimiasis, is caused by infection with a number of species of trematodes
belonging to the genus Paragonimus. The most common are P. westermani,
P. heterotremus, P. philippinensis, P. africanus, P. uterobilateralis, P. caliensis,
P. kellicotti and P. mexicanus. Ectopic paragonimiasis may result from erratic
migration of the juvenile worms: the most frequent locations include the abdominal
cavity and subcutaneous tissues and, most frequently, the brain: cerebral parag-
onimiasis is a severe condition that may be associated with headache, visual
impairment, and epileptic seizures (Kohli et al. 2015). Not much is known about the
detailed mechanism of cerebral inflammation caused by this parasite but it is
believed to be mediated by eosinophils (Shin et al. 2005) as in the case of other
trematodes. Another type of similar ectopic parasitic infection of the CNS is
cerebral fascioliasis caused by two species of trematodes—Fasciola hepatica and
F. gigantic. Eosinophilia (>500/mm3) is observed in 96 % of cases of infection and
with 2/3rd of the cases have general leukocytosis (>10,000/mm3) (Mas-Coma et al.
2014).

4.7 Prion Infections in CNS

Prion diseases or transmissible spongiform encephalotheis (TSEs) represent a
family of neurodegenerative disorders associated with the loss of brain cells and
caused by proteins called prions (derived from ‘protein’ and ‘infection’). The dis-
eases are found in both humans and animals, such as Creutzfeld–Jakob disease and
mad cow disease, respectively. Although mostly harmless, prions can transform
into infectious agents, which accumulate in the brain and destroy the nervous tissue.
Prion diseases are caused by the templated misfolding of normal cellular prion
protein (PrPC) into an abnormal form (PrPSc) that predominantly has a β-sheet
structure and may show the biochemical properties of amyloid (Prusiner 1982).
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Prion diseases have been hypothesized to be caused by misfolding of cellular
prion protein that has been found to affect majorly immune-competent hosts.
Although contradictory but several reports support the theory that disease-
associated PrP gets deposited in lymphoid follicles and replicates in follicular
dendritic cells (FDC) (Brown et al. 1999; Bruce et al. 2000; Bencsik et al. 2001;
Lezmi et al. 2001). In addition FDCs have been hypothesized to act as the gateways
to the CNS in case of peripheral infection of prion agents. Various studies con-
ducted in transgenic mouse models suggest that in case of peripheral route of
infection for prion pathogenesis the immune system plays a pivotal role in the
propagation of the disease. Innate immune system is considered to be a protective
system that is older in evolutionary terms than the adaptive immune system and
forms the first line of defence to any invading pathogen. Pattern recognition
receptors, such as TLRs, CLRs, NLRs and RLRs forms an integral part of innate
immune system that helps to recognize the PAMP of the invading pathogens (Akira
and Takeda 2004; Fritz et al. 2006; Geijtenbeek and Gringhuis 2009; Takeuchi and
Akira 2009). In addition to these the innate immune system comprises of both
cellular (inflammatory) and proteinaceous components that mobilizes rapidly in
response to any alarming signals from the epithelia or resident innate immune cells.
Hence in case of prion diseases, it is believed that the interaction between the innate
immune system and prion agents in the earlier stages of infection is important for
the disease progression. Epithelial and microfold cells form the first physical barrier
to the infection. Since CNS happens to be the effecter organ of the prion diseases as
discussed earlier; the distance between the sites of entry into the host (i.e., after
escaping through the first physical barrier) to the FDC and subsequently the CNS
becomes an important factor in prion pathogenesis. Thus, from the above discussion
it is clear that rather than penetrating through the skin epithelial layers prion agents
invades through oral and nasal routes more efficiently. The specialized microfold
cells (M cells) localized to the follicle-associated epithelium (FAE) of intestinal
Peyer’s patches form the major gateway to the prion agents through the oral and
nasal pathways. Albeit there have been reports on enterocyte derived extracellular
vesicle and lumenal sampling by dendritic cells (DCs) to be other possible gateways
(Rescigno et al. 2001; Kujala et al. 2011). Complement system provides the first
active response to prion agents. It has been reported to opsonise the prion or TSE
agents via the classical complement activation pathway involving complement
components including C1q and C3 and hence aid in their targeting to the lymphoid
follicles. C1qa, C2 or C3 deficient animal models have been observed to show a
better peripheral system response to prion pathogenesis (Klein et al. 2001). The role
of complement system in CNS is debatable.

Mast cells have been previously reported to have a higher expression level of
prion proteins (PRPC) that make mast cells to be an interesting subject among the
components of the innate immune system in the context of prion pathogenesis
(Haddon et al. 2009). In CNS mast cells shed the PRPC via a proteolytic or lypolytic
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cleavage mechanism by removing the glycosylphosphatidylinisotol (GPI) anchor
from the prion protein. This makes the substrate available for the prion agents for
further conversion into misfolded proteins (Haddon et al. 2009). The accumulation
of misfolded proteins in brain is potent to amyloid formation in the brain even
without clinical prion disease symptoms. While in peripheral system the activation
of mast cells rely on C3a and CCL3 since there is little evidence of the induction of
an adaptive immune response and specific anti-prion antibody generation during
pathogenesis. Mononuclear phagocytes (MNPs) form an integral part of the innate
immune system. Due to their diversity MNPs can be broadly categorized into
following:

Fig. 4.4 Innate immunity and prion pathogenesis. Prions invade through the epithelial layers or
enter through the oral route to enter the host system. Thereafter through various mechanisms like
cell mediated or hematogonous spread prions migrate to the blood and enters the Central Nervous
System (CNS). During the process the innate immune system both cellular and proteinaceous
components play a major role in the prion pathogenesis. Adapted from Bradford and Mabbott
(2012) (open access)
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(i) Resident cells with degradative functions
(ii) Resident cells with antigen presenting functions
(iii) Systemic circulating cells responsive o inflammatory stimuli.

Due to the non-inflammatory nature of the disease the circulating MNPs are of
less importance in the current context of the study. Macrophage has been evidenced
to play a crucial role in degradative and prion clearance and of present is a critical
therapeutic target in prion pathogenesis (Sassa et al. 2010). Antigen presenting cells
(APCs) similar to complement system mediate the transportation of prion agents to
lymphoid tissues. Depletion model experiments involving CD11c-expressing cells
(a commonly used marker indicative of classical DC) have revealed the altered prion
pathogenesis in cases of infection through oral and intraperitoneal routes. The CNS
resident MNP, microglia however does not respond directly to the presence of
misfolded prion protein but requires priming by other CNS cell types like neurons
and astrocytes (Marella and Chabry 2004). Hence, MNPs are of considerable interest
in developing therapeutic strategies against prion pathogenesis. Role of other
components of innate immune system such as granulocytes, natural killer cells, γδT,
megakaryocytes and platelet cells need further in-depth study to confirm their
importance in the context of prion infection. Hence, from the above discussion and
prior findings it becomes clear that the innate immune system function in disease
pathogenesis operates via non- PRPC dependent mechanism(Loeuillet et al. 2010).
Then again it gives rise to another question that what actually differentiates the
components of the innate immune system in detecting the prions? There have been
few reports that answer the question that stress upon the ability to detect prion
protein gene (Prnp). Since the mature protein is labile or difficult to detect, their
corresponding mRNA message might be helpful in answering the differential ability
of the innate immune response (Ford et al. 2002). It has been observed that Prnp
expression levels are highest among the macrophages, DC, microglia, Langerhans
cells, and IFN-producing killer DCs as shown in Fig. 4.4.

Trangenic mouse models have been used to study the effect of various genes in
the context of prion pathogenesis. Various genes have been proven to play active
and few to play passive roles in the progression of prion infection. Knockout of
Prnp also resulted in complete resistance to prion disease (Bueler et al. 1993). But
majority of such knockdown studies have concluded that depletion model for a
particular gene is not a solution to block prion infection. Hence, there is need of
multiple gene targeting. Hence, a pathway analysis of innate immunity associated
genes implicated in prion pathogenesis and determined major host upstream reg-
ulators of prion pathogenesis-associated gene expression helps in drafting an
effective strategy against the disease (Bradford and Mabbott 2012).

In conclusion, innate immune system plays an important role in the initial stages
of prion infection starting from its entry to getting transferred to the CNS. In the
peripheral and CNS too the innate immune system actively responds to the prion
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proteins and alters the progression of the disease. Among the various components
of the innate immune system the MNPs hold critical importance. Hence, further
in-depth studies along with therapeutic strategies involving multiple gene targeting
would hold promising future in prion research.
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5Demyelinating Diseases
and Neuroinflammation

Manmeet Singh and Jayasri Das Sarma

Abstract
Demyelination is a neuropathological condition of the nervous system, where the
myelin sheath of neurons is damaged. This damage impairs the conduction of
signals in the affected neurons. Several central nervous system (CNS) demyeli-
nating disorders have been described in humans including, multiple sclerosis
(MS), neuromyelitis optica (Devic’s disease), acute disseminated
encephalomyelitis, and osmotic demyelination (central pontine myelinolysis,
extrapontine myelinolysis). The primary cellular target in demyelination pathol-
ogy is believed to bemyelin itself or the myelin-forming cells, oligodendrocytes in
the CNS and Schwann cells in the peripheral nervous system (PNS). The
mechanisms of demyelinating diseases are essentially unknown. It has been
apparent in several current studies that demyelination/axonal loss occurs mainly
by inflammation composed predominantly of lymphocytes and monocytes/
macrophages. However, evidences suggest that demyelination/axonal loss may
not be entirely immune mediated and could be due to direct virus or toxin-induced
damage. Microglia, the major resident immune cells in the CNS, are considered as
the key cellular mediators of neuroinflammatory demyelinating processes.
Chronic/remitting neurological disease such as MS has long been considered an
inflammatory autoimmune disease with the infiltration of peripheral myelin-
specific T cells into the CNS. With the rapid advancement in the field of microglia
and astrocytic neurobiology, the term neuroinflammation progressively started to
denote chronic CNS cell-specific inflammation in MS. The direct glial responses
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in MS are different from conventional peripheral immune responses. The presence
of activated microglia in the chronic active inflammatory demyelinating lesions is
the foundation of neuroinflammatory pathology of demyelination.

Abbreviations
ADEM Acute disseminated encephalomyelitis
BBB Blood–brain barrier
CNS Central nervous system
EAE Experimental autoimmune encephalomyelitis
MBP Myelin basic protein
MHC Major histocompatibility complex
MRI Magnetic resonance imaging
MRS Magnetic Resonance spectrometry
MS Multiple Sclerosis
NAWM Normal appearing white matter
NMO Neuromyelitis optica
PAI-1 Plasmin activator inhibitor
PLP Proteolipid protein
PML Progressive multifocal leukoencephalopathy
PNS Peripheral nervous system
PP-MS Primary progressive multiple sclerosis
RORγt Retinoic acid receptor-related orphan receptor γt
RR-MS Relapsing-remitting multiple sclerosis
SP-MS Secondary progressive multiple sclerosis
TCR T cell receptor
TLR Toll-like receptor

5.1 Introduction

The myelin sheath is a greatly extended and modified plasma membrane that
insulates axons in a spiral fashion and is essential for rapid propagation of neuronal
action potentials (Fig. 5.1). In comparison to most biological membranes it has a
high lipid to protein ratio with cerebroside (galactosyl ceramide) as the most typical
lipid, and myelin basic protein (MBP) and proteolipid protein (PLP) as main protein
components. Intertwining hydrocarbon chains of sphingomyelin serve to strengthen
the myelin sheath (Fig. 5.2). Oligodendrocytes create myelin for the central nervous
system (CNS), while Schwann cells myelinate the axons of the peripheral nervous
system (PNS) (Fig. 5.3). In myelinated nerve fibers, action potentials propagate
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from one neuron to another by saltation and result in faster propagation than
unmyelinated nerve fibers. Neural cells in coordination with glial cells (oligoden-
drocytes, microglia, astrocytes, and other glia cells) maintain homeostasis within
themselves and also with the peripheral immune cells across the blood–brain barrier
(BBB) (Fig. 5.4). Cytokines are major factors that play a role in response to any
physical or physiological injury resulting in perturbation of the resident state of the

Fig. 5.1 Electron microscopic appurtenances of normal white matter: a section of white matter,
b single neuronal axon wreathed by myelin sheath, c higher magnification picture of myelin
(Unpublished data)

Fig. 5.2 Constituents of myelin
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CNS. Demyelination is an acquired disorder resulting from pathological conditions
that could be due to immunological, genetic, environmental, or infectious factors, in
which normal myelin degenerates, exposing axons to the extracellular environment
and leading to reduction in function of normal neuron-to-neuron communication.
When the myelin sheath is damaged, nerve impulses slow or even stop, causing
neurological problems. Among the demyelinating diseases, multiple sclerosis
(MS) is the most common demyelinating disease of the CNS. As opposed to the
destruction of normal myelin that is seen in demyelination, dysmyelination refers to
malformed and defective myelin sheath. Dysmyelination often arises from heredi-
tary mutations that affect the synthesis and formation of myelin.

Fig. 5.3 Showing
oligodendrocytes involved in
myelination of axons in the
central nervous system and
Schwann cell in the peripheral
nervous system
a oligodendrocyte is
encircling multiple neurons
by their projections.
b Showing Schwann cells
encircling the axon of PNS
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Fig. 5.4 Showing different cell types in the nervous system, endothelial cells, vessels, microglia
cell, oligodendrocytes, neural cells communicating with each other

The pathological hallmark of MS is the presence of focal demyelinated plaques
with partial axonal preservation and reactive glial scar formation in the white and
gray matter of the CNS. In addition, there is diffuse damage throughout the normal
appearing white and gray matter. With disease progression, these alterations are
associated with increasing global brain atrophy. While MS is the most common
neurological diseases in the CNS there are also other types of demyelinating dis-
ease, including the following:
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• Idiopathic optic neuritis—inflammation of the optic nerve in one or both eyes
• Neuromyelitis optica (NMO; Devic’s disease)—inflammation and demyelina-

tion of the central nervous system, especially of the optic nerve and spinal cord
• Transverse myelitis—inflammation of the spinal cord
• Acute disseminated encephalomyelitis—inflammation of the brain and spinal

cord
• Adrenoleukodystrophy and adrenomyeloneuropathy—rare, inherited metabolic

disorders.

MS and other demyelinating diseases most commonly result in vision loss,
muscle weakness, muscle stiffness, and spasms, loss of coordination, loss of sen-
sation, pain, and changes in bladder and bowel function. A major challenge in the
field of pathology in MS came from recent developments in magnetic resonance
imaging (MRI) and spectroscopic (MRS) techniques. MRI and MRS permitted the
study of the dynamic evolution of brain and spinal cord damage during the course
of the disease.

Different types of actively demyelinating lesions are found in MS brains in the
early stage of the disease, which apparently reflect different immunopathologic
mechanisms of their formation (Lucchinetti et al. 2000). All these pathologies
develop on the background of an inflammatory reaction and there is no major
quantitative or qualitative difference in the extent of inflammation or the compo-
sition of inflammatory infiltrates (Lucchinetti et al. 2000). Inflammation in
demyelinating lesions is mediated most often by a T cell-driven process, which
leads to profound activation of macrophages and microglia. However, it seems that
these basic lesions are modified by differences in the fine tuning of the inflam-
matory reaction, by recruitment of additional effectors mechanisms, as well as by
the reaction of the target tissue in response to the inflammatory reaction. It was
originally described that the respective patterns of tissue destruction are common in
all active lesions of an individual patient, but differ between patients or patient
subgroups (Lucchinetti et al. 2000). This suggests a genuine interindividual
heterogeneity between patients, possibly determined by the genetic background
(Lassmann et al. 2001). The patterns of demyelination clearly segregate in the
extreme variants of inflammatory demyelinating diseases, Devic’s NMO being
associated with antibody and complement-mediated tissue damage (Lucchinetti
et al. 2002) and Balo’s concentric sclerosis with hypoxia-like tissue injury
(Stadelmann et al. 2005).

5.2 Neuro-Immunopathogenesis
of Multiple Sclerosis (MS)

MS is a heterogeneous and complex disease that is characterized by inflammation,
demyelination, and axon degeneration in the CNS. This pathology most likely
results from a primary defect in the immune system that targets components of the
myelin sheath, resulting in secondary effects on neurons.
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MS lesions are characterized by infiltration of lymphocytes and
antibody-producing plasma cells into the perivascular region of the brain and spinal
cord white matter, an increase in microglia and astrocytes, and demyelination
(Frohman et al. 2006). The deposition of antibodies and complement around
demyelinated lesions (Frohman et al. 2006) and axonal degeneration in the pro-
gression phase of MS have also been observed (Trapp and Nave 2008). When
damage and the ensuing inflammatory response are transient, remyelination of
nerves can take place as part of normal repair. However, in the presence of chronic
inflammation, such as in MS, remyelination is severely impaired and leads to axon
degeneration and the eventual demise of the neuron.

MS pathology and pathogenesis are apparently much more complex than orig-
inally anticipated. Pathology favors the concept that all neurodegenerative events in
MS are driven by the inflammatory component, although this view is still contro-
versial. From this perspective, extensive research efforts have been devoted to
understand the nature of the inflammatory process and to ameliorating tissue injury
by therapies directed against the immune response. Focal white matter lesions in
MS, the classical plaques, are defined by the triad of inflammation, primary
demyelination, and reactive astrocytic scar formation. Anti-inflammatory,
immunomodulatory, or immunosuppressive treatments prevent, at least in part, the
development of new plaques (Noseworthy et al. 2000).

5.2.1 Inflammation, Neuroinflammation
and Neurodegeneration

While some chronic/remitting neurological demyelinating diseases, such as MS,
have long been recognized as inflammatory, the term neuroinflammation has come
to denote chronic, CNS-specific, inflammation-like glial responses that do not
reproduce the classical characteristics of inflammation in the periphery but that may
engender neurodegenerative events. New understanding of neuroinflammation has
come from rapid advances in the field of microglial and astrocytic neurobiology
over the past decade. These advances have led to the recognition that glia, primarily
microglia, respond to tissue insult with a complex array of inflammatory cytokines
secretion. Microglia are now recognized as the prime components of an intrinsic
brain immune system (Stadelmann et al. 2005), and as such they have become a
main focus in cellular neuroimmunology and therefore in neuroinflammation. This
is not the inflammation of the adaptive mammalian immune response, with its array
of specialized T cells and the made-to-order antibodies produced through complex
gene rearrangements. This is, instead, the innate immune system, upon which
adaptive immunity is built (Frohman et al. 2006).

Recent insights gave rise to the concept that in MS neurodegeneration may occur
independently of the peripheral inflammatory process. This view was further sup-
ported by the poor efficacy of current anti-inflammatory, immunomodulatory, or
immunosuppressive treatments to stop clinical deterioration when patients have
entered the progressive phase of the disease (Noseworthy et al. 2000).
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In contrast to classic neurodegenerative diseases, all lesions in MS, regardless of
the stage and type of disease, are associated with inflammation (Frischer et al.
2009). Progressive MS rather reflects a compartmentalization of the inflammatory
response in the CNS than absence of inflammation. Based on these observations it
was suggested that brain damage in MS is mediated by two possibly inde-
pendent events—(1) an inflammatory reaction, which drives the formation of focal
white matter lesions, and, (2) neurodegeneration, which is responsible for diffuse
and progressive brain damage (Burt et al. 2003; Coles et al. 2006). This view was
further boosted by a study on very early MS lesions in a patient who died a few
hours after clinical disease onset due to a lesion located in the brainstem (Barnett
and Prineas 2004). In this case, oligodendrocyte apoptosis and initial demyelination
were associated with microglia activation, but no infiltration of the lesion par-
enchyma by T cells was found. From these studies, the possibility arises that MS is
triggered by degeneration of oligodendrocytes and myelin, which is followed
by an inflammatory reaction, which potentiates tissue injury.

Inflammation is the primary event in MS, which drives subsequent tissue injury.
However, preexisting neurodegeneration may amplify tissue injury in a
proinflammatory environment (Perry et al. 2010). Neurodegeneration always leads
to microglia activation, which primarily is involved in removal of tissue debris and
provides neuroprotection. Such preactivated microglia are, however, more easily
converted into highly pathogenic effector cells, when exposed to proinflammatory
cytokines in an inflammatory environment (Perry et al. 2010). Thus, preexistent
neurodegeneration may render the nervous system more susceptible to
inflammation-mediated tissue injury. Innate immune response in the brain is con-
sidered to be a potentially pathogenic factor in a number of CNS diseases that lack
the prominent leukocytic infiltrates of adaptive immune responses, but that do have
activated microglia and astrocytes, i.e., neuroinflammation. Thus, the term neu-
roinflammation can be described as lesions where limited neuronal insults trigger
glial cell activation without breakdown of the blood-brain barrier and without
concomitant leukocyte/blood monocyte infiltration.

5.3 Neuroimmunopathology of Demyelination
and Axonal Loss in MS

Both the innate and acquired immune systems are involved in MS pathology.
Several lines of evidence demonstrate that immune cells outside of the CNS such as
dendritic cells are key players in MS pathogenesis (Bailey et al. 2007). Although
autoreactive T and B cells play major roles in MS pathology, it is the innate
immune system that initiates the disease. For example, naive T cells recognize the
myelin-specific antigen MBP when this autoantigen is presented in the context of
Major Histocompatibility Complec (MHC) by antigen-presenting cells such as
dendritic cells, macrophages, and microglia. Antigen-presenting cells not only
present the antigen to T lymphocytes but also provide costimulation and produce
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the cytokines required for T cells to differentiate into effector cells. Figure 5.5
shows a simplified view of MS pathogenesis within the CNS.

5.3.1 Activation of T Helper Cells

Innate immune cells influence differentiation of distinct subsets of T helper cells in
demyelination (Marta et al. 2009). Recently, phagocytosis of infected apoptotic
cells was reported to be a physiological signal that induces activation of effector T
cells in vivo (Torchinsky et al. 2009). Autoreactive T and B lymphocytes play roles
as amplifiers and effectors in MS. Th1 helper T cells were initially thought to play a
crucial role in MS pathogenesis. However, characterization of specific functions of
IL-12, IL-23, and other IL-12 family members has uncovered essential roles for a
subset of T helper cells called Th17 cells in the pathogenesis of MS (Cua et al.
2003). These Th17 cells secrete members of the IL-17 proinflammatory cytokine
family, especially IL-17A and IL-17F (Korn et al. 2009), and play a key role in
infection by pathogens and in gut immunity. The differentiation and activation of
Th17 cells requires signaling though the T cell receptor (TCR) as well as a mixture
of cytokines produced by antigen-presenting cells. These include IL-1β for human
and IL-6 for mice, and TGF-b as well as IL-23 and other cytokines. Th17 cells also
secrete IL-21, which induces activation of Th17 cells in an autocrine manner

Fig. 5.5 Schematic diagram depicting the pathogenetic steps and contributing factors that lead to
tissue damage in MS
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(Korn et al. 2009). The retinoic acid receptor-related orphan receptor γt (RORγt)
plays a key role in Th17 cell differentiation. Treg cells, which are anti-inflammatory
helper T cells, play an opposing role by inhibiting the activity of Th17 cells.
Differentiation of this cell type requires the Foxp3 transcription factor (Littman and
Rudensky 2010).

5.3.2 Autoreactive T Cells

It is widely believed that MS is driven by autoimmunity. This view is highly
influenced by experimental data on autoimmune encephalomyelitis, a disease which
leads to a pathologic process in the CNS featuring many aspects of MS (Storch
et al. 1998). This view is further supported by immunologic studies, which
demonstrate the existence of autoreactive T cells (Pette et al. 1990) and autoanti-
bodies in MS patients (O’Connor et al. 2001). Anti-MOG antibodies, which are
potentially demyelinating, can be extracted from MS lesions (O’Connor et al.
2005). Furthermore, MHC class II complexes with MBP peptides have been
detected on antigen-presenting cells in MS lesions (Krogsgaard et al. 2000).
Unfortunately, however, a single MS-specific autoimmune reaction has not been
identified, and autoreactive T cells and autoantibodies are also part of the normal
immune repertoire of healthy individuals (Pette et al. 1990). Taken together, these
data suggest that autoimmune reactions play a role in the pathogenesis of the
disease: whether they are the primary cause of the disease or provide a secondary
mechanism, amplifying the formation of the lesions, is yet unresolved. Another
important aspect regarding autoimmunity in MS is that until recently only class II
restricted CD4+ T lymphocytes have been regarded as effector cells mediating CNS
autoimmunity. More recently, however, new experimental models were developed
which clearly show that class I MHC restricted CD8+ T cells, too, can induce brain
inflammation and organ-specific autoimmunity (Huseby et al. 2001; Sun et al.
2001). CD8+ cells dominate the T cell infiltrates in all MS lesions, regardless of the
clinical subtype of the disease or the stage of the lesion, and these cells show
dominant clonal expansion in the lesions. Furthermore, such CD8+ T cell clones
may remain stable in the patient’s immune system for several years (Skulina et al.
2004) and autoreactive class I restricted T cells can be found in the circulation of
MS patients (Friese and Fugger 2005). It is possible, but so far undetermined, that
autoimmunity, mediated by such T cells, may be more specific for MS than that
mediated by class II restricted CD4+ T cells. Alternatively, the clonally expanded
T cell response may also be directed against a foreign (infectious) antigen.

Autoreactive T cells, both of CD4+ and CD8+ T cell phenotype, can be isolated
from peripheral blood of MS patients (Pette et al. 1990; Kerlero de Rosbo et al.
1997), and macrophages or microglia cells within MS lesions may express antigenic
peptides from CNS proteins on their surface (Krogsgaard et al. 2000). Furthermore,
clonal expansion of T cells within the lesions suggests their antigen-driven prolif-
eration (Babbe et al. 2000; Skulina et al. 2004). Despite these advances, major
questions are still unresolved. It is not known whether autoreactive T cells in MS
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lesions are the exception or the rule. Another problem in the interpretation of the role
of T cells in lesion pathogenesis in MS is that leukocytes may not necessarily be
harmful. Moreover, T cells, B cells, and monocytes can produce neurotrophins
(Kerschensteiner et al. 1999; Moalem et al. 2000), and brain-derived neurotrophic
factor, in active MS plaques (Kerschensteiner et al. 1999; Stadelmann et al. 2002).

Cytotoxic T cells are able to destroy oligodendrocytes as well as axons
through specific recognition of their cognate antigen, presented by MHC class I
molecules (Evans et al. 1996; Medana et al. 2001). In experimental models this
may lead to the formation of large confluent demyelinating plaques, closely
similar to those seen in MS (Saxena et al. 2008). In the brains of MS patients
MHC class I molecules are widely expressed in all tissue components (Hoftberger
et al. 2004) and CD8+ T cells, which express granzyme B as a marker for
cytotoxic activation, are sometimes found in close contact to oligodendrocytes in
acute MS lesions (Neumann et al. 2002). T cells can also destroy neurons by
antigen-independent mechanisms (Nitsch et al. 2004), possibly involving death
receptors of the tumor necrosis factor family (Aktas et al. 2005). Such death
receptors are also expressed in actively demyelinating MS lesions (Dowling et al.
1996; D’Souza et al. 1996; Bonetti and Raine 1997) although their specific
cellular expression is unclear.

5.3.3 Microglia and Macrophages

Besides T lymphocytes, macrophages and activated microglia cells are abundant in
active MS lesions. These cells can form close contacts with myelin sheaths as well
as dystrophic axons (Ferguson et al. 1997; Trapp et al. 1998) and they are engaged
in the removal and digestion of tissue debris (Bruck et al. 1995). These phagocytes
are derived both from hematogenous monocytes as well as from the pool of local
microglia (Li et al. 1996). In early MS lesions, macrophages which express the
chemokine receptors CCR1 and CCR5 are abundant in the perivascular space. This
chemokine receptor profile is a typical feature of circulating monocytes, which can
pass the BBB. With maturation of the lesions, the number of CCR1-positive
phagocytes decreases dramatically, while CCR5 appears on the majority of cells,
which are engaged in tissue removal (Trebst et al. 2001). The dynamics of CCR1
versus CCR5 expression in the lesions suggests that the majority of phagocytes
within active MS lesions come from the microglia pool and this is supported by the
observation of an activation gradient of microglia from the periplaque white matter
into the active plaques (Lassmann 2011).

Phagocytes in MS lesions can express a large number of molecules, which are
engaged in migration, phagocytosis, antigen presentation, and tissue injury. They
include adhesion molecules (Cannella and Raine 1995), chemokine receptors
(Huang et al. 2000), scavenger receptors (Fabriek et al. 2005; Marik et al. 2007), Fc
receptors (Ulvestad et al. 1994), MHC molecules (Traugott 1987), costimulatory
molecules (Windhagen et al. 1995; Gerritse et al. 1996), proteases (Cuzner and
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Opdenakker 1999; Lindberg et al. 2001), Toll-like receptors (TLRs) (Bsibsi et al.
2002), and inducible nitric oxide synthase (Liu et al. 2001). Most of these mole-
cules are dominantly upregulated appears to depend upon the type of tissue damage,
the stage of the individual lesion, and the disease stage. Recently, different lesion
types have been identified in patients with active disease, involving T cells and
macrophages alone, pathogenic autoantibodies, or a hypoxia-like tissue injury, most
likely mediated through the action of reactive oxygen and nitrogen intermediates
(Lucchinetti et al. 2000; Aboul-Enein et al. 2003). When comparing these lesions
with each other, major differences in the patterns of phagocyte activation can be
seen. In particular, the plaques with signs of hypoxia-like tissue injury reveal only
mild to moderate expression of immune-driven macrophage activation antigens and
a very low expression of the chemokine receptor CCR5 (Trebst et al. 2001), while
scavenger receptors and enzymes involved in radical production are prominently
expressed (Stadelmann et al. 2005; Fischer et al. 2012). On the contrary, macro-
phages which have ingested tissue debris in nervous system lesions may obtain a
deactivated phenotype (Boven et al. 2006). Therefore, it seems that the local
microenvironment determines the pattern of macrophage and microglia activation
in MS lesions. Activated macrophages can induce demyelination and axonal injury
through a variety of toxic effector mechanisms, including tumor necrosis factor-a
(Probert et al. 2000), proteases (Anthony et al. 1998), reactive oxygen or nitric
oxide species (Smith and Lassmann 2002), or excitotoxins (Lipton 1998). Recently,
phagocytosis of infected apoptotic cells (which trigger TLR signaling) was reported
to be a physiological signal that induces activation of effector T cells in vivo
(Torchinsky et al. 2009).

5.3.4 B Lymphocytes and Plasma Cells

B lymphocytes and plasma cells are another important component of the
inflammatory response in MS lesions (Corcione et al. 2005). They are rare in
early stages of acute and relapsing MS (Frischer et al. 2009). However, their
relative contribution increases with chronicity of the disease (Ozawa et al. 1994)
and they are particularly prominent in inflammatory aggregates in the meninges,
which show features of lymphatic B-cell follicles (Serafini et al. 2004; Franciotta
et al. 2008). B cells and plasma cells produce immunoglobulin within the lesions,
including IgG, IgM, and IgA (Tavolato 1975; Mussini et al. 1977; Esiri 1980).
This is reflected in MS patients by intrathecal immunoglobulin synthesis, which,
when detected in the cerebrospinal fluid, contributes to differential diagnosis.
B cells, however, may also produce a variety of cytokines and chemokines and it
is possible that these factors also contribute to the proinflammatory environment
in MS lesions. Interestingly, systemic elimination of B cells with an antibody
directed against CD20 is an effective therapy for MS patients in early stages of
the disease (Hauser et al. 2008).

150 M. Singh and J. Das Sarma



5.4 Antibody-Mediated Demyelination and Tissue
Destruction

Specific binding of antibodies to myelin or oligodendrocytes is difficult to detect
unequivocally in MS lesions because much of the CNS tissue in this disease is
covered by immunoglobulins, either entering the brain through the leaky BBB or
being locally produced by infiltrating plasma cells (Tavolato 1975). However, in
some lesions a profound accentuation of IgG or IgM staining at sites of active
demyelination can be found, associated with macrophages, present in close appo-
sition to myelin sheaths (Prineas and Graham 1981). In a recent study binding of
immunoglobulin IgG and IgM to oligodendrocytes and axons has been observed in
the majority of acute and chronic active MS lesions (Sadaba et al. 2012).

5.5 Other Factors May Contribute in Demyelination
Pathology

Activated macrophages and microglia in MS lesions express Fc and complement
receptors, which enable them to bind and interact with antibody-opsonized myelin
(Ulvestad et al. 1994). Experimental studies have shown that impaired fibrinolysis
within brain tissue may augment inflammation, demyelination, and axonal injury
(Akassoglou et al. 2004; East et al. 2005). Neuropathologic studies suggest that in
MS lesions, too, fibrinolysis may be impaired (Gveric et al. 2003). Fibrin deposits
were found by immunocytochemistry on macrophages and demyelinated axons,
and these deposits were associated with a decreased fibrinolytic activity within the
plaques. Urokinase and tissue plasmin activator were expressed in macrophages in
the lesions, and plasmin activator inhibitor (PAI-1) was also upregulated (Gveric
et al. 2001, 2003). PAI-1 was bound to tissue plasmin activator, suggesting inhi-
bition of the respective proteolytic activity. An impairment of this cascade may
directly be deleterious to axons and neurons (Gveric et al. 2005) or lead to acti-
vation of microglia through integrin receptors or TLRs (Smiley et al. 2001; Flick
et al. 2004).

5.6 Mechanism of Migration of Inflammatory Cells

The basic mechanisms of T lymphocyte migration through the BBB in the course of
immune surveillance and brain inflammation are well understood. Preactivation of
cells in the peripheral immune system seems to be necessary for them to pass the
barrier (Hickey et al. 1991). Much less is currently known about how B lympho-
cytes and monocytes enter the CNS. Migration of leukocytes through the wall of
cerebral vessels requires the expression and activation of adhesion molecules
(Springer 1994) and the interaction of chemokines with their specific receptors
(Luster 1998). Depending upon the type of leukocyte and the nature of the
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inflammatory process, the cells migrate by a paracellular route through tight
junctions between adjacent endothelial cells or by a transcellular route through
transendothelial cytoplasmic channels (Engelhardt and Wolburg 2004). Leukocyte
migration through cerebral endothelia is not necessarily associated with disturbance
of the BBB for proteins. Impermeable junctions can temporarily be formed between
endothelial cells and transmigrating leukocytes. Besides, the binding of leukocytes
to endothelial cells and specific cell/cell signaling through adhesion molecules and
chemokine receptors, proteases, secreted by leukocytes, are required for paracel-
lular migration and for the dissolution of the vessel’s basement membrane. All three
components of this migration process, the adhesion molecules (Sobel et al. 1990;
Cannella and Raine 1995), the chemokine system (Huang et al. 2000), and the
proteases (Cuzner and Opdenakker 1999), are highly redundant and it is therefore
not surprising that a large number of these molecules have been identified in active
MS lesions (Engelhardt and Ransohoff 2005; Greenwood et al. 2011).

5.7 Axonal Injury and Destruction

The presence of plaques with primary demyelination is the hallmark of the
pathologic diagnosis of MS. This means that myelin sheaths are completely
destroyed and lost, while axons remain at least partially preserved. Nevertheless, it
was common knowledge, dating from the earliest pathologic studies of MS, that
axons are also affected by the disease process (Kornek and Lassmann 1999).
Acutely injured axons have been seen in close contact with macrophages or acti-
vated microglia cells, suggesting their role in axonal destruction and even some
attempts of axonal sprouting have been depicted within lesions (Schirmer et al.
2013). Extensive axonal destruction and loss within plaques were associated with
poor functional recovery (Charcot, 1880). Despite all this knowledge, the impor-
tance of axonal injury in MS was largely ignored until the past two decades. Two
different mechanisms lead to axonal destruction in MS. Fulminant axonal injury in
actively demyelinating lesions is most likely mediated by cells or mediators of the
inflammatory reaction. In addition, however, there seems to be a slowly progressive
axonal loss that occurs in inactive plaques (possibly due to the lack of proper
trophic support), which is largely absent once substantial remyelination takes place.
Axonal loss is profound in chronic MS plaques. Close apposition of activated
macrophages or microglia to dystrophic axons is regularly found (Ferguson et al.
1997; Trapp et al. 1998; Kornek et al. 2000). A variety of proteases (Cuzner and
Opdenakker 1999) and inducible nitric oxide synthase (Liu et al. 2001) are
expressed in macrophages in active lesions. Alterations in the expression of
enzymes, involved in glutamate biosynthesis and degradation, indicate the
involvement of excitotoxic mechanisms (Werner et al. 2001). And, finally, a variety
of sodium (Craner et al. 2004) and voltage-gated calcium channels (Kornek et al.
2001) are aberrantly expressed within axons in MS lesions, which indicate their
involvement in functional disturbances and structural damage.
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Interestingly, not all axons in MS lesions are similarly vulnerable. Axonal loss
mainly affects thin fibers, while thick fibers are much more resistant (Evangelou
et al. 2001). This pattern of affecting thinner fibers is also reflected in the degen-
eration of neurons whose axons project into demyelinated plaques.

5.8 Clinical Subtypes of MS

Based on clinical observations it has been postulated that the pathogenesis of the
disease in the progressive stage of MS is different from that seen in patients with
relapsing-remitting disease.

Based on the clinical observation there are three major forms of MS (Fig. 5.6).
In the early stage of the disease, many MS patients exhibit a relapsing-remitting
(RR)-MS type of disease. RR-MS is the most frequent (85–90 %) and affects
women about twice as often as men. However, with time, the recovery of these RR
patients is impaired and eventually leads to irreversible progression, that is, sec-
ondary progressive MS (SP)-MS. The majority of RR-MS patients develop sec-
ondary progressive (SP)-MS. In contrast, about 10–15 % of MS patients do not
show any remission (Goverman 2009; Sospedra and Martin 2005) and these
patients present with insidious disease onset and steady progression, termed pri-
mary progressive (PP)-MS.

Active demyelination and tissue injury in the progressive stage of MS are
associated with inflammation. There are, however, differences in the nature of the
inflammatory process between early and late stages of the disease. Pathologically,
all the typical features of MS are present in patients with primary progressive
disease, including inflammation and focal plaques of demyelination with reactive
astrocytic scarring (Lassmann 2012; Lassmann et al. 2007), but inflammation
within focal white matter plaques is less severe compared to that in patients with
SP-MS (Revesz et al. 1994). Systematic analysis of cortical demyelination and

Fig. 5.6 Clinical patterns of MS
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diffuse white matter injury revealed that both of these pathologies are present in
PP-MS and SP-MS in about the same extent and severity (Kutzelnigg et al. 2005).

According to the structure and shape, several types of active lesions can be
distinguished (Lassmann et al. 1998). Acute plaques show synchronous myelin
destruction throughout the entire lesion and macrophages within the lesions all
contain myelin degradation products at the same (early) stage of myelin digestion.
Chronic active plaques have an inactive lesion center, which is surrounded by a rim
of macrophages with early myelin degradation products. Slowly expanding active
plaques (Kutzelnigg et al. 2005) also consist of an inactive lesion center and are
surrounded by a rim of macrophages and activated microglia. While acute or
chronic active lesions are most frequent in early MS and become rare in the pro-
gressive stage, slowly expanding lesions show the opposite distribution in relation
to MS course (Frischer et al. 2009).

Based on clinical observations, it has been postulated that the pathogenesis of
the disease in the progressive stage of MS is different from that seen in patients with
RR disease. While new lesions in the cortex and white matter in early MS are
induced by new waves of leukocytes, entering the CNS from the circulation and
being associated with profound BBB leakage, inflammation at least in part becomes
trapped behind a closed or repaired BBB in patients with progressive disease
(Hochmeister et al. 2006).

On MRI, focal white matter lesions are present, although fewer numbers and
smaller lesion areas are seen compared to those found in relapsing or secondary
progressive disease (Thompson et al. 1991; Fu et al. 1998; Pelletier et al. 2003;
Rocca et al. 2003). In contrast, diffuse damage of the NAWM (normal appearing
white matter) and brain atrophy are pronounced. Furthermore, as in SP-MS (Howell
et al. 2011) active tissue injury in the cortex in PP-MS is associated with meningeal
inflammation (Choi et al. 2012).

Thus, all pathological features typical for MS are present in patients with PP-MS
and SP-MS. The relative contribution to the disease process, however, seems to be
different from that seen in RR-MS (Lassmann 2012). New focal white matter
plaques, although present, are rare in progressive MS compared to RR-MS and are
associated with less inflammation. In contrast, slow expansion of preexisting
lesions, cortical demyelination as well as diffuse inflammation, microglia activation,
and axonal injury in the NAWM are extensive in patients with PP-MS and SP-MS.

Oxidative injury seems to be a prime mechanism of tissue injury in RR-MS as
well as progressive MS. Activation of microglia due to accumulating neurode-
generation may further amplify tissue injury in the chronic inflammatory environ-
ment in the brain of patients with progressive MS (Lassmann 2012). Thus, in the
progressive stage the disease process is in part compartmentalized within the brain
and spinal cord and this may explain the failure of current treatments, which pre-
dominantly target the peripheral immune response.
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5.9 Other Primary Demyelinating Diseases

5.9.1 Optic Neuritis

Acute optic neuritis is the most common optic neuropathy affecting young adults. In
its typical form, optic neuritis presents as an inflammatory demyelinating disorder
of the optic nerve. A typical form of optic neuritis can occur, either in association
with other inflammatory disorders or in isolation. The pathophysiology of optic
neuritis in MS has been studied in human beings and in animal models. The optic
nerve lesion is pathologically very similar to MS brain lesions. In the acute phase,
inflammatory demyelination occurs resulting in varying degrees of conduction
block and visual loss. Predominant T cell activation occurs in the acute phase, with
release of proinflammatory cytokines although there could also be B-cell
involvement and microglial activation. Resolution of inflammation and visual
recovery occurs over the next few weeks. Remyelination occurs, although it is
usually incomplete and sodium channels are redistributed over demyelinated seg-
ments. This redistribution improves conduction but can make surviving axons
vulnerable to damage. Visual recovery can be incomplete, probably because of the
effects of persistent demyelination and axonal loss. Advances in optical coherence
tomography, visual evoked potentials, and MRI have provided insight into the
pathophysiological processes and clinical correlations for optic neuritis.

The patterns of demyelination clearly segregate in the extreme variants of
inflammatory demyelinating diseases, Devic’s NMO being always associated with
antibody and complement-mediated tissue damage (Lucchinetti et al. 2002) and
Balo’s concentric sclerosis with hypoxia-like tissue injury (Stadelmann et al. 2005).
Barnett and Prineas, 2004 suggest that MS lesions can also start with pattern III
(hypoxia-like) changes and, when they further actively expand, develop into a
pattern of complement-mediated demyelination (pattern II) (Barnett and Prineas
2004).

5.9.2 Devic’s Neuromyelitis Optica: A Distinct Disease
Entity

NMO is apparently an autoimmune disease directed against an astrocytic antigen,
which is reflected by primary astrocytic damage followed by demyelination and
neurodegeneration. Lennon et al. (2004, 2005) identified a novel autoantibody
response in patients with Devic’s type of NMO. These autoantibodies stain astro-
cytic processes in the perivascular and superficial glia limiting membrane and have
subsequently been found to react with the water channel protein aquaporin 4. The
distribution of this antigen explains well the massive perivascular antibody and
complement deposition in the spinal cord of patients with Devic’s disease (Luc-
chinetti et al. 2002). Lesions in patients with aquaporin 4 antibodies are mainly
located within the optic nerves and the spinal cord; they are destructive, not only
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affecting astrocytes, but also resulting in pronounced myelin, oligodendrocyte, or
axonal injury and loss. In rare cases, however, extensive destructive lesions are also
seen in the brain. In the spinal cord, they mainly affect the central gray matter and
extend over several spinal cord segments. This characteristic appearance is also well
reflected in MRI. T cell-mediated autoimmune reactions against aquaporin 4 have
recently been detected also in NMO patients (Varrin-Doyer et al. 2012). However,
aquaporin 4 antibodies are so far only found in about 70–90 % of patients with
NMO (Lennon et al. 2004; Takahashi et al. 2007) and the pathogenesis of disease in
these aquaporin 4 antibody-negative patients is currently unclear. Recent studies
indicate that some aquaporin 4 antibody-negative NMO patients may have circu-
lating antibodies against an epitope of MOG, which is expressed on the surface of
oligodendrocytes and myelin (Kitley et al. 2012; Rostasy et al. 2013).

5.9.3 Balo’s Disease is Part of the MS Spectrum,
But Involves Specific Additional Mechanisms
of Tissue Injury

Typical Balo’s concentric sclerosis is an acute or subacute inflammatory
demyelinating disease, which leads to very large white matter lesions with con-
centric layering of myelinated and demyelinated tissue (Courville and Cooper
1970) (Balo, 1928) (Fig. 5.7). Typical Balo’s concentric sclerosis is very rare, but
some layers of concentric demyelination are frequently found in actively
demyelinating plaques of patients with acute or early relapsing MS (Barnett and
Prineas 2004; Stadelmann et al. 2005). Thus, Balo’s disease is not a disease entity
distinct from MS, but it reflects an extreme variant of tissue alterations, which to a
lower extent are also present in other MS patients. Concentric demyelination was
exclusively found in lesions which showed the structural features of hypoxia-like
tissue injury, reflected by the loss of MOG and by oligodendrocyte apoptosis. When
these lesions were in the active stage of demyelination, a profound expression of

Fig. 5.7 a Original case of Balo: several anastomoses are located in lower half of lesion, b lesion,
c progress of the pathological process from a center located in a constrained area, showing
formation of bands
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proteins, which are involved in tissue preconditioning was expressed in a small
concentric zone outside the outermost actively demyelinating rim as well as in one
to two most peripherally located layers of preserved myelin. In contrast, at sites of
active demyelination and tissue destruction the tissue was heavily infiltrated by
macrophages. Apoptotic-like cell death is frequently encountered in areas adjacent
to ongoing myelin destruction (Yao et al. 1994). Axonal injury and loss are pro-
found within the demyelinated rims, but only minor in myelinated areas (Courville
and Cooper 1970).

5.9.4 Acute Disseminated Encephalomyelitis (ADEM)

ADEM is a monophasic demyelinating illness that can present with clinical,
imaging, and laboratory manifestations indistinguishable from an acute MS attack
(Griffin 1990). ADEM is defined as an acute monophasic, sometimes relapsing
disease with clinical features, distinct from MS, with rare incidence of oligoclonal
bands in the cerebrospinal fluid and with a high incidence of gray-matter
involvement (de Seze et al. 2007). In pathology, ADEM lesions are characterized
by profound inflammation, the inflammatory infiltrates being mainly composed of
T cells and activated macrophages. This is associated with perivenous demyeli-
nation. In contrast to acute and chronic MS, no confluent demyelinated plaques are
seen. Furthermore, profound inflammation and microglia activation are also present
in the gray matter, including the cerebral cortex, but this inflammation is not
associated with primary demyelination (Young et al. 2010). It has recently been
shown that a fraction of patients with childhood ADEM have high circulating
antibody titers against an epitope of MOG, which is recognized by demyelinating
antibodies (O’Connor et al. 2007). Typical ADEM is seen in pediatric populations
and has more of an explosive course associated with alterations in mental status,
and a post-viral or postvaccination history is often elicited. This disease is asso-
ciated with significant responses to myelin proteins, indicated both by T cell and
antibody measurements.

5.9.5 Other Demyelinating Conditions

In several other primary demyelinating diseases, myelinoclastic (myelin destruc-
tive) pathogenic cellular mechanisms of injury are also known to occur. Examples
of these are selective infection of oligodendrocytes by papovavirus in progressive
multifocal leukoencephalopathy (PML) (Khoury et al. 2014) and toxic injury to
oligodendrocytes in cyanide and hexachlorophene poisoning. Central pontine
myelitis is a focal damage to brain myelin that occurs following metabolic dis-
turbances and rapid correction of hyponatrema.
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5.10 Dysmyelinating Disease

Leukodystrophies (also called dysmyelinating diseases) are genetic diseases that
result in primary demyelination. However, the myelin being removed is inherently
abnormal. Most of these disorders are due to defects in genes affecting myelin
structural proteins or enzymes affecting myelin structural proteins or enzymes
affecting myelin turnover. The result is an abnormal or unstable myelin. Although
many leukodystrophies are evident in infancy or childhood, onset of the diseases in
adults can result from degeneration of myelin that was apparently normal and
functional at earlier stages. In some of the leukodystrophies with early onset and
massive demyelination, there is nearly a complete lack of normal myelin
production.

Adrenoleukodystrophy is due to a genetic defect of a peroxisomal transporter. In
humans, there is also one example, in which a genetically determined defect of lipid
metabolism is in a subset of patients associated with an inflammatory demyelinating
disease, which in some aspects resembles MS. It is reflected in different clinical
manifestation, including cerebral adrenoleukodystrophy, which is an inflammatory
disease of the CNS, resulting in extensive demyelination of the brain white matter
(Moser 1997). Other patients with the same genetic defect suffer from adreno-
myeloneuropathy, a noninflammatory degenerative disease, mainly affecting the
spinal cord. Although in adrenoleukodystrophy inflammation is clearly triggered as
a secondary reaction to the metabolic defect, it is not clear so far which
immunological events are responsible. One possible mechanism is that altered fatty
acid chains may trigger autoimmune reactions against glycolipids in genetically
susceptible individuals. Such a scenario is supported by the dominant infiltration of
early lesions by CD8+ T cells and the expression of CD1, a molecule which is
involved in lipid antigen presentation (Ito et al. 2001). Furthermore, in contrast to
adrenomyeloneuropathy, there is no variant of MS where neurodegeneration is seen
in the absence of inflammation.

5.11 Experimental Animal Model to Study
the Pathogenesis of MS

Over the past several decades, a number of animal models have been developed in
order to understand a variety of aspects of human MS. The main driving force for
animal studies stems from the following limitations of human studies: overall
limited access to human MS tissue, biopsies are rarely performed and autopsy
samples are usually biased towards a chronic disease state; experimental circum-
stances cannot easily be modified in clinical trials and mechanistic studies
addressing disease pathomechanism(s) cannot readily be performed in patients.
Similarly, Genetic complexity, together with variability in the pathology, symp-
toms, and clinical course of MS, suggest the possibility of multiple
disease-initiating pathways. Disease heterogeneity may account for the difficulty in
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identifying triggers of MS. One key to better understand the heterogeneity of
pathogenesis of MS depends on the appropriate choice of experimental animal
models. The most commonly studied animal models of MS are the purely exper-
imental autoimmune/allergic encephalomyelitis models.

5.11.1 Experimental Autoimmune Encephalomyelitis (EAE)

Experimental autoimmune encephalomyelitis (EAE) is a model in which animals
are immunized with a myelin derived antigen and adjuvant. By varying the genetic
background and immunization protocol, EAE can reproduce the symptoms of the
major forms of human MS (Goverman and Brabb 1996; Mix et al. 2008; Miller
et al. 1997), providing a reasonable strategy for reproducing distinct features of
CNS pathology mediated by similar immunogenetic mechanisms. EAE is primarily
used as an animal model of autoimmune inflammatory diseases of the CNS, and it
resembles MS, the prototypical such disease, in many respects (Wang et al. 2006;
Steinman and Zamvil 2005, 2006; Farooqi et al. 2010). EAE was first described as
inflammatory model of MS in 1933 (Rivers et al. 1933; Rivers and Schwentker
1935) and is still a popular and widely used model. EAE is a complex condition in
which the interaction between a variety of immunopathological and neuropatho-
logical mechanisms leads to an approximation of the key pathological features of
MS: inflammation, demyelination, axonal loss, and gliosis. EAE is very hetero-
geneous in terms of induction methods, clinical and pathological features, and
amenability to treatment, all of which add to its complexity. EAE is induced by the
MBP–PLP fusion protein MP4, MOG peptide 35–55, or PLP peptide 178–191 in
mice, which, respectively, display distinct features of CNS pathology (Kuerten
et al. 2011). Major differences between the three models reside in the region- /
tract-specificity and disseminated nature of spinal cord degeneration, the extent and
kinetics of demyelination, and the involvement of motor neurons in the disease. The
counter-regulatory mechanisms of resolution of inflammation and remyelination
also occur in EAE, which, therefore can also serve as a model for these processes.
Some models are more similar to other, less common inflammatory CNS disorders,
such as the monophasic acute disseminated encephalomyelitis (ADEM) or neu-
romyelitis optica (NMO, Devic’s disease). Increasingly, the use of EAE has
expanded considerably beyond the laboratory study of MS and the development of
MS therapeutics. EAE has also become a very well characterized model for
organ-specific autoimmune disease in general. Indeed, several recent first reports of
key novel functions of immunologically important molecules, or of a novel
knockout mouse were published with EAE data as the in vivo validation model.
Examples include the discovery of ROR-γ (RORC) as a master transcription factor
for Th17 cell development (Ivanov and Linden 2007), the identification of the aryl
hydrocarbon receptor (AHR) as an essential component in the development of both
Treg and Th17 responses (Veldhoen et al. 2008) and the differential role of the
related molecules IL-12 and IL-23 in the susceptibility to autoimmune demyeli-
nation (Becher et al. 2002; Gran et al. 2002; Cua et al. 2003). EAE has a complex
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neuropharmacology, and many of the drugs that are in current or imminent use in
MS have been developed, tested, or validated on the basis of EAE studies. From the
pathogenesis point of view, also EAE is a good model for studying MS mecha-
nisms, even more so than for testing or developing drugs (Farooqi et al. 2010). On a
more positive note, however, diversity within the field of EAE has its advantages.
Each model may accurately mimic one particular facet of MS. In terms of providing
clues to the MS pathogenesis and allowing development of treatments, a most
exciting and rewarding approach was that of the bidirectional translational studies
(Lock et al. 2002; Robinson et al. 2003; Steinman and Zamvil 2003; Han et al.
2008). This involved gene expression profiling in MS brain, identification of a
number of plausible novel targets and then testing and validating these targets in
EAE. Several such targets have been identified in this fashion, some supported by
small previous studies in EAE, and these targets have a potential for being trans-
lated into MS treatment soon. Such targets include osteopontin, platelet activating
factor receptor, histamine receptors, and alpha-B crystallin (Lock et al. 2002; Han
et al. 2008; Steinman 2009). This makes EAE a very versatile system to use in
translational neuro- and immunopharmacology. But the model needs to be tailored
to the scientific question being asked as like all animal models, EAE has limitations.
A major difference between MS and EAE is that the latter requires an external
immunization step to develop, whereas in humans, the sensitization to autoantigens
is obviously not artificially induced (Gran et al. 2002). Sensitization to myelin
antigens in EAE typically occurs through the use of adjuvant, usually containing
bacterial components highly capable of activating the innate immune system via
pattern recognition receptors (Libbey et al. 2010). In EAE, the inducing antigens are
known, whereas in MS, there is no unique identified antigen. Thus, important
differences between these conditions may be due to how autoreactive T cells are
primed and activated. Taken together, we must conclude that despite numerous
drawbacks, EAE has been an extremely valuable model in investigating patho-
genesis and developing new medications to help those suffering from MS.

Similarly, a few animal models exist in which viral infection triggers CNS
autoimmunity. Infection with Theiler’s Murine Encephalomyelitis Virus induces
CNS autoimmune disease in susceptible mouse strains via bystander activation of
myelin antigen–specific CD4+ T cells (Vanderlugt and Vanderlugt and Miller
2002). Bystander activation is facilitated by myelin damage that occurs during the
initial clearance of virus by CD8+ T cells, which results in presentation of myelin
epitopes by antigen-presenting cells to CD4+ myelin antigen-specific T cells that
were nonspecifically recruited to the CNS. This phenomenon of epitope spreading
from viral antigen-specific CD8+ T cells to self-reactive, myelin-specific CD4+
T cells results in a chronic disease that resembles MS (Miller et al. 1997). Corre-
spondingly, infection with the highly neurovirulent murine hepatitis virus strain,
MHV-JHM induces a chronic demyelinating disease that depends only on the
activity of virus-specific T cells rather than on the emergence of myelin-specific
T cells during the course of infection (Hosking and Lane 2009; Wu et al. 2000). In
contrast, MHV-A59, another neurotropic strain of MHV, induced demyelination in
adult immune compromised mice lacking B and T cells, and depletion of CD4+ or
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CD8+ T cells after the acute stage of infection does not reduce demyelination
(Matthews et al. 2002). Indeed, one of our recent studies shows MHV-A59 or the
demyelination induced by its isogenic spike protein (host-attachment protein)
recombinant strain, RSA59, exhibit inflammatory CNS demyelination consisting of
a mixed population of inflammatory cells, predominantly macrophages/microglia
and a smaller population of T lymphocytes, but not conventional CD4+ or CD8+
T cells (Shindler et al. 2008; Das Sarma et al. 2009). Thus, MHV-A59 or its
recombinant strain RSA59 (Das Sarma et al. 2002, 2008, 2009) may induce
demyelination via unique mechanisms, and it is likely that in the absence of an
adaptive immune response, MHV-A59 or RSA59 infection in the CNS is respon-
sible for the onset of demyelination, possibly secondary to axonal and/or neuronal
injury.
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6Neuroinflammation in Huntington’s &
Related Neurodegenerative Disorders

Vivek Kumar Tripathi and Nihar Jana

Abstract
One of the common pathological features of most age-related neurodegenerative
disorders is the accumulation of abnormal protein deposits as inclusion bodies. It
could be neuronal intranuclear inclusions in case of Huntington’s disease (HD),
extracellular amyloid plaques, and intracellular neurofibrillary tangles in case of
Alzheimer’s disease (AD), Lewy bodies in case of Parkinson’s disease (PD), and
cytoplasmic inclusions in case of amyotrophic lateral sclerosis (ALS). Multiple
mechanisms have been proposed to understand how these abnormal disease
proteins induces neuronal dysfunction and neurodegeneration. However,
neuroinflammation and oxidative stress are considered one of the most common
phenomena that can be seen across all neurodegenerative disorders. Microglial
cells play a key role in neuroinflammation. Continued activation of microglia
and constant secretion of inflammatory molecules sets in the vicious cycle of
inflammatory reactions in many of these neurodegenerative disorders. In this
review we have focussed on the role of neuroinflammation in the pathogenesis of
HD and other related neurodegenerative disorders.
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IL Interleukin
CD Cluster of differentiation
TGF Transforming growth factor
IFN Interferon
PPAR Peroxisome proliferator-activated receptor
APP Amyloid precursor protein
IKK IkappaB kinase
NF-jB Nuclear factor kappa B
COX Cyclooxigenase
MCP-1 Monocyte chemoattractant protein-1
IP-10 IFN inducing protein-10
MIP Macrophage inflammatory protein
Ab Amyloid-beta
LPS Lipopolysaccharide
PET Positron emission tomography
SOD Superoxide dismutase
TLR Toll-like receptor
MPTP 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
NSAIDs Non-steroidal anti-inflammatory drugs

6.1 Introduction

Our brain is very efficient to stimulate immune and inflammatory responses to a
number of insults and stresses (Rivest 2009). Many types of infections, stresses,
chronic and acute neurodegenerative conditions are proficient to stimulate the
innate immune system in the brain that results in the activation of the local immune
cells, i.e., microglia and penetrating monocytes (Crutcher et al. 2006; Popovich and
Longbrake 2008). Monocytes are the main constituent of the innate immune system
and they eliminate dead cells through phagocytosis. In contrast, activated microglia
secrete various inflammatory molecules, including TNF-a, IL-6, and nitric oxide
(Hanisch 2002). Microglial cells are activated by the constituent released from
damaged or injured cells inside the brain (Hanisch and Kettenmann 2007).
Microglial activation is also regulated by astrocytes and neurons through various
cytokines, chemokines and neurotransmitters, indicating a complex interplay
among microglia, neurons and astrocytes. This complex process is usually termed
as ‘‘neuroinflammation.’’ Generally, acute neuroinflammatory reaction is beneficial
to the brain, because it helps to reduce further injury and promotes the repair
mechanism. On the other hand, chronic neuroinflammation is a longstanding and
often self-propagating neuroinflammatory reaction that stays for long time after an
initial damage. In addition to continued activation of microglia and continual
secretion of inflammatory mediators, chronic inflammation also causes increased
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oxidative and nitrosative stress (Tansey et al. 2007). The continuous release of
inflammatory molecules activates additional microglia, stimulating their production
and thereby promoting further release of inflammatory factors and thus generates a
vicious inflammatory cycle. Chronic inflammation also leads to weakening of BBB
permeability that could allow infiltration of peripheral macrophages into the brain
parenchyma leading to further stimulation of inflammatory cycle (Rivest 2009).

Chronic neuroinflammation and elevated levels of several cytokines and
chemokines are associated with many neurodegenerative disorders, including HD,
AD, PD and ALS (Block and Hong 2005; McGeer and McGeer 2007a, b). Various
reports have indicated that neuroinflammatory reactions can be observed much
before the significant loss of neuronal populations in the progression of these
diseases. This indicates inflammation plays a very prominent role in the progression
of these diseases. In this article, we have reviewed the possible role of neu-
roinflammation, mainly mediated by microglial activation, in the pathophysiology
of several neurodegenerative diseases.

6.2 Microglial Activation: A Central Event
of Neuroinflammation

Microglia are the local tissue macrophages in the brain and are the key mediators of
neuroinflammation. In the inactive state, microglia show a small cell soma and
abundant processes (a ramified morphology). In normal brain tissue, these processes
are dynamic structures that extend and retract for sampling and monitoring their
microenvironment (Nimmerjahn et al. 2005). During the resting state, multiple cell
surface receptors like CD-45, CD-14, and CD11b/CD18 are expressed at very low
levels. In addition, cell surface receptor-ligand pairs such as CD200R/CD200 are
present to maintain neuron-glia communication in the brain (Cardona et al. 2006).
Microglial activation alters its surface receptor expression pattern (Tansey et al.
2007) and stimulates the expression of certain proteins like CD1, lymphocyte
function-associated antigen 1 (LFA-1), intercellular adhesion molecule 1 (ICAM-1
or CD54), and vascular cell adhesion molecule (VCAM-1 or CD106). Activated
microglia release a variety of inflammatory molecules including cytokines (TNF,
and interleukins IL-1b and IL-6) and chemokines (macrophage inflammatory protein
(MIP-1a), monocyte chemoattractant protein (MCP-1) and IFN inducible protein
(IP-10)) that stimulate the inflammatory reactions. The morphology of the microglial
cell changes from ramified to amoeboid as they become phagocytic in nature. The
moderately active microglia are believed to accomplish helpful functions, like
scavenging neurotoxins, eliminating dying cells and cellular debris and releasing
trophic factors that stimulate neuronal survival. Long term activation of microglia
could increase the penetrability of the BBB and promote augmented infiltration of
peripheral immune cells comprising macrophages (Schmid et al. 2009).
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6.3 Neuroinflammation in Neurodegenerative Diseases

6.3.1 Huntington’s Disease (HD)

Huntington’s Disease (HD) is an autosomal dominantly inherited progressive
neurodegenerative disorder characterized by cognitive, motor and psychiatric
symptoms. The disease is caused by abnormal expansion of CAG repeat (codes for
glutamine) in the coding region of a gene called huntingtin. The CAG repeat length
in normal individual varies from 6 to 20, while the disease is associated with more
than 35 repeats. The onset and severity of the disease is inversely proportional to
the CAG repeat length. Neuropathologically, HD is categorized by progressive
degeneration of neurons in striatum, some layer of the cerebral cortex and hip-
pocampus in addition to widespread atrophy in the common brain areas (Paulson
and Fischbeck 1996; Orr and Zoghbi 2007). One of the most common pathological
features of HD and other polyglutamine neurodegenerative disorders is the accu-
mulation of mutant protein as insoluble aggregates. Mutant huntingtin and their
aggregates has been shown to induce neuronal dysfunction and neurodegeneration
in multiple ways including mitochondrial dysfunction and oxidative stress, aberrant
interactions with multiple transcription factors and interference with gene tran-
scription and disturbances in protein folding and clearance mechanisms (Paulson
and Fischbeck 1996; Orr and Zoghbi 2007).

Multiple evidence now indicate that inflammation could be an important player
in HD pathogenesis (Crotti and Glass 2015). Reactive astrocytes and activated
microglia have been observed in the HD brain. The R6/2 transgenic mouse model
of HD shows augmented serum IL-6 and its downstream effectors, such as
alpha-2-macroglobulin and complement machineries (Dalrymple et al. 2007).
Microarray analysis of different brain regions from HD patients and controls dis-
covered augmented gliosis and increased expression of inflammation-related genes,
including GFAP and complement proteins in the brain particularly in the caudate
and putamen region (Hodges et al. 2006). Neurons and astrocytes of HD brain
showed several fold increase in activators and regulators of the classical comple-
ment pathway (Singhrao et al. 1999). Several proinflammatory cytokines like IL5,
IL6, and IL10 were found to be increased in the blood sample of HD patient even
before the onset of clinical symptoms (Bjorkqvist et al. 2008).

Several studies also indicate that the altered levels of various proinflammatory
cytokines in HD occurs prior to onset of clinical features of HD, signifying that
inflammation could play crucial role in the degeneration of striatal and cortical
neurons (Bjorkqvist et al. 2008; Chang et al. 2015). Activated microglia also
detected in the HD brain before the inception of symptoms and increased microglial
activation links with enhanced chance of developing HD symptoms in 5 years (Tai
et al. 2007). In the 3-nitropropionic acid model of HD in rats, treatment with
NSAIDs derived from plant origin, reduced the damage of the striatum (Cleren
et al. 2005). However, treatment with commonly used NSAIDs like aspirin or
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ibuprofen, was not found to be effective in either the R6/2 or N171-82Q transgenic
mouse models of HD (Norflus et al. 2004).

Since, mutant huntingtin is known to cause a number of deleterious effects in the
neuron, it is possible that inflammatory reactions in HD brains could be an inherent
secondary response to neuronal death. However, several studies indicate that
mutant huntingtin might itself trigger an inflammatory response, the side-effects of
which could cause degeneration of neurons. For example, inflammation in HD
could be a result of overactive immune cells, such as macrophages in the periphery
and microglia in the brain. Monocytes from HD patients secrete abnormally high
levels of the proinflammatory cytokine IL-6 in response to a combination of IFN-c
and LPS. Microglial cells from YAC128 and R6/2 mouse models of HD also
secretes abnormally high levels of proinflammatory cytokines (Bjorkqvist et al.
2008).

Interestingly, mutant huntingtin has been shown to activate the IKK complex,
the major kinase that drives the phosphorylation and subsequent degradation of
IjBs through proteasome. This phenomenon results in nuclear translocation of
NF-jB in mouse striatal cells (Khoshnan et al. 2004). The NF-jB stimulates
expression of IL-6 and other inflammatory cytokines. Therefore, it is presumed that
mutant huntingtin-induced activation of NF-jB pathway could be linked with the
induction of inflammatory response in HD brain.

6.3.2 Alzheimer’s Disease (AD)

Alzheimer’s disease (AD) is the most common progressive neurodegenerative
disorder affecting older people worldwide. It is also one of the major cause of
dementia. AD is classically characterized by the presence of extracellular
amyloid-beta (Ab) plaque and intracellular neurofibrillary tangle in the brain.
Familial form of AD is caused by mutations in amyloid precursor protein (APP) or
components of its proteolytic processing machinery (c and b-secretase) that results
in excessive production of Ab1-40 and Ab1-42 peptides (Citron et al. 1992; Cai
et al. 1993; Lemere et al. 1996). In the last two decades, role of microglia and
neuroinflammation in pathophysiology of AD have been extensively investigated.
In AD brain, microglial cells are the early responders to Ab deposits, as they have
been shown to be strongly attached with Ab plaques and their phagocytosis (Varley
et al. 2015; van Gool et al. 2003). Microglial cells are directly activated by most Ab
species via multiple mechanisms including pattern recognition receptors such as
TLRs, and other receptors such as receptor for advanced end glycation products,
LRP1, scavenger receptors and complement receptors (Lieberman et al. 1995).

The proinflammatory effects of Ab deposition in the brain has been reiterated in
aged mice transgenic for a familial AD mutation of APP, in which astrocytes and
microglia expressing IL-1b, IL-6, and TNF have been found adjoining to amyloid
plaques (Benzing et al. 1999). Interestingly, TGF-b cytokine has been shown to
increase Ab accumulation in the cerebral blood vessels of mice transgenic for
human APP. This cytokine is also upregulated in the blood vessel of human patients
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with cerebral amyloid angiopathy (Wyss-Coray et al. 1997). Presence of TGF-b1, 2
and 3 isoforms alongside with Ab causes increased accumulation of Ab in
organotypic hippocampal slices (Harris-White et al. 1998). Together, these obser-
vations validate the link between microglia and amyloid plaque deposition and the
capability of certain chronic inflammatory response to aggravate Ab-plaque asso-
ciated pathology. However, inflammatory response might also be crucial in pre-
venting Ab-plaque associated toxicity. For example, the stimulation of complement
factor C3, the central component of the complement system, and a vital inflam-
matory protein may be necessary for plaque clearance by microglia in the AD brain
(Wyss-Coray et al. 2002; Maier et al. 2008). The peroxisome proliferator-activated
receptor-c (PPARc), a nuclear receptor which is activated by metabolites of pros-
taglandins generated by COX enzymes and by certain NSAIDs, is upregulated
along with the COX enzymes in AD brain (Kitamura et al. 1999). As such, PPARc
activation exerts an anti-inflammatory effect, and PPARc agonists have been shown
to inhibit the production of cytokines and proinflammatory mediators in response to
Ab (Combs et al. 2000). The ratio of the proinflammatory cytokine IL-1b to the
anti-inflammatory cytokine IL-10 is significantly elevated in the serum of AD
patients (Remarque et al. 2001). Increased levels of IL-1b have been correlated with
decreased long term potentiation in the hippocampus, resulting in impaired memory
formation (Lynch 1998). In a recent study, IL-1b was shown to upregulate the
a-secretase TACE, thus increasing non-amyloidogenic cleavage of APP and
diminishing Ab production (Tachida et al. 2008). Therefore, it is possible that IL-1b
might be participating in neuroinflammatory reactions in AD brain by activating
microglia to secrete other inflammatory molecules. It is probably not linked with
Ab deposition and may actually stimulate non-amyloidogenic pathways.

The role of inflammatory mediators in progression of AD is still poorly
understood. But these inflammatory molecules could not only function as useful
biomarkers but also might be the targets for drug development. For example,
proinflammatory protein like cyclooxygenase 2 (COX2) and its homolog COX-1
are significantly elevated in AD brain (Lukiw and Bazan 2000). COX enzyme is
one of the targets of NSAIDs. Epidemiological studies indicate a link between
chronic use of NSAIDs and reduced risk for AD. A recent study exhibited that
patients who had taken NSAIDs for more than 2 years showed the significant
reduction in AD risk (Stewart et al. 1997). AD brain also exhibit about threefold
decrease in the number of activated microglia upon long term treatment of NSAIDs
(Mackenzie and Munoz 1998). In a recent study, chronic NSAIDs use, particularly
ibuprofen, was shown to be effective to slow down the progression of AD (Vlad
et al. 2008). These findings suggest that decrease in microglial activation upon
chronic use of NSAIDs might lead to the beneficial effect in AD patients. However,
so far, clinical trials using systemic administration of NSAIDs have yielded mixed
or inconclusive results (van Gool et al. 2003; McGeer and McGeer 2007a, b),
reflecting the need to identify and target the key inflammatory mediators that
promote amyloid-associated neuropathology.
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6.3.3 Parkinson’s Disease (PD)

Parkinson’s Disease (PD) is another progressive neurodegenerative disorders
characterized by motor deficits including rigidity, resting tremor, and difficulty with
walking and gait. Characteristic pathological features include loss of dopaminergic
neurons in the substantia nigra and presence of eosinophilic Lewy body inclusions
in the degenerated neurons. Both genetic and environmental factors are linked with
the cause of PD. Mutations in a-synuclein gene is associated with autosomal
dominant form of PD, while autosomal recessive form of PD is linked with
mutations in parkin gene (Litvan et al. 2007). Several studies have established the
increased levels of various inflammatory molecules (like TNF-a, IL-1b, IL-6, and
IFNc) in the CSF as well as in the degenerated substantia nigra region of post-
mortem PD brain tissues (Hunot et al. 1999; Gerhard et al. 2006). Significantly
elevated levels of TNF- a mRNA and protein can be seen in the rodent midbrain
substantia nigra within few hours of administration of two neurotoxins widely used
to model parkinsonism in rodents, 6-hydroxydopamine (Nagatsu and Sawada 2006)
and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Rousselet et al. 2002;
Ferger et al. 2004). Very interestingly, plasma TNF-a levels have been found to
remain elevated in MPTP-treated non-human primates even one year after
administration of the neurotoxin (Barcia et al. 2005). However, studies involving
mice deficient in TNF-a or its receptors showed conflicting outcome. There are
studies that showed that lack of TNF-a receptors reduced dopamine metabolism
and the survival of dopaminergic neurons (Rousselet et al. 2002). Other reports
indicated that TNF-a-deficient mice exhibit reduced sensitivity to MPTP-induced
neurotoxicity (Sriram et al. 2002; Ferger et al. 2004). It is possible that lack of
TNF-a or its receptor during development might alter the activities of microglia or
other immune cell populations that results in conflicting outcomes in these studies.
The involvement of inflammatory cytokines, particularly TNF-a in the degeneration
of dopaminergic neuron, is also observed in two endotoxin models. In the first
model, chronic low dose of lipopolysaccharide (LPS) infusion into substantia nigra
of rats results in delayed, selective and progressive loss of nigral dopaminergic
neurons (Gao et al. 2002). In the second model, exposure of pregnant rats to LPS
caused a loss of dopaminergic neurons in postnatal brains (Ling et al. 2002). Most
importantly, chronic infusion of dominant negative TNF-a inhibitor into substantia
nigra of adult rats protected nigral dopaminergic neurons from LPS and
6-hydroxydopamine-induced degeneration (McCoy et al. 2006). Similarly, a single
injection (substantia nigra region) of a lentivirus encoding DN-TNF-a in
6-hydroxydopamine hemiparkinsonian rats rescued dopaminergic neuron degen-
eration (McCoy et al. 2008). Thus early genetic studies and the more recent chronic
inflammation models of PD strongly implicate TNF-a and its downstream targets
are strongly associated with neurotoxin and endotoxin-induced degeneration of
nigral dopaminergic neurons. Nigrostriatal dopamine neurons are selectively sus-
ceptible to TNF-a-induced toxicity probably because of high level of expression of
TNF receptors in these cells (Boka et al. 1994; Gayle et al. 2002; Carvey et al.
2005). TNF-a produced by brain-resident microglia might not be the only factor
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causing the death of dopaminergic neurons. Other proinflammatory factors might
also be involved that requires further investigation.

Another connection between inflammation and neurodegeneration in PD comes
from studies of single nucleotide polymorphisms that are associated with excess
formation of cytokines, chemokines, and acute phase proteins. These polymor-
phisms are overrepresented in explicit cohorts of persons affected with PD and may
convene increased predisposition for the disease (Hakansson et al. 2005; Nishimura
et al. 2005). However, a majority of these reports have not been replicated in
independent studies. Lastly, PET studies detected significant increase in microglial
activation in basal ganglia, pons and frontal and temporal cortex in patients with
idiopathic PD in comparison with healthy age-matched controls (Gerhard et al.
2006). Continuous activation of the profuse number of microglia in the midbrain
region could lead to cascading inflammatory cycle (Kim and Joh 2006; Block et al.
2007).

6.3.4 Amyotrophic Lateral Sclerosis (ALS)

Amyotrophic Lateral Sclerosis (ALS) is a progressive degenerative disease of
motor neuron that results in muscles weakness and paralysis. Approximately 10 %
of ALS are known to be familial in nature and the cause behind the 90 % cases of
ALS are sporadic. Current evidence indicate that multiple genetic and environ-
mental factors are associated with ALS pathogenesis. Both familial and sporadic
ALS share common pathological features like cytoplasmic inclusions and abnormal
neurofilament accumulations. So far, mutations in Cu/Zn superoxide dismutase
gene (SOD1) have been reported the only proven cause of familial form of ALS and
several other genes have been shown to be associated with either familial or spo-
radic form of ALS (Rosen 1993). Transgenic mice having mutation of SOD1 genes
recapitulates many features of ALS thus serve as a typical animal model of ALS.

Several reports demonstrated that the areas surrounding the degenerating motor
neurons in both ALS patients and in mouse model are noticeable by the presence of
cytokines and immune cells, including T-cells, activated microglia, and astrocytes
(Kawamata et al. 1992; Henkel et al. 2004). PET imaging analysis of ALS patients
exhibited a significant increase in stimulated microglia in the motor cortex that well
correlates with upper motor neuron symptoms (Turner et al. 2004). In transgenic
mouse models of ALS, the disease severity is directly correlates with the presence
of activated immune cells (Henkel et al. 2006). The MCP-1, a potent chemokines
for microglia is elevated in several fold in the CSF of ALS patients (McManus et al.
2000; Kuhle et al. 2009), which strongly suggests that neuroinflammation could be
one of the crucial factor leads to disease progression. Several other general markers
of inflammation were also significantly increased in the serum of ALS patients and
their levels positively correlate with the magnitude of symptoms (Keizman et al.
2009). SOD1 serves as an important antioxidant enzyme and there are evidence
suggest that this enzyme helps to prevent protein aggregation. However, mutations
in SOD1 increases its propensity to form aggregates in neurons that ultimately
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contribute to inflammation and disease pathogenesis (Lino et al. 2002; Clement
et al. 2003; Sargsyan et al. 2005). Removal of microglial expression of mutant
SOD1 increases the survival rate of mutant SOD1 transgenic mice (Beers et al.
2006), reflecting that mutant SOD1 induces neuronal death by affecting glial rather
than neuronal function. Similarly, mutant SOD1 transgenic mice stimulated with
LPS release more inflammatory molecules, including TNF-a (Weydt et al. 2004),
MCP-1, TGF-b and IFN-c (Ferri et al. 2004), in comparison with control. More
importantly, the level of TNF-a and its receptors were significantly correlated with
the severity of motor neuron degeneration in the mouse model (Yoshihara et al.
2002; Poloni et al. 2000). Furthermore, treatments of NSAIDs have been demon-
strated to increase the life span of ALS mice by more than 30 % (West et al. 2004)
and also prevented neurotoxicity (Tikka et al. 2002).

6.4 Concluding Remarks

From the existing literature, it is very clear that neuroinflammation does take place
in most age-related neurodegenerative disorders and microglia are the principal
player in mediating the response. Neuroinflammatory responses might be directly
linked with the toxic mutant disease proteins or their aggregates associated with
diverse neurodegenerative disorders or it may be indirectly associated as a conse-
quence of neurodegeneration. Neuroinflammatory response also could be beneficial
or harmful. All these aspects needs extensive investigations in order to develop
successful therapeutic strategies.
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7Neuroinflammation During
Parkinson’s Disease: Key Cells
and Molecules Involved in It

Priyobrata Sinha, Nabanita Ghosh, Soham Mitra
and Arindam Bhattacharyya

Abstract
Parkinson’s disease (PD), an idiopathic neurodegenerative disorder, is charac-
terized by dopaminergic neuronal degeneration in the substantia nigra pars
compacta of brain. Recent findings suggest the multifactorial etiology of the
disease. Neuroinflammation and infiltration of peripheral inflammatory cells,
chemokines, and cytokines may have a crucial role in PD pathogenesis. During
the onset of the disease acute inflammation sets in to prevent dopaminergic
neuronal death, but as the disease progresses neuroinflammation becomes
chronic and promotes neurodegeneration. Rampant release of proinflammatory
cytokines (TNF-α and IFN-γ), infiltration of peripheral CD4 and CD8
lymphocytes and augmented rate of reactive oxygen species (ROS) and reactive
nitrogen species (RNS) generation act as key players in disease progression.
These proinflammatory factors are released by astrocytes stimulated by neuron
derived α-synuclein which in turn recruit and activate microglia. These activated
microglia contribute hugely to the progressive neurodegeneration in PD. In this
chapter, we have summarized and discussed the findings on the neuroinflam-
marotry status in PD patients emphasizing on the role of cells and molecules
involved. In addition, we have also discussed the plausible therapeutic
interventions that may prove to be beneficial to PD patients.
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7.1 Introduction

Parkinson’s disease (PD), one of the most commonly occurring age related pro-
gressive neurodegenerative disorder, is characterized by the death of dopaminergic
(DA) neurons in substantia nigra pars compacta and striatum, cytoplasmic inclu-
sions of aggregated proteins (Lewy bodies (LBs), and chronic neuroinflammation
(McGeer and McGeer 2008; Moore et al. 2005). Neuroinflammation is marked by
the presence of activated microglia and reactive astrocytes in the central nervous
system (CNS) and augmented expression of proinflammatory factors like cytokines,
chemokines, prostaglandins, complement cascade proteins, reactive oxygen and
nitrogen species (ROS/RNS) which sometimes result in disruption of the blood–
brain barrier (BBB) causing direct participation of the adaptive immune system in
the disease pathogenesis (Ransohoff and Perry 2009). The exact extent to which
chronic neuroinflammation and peripheral immune response contribute to the
severity of PD remains elusive till date. However, it is evident from the literature
review that by modulating the BBB permeability of peripheral macrophage and
blood leukocytes in the brain parenchyma, the brain homeostasis and neuronal
damage can be tightly regulated (Ransohoff and Perry 2009; Rezai-Zadeh et al.
2009). Neuroinflammation may not be the primary trigger for neurodegeneration,
but, according to epidemiological and preclinical data of age related neurodegen-
erative diseases, chronic neuroinflammation may be referred to as the “silent driver”
of neuronal dysfunction and death during the progression of such neurological
disorders (like PD, AD, HD, etc.). So in the following sections, we will discuss
about the key players (both cellular and molecular) of neuroinflammation in
Parkinson’s disease.
Animal Models of Parkinson’s disease: To understand the mechanisms under-
lying neurodegeneration and neuroinflammation in Parkinson’s disease, various
animal models of the disease have been established. Several pesticides (Paraquat
and Rotenone) and neurotoxins (MPTP and 6-OHDA) have been used to induce
Parkinson-like symptoms in animal models. A detailed mechanism of their cellular
entry and mode of action is given in Fig. 7.1.

7.2 Role of Resident Brain Cells in Neuroinflammation

7.2.1 Microglia

1. Brain contains three distinct types of Glial cells named microglia, astrocytes,
and oligodendrocytes (Teismann and Schulz 2004). All these cell types perform
various functions to maintain overall brain homeostasis. Among them, microglia
being the most abundant resident macrophages of brain, are meant for overall
immune surveillance (Perry 2012). Microglia keep a strict vigilance by con-
tinuously examining the brain microenvironment (Nimmerjahn et al. 2005).
Microglia reside in two main forms: ramified microglia and activated microglia.
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Ramified microglia are resting type which function as scavengers in developing
brain by removing the excess unwanted cells of the neocortex and other brain
regions that is crucial to form a fully developed fetal brain (Voyvodic 1996). On
the other hand, resting microglia react rigorously during neurotoxic insult. They
proliferate, become hypertrophic, and show heightened expression of marker
molecules like CD68, CD11b, MHC-I and II molecules and further achieve
more macrophage-like morphology and function in PD patients (McGeer and
McGeer 2004). However, in response to any sort of neurotoxic stress, ramified
microglia have unique ability to change its morphology to reactive form, release
an array of mediators, and augment expression of specific receptor types in
defense of the damage to the brain. Though it is an established fact that chronic
microglial activation leads to neuroinflammation, still not all types of microglia
promote neurodegeneration. Distinct stimuli can transform microglia into
M1 or M2 type performing different functions (Gordon and Taylor 2005).

Fig. 7.1 Experimental models in PD. Pesticides paraquat or Rotenone and neurotoxins 6; OHDA
or MPP+ (active metabolite of MPTP) easily cross cell membrane and enter the cell through the
dopamine transporter (DA) resulting in aggregation of α-synuclein and mitochondrial dysregu-
lation followed by excessive ROS generation. Rotenone, being hydrophobic, easily penetrates
neurons and astrocytes and results in subsequent translocation of NF-κB in the nucleus. Rotenone
and MPP+ being mitochondrial complex I inhibitor, causes the ATP impairment, generates more
ROS and the release of proapoptotic molecules, that induce apoptosis by triggering caspases 3, 6, 7
caspase 9 action
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M1 microglia are proinflammatory in function releasing proinflammatory
cytokines (TNF-α, Il-1β, Il-6, etc.) sending proapoptotic signals to neurons. On
the contrary, M2 type microglia are neuroprotective in action releasing anti-
inflammatory cytokines (Il-10, TGF-β, BDNF, NGF, etc.) and providing
anti-apoptotic signal to damaged neurons (Nakagawa and Chiba 2014) (Fig. 7.2).

Activated microglia are considered a key cell-type in defense against inflam-
matory diseases and infections of the CNS, both in vitro and in vivo (Banati 2003;
Rock et al. 2004). The changes in brain homeostasis by toxic insults, aggregated
proteins or pathogens, etc., provide the trigger for microglial activation. They then
promptly react to the altered condition by means of chemokine receptors, Toll-like
receptors, ion channels, cytokines, etc., (Stone et al. 2009) to bring back the brain
homeostasis.

Among other brain regions, the substantia nigra is relatively rich in microglia.
The nigral dopaminergic neurons are more susceptible to microglia-mediated injury
and oxidative stress because of reduced level of intracellular glutathione (Kim and
Joh 2006). Thus it is evident that in PD patients, nigral dopaminergic neurons are
mostly affected (Qian et al. 2010). In various animal models of PD, selective
degeneration of dopaminergic neurons in the SN is induced by 6-hydroxydopamine
(6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP), paraquat, and
rotenone. All these toxins result in death of dopaminergic cells of the SN over a
period of few days. Other degenerative changes also occur along with sustained
neuroinflammation. According to a recent study using intrastriatal injection of
6-OHDA, not only did nigral dopaminergic cell died, but it was accompanied by

Fig. 7.2 Depending on different activation signals microglia are polarized to M1 and M2 fate.
Ramified microglia undergo modifications to M1 microglial form upon stimulation by LPS,
IFN-gamma from Th1 and Th17 cells which promotes neurodegeneration by releasing
proinflammatory cytokines. M2 microglia polarization occurs if stimulation comes from Th2 or
Treg cells (Il-4, Il-13) which promotes neuroprotection and repair by releasing anti-inflammatory
cytokines
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activation of microglia identified by upregulation of the complement type 3 receptor
(Walsh et al. 2011). Similarly, MPTP-induced neurodegeneration is also associated
with activated microglia (McGeer et al. 2003; Sugama et al. 2003). Recent research
indicates that toxin-induced activation of NADPH oxidase causes microglial acti-
vation and consequent neurotoxicity (Qian et al. 2010). Other immunological
insults that are capable of activating microglia include IFN-γ, TGF-β, brain-derived
neurotrophic factor (BDNF), CX3CL1, CD22, neurotrophin-3, and neurotransmit-
ters. Substantia nigra of PD patients has been found to produce significantly high
amount of iNOS that promotes persistent and excessive release of NO and other
superoxide radicals resulting in prolonged neuroinflammation. Other factors pro-
duced by activated microglia that contribute to the neurodegenation in PD are
COX2, PGE2, etc., (Knott et al. 2000; Koppula et al. 2012; Wang et al. 2005).

So, in a nutshell, under normal physiological conditions, microglia reside in
quiescent state by well-orchestrated action of neurons and astrocytes. They are
activated when neuronal homeostasis and integrity is disturbed in PD, under
influence of activation signals from affected neurons and also due to absence of
neuronal inhibitory signals (Kim et al. 2000) (Fig. 7.3).

Fig. 7.3 Diagram depicting microglial activation and its relation to death of dopaminergic
neurons. Activated microglia releases TNF-α and IL-1β and thus activates the NF-κB pathway
leading to activation of death genes and neuronal death. These activated microglia release
(i) iNOS, (ii) COX-2, (iii) PHOX (gene responsible for NADPH oxidase), (iv) H2O2. iNOS
releases nitric oxide which is oxidized to peroxinitrite ion by PHOX. This peroxinitrite (ONOO−)
and hydrogen peroxide cause mitochondrial dysfunction in DA neurons leading to decreased
energy production. COX-2 induces formation of PGE-2 which exerts direct toxicity to DA neurons
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7.2.2 Astrocyte

Astrocytes, the most widely distributed glial cell in the mammalian brain (Chen
et al. 2010), are characterized by intermediate filaments glial fibrillary acidic protein
(GFAP) and vimentin (Vim). Astrocytes transport nutrients and metabolic precur-
sors to the neurons by the malate–aspartate shuttle and other transporters and thus
are important for brain metabolism (Maragakis and Rothstein 2006). The two main
types of astrocytes found in the CNS are protoplasmic astrocytes (envelope neu-
ronal bodies and synapses) and fibrous astrocytes (interact with the nodes of
Ranvier and oligodendroglia) (Halliday and Stevens 2011). According to recent
report, only protoplasmic astrocytes show increased α-synuclein accumulation, but
not fibrous astrocytes (Braak et al. 2006; Halliday and Stevens 2011).

Astrocytes in healthy adult brain play important role in development and
maintenance of blood–brain barrier, promoting neurovascular coupling, attracting
different cells by releasing chemokines, ionic buffering, release of gliotransmitters
and glutamate by calcium signaling, maintaining general metabolism, controlling
brain pH, production of antioxidants, regulation of dopamine metabolism and other
substrates by monoamine oxidases and uptake of glutamate and γ-aminobutyric
acid (GABA) by respective transporters (Chinta and Andersen 2008; Hamby and
Sofroniew 2010; Parpura et al. 2011; Volterra and Meldolesi 2005).

During any type of brain damage (neurodegenerative disease or oxidative stress),
the above-mentioned normal astrocytic function is temporarily or permanently
impaired, which may lead to a pathological condition and prolonged neu-
roinflammation in neurodegenerative diseases (Hamby and Sofroniew 2010;
Kimelberg and Nedergaard 2010). In case of any insult neurons are more suscep-
tible to injury than astrocytes, as they have limited antioxidant capacity. Neurons
are metabolically coupled with astrocytes and fully depend on them to survive any
type of oxidative stress (Hamby and Sofroniew 2010). But as the inflammation
proceeds for a prolonged period in case of neurodegenerative diseases like PD,
astrocytes become nonfunctional or die resulting in chronic neurodegeneration
(Greve and Zink 2009).

It is widely reported that astrocytes have both protective and degenerative
function in brain depending on the condition of the microenvironment and factors
released in response to it. Such a condition (reactive astrogliosis) may be seen in
several neurodegenerative diseases including PD. The triggers behind astrogliosis
may be manifold, such as, infection, trauma (Barreto et al. 2009), α-synuclein
accumulation (Gu et al. 2010), ischemia (Adelson et al. 2012; Wu et al. 2003), and
any type of neurotoxic insults (Barreto et al. 2007). Astrogliosis brings about both
morphological and molecular changes in brain resident astrocytes. Activated
astrocytes are marked by heightened expression of GFAP, vimentin, increased
uptake of glutamate (excitotoxic). It provides protection from oxidative stress by
producing GSH, and provides neuroprotection by releasing adenosine, facilitating
blood–brain barrier, degrading amyloid-beta peptides, increasing gap junctions
between astrocytes. By release of inflammatory cytokines (TNF-α, Il-1β, Il-6, etc.),
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and ROS generation (Gu et al. 2010; Hamby and Sofroniew 2010; Kang and Hebert
2011; Ridet et al. 1997), reactive astrocytes contribute to neurodegeneration.

The chronic neurodegeneration in PD patients is an outcome of reactive
astrogliosis and microgliosis in substantia nigra of Parkinson patients (Hirsch et al.
2003). The gliosis in experimental models (both in vitro and in vivo) can be
induced by environmental and biological toxins like lipopolysaccharides (LPS),
pesticides like rotenone or MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine).
It is accompanied by mitochondrial dysfunction, neuronal death, and nuclear
fragmentation (Herrera et al. 2000; Langston et al. 1999; Samantaray et al. 2007).
Chronic gliosis increases iNOS production and causes oxidative stress in brain
resulting in neurodegeneration resembling that in Alzheimer’s disease (AD) and PD
(Hirsch et al. 2003; Sugaya et al. 1998). Astrocyte released cytokines may induce
increased activation of caspase 3, caspase 8, and cytochrome c in dopaminergic
neurons by binding to their respective receptors, such as TNFR1 and 2, resulting in
their premature apoptosis (Hirsch et al. 2003). Also, excessive uptake of neuronal
α-synuclein aggregates by astrocytes, leads to its accumulation and causes increased
expression of TNF-α, IL-1α, IL-1β and IL-6 (Rappold and Tieu 2010). The
above-mentioned results suggest that the inhibition of astrogliosis and microgliosis
may be a promising therapeutic tool to arrest neurodegeneration during PD (Hirsch
et al. 2003).

So on a whole, astrocytes secrete pro-inflammatory, anti-inflammatory, neu-
rotrophic, and pro- survival factors affecting health of neurons depending on dif-
ferent triggers, and may have important role in modulating microglial activity. Most
importantly, GFAP-expressing astrocytes have ability to contribute to cell genesis,
both as stem cells and as important cellular elements of the neurogenic microen-
vironment, indicating its role in neuronal repair and self-recovery. So astrocytes
may be a potent therapeutic target in healing neurodegeneration (Fig. 7.4).

7.2.3 Oligodendrocyte

Another important member of the neuroglia family, oligodendrocyte, is widely
studied for its role in myelination of neurons. But its status in neurodegeneration
did not receive much attention. Consequently, the knowledge about their functions
in neurodegenerative processes is relatively limited and fragmentary. It is known
that oligodendrocytes are the end product of a cell lineage which undergo a com-
plex process of proliferation, migration, differentiation, and myelination to finally
produce the insulating sheath of axons. Roles of oligodendrocytes in other protein
aggregation related neurodegenerative diseases, such as tauopathies and synucle-
inopathy, have also been reported recently. Recently, it is documented that
clathrin-mediated α-synuclein aggregation is seen in oligodendrocytes in vivo
(Kisos et al. 2012). In recent times disturbance in myelin synthesis and their
putative roles in the initiation and progression of Alzheimer’s disease AD and
Huntington’s disease (HD) has been topic of great interest among scientists (Desai
et al. 2010; Mitew et al. 2010; Valenza and Cattaneo 2011; Valenza et al. 2010).
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Oligodendrocytes are among the most vulnerable CNS cells because of their
complex differentiation program, and unique metabolism and physiology. There-
fore, the primary onset of PD where the dopaminergic neurons are degenerated by
ROS must be started with the degeneration of oligodendrocytes and demyelination.
Exact contribution of oligodendrocyte in PD pathology is still in debate.

7.3 Peripheral T-Cell Infiltration Playing Pivotal Role
in Neuroinflammation in PD

The T-cells play a major role in pathophysiology of Parkinson’s disease. Among
them δT+ cells have been identified to express CD25 majorly especially in
Parkinsonian patients rather than healthy individuals (Fiszer et al. 1994). This is
relevant with another study conducted with PD patients and normal human beings
where CD4+: CD8+ ratio and CD4+: CD25+ ratio depleted, but IFN-γ producing
T-cells increased in number than IL-4 producing T-cells in PD patients compared to
the normal individuals (Baba et al. 2005). The upregulation of adhesion molecules
by proinflammatory cytokines lead to the recruitment of passing T-cells and

Fig. 7.4 This figure describes astrocyte mediated neuroprotection to nigral dopaminergic
neurons. Nigral dopaminergic neurotoxicity by mitochondrial dysfunction and insufficient
degradation of misfolded proteins (alpha-synuclein) can be a result of genetic mutations or
environmental toxic insults or both. In response to these stimuli, astrocytes may attempt to protect
the damaged neurons by release of trophic growth factors, release of glutathione (GSH) cleaved by
γ-glutamyltranspeptidase on astrocytic plasma membrane to generate glutamate and cysteinyl-
glycine which is precursors for neuronal GSH synthesis; by activating transcription factor Nrf2
which promotes transcription of protective genes antioxidant response element (ARE), including
γ-glutamylcysteinesynthetase (GS) resulting in GSH synthesis; also by removal and degradation of
cytotoxic molecules such as α-synuclein
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monocytes, which express the counter receptors, and continue releasing more
cytokines. TLRs stimulation upregulates MHC class II molecule that causes acti-
vation of quiescent microglia and costimulatory molecules that present myelin
antigens to CD4+ T-cells (Olson and Miller 2004). It has been observed that T-cell
proliferation was more robust when mice were immunized with alpha-synuclein
slightly modified with the nitrotyrosine in the C-terminal tail fragment but not the
native protein. The proinflammatory secretory responses are specific only for the
modified antigen and not for the unmodified protein. One interesting fact is that
mice which lacks T and B lymphocytes became resistant to the MPTP-induced
Parkinson’s disease. So this robust neuroinflammatory response accelerated
dopaminergic cell loss in the mice immunized with the modified α-synuclein.
However, this modified α-synuclein may have another interesting role of recruiting
of peripheral leukocytes to the cervical lymph nodes in MPTP-induced mouse
model of Parkinsonism (Benner et al. 2008). PET study of the mid brain has already
unveiled the dysfunction in the Blood–Brain Barrier (BBB) of PD patient (Korte-
kaas et al. 2005). In case of PD patient and MPTP-induced animal model of
Parkinsonism it has been observed that CD4+ and CD8+ T-cells from systemic
circulation invaded the blood–brain barrier to enter into the substantia nigra indi-
cating the BBB dysfunction in that particular disease condition (Brochard et al.
2009) giving rise to the possibility of a modulatory role of that infiltrated peripheral
T-cells over the inflammatory response in the CNS lacking the molecular trigger
mediating this response. So, the dysfunctional, leaky BBB is a matter of concern in
the context of genetic as well as toxin-induced PD as it may recruit peripheral
T-cells easily but it is not sufficient enough for disease etiology. Nevertheless, the
collective data from recent in vivo studies suggested the protective effect of CD4+/
CD25+ regulatory T-cells (Tregs) by inhibiting reactive microgliosis and inducing
microglia apoptosis over CD4+/CD25− effector T-cells that promote microglia
activation with other neurotoxic activities in response to nitrated α-synuclein
(Reynolds et al. 2009). So these reports suggests that the microglia effector func-
tions in the context of PD pathogenesis can be modulated by adaptive immune
system. Hence peripheral T-cell infiltration along with the other protective mole-
cules in the CNS during PD pathogenesis would probably make it a tremendous
treatment strategy to stop progressive neurodegeneration (Fig. 7.5).

7.4 Immunomodulatory Molecules Affecting
Inflammation in PD

Parkison’s disease is associated with neuroinflammation and microglia provides a
first line defense system by protecting the brain parenchymal cell in the neu-
roinflamation pathway though the activated microglia and active astrocytes are
associated with the production of ROS/RNS, chemokines, cytokines leading the
brain towards neurodegeneration (More et al. 2013). It is a well-known fact that
different regions of brain are responsible for different types cognitive works
(summative effect of learning memory, recognition, perception, etc.). So any
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neurodegenerative disease that hampers the summative effect means the disease
affecting different regions of brain. We have found that dopaminergic neuronal
status changed differentially and neuroinflammation took place with or without
participation of activated microglia during paraquat treatment in three different
regions of brain. Now these differential changes indicate separate signaling phe-
nomenon and different time frames for initiation of neurodegeneration might
involve in the substantia nigra, frontal cortex and hippocampus of mouse brain. The
exact cause of such changes and their correlation is yet to reveal (Mitra et al. 2011).
MPTP-induced neurotoxicity in association with neuroinflammation is linked to
microglial activation (Gao et al. 2002; McGeer et al. 2003). Under the circum-
stances of neuroinflammation microglial release of proinflammatory cytokines to
act on the endothelium cells of BBB to stimulate upregulation of VCAM-1 and
ICAM-1, which leads to the recruitment of passing T-cells and monocytes
expressing the counter receptors, including CD11a/CD18 (LFA-1) and very late
antigen-4 (Neumann et al. 2009), which in turn release more cytokines. In a recent
study the proinflammatory cytokines Il-1β, TNF-α, IL-8, RANTES, MCP-1,

Fig. 7.5 Different cell types involved in PD pathogenesis. Peripheral T-cells that infiltrate in CNS
by disrupting BBB contribute to microglial activation and subsequent release of proinflammatory
factors resulting in neuronal damage and death. Reactive astrocytes produce huge amount of ROS
which worsens the scenario and augments neuronal loss. Adding to it is the activation of
complement system which targets the injured neurons by MAC and kills those
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MIP-1α were found to be higher in PD patients. Elevated levels of proinflammatory
cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL-1β and IL-6) in
the cerebrospinal fluid (CSF), strital and dopaminergic regions of patients brain
suffered with PD have also been demonstrated (Blum-Degen et al. 1995; Mogi et al.
1994; Muller et al. 1998). Activated glial cells might exert detrimental effect by
releasing proinflammatory cytokines, such as TNF-α, IL-1β, and IFN-γ as well as
iNOS which in turn activate the other glial cells in the substantia nigra in PD has
been reported (Hirsch et al. 2003; Hisahara and Shimohama 2010). Furthermore,
elevated levels of several interleukins, EGF, TGF-β, etc., along with the apoptotic
proteins and low levels of neurotrophins have been found in the striatum of post-
mortem PD brain and ventricular and cerebrospinal fluid (Nagatsu 2002; Nagatsu
and Sawada 2006). LPS is widely used known toxin to induce Parkinson’s like
syndrome in cells as well as in rodent. LPS also induces microglial activation to
give rise to IL-1β levels and dopeminergic neuronal loss consequently in mice
whereas administration of anti-IL-1β neutralizing antibody could reverse the con-
dition (Arai et al. 2004, 2006). The released cytokines from the dying dopaminergic
neurons and microglia seem to amplify and sustain the neuroinflammation leading
to persistent nigral dopaminergic neurons destruction (Orr et al. 2002). Recent
study in our lab has demonstrated the high increment in the IL-1β expression in the
hippocampus and the frontal cortex region of the male mouse brain after exposure
to paraquat but lack of expression or, disperses immunoreactivity of IL-1β was
observed in the substantia nigra (Mitra et al. 2011). ICAM-1 which is important for
the persistence of neuroinflammation has been found to be overexpressed in acti-
vated astrocytes in the substantia nigra of PD patients as its counter receptor LFA-1
(CD11a/CD18) in the microglia found in the tissue matrix of the substantia nigra. In
these patients, ICAM-1 expression is high particularly in the residual neuronal area
where extensive cell loss has occurred. This ICAM-1 and LFA-1 interactions
sustain inflammation in PD patients as well as in MPTP-treated monkeys (Miklossy
et al. 2006). So in short molecules like TNF-α, IL-1, IL-6, and NO are toxic to
neurons (Allan and Rothwell 2001; Fisher et al. 2001; Gayle et al. 2002; Liu and
Hong 2003; Ma and Ma 2002; Sriram et al. 2002). Gene expression of Toll-like
receptor 2, IFN-γ, COX-2, IL-6, and IL-6 receptor has been reported to be increased
in the CNS of LPS-induced rodent model of PD (Laflamme et al. 2001; Vallieres
and Rivest 1997) which may be significant in the context of that particular
toxin-induced PD. Furthermore, COX-2 (Feng et al. 2002), nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase (Wu et al. 2002) and both TNF-α
receptors (Sriram et al. 2002) genes inactivation inhibit the synthesis of
proinflammatory molecules to protect DA neurons against MPTP-induced neuro-
toxicity, implicating important role that inflammation plays during MPTP mediated
as well as in other types of nigrostriatal neurodegeneration. Additionally, COX-2
produces Prostaglandin E2 (PGE-2) from arachidonic acid induce dopaminergic
neurotoxicity directly (Gao et al. 2003b). Increase in the expression of inducible
nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the amoeboid
microglia in nigral region of PD patient has been observed but not in the control
subjects (Knott et al. 2000). The upregulation of iNOS is also generally found in
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experimental PD models (Iravani et al. 2002; Liberatore et al. 1999), however
inhibition of it stalled or inhibit 75 % of LPS-induced toxicity or LPS and IFN-γ
activated microglial detrimental effect on dopaminergic neurons in vitro (Hemmer
et al. 2001; Le et al. 2001). So now it is quite clear from the evidence that
inflammatory cytokines, such as TNF-α, IL-1, IL-6 and the signaling molecule NO
are toxic to neurons (Sriram et al. 2002). Depino et al. (Depino et al. 2003) reported
that subacute 6-OHDA dose administration is linked with the atypical cytokine
response in the nigral region. Upregulation of the gene expression of IL-1α and -1β
has been found after 1 month of 6-OHDA injection lacking IL-1α or -β protein
induction. However, a bacterial toxin can induce not only both mRNA at similar
levels of these cytokines but at similar protein level also, although TNF-α mRNA
was barely detectable in the nigral region. They concluded that death of the neurons
itself does not induce proinflammatory cytokines secretion but requires an addi-
tional stimulus. However, Nagatsu et al. (2000) showed an elevation in the levels of
plenty of proinflamatory cytokines, including TNF-α, IL-1β, and IL-6 along with
the decreased neurotrophin levels of such as brain-derived neurotrophic factor
(BDNF) in the CSF of PD patients and the nigral region of 6-OHDA treated rats.
MHC class 1 and II antigens and iNOS were increased in the striatum and sub-
stantia nigra of MPTP-treated mice (Kurkowska-Jastrzebska et al. 1999) as well as
increases in proinflammatory cytokines such as IL-1β and IL-6 (Nagatsu and
Sawada 2006). Administration of MPTP also modifies the expression of numerous
genes including IL-1, IL-6, IL-10, and TNF-α linked with the inflammation
(Mandel et al. 2003). Although MPTP and its active metabolite MPP+ have not
reported yet to activate microglia (Gao et al. 2003a), but their toxicity in mice is
decreased significantly with very low production of inflammation inducer such as
superoxide (Wu et al. 2002), prostaglandins (Feng et al. 2002; Teismann et al.
2003a, b), and TNF-α (Sriram et al. 2002). TNF-α, IL-1β, and IFN-γ potentially
activates the iNOS in the glial cells of rodent (Hunot et al. 1996) but failed to do so
in humans (Ding et al. 1997; Peterson et al. 1994). The anti-inflammatory steroidal
drug dexamethasone inhibits microglial reaction by decreasing the proinflammatory
cytokines and NO production, hence reducing the MPTP-induced degeneration of
DA neurons (Kurkowska-Jastrzebska et al. 1999). It is well known that NF-κB
pathway is linked with the inflammation so any modulation in that pathway could
lead to the alterations in the inflammation. So the above-stated (Kurkowska-
Jastrzebska et al. 1999) fact could make NF-κB as potential therapeutic target in the
context of PD. Not only this drugs but antibiotics such as a tetracycline derivative
minocycline has been shown to decrease the inflammatory cytokines production
like IL-1β as well as to inhbit iNOS and NADPH oxidase in comparison the control
animals not treated with MPTP (Winklhofer and Haass 2010).

Collectively, the use of potent anti-inflammatory drugs depicts inhibition of
inflammation during the course of PD. However, it has been found in a study with
LPS activated microglia that IL-13 an inflammatory cytokines induces death to the
microglia by upregulating the COX-2 expression and PGE-2 formation, whether the
other inflammatory like cytokines TGF-β, IL-10 failed to do so (Yamada et al.
1992) although sodium salicylate, the nonselective COX-2 inhibitor, shown to be
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protective to neurons in either MPTP-induced (Liu et al. 2002) or the 6-OHDA rat
model of Parkinsonism (Sanchez-Pernaute et al. 2004). This would be due to the
different microenvironment in in vivo condition compare to the in vitro condition.
However, the neuroprotective effect of COX-2 inhibitors against MPTP in vivo
might be due to the inhibition of COX-induced DA oxidation (Sanchez-Pernaute
et al. 2004; Teismann et al. 2003a, b) rather than microglial activation. The NFκB
promotes apoptosis by activating gene transcription of Bax and p53 and increasing
the TGFβ1 and cyclopentenone prostaglandins expression (Lawrence et al. 2001).
Important role is also played by Chemokine and its receptor in PD. The protective
role of chemokine receptor CX3CR1has been established in the animal models of
amyotrophic lateral sclerosis and PD. Microglial cells are attracted towards the
chemokine ligands of CX3CR1 and supported the neurons at risk but lack of this
receptor resulted in severe neurodegeneration (Cardona et al. 2006). But the
mechanisms of action of CX3CR1-positive microglia assisting the entangled neu-
rons have yet to be determined, although assumptions are made about the release of
neuroprotective and trophic factors exert protection to the neurons (Neumann and
Wekerle 1998). Fractalkine (CX3CL1) is a chemokine that is highly conservative
and expressed in the surface of neurons and neuron and suppress the effect
microglia activation. It was evident in the 6-OHDA induced rat model of Parkin-
sonism and also in in vitro study that CX3CL1 induction causes decrease in the
lesion volume and protect the neurons in striatum via inhibiting the Fas ligand
mediated apoptosis (Boehme et al. 2000; Pabon et al. 2011).

7.5 Complement System Involvement in Aggravating
Neurodegeneration in PD

The complement system, one of the most primitive segments of innate immune
system, enhances the potency of both the nonspecific and specific immunologic
response. On activation of complement cascade, an array of molecules are produced
which directly or indirectly contribute to reduce the insult. Among them, anaphy-
latoxins promote further inflammation, active counterparts of complement proteins
(e.g., C3b) opsonizes target components and direct them for phagocytosis and
ultimate destruction by producing membrane attack complex (MAC) (Bonifati and
Kishore 2007; McGeer and McGeer 2002). Interestingly, complement proteins and
components of MAC have been localized intracellularly on Lewy bodies and on
oligodendroglia in substantia nigra of both sporadic (Xiong et al. 2011) and familial
PD patients. Complement proteins have been reported to promote inflammatory
cytokines synthesis from glial cells. Additionally, MAC has been identified in PD
brains (Bonifati and Kishore 2007; McGeer and McGeer 2002) along with
enhanced levels of C-reactive protein and inflammation markers (McGeer and
McGeer 2005). On a whole, role of complement system in inflammation-mediated
neurodegeneration and PD seems to be quite evident (Bonifati and Kishore 2007;
McGeer and McGeer 2005). As the inflammation progresses in later stages, it
becomes uncontrolled and chronic. Several reports indicate that therapeutic
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targeting and inhibition of inflammatory response may prove to be successful in
reducing the dopaminergic neurodegeneration in different models of PD (Gao et al.
2003b).

7.6 Contribution of Oxidative Stress in PD
related Neuroinflammation

Parkison’s disease is a common progressive neurodegenerative disease and is
associated with the nigrostriatal dopaminergic neuronal loss. Oxidative stress,
mitochondrial dysfunction could contribute to the progression of the disease
(Hisahara and Shimohama 2010). The most affected region in Parkinson’s disease
of the CNS is substantia nigra and the excessive ROS production and deposition of
lewy bodies (α-synucleiopathy), mitochondrial dysfunction leading to apoptosis are
the main cause of nigral cell abolition (Kones 2010). Microglial activation by
α-synuclein and activation of NADPH oxidase along with ROS production plays a
vital role in the disease progression in case of PD (Yang et al. 2006).
Lipopolysaccharide (LPS) is a common bacterial endotoxin that has been used as a
neurotoxin to produce the deleterious effects like PD. Activation of PHOX, the gene
responsible for NADPH oxidase contributes most of the LPS mediated intracellular
ROS production that leads to the activation of microglia and proinflammatory
mediators like TNF-α (Qin et al. 2004) or, Prostaglandin E2 (PGE2) (Block and
Hong 2005). So NADPH oxidase could be a potent target in the pharmaceutical
aspects in α-synuclein mediated neurotoxicity during PD. Although LPS increased
the proinflammatory molecules, iNOS, and MAP kinase expression the inhibition of
phosphorylation of NF-kB can be achieved by NADPH oxidase inhibitors and
catalase (Pawate et al. 2004). Gao et al. (2003a, b, c) have shown that lack func-
tional NADPH oxidase decreased DA toxicity in neurons and glia of mice when
treated with MPTP and MPP+ suggesting the contribution of extracellular super-
oxide in MPTP and its metabolite mediated toxicity (Gao et al. 2003a). Not only
that, the very involvement of NADPH oxidase in the course of neurotoxicity by
microglia either generating extracellular ROS or the enzyme may increase ROS
production within the microglia which activates the generation of mediators of
inflammation that subsequently exert neuronal toxicity. T-cells influence the
microglia to produce ROS (Wu et al. 2002), proinflammatory prostaglandins and
cytokines, causing progressive neurodegeneration consequently (Arai et al. 2004,
2006; Lucas et al. 2006). Several studies have shown that mitochondria are the
arsenal of reactive oxygen species (ROS). Overproduction of ROS and defective
ROS removal by mitochondrial defense systems in mitochondria cause severe
oxidative damage to mitochondrial DNA, proteins and lipids and affect mainly the
electron transport chain. Lots of evidence suggested that ROS production at some
extent is not all bad but have physiological roles as signaling molecules in different
cellular signaling. Moreover, an adequate production of ROS may be protective
toward stress. The complex I inhibition in different toxin-induced models of PD is
not well understood due to the lack of proper cause. In studies it is assumed that
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mutations in the complex I in the mitochondrial or nuclear genome contributed to
the abnormality in complex I function. The toxin rotenone which is also a
Parkinson-like syndrome inducer inhibits complex I and ROS formation by binding
to proximity to the quinone-binding site. Introduction of pyruvate or glutamate plus
malate that helps forward in electron transport chain induces rotenone to block
proton pumping and increase superoxide generation. However, rotenone can block
superoxide formation in presence of succinate when electron transport is reverse.
The proton-motive force (ΔpH and Δψ) component across the mitochondrial inner
membrane highly implicated in superoxide production at high alkaline pH or
membrane potential leads to consecutive formation of ROS. In absence of histone
proteins and defected DNA repair mechanism mitochondrial DNA (mt-DNA) are
more vulnerable to mutations (Barrientos and Moraes 1999; Zhang et al. 2005;
Zhou et al. 2008b). ROS affects the mt-DNA mainly due to the closeness of the
respiratory chain. The deficiency of cytochrome c oxidase (COX, complex IV) in
neurons of which three catalytic subunits are mainly encoded by the mt-DNA make
the other mt-DNA’s susceptible for deletion. The observations suggested that a
critical doorway of the extent of mt-DNA deletions exist above which respiratory
chain deficiency occur. The occurrence of mt-DNA deletions is slightly higher in
dopaminergic neurons in PD patients compared to the age matched controls. The
highly specific deletion event of Mt-DNA has seen to be missing in hippocampal
neurons and pyramidal neurons of the cerebral cortex or cerebellar Purkinje cells in
aging individuals except the eventual deletions in the nigral region in both the age
group (Bender et al. 2006; Zhang et al. 2005; Zhou et al. 2008b). The mechanism of
action of ROS and RNS contributing to the pathogenesis of PD could be extracted
from the fact of modification of the molecular factors by oxidative stress important
to cellular function and survival. Some of the symptoms addressing the oxidative
stress have been observed in PD like the decrease in the concentration of PUFAs in
the SN, production of ROS, increase in the malondialdehyde concentration con-
firming lipid peroxidation, the elevated levels of free and bound nitrotyrosine a
molecule of the RNS (reactive nitrogen species) entity, etc. These have been shown
to be elevated in damaged areas during the course of MPTP in mouse model. DNA
is not also out of the list of ‘oxidative stress prey’ as deoxyguanosine is converted
to 8 hydroxydeoxyguanosine (8-OHdG) by oxidative agents in PD and 8-OHdG
has been found to be markedly increased like other markers of in postmortem
samples of substantianigra. But most of the abnormalities of ROS and RNS in PD
stated above might be nonspecific proof and features of the cells going to die as the
actual cause of neurodegeneration in PD remains elusive. Thereare neurons and
other cells where the necessary, disciplined balance is maintained in our body
between the accumulation and removal of ROS and RNS occur to keep them at very
low non toxic levels. Superoxide dismutase (SOD), a ROS-scavenging enzyme, is
assumed to be the potential defense system against an elevating ROS level. The
enzyme has two isoform- SOD1 (cytosolic) and SOD2 (mitochondrial). Cytosolic
isofom, i.e., SOD1 has found to be unchanged whereas its mitochondrial isoform,
i.e., SOD2 has found to be activated despite of its inducible feature by excess ROS
in PD brains indicating the mitochondrial compartment as the site of high ROS
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production. This highly studied result are in contrast with the small degree of
changes of catalase and glutathione peroxidase low activities in PD brains which
might not be so significant in comparison to SOD (Zhang et al. 2005). Interestingly,
synergistic of MPTP and LPS to mediate nigral dopaminergic neurotoxicity has
also been revealed influencing the superoxide free radical entity (Gao et al. 2003c).
L-DOPA like dopamine which is used as a drug in case of aged people having PD
can be readily auto-oxidized and can give rise to ROS production and worsen the
condition. In normal condition, small amounts of molecular oxygen that is con-
sumed majorly by the mitochondrial electron transport chain have been converted
to ROS as superoxide radicals despite of converting into water. It is due to the
SOD2 and other antioxidant enzymes that keep the basal levels of ROS by products
of mitochondrial respiratory chain are minimal inside the mitochondria (Marttila
et al. 1988; Poirier et al. 1994; Saggu et al. 1989; Zhang et al. 2005). Mitochondrial
respiratory defect, however, has been reported to exist in PD to give rise to a vis-à-
vis regulation of high amount of ROS production with the defective electron
transport chain, wiping out the neuroprotection. Glial cells are mainly protective
and perform their normal function in brain, but upon activation of astrocytes and
microglia can produce cytotoxic molecules including RNS and ROS in the CNS. In
this occasion, the participation of microglia is greater than that of the astrocytes.
The gene expression of inflammatory enzyme NADPH oxidase is increased and the
enzyme remains activated in PD postmortem tissues and in the degenerating brain
areas of MPTP-induced mice model of PD. Inactivation of the catalytic subunit of
this enzyme complex causes dopaminergic neurotoxicity to be stalled in mice.
This ROS and RNS, produced by activated glial cells; damage proteins can harm
the neighboring dopaminergic neurons also. Another ROS species hydrogen per-
oxide can kill cells by direct toxicity; modulates a transcriptional factors such as
NFκB and its signaling pathway and protein kinases, such as c-Jun N-terminal
kinases (JNKs). In PD during the course of inflammation, a very destructive agent
of ROS, i.e., H2O2 is produced from dopamine (DA) by the remaining dopamin-
ergic neurons by oxidative deamination in the striatum. Incubation of rat striatal
synaptosomes with levodopa causes increment in oxidized glutathione (GSSG)
level in short-term exposure, but repetitive treatment did not alter the GSSG level
despite a marked increase in DA turnover in case of Parkinson’s like syndrome in
rat (Loeffler et al. 2006). So the study concluded that the rat striatum defended the
oxidative insult that is produced by DA turnover in in vivo condition than in
synaptosomes in the course of neurodegeneration in PD. Malondialdehyde
(MDA) the product of lipid peroxidation and ROS level increased, SOD level was
decreased in the hippocampus of the mouse brain after treatment of paraquat. It also
causes the increment of 8-OHG level in the neuronal mt-DNA, which implies
mt-DNA defects (Chen and Swanson 2003). It was shown by Kutker et al. that
repeated and systematic administration of low dose of paraquat may result in the
oxidative damage and that leads to slow disease progression in the brain without
affecting the peripheral tissue (Kuter et al. 2010). Prx2 is an antioxidant protein that
reduces hydrogen peroxide to water. Its activity loss leads to greater intracellular
concentration of ROS and eventual loss of dopaminergic neurons (Zhou et al. 2008a).
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We reported in our paper that PQ-mediates neurotoxicity via ROS generationwith the
differential pattern α-synuclein aggregation in Substantia Nigra, Frontal Cortex and
hippocampus of mouse brain (Mitra et al. 2011). Thus, neuronal death could arise
from malfunctioning of many of these pathways mentioned above rather than the
toxic effects exerted by the ROS or RNS directly. Despite extensive research on
oxidative stress in several neurodegenerative diseases and its effect on their pathol-
ogy, its exact role in cross-talk of different apoptotic pathways (intrinsic and extrinsic)
is far from clear till date (Sinha et al. 2013).

7.7 Probable Therapeutic Interventions in PD

Several strategies have been found in the previous literaturewhichmay reflect counter
balancing effect against PD. NADPH oxidase may be a potent target as stated earlier
(Yang et al. 2006). It is a vital enzyme whose activation could produce oxidative
damage maximally in the CNS. We stated earlier that the goal could be achieved to
survive the neuron by inhibition of its catalytic subunit gp91PHOX (Zhou et al.
2008a). Not only that we have also described above that how its inhibition could cause
the stoppage of proinflammatory cytokine release as well as NF-κB-mediated cell
death (Pawate et al. 2004). Other therapeutic strategies are there to protect the CNS
during PD. T-cell infiltration might be a good approach. It was stated above that the
peripheral T-cells can protrude the BBB during PD (Tansey and Goldberg 2010). Use
of anti-inflammatory drugs which can activate the anti-inflammatory cytokine IL-13
which could cause death to agedmicroglia by upregulating the COX-2 expression and
PGE-2 formation (Yamada et al. 1992). Overexpression of human wild type
α-synuclein and mutant A-53T synuclein which show a similar type of aggregation
like α-synuclein in PD brain, but could protect the neuron by increasing the HSP-70
expression (Manning-Bog et al. 2003) which might refold the misfolded α-synuclein.
So α-synuclein overexpression could be a potent therapeutic target. N-acetylcysteine
(NAC) which is generally used as an inhibitor of ROS by many researchers. It was
observed that NAC cause less oedema and cellular infiltration in paraquat affected rat.
So NACmight have a role in the context of therapeutic intervention in toxin-induced
Parkinsonian model (Wegener et al. 1988). Another agent ethyl pyruvate was
assumed to be a potent agent in attenuating the oxidant and inflammatory response in
rat after pre or, post treatment of paraquat (Lee et al. 2008). So these are a few probable
therapeutic approaches that could prevent neurodegeneration and lead to repair and
survival of the neurons during disease progression (Fig. 7.6).

7.8 Conclusion and Future Direction

Many symptoms and probable cause of PD have been documented till date but any
early diagnostic marker of the disease onset has not yet been identified. So the
therapeutic interventions suggested above lacks the approach which could protect
the neuron at the early stage or, inhibit the neurodegeneration at the onset of the
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disease. So the future direction of PD research should be directed towards finding a
potent early diagnostic marker of the disease, so that the disease progression can be
arrested before it is too late.
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8Molecular and Cellular Insights:
Neuroinflammation and Amyotrophic
Lateral Sclerosis
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Abstract
Accumulation of misfolded and abnormal proteins generates probably a
common and complex pathomechanism in various neurodegenerative diseases
(Alzheimer’s, Parkinson’s, Huntington’s, Amyotrophic Lateral Sclerosis, and
Prion) and in aging. In amyotrophic lateral sclerosis (ALS), neuroinflammation
appears in the form of T-lymphocyte infiltration, presence of reactive astroglial
and microglial cells. Most likely, end stage of this toxic cascade results in death
of motor neurons in the cortex, brainstem, and spinal cord. More than 10
different genetic causes of familial ALS are known; but still it is a challenge to
prevent the loss of descending motor tracts by suppressing the degeneration of
motor neurons. This chapter will focus on the precise understanding of
neuroinflammatory responses in molecular pathomechanism of ALS and it also
discusses new potential therapeutic strategies to improve neuroprotection and to
alleviate proteotoxicity in ALS linked motor neurodegeneration.
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ALS Amyotrophic lateral sclerosis
AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
ANG Angiogenin
BBB Blood brain barrier
Bcl-2 B-cell lymphoma 2
C9orf72 Chromosome 9 open reading frame 72
CHIP Carboxy terminus of Hsp70-interacting protein
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CNS Central nervous system
EAAT2 Excitatory amino acid transporter 2
fALS Familial amyotrophic lateral sclerosis
FTD Frontotemporal dementia
FUS Fused in sarcoma
GDNF Glial cell-derived neurotrophic factor
GFAP Glial fibrillary acidic protein
Hsp70 Heat shock protein70
IFN-γ Interferon-γ
IL Interleukins
MRI Magnetic resonance imaging
NG2+ Neuron-glial antigen 2-positive
NMDA N-methyl-D-aspartic acid
PET Positron emission tomography
PNS Peripheral nervous system
PGC-1α Peroxisome proliferator-activated receptor gamma (PPAR-γ)

coactivator-1α
RNS Reactive nitrogen species
ROS Reactive oxygen species
SETX Senataxin
SOD-1 Superoxide dismutase 1
TDP-43 Transactive response DNA binding protein-43
TNF-α Tumor necrosis factor-α
UPS Ubiquitin proteasome system
VAPB Vesicle-associated membrane protein-associated protein B

8.1 Introduction

Amyotrophic lateral sclerosis (ALS) or classical motor neuron disease is a fatal
neurodegenerative disorder caused due to motor neurons degeneration. Death of
motor neurons in ALS affects the transmission of motor signals and hence results in
gradual loss of muscle movements. In 1860s, French neurologist Jean-Martin Charcot
observedmyelin pallor in the lateral portion of spinal cord, and is known to be the first
who identified this disease (Charcot and Joffroy 1869). In the United States, this
disease is familiarly known as Lou Gehrig’s disease, named after the famous baseball
player Lou Gehrig, who died because of this disease at an age of 38 years (Cleveland
and Rothstein 2001). Prevalence rate for ALS in the United States is 4–6 per 100,000
with its manifestation at a median age of 55 years (Pasinelli and Brown 2006).
Patients suffering with ALS have relatively shorter life span and within 3 years of
symptoms onset, 50 % of patients do not survive (Deng et al. 2006). Every year,
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approximately two new cases out of 100,000 people are reported in Europe
(Logroscino et al. 2010).

Sporadic and familial (inherited) are the two basic forms of this disease, but there
are few other variants also, such as Western Pacific ALS, Juvenile ALS, and
Hiramayas disease (Foster et al. 2015). Sporadic ALS includes around 90 %
incidence as compared to familial ALS (Wijesekera and Leigh 2009; Al-Chalabi
et al. 2012; Boillee et al. 2006; Chen et al. 2013). Etiology of ALS is not well
known; but studies show that more than 25 genetic mutations and 18 gene loci are
associated with the pathology of ALS (Marangi and Traynor 2015). The major
symptoms of disease are degeneration of neurons in brainstem, cortex, and spinal
cord which results in muscle twitching, atrophy on both sides of the body and
difficulty in the process of speaking, breathing which ultimately leads to complete
paralysis (Abrahams et al. 2014). Several mechanisms have been proposed to be the
causing factors of ALS, such as ubiquitin proteasome system (UPS) impairment,
protein aggregation, disruption in protein quality control machinery, neuroinflam-
mation, neurofilament accumulation, and glutamate excitotoxicity (Goodall and
Morrison 2006).

Cellular protein quality control machinery removes partially and incorrectly
folded proteins from the cells. To perform this function, UPS and chaperones, both
systems work independently as well as synergistically (Chhangani and Mishra
2013; Chhangani et al. 2013). In patients of ALS, protein quality control machinery
is severely damaged, which consequently causes accumulation of proteins such as
superoxide dismutase 1 (SOD1), fused in sarcoma (FUS) and transactive response
DNA binding protein-43 (TDP-43) as ubiquitinated inclusions in the affected brain
regions (Kabashi and Durham 2006). Along with the death of motor neurons, ALS
has found to be consociated with changes in the normal responses of astrocytes,
microglia, oligodendrocytes, and natural killer cells (Boillee et al. 2006; Rothstein
2009). Proteotoxic insult generated inside central nervous system (CNS) activates
microglia which further releases cytokines, reactive oxygen species (ROS), and
reactive nitrogen species (RNS) responsible for inflammatory responses, whereas
increased astrocyte activation results in the production of nerve growth factor
causing degeneration of motor neurons (Henkel et al. 2009; Pehar et al. 2004;
Nakamura et al. 1999).

Natural killer cells were found to raise the levels of cytokines such as inter-
leukins IL-4, IL-10, Tumor necrosis factor alpha (TNF-α), and Interferon gamma
(IFN-γ) (Finkelstein et al. 2011). NG2+ oligodendrocyte progenitor cells (the glial
precursor cells known for generating myelinated cells of CNS) proliferation is also
enhanced in disease mouse model of ALS (Kang et al. 2013). All these responses
along with certain other changes taking place simultaneously inside the CNS
constitute a process, which was certainly under question for a long time, known as
neuroinflammation (details in box 1). It is a cellular immune response to the
changes occurring in CNS and its microenvironment. In ALS, it is associated with
invasion of CNS through inflammatory molecules, phagocytic cells, and various
proteins (Weydt and Möller 2005).
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Box 1. Neuroinflammation and Brain Inflammation is a well-programmed
spontaneous response of our body against any perturbation or unusual situ-
ation generated inside, due to external triggers. Research in past few years
have significantly revised the historical idea of brain being
immune-privileged (Aloisi 2001). Current advancements have clearly estab-
lished the notion of well-structured immune system inside our central nervous
system (CNS), which can respond to a variety of stresses such as injuries,
infections, microhemorrhage, and a number of diseases (Tracey 2002; Nance
and Sanders 2007). The term ‘neuroinflammation’ has drawn remarkable
attention in recent past. It refers to a collective response of different brain cells
against any kind of insult generated from environment or other neurotoxi-
cants. Glial cells play primary role in executing all such immune responses.
They release a number of proinflammatory cytokines viz. IL-1β and TNF-α
either directly inside the CNS or sometimes indirectly released from their
counterparts of peripheral nervous system (PNS) by crossing the blood brain
barrier (BBB) (Lasiene and Yamanaka 2011). Inflammation is considered to
be a safeguard tactic against a number of intrusions and infections, but fol-
lowing the phrase ‘excess of everything is bad’, chronic state of neu-
roinflammation has found to play a crucial role in progression of various
neurodegenerative diseases. Activation of immune cells leads to release of a
number of inflammatory factors, which causes breakdown of BBB, loss of
neuroprotective mechanisms, increased risk of neuronal tissue damage and
thus creating a positive feedback for invasion of other kinds of cells inside the
CNS (Carson et al. 2006; Ransohoff et al. 2003).

The chief mediators of neuroinflammation in ALS are microglial cells, which are
the main phagocytic cells of brain along with other accessory participants, such as
astrocytes, oligodendrocytes, T-lymphocytes, some inflammatory proteins, and
various other molecules (Endo and Yamanaka 2014). The sequence of neu-
roinflammatory events in ALS starts with the activation of microglial cells and their
accumulation in brain and spinal cord affected regions (McGeer and McGeer 2002).
Activation of microglial cells is associated with secretion of various inflammatory
proteins such as chemokines, cytokines, prostaglandins, complement activation
molecules, anaphylatoxins, integrins, and other acute phase proteins, which are
further involved in the process of neuroinflammation (Streit et al. 2004). These
biochemical molecules attract other important immune cells such as astrocytes,
T-lymphocytes, oligodendrocytes and inflammatory molecules to the site of injury
in ALS patients; producing stress, cellular damage, and finally leading to neuronal
death (Rizzo et al. 2014). Activation of microglia, movement of inflammatory cells
to site of injury and release of the other inflammatory molecules aggravate whole
process of neuroinflammation in patients of ALS.
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8.2 Etiology

ALS is associated with the phenotypic heterogeneity and considered as a complex
disease with various mechanisms causing the death of motor neurons as shown in
Fig. 8.1. This diseases is mainly caused by genetic defects, but there are few other
reasons also, including environmental factors such as exposure to heavy metals like
mercury, arsenic, and viral infections (Soriani and Desnuelle 2009; Alfahad and
Nath 2013). Sometimes, it is also considered as a prion disease because of prion
like properties of ALS associated proteins (Lee and Kim 2015). There is a claim
about the involvement of more than 25 genes in causing ALS by their genetic
variations. Few profoundly studied genes and their mutations are SOD1, TDP-43,
Chromosome 9 open reading frame 72, Angiogenin, Amyotrophic lateral sclero-
sis2, Senataxin, and Vesicle-associated membrane protein-associated protein B
(Marangi and Traynor 2015). Defective glutamate metabolism, free radical injuries,
mitochondrial dysfunction, programmed cell death, cytoskeleton protein defects,
autoimmune dysfunction, and protein aggregations are few other causes of ALS
disease (Rossi et al. 2013).
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Fig. 8.1 Schematic representation of ALS molecular pathogenesis: the diagram here represents
the causes and symptoms of ALS disease. Various genetic mutations and aberrant RNA processing
may cause the onset of motor neuron disease, which leads to several pathological changes, taking
place simultaneously. These changes include: neuroinflammation, proteasomal stress, mitochon-
drial stress, axonal retraction, and finally death of motor neurons. The central part of the diagram
depicts various kinds of protein aggregates, which have been reported in ALS brain

8 Molecular and Cellular Insights … 213



8.3 Various Cellular Pathways Involved in ALS

Till now, the proposed hypotheses for the pathogenesis of ALS include accumu-
lation of intracellular aggregates, oxidative damage, mitochondrial dysfunction,
glutamate excitotoxicity, growth factor deficiency, and defect in axonal transport. In
oxidative damage hypothesis, the mutation in superoxide dismutase 1 (SOD1) leads
to increase in the free radical and thus contributes to neuronal cell degeneration
(Bunton-Stasyshyn et al. 2014). Intracellular aggregates of SOD1 mutants also
ensure toxicity in motor neurons (Shaw and Valentine 2007). Pathological studies
of ALS suggest an increase in the volume of mitochondria of muscle cells and
elevation of calcium inside the mitochondria (Dupuis et al. 2004). There are many
shreds of evidences for an involvement of apoptosis in ALS by balancing out the
B-cell lymphoma 2 (Bcl-2) oncoproteins, in addition to the elevated levels of the
caspases, the proteases involved in apoptosis (Iaccarino et al. 2011). Another
hallmark of ALS is the aberrant accumulation of neurofilaments in the cell body and
proximal axons, causing defect in axonal transport (Rao and Weiss 2004).

8.4 Abnormal Functions of Protein Quality Control
Machinery in ALS

The abnormal functioning of UPS causes accumulation of SOD1 mutant protein in
motor neurons and leads to their degeneration (Kabashi and Durham 2006).
Impairment of UPS leads to accumulation of misfolded proteins inside the cells.
These toxic proteinaceous inclusions are bona fide causative factor of a number of
neurodegenerative disorders. ALS is also one such disease, which is induced due to
aberrant accumulation of misfolded proteins (Blokhuis et al. 2013; Lee and Kim
2015; Scotter et al. 2015). In most of the cases, overexpression of mutant proteins
causes an overload on UPS for removal of defective proteins from the neuronal cell,
producing accumulation of mutant proteins, which leads to pathological conditions
(Lehman 2009). In both, familial and sporadic ALS, alterations in the UPS
machinery leads to formation of toxic proteinaceous aggregates (Cheroni et al.
2009; Bendotti et al. 2012; Urushitani et al. 2002). The first gene to be linked with
ALS discovered in fALS patient was SOD1. The product of SOD1 gene, i.e., SOD1
protein was shown to be present in the ubiquitinated inclusions of ALS patients
brain sections (Kato et al. 2000). TDP-43 and FUS are two recently discovered
proteins in the aggregated ubiquitinated inclusions of SOD1 negative ALS patients
(Mackenzie et al. 2010).

Along with UPS (as explained in the previous section), chaperones are also
severely affected in patients of ALS. It is being observed that the chaperoning
capacity of chaperones viz. Heat shock protein 70 (Hsp70) associated with protein
quality control is severely reduced in the patients of ALS (Shinder et al. 2001;
Tummala et al. 2005). Evidences indicate that a direct interaction occurs between
Hsc70 and aggregated proteins in mouse model of ALS, as compared with normal
mouse (Watanabe et al. 2001). An increase in activity of these chaperones is found
to reduce the toxicity of aggregated proteins in a cell culture model of ALS,
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indicating the importance of chaperones regulating proteotoxicity in ALS (Bruening
et al. 1999).

8.5 Neurofilament Protein Accumulation

Neurofilament proteins in motor neurons are expressed primarily in axons (Llorens
2013). Many changes such as dysregulated protein synthesis of neurofilamentary
protein subunits, ineffective axonal transport, irregularity in
phosphorylation/glycosylation and oxidation, can cause accumulation of neurofil-
amentary proteins in motor neurons (Wong et al. 2000; Boylan et al. 2009;
Ludemann et al. 2005; Niebroj-Dobosz et al. 2004; Liem and Messing 2009; Dale
and Garcia 2012). This affects various neuronal processes such as dendritic
arborization, axonal transport, deficit in neuronal signal processing, and finally
progressing toward neuronal loss and death (Smith et al. 2003; Stamer et al. 2002).

8.6 Glutamate Excitotoxicity

Another mechanism implicated in ALS pathogenesis is glutamate excitotoxicity (the
process of excessive stimulation of glutamate receptors that permits the large amount
of calcium influx). In neuronal synapses, glutamate is released from the presynaptic
terminal and activates N-methyl-D-aspartic acid (NMDA) and α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid (AMPA) receptors of the postsynaptic neurons
(Traynelis et al. 2010; Kakizawa et al. 2005). Activation of both receptors causes
influx of Na+ and Ca2+ ions in postsynaptic cell, further causes neuronal depolar-
ization and generates action potential (Foran and Trotti 2009; Lau and Tymianski
2010). Glutamate excitotoxicity is induced by increased release and impaired uptake
of glutamate ions by the postsynaptic neuron. In ALS, a higher concentration of
glutamate causes overstimulation of glutamate receptors on postsynaptic neurons
and leads to increased intracellular Ca2+ influx, thus producing a higher Ca2+ con-
centration in the neurons (Van Den Bosch et al. 2006). Increased amount of intra-
cellular Ca2+ causes detrimental harm to motor neurons in ALS and results in
neuronal death (Gleichmann and Mattson 2011; Leal et al. 2013).

8.7 Proteomics of ALS Disease

Researchers have shown great interest in recent years in revealing the underlying
causes of the lethal motor neuron disease. Last one decade in the field has led to an
increase in discovery of ALS-associated proteins. The most studied of these, SOD1
mutant protein causes an increase in free radicals which lend up in neuronal cell
degeneration (Bunton-Stasyshyn et al. 2014). Another important and most recent of
these proteins is TDP-43, which forms immunoreactive inclusions (also known as tau
negative neuronal inclusions) in the cytoplasm of ALS patients neurons (Arai et al.
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2006). TDP-43 inclusions are present in the cytoplasm of glial cells and neurons
within the spinal cord and throughout brain. There are about 38 nonsynonymous
mutations identified in both sporadic and familial ALS (Sreedharan et al. 2008). There
is some strong mechanistic basis that suggests the prion like behavior of TDP-43
inclusions (Smethurst et al. 2014). Mutations of TDP-43 also cause frontotemporal
dementia (FTD) with ALS (DeJesus-Hernandez et al. 2011).

Microtubule-associated tau protein is another protein found in neuronal inclu-
sions in early stages of ALS (Yang et al. 2003). Peroxisome proliferator-activated
receptor gamma (PPAR-γ) coactivator (PGC)-1α is a transcription coactivator that
improves motor function and survival of SOD1-G93A mice by regulating mito-
chondrial biogenesis and oxidative metabolism (Zhao et al. 2011). There are few
evidences of enhanced activity of S100 beta, a calcium binding protein in the spinal
cord of ALS mice which further leads to neurodegeneration through calcium
pathways (Shobha et al. 2010). Proteomics analysis of an ALS mouse model
proposed changes in the levels of near about 50 proteins in spinal cord (Bergemalm
et al. 2009). In another study, it was shown that mutated SOD1 causes accumulation
of other proteins, such as inactivation of specific chaperones, including Hsp70, its
co chaperones CHIP, Hsp40, Hsp105, and others (Jain et al. 2008). Recently, it was
discovered that increased levels of galectin 3 (Gal3), a protein involved in many
biological processes such as cell adhesion, cell cycle, apoptosis, etc., causes onset
of ALS symptoms in mice (Zhou et al. 2010). Various other types of inclusion
bodies are also found in glia, neuronal soma, and proximal dendrites in the brain of
ALS patients. Table 8.1 summarizes the most studied types of such inclusion
bodies, which are found in ALS patients.

Table 8.1 Various types of inclusion bodies in ALS

S.
No.

Inclusion bodies or
aggresomes like structures

Remark

1 Ubiquitylated inclusions Proteins involved are ubiquitin, peripherin, Cu/Zn
SOD1 and dorfin (Matsumoto et al. 1993)

2 TDP-43 Ubiquitin positive but tau negative inclusions (Arai
et al. 2006)

3 Fused in sarcoma protein
(FUS)

Inclusions present immunorectivity for TDP-43 and
ubiquitin (Vance et al. 2009)

4 Bunina bodies Immunoreactive for cystatin (Piao et al. 2003)

5 Hyaline conglomerate
inclusions

Intermediate filament proteins especially peripherin and
hyperphosphorylated neurofilament subunits (Troost
et al. 1992)

6 Astrocytic hyaline
inclusions

Formed by SOD1, ubiquitin, and cytoskeletal protein
(Kato et al. 1997)

7 Axonal spheroids Positive for phosphorylated neurofilament, ubiquitin,
synaptophysin (Takahashi et al. 1997)

8 Basophilic inclusions Consist mainly of thick filamentous structures
associated with granules (Ito 2014)
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8.8 Animal Models to Study ALS Disease

The transgenic animal models for diseases having aggregation of mutant proteins as
a prominent phenotype provide better understanding of disease pathology. ALS and
Huntington’s disease are two such diseases. Animal models produced till now for
ALS disease are Swine, Mouse, Zebrafish, Caenorhabditis elegans, and Drosophila
(Islam et al. 2014). The animal models were developed majorly for mutations in
three genes SOD1, FUS, and TDP-43. All five animal models are available for
SOD1 with different mutations as well as for TDP-43 (Joyce et al. 2011). Trans-
genic rat models are also developed recently to study SOD1 and TDP-43 mutations
for characteristic phenotype and pathophysiology of ALS (McGoldrick et al. 2013).
FUS is a DNA/RNA binding protein that plays a significant role in RNA meta-
bolism; animal models for FUS open a new path for studying the molecular
mechanism of ALS (Lanson and Pandey 2012). Despite the availability of so many
animal models, an intrinsic difference in genetics and anatomy causes the limitation
in the application of animal models for ALS.

8.9 Immune Responses in ALS and Related Inflammatory
Pathways

In 1919, Del Rio Hortega was the first who identified phagocytic, mesenchymal
cells, microglia, in the brain. This view was under questions till the development of
some advanced techniques. Now, molecular biology has given so many evidences
of microglial cells as the very first line of defense inside the CNS. Microglia are the
resident macrophages present throughout the CNS. ALS is a movement disorder,
characterized by loss of upper and lower motor neurons in motor cortex, brain stem
and spinal cord, followed by increased population of activated glial cells in affected
areas of the brain (Baumer et al. 2014). Arborizations (branching) of cytoplasmic
processes provide microglial cells an ability to patrol the nervous tissues inside the
brain, whereas initiation of glial responses leads to enlargement of cell body with
shrinkage of processes giving them amoeboid shape (Kettenmann et al. 2011;
Moisse and Strong 2006; Henkel et al. 2009).

In recent years, scientists have shown clear relationship between upregulation of
glial activation and progress of various neurodegenerative disorders, e.g., Alzhei-
mer’s disease, Parkinson’s disease, Multiple sclerosis, and ALS, etc. (Mandrekar-
Colucci and Landreth 2010; Dewil et al. 2007; Muzio et al. 2007; Rogers et al.
2007). ALS, in general, is characterized by accumulation of activated amoeboid
microglia, reactive astrocytes, and marginating leucocytes within degenerating
brain areas viz. spinal cord, brain stem, and motor cortex (McGeer and McGeer
2002; Turner et al. 2004). Diversion of microglia from their housekeeping functions
like eliminating dysfunctional synapses generates a vicious feed forward cycle of
inflammatory responses inside the CNS, which ultimately leads to accelerated
progression of the diseased condition.
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Astrocytes, ectodermal cells, are nonimmune cells, providing nutrition to nearby
neurons and maintaining neurotransmitters concentrations in extracellular environ-
ment. But during gliosis, they play significant roles (Julien 2007; Farina et al. 2007).
Activation of astrocytes can be seen by marked increase in expression of glial
fibrillary acidic protein (GFAP), a marker of astrocytes. T-cell infiltration seems to
add additional inflammatory reactions inside the brain tissues. Roles of oligoden-
drocytes and other brain cells are still to be understood properly. In various
post-mortem studies, tissue sections from ALS brains have shown presence of
microgliosis in motor nuclei of the brainstem, in the ventral horn of spinal cord as
well as in the motor cortex of brain. Astrocytosis has also been reported in both,
dorsal as well as ventral horns of the spinal cord (Kawamata et al. 1992; Schiffer
et al. 1996). Studies on mice have shown the increased populations of other immune
cells like CD4+ and CD8+ cytotoxic T cells at early stage of ALS (Chiu et al. 2008).

Microglia cells get activated by several factors, as happens in case of various other
diseases. In case of ALS, accumulation of extracellular inclusions and subsequent
degeneration ofmotor neurons acts as the trigger for their activation.Mutations of Cu2
+/Zn2+ superoxide dismutase 1 (SOD1) add deteriorating effects several folds (Rosen
et al. 1993). Degenerating neurons release various trigger factors like ATP and
extracellular SOD1, which activates microglial cells. As shown in Fig. 8.2, activated
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Fig. 8.2 Depiction of activated microenvironment of central nervous system in amyotrophic
lateral sclerosis: external or internal stimuli including neurotoxins, pathogen-associated molecular
patterns (PAMPs), and damage-associated molecular pattern molecules (DAMPs) trigger up the
cells inside CNS to counter the changes and act accordingly. Microglia are the chief immune cells,
which gets activated first, followed by astrocytes, releasing various kinds of proinflammatory
cytokines. These cytokines and elevated oxidative stress accelerates inflammatory reactions
causing damage in BBB, leading to infiltration of peripheral immune cells, e.g., macrophages, NK
cells, and cytotoxic T-cells. Increased glutamate release further increases the toxicity by activating
AMPA and NMDA receptors, causing excess calcium uptake, and thus death of motor neurons
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microglia cells further release a variety of proinflammatory molecules, e.g., IL-1β,
IL-12, interferon-γ, TNF-α; ROS species like superoxides and peroxides; other
chemokines and mitogenic factors (Almer et al. 1999; Elliott 2001; Yoshihara et al.
2002; Hensley et al. 2003). All these factors, in turn generate a feed forward loop for
sustained neuroinflammatory processes.

Activation of microenvironment inside the CNS weakens the blood brain barrier
(BBB), allowing passage of several other factors and ingression of other peripheral
immune cells, e.g., macrophages, NK cells, and cytotoxic T cells (Li et al. 2014).
Adding to all these, death of brain cells leads to release of glutamate into the
extracellular environment, which elevates its extracellular concentration from
normal (0.6 µM) to more than 2 µM. This concentration of glutamate is sufficient
to cause lethal damage to neuronal cells by causing excitotoxicity in the brain
tissues (Benveniste et al. 1984; Meldrum and Garthwaite 1990). Housekeeping
functions of astrocytes are also modulated in ALS patients and in mutant SOD1
mice. Neurotoxic insults lead to decreased transcription of glutamate receptors
excitatory amino acid transporters 2 (EAAT2) or glutamate transporter (GLT1) in
mice, causing decreased neuronal signaling (Howland et al. 2002; Rothstein et al.
1992). Elevated concentration of glutamate in synaptic clefts gives rise to activation
of AMPA and NMDA receptors present on motor neurons. Increased entry of
calcium leads to death of these cells (Yang et al. 2009; Lipton and Rosenberg
1994).

Despite evidences of an array of pathological features associated with motor
neuron disease, the question of what actually switches the disease ‘on’ remains
unanswered. Although neuroinflammatory processes provide a substantial contri-
bution in progression and sustainability of various neurodegenerative diseases, still
they are not considered to be the initiating factors of these diseases. All these
evidences lead to a common conclusion that mechanism of selective deaths of
motor neurons in ALS is not cell autonomous. Roles of neighboring nonneuronal
cells significantly add deteriorating effects to the whole process of neuroinflam-
mation. Release of various proinflammatory chemicals and aggregation of different
kinds of protein inclusions also cause significant damage. These stresses lead to cell
death due to loss of various intracellular organelles like mitochondria. Tremendous
efforts have been made to treat or slow down the disease progression, but very little
success has been observed in recent past. Riluzole (2-amino-6-(trifluoromethoxy)
benzothiazole), the only available drug, is a proved inhibitor of glutamate release,
has shown some neuroprotection in ALS patients (Bellingham 2011).

8.10 Therapeutical Aspects in ALS Treatment

Due to the complex nature and partial understanding of underlying molecular
mechanisms, ALS has become an important challenge from diagnostic perspective.
Currently, no single test is there that can detect ALS. Clinicians often rely on
various tests such as electromyography, nerve conduction study, blood and urine
test, magnetic resonance imaging (MRI), and spinocerebral fluid analysis for ruling
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out possibilities for presence of other symptomatically similar diseases. Thus, from
symptom onset to correct diagnosis, it takes ample amount of time (Chio 1999)
causing significant delay in starting early stage treatment. Due to this delay many
research studies and clinical trials targeted on mechanisms and treatment strategies
at early stage ALS are also negatively affected, imposing limitation in developing
new therapeutics. Looking for markers of disease could be an effective solution in
reducing diagnosis time. Studies have shown association of TDP-43 (Neumann
et al. 2006), SOD1 mutation (Rosen et al. 1993), FUS (Vance et al. 2009), C9orf72
hexanucleotide expansions (DeJesus-Hernandez et al. 2011), ratio of phosphory-
lated tau to normal tau in cerebrospinal fluid (Grossman et al. 2014) and light chain
neurofilaments (Gaiottino et al. 2013) with ALS, but in-depth studies are needed
from application point of view.

Advances in imaging techniques have also aided in finding new potential
biomarkers for ALS. Techniques like voxel and surface-based morphometry;
magnetic resonance spectroscopy, positron emission tomography (PET), and dif-
fusion tensor imaging have shown promise in getting new insights of disease. Some
important findings include thinning of primary motor cortex (Mezzapesa et al.
2013), decrease in ratio of N-acetylaspartate to creatinine in primary motor cortex
(Abe et al. 2001) reduction in fractional anisotropy in corticospinal tract (Zhang
et al. 2011) and loss of corpus callosum integrity (Chapman et al. 2014). Rapid
diagnosis and finding new markers for disease will not only help clinically but will
also help researchers in understanding the disease more clearly at various levels of
progression.

Like many other neurodegenerative diseases, there is no curative therapy for
ALS. Riluzole is the only drug, which slows down the progression of disease, but
has side effects (Bellingham 2011). Various molecules are being tested, which
targets the neuroinflammatory events of ALS; they include compounds such as
minocycline, thalidomide, and lenalidomide (Zhu et al. 2002; Kiaei et al. 2006).
But, except riluzole, no other medication is approved for treatment of ALS. Rilu-
zole is a benzothiazole class drug with unknown mechanism of action. Studies have
shown that riluzole slows down progression of disease and extends the survival of
patients for several months (Bensimon et al. 1994; Lacomblez et al. 1996). Its
beneficiary effect in ALS could probably be due to its pharmacological properties
which include inhibition of glutamate release and inactivation of voltage dependent
sodium channels (Doble 1996).

Due to limitations in treatment options for ALS, the focus of current medication
restricts to symptom control and maintaining quality life of patients. For this pur-
pose, advances in techniques such as noninvasive ventilation for ALS respiratory
treatment complications and gain in understanding of nutritional aspect of this
motor neuron disease have helped a lot. Various studies have proposed different
methods and targets that could prove to be helpful in developing effective treatment
strategy against this disease. These include: (i) adeno-associated virus-mediated
delivery of single chain antibody D3H5 that binds specifically to misfolded SOD1
(Patel et al. 2014); (ii) antibody (GSK577548) to inhibit neurite outgrowth inhibitor
(Nogo A) in SOD1 mutant mice (Bros-Facer et al. 2014); (iii) induction of tropic
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factors (Tovar et al. 2014); (iv) reduction of oxidative stress and mitochondrial
dysfunction (Carri et al. 2015); (v) autophagy upregulation (Bucchia et al. 2015);
(vi) modulation of monocytes activity (Butovsky et al. 2012); (vii) targeting
aberrant RNA metabolism (Droppelmann et al. 2014); (viii) intrathecal and
intracerebroventrical drug delivery to overcome passage problems through BBB
(Van Damme and Robberecht 2014) (ix) gene therapy (Federici and Boulis 2012)
and last but not the least (x) stem cell therapy (Mazzini et al. 2015). Stem cell
therapy is one of the major advancements that have shown its potential in ALS
treatment, which will be further discussed in our next section.

8.11 Stem Cell Therapy and ALS

Stem cell therapy has emerged as a new treatment avenue for ALS. In past, studies
have shown potential of stem cells in restoring functions in animals with motor
neuron disease (Deshpande et al. 2006). The focus of the stem cell therapy basically
remains either on replacement of degenerated neuronal cells or to support existing
dying neuronal cells. Embryonic stem cells, mesenchymal stem cells, and pro-
genitor cells have been studied in the past for their potential in ALS therapy. In past,
successful survival and integration of glial cell derived neurotrophic factor (GDNF)
releasing modified human neural progenitor cells have shown potential in case of
glial replacement and trophic factor delivery (Klein et al. 2005).

Intravascular transplantation of c-kit (+) stem/progenitor cells in SOD1G93A
mutant mice has shown prolonged disease duration and life span (Corti et al. 2010).
Distribution, differentiation, and survival of neural stem cells with positive out-
comes have also been concluded (Mitrecic et al. 2010). A recent study in
SOD1G93A mice have shown delayed disease onset and extended life span on
intrathecal transplantation of motor neurons derived from neural stem cells (Lee
et al. 2014). Such studies have provided a ray of hope to use stem cells as a
promising strategy in ALS therapy. However, various issues such as proper-defined
protocol for administration and dose of cells, proper migration and integration of
cells, survival of the transplanted cells, controlling the oncogenic transformation of
those cells, immune reactivity, and rejections are still needed to be addressed for
successful clinical translation.

8.12 Key Questions

Here, in this chapter, we represent a comprehensive overview of the pathomechanism
of motor neurons death in ALS, discuss crucial points and their convergence towards
multifactorial ALS pathogenesis. Till now, we are not able to develop a reliable test
that can clearly distinguish ALS disease at early stages as compared to other neu-
rodegenerative diseases. Previous reports indicate the accumulation of misfolded
proteinaceous inclusions or disordered structures in ALS and other neurodegenera-
tive pathology (Chhangani and Mishra 2013; Chhangani et al. 2013, 2015); but still
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we do not know how to design biomarkers to target or detect specific stages of ALS
disease progression. It is important to search beneficiary biological (Upadhyay et al.
2015a, b; Chhangani et al. 2014) or chemical agents and their effective mode of
delivery by which clearance of abnormal protein aggregation in motor neurons can be
possible. We know that multiple pathways and numerous causative factors are
involved in death of motor neurons in ALS disease. Our current understanding of how
perturbations in cellular quality control mechanism and neuroinflammation linked
with ALS and other neurodegenerative diseases is still not well developed. Therefore,
in near future, it is crucial to align or pool maximum available data or existing
findings on a large scale to design an effective and potential therapeutic strategy
against the proteotoxic insults in ALS treatment approaches.
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9Neuroinflammation in Ischaemic
Stroke: Utilizing the Biphasic Niche
of Neuroprotection and Neurotoxicity
for Clinic
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Abstract
Ischaemic stroke is a devastating disease that results in neurological disorder
with maximum disease burden caused by blockade of blood vessels in the brain
leading to neuronal cell death and tissue damage. Inflammatory processes have a
fundamental role in the pathophysiology of ischaemic stroke, and recent studies
indicate that inflammation has a temporally biphasic behaviour and acts as a
double-edged sword, not only exacerbating secondary brain injury in the acute
stage of stroke, but also thereafter beneficially contributing to brain recovery
after the stroke. An initial event of inflammation in ischaemic stroke is activation
of microglia, leading to a cascade of delicately balanced orchestration between
both pro- and anti-inflammatory mediators, acting through multiple receptor
signalling pathways. Understanding how microglia can actuate to both its
phenotypes—such as neurotoxic M1 type (‘bad microglia’) vis-à-vis neuropro-
tective M2 type (‘good microglia’)—may be essential to implement therapeutic
strategies of using differential immunomodulatory interventions in ischaemic
stroke. We elucidate the role of the bimodality in inflammation in ischaemic
stroke, the related signalling pathways, and the resulting immunomodulation and
immunosuppression processes. A pathophysiological integration of the findings
from cell culture models, animal studies, human investigations and
population-based clinical trials, is undertaken. We delineate how one can utilize
the manoeuvre the dynamics of inflammation and immunomodulation for
enhancing therapeutic interventions on ischaemic stroke.
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9.1 Introduction

Ischaemic stroke is a leading cause of death and disability worldwide and stems
from occlusion/haemorrhage of blood vessels in the brain and also the neck sup-
plying blood to the brain. It triggers localized cell death in the region, causing
inflammation and immune responses. The adult neurogenesis in mammals is a
known fact, and these neural progenitor cells which may lead to neurons or glial
cells that start migrating from sub-ventricular zone to the tissue adjacent to the area
of neuronal cell death, the penumbra zone (Yamashita et al. 2006). This process is
supplemented by ongoing angiogenesis which leads to increased vascularization to
aid in recovery. The process is characterized by the following sequential stages:

I. Proliferation of endogenous neural stem cells;
II. Migration of neural stem cells to ischaemic area;
III. Maturation of neurons, and
IV. Formation of functional synapse.

Despite preeminent progress in understanding the pathophysiology of ischaemic
stroke, translation of this knowledge into effective therapies have largely failed in
clinics, and hence the crucial need of knowing the cause of this failure. Indeed for
about 30 years, systemic thrombolysis with intravenous (i.v) recombinant tissue
plasminogen activator (tPA) still remains the only treatment proven to improve
clinical outcome of patients with acute ischaemic stroke (Brott and Bogousslavsky
2000). However, because of an increased risk of haemorrhage following the
treatment beyond a few hours post-stroke, only 1–2 % of stroke patients can benefit
from recombinant i.v tissue plasminogen activator (Wang et al. 2012a; Wechsler
and Jovin 2012). Till date, trials of anti-inflammatory drugs have been limited to
initial phase of stroke to promote neuroregeneration after injury, and it has shown
that anti-inflammatory drugs like nimesulide and indomethacin, results in favour-
able outcome in experimental studies of rodents and in human stroke subjects in
clinical trial setting (Candelario-Jalil 2008; Nechipurenko et al. 2001).

9.2 Bimodality in Neuroinflammatory Behaviour

Tissue damage may happen very frequently throughout the CNS. For example, it
may result from small ischaemic events and localized openings of the blood–brain
barrier (BBB), causing influx of plasma constituents into the brain (Hanisch and
Kettenmann 2007). Microglia are well positioned to sense such disturbances (Denes
et al. 2007) and can react rapidly to even small damage to the neural tissue (Nim-
merjahn et al. 2005). Recent in vivo studies have shown that microglia carry out
active tissue scanning, which challenges the traditional notion of ‘resting’ microglia
in the normal brain. Transformation of microglia to reactive states in response to
pathology has been known for decades as microglial activation, but seems to be more
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diverse and dynamic than ever anticipated—in both transcriptional and
non-transcriptional features and functional consequences (Hu et al. 2012). This may
help to explain why engagement of ‘surveillance/hunting microglia’ can be either
neuroprotective (M2 microglia) or neurotoxic (M1 microglia), resulting in con-
tainment or aggravation of disease progression (Fig. 9.1).

Fig. 9.1 Microglial polarization dynamics after ischaemic stroke. Soon after an ischaemic
injury, microglia migrate to the infarcted areas initially assume theM2 (‘goodmicroglia’) phenotype,
that are healthier cells with enhanced phagocytic activity and increased production of
anti-inflammatory mediators (IL-4, IL-10, IL-13, TGF-b, IGF-1, etc.), promoting the survival of
neurons under ischaemic condition. Levels of these IL-10, TGF-b and CD206 mRNA increased as
early as day 1 after ischaemic injury and peaks at 4–6 days. In addition, TGF-b released bymicroglia
promotes an anti-inflammatory profile associated with increased proliferation and neuroprotection in
the ischaemic brain. However, the M2 phenotype response is transient and phased out within 7 days
after injury (Peri and Nüsslein-Volhard 2008). In the meantime, M1 phenotype (‘Bad microglia’)
begins to dominate the injured area. M1 is a pro-inflammatory cellular state associated with an
increase in protein synthesis of pro-inflammatory mediators (IFNc, IL-1b, TNFa, IL-6, CXCL10,
etc.), ROS and NO production, and proteolytic enzymes (MMP 9, MMP3) that act as a neurotoxic
leading to increased neuronal death compared wiith alternatively activated M2 microglia
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From a translational viewpoint, for exploring the drug repurposing approach, it
has been suggested that investigators working on cerebral ischaemia, should also
consider off-label use of different Food and Drug Administration (FDA) approved
drugs, so as to induce the sequential phases of the neural recovery. In this article,
we provide an elucidation on the role of inflammation and its mediators in
ischaemic stroke, and how one can modulate the process for optimal stroke
recovery. We also delineate the dynamics between pro- and anti-inflammatory
responses, their related pathways and the discrepancies between preclinical and
clinical studies, besides evolve a corrective translational perspective.

9.3 Immunologically Significant
Signalling Pathways in Stroke

We now deal with the signal transduction pathways related to the stroke
phenomenology.

9.3.1 The Mechanistic Target of Immunomodulant
Rapamycin (mTOR)

This target [Gene ID: 2475, updated on 30-Nov-2014], also known as mammalian
target of rapamycin (mTOR), is a critical regulator of cell growth and metabolism
that integrates a variety of signals under physiological and pathological conditions
(Laplante and Sabatini 2009; Wiederrecht et al. 1995). Rapamycin is an FDA–
approved anti-inflammatory immunosuppressant, being used to prevent rejection in
organ transplantation. Recent data shows that mTOR signalling plays an important
role in the modulation of both innate and adaptive immune responses (Thomson
et al. 2009). In experimental stroke, rapamycin administration at an early time point,
as 1 h after focal ischaemia, ameliorates the motor impairment in adult rats (Chauhan
et al. 2011) and in neonatal rats (Carloni et al. 2010) and improves neuron viability in
an in vitro model of stroke (Fletcher et al. 2013). However, the precise mechanisms
underlying mTOR-mediated neuroprotection in stroke are unclear.

It may be underscored that rapamycin administration as late as 6 h after focal
ischaemia significantly reduced infarct volume and improved motor function after
stroke in rats (Xie et al. 2014). In addition, infiltration of neutrophils and cd-type of
T-lymphocytes were decreased, whilst regulatory T cell (Treg) function was
increased, and pro-inflammatory activity of macrophages and microglia was
reduced in the ischaemic hemispheres. Tregs from rapamycin-treated brains
effectively inhibited pro-inflammatory cytokine and chemokine production by
macrophages and microglia. Results from the study suggest that rapamycin atten-
uates secondary injury and motor deficits after focal ischaemia by modulating
post-stroke neuroinflammation at later time period. One may underscore that
numerous stroke patients often experience a significant delay between the onset of
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ischaemia and initiation of therapy, sometimes 12 h or more. Hence it is important
to determine whether rapamycin can protect from ischaemic injury when admin-
istered to stroke patients at late time points.

9.3.2 The Intranuclear Factor NF-jB Pathway in Ischaemic
Stroke

Being involved in cell response to stress as inflammation and free radicals, the
Nuclear Factor kappa B (NF-jB) is a key regulator of a variety of genes involved in
cell survival and inflammation, and is activated after cerebral ischaemia in neurons,
astrocytes, microglia and infiltrating inflammatory cells (Ridder and Schwaninger
2009). Among the 5 NF-jB subunits, one knows that p65/RelA and p50 are
responsible for a detrimental effect in cerebral ischaemia (Napetschnig and Wu
2013). Previous studies showed that expression of p65 and p50, and DNA binding
activity were increased in the brain after cerebral ischaemia. Increased DNA
binding reflects activation of NF-jB. The NF-jB subunit p50 knockout mice have a
smaller infarct size in both transient and permanent stroke models (Schneider et al.
1999). Similar observations were made by inhibiting activation of NF-jB with the
treatment of S-nitrosoglutathione (Khan et al. 2005).

However, NF-jB activation is also implicated in neuroprotective mechanisms of
ischaemic brain injury. For example, one study showed that rats treated with
diethyl-dithio-carbamate, an NF-jB inhibitor, had enhanced neuronal DNA frag-
mentation and larger infarct size compared to controls, suggesting a beneficial role
(Hill et al. 2001). Thus we see that NF-jB can have both a neurotoxic or neuro-
protective effect, according to the situation. This can be accounted by the optimality
(hormesis) effect of dose and temporality of the effect of a neuromodulator or
growth factor: at a particular dose range a factor like NF-jB can be neuroprotective,
whilst at higher/lower dose range the NF-jB can be neurotoxic (Kaltschmidt et al.
2005).

9.3.3 Inflammatory Response via Danger-Associated
Molecular Pattern Molecules (DAMPs)

DAMPs are molecules that can initiate and perpetuate inflammatory immune
response in the host, without the need for any infectious agent or microrganisms to
initiate an immune response. In the ischaemic brain, the following entities can
function as DAMPs: Heat shock proteins, b-amyloid (Ab), hyaluronan, heparin
sulphate, DNA or RNA immune complexes, oxidized low-density lipoproteins, and
several other molecules (Shichita et al. 2012a). Among them, high mobility group
box 1 (HMGB1) is a well characterized DAMP in ischaemic brain injury that
increases Blood–Brain–Barrier (BBB) permeability or promote its breakdown
(Hayakawa et al. 2010; Zhang et al. 2011). The HMGB1 level in the ischaemic
stroke group is significantly increased compared with the control group, and has
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been correlated with the severity of neurologic impairment observed in stroke
patients (Yang et al. 2011).

It may also be mentioned that HMGB1, which is localized in cell nuclei in the
normal brain, translocate into the cytosolic compartment and is released into the
extracellular compartment in the presence of an ischaemic condition. The admin-
istration of anti-HMGB1-neutralizing antibody protects the BBB and reduces
infarct volume (Qiu et al. 2008). Taken together, HMGB1 is an essential DAMP in
ischaemic brain injury. Other potential DAMPs in brain homogenate lysates are
peroxiredoxin (Prx) family proteins which have been identified as strong inducers
of inflammatory cytokines by infiltrating macrophages (Shichita et al. 2012b). They
are released into the extracellular compartment once the cells are about to die,
functioning as DAMPs. Neutralization of Prx proteins, rather than HMGB1 protein,
by specific antibodies has been shown to suppress inflammatory cytokine expres-
sion in the ischaemic brain (Hamanaka and Hara 2011). Hence, there is a future
scope of utilizing inhibitors or antibodies against HMGB1 or Prx proteins as an
approach for neuroprotection in stroke.

9.3.4 Innate Immunity-based Toll-like
Receptors (TLRs) in Ischaemic Stroke

It is well known that Toll-like receptors (TLRs) are a class of receptor proteins that
play a key role in the innate immune system, being expressed in as macrophages
and dendritic cells. TLRs are closely implicated in cerebral ischaemia. Mice lacking
either functional TLR2 or TLR4 were less susceptible to brain damage due to stroke
and also had smaller infarcts than wild type controls (Cao et al. 2007; Lehnardt
et al. 2008; Ziegler et al. 2007). Furthermore, TLR4−/− mice would decrease the
damage due to global cerebral ischaemia and permanent focal ischaemia (Caso et al.
2007; Hua et al. 2007). TLR endogenous ligands (e.g. HSP 60, HSP70 and
HMGB1) were detected in brain injury (Faraco et al. 2007; Kinouchi et al. 1993).
These molecules could activate TLRs (e.g. TLR2 and TLR4) in brain, be neuro-
toxic, and induce pro-inflammatory mediators (e.g. TNF-a, IL-1 and IL-6) which
contribute to stroke pathology. In contrast to the detrimental role of TLRs after
stroke occurs, stimulation of TLRs prior to brain ischaemia could be neuropro-
tective. Pretreatment with TLR4 ligands (e.g. LPS) leads cells to switch their
transcriptional response to TLR4 stimulation by enhancing interferon (IFN) ex-
pression and suppressing the NF-jB-induced TNF-a expression. Inhibition of
NF-jB would protect the brain since mice lacking the p50 subunit of NF-jB
decrease brain damage compared to the wild type mice (Schneider et al. 1999).

Increase of Interferon Regulatory Factor (IRF) signalling can also protect the
brain, as IFN could downregulate the IRF3 induction and act as an acute neuro-
protectant, with anti-inflammatory response (Liu et al. 2002; Veldhuis et al. 2003).
This pretreatment can induce a finely controlled shift in the balance of
pro-inflammatory and anti-inflammatory cytokines. Thus we see that it is also
important to know that the effect of a modulating drug or agent (as TLR) can have
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either detrimental or beneficial effects depending on the time of its administration:
the agent can be neuroprotective if given before the ischemic induction, and neu-
rotoxic if given after. It may be emphasized that such biphasicity can also be
delineated in other modulating drugs used in stroke clinical trials (as selfotel,
eliprodil), where the agent may function as neuroprotective in the initial phase, but
may display neurotoxicity if given later (Ikonomidou and Turski 2002). This is an
aspect of temporal hormesis principle in pharmacodynamics, where the effect of a
drug temporally in a dynamical physiological system can be an inverted U function;
a drug can show one type of behaviour at intermediate time period, and converse
behaviours at early or later time periods.

9.3.5 Cell cycle-based Mitogen-Activated Protein Kinases
(MAPKs) Pathway in Ischaemic Stroke

MAPKs are a highly conserved family of serine/threonine protein kinases involved
in a variety of fundamental cellular processes such as proliferation, differentiation,
motility, stress response, apoptosis, and survival. Conventional MAPKs include the
extracellular signal-regulated kinase 1 and 2 (Erk1/2), the c-Jun N-terminal kinases
(JNKs), the p38 MAPK, and Erk5. Signalling via the conventional MAPKs follows
a classical three-tiered kinase cascade: MAPKKK ! MAPKK ! MAPK (Huang
et al. 2010). All the four MAPK pathways are activated in cerebral ischaemia, but
their roles are complicated and not yet adequately understood. Activation of JNK
and p38 seems to be detrimental since injury due to stroke could be decreased after
using their inhibitors (Guan et al. 2006; Kawasaki et al. 1997; Xia et al. 1995). On
the other hand, ERK5 activation appears to be beneficial, whereas ERK1/2 acti-
vation could be both beneficial and detrimental (Sawe et al. 2008).

In comparison, the JNK pathway can lead to the production and activation of
pro-inflammatory meditators (e.g. cytokines) in several inflammatory cells (Benakis
et al. 2010; Kaminska 2005). Inhibition of JNK pathway with JNK inhibitor could
decrease ischaemic injury via reducing neuroinflammation (Wang et al. 2012b).
The p38 pathway is almost similar with JNK pathway. It is linked to production and
activation of pro-inflammatory meditators as well. Administration of SB 239063, a
p38 pathway inhibitor, could reduce p38 activity following stroke and also
downregulate the stroke-induced cytokines (e.g. TNF-a and IL-1b) which con-
tribute to stroke-induced brain injury (Barone et al. 2001). Activation of ERK1/2 in
cerebral ischaemia is associated with ischaemic brain injury. Inhibition of ERK1/2
with a specific MEK1/2 inhibitor produced a neuroprotection by suppression of
IL-1b expression (Wang et al. 2001). Administration of inhibitors of the
MEK/ERK1/2 pathway could reduce ischaemic brain injury and improve neuro-
logical outcome (Alessandrini et al. 1999; Maddahi and Edvinsson 2008; Wang
et al. 2003). ERK5 pathway was a recently identified member of MAPK family.
A study showed that ERK5 activation may act in neuroprotection of ischaemic
preconditioning (Wang et al. 2009). However, its effect and mechanism on
inflammation in stroke is still unknown. Thus neuroprotection in stroke could be
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harnessed by using agents or modulators to upregulate ERK5 pathway and/or
downregulate ERK1/2 pathway.

9.4 Inflammatory Mediators in Ischaemic Stroke

The pro-inflammatory and anti-inflammatory cascades via immunosuppressing and
immunostimulatory phases that occur during the short-term and long-term recov-
ery processes in stroke are summarized below.

9.4.1 Biphasic Nature of the Effect of Immunomodulation
on Stroke

Molecular and cellular mediators of neuroinflammatory responses play critical roles
in the pathophysiology of ischaemic stroke, exerting either deleterious effects on the
progression of tissue damage or beneficial roles during recovery and repair (Jin
et al. 2010). Therefore, modulating the post-ischaemic neuroinflammation may
provide a novel therapeutic approach in stroke. However, several therapeutic trials
targeting neuroinflammatory response have failed to show clinical benefit (Sughrue
et al. 2004). The cause for this remains unknown, which might be due to inadequate
dose rate, appropriate timing duration, or poor temporal orchestration of the time
windows for immunostimulant vis-à-vis immunosuppressant interventions. More-
over, targeting a single cell type or single molecule or single pathway may not be an
adequate clinical strategy. In addition, immunomodulative approaches to stroke
therapy may complicated by the inability to properly synchronize the therapeutic
time windows with the orchestration of the biphasic nature of neuroinflammatory
effects, which amplify acute short-term ischaemic injury but can contrarily con-
tribute to long-term chronic tissue repair.

Microglia are the resident macrophages of the brain that serve both glial and
immune-related functions. These include the monitoring of synapses (Wake et al.
2009), the detection and phagocytosis of infectious agents (Ribes et al. 2009, 2010),
and the removal of apoptotic and necrotic cells with subsequent reciprocal beha-
viour of suppression, or of promotion, of neuroinflammation (Peri and Nüsslein--
Volhard 2008; Magnus et al. 2001). This plethora of events consequently implicates
microglia in many pathological conditions. Recent findings have revealed that
under physiological central nervous system (CNS) conditions, microglia displays a
constant motility and movement of their highly branched cellular processes within
the intact mouse cerebral cortex and brain slices. These microglia processes are
capable of ready extension (at speed of 1.25 µm/min or 2 mm/day) towards the
sites of acute CNS damage (Davalos et al. 2005; Varnum and Ikezu 2012).
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9.4.2 Processing of Two Distinct Types
of Microglia/Macrophage: M1 and M2

Changes in microglial phenotype during their activation may be analogous to that
of peripheral macrophages, as the two cell types are indistinguishable without
definitive surface markers for either. Microglial responses to stimuli from a
changing brain environment are characterized as (i) M1 type: classical activation
with neurotoxic behaviour (‘bad microglia’), or (ii) M2 type: alternative neuro-
protective activation (‘good microglia’) (Fig. 9.1). M1 is a pro-inflammatory cel-
lular state associated with an increase in protein synthesis of pro-inflammatory
mediators or markers (IFNc, IL-1b, TNFa, IL-6, CXCL10, iNOS, etc.), ROS and
NO production, and proteolytic enzymes (MMP 9, MMP3) that act on the extra-
cellular matrix leading to BBB breakdown (Hu et al. 2012; Varnum and Ikezu
2012). Levels of the pro-inflammatory marker such as iNOS increases from 3rd
day, and goes on increasing across a longer period of over 14–15 days before
arresting (Hu et al. 2012). M1 phenotype can lead to increased neuronal death
compared to alternatively activated M2 microglia (Magnus et al. 2001); therefore,
there is a growing interest to pharmacologically interfere with the signalling
mechanisms that give rise to the classical activation phenotype of microglia, M1.

9.4.3 Fast Versus Slow Response Modalities

On the other hand, M2 microglia release anti-inflammatory mediators (IL-10,
TGF-b, IL-4, IL-13, IGF-1, etc.) (Ponomarev et al. 2013), leading to enhanced
expression of genes associated with inflammation reduction and resolution, scav-
enging and homeostasis (Hu et al. 2012; Pál et al. 2012; Shin et al. 2004; Zhou et al.
2012). The temporal pattern of the relevant markers of correlates of M2 activation is
different from the M1 profile. In contrast, the levels of the anti-inflammatory factors
IL-10, TGF-b and CD206 mRNA increases as early as first day after ischaemic
injury and then peaked within a short period of 3–6 days, and then the levels go on
decreasing. In addition, this TGF-b released by M2 microglia promotes an
anti-inflammatory profile associated with increased neurogenesis (or cell prolifer-
ation) and neuroprotection in the ischaemic brain. This may be therapeutically
relevant because TGF-b1 is specifically found in the salvageable peri-infarcted
region of the cortex 24 h after a 60 min middle cerebral artery occlusion (MCAO)
and is involved in distinct spatiotemporally regulated inflammatory and neuro-
protective processes (Kanazawa et al. 2002).

9.4.4 Markers of M1 & M2 Phases of Microglia

During disease progression and in normal ageing, microglial activation phenotypes
can switch from M2 to M1 (Penninger et al. 2001), as also from M1 to M2 (Hu
et al. 2015). Hu et al. (2012) suggest that microglia are activated early after
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experimental stroke induced by MCAO surgery, and thence morph into a reactive
M1 phenotype by 7 days. The balance between the M1 and M2 states is dynamic in
inflammatory responses and may be offset in chronic disease states such as stroke,
representing a novel mechanistic target for therapy (Yenari et al. 2010). In addition,
there are few molecules that are known to be expressed by macrophages in
peripheral inflammation and that have been associated with different functions.
These molecules include:

M1 microglia/macrophage markers:

• CD11b,
• CD45, expressed on all nucleated hematopoietic cells (Bhatia et al. 2011),
• CD68, a marker of active phagocytosis,

M2 microglia/macrophage markers:

• Ym1, a secretory protein that binds heparin and heparin sulphate,
• CD206, a C-type lectin carbohydrate binding protein.

Both these markers are associated with recovery and function restoration
(Butovsky et al. 2006; Marín-Teva et al. 2004).

9.4.5 Immunomodulatory Milieu of Neurogenesis
and Synaptic Homeostasis

Not only do microglial cells assist in CNS maturation during development—for
example, by mediating the developmental death of neurons (Butovsky et al. 2006)—
but they can also release factors that influence adult neurogenesis and glial devel-
opment (Butovsky et al. 2007; Ekdahl et al. 2003; Kempermann and Neumann
2003; Monje et al. 2003). Microglial cells can thus exert dual effects.
Inflammation-associated microglia (M1 subtype) can lessen neurogenesis, whereas
microglia (M2 subtype) activated by certain T helper cell cytokines promote neu-
rogenesis. Recent evidence indicates that microglial cells could even be a source of
other brain cells. Isolated microglial cells in culture have the potential to generate
neurons, astrocytes and oligodendrocytes (Cullheim and Thams 2007; Eglitis and
Mezey 1997; Yokoyama et al. 2004, 2006). Besides releasing a number of neu-
rotrophic factors, microglia also structurally remove synapses from damaged neu-
rons (Danton and Dietrich 2003; Trapp et al. 2007). This process has been termed
‘Synaptic Stripping’ by Georg Kreutzberg in the 1960s (Kettenmann et al. 2013).
New ‘evidence-based’ vis-à-vis ‘hypothesis-based’ concepts of microglial function
especially deserve attention and conversion into basic and clinical research efforts,
particularly with regard to macrophagic disease-relevant transformation, orches-
trating between microglia’s beneficial versus detrimental contributions.
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9.5 Immunomodulatory Challenges in Stroke Treatment

Despite unprecedented advances in basic neurobiology and the current knowledge
on stroke, most of the clinical trials for ischaemic stroke till date have been
unsuccessful, which raises the question of why most of these therapeutic inter-
ventions succeed in animal models but not in clinical application. We now explicate
the possible factors that could be responsible for this the paradox in the human
scenario:

9.5.1 The Heterogeneity and Complexity
of Human Stroke Compared with Animal Models

In animal studies, the majority of studies induce a standardized homogenous injury,
namely the MCAO model (‘Middle Cerebral Artery Occlusion’) administered to
healthy young rodents. On the contrary, human stroke is a heterogeneous condition
made up of three pathological types: Ischaemic stroke, Haemorrhagic cerebral
stroke and Haemorrhagic subarachnoid strokes. Ischaemic stroke is then further
divided into several locational subtypes, such as intracranial ‘small vessel’ disease,
‘large-vessel’ atherosclerotic disease, and embolism from the heart. These types and
subtypes differ in terms of cause, outcome and treatment. Different types of
ischaemic stroke also have distinctly different inflammatory features. In addition,
the composition of emboli and the location (arteriole or venule) of occlusion may
alter stroke pathophysiology (Minnerup et al. 2012). Thus, different therapeutic
strategies should be considered for different types of stroke in patients.

9.5.2 Age and Comorbidities

Animal models of stroke performed on young healthy male mice/rats, do not
reproduce well the condition of the heterogeneous nature of human stroke, which
generally occurs on older people who may have several associated diseases
(co-morbidity) (Mergenthaler and Meisel 2012). In order to model the human stroke
more closely, aging animals of both sex, and with stroke-related comorbidities, such
as diabetes mellitus, atherosclerosis, hyperlipidemia, hypertension or obesity,
should be used in preclinical studies (Lambertsen et al. 2009).

9.5.3 Disparity of Outcome Measures

At present, most of the experimental stroke studies only report short-term outcome
measures, at around 1–4 week time scale. However, the most important outcome
parameters of any intervention in human stroke are long-term (3–6 months) sur-
vival and functional recovery (Lambertsen et al. 2009). For translation into clinical
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application, long-term outcome, with behavioural and functional analysis, should be
performed in experimental stroke studies on animal models.

9.5.4 Post-ischaemic Inflammation May Act
Through Multiple Signaling Pathways

The pathways multiplicity may be another possible reason why blocking a single
pathway of a cytokine or leukocyte adhesion molecule, does not succeed in clinical
trials. In addition, even the same molecule produced by different cells (e.g. TNF-a
derived from microglia or from leukocyte) may play different roles in the detri-
mental signalling cascades in stroke pathology (Kigerl et al. 2009; Zaremba and
Losy 2001). Thus, identifying and blocking a common molecular signal shared by
different inflammatory cells and mediators, and acting at different cascades, would
be a more effective approach to stroke treatment. An encouraging instance is the
cyclooxygenase-modulator drug nimuselide that has been used in stroke studies
(Candelario-Jalil 2008), the agent acting on multiple pathways.

9.5.5 Use of Animal or Non-human Antibodies for Clinical
Studies

The unhumanized antibodies (e.g. mouse anti-human ICAM-1) have been used in
clinical trials. However, for patients, it is well known in clinical immunology of
other neurological diseases as multiple sclerosis and myelitis, that human antibodies
well outperform the use of rodent or porcine-derived antibodies. Hence the priority
is need for using human-derived antibodies for clinical trials, instead of customary
approach of using rodent ones.

9.5.6 Animal Studies: Randomized Multicentric Study
and Sample Size Calculation Needed

Statistically significant sample size and rigorous quantitative power analysis should
be used to perform the preclinical study. The experiments should be tested in
different laboratories to negate the environmental factors. Many of the clinical trials
become unsuccessful in Phase III (multicentric studies), hence it is imperative to
screen animal models through a multicentric trial, and if successful, one can then
consider translating the same to patients. A thorough experimental design is needed
that should include randomization using rigorous statistical procedures, for elimi-
nating experimenter bias. Many analytic software packages now include a ran-
domization procedure. Further, blinded study in collection of the data is another
consideration. If the study is not blinded, this should be indicated in the report.
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9.5.7 Too-Low/Too-High Doses and Unknown
Temporal Optimality

Many pharmacological compounds have hormesis effect in Dose-Response beha-
viour, namely the behaviour following a parabolic curve or inverted U-shaped
graph. A too-low or too-high dose might miss the optimal therapeutic window
having the proper response. Furthermore, as we do not have a complete under-
standing of the pathophysiology of brain damage in our animal models (e.g. acti-
vated microglia seem to be deleterious at early stages of lesion formation, while
they could be beneficial at later stages) (Olsen et al. 2010), hence the optimal
temporal schedule of administration of a given drug is difficult to determine a priori.
Therefore, different temporal schedules (single vs. repeated administration, early vs.
delayed administration) should be tested before discarding a promising drug.

9.5.8 Other Data Analytic Issues

Such concerns include discreet failure to take the following precautions:

• To follow intent-to-treat principles (“as randomized, so analysed” (Tobin et al.
2014) in the data analysis procedures of animal studies (quantitative and
statistical),

• To adjust for multiple comparisons statistically where appropriate, and
• To account for all animals included in the experiment,
• To predefine criteria for excluding animals from analysis after randomization.

While many of these errors are generally more likely to contribute to
false-positive studies, a poorly designed study can also lead to false negative
results.

9.6 Neuroimmunological Exploration: An Amended
Therapeutic Approach to Stroke

We now evolve some directions of therapeutic options, rectifying the approach
from the cautionary experimental findings elucidated above.

9.6.1 Increasing Time Window of Thrombolytic Therapy
Using Immunomodulatory Agents

Our current armamentarium (the drugs, equipment, and techniques available to a
medical practitioner) to treat cerebral ischaemia relies mainly on the use of (i) cu-
rative therapy in acute cases, i.e. pharmacological thrombolytics (tissue

9 Neuroinflammation in Ischaemic Stroke … 243



Plasminogen Activator, ‘tPA’) and (ii) preventive therapy in post-acute/chronic
cases, i.e. antithrombotic therapy along with correction of the modifiable vascular
risk factors for recurrent stroke prevention. The time window for initiating the
treatment with tPA is limited to 3 h after stroke symptom onset. The short thera-
peutic window, stroke severity, concern of the occurrence of major or fatal
haemorrhage, severe hypertension, and other variables, greatly limit the number of
patients that can benefit from the tPA treatment (Kobayashi et al. 2013). Thus,
identifying new strategies that can be used beyond the current time window, by
utilization of modulatory manoeuvring of post-ischaemic inflammation by
immunomodulatory agents, which can enhance neuroprotection and neuroregen-
eration, are likely to be a breakthrough in contemporary stroke care.

9.6.2 Neuroprotective Immunomodulation
by Polyketide Antibiotics

In a mouse model of a neurodegenerative disease ALS (amyotrophic lateral sclero-
sis), the second-generation polyketide antibiotics, minocycline and doxycycline,
attenuated microglial activation and reduced the expression of M1, but not M2,
microglia/macrophage markers, suggesting that minocycline inhibits the
pro-inflammatory microglia/macrophages (Weng and Kriz 2007). However, as a
caution, minocycline worsens human subjects of ALS in clinical trials due to its
aggravating the autoimmune component of ALS (Couzin 2007). Now coming to
stroke, minocycline in mice administered two hours after transient MCAO reduced
infarct volume by 25 % (Liu et al. 2007). Rats which received continual minocycline
treatment for 4 weeks after ischaemia had reduced microglial activation as revealed
by microscopy, which correlated with increased neurogenesis and better functional
outcome (Brenneman et al. 2010). Further, minocycline in a clinical trial in the patient
scenario, has been found to be beneficial for stroke recovery (Lampl et al. 2007).
Now, we can paraphrase the disparity of the scope of extrapolating from animal to
human situation. The rodent to human translation might not work in a neurode-
generative disease as ALS, but might work in a neurovascular disease as stroke.

9.6.3 Enhancing Therapeutic Neurogenesis
by Immunomodulation

Coming to stroke therapy from neuroregenerative aspect, the transplantation of
bone marrow cells (as mononuclear cells, BMMC) is also being investigated as a
possible treatment for ischaemic stroke in animal models (de Vasconcelos Dos
Santos et al. 2010; Keimpema et al. 2009; Sharma et al. 2010). In vitro, BMMCs
reduced neuronal death due to (i) LPS and (ii) hypoxia-activated mixed culture of
microglia and peritoneal macrophages. Microglial cultures in the presence of
BMMCs had higher levels of neuroprotective anti-inflammatory cytokines VEGF,
IGF1, SDF-1a and IL-10, (Cardoso et al. 2013). These factors can enable
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neurogenesis, neuroprotection, synaptogenesis, angiogenesis and neural stem cell
migration to the damaged stroke penumbra. Furthermore, the effect of regenerative
intervention on stroke can be enhanced by the neurotropic polyketide antibiotic
minocycline. Recent studies have investigated whether the addition of minocycline
can improve functional outcome and neuroprotection after BMMC transfer
post-ischaemia in vivo. Rats that received minocycline and BMMC treatment had
reduced M1 macrophage marker CD68+ cells, and better functional outcome
(Franco et al. 2012; Matsukawa et al. 2009).

These studies synoptically suggest that M1 microglia contribute to neu-
roinflammation after ischaemia, and that BMMC therapy and minocycline have
additive effects in reducing post-stroke microglial activation. Nevertheless, the
optimal amount and time duration of the dose of minocycline is crucial for benefit;
low doses had no beneficial effect, whilst high doses induced toxicity in both
neurons and astrocytes (Jiang et al. 2008). To obtain a perspective on these findings
we need to have a word of caution from the clinical viewpoint. Even though
neuroregenerative cell-based approaches can also be translated satisfactorily to
humans in phase I stroke clinical trials (Bhasin et al. 2011), however, similar
approach may not work when a study is expanded over larger human population in
Phase III clinical trials, due to increasing noisy variation across multiple centres,
multiple physicians and multiple patients with differing disposition (Prasad et al.
2014).

9.6.4 Blocking Cascading Effect of Neuroinflammation
by Endothelial Modulators

Further studies need to be conducted to hone in on more specific targets in the
inflammatory cascades that can hopefully be effective targets for future therapeutic
trials. One such target is VAP-1 (vascular adhesion protein-1), which is expressed
by endothelial cells and aids in neutrophil transmigration from the vasculature into
the brain parenchyma. In the brain, this protein is reported to be primarily found in
microvascular cells (endothelium and smooth muscle) (Unzeta et al. 2007), but
absent from neurons and glia (Salmi and Jalkanen 2001). VAP-1 converts primary
amines into products (e.g., H2O2; aldehydes) that are thought to facilitate leukocyte
trafficking and promote cytotoxicity in pro-inflammatory conditions (Emsley et al.
2005). The pharmacologic agent LJP-1586, and its predecessor LJP-1207 (both
amide-based inhibitors), are highly selective VAP-1 inhibitors and prevent neu-
trophil transmigration into the brain parenchyma. Furthermore, when these drugs
are given to rodents subjected to transient forebrain ischaemia (Krams et al. 2003)
or transient middle cerebral artery occlusion 6–12 h after reperfusion (Emsley et al.
2003), there is a profound anti-inflammatory action, which is linked to neuropro-
tection. These studies and others currently in preclinical development may identify
clinical targets for anti-inflammatory therapeutic options in stroke.
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9.7 Conclusion and Future Scope

To sum up, there are several issues yet to be unravelled in order to translate
promising preclinical findings into clinical practice. As inflammation plays a crucial
role in ischaemic stroke, we should be very careful in choosing and using a tem-
porally orchestrating biphasic intervention of the immunomodulatory factors or
drugs. Sometimes inflammation is constructive (chemotactic migration of the neural
stem cells towards the ischaemic core), whilst at other times, it is deleterious as the
factors released from the inflammatory cells incapacitate the neuron/neural stem
cells. Furthermore, researchers working in this field should search and use agent(s)
which could specifically block the neurotoxic M1 microglia/macrophage in the
acute temporal phase and not the neurotropic M2 microglia/macrophage in the later
sub-acute phase.

Finally, before going into further human trials on ischaemic stroke, the following
key questions should be clearly and unambiguously answered in order to better
understand the dynamics between M1/M2 microglia/macrophage, so as to identify
the discrepancies between preclinical studies and clinical trials:

1. Different phases of experimental ischaemic stroke regarding M1 vis-à-vis M2
activation.

2. The dynamic balance in ischaemic stroke between M1/M2 pathways (and
finding their modulators).

3. When and how to activate/inhibit the M1/M2 pathways as therapies?
4. Which and when the pro-/-anti-inflammatory mediators secreted by M1/M2

microglia/macrophage to be targeted, and pharmacologically ranking the
blockers of each of those mediators?

Indeed, the emerging field of neuroimmunomodulation holds considerable
promise for enabling a paradigm shift in understanding the temporal dynamics of
neurodegeneration and neuroregeneration in stroke, as well as the relevant signal
transduction cascades, and their activating and inhibiting factors or agents. More-
over, the neuroimmunomodulatotry interventions or therapies can be thus designed,
taking into account the strategic aspects of dose and duration of the agent, and
thereby enable the stroke clinical trial scenario to transform into a considerably
more productive one.
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10Brain Tumors and Inflammation

Khushboo Irshad, Evanka Madan and Kunzang Chosdol

Abstract
The heterocellular concept of tumor development where the interplay of both
cancer cells as well as non-cancer cells potentiates the progression of cancer is
well accepted. The relationship between cancer and inflammation derived from
such heterotypic interactions has been known for long. The biology of cancer is
illustrated by key features called the ‘hallmarks of cancer’. These hallmarks
include proliferative signaling, resistance to anti-proliferative signals, evasion of
apoptosis, replicative immortality, maintenance of vascularisation; and activa-
tion of tissue invasion and metastasis. In addition, tumor-promoting inflamma-
tion has been recognized as one of the emerging hallmarks of cancer. Two main
pathways have been known to link cancer and inflammation: the intrinsic
pathway and the extrinsic pathway. Regardless of the stimulus, whether extrinsic
(infections, non-healing wounds, irritants, etc.) or intrinsic (oncogenes, protein
kinases, etc.), inflammation is responsible for augmenting tumor progression by
promoting angiogenesis; cells proliferation and survival; evasion of cell death;
weakening of adaptive immune responses and altering cellular response to
therapy. Brain tumors can be divided into primary tumors that originate within
the brain, and secondary tumors that metastasize to the brain from primary
extracranial tumors. Inflammation is closely associated with primary brain
tumors and facilitates tumor progression and invasiveness. This chapter focuses
on the role of inflammatory mediators and the inflammatory signaling cascades
in cancers; recent advances in understanding the role of inflammatory mediators
in primary brain tumors; and current challenges impeding the therapeutic
intervention in inflammatory pathways in brain cancer as well as the future
prospects of immunotherapy in brain tumors.
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10.1 Introduction

10.1.1 Brain Tumors

Brain tumors are categorized into two main groups, namely, primary and secondary
brain tumors. The primary brain tumors are a heterogenous group of malignancies
that originate and reside within the brain. In contrast, secondary brain tumors
originate from a primary cancer outside the central nervous system (CNS) and are
metastasised to the brain.

Primary brain tumors are classified on the basis of cellular origin and histologic
characteristics into different types and grades (Louis et al. 2007). The grading
system of primary brain tumors published by the World Health Organization
(WHO) is accepted worldwide (Pollo 2012; Louis et al. 2007). WHO grading helps
in predicting the biological outcome as well as provide a universally acceptable
index, which would correlate with tumor behavior, response to therapy, propensity
for recurrence and overall prognosis (Louis et al. 2007).

Among the primary brain tumors, according to CBTRUS statistical report
(Ostrom et al. 2013), the most common is meningioma, accounting for more than
one-third of all primary brain tumors. They are graded into WHO grade I, II, and
III. Meningiomas are relatively less malignant and can be easily managed clinically
as compared to gliomas due to their easy accessibility for surgical resection.
Gliomas which originate in the glial cells (supportive cells) are the second most
common group, accounting for approximately 28 % of all tumors and 80 % of the
primary malignant brain tumors (Ostrom et al. 2013). Gliomas are further classified
into astrocytoma, derived from astrocytes; oligodendroglioma from oligodendro-
cytes and ependymoma from ependymal cells. Astrocytomas, oligodendrogliomas
and ependymomas are further subdivided into different WHO grades (Kleihues
et al. 1993; Longo et al. 2012). Astrocytomas are subdivided into; grade I (pilocytic
astrocytoma), grade II (diffuse astrocytoma), grade III (anaplastic astrocytoma), and
grade IV (glioblastoma; GBM). GBM (WHO grade IV) is the most common and
most aggressive type of glioma. Glioblastoma is further classified into primary or de
novo GBM and secondary GBM. Primary glioblastomas are those that arise de
novo with a short clinical history (usually <3 months) without any evidence of an
earlier precursor lesion whereas secondary glioblastomas progress over a period of
years from a lower grade astrocytoma (Kleihues and Ohgaki 1999; Kleihues et al.
1993). Similarly, oligodendrogliomas, and ependymomas are also graded into
WHO grade I, II, and III. In general, WHO grade I and II of all tumor types are
regarded as less malignant as compared to grade III and IV (Table 10.1). Other less
frequent tumors comprising the remaining 20–30 % of primary brain tumors
include acoustic neuroma (8–10 %), pituitary tumors (10–15 %), medulloblastomas
(1 %), and lymphomas (2 %) (Longo et al. 2012).

Patient survival, time to tumor progression and response to therapy in primary
brain tumors are all associated with tumor grade (Louis et al. 2007). Therapy is
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decided mostly on the basis of histologic classification but since it can be subject to
interobserver variation and difficult at times (Gravendeel et al. 2009), genetic
alterations and gene expression profiles have recently been recognized as an adjunct
to histopathological diagnosis and patient prognosis (Walker et al. 2011). Gene
expression profiling has been shown to reveal intrinsic molecular subtypes of
gliomas that correlate better with patient survival than histologic diagnosis
(Gravendeel et al. 2009; Li et al. 2009; Shirahata et al. 2007). It is, therefore,
conceivable to divide GBM into subsets based upon molecular signatures of genes
that regulate glioma progression with the purpose to develop prognostic markers as
well as more specifically targeted and effective treatments (Rich and Bigner 2004;
Ruano et al. 2008). On the basis of molecular signatures, designing a tailor made
therapy has become a reality which could prove to be cost effective, especially in a
developing country like ours where the majority of patients belong to economically
weaker section.

Secondary brain tumors are those which are metastasized to CNS from tumors
originated in other parts of the body. The tumors of lung, breast, kidney, colon,
melanoma, etc., are the most common types of cancers associated with brain
metastases (Rivkin and Kanoff 2013). Secondary brain tumors are known to be
three times more common than all the primary brain tumors combined (Longo et al.
2012). Since secondary tumors are detected in the late stage of the tumor originated

Table 10.1 WHO classification of gliomas (Pollo 2012; Louis et al. 2007; Vigneswaran et al.
2015; Walker et al. 2011)

Type Grade Histopathological features Median survival
(years)

Pilocytic
astrocytoma

I Relatively circumscribed, slow growing, cystic
astrocytomas, comprise 5–6 % of all gliomas

Usually cured
by surgical
resection

Oligodendroglioma II Tumors of white matter and cortex of cerebral
hemispheres, low rate of mitosis, necrosis
absent

12

Oligoastrocytoma II Diffuse tumors, mixed glial background 3 to >10

Diffuse astrocytoma II Diffuse infiltration into neighboring neural
tissue; moderately increased cellularity;
mitotic activity generally absent; occasional
atypical nuclei and some cells with enlarged
cytoplasm

6–8

Anaplastic
astrocytoma/
oligodendroglioma

III Infiltrating tumors with increased cellularity,
mitotic activity and nuclear atypia; no necrosis
or vascular proliferation, mild infiltration by
neutrophils

3

Glioblastoma
(GBM)

IV Extremely infiltrating tumors characterized by
necrosis and prominent microvascular
proliferation forming multilayered vessels;
high rate of mitosis; pleomorphic astrocytic
cells with marked nuclear atypia

1–2
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in the extra cranial region, therapy is not much beneficial to the patients who are
terminally ill and are usually on palliative treatment.

10.1.2 Inflammation and Cancer

Inflammation is an integral part of physiological and pathological processes such as
wound healing and infection (Coussens and Werb 2002; Reinke and Sorg 2012).
The inflammation associated with wound healing is a controlled process which is
self-limiting. The resolution of inflammation is brought about by rapid clearance of
the inflammatory cells by neighboring macrophages and dendritic cells through
induction of apoptosis (Savill et al. 2002; Savill and Fadok 2000). However, in case
this resolution gets dysregulated, the continuous tissue damage may favor chronic
inflammation and sustained cell proliferation, thereby, predisposing cells to neo-
plasia (Balkwill and Mantovani 2001). Hence, tumors have often been referred to as
‘wounds that fail to heal’ (Dvorak 1986).

The initial evidences for association between inflammation and cancer were
obtained from epidemiologic and clinical studies (Balkwill and Mantovani 2001;
Coussens and Werb 2002). The risk of colorectal cancer is known to be around
10-fold greater in patients with inflammatory diseases like ulcerative colitis
(Itzkowitz and Yio 2004; Seril et al. 2003), chronic hepatitis caused by HBV/HCV
predisposes to hepatocellular carcinoma (Hoshida et al. 2014; Zhang et al. 2014;
Block et al. 2003) and in the gastrointestinal tract, Helicobacter pylori infection is
the leading cause of adenocarcinoma and lymphoma (Kim et al. 2011; Coussens
and Werb 2002; Macarthur et al. 2004). The increased incidence of lung cancer is
also positively associated with the severity and duration of inflammatory diseases in
the respiratory system (Valavanidis et al. 2013; Borm and Driscoll 1996; Keeley
and Rees 1997).

Recent cancer research has stratified the heterocellular concept of tumor
development where the interplay of both cancer as well as non-cancer cells (e.g.,
immune cells) is known to potentiate tumor progression. Fundamentally, the
biology of cancer is illustrated by six essential features (proliferative signaling,
resistance to anti-proliferative signals, evasion of apoptosis, replicative immortality,
maintenance of vascularisation; and activation of tissue invasion and metastasis) of
tumor cells (Hanahan and Weinberg 2000, 2011). More recently, tumor-promoting
inflammation is being discussed as one of the emerging hallmarks of cancer
(Colotta et al. 2009; Hanahan and Weinberg 2011). In most solid tumors, including
brain cancers, apart from the inflammation-inducing genetic events in tumor cells,
the cells undergoing necrosis release proinflammatory signals to recruit immune
cells into the microenvironment (Hanahan and Weinberg 2011; Grivennikov et al.
2010), responsible for promoting tumorigenesis. Furthermore, the inflammatory
cells, namely, macrophages and leukocytes recruited into the tumor microenvi-
ronment releases reactive oxygen species which is deleterious and acts as mutagenic
for the nearby cancer cells, thereby, accelerating their malignancy (Grivennikov
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et al. 2010). Hence, the process of inflammation is an enabling characteristic during
the acquisition of the classical hallmark features by the tumor cells.

10.1.3 Mechanisms of Cancer-Related Inflammation

Inflammation and cancer can be connected to each other via two pathways. One is
extrinsic pathway, driven by chronic inflammatory condition/disease with increased
accumulation of inflammatory cells like leukocytes, releasing inflammatory medi-
ators at the site which increases the risk of cancer development. Another is intrinsic
pathway, mediated by genetic alterations of the tumor cells (e.g., activation of
oncogenes by mutations, chromosomal rearrangement and amplification or inacti-
vation of tumor suppressor genes) that result in the release of cytokines and
chemokines, leading to inflammatory microenvironment and promoting tumor
progression (Colotta et al. 2009; Mantovani et al. 2008). The intrinsic mechanism,
thus, holds the genetic events that initiate tumorigenesis as responsible for gener-
ating an inflammatory environment (Mantovani et al. 2008). Regardless of the
original pathway, whether extrinsic (non-healing wounds, irritants, infections, etc.)
or intrinsic (oncogenes, protein kinases, etc.), the inflammatory cytokines and
signals are responsible for triggering an inflammatory microenvironment in tumors
which augment tumor progression by aiding the survival and proliferation of tumor
cells, evading cell death, promoting angiogenesis, weakening adaptive immune
responses and altering cellular response to therapy.

The role and significance of inflammation and its related mechanisms during
cancer progression have been elaborately studied in most of the solid tumors,
including brain tumors. In this chapter, the role of inflammatory cells and mediators
in cancers in general is discussed first, followed by a discussion of the known as
well as potential mechanisms and mediators involved in primary brain tumors.

10.2 Role of Inflammatory Cells and Mediators in Tumor
Development

Although the immune system provides an early protection against cancer, the
healing arm of inflammatory responses is exploited by the tumor to promote its
growth and metastasis (Abad et al. 2014; Hanahan and Weinberg 2011). A wide
population of leukocytes and other immune cells infiltrate into the developing
tumor site and establish a proinflammatory tumor microenvironment (Yang et al.
2005a). Basically, the infiltration of these cells to tumors is meant to repress tumor
growth (Brigati et al. 2002; Dunn et al. 2002; Nakano et al. 2001; Tsung et al. 2002;
Zhang et al. 2003). However, these cells may act more as tumor promoters
(Coussens and Werb 2002; Khong and Restifo 2002; Smyth et al. 2004). Tumor
cells may also themselves produce cytokines and chemokines to attract immune
cells and further facilitate cancer development (Coussens and Werb 2002; Lin and
Pollard 2004; Yang et al. 2005a).
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Macrophages, neutrophils, eosinophils, dendritic cells, mast cells and lympho-
cytes form the key components of inflammation in epithelial-originated tumors
(Coussens and Werb 2001; Macarthur et al. 2004; Yang et al. 2005a). Among
primary brain tumors, malignant gliomas are histologically heterogeneous and
characterized by diffuse infiltration into normal brain parenchyma (Rolle et al.
2012; Lisi et al. 2014). Microglia and macrophages represent the largest population
of tumor-infiltrating cells in glioma and account for one-third of the total tumor
(Lisi et al. 2014).

Clinical studies have shown increased tumor-associated macrophages (TAM)
density to be associated with poor prognosis in cancers (Amann et al. 1998; Leek
and Harris 2002; Lin et al. 2002; Saji et al. 2001). They release IL-10 and pros-
taglandin E2, which suppress anti-tumor response (Elgert et al. 1998), apart from
releasing angiogenic factors like vascular endothelial growth factor (VEGF),
endothelin-2 and urokinase-type plasminogen activator (uPA) (Bando and Toi
2000; Foekens et al. 2000; Fox et al. 2001; Grimshaw et al. 2002; Pollard 2004).
TAMs facilitate tumor cell invasion and metastasis by releasing inflammation-
induced matrix metalloproteinases (MMPs), MMP-2, and MMP-9, which are
responsible for degradation of extracellular matrix and basement membrane
(Coussens et al. 1999; Pollard 2004). Also, TAMs release TNF-a, iNOS, epidermal
growth factor and other epidermal growth factor receptor (EGFR) family ligands to
promote tumor cell proliferation and migration (Leek and Harris 2002; Leek et al.
2000; Wyckoff et al. 2000). On the other hand, activated mast cells participate in
tumor angiogenesis, invasion and metastasis by generating VEGF/vascular per-
meability factor, basic FGF, specific proteases, etc., (Hiromatsu and Toda 2003; Lin
and Pollard 2004; Ribatti et al. 2001). Mast cells are also responsible for the release
of cytokines and chemokines (Lin and Pollard 2004). Tumor-associated neutrophils
enhance tumor development in a manner similar to TAMs and mast cells (Lin and
Pollard 2004; Scapini et al. 2002; Schaider et al. 2003). They are known to par-
ticipate in the genetic instability of tumors (Haqqani et al. 2000). T-lymphocytes are
recruited to the tumors by a series of chemokines and the increase of CD4+ T-cells
has been positively correlated with poor prognosis in several cancers (Bromwich
et al. 2003; Canna et al. 2005).

Several molecules have been identified as crucial for the regulation of inflam-
mation during cancer progression, including in brain tumors. These mediators
comprise cytokines and chemokines; certain transcription factors and enzymes that
link inflammation with cancer.

10.2.1 Cytokines

The immune response to tumors is constituted by cytokines which are produced by
both tumor cells as well as host stromal cells (Smyth et al. 2004). ILs, TNF-a,
growth factors, and differentiation factors (colony-stimulating factors) are secreted
or membrane-bound cytokines that play a regulatory role in the growth, differen-
tiation and activation of immune cells (Dranoff 2004). Alterations in the levels of
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various proinflammatory as well as anti-inflammatory cytokines, facilitate tumor
development by initiating a spectrum of signaling cascades at the inflammatory
sites (Dranoff 2004; Philip et al. 2004; Smyth et al. 2004). Tumor derived cytokines
such as Fas ligand, VEGF, and TGF-b help in suppression of immune response to
the tumors (Smyth et al. 2004). TNF, produced by activated macrophages and also
by tumor cells, promotes angiogenesis and tumor growth by inducing angiogenic
factors, thymidine phosphorylase and MMPs (Aggarwal 2003; Balkwill 2002;
Balkwill and Mantovani 2001; Leek et al. 1998). It also links inflammation to
cancer by regulating of a network of chemokines (Balkwill 2002). Chemokines, the
largest family of cytokines, are major soluble regulators that control the directional
migration of leukocytes to the inflammatory site (Daniel et al. 2003). Chemokines,
like CXCR2, are also known to promote preneoplastic cell transformation and
tumor cell growth (Coussens and Werb 2002; Strieter 2001). CXCL-8 has been
documented for its role in initiating tumor inflammation and angiogenesis, thus
facilitating cancer progression (Sparmann and Bar-Sagi 2004). Moreover,
chemokines also facilitate tumor invasion and metastasis in various cancer types
(Ardestani et al. 1999; Daniel et al. 2003; Wilson and Balkwill 2002) by mediating
the directional migration of tumor cells to distal organs via circulation in a similar
manner to its control of leukocyte migration (Hanahan and Weinberg 2000). They
induce the expression of MMPs and collagenases, which degrade basement
membrane (Inoue et al. 2000; Muller et al. 2001; Scotton et al. 2001).

10.2.2 Transcription Factors

Nuclear Factor-ЌB: Targets of the transcription factor Nuclear Factor-ЌB
(NF-ЌB) include immune-mediating genes, inflammatory genes and cell prolifer-
ation regulation genes (Karin and Lin 2002). Within the immune system, NF-ЌB is
involved in the maturation of dendritic cells (Caamano and Hunter 2002) and
development of lymphocytes (Li and Verma 2002; Mora et al. 2001; Senftleben
et al. 2001). It is critical for regulating the expression of inflammatory cytokines
and adhesion factors (Perkins 2000; Tak and Firestein 2001). During tumor
development, NF-ЌB stimulates cell proliferation via activation of the expression of
c-Myc, cyclin D1, and other growth factor genes (Guttridge et al. 1999; Hinz et al.
1999; Karin and Lin 2002). In mucosa-associated lymphoid tissue lymphoma,
activation of NF-ЌB pathway is followed by inhibition of p53-mediated apoptosis
(Stoffel et al. 2004). NF-ЌB may also contribute to genomic instability in two
aspects. It promotes the production of reactive oxygen species, which have a
potential to cause mutations (Karin and Lin 2002). On the other hand, the
anti-apoptotic activity of NF-ЌB prevents mutated precancerous cells from being
eliminated (Karin and Lin 2002). NF-ЌB might be involved in linking inflammation
to cancer through its association with the induction of proinflammatory cytokines
and chemokines such as IL-6, TNF-a, IL-8, adhesion molecules, MMPs, COX-2,
and iNOS (Li and Verma 2002). NF-ЌB is also required in leukocyte adhesion and

10 Brain Tumors and Inflammation 259



migration, which are important in cancer associated inflammation (Chen et al.
1995).

Hypoxia-inducible factor-1a: Hypoxia-inducible factor-1a (HIF-1a) is the
master regulator of tissue oxygen homeostasis. In response to hypoxia, HIF-1
activates a wide range of molecules like iNOS, VEGF, erythropoietin, glucose
transporter-1, and other glycolytic enzymes which enable cell survival under
hypoxic stress (Semenza 1999). Hypoxia is a common feature at the sites of
inflammatory lesions mainly resulting from metabolic shifts (Kong et al. 2004).
Although the role of HIF-1 in driving progression of inflammation may be tissue
specific, it has been found to play an essential role in inducing leukocyte adhesion
(Cramer et al. 2003) and maintaining normal functions of myeloid cells recruited to
sites of inflammation (Walmsley et al. 2005). HIF-1 also promotes chronic
inflammation by preventing the hypoxic apoptosis of neutrophils and
T-lymphocytes (Makino et al. 2003; Walmsley et al. 2005). Induction of NF-ЌB by
hypoxia also depends on HIF-1a existence (Semenza 1999). In normoxic cancer
cell lines, HIF-1a can be activated by proinflammatory cytokines such as TNF-a
and IL-1b, in a NF-ЌB dependent manner (Jung et al. 2003a, b; Zhou et al. 2003).
COX-2 also mediates IL-1b-induced HIF-1a by its product prostaglandin E2 (Jung
et al. 2003b).

STAT3: Cytokines can activate STAT family transcription factors via Janus
activated kinases (JAK) signaling (Hodge et al. 2005; Yang et al. 2005b). IL-6, for
instance, is a well established inducer of STAT3. As STAT3 is constitutively acti-
vated in different cancers (Hodge et al. 2005) and has been shown to contribute to
immune tolerance of tumor cells (Wang et al. 2004), IL-6/JAK/STAT3 signaling
axis could be a critical link between cancer development and inflammation. Notably,
STAT3 activation occurs after the occurrence of primary malignant cells and plays a
role in promoting the development of an inflammatory microenvironment.

10.2.3 Enzymes

Cyclooxygenase-2: Cyclooxygenase-2 (COX-2) expression may be induced by a
wide range of stimuli, including proinflammatory cytokines such as IL-1 and TNF,
and growth factors such as epidermal growth factor (Karin and Lin 2002; Williams
et al. 1999). The products of COX-2 enzyme are prostaglandins, which are key
mediators of inflammation (Nathan 2002; Steele et al. 2003). The long-term use of
non-steroidal anti-inflammatory drugs has been shown to reduce the risk of several
cancers in population-based studies (Buskens et al. 2002; Farrow et al. 1998;
Williams et al. 1999). COX-2 is also overexpressed in various types of cancers and
involved in cellular proliferation, anti-apoptotic activity, angiogenesis and
increased metastasis (Hida et al. 1998; Hwang et al. 1998; Okami et al. 1999;
Prescott and Fitzpatrick 2000; Tsujii et al. 1997).

Inducible Nitric Oxide Synthase: Inducible Nitric Oxide Synthase (iNOS), an
enzyme-catalyzing NO production, was found to be overexpressed in various types
of cancers and chronic inflammatory diseases (Kim et al. 2005). NO has also been
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implicated in the regulation of both inflammation (Hussain et al. 2004) and cancer
development (Hofseth et al. 2003). During chronic inflammation, continuous
generation of NO may lead to DNA damage, disruption of DNA repair and
cancer-prone post-translational modifications (Goodman et al. 2004; Jaiswal et al.
2000; Rao 2004). Increased NO production might result in p53 activation but also
carcinogenic p53 mutations (Goodman et al. 2004; Hofseth et al. 2003; Hussain
et al. 2004). Once the inflammation-associated tumors are formed, iNOS expression
is persistently stimulated by cytokines and NF-ЌB that are prevalent within the
tumor inflammatory microenvironment (Li and Verma 2002). In addition, NO may
also regulate angiogenesis, leukocyte adhesion, and infiltration and metastasis (Rao
2004). Noticeably, studies using both in vitro and in vivo models show that
iNOS/NO signaling can induce COX-2, which is a well-studied link between
inflammation and cancer (Rao 2004).

10.2.4 Other Promising Links Between Inflammation
and Cancer

Another transcription factor Nrf2, which regulates a wide range of detoxifying and
antioxidant genes, has been identified as critical for response to cellular stresses
(Motohashi and Yamamoto 2004). Nrf2 may also be induced by NO (Buckley et al.
2003) and lead to reduced susceptibility to apoptotic signals such as TNF-a (Morito
et al. 2003).

Nuclear factor of activated T cells (NFAT) is another inflammatory mediator
expressed by both immune and nonimmune cells and plays an essential role in
inflammatory responses by regulating the expression of cytokines IL-2, IL-3, IL-4,
IL-5, IL-13, granulocyte-macrophage colony-stimulating factor and TNF-a (Chen
et al. 2003b; Crabtree 1999; Kiani et al. 2000). Moreover, in both T cells and colon
carcinoma cells, NFAT is associated with overexpression of COX-2, which is
implicated in both cancer progression and inflammation (Duque et al. 2005;
Jimenez et al. 2004).

10.3 Inflammation Associated with Primary Brain Tumors

10.3.1 Glioma and Inflammation

Malignant gliomas are the most common type of brain tumors; with GBM being the
most aggressive of all gliomas (Konnecke and Bechmann 2013; Holland 2000).
Consistent with its role in other malignancies, the inflammatory microenvironment
acts as a driving force for progression of GBM lesions into highly malignant
tumors. Recently, the role of tumor microenvironment and glioma cells themselves
as producers and targets of inflammatory mediators has been discussed in many

10 Brain Tumors and Inflammation 261



reports (Tarassishin et al. 2014a, b; Charles et al. 2011; Cooper et al. 2012; Carmi
et al. 2013).

GBM are known to be surrounded by several proinflammatory cytokines,
chemokines and growth factors that contribute to their pathophysiology. Cytokines
play a major role in the proliferation, invasiveness and stemness of GBM cells.
Upregulation of IL-1b, IL-6, IL-8, etc., has been reported in GBM tumor samples as
well as cell lines (Yeung et al. 2013). Notably, a differential increase in the
inflammatory response to glial tumors has been observed with the increasing grade
of malignancy. For example, in comparison to low grade gliomas, the chemokine
CX3CL1 shows an increased expression in grade III-IV gliomas, namely, anaplastic
astrocytomas, GBM and oligodendrogliomas (Erreni et al. 2010). Similarly,
expression of PTX, a component of the humoral arm of innate immunity and a
candidate marker of inflammation, differs across low and high grade gliomas, with a
positive correlation with tumor grade and severity (Locatelli et al. 2013). There is
also a positive correlation between the density of microglia/macrophages in gliomas
and the grade of gliomas (Konnecke and Bechmann 2013). Several cell culture and
xenograft studies have supported the hypothesis that targeting the production and
activity of inflammatory molecules could be beneficial to GBM patients (Wang
et al. 2009a, 2012; de la Iglesia et al. 2008). Therefore, anti-inflammatory agents in
combination with cytotoxic agents can offer an improvised strategy in GBM
therapy (Yeung et al. 2013). The ongoing glioma studies are, thus, investigating
specific anti-tumor immunity with the aim of providing adjuvant therapies to
patients.

10.3.1.1 Role of Interleukins (ILs) in Glioma Pathophysiology
IL-1b: IL-1b is a master proinflammatory cytokine involved in the malignant
process (Yeung et al. 2013). Elevated levels of IL-1b and its receptor (IL-1R) have
been observed in human GBM cell lines and tumor specimens (Yeung et al. 2012;
Sasaki et al. 1998; Lu et al. 2007; Sharma et al. 2011b). The binding of IL-1b to
IL-1R is known to activate NF-ЌB and MAPK signaling pathways in glial cells
(Griffin and Moynagh 2006; McCulloch et al. 2006). Other pathways that show
IL-1b-dependent activation in GBM cells are ERK (Meini et al. 2008) and JNKs
pathways which also lead to upregulation of VEGF and sphingosine kinase 1
(Yoshino et al. 2006; Paugh et al. 2009). IL-1b mediates upregulation of
hypoxia-inducible factor-1 which is the main regulator of hypoxic response during
GBM progression (Sharma et al. 2011b). IL-1 has been identified as a strong
inducer of MMPs and miR-155 in human glioma cells (Tarassishin et al. 2014a).

IL-1 produced by GBM cells is responsible for their mesenchymal phenotype,
increased migratory capacity, unique gene signature and proinflammatory signaling
(Tarassishin et al. 2014a). IL-1b has been identified as crucial for maintenance of
stemness properties and self-renewal capacity of GBM cells. IL-1b in combination
with TGF-b has been found to induce increased expression of stemness genes,
invasiveness and drug resistance in LN-229 cell line, leading to enhanced tumor
growth in vivo (Wang et al. 2012).
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The increase in IL-1b in GBM cells is followed by increased secretion of IL-6
and IL-8; and upregulation of COX-2, which further aggravates inflammation
(Spooren et al. 2011; Sharma et al. 2011a; Yeung et al. 2012; Tanabe et al. 2011).
IL-1 has been shown to suppress anti-tumor immunity and vaccine efficacy by
expansion of myeloid-derived suppressor cells (MDSC) and Th17 cells through
activation of STAT3 in tumor cells (Wang et al. 2009b; Bruchard et al. 2013).

IL-6: IL-6 gene amplification has been shown to correlate with GBM aggres-
siveness and poor patient survival (Rolhion et al. 2001; Tchirkov et al. 2007). IL-1b
and TNF-a are responsible for activating signaling pathways that lead to stabi-
lization of IL-6 mRNA and its increased biosynthesis (Spooren et al. 2011; Yeung
et al. 2012). IL-6 signaling is triggered by the binding of IL-6 to heteromeric plasma
membrane receptor complexes formed by IL-6 receptor (IL-6R) and glycoprotein
130 (gp130) (Yeung et al. 2013). Henceforth, the downstream signaling is propa-
gated through the JAK/STAT pathway (JAK1-3), resulting in activation of STAT
transcription factors, chiefly STAT3 (Rahaman et al. 2002). Activated STAT3 has
been correlated with increased glioma-infiltrating T-cells as well as poor survival of
patients with high grade glioma as compared to low grade glioma (Abou-Ghazal
et al. 2008). IL-6-mediated JAK/STAT signaling is reported to promote invasion
and migration in GBM cell lines (U251, T98G and U87MG) (Liu et al. 2010) and
confers glioma stem cell-like features via activation of Jagged–Notch pathway (Jin
et al. 2012). It also correlates with increased expression and secretion of MMP-2
which enhances GBM motility (Li et al. 2010). IL-6 derived from neighboring cells,
like the microglia, has also been known to stimulate GBM cell invasion (Zhang
et al. 2012).

IL-8: High expression and secretion of IL-8 has been reported in human GBM
samples, cell lines and stem cells (Yeung et al. 2013). Its expression is positively
regulated by IL-1b, TNF-a or macrophage infiltration (Yeung et al. 2012; Hong
et al. 2009) and it has been demonstrated as a potent angiogenic factor in GBM
(Brat et al. 2005). CXCR1, a G-protein coupled chemokine receptor, binds IL-8 in
GBM cells (Raychaudhuri and Vogelbaum 2011) and its downstream signaling
activates PI3K, Raf–MAPK/ERK kinase (MEK)–ERK, p38 MAPK and JAK2–
STAT3 pathways (Waugh and Wilson 2008). IL-8 acts as an inflammatory
chemoattractant for GBM cells and promotes their invasiveness (Raychaudhuri and
Vogelbaum 2011; Wakabayashi et al. 2004). It is also secreted by the tumor cells,
augmenting their growth in an autocrine manner (Sun et al. 2011; Wakabayashi
et al. 2004).

10.3.1.2 Role of COX-2 in Glioma Pathophysiology
The significance of inflammation for glioma progression has been shown by a study
that analyzed the effect of chronic IL-1b exposure on cancer stem-like cells (CSCs)
derived from GBM cell line U87MG (Sharma et al. 2011a). Apart from increasing
oxidative DNA damage, the IL-1b treatment increased the nuclear and cytoplasmic
levels of COX-2. Celecoxib, an inhibitor of COX-2, was seen to decrease
self-renewal capacity and increase apoptosis of control as well as IL-1b treated
CSCs. Due to the regulation of CSCs proliferation by COX-2 independent of IL-1b
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treatment COX-2 was implicated as a potential anti-glioma target. Other studies
where COX-2 was detected in the astrocytes surrounding necrotic areas in glial
tumors suggest the use of COX-2 inhibitors in newer therapeutic strategies com-
bining chemotherapy and radiotherapy for treatment of glioma patients (Temel and
Kahveci 2009; Deininger et al. 1999).

10.3.1.3 Role of HIF-1a in Glioma Pathophysiology
The importance of HIF-1a in glioma-related inflammation was revealed in a recent
study where increased HIF-1a activity was found to be concurrent with
TNF-a-induced increase in major histocompatibility complex class I (MHC-I)
expression and activation (Ghosh et al. 2013). In corroboration, HIF-1a knockdown
blocked TNF-a-induced MHC-I activation, thereby, demonstrating HIF-1a as a key
link between inflammation, immune evasion and glioma progression via MHC-I
gene regulation.

10.3.1.4 Role of NF-ЌB in Glioma Pathophysiology
A recent study has linked NF-ЌB activation with the regulation of inflammatory
microenvironment in glioma cells. TNF-a, a proinflammatory cytokine, modulates
inflammatory responses in GBM cells via toll-like receptor 4 (TLR4) signaling and
subsequent activation of NF-ЌB (Tewari et al. 2012). TNF-a-induced TLR4 sig-
naling was also seen to result in increased AKT activation and HIF-1a transcrip-
tional activation in the process. Overall, the study showed that under the influence
of TNF-a, TLR4-HIF-1a and NF-ЌB-TLR4 form feed-forward loops that play an
important role in sustaining the inflammatory response in glioma.

10.3.1.5 Role of STAT3 in Glioma Pathophysiology
STAT3 has been implicated as a negative regulator of the anti-tumor immune
response. STAT3-associated immunosuppressive mediators are either expressed by
glioma cells or the immune cell populations in the tumor microenvironment (Kim
et al. 2014). siRNA-mediated knockdown of STAT3 in human GBM cell lines has
shown changes in the profiles of inflammatory cytokines (See et al. 2012). STAT3
expression has been correlated with poor survival in astrocytomas (Abou-Ghazal
et al. 2008) and in high grade gliomas, JAK/STAT pathway activation has been
found as an independent prognostic indicator of decreased survival (Tu et al. 2011).

10.3.1.6 Release of Inflammatory Mediators
by the Neighboring Cells in Glioma
Microenvironment

A substantial part of the tumor mass of glioblastoma is constituted by microglia
cells, the immunocompetent cells of brain, which form the largest population of
tumor-infiltrating cells (Graeber et al. 2002; Badie and Schartner 2001; Konnecke
and Bechmann 2013). Microglia create a microenvironment that supports tumor
initiation and progression (Markovic et al. 2005) by providing an immunosup-
pressive milieu, for instance, with release of IL-10 (Huettner et al. 1997). Under the
influence of glioma cells, microglia suppress their defense properties (Hussain et al.
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2006) and instead of releasing cytokines, they upregulate the inflammatory
biomarkers MMPs, especially, MMP-9 and MMP-2 (Rao 2003; Hanisch and
Kettenmann 2007). MMP-9 has been termed as a tuner and amplifier of immune
functions since it helps in peripheralization of leukocytes in response to chemokines
at the sites of inflammation and acts as a switch and catalyst between innate and
adaptive immune systems (Opdenakker et al. 2001; Konnecke and Bechmann
2013). The production of MMP-9 is enhanced by TGF-b in transformed lympho-
cytes (Zhou et al. 1993) whereas it is negatively regulated by IL-4, IL-10, and
interferon-b (Corcoran et al. 1992; Arthur et al. 1987; Malik et al. 1996; Zhou et al.
1993; Konnecke and Bechmann 2013). Furthermore, immunosuppressive inflam-
matory cells like regulatory T-cells (T-regs) and MDSCs are known to promote
brain neoplastic growth via suppression of activity of cytotoxic T-lymphocytes
(CTLs) (Abad et al. 2014; Hanahan and Weinberg 2011).

10.3.1.7 Inflammation Mediated by FAT1 Gene in Glioma
Inflammatory mediators are known to coordinate with intracellular signaling cas-
cades and regulate hubs of transcriptional networks that are critical for glioma cell
survival and growth (Sen 2011). Similarly, certain signal transduction mechanisms
exercise upstream of the inflammatory pathways and exhibit cross-talks that
enhance inflammatory response in the tumor cells. One such important example is
the signaling axis mediated by FAT1, a novel cadherin recently implicated as an
oncogene in glioma (Dikshit et al. 2013). siRNA-mediated knockdown of FAT1
gene has been shown to increase the expression of PDCD4 (programmed cell death
4, a tumor suppressor gene) in GBM cell lines. This, in turn, reduces phospho-c-Jun
which diminishes AP-1 dependent transcription of downstream genes which
include proinflammatory markers (COX-2, IL-1b and IL-6) and extra cellular
matrix (ECM)-remodeling molecules (MMP-3, PLAU and VEGF-C). The process
was seen to be reversed by the simultaneous knockdown of FAT1 and PDCD4,
thereby, confirming the link between the two molecules in induction of a
proinflammatory microenvironment in glioma. In GBM tumors, the mRNA
expression of COX-2 and IL-6 expression was positive correlated with FAT1
expression along with inverse correlation between FAT1 and PDCD4 expression
(Dikshit et al. 2013) hence, reporting an important role of FAT1 gene in promoting
inflammation in GBM tumors. Apart from assisting as a possible tool for future
diagnosis and prognosis, FAT1 seems to be a potential marker to enable molecular
subgrouping of GBM and a prospective means for designing a targeted therapy in
combating proinflammatory microenvironment in GBM and tumor invasion.

10.3.2 Oligodendroglioma and Inflammation

There exists a distinction between the expression profiles of inflammatory media-
tors in oligodendroglial tumors versus the low grade gliomas of astrocytic origin.
As per a recent analysis done using the expression data retrieved from The Cancer
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Genome Atlas (TCGA), relative to oligodendrogliomas, low grade astrocytomas
displayed higher expression of inflammation-related genes (Gonda et al. 2014). In
another study, overexpression of genes related to inflammation and immune
response was found in oligodendroglial tumors with intact 1p-19q (Ferrer-Luna
et al. 2009). These tumors also displayed p53 mutations and EGFR trisomy in some
cases.

10.3.3 Ependymoma and Inflammation

Published reports on tumor-related inflammation are few in cases of ependymal
tumors. Recently, Griesinger et al. have reported the importance of IL-6/STAT3
signaling in driving tumor growth and inflammatory crosstalk in high-risk
ependymal tumors (Griesinger et al. 2015). Distinct immunobiologic signatures
were analyzed in molecular subgrouping of ependymoma providing aid in diag-
nosis, recurrence and clinical outcomes (Hoffman et al. 2014). A panel inflam-
matory cytokines was analyzed pre- and post-radiotherapy in patients with
ependymoma and IL-8 was found to be decreased during therapy (Merchant et al.
2009).

10.3.4 Meningioma and Inflammation

Meningiomas are the second most prevalent primary neoplasm of the CNS after
gliomas, and arise from the CNS meninges (Doroudchi et al. 2013; Kujas 1993;
Wiemels et al. 2010). Although a majority of these tumors are benign, in a few
cases they may metastasize and become aggressive (Pfisterer et al. 2004). Similar to
other brain tumors, a deregulated expression pattern of inflammatory mediators and
cytokines is observed in meningiomas. A majority of these tumors express receptors
for IL-4, an immune-regulatory cytokine known to be produced predominantly by
type 2 T-helper cells and mast cells (Puri et al. 2005). In contrast to tumor cells, the
normal brain tissue expresses either low or non-detectable levels of IL-4 receptor.
Likewise, cyclooxygenase-2 (COX-2), a well-known inflammatory mediator, is
expressed selectively in meningioma tissue, and not in the normal dura or dura
adjacent to the tumors (Ragel et al. 2007). Selective COX-2 inhibition by the use of
celecoxib in meningioma tumors grown in mice has shown reduction in blood
vessel density through direct inhibition of COX-2 and downregulation of
VEGF-mediated angiogenesis. In another study, increased co-expression of mac-
rophage migration inhibitory factor (MIF; a multifunctional cytokine associated
with inflammation and tumorigenesis) and MMP-9, together with the histological
grade of the tumor, were found to be an important predictor for recurrence of
benign meningiomas (Huang et al. 2013). Elevated expression of both MIF and
MMP-9 were associated with increased microvessel density in meningioma. A re-
search group has also reported TGF-b1 overexpression in the microenvironment of
different pathological types of meningiomas (Gogineni et al. 2012). TGF-b1
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induced cell invasion in malignant meningioma along with upregulation of uPA,
uPAR, cathepsin B, and MMP-9. The increase in cell proliferation was associated
with the expression of anti-apoptotic and pro-survival signaling molecules.

10.3.5 Medulloblastoma and Inflammation

Medulloblastoma is a common primary brain tumor in children with a male pre-
ponderance and represents a heterogeneous disease (Maslinska et al. 2012). The
major biological factors and mechanisms underlying the pathogenesis of the tumor
subtypes are unclear. Both genetic and epigenetic factors are known to influence the
host response which contributes to growth of the tumors. Local inflammation-
induced extracellular matrix structural changes are a characteristic phenomenon
during neoplastic invasion in intracranial tumors including medulloblastoma. It aids
the tumor cells to infiltrate adjacent tissues or enter peripheral circulation. This
process is facilitated by the increased expression of MMP-2 and MMP-9 that are
responsible for degradation of extracellular matrix (Annabi et al. 2013). Toll-like
receptors (TLRs), which are receptors of innate immunity, may play a role in
immune mechanisms of medulloblastoma patients. The TLR downstream signaling
involves activation of transcription factors that induce genes encoding various
proinflammatory cytokines, enzymes and mediators. TLR 2 and TLR 9 have been
found to be associated with the ligands released by the necrotic tissue in medul-
loblastoma tumors and provide a key link between innate immunity and inflam-
mation in medulloblastoma tumors (Maslinska et al. 2012).

10.3.6 Acoustic Neuroma (Schwannoma)
and Inflammation

Acoustic neuromas or vestibular schwannomas are benign tumors originating from
the myelin-producing Schwann cells of the vestibular branch of the eighth cranial
nerve in the internal auditory canal. These tumors grow slowly and progressively;
and eventually cause brain stem compression. They account for about 8 in 100
primary brain tumors (Taurone et al. 2015). They behave as WHO grade I tumors
and only rarely undergo malignant transformation (Hilton and Hanemann 2014).
Inflammatory infiltrates representing the host’s humoral and cellular response to
schwannomas have been documented (Rossi et al. 1990; Stevens et al. 1988). This
infiltrate induces increased vessel permeability and results in adjacent intratumoral
edema (Mahadewa et al. 2005). Additionally, corticosteroids, the drugs that are
known to repress cytokine gene transcription, have been found to be effective in
cases of sensorineural hearing loss associated with vestibular schwannoma, point-
ing to the important function of inflammatory response in the process (Barnes and
Adcock 1993; Chen et al. 2003a; Lebel et al. 1988).
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10.3.7 Pituitary Tumors and Inflammation

Almost all pituitary tumors or pituitary adenomas are benign tumors and cause
significant health problems mainly because of their location near the brain and
secretion of excess hormones (Ezzat et al. 2004). Among cytokines, increased
levels of IL-6 and IL-8 have been detected in human pituitary tumors (as compared
to normal pituitary tissue) and pituitary adenoma cell cultures. There is also a
possible role of inflammation-modulated angiogenesis via induction of NF-ЌB and
HIF-1a (Arzt et al. 1999). gp130 cytokines have a regulatory action on pituitary
physiology for secretion of ACTH and PRL which represent two models of neu-
roendocrine and immune interaction (Gerez et al. 2007). Their disruption might
lead to abnormal growth of pituitary cells as well as immune disorders, for which,
targeting these cytokines could be a potential therapeutic approach.

Very few or no studies have been done on tumor-related inflammation in other
very rare intracranial cancers and hence, they have not been discussed in this chapter.

10.4 Current Challenges and Future Prospects
of Immunotherapy in Brain Tumors

Until recently, most efforts to treat cancer have been directed towards the eradi-
cation of tumor cells. But newer studies have revealed molecular pathways that
interconnect cancer and inflammation, thereby, offering a fresh perspective to
modulate the tumor microenvironment (Colotta et al. 2009). Cancer-related
inflammation is indeed a chief component of malignant brain tumor microenvi-
ronment and represents a target for innovative therapeutic strategies. Proinflam-
matory cytokines have been the prime targets in most cancers and continual efforts
in the direction of targeting them are well justified (Harrison et al. 2007; Loberg
et al. 2007).

The current challenge in cancer immunotherapy lies in identifying the mecha-
nisms that accentuate the benefits of inflammation and result in tumor inhibition
while neutralizing its tumor-promoting effects (Colotta et al. 2009). The same
approach needs to be applied in case of brain tumors by utilizing the innate arm of
the immune system to recognize and destroy malignant cells. Immunotherapy for
malignant gliomas is an emerging field that ensures highly specific and less toxic
treatment as compared to conventional chemotherapy. In addition, it has the
advantage of sustained efficacy by way of immunologic memory (Bloch 2015).
Anti-tumor immunity is achievable through vaccination. Till date, the
immunotherapeutic strategies have focused upon active vaccination against
tumor-specific antigens in gliomas. Many such early phase clinical trials have also
shown promising results for vaccine therapy. But no therapy has yet improved
survival in a randomized, controlled trial as such. The major obstacle to
immunotherapy and a pressing issue in malignant gliomas is the tumor-induced
immunosuppression. The mechanisms of immunosuppression involve a
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combination of factors like the activity of T-reg cells, signaling mediated by TGF-b,
etc., that paralyze the functions of CTLs and NK cells (Bloch 2015; Platten et al.
2014). As has been demonstrated in other cancers, the efficacy of immunomodu-
latory agents may be considerably improved only when they are developed to
combat the immunosuppressive factors (Bloch 2015). A positive example comes
from immunotherapy clinical trials in other cancers targeting to inhibit T-cell
suppressive pathways mediated by PD1 (protein encoded by human PDCD1 gene)
receptor and ligand using humanized antibodies. It underscores the potential option
of using agents that can obliterate the immunosuppressive microenvironment in
glioma (Platten et al. 2014). Such approaches would ensure greater efficacy of the
peripheral anti-tumor immune response induced by vaccination.
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11Glia in the Retina: Pluri-Functional
Mediators in Diverse Ocular Disorders

Nivedita Chatterjee

Abstract
Dysfunction of glia is emerging as a cause for many retinal disorders. Originally
identified as supporting cells in the brain, it is increasingly becoming clear that
they play major roles in maintaining homeostasis and regulating many aspects of
disease progression in the retina. A complex signalling system exists which
allows neuron–glia and neurovascular interaction. Besides releasing glial and
neuronal signalling molecules directed to cellular homeostasis, glia respond also
to infectious and non-infectious external stressors, to create a milieu which
heavily decides survival of surrounding cells. This review article describes some
of the latest advances in our knowledge on the role of the glia and their
involvement in immune responses. Understanding glial contribution will
significantly improve comprehension of disease susceptibility and progression.
Targeting glial-specific pathways might ultimately impact the development of
therapies for clinical management of retinal neurodegeneration.

11.1 Introduction

Neurodegenerative processes adversely affect vision in a significant portion of the
human population. Almost all of them have an immune-pathology, even those not
initiated by infections. These include glaucoma, age-related macular degeneration
(AMD), diabetic retinopathy, ischemia, retinopathy of prematurity and traumatic
injuries. As an immune-privileged organ, the retina is designed to attenuate
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inflammatory response to safeguard vision. Retinal glia play an important part in
maintaining homeostasis, aiding in synaptic activity by transporting neurotrans-
mitters and preserving neuronal health. Novel techniques and models have
increased our understanding of the mechanisms underlying ocular inflammation and
innate immunity that are operative in the abrogation of immune privilege. This
review encapsulates some of the latest literature on the molecular events at glial
cells of the retina during some common ocular diseases.

Much of the functions performed by immune-competent cells elsewhere in the
body are taken up by glial cells in the retina. Glial cells consisting of oligoden-
drocytes, astrocytes, microglia, and NG2 positive cells make a large part of the
central nervous system (CNS), numberwise. They function as effectors and mod-
ulators of neurodevelopment through diverse neuron–glial interactions. Glia can be
affected by both genetic and environmental factors, leading to their dysfunction in
supporting neuronal development and functions. These in turn can affect neuronal
cells, causing alterations at the circuitry level that manifest as behavioural char-
acteristics. Glial anomalies can be either structural or cellular changes. Changes in
glial functions are pervasive in most neurodegenerative disease making them
important targets for therapy. Glial cells share many of the signalling pathways
observed in neurons. However, differences in form and function make them clin-
ically feasible and potentially applicable targets for treatment. In the mammalian
retina, astrocytes, Muller cells and possibly microglia are coupled to each other to
form a glial syncytium. Curiously, this syncytium is conditional allowing for
greater control over activation of contacting groups of cells (Robinson et al. 1993;
Newman and Zahs 1998). For example, it is suggested that the syncytium may be
controlling not just the retinal milieu but can also affect retinal pigmented epithelial
cells through microglia during AMD (Ma et al. 2009). Much of the immune
response induced in retinal glia can be classified as innate immune response. This is
not specific to particular pathogens, but initiated by diverse proteins.

The eye has evolved to limit intraocular inflammation so as to protect visual
acuity. The normal brain and retina are protected by vascular endothelium at the
blood brain barrier (BBB) and blood retinal barrier (BRB), while epithelial cells of
the choroid plexus form one more barrier. Additionally, astrocytic end feet and the
parenchymal basement membrane form a further barrier, the glia limitans. A range
of other mechanisms exist to limit immune responses in the retina. An active
anti-inflammatory milieu is maintained as well as suppressing systemic induction of
immunosuppressive regulatory T cells by eye-specific mechanisms. This protection
is relative rather than absolute, and is partial. Apart from the lack of antigen
presenting cells (APC) and a lymphatic drainage system, a further blockage is in
place by production of FAS and TGF-β, implicating soluble factors released either
in paracrine or autocrine manner as contributors to the ocular immune privilege.
Traditionally, innate immunity (Fig. 11.1) has been viewed as the first line of
defence discriminating benign from dangerous molecules. Emerging literature
suggests that innate immunity actually serves as a system for sensing signals of
‘danger’, such as pathogenic microbes or host-derived signals of cellular stress,
while remaining unresponsive to “self” motifs, such as normal host molecules and
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dietary antigens. Infectious agents may cause neurological disease through (i) a
direct lytic effect, (ii) by inducing immunopathology directed against CNS tissue,
(iii) by induction of immune responses that damage CNS tissue in a bystander
fashion, or (iv) through induction of molecular mimicry. There is still some debate
whether primary neurodegenerative changes can occur in the retina independent of
optic nerve inflammation and compromise of the blood–retinal barrier. However, in
many diseases with wider systemic manifestations, it has been found that glial cells
show subtle inflammatory changes long before preclinical signs are obvious. Pro-
moting the healing functions of retinal glia may act as adjunct therapy during retinal
neurodegeneration (Fig. 11.2).

11.2 Adaptive Immune Response: Who Are the Players?

Antigen presenting cells (APC) are limited in the central nervous system and the
retina. CD11c+ cells are the most common ones. These cells are likely to be
microglial precursors stimulated with GM-CSF or even blood derived (Prodinger
et al. 2011). Apart from these, conventional dendritic cells (DC) derived from bone
marrow pre-DC progenitors, have been observed in meninges and choroid plexus
(Anandasabapathy et al. 2011). In most instances, however, adaptive immune
response in the CNS is quickly clamped down and resolved. Several animal models

Fig. 11.1 Cells which contribute to innate immune response. Many cells in the body can
contribute to innate immune response. However, only a subset can respond by pattern recognition
of foreign bodies. Blood contains the largest number of circulating cells which contribute to innate
immunity. In the central nervous system, the glial cells are dominant players in innate immunity.
Retina possess specialized cells undertaking innate immune functions
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with viral infection suggest that the CNS can support antibody-secreting cells after
resolution of virus infection, with possibly protective but non-lytic functions
(Verjans et al. 2007; Wakim et al. 2010). At the retina, such phenomena may
manifest as multiple evanescent white dot syndrome and putative immune granu-
lomas (Ben and Forrester 1995). Adaptive immunity at the retina is a relatively new
research area. It is likely though that like the CNS there is a modified
immune-surveillance as befits its immune-privileged nature. BBB disruption is
necessary before antibodies cause pathology. Immune mediated pathology involves
glia heavily. While retinal microglia are designed to replicate many of the functions
seen at the CNS, it still remains to be seen what adaptive immune roles they take
up.

11.3 Innate Immunity at the Retina

Retinal glia comprise of Muller glia, astrocytes and microglia. These cells have
evolved to permit effective immune-surveillance while limiting immune-pathology.
Injury and infection of glial cells inflict excitotoxic and inflammatory response.
Innate response encompasses production of inflammatory and anti-inflammatory
milieu as well as an increase in excitatory neurotransmitters such as glutamate and

Fig. 11.2 Disease progression and therapeutic potential at the retina. Potential therapeutic
strategies to alleviate or prevent the progression of retinal degeneration
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oxidative stress. The cumulative effect of overexpressed proinflammatory factors
can result in collateral damage. In the retina the number of astrocytes and microglia
are few compared to the predominant glia, the Muller cells.

11.3.1 Major Glial Cells of the Retina

Muller glial cells make up the largest cell population of glial cells in the retina. These
cells originate from progenitor cells at the apical margin of the neuroepithelium, after
the generation of retinal ganglion cells, horizontal cells and cones (Rasmussen
1972). They migrate proximally and as they extend their processes act as guides to
subsequently migrating neurons. Basal Muller cell end-feet participate at both inner
limiting membrane and blood vessels in the superficial retina (Raviola 1977). They
are crucial for metabolic functions with their numerous glycogen granules, mito-
chondria and a host of transporters and ion channels (Schnitzer 1988). Normally,
they function to provide a stable environment in the retina. By mediating transcel-
lular ion, water, and bicarbonate transport, Muller cells also control the composition
of the extracellular space fluid. Additionally, they provide trophic and anti-oxidative
support of photoreceptors and neurons and regulate the tightness of the blood–retinal
barrier. Muller glia being one of the most robust cells in the retina, are involved in
practically all types of injury that occur. Recent work has also identified a Muller
glial role in innate immune response. It has been established that retinal Muller glia
sense pathogens through the TLRs and contribute directly to retinal innate defence
via production of inflammatory mediators and antimicrobial peptides (Shamsuddin
and Kumar 2011). They are also a major source of inflammatory factors during
infection (Krishnan and Chatterjee 2012, 2014).

Astrocytes do not arise from the retinal neuroepithelium but migrate into the
retina along the optic nerve (Watanabe and Raff 1988). As a retina develops
astrocytes space themselves across the retina, while maintaining contact among each
other through their processes. Astrocyte processes sometimes follow blood vessels
into the RGC layer but are mostly confined to the plane parallel to the retinal surface.
They are known to be important in regulating blood flow to the retina (Schnitzer
1987). In normal retina, astrocytes are the only cells expressing Glial acidic fibrillary
protein (GFAP). When injured, Muller glia also express GFAP suggesting that the
protein acts as an activation marker (Krishnan and Chatterjee 2012).

Much like astrocytes, microglia move into the retina. They are thought to be of
mesodermal origin and appear in the retina as blood vessels develop (Dräger 1983). In
the normal retina they are sparse and are present in a dormant state in the nerve fibre
layer (NFL), inner and outer plexiform layers (IPL, OPL) (Schnitzer 1989). In their
dormant state, they are characterized by their slender, hair-like processes. As one of
the most motile cells in the CNS microglia respond by moving into injured areas.
They also proliferate in response to retinal injury and proceed to differentiate into
macrophage-like cells expressingmanymarkers common tomacrophages (Herbomel
et al. 2001). Prolonged microglial activation may lead to chronic inflammation
leading to severe pathological side effects and worsening retinal dystrophies.
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11.3.2 Microglial Cells in Ocular Pathologies

Current reports propose a vital role for innate immunity and complement overac-
tivation for age related macular degeneration (AMD) pathogenesis. It also is a
prime example that inflammation in the retina need not be a by-product of infection.
In AMD persistent inflammation may be a reason for predisposition. AMD pri-
marily affect the photoreceptors, RPE, Bruch’s membrane, and choriocapillaries.
A study of age-related changes of the retina, demonstrate recruitment of leukocytes
and activation of the complement cascade in mouse RPE and choroid during AMD
(Chen et al. 2008). RPE dysfunction (Kaarniranta et al. 2013) in complement
system had been one of the earliest causes identified in AMD; recent reports
however also suggest the role of microglia. This involves the complement system
and the innate immune response embodied by cytokines. Chemokines are cytokines
with chemoattractive properties, playing a central role in recruitment of immune
cells to inflamed tissues. Such chemokines bind to chemokine receptors on
inflammatory cells like macrophages to promote the mobilization of the cells into
tissues from the circulation. One chemokine receptor that has generated much
interest in AMD is CX3CR1. The CX3CR1 chemokine receptor is a G-coupled
receptor found on a variety of inflammatory cells, including microglia, macro-
phages, T cells, and astrocytes. When bound by its ligand CX3CL1 (also known as
fractalkine), CX3CR1 moves leukocytes to inflamed tissues and subsequently
causes activation of these inflammatory cells (Fong et al. 1998). CX3CR1 and
CX3CL1 are present in the retina and brain (Combadiere et al. 1998). Histological
analysis of AMD retina show microglia to be the only cells to express the receptor.
Macular lesions are also positive for many activated microglia expressing the
receptor (Gupta et al. 2003). Activated microglia can speed up their proliferation,
migration to damaged tissue, phagocytize debris, secrete pro-inflammatory
cytokines, and neurotoxins (Langmann 2007). Photoreceptor injury noticeably
increases after administration of activated microglia to healthy photoreceptors. In
the retina, an investigation in experimental retinal detachment using mice deficient
for production of Ccl2 and Ccl2-specific antibody neutralization showed substantial
decrease in the recruitment of parenchymal microglia to the outer nuclear layer
(ONL). This lead to lesser retinal detachment, in conjunction with reduced pho-
toreceptor death (Nakazawa et al. 2007).

Drusen formation is a notable feature in AMD. Microglia contribute to
drusen-like deposits. Increased fundus autofluorescence seen in ageing wild-type
mice consists of perivascular and subretinal microglia and lipofuscin granules (Xu
et al. 2008). Accumulation of macrophages has been linked to that of drusen in the
Ccl2−/− and Ccr2−/− murine models. Key features in these models also include
(Ambati et al. 2003) lipofuscin accumulation, thickening of Bruch membrane, and
increased melanosomes in the RPE. Furthermore, identification of inflammation-
associated SNPs emphasize the inflammatory underpinning that modulate AMD
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risk. These SNPs encode complement factors, chemokines, chemokine receptors,
and toll-like receptors.

Germ line encoded pattern recognition receptors which occur on retinal micro-
glia may also be important in playing a key role during uveitis. A variety of
symptoms seen in patients can be classified as being causally related to uveitis.
While some symptoms may be part of a generalized systemic syndrome in which
the eye is one of several organs affected, others are confined to the posterior eye,
such as sympathetic ophthalmia and birdshot retinochoroidopathy. It has also been
suggested that an individual whose T cell repertoire contains retinal antigen–
specific T cells with higher affinity may have a greater likelihood of developing
uveitis (Kerr et al. 2008). T cells capable of recognizing retinal antigens are primed
in the periphery on microbial stimuli by antigenic mimicry. While APCs in the
retina are not known, the retina does possess DC and microglia which have MHC
class II molecules belonging to the same class of proteins that initiate
pathogen-associated molecular patterns. Immune responses in the CNS act through
CD11+ cells found in the juxtavascular parenchyma, which have cell processes
extending into the glia limitans. Even though infiltrating T cells are considered as
playing critical role in driving the inflammation, it is increasingly thought that
retinal glia can also be part of the supporting cast. Glial support to the retina may be
achieved in several ways, including inherent provision of neurotrophic support
factors and by immune-modulatory mechanisms.

Glia has also been implicated in diabetic retinopathy. Diabetic retinopathy
(DR) occurs on chronic exposure to high glucose (Ibrahim et al. 2011). DR is
associated with microglial activation and increased levels of inflammatory cyto-
kines. In rodent models, mRNA as well as protein levels for tumour necrosis factor
α (TNF-α), a robust marker of inflammation, increased in the microglial cells of the
retina, early in the course of diabetes. Moreover, diabetes resulted in elevation of
ionized calcium binding adaptor molecule-1 (Iba1) mRNA, known to be upregu-
lated in activated microglia (Ibrahim et al. 2010).

In glaucoma patients, retinal ganglion cell loss was associated with inflammatory
components and strong retinal IgG auto-antibody accumulations, with levels twice
as high as in patients without ocular complications. This suggests that IgG antibody
depositions may be contributed by immune-competent cells such as microglia
(Gramlich et al. 2013). Experimental glaucoma models in rat show that
pro-inflammatory microglial activation may contribute to neurodegeneration
through the release of inflammatory mediators (Narayan et al. 2014). As specialized
cells for immune functions, microglia can secrete local paracrine mediators and
communicate with other potential immune effector cells such as Muller glia. In the
DBA/2 J mice model of glaucoma, where progressive detrimental changes similar
to human hereditary glaucoma occur, complement factor C1q and microglial
engulfment is upregulated. Retinal sections also show greater severity at retinal
ganglion cell (RGC) synapses.
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11.3.3 Astrocytes in Ocular Pathologies

In several diseases where the retina is affected, targeting astrocytes may prove to be
beneficial. While RPE and microglia are the main contenders for the progressive
damage in AMD, astrocytes may also act to destabilize homeostasis. Exosomes are
one of the newest modes of neuron-glia signalling (Frühbeis et al. 2012). Astrocytes
function as neuroprotective agent by paracrine secretion of exosomes. Exclusively
exosomes secreted from astrocytes have anti-angiogenic components such as
endostatin which can suppress retinal vessel leakage and inhibit choroidal neo-
vascularization (CNV) in a laser-induced CNV model (Hajrasouliha et al. 2013).
Thus, targeting retinal astrocytes to release larger amount of exosomes, may aid in
the anti-angiogenic therapy for CNV in age-related macular degeneration and
diabetic retinopathy.

Glial activation and astrocytic proliferation is likely to be circumstantial for
several ocular disorders with immune-pathology. Loss of astrocyte however, can be
equally crucial. The autoimmune disorder, Neuromyelitis optica (NMO) is one such
example. Lesions in NMO are frequently seen along with astrocytopathy. Aqua-
porin 4 (AQP4), which localizes predominantly at the astrocytic foot process are
lost along with GFAP in astrocytes in NMO lesions. Extensive astrocyte loss may
be responsible for subsequent demyelination followed by axonal degeneration.
Thus, primary assault of astrocytes in lesions could in a subset of patients be the
reason for progressive development of NMO (Misu et al. 2013).

Overexpression of GFAP is the hallmark of activation in both Muller cells and
more particularly for astrocytes. Coupled with extracellular matrix remodelling and
morphological changes, astrocytes undergo transformation into mature reactive
forms from their quiescent state in glaucoma (Lye-Barthel et al. 2013). Even more
intriguing, GFAP-negative fine astrocytic processes projecting into the retinal
ganglion cell axon bundle are suggested to have phagocytic function since they
express phagocytosis-related gene Mac-2 (Nguyen et al. 2011). Astrocytic dys-
regulation of vascular permeability and endothelial cell activation is also increas-
ingly thought to be a prominent feature of glaucoma. Increased fluorescein
angiography and compromised blood–retinal barrier in diseased eyes of dogs with
experimental glaucoma, implicate tight junctions made by astrocytic end-feet
(Plange et al. 2012; Mangan et al. 2007). Endothelin-1 is a vasoconstrictive
molecule. Endothelin and its receptors are produced by astrocytes in response to
stretch and increase in experimental glaucoma in rat and mice (Howell et al. 2011;
Minton et al. 2012). The importance of endothelin-1 in humans cannot be disre-
garded since patients of glaucoma show it in plasma and aqueous humour
(Sugiyama et al. 1995).

11.3.4 Muller Glia in Ocular Pathologies

In the retina, the glial cells confer trophic support of injured neurons. Among many
other roles, Muller glia can show repair and progenitor potential under certain
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conditions (Bhattacharya et al. 2008). Emerging literature strongly suggest that
regulation of microglial and astrocytes through Muller cell crosstalk occur in many
diseases. Such enhanced intercellular communication is observed in optic nerve
axotomy or excitotoxic injury to the retina. Modulation of microglial activity also
promotes a return to baseline quiescence of photoreceptors (Wang et al. 2014).
Intravitreal siRNA administration to silence the chemokine Ccl2 by suppressed
expression of Ccl2 primarily at Müller cells result in inhibition of
microglia/monocyte recruitment and reduced photoreceptor death (Rutar et al.
2012).

AMD may also be affected by Muller cells. Disruption of the cytokine receptor
gp130 gene in Müller glia particularly, reduces CNTF-dependent photoreceptor
survival and prevents phosphorylation in retinal degeneration animal models of
AMD (Rhee et al. 2013). In the long term therapies targeting such aspects might by
alleviating exaggerated chemokine response reduce inflammation-mediated cell
death in retinal degenerative diseases such as AMD.

The immune nature of uveitis may be dissected in experimental autoimmune
uveitis (EAU). Retinal antigens like CFA injected into animals can cause and
replicate many of the features seen in patients. Future therapeutic approaches which
might take advantage of tolerogenic administration of retinal antigen to correct
defects in peripheral tolerance and to regulate T cell numbers and/or functions are
also likely to take into cognisance the glial cells.

Many ophthalmic disorders occur at a higher frequency in immune-suppressed
individuals. Such an example is AIDS, where much of the ocular manifestations
were known beforehand but seen rarely. A genuinely new ophthalmic disorder
however occurs in immune recovery uveitis (IRU), once immune system recon-
stitution has been achieved (Sudharshan et al. 2013). Uncontrolled inflammation is
a hallmark of disorders such as immune recovery uveitis. Paradoxically, this is
caused in the retina and uvea as the HIV-1 infected patient recovers on responding
to successful anti-retroviral therapy (ART). Adjunct therapies include treatment
with corticosteroids to inhibit inflammation. Unfortunately, many patients do not
achieve a functional benefit, despite objective evidence of improvement (Holland
2008).

Because no cell culture model can reproduce the full complexity of a human
disease, it is necessary to develop and use a variety of models to represent the
different aspects and diverse clinical/immunological manifestations of any disease.
In a HIV-1 Tat-transgenic mice model which is known to represent many aspects of
HIV-associated neurodegeneration, glial cell staining typically increases
(Fig. 11.3). In the same model with constitutive Tat protein expression, massive
disruption of retinal structure and loss of neurons occurred (Chatterjee et al. 2011).
This may partially be due to activated Muller glia without necessarily increasing
their numbers. Establishment of chronic inflammation can take the form of GFAP
stress fibre production in Muller glia, or suppression of markers such as HAM56
(Fig. 11.3c), which can identify macrophages and astrocytes (Leenstra et al. 1995;
Nishihira 2000). Noticeably, HAM56, also known as Macrophage migration inhi-
bitory factor (MIF) is completely absent in transgenic mice expressing the HIV-1
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Tat. This may suggest either changes in the adhesive properties or weakening of the
blood–retinal barrier. Indeed slight modifications in the HIV-1 Tat structure can
affect differing aspects of the barrier apparatus (Gandhi et al. 2010). In the retina,
Muller glia is the largest producer of cytokines and likely communicates by both
diffusible signals and contact-mediated options. Dissection of basic cellular and
molecular mechanisms underlying progression of the disorder suggests that
immune-modulation of Muller glia may be able to alleviate unrestrained cytokine
production. In vitro primary human Muller glia cultures stimulated by the HIV-1
coat protein Tat B, simulating overwhelming inflammation, produce copious
amount of pro-inflammatory factors, including several chemokines known to attract
macrophage and monocytes (Krishnan and Chatterjee 2014). Multiple points in the
machinery for cytokine production can be influenced by HIV-1 coat proteins to
cause inflammation. HIV-1 Tat exposed Muller cells show elevated production of
pro-inflammatory factors, potential neurotoxins that can cause retinal degeneration.
Dissection of the signalling pathways showed the critical roles of Mitogen-activated
protein kinases (MAPKs), pI3 Akt, STAT and the canonical NF-κB signalling in
this process (Krishnan and Chatterjee 2014). Muller glia is so exquisitely sensitive
to antigenic stimulation that clade specific HIV-1 Tat B and C can activate dif-
ferent pathways of cytokine production and consequently pathogenesis (Krishnan
and Chatterjee 2015).

Fig. 11.3 Expression of glial and macrophage markers in retina. Immunocytochemistry of
control and HIV-1 Tat-transgenic mice (n = 6) retinal sections. Glial cells stained with Vimentin
(a) and GFAP (b) rise dramatically in retina of Tat-transgenic animals. Greater staining could be
for several reasons including proliferative gliosis, migrating astrocytes or activation. Macrophage
marker HAM56 is suppressed in retina of transgenic mice expressing HIV-1 Tat (c). Scale bar is
10 µm. Images were captured at ×40 magnification
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Limiting inflammation is central to immune response. A failure to regulate
amplitude and duration of innate immune response can lead to chronic inflamma-
tory state and subsequently increased loss of retinal neurons. Several studies
(Matteucci et al. 2014; Patel et al. 2015) including from our group (Kaarniranta
et al. 2013, 2014) have shown that Muller glia can be immune-modulated to switch
production from pro-inflammatory mediators to anti-inflammatory factors. This
may be harnessed for therapeutic potential.

11.3.5 Oligodendrocytes in Ocular Pathologies

Oligodendrocytes, the myelinating cells in the CNS are limited in the retina to the
RGC axons. Optic neuritis and neuropathy show damage in oligodendrocytes not
just in disparate ocular disorders such as NMO and glaucoma but also chronic
inflammatory CNS diseases like Multiple Sclerosis. Progressive visual impairment
is caused by degeneration of optic nerve axons and apoptosis of RGCs.

Glaucoma is a common condition with a neurodegenerative component and
pathophysiology in glia where current therapies are often insufficient. Persistently
high intraocular pressure leads to retinal ganglion cell death and visual impairment.
Intraocular increase in pressure is the major diagnostic indicator of glaucoma, and is
the only treatment that has been shown to reduce progressive visual loss. Strikingly,
intraocular pressure reduction fails to alleviate RGC degeneration in a subset of
patients with glaucoma. It is thus critical to think of adjunctive therapy along with
reduction of intraocular pressure. In animal models of glaucoma it has been shown
that oligodendrocyte precursor cells (OPCs), a type of neural stem cell, can protect
retinal ganglion cells from damage in vivo. As RGCs are the only neuron type in
the retina to possess the myelin sheath, it is crucial for their survival to have intact
myelin. The success of OPCs differentiating into myelinating oligodendrocytes
depended on activation of the OPCs with inflammatory stimuli. Such cells were
also more successful in providing long-term protection. Intravitreal transplantation
of oligodendrocyte progenitor cell in glaucoma show differentiated OPCs into
myelinating oligodendrocytes that expressed myelin basic protein and other
markers of mature oligodendrocytes. It has been suggested that a battery of factors
secreted by microglia and likely astrocytes, may be responsible for OPC activation,
communicated by diffusible signals. Indeed, multiple studies (Bull et al. 2009)
support the assumption that OPCs themselves can improve retinal neuronal sur-
vival, by secretion of diffusible trophic factors, such as IGF-1 and GDNF.
While OPC role in rescuing glaucomatous RGC neurons has been clearly shown, it
is suggested that they can also alleviate neurodegeneration in an assortment of
neuropathologies in vivo.
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11.4 Conclusion

Additional studies looking at specific glial cell types in the retina would aid our
understanding of disease processes, refine treatments, and help in devising
long-term strategies for the management of ocular disorders. Increasing evidence
emphasizes that inflammatory mediators either synthesized by the immune resident
cells in the retina or invading macrophages, contribute to pathophysiological
functions, including an impact on synaptic transmission and neuronal health. Tar-
geting the inflammatory source of factors such as cytokines, and related signalling
molecules, may be considered as an option during neurodegeneration at the retina.
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12Obesity and Neuroinflammation
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Abstract
Obesity is the core and baseline component of metabolic syndrome and is a major
risk factor for many diseases like Type II diabetes, cardiovascular diseases,
hypertension, stroke and neurodegenerative diseases. Sedentary lifestyle,
unhealthy eating habits and genetic predisposition are responsible for the
increasing prevalence of obesity worldwide. Chronic overnutrition causes
low-grade inflammation in several peripheral tissues as well as central nervous
system, particularly hypothalamus. Activation of various proinflammatory
pathways such as IKKb/NF-jB, JNK and PKR are thought to be the major
players in the induction of systemic and central inflammation. Further,
neuroinflammation causes intracellular disturbances and exacerbates various
stresses such as oxidative stress, ER stress and autophagic defects leading to
impaired neurohormonal signalling as well as autonomic regulation of nutrient
metabolism and energy balance. As obesity poses major health threat, effective
therapies to minimize obesity-related comorbidities are surely needed. By
targeting the inflammatory component, the progression of obesity can be slowed
down. In vivo studies from our lab suggest that Withania somnifera helps to
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reduce hypothalamic inflammation triggered by high-fat-diet-induced obesity.
Various lifestyle interventions along with herbal supplementation may effectively
help to prevent obesity and its associated pathologies.

12.1 Introduction

Maintenance ofmetabolic homeostasis is a key issue in the modern society which often
leads to disease consequences such as obesity, diabetes, hypertension, cardiovascular
disease, etc. Mammalian body has evolved with mechanisms of excess energy storage
in terms of fats and triglycerides in adipose tissue during the periods of plenty which
help them to survive in critical conditions of drought and famine (Shoelson et al. 2007).
Along with beneficial effects of energy storage, in longer lifespan, sustained overnu-
trition and reduced physical activity have negative effects which lead to overweight
and obesity (Cai et al. 2013; Shoelson et al. 2007). Obesity (also known as
overnutrition-induced disease) is a stage of accumulation of fatty acids and increased
adipose tissue mass compared to lean mass. Incidence of obesity, characterized by
body mass index (BMI > 30) is increasing alarmingly, reaching epidemic proportions
worldwide (Nguyen et al. 2014). This has resulted in increased healthcare burden and
reduced life expectancy (Wang et al. 2013). According to Obesity report of Organi-
zation for Economic Co-operation and Development for the year 2014 (http//www.
oecd.org/health/Obesity-update-2014.pdf), 18 % adult population of the world is
obese (Naguyan et al. 2014). World Health Organization (WHO) reports also present
such facts and figures, according to which over 200 million men and around 300
million women are obese (Miller and Spencer 2014). Obesity is linked with comorbid
conditions like high triglyceride content, glucose intolerance, a large waist circum-
ference, etc. These conditions increase the risk of metabolic disorders such as Type 2
Diabetes Mellitus (T2DM), hypertension, cardiovascular diseases and other health
problems like fatty liver disease, airway disease and some cancers. In addition to
metabolic disorders, obesity also leads to dementias like Alzheimer’s disease (AD),
Parkinson’s disease (PD), memory impairment and cognitive decline.

Interestingly, WHO has estimated that by the year 2020 psychiatric disorders
such as depression will take over HIV and cardiovascular diseases significantly
affecting more patients at the global level. The link between metabolic status such
as obesity, diabetes and neurological and neuropsychiatric disorders has been
appreciated but the underlying mechanisms are not well defined. On the other hand,
mounting evidence indicates that depression and anxiety disorders are risk factors
for morbidity and mortality due to T2DM, CVDs, stroke, etc., thus suggesting a
bidirectional link between metabolic homeostasis and neurological and neuropsy-
chiatric disorders.

The rising epidemic of obesity is considered as one of the major risk factors for
brain ageing and related neuropathologies. Gaps in our understanding of
obesity-related neuropathogenesis limits progress towards finding novel therapeutic
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strategies to combat the obesity-associated brain pathologies. While it is not cur-
rently known how obesity disrupts brain homeostasis, numerous clinical and rodent
studies strongly link diet-induced metabolic disturbances to the development of
cognitive decline and neurodegenerative diseases. The progressive nature by which
diet-induced obesity (DIO) promotes brain function impairments raises the possi-
bility that the detailed study of this model may unravel the complex relationship
between obesity and measurable aspects of brain pathology.

Research in neuroendocrinology and immunology over the recent past revealed
that neuroinflammation induced due to overnutrition is a major pathologic com-
ponent, leading to a range of dysfunctions in CNS in obesity and related metabolic
disorders (Cai and Liu 2011, 2012; Cai 2012). In addition to negative impacts on
neurohormonal signalling of hypothalamic neurons, overnutrition-induced inflam-
mation contributes to neurodegeneration (McNay et al. 2012) and proinflammatory
molecules which are mechanistically accountable for obesity-related neurodegen-
erative diseases. Evidences derived from epidemiology, experimental research and
clinical medicine demonstrate that obesity and related disorders are associated with
chronic low-grade inflammation in peripheral tissues and in circulation (Cai 2011;
Gregor et al. 2011). Low-grade, chronic inflammation associated with obesity is
characterized by increased circulating free fatty acids and chemoattraction of
immune cells such as macrophages that also produce inflammatory mediators into
the local milieu (reviewed in Hursting and Dunlap 2012) These effects are further
complicated by the release of inflammatory cytokines such as interleukin (IL)-1b,
IL-6, TNF-a and monocyte chemoattractant protein (MCP)-1.

Critical evaluation and understanding of the molecular mechanism(s) of cross-
talk between obesity and mental health, neuroplasticity and cognitive abilities is of
great concern for global healthcare system keeping in view the fact that obesity is
now becoming pandemic in both developed and developing world. In India,
prosperous states like Punjab are facing the challenge of overnutrition and that too
of high fat content and a steep rise in the prevalence of overweight and obesity.
Many recent reports from our University and others estimate obesity prevalence to
about 25–30 % (BMI � 30.0) in Punjabi population and the figures are compa-
rable to the prevalence reported in developed nations like USA. With urban pop-
ulation showing significantly higher prevalence compared to rural masses correlates
well with their lifestyles due to large scale socio-economic development in the
cities. Obese people are at a greater risk of psychiatric and neurological disorders as
well as comorbidities such as diabetes, hypertension, cancer, cardiovascular dis-
eases, etc. The clinical significance of this possibility is further amplified by
observations that the prevalence of obesity amongst the elderly (aged 60 and over)
is significantly higher as compared to the younger group which also emphasizes the
fact that our aging population is carrying the additional physiological burden of
obesity. Moreover, women especially in the post-menopausal phase of their life
have higher prevalence of overweight and obesity and are at higher risk than men of
developing depression and anxiety.

12 Obesity and Neuroinflammation 299



12.2 Obesity and Cognitive Dysfunction

12.2.1 Clinical Studies

Negative effects of obesity on cardiovascular and metabolic functioning are well
reported and apparently brain is also adversely affected by obesity. Clinical studies
from literature provide link between obesity and risk of dementia associated with
AD, but cognitive dysfunction is evidenced to be linked with obesity prior to
discovered onset (Miller and Spencer 2014). Independent of cardiovascular and
cerebrovascular disorders, high BMI is related to memory, learning and executive
functioning deficits in adults (Elias et al. 2003) and midlife obesity is a predictor of
mild cognitive impairment in old age. A similar study on healthy adult individuals
reported inverse relation of BMI to cognition including executive functioning and
memory (Gunstad et al. 2007). Another study examined the association of BMI
with cognition at early adulthood (25 years), early midlife (44 years) and late
midlife (61 years) by assessing multiple cognitive domains (Sabia et al. 2009).
Outcomes of the study were that being obese at 2–3 times points of life lead to poor
executive functioning and reduced memory. So it may be predicted that impact of
obesity on cognition accumulates over the adulthood. High BMI and obesity is
associated with reduced cognitive performance in elderly individuals as well (Cattin
et al. 1997; Elias et al. 2003). In addition to cognition, higher BMI is also associated
with brain atrophies and reduced brain volumes. According to a recent report,
higher waist circumference and BMI are associated with reduced total volume of
brain in elderly patients and studies on cohort of young individuals also provided
the same observations (Raji et al. 2010; Taki et al. 2008). A negative relationship
between obesity and regional brain atrophy has been described and particularly
temporal and frontal lobes of brain are reported to be the most vulnerable
regions affected by obesity (Raji et al. 2010). Greater BMI is also reported to be
inversely linked with grey matter volumes, metabolic abnormalities in
neurons/myelin and neuronal viability in grey and white matters (Mueller et al.
2011). Large hippocampal size is well associated with better cognition and frontal
lobes are linked with executive functioning, so reduction in regional brain volumes
due to obesity results in neuronal loss and impaired memory and cognition.

Taking clues from the negative relationship of obesity with brain function
impairment in adults and elderly individuals, evaluation of impact of obesity on
developing brains in childhood and adolescence also became an active area of
obesity research. Studies carried out on younger groups revealed that executive
functioning mainly develops during childhood (3–5 years) and attains maturity
during adolescence and is vulnerable to stress factors such as obesity (Barkin 2013).
Further obese children and adolescents have poor domains of executive functioning
as compared to their healthy counterparts (Maayan et al. 2011). It has been found
that obese children have reduced regional and global brain volumes, and obese
adolescents have compromised white matter and reduced hippocampal volumes
than healthy individuals (Yau et al. 2012; Yokum et al. 2012).
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12.2.2 Experimental Studies

Several reports in literature have provided evidence against worse effects of obesity
on brain health, memory and cognition using experimental animal models. Obesity
is generally induced in animals by high-fat diet feeding. These studies provide the
evidence that high-fat diet fed animals show compromised memory and learning
skills and highlight the underlying molecular mechanisms for the memory decline.
Reduced synaptic plasticity (Molteni et al. 2002) and increased neuronal apoptosis
(Moraes et al. 2009; Rivera et al. 2013) in cerebral cortex and hippocampal regions
of brain of mouse models is reported in high-fat diet fed (HFD) animals as com-
pared to control lean animals. Further HFD feeding also results in disrupted cerebral
vascular functioning, disrupted blood–brain barrier (BBB) and arteries functioning
upstream to BBB at certain locations in hypothalamus (Pepping et al. 2013). These
vascular mechanisms may underlie the pathological processes involved in
dementias associated with AD and PD.

12.3 High Fat Diet-Induced Obesity

One of the major factors contributing to the high prevalence of obesity is the choice
of diet. Unhealthy diet consumed by a large number of westernized populations and
termed as ‘Western diet’, contains large amounts of red meat, refined sugars, high
fat foods and refined grains. In contrast to the western diet, the ‘healthy diet’
(prudent) contains a large number of fruits, vegetables, lean protein and fibre (Fung
et al. 2001). Western diet contains large amounts of saturated fatty acids and
trans-fatty acids, whereas, healthy diet contains more n-3 polyunsaturated fatty
acids. Major sources of saturated fatty acids are fatty meats, baked goods, cheese,
milk, margarine and butter. The dietary intake of saturated fats is associated with a
greater body mass index (BMI) (van Dam et al. 2002) which ultimately is a driving
force for the development of metabolic syndrome in an individual.

Addition of more fat to the diet does not increase the rate of fat oxidation in the
body (Horton et al. 1995). So, the consumption of fat from high-fat diet must be
reduced in order to maintain the energy balance of the body to avoid obesity. The
feeling of satiety after the consumption of fat-rich diet occurs much later as com-
pared to the carbohydrate rich diet, so individuals consuming high fat diet tend to
overeat at short intervals subsequent to the consumption of high fat diet. In case of
overfeeding, first the glycogen stores are filled, followed by protein stores and
ultimately, any excess left is converted to body fat. It has been suggested that
consistent consumption of high fat diet results in gradual accumulation of fat until
fat stores have expanded enough to bring the fat and carbohydrate intakes back to
balance. Obesity is caused by an energy imbalance and is characterized by excess
accumulation of body fat. The body has the ability to achieve protein and carbo-
hydrate balance, but poor autoregulatory system for fat. Also, body has unlimited
ability to store fat. High-fat diets produce obesity by enhancing passive
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overconsumption of energy and increasing the energy density of the diet (Bray and
Popkin 1998). In humans, continuous passive overconsumption occurs more readily
with sweet and high-fat foods.

12.4 Obesity and Neuroinflammation

Elevated BMI has been reported to be associated with decreased brain volume
(Ward et al. 2005) indicative of higher brain atrophy caused due to obesity. High-fat
diet causes significant reduction in cerebral blood flow, presumably by impaired
K+—induced vasodilation (Li et al. 2013). In human subjects, obese women (mean
BMI 32.7) have been shown to have reduced cerebral blood flow as compared to
normal weight subjects (mean BMI 22.2) (Karhunen et al. 1997). Dietary saturated
fatty acids have been shown to have direct influence on neuroinflammation in p38
dependent manner (Linker et al. 2014). Saturated fatty acids activate microglia and
stimulate TLR4/NF-jB pathway that further triggers the proinflammatory cytoki-
nes, NO and ROS (Wang et al. 2012a, b).

High dietary fat intake has been reported to enhance ROS generation as well as
prostaglandin E2 (marker of inflammation) production in the cerebral cortex of high
fat diet fed Sprague-Dawley rats (Zhang et al. 2005). This elevation is also
accompanied by higher NADPH oxidase subunits and cyclooxygenases (COX).
Higher levels of ROS can induce cellular damage by oxidation of critical compo-
nents inside the cell such as membrane lipids, DNA and proteins (Halliwell 2001).
NADPH oxidase is one of the important factors for ROS generation implicated in
oxidative stress. ROS generation also leads to the activation of NF-jB, a marker for
oxidative stress and inflammation (Tanaka et al. 2002). The expression of COX-2
has also been reported to be mediated through the activation of TLR4 (Lee et al.
2001). TLR4/NF-jB pathway further triggers proinflammatory cytokines, thus
inducing an inflammatory state in the CNS.

It has also been reported that high fat diet-induced obesity enhances the
recruitment of bone marrow derived monocytes to the CNS (Buckman et al. 2014)
along with the activation of resident microglial cells. The number of infiltrating
monocytes to the CNS has been found to be proportional to body weight, fat mass
and CD68 and CCL2 (markers of inflammation) in the adipose tissue. Bone marrow
derived monocytes, after entering CNS act like the resident macrophages. Various
stimuli contribute to the recruitment of peripheral monocytes to the CNS during
obesity, such as obesity-associated changes in CNS vascularity (Yi et al. 2012),
permeability of blood–brain barrier (Nerurkar et al. 2011), elevated levels of
chemokines such as MCP-1 in the CNS. The recruitment of monocytes into the
CNS is one of the implications of neuroinflammation caused due to high-fat diet
feeding.

Autoregulatory behaviour of cerebral vessels and functional hyperemia upon
increased neuronal activity are main mechanisms which regulate cerebral blood
perfusion. Vascular function is negatively affected by HFD as it leads to increased
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myogenic tone and endothelial dysfunction in diet-induced models of obesity (Li
et al. 2013). HFD-induced obesity induces central, i.e. hypothalamic inflammation in
brain, oxidative stress and reduced expression of BDNF (Timmermans et al. 2014)
that leads to reduced neuronal plasticity, cognitive function and learning.

12.4.1 Genetic Model of Obesity and Neuroinflammation

According to the root cause of obesity, it can be classified as genetically induced
and diet-induced obesity. The idea that obesity can be inherited came from mouse
models having mutated genes for leptin adipokine and its receptor (Blakemore et al.
2010). Leptin is an adipocyte derived satiety hormone, which signals brain about
levels of stored fat (Sorenson et al. 1996). Family, twin and adoption studies
provide enough evidence about moderate to high heritability of BMI (Hinney et al.
2010; Maes et al. 1997). Parental obesity is the major risk factor for childhood and
adolescent obesity (Reilly et al. 2005) and if both the parents are obese, level of risk
is elevated.

Single gene polymorphisms are known to result in monogenic obesity charac-
terized by an extremely severe obesity (Herrera and Lindgren 2010). Most of the
currently known monogenic forms of obesity in humans have been identified from
studies of mutations in diverse rodent models. Majority of single gene mutations
responsible for monogenic obesity are involved in leptin and melanocortin pathway
(Lalouel et al. 1983). As previously mentioned leptin is a hormone produced by
adipocytes and signals brain for storage of fats and energy level. Increased levels of
leptin are linked to leptin receptor which forwards the signal to Melanocortin 4
receptor (MC4R). Further the satiety effect is induced by an endogenous agonist
alpha melanocyte stimulating hormone (a-MSH) (Bjorbaek and Hollenberg 2002).
BDNF is another gene responsible for monogenic obesity which regulates weight
downstream of MC4R. MC4R mutations have been reported to induce monogenic
obesity and knockout mice with obese phenotype lead to screening of mutations of
human MC4R (Yeo et al. 1998). Initially studies for human mutation carriers were
carried out on small pedigrees and further studies revealed that not necessarily
mutation carriers have obese phenotype (Hinney et al. 1999; Vaisse et al. 2000).

In addition to MC4R and BDNF, mutations in several other genes coding for
leptin receptor (LEPR) (Clement et al. 1998), leptin (LEP) (Strobel et al. 1998),
prohormone convertase 1(PC1) and pro-opiomelanocortin (POMC) (Challis et al.
2002) have been reported to be associated with autosomal recessive form of obe-
sity. Mutations in these genes are rare which lead to additional pleiotropic effects
like impaired fertility (LEP, LEPR and PC1), impaired immunity (LEP1), adrenal
insufficiency (POMC) and red hair (POMC) (Farooqi and Rahilly 2004; Farooqi
2006). These pleiotropic effects linked with recessive disorders are known as
syndromic forms of obesity, e.g. Bardet–Biedl, Prader Willi syndrome and could
help to find novel genes for idiopathic obesity (Farooqi and Rahilly 2004; Kousta
et al. 2009).
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Chances of presence of trait due to single gene modification are rare. There may
be traits governed by simultaneous variation/modification in several genes (Hinney
et al. 2010). Group of alleles at different gene locations that control collectively
either modification of expression of qualitative trait or inheritance of quantitative
phenotype are known as polygenic variants and traits controlled by such variants
are known as polygenic traits (Hinney et al. 2010). For quantitative traits, different
alleles may have different effects which may be synergistic or additive. Polygenic
form of obesity is found to be controlled by more than hundred genes with each
gene having small effect and specific set of these polygenic alleles may be different
for different obese individuals. Variants of MC4R, FTO, INSIG2 and other novel
loci genes govern polygenic obesity.

MC4R gene in addition to single gene mutation harbours two polygenic variants
for weight regulation in its coding region: polymorphic variation at position 103
coding for isoleucine instead of valine (103I) and at position 251 coding for leucine
instead of isoleucine (251L) of receptor protein and negatively affect obesity
(Stutzmann et al. 2007). 2–9 % subjects from different populations exhibit
heterozygosity for 103I (Geller et al. 2004) and MC4R gene having this allele
reduces twofold potency of antagonist hAGRP, which is related to obesity pro-
tective effect of this variant. A study conducted on 16,797 European individuals
provided the evidence for other polymorphic variant 251L and constant negative
effect of this variant was observed with both adult and childhood obesity. This
polymorphic variant, i.e. MC4R 251L also has obesity protective effect (Stutzmann
et al. 2007). This form of obesity affects the general population, resulting from
long-term positive energy balance; the energy excess is stored in adipose tissue and,
if this process is prolonged, obesity develops.

Fat mass and obesity-associated gene (FTO) is one of the candidate genes
highlighted by genome wide association studies (GWAS) for T2DM and it has been
found that association with T2DM is due to higher BMI in diabetic subjects as
compared to non-diabetic subject controls (Frayling et al. 2007). FTO is essential
for normal development of cardiovascular and CNS in humans (Hinney et al. 2010).
There are six SNPs in FTO which are strongly associated with development of
obesity. In a study on 7 years aged children, FTO was not found associated with
physical activity and energy intake but an association is reported between energy
intakes, decreased satiety and FTO risk variants in adult individuals (Speakman
et al. 2008). A homozygous minor allele of common SNP in vicinity of Insulin
induced gene 2 (INSIG2) was found to be involved with obesity (Herbert et al.
2006). Future progress in this field will show how and to what extent BMI variance
at population level can be explained at molecular level and products of polygenes
responsible may be treated as drug targets to control obesity (Hinney et al. 2010).

12.4.2 Obesity and Systemic Inflammation

Obesity is associated with chronic low-grade inflammation in peripheral organs like
adipose tissue, liver, muscles, etc., responsible for various obesity-associated
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comorbidities like T2DM. Imbalances in homeostatic and proinflammatory immune
responses are linked to multisystem effects of obesity. With time, ectopic accu-
mulation of lipids in liver, muscle and blood vessels activate tissue leukocytes,
contribute to organ-specific diseases, and exacerbate systemic insulin resistance.
Like LPS, dietary factors such as fatty acids lead to the stimulation of toll like
receptors (TLR4), lipopolysaccharide receptors and results in the initiation of the
various inflammatory cascades and release of various inflammatory mediators such
as proinflammatory cytokines TNF-a, IL-1b, IL-6, reactive oxygen and nitrogen
species.

People with mental illness are often overweight (BMI > 25) and obese
(BMI > 30), and have poorer eating habits than the general population (Davidson
et al. 2000). As a result, people with psychiatric illness are at a greater risk of
lifestyle diseases such as diabetes, cancer, cardiovascular and respiratory diseases
(Sokal et al. 2004). Factors affecting patients with mental illness which contribute to
these outcomes include more frequent physical comorbidities as compared to the
general population (Sokal et al. 2004), genetic predisposition to certain pathologies
(Popkin and Gordon-Larsen 2004), eating habits and sedentary lifestyles (Atlantis
and Baker 2008), high levels of cigarette smoking and drug abuse (Gariepy et al.
2010), limited access to regular health care services (Marwaha et al. 2008), and
potential adverse events arising during pharmacological treatment (Haddad and
Sharma 2007).

In a recent study from our lab, we have used LPS activated murine BV-2
microglial cell line as a model system for endotoxin induced neuroinflammation
which is a well-established model system to study neuroinflammation. The water
extract from the leaves of Ashwagandha (ASH-WEX) and one of its active fractions
FIV pretreated BV-2 microglia were exposed to LPS for 48 h and then the media
supernatant was collected and analysed for the presence of inflammatory cytokines
using sandwich ELISA-based assay. For in vivo analysis, 30 % high fat diet fed rat
model was used for studying obesity induced neuroinflammation. Animals were
divided into four groups: I, control animals which were fed the normal chow diet.
II, HFD group: in which the animals were fed with 30 % (by weight) high fat diet.
III, C + E group: in which the animals were fed with the normal chow diet mixed
with the Ashwagandha leaf powder. IV, HFD + E group: in this group, the animals
were fed with high-fat diet mixed with Ashwagandha leaf powder. After 3 months,
the rats were scarified and serum was isolated and analysed for the presence of the
proinflammatory cytokines. Both LPS-induced microglial activation (Fig. 12.1
Panel A) and high-fat feeding (Fig. 12.1 Panel B) leads to elevated levels of TNF-a,
IL-1b, IL-6 which gets alleviated by Ashwagandha treatment. These results suggest
that like LPS, high-fat diet also causes the surge in the levels of proinflammatory
cytokines through various inflammatory cascades and results in obesity-mediated
inflammation and natural products like Ashwagandha have the potential to attenuate
this HFD-induced inflammation.
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12.4.2.1 Adipose Tissue and Obesity Linked Inflammation
In terms of glucose homeostasis, liver, adipose tissue and muscles are the major
players, but adipose tissue also regulates glucose homeostasis indirectly by regu-
lating the lipid homeostasis. It also acts as the endocrine organ that regulates the
production of various hormones and cytokines. The hormones and cytokines pro-
duced by adipose tissue in obesity are leptin, adipoleptin, resistin and cytokines
such as TNF-a, IL-1b, IL-6. High-fat diet feeding is associated with the infiltration
of macrophages, apoptosis of adipocytes and reduced adipose tissue vascularity

Fig. 12.1 LPS and HFD-induced proinflammatory cytokines profile. Panel a represents the
expression of the proinflammatory cytokines TNF-a, IL-1b, IL-6 in the media from ASH-WEX
and FIV pretreated BV-2 microglial cells with or without activation with the LPS. Panel b
represents the serum profile of these proinflammatory cytokines in in vivo HFD model system.
Like the LPS (model for inducing inflammation), high-fat diet also induced the expression of the
inflammatory cytokines, main mediators of the inflammation. Their elevated levels have been
attenuated by the treatment with ASH-WEX (Ashwagandha leaf water extract)
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which results in macrophages proliferation in white adipose tissue when chemokine
or lipid release (lipolysis) is triggered (Xu et al. 2003; Weisberg et al. 2003; Shu
et al. 2012). The macrophages ÊÉ coupled with increased TLR and other pattern
recognition factors results in enhanced production of inflammatory cytokines. Thus,
adipose tissue releases high levels of inflammatory mediators in obesity, therefore,
it is regarded as the main inflammatory organ that mediates obesity induced
inflammation. Regulation of the production of inflammatory mediators in adipose
tissue is mediated by stromal vascular cell (SVC) fraction that contains immune
cells.

12.4.2.2 Link to Insulin Resistance and Type II Diabetes
The increased pro-inflammatory cytokines, adipokines and fatty acids cause
downstream effects on muscle and liver which further contribute to systemic insulin
resistance. Normally when insulin binds to insulin receptor on these cells, the
insulin receptor is autophosphorylated at its Tyr residues and tyrosine kinase is
activated (White 2003; Pilch et al. 2004). The insulin receptor then phosphorylates
tyrosine residues on the insulin receptor substrates (IRSs), which serve as the
docking proteins for SH2-containing enzymes such as p85 subunit of PI-3 kinase or
SHP2. This leads to linear signalling cascades that result in Akt activation. The
activation of Akt induces the translocation of Glut 4 and glycogen synthesis and
thus plays an important role in metabolic signalling. Proinflammatory cytokines
produced as a result of obesity mediated inflammation activate serine kinases which
directly and indirectly phosphorylate insulin receptor substrate (IRS) 1 and 2. IRS1
and 2 phosphorylation further results in reduced ability of insulin to stimulate
PI-3 K-dependent pathways, which normally leads to glucose uptake and its
metabolism. Hence disruption of this insulin cascade induces insulin resistance and
is associated with the development of T2DM.

Proinflammatory IKKb/NF-jB pathway is also responsible for obesity-
associated low-grade chronic inflammation in peripheral tissues. At the basal
level, NF-jB is sequestered in the cytoplasm by its binding to IKBa, masking its
nuclear translocation. In response to various stimuli like LPS, fatty acids, ceramide,
etc., IKK enzyme complex is activated and IKKb phoshorylates Ser 32 and 36 of
IKBa, which exposes the nuclear localisation sequence of the NF-jB and causes
the NF-jB to translocate into nucleus, where it initiates the gene expression of
various inflammatory mediators like inflammatory cytokines, implicated in the
development of obesity-induced insulin resistance (Oeckinghaus et al. 2011; Ghosh
et al. 2012). The Jun N terminal kinase/stress activated protein kinases
(JNK/SAPKs) belonging to MAP kinase family also play important role in endo-
plasmic reticulum stress regulating the development of obesity-induced insulin
resistance (Bogoyevitch et al. 2010; Solinas et al. 2010).

12.4.2.3 Hypertension
Obesity is also one of the leading risk factors for chronic arterial hypertension.
Various mechanisms that explain the development of high arterial pressure in the
body during obesity have been elucidated which include increased sympathetic
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nervous system activity, activation of renin–angiotensin system, endothelial dys-
function and renal functional abnormalities (Rahmouni et al. 2005). As proposed by
Paton and Waki (2009), increased circulating inflammatory cells and cytokines in
the brain can impair central blood pressure regulation and promote hypertension.

Components of RAS, including renin, angiotensinogen and angiotensin type 1
(AT1a) receptors are present in various brain regions and cell types. In addition to
brain derived angiotensin II, blood borne angiotensin peptides may enter the brain
and modulate blood pressure and fluid homeostasis. Besides having important role
in the regulation of blood pressure, angiotensin II also contributes to the key events
in inflammation. Angiotensin II is a potent regulator of the immune system centrally
and peripherally; and induces brain inflammatory responses critical for the devel-
opment and progression of hypertension. Local activation of RAS and
Angiotensin II synthesis increase vascular permeability by promoting the expres-
sion and secretion of vascular endothelial growth factor (VEGF). They also enhance
the expression of endothelial adhesive molecules including selectins (P‐ and L‐
selectin), vascular cell adhesion molecules‐1 (VCAM‐1), intercellular adhesion
molecules‐1 (ICAM‐1) and their ligands, the integrins. Angiotensin II also pro-
motes endothelial dysfunction via COX‐2 activation, which generates vasoactive
prostaglandins and ROS. Moreover, Angiotensin II promotes the infiltration of
inflammatory cells into tissues by the stimulation of production of specific
cytokines/chemokines. The proinflammatory activity of Angiotensin II is also
mediated by activation of dendritic cells, highly specialized antigen‐presenting
cells, which are responsible for inflammation defence and immune response (re-
viewed by Benigni et al. 2010).

The proinflammatory effects of Angiotensin II can also involve T cells. T cells
possess an endogenous RAS that modulates T cell proliferation and migration,
NADPH activity and ROS production. During inflammation, Angiotensin II acts via
its AT1 receptor to stimulate cytoskeletal rearrangements in T cells and to trigger
the release of specific cytokines and chemokines that favor T cell recruitment to the
sites of inflammation. Tissue infiltration of T cells contributes to the genesis of
hypertension (Benigni et al. 2010). Angiotensin II dependent hypertension
increases the production of proinflammatory cytokines within specific brain regions
involved in blood pressure control.

Increase in the levels of proinflammatory cytokines in the plasma and other
inflammatory markers are associated with the progression of hypertension, whereas
immune suppression proves beneficial (Schillaci et al. 2003; Stumpf et al. 2005).
Angiotensin II-induced hypertension involves activation of TNFa and NF-jB and
production of reactive oxygen species in the brain (Kang et al. 2009). The par-
aventricular nucleus (PVN) in hypothalamus integrates signals from circumven-
tricular organs and other cardiovascular-relevant brain areas and transmits them to
the rostroventrolateral medulla (RVLM) and other downstream areas to influence
sympathetic nerve activity (Guyenet 2006). Angiotensin II-induced hypertension
involves activation of microglia and increases in proinflammatory cytokines
(TNFa, IL-1b and IL-6) along with the decrease in IL-10 (anti-inflammatory
cytokine) expression within the PVN. Inhibition of microglial activation

308 G. Kaur et al.



(by minocycline, an anti-inflammatory drug) or overexpression of IL-10 (by
recombinant adenoassociated virus-mediated gene transfer) in the PVN attenuates
Angiotensin II-induced hypertension (Shi et al. 2010). Chronic immune activation,
increases in SNS activity and enhanced RAS activity are common features of
hypertension and reciprocal communication between these systems contributes to
the increased blood pressure.

12.4.2.4 Vital Organs Affected by Obesity Induced Peripheral
Inflammation

Liver: Production of TNF and IL-6 is boosted in obese subjects due to low-grade
inflammatory response caused due to lipid accumulation. Liver fat accumulation is
called as ‘Hepatosteatosis’. Lipid storage in liver occurs due to high energy con-
sumption and less energy combustion. Energy combustion in liver is controlled by
PPAR-a regulated mitochondrial and peroxisomal fatty acid b-oxidation systems
and microsomal x-oxidation system. PPAR-a acts as a sensor for fatty acids
(Hashimoto et al. 2000; Rao and Reddy 2004). In case of an inflammatory response,
IL-6 is also released by Kupffer cells in the liver, where its production is induced by
the death of hepatocytes, which further results in the release of IL-1 (Sakurai et al.
2008). Higher levels of TNF also stimulate the production of IL-6. Production of
IL-6 is highly instrumental in the propagation of inflammation (Kamimura et al.
2003). Obese individuals also have higher accumulation of ROS.

Obesity also promotes hepatocarcinogenesis. Hepatic inflammation predisposes
an individual to the risk of cancer. The most common consequence is hepatocellular
carcinoma (HCC) (Calle et al. 2003). Tumor promoting effect of obesity depends on
the induced low-grade inflammatory response (Park et al. 2010), which involves
elevation in the production of TNF and IL-6, both of which have been reported to
be tumor promoting cytokines (Lin and Karin 2007). A higher level of IL-6 leads
to the activation of STAT3 in hepatocytes (Naugler et al. 2007), which stimulates
the proliferation and progression of hepatocytes (He et al. 2010). Thus, STAT3 may
be a mediator of tumor promotion. Another mechanism proposed for tumor pro-
motion triggered by obesity is enhanced activation of AKT caused due to high
concentrations of insulin and IGF-1 in obese subjects (Calle and Kaaks 2004). Also,
the activity of mTOR is elevated in obese liver (Park et al. 2010), which is an
important regulator of cell and tumor growth.

Muscle: Skeletal muscle is the principal site for glucose and fatty acid utilization
and composes 40–50 % of total body mass. It is a metabolically active tissue critical
in the maintenance of homeostasis. It also plays an important role in fatty acid
oxidation. Low rate of lipid oxidation in skeletal muscle predisposes an individual
towards weight gain (Slentz et al. 2009). The levels of intramyocellular lipids are
elevated in case of obese subjects. Skeletal muscle has high levels of triglycerides in
obesity (Pan et al. 1997). Amount of triglycerides in skeletal muscles is closely
associated to insulin resistance (Russell et al. 1998; Simoneau et al. 1995). The
level of TNF-a is also increased in case of obese human subjects and its exogenous
administration has been linked to insulin resistance (Saghizadeh et al. 1996;
Krogh-Madsen et al. 2006). CNS inflammation has been reported to cause muscle
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atrophy. Muscle breakdown has been reported to be caused by inflammatory
cytokines by their action within the brain (Braun et al. 2011). This effect of
cytokines is dependent on the activation of hypothalamic–pituitary–adrenal
(HPA) axis.

Foetal stage for the development of skeletal muscle is crucial as there is no net
increase in muscle fibre number after birth. Stages in foetal muscle development
include myogenesis, adipogenesis and fibrogenesis, which are derived from mes-
enchymal stem cell (MSC). A shift of MSC from myogenesis to adipogenesis and
fibrogenesis results in increased intramuscular fat and connective tissue as well as
reduced muscle fibre number, all of which have negative effect on offspring muscle
function and properties. Therefore, maternal well being is necessary for proper
development of skeletal muscles in the offspring. Maternal obesity leads to
low-grade inflammation which changes the commitment of MSCs (Du et al. 2010).
Poor foetal skeletal muscle development impairs glucose and fatty acid metabolism
by skeletal muscle in response to insulin stimulation, and thus predisposes the
offspring to diabetes and obesity later in life (Zambrano et al. 2005).

12.4.3 Obesity and Central Inflammation

Pathologically obesity-induced neuroinflammation plays the major role in regulat-
ing obesity and related metabolic disorders. The central nervous system, particu-
larly hypothalamus, plays the regulatory role in maintaining metabolic homeostasis
by regulating various physiological processes including feeding, body weight,
energy expenditure and glucose metabolism via endocrine signalling, trophic
actions, complex neuronal plasticity and projections into the autonomous control
centres of the brain. Inflammation induced in the brain has negative impact on the
neurohormonal signalling of the hypothalamic neurons and also contributes to the
neurodegeneration and disruption of the neural stem cells. Circulating metabolic
signals such as insulin, gut hormones, leptin and nutrients are sensed by mediobasal
hypothalamus (MBH), which then commands the downstream neurohormonal
networks to control different aspects of the metabolic physiology. In addition to
modulation of the sympathetic and parasympathetic nervous system, hypothalamic
neurons can project to the autonomic sites in the brain which further control
metabolic activites.

12.4.3.1 Cellular Targets Involved in Obesity Induced
Neuroinflammation

Obesity is linked to hypothalamic inflammation which involves both neuronal and
non-neuronal populations and their crosstalk. Brain comprises of the more than
50 % of the non-neuronal cell population including glial, periventricular and vas-
cular constituents. Astrocytes and microglia are among the most abundant cell types
which play important role in maintaining the BBB, support neuronal metabolism
and act as both guard and react to the local tissue injury. Both cell types show
remarkable plasticity by altering genetic programmes and morphologies to combat
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with different infections and insults. They both are involved in
overnutrition-induced central inflammation.

High-fat diet leads to the infiltration and activation of microglia and astrocytes,
thus resulting in the activation of inflammatory cascades and causing the production
of local inflammatory cytokines. Diet-induced obesity results in the increased levels
of microglial activation markers which have been observed throughout the hip-
pocampus (Erion et al. 2014). Similarly astrocytes are also activated by different
saturated fatty acids present in high fat diet, which further trigger the production of
inflammatory cytokines and also cause reactive gliosis. Tomassoni et al. (2013)
reported significant increase in the number of the glial fibillary acidic protein
(GFAP) immunoreactive astrocytes throughout hippocampus, frontal and parietal
cortices in obese Zucker rats.

Functionally, macrophages or microglia activation has two separate polarization
states M1 and M2. M1 or the classically activated macrophages are induced by LPS
or IFN-c and are responsible for various inflammatory consequences through the
production of various proinflammatory mediators like proinflammatory cytokines
IL-1b, IL-6, TNF-a and various reactive oxygen and nitrogen species. M2 phe-
notype is anti-inflammatory and protective state of the microglia. It is also asso-
ciated with the activity of PPARd and PPARc, well-known regulators of lipid
metabolism and mitochondrial activity (Odegaard et al. 2011). Microglia or mac-
rophages present in the adipose tissue assume the number of states along the
M1/M2 spectrum depending upon fat depot location and the degree of fat deposi-
tion. Increase in adiposity results in the shift from the alternative M2 state to
classically inflammatory M1 state (Aron-Wisnewsky et al. 2009). Lumeng et al.
(2007) have reported that obesity induces switch of microglia or macrophages
phenotype from M2 to M1 polarization. Obesity also affects lipid metabolism by
affecting the activity of PPARd and PPARc.

The neuronal cell types regulating energy homeostasis are the orexigenic neu-
ropeptide Y (NPY)/agouti-related peptide (AGRP) neurons and anorexigenic
pro-opiomelanocortin (POMC) neurons. They both reciprocally regulate the energy
homeostasis through negative and positive energy balance actions. Their functions
are also regulated by leptin. These neurons get affected by obesity induced neu-
roinflammation which negatively impacts their regulatory cascades such as leptin
and insulin signalling. This neuroinflammation also exerts the effect on neuroen-
docrine system by compromising the secretion of anorexigenic POMC derived
a-melanocyte secreting hormone, cocaine and amphetamine-regulated transcript
(CART) resulting in increase in appetite along with leptin and insulin resistance.

12.4.3.2 Molecular Targets and Mechanism Involved
in Obesity-Induced Neuroinflammation

IKKb/NF-jB pathway plays a key role in obesity linked hypothalamic inflamma-
tion by regulating the transcription of various inflammatory genes like iNOS,
COX-2, inflammatory cytokines like TNF-a, IL-1b, IL-6, etc., and various other
inflammatory mediators. This pathway is activated by both receptor dependent and
independent processes. Pattern recognition receptors like TLR2, TLR4 and the
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cytokines receptors have been shown to initiate the induction of obesity related
neuroinflammation by activating NF-jB pathway. In addition to these receptors,
receptor independent intracellular organelle stress and disturbances involving the
endoplasmic reticulum stress (Zhang et al. 2008; Purkayastha et al. 2011), oxidative
stress (Zhou et al. 2011) and defects in the autophagy (Meng et al. 2011) are also
the contributors of hypothalamic inflammation which ultimately converge at the
IKKb/NF-jB inflammatory pathway. Endoplasmic reticulum stress activates
NF-jB through the signalling crosstalk between the IKKb/NF-jB pathway and
unfolded protein response elements (UPR) via PKR-like ER kinase, inositol
requiring enzyme-1 and activating transcription factor-6 (Deng et al. 2004; Hu et al.
2006; Yamazaki et al. 2009). The inflammasomes known as the immune cell
sensors like Nod like receptor 3 (NLRP3), are also the mediators of the mito-
chondrial dysfunction and oxidative stress leading to obesity-mediated neu-
roinflammation. At the time of increased oxidative workload, higher level of ER
activity is in demand such as protein synthesis which results in ER stress.
Hypothalamic and extrahypothalamic brain regions show greater ER stress during
obesity (Castro et al. 2013; Cakir et al. 2013), which has been implicated in per-
petuating the development of obesity (Williams 2012). Hypothalamic ER stress
ultimately activates IKKb/NF-jB in the hypothalamus. In addition, cytosolic
changes induced by overnutrition, such as dysfunctional ER and mitochondria can
lead to autophagy defects. Excessive stress in ER can lead to apoptosis (Rao et al.
2004; Ron and Walter 2007), and eventually brain atrophy (Miller and Spencer
2014).

In an ongoing study in our lab, we have been using 30 % fat diet (by weight) fed
Wistar strain rats as HFD induced obesity model. The animals were divided into
four groups. First group (Control) was fed with regular chow feed. Second group
(HFD) was fed with 30 % fat diet. Third group (C + E) was fed with regular chow
feed supplemented with dry leaf powder of Withania somnifera. Fourth group
(H + E) was fed with high-fat diet supplemented with dry leaf powder of Withania
somnifera. The animals were kept on respective feeding regime for 12 weeks. After
12 weeks, the animals were sacrificed and their sera and brains were isolated.
Western blotting was done for GFAP, OB-Rb (Leptin receptor) and proinflam-
matory cytokines such as TNFa, IL-1b, IL-6 from hypothalamus region of brain.
The data is represented in Fig. 12.2 panel a. OB-Rb expression was reduced,
whereas the level of all proinflammatory cytokines was increased with HFD and
alleviated with Ashwagandha feeding. Panel (b) in Fig. 12.2 represents the data of
serum leptin and insulin levels. The level of leptin has increased significantly in
HFD group and Ashwagandha leaf powder supplementation was seen to suppress
the deleterious effects of HFD on serum biomarkers as well as brain function
impairments.

Besides direct entry of free fatty acids, cytokines and chemokines into the brain
at BBB lacking areas, systemic inflammation and free fatty acids in excess also
promote central inflammation by initiation of pro-inflammatory cytokine and
prostaglandin cascade that stimulates centrally projecting neurons (Blatteis 2007).
There are many molecular targets downstream of the IKKb/NF-jB pathway which

312 G. Kaur et al.



link obesity with various metabolic deficits such as suppressor of cytokine
signalling-3 (SOCS3), an inhibitory signalling protein which inhibits both insulin
and leptin signalling. Overnutrition-induced IKKb/NF-jB activation can cause
upregulation of SOCS3 gene expression in hypothalamus and induce hypothalamic
insulin and leptin resistance. Another protein, Protein tyrosine phosphatase 1B
(PTP1B), like SOCS3, inhibits leptin and insulin signalling and interestingly,

Fig. 12.2 High-Fat Diet-induced hypothalamic inflammation. a Western blotting data of GFAP,
OB-Rb (Leptin receptor) and inflammatory cytokines (TNFa, IL-1b and IL-6) from animals fed
with control chow diet, 30 % high-fat diet (HFD), control diet plus dry leaf powder of Withania
somnifera (C + E) and 30 % fat diet plus dry leaf powder of Withania somnifera (H + E). The
samples are pooled in all groups with n = 2 in each group. The levels of OB-Rb are inversely
related to the levels of leptin in serum. Withania somnifera helps in regaining of the leptin levels.
The levels of proinflammatory cytokines are elevated in high fat diet fed group which are
alleviated with Withania somnifera. b Serum profile of leptin and insulin in high fat diet induced
obesity model system. The expression of leptin and insulin was also affected by the high-fat diet,
which ultimately leads to the development of insulin and leptin resistance
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PTP1B has also been implicated in the IKKb/NF-jB inflammatory pathway. Such
neuroinflammation impairs intracellular hormonal signalling of regulatory neurons
and disrupts neurogenesis through depletion of neural stem cells (NSCs). The
progression of overnutrition-related diseases such as obesity and diabetes, charac-
terized by hyperlipidemia and hyperglycemia, secondarily leads to pathophysio-
logical overnutrition in the internal environment of the body, which exacerbates
neuroinflammation.

12.5 Role of Blood–Brain Barrier in Obesity Induced
Neuroinflammation

Blood–brain barrier (BBB) regulates the microenvironment for reliable neuronal
signalling by allowing or restricting the entry of essential nutrients, blood borne
toxins into the central nervous system. Elevated levels of sugars and fatty acids
present in the high fat diet influence the brain by disrupting BBB integrity.
Increasing BBB permeability allows peripheral cytokines and immune cells to enter
the brain tissue. Anatomically MBH region in the hypothalamus is located at the
most vulnerable position due to partially leaky BBB. Similarly, hypothalamic
arcuate nucleus (ARC) and other circumventricular organs such as subfornical
organs and area postrema lacking an effective BBB are more prone to various
inflammatory factors. Therefore on exposure to prolonged feeding, oxidative stress
and mitochondrial dysfunction in MBH neurons occur perhaps earlier than the
induction in other cells. Rats on the Western diet for three months have showed
decreased expression of tight junction proteins in choroid plexus and BBB
(Kanoski et al. 2010). Also the rats fed with the high cholesterol and saturated fat
diet for 6 months have shown reduced integrity of BBB and increased microgliosis
in the hippocampus indicating that hippocampus may be more vulnerable to the
diet-induced BBB disruption (Fig. 12.3).

The majority of research to study correlation of obesity with neurological and
psychiatric diseases is predominately focused on people in Western nations and
thus it is difficult to predict whether these results can be generalized to other world
populations (Jakabek et al. 2011). Similarly, differences in eating behaviors
between Western and non-Western patients with mental illness, dementia and
cognitive decline has also received limited attention. Weight gain and metabolic
disturbances are well known potential adverse events related to antipsychotic
medication. A recently published meta-analysis shows that some second-generation
antipsychotics (SGAs), such as olanzapine, cause more metabolic side effects than
other SGAs (Rummel-Kluge et al. 2010). In recent years, the importance of
physical health of patients suffering from mental illness and dementias has become
a major concern of the medical community and, as a result, several guidelines and
consensus recommendations (Marwaha et al. 2008) have been developed to manage
the standards of physical health in this group of patients (Chacon et al. 2011; Cabral
et al. 2011; Knochel et al. 2012). Association between obesity and depression has
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been reported in studies conducted in the United States (Atlantis and Baker 2008)
and Western countries (Green et al. 2007). Moreover, search for biomarkers for
diagnosis and prognosis of the mental health in patients suffering from metabolic
syndrome is a growing concern among the clinicians (Martins-De-Souza et al.
2010a, b; Kluge et al. 2011).

Fig. 12.3 Role of neuroinflammation in obesity-associated diseases. The mediobasal hypotha-
lamus (MBH) is affected by chronic overnutrition, a prolonged nutritional change which primarily
arises from environmental and sociobehavioral factors such as Western diet, sedentary lifestyle and
disrupted diurnal rhythmicity. These lead to the IKKb/NFjB-directed inflammatory response and
intracellular organelle stress in the MBH. Many of these cellular and molecular components
promote each other, resulting in overnutrition-related neuroinflammation
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Besides the lacunas in our current knowledge of molecular and cellular mech-
anisms that correlate obesity with neurodegenerative diseases, therapeutic preven-
tion or reversal of acute or chronic neuronal injury caused by obesity also remains
unknown. Therapeutically multiple therapies and lifestyle changes are required to
reduce obesity that may or may not ameliorate neuronal insults. Recently, Nerurkar
et al. (2011) reported that Momordica charantia (bitter melon) attenuates
HFD-induced oxidative stress and neuroinflammation; and related studies in liter-
ature emphasize that herbal products may offer the distinctive therapeutic strategy
to improve obesity-associated peripheral inflammation and neuroinflammation.
Pawar et al. (2011) reported the anti-inflammatory and mucorestorative activity of
Withania somnifera root extract in a rectal gel preparation used in TNBS-induced
Inflammatory Bowel Disease. In Asian countries, Gynostemma pentaphyllum is
widely used to treat dyslipidemia, type 2 diabetes and inflammation (Gauhar et al.
2012) and the ethanolic extract of G. pentaphyllum caused the reduction in body
weight gain, liver weight, and blood cholesterol levels by activating AMP-activated
protein kinase (AMPK) in the soleus muscle. Furthermore, bamboo leaves showed
anti-inflammatory potency and has been used to treat metabolic disorders such as
obesity and diabetes (Koide et al. 2011). Further exploration of the molecular
mechanisms of potential interventions by natural products may offer a unique
therapeutic strategy in amelioration of DIO-associated peripheral inflammation and
neuroinflammation and associated neurological and neurodegenerative disorders.

Identification of obesity-associated neuroinflammation targets in brain and
introducing innovative interventions/approaches based on the use of herbal prod-
ucts may help to plan therapeutic strategies to curtail the progression of neu-
ropathogenesis in obese patients. This approach may also reduce the severity of
associated psychopathological and physical illness such as hypertension, T2D,
CVDs, etc. In particular, if parallel studies are done on brain and blood samples,
and if defects are also observed in blood, then simple and non-invasive diagnostic
assays could be established which eventually might help recognize the disease
before its clinical onset.
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13Role of Microglia in Adult
Neurogenesis

Payel Ghosh and Anirban Ghosh

Abstract
Microglia as resident macrophages are responsible to maintain the normal
physiology and homeostasis in the central nervous system and undergo various
structural changes to perform immunological functions. Microglial activation are
widely implicated in both neuroprotection and neurodegeneration. Apart from its
conventional neuromodulatory role, microglia are also associated with brain
development, neuronal circuitry formation, neuroendocrine regulation as well as
neurogenesis. In this review, we discuss critical role of microglia in regulating
adult neurogenesis.

13.1 Introduction

Microglia are designated as a hybrid between glial cells and white blood cells in
brain (Streit 2001). They are the monitor of wellbeing of brain environment with a
plethora of supportive and protective activities to maintain normal physiology and
homeostasis in CNS. From its discovery as the ‘third element’ of central nervous
system by Cajal (1913) and characterization with its functions by del Rio Hortega
(1932), these cells mostly established them as the chief immunomodulatory cells in
brain (del Rio Hortega 1932; Aloisi 2001; Ghosh et al. 2013). However, from the
past decade onwards the territory of microglial functions are widening up showing
its diverse functional attributes, apart from or in lieu to its immune functions. They
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ensure active role in CNS development, neuronal circuitry formation, surveillance,
neuro-endocrine regulation and psychological behavior, etc., including the process
of neurogenesis (Nimmerjhan et al. 2005; Neumann et al. 2009; Paolicelli et al.
2011; Yirmiya et al. 2011). Basically being an immune competent cell, microglia
possesses the inherent capacity to take part in inflammatory procedures in brain
tissue. More specifically, this is the major determinant of exerting and controlling
inflammatory conditions in brain (Aloisi 2001; Ekdahl et al. 2009). As microglia is
capable of controlling the level of inflammation, they in turn control the immune
effector mechanism there. So life and death of the newly formed neurons largely
depends on the microglial activities. It is also found that neurogenic lineage cells
are more sensitive to inflammation than gliogenic lineage cells and inflammatory
microglia impairs neurogenesis in adult rats (Monje et al. 2003; Ekdahl et al. 2003).

Though neurogenesis is majorly an event which occurs in embryonic and
perinatal stages during brain development, recently adult neurogenesis is accepted
universally in some restricted pockets or niches of brain tissue (Abrous et al. 2005;
Ernst and Frisén 2015). The presence of microglia in those places prompted us to
investigate the role of such inflammatory mediators, particularly, in adult neuro-
genesis. In this article, participation of microglia in the process of adult neuroge-
nesis has been discussed in the light of present knowledge achieved so far. Let us
start with the occurrence of neurogenesis in adult, followed by microglial influence
and participation in the process, their crosstalk with forming neurons and finally
summarizing microglial role as inflammatory mediator in adult neurogenic events.

13.2 Historic Preview of Adult Neurogenesis

Early neuro-anatomists, including Santiago Ramón y Cajal, considered the nervous
system fixed and incapable of regeneration. The first evidence of adult mammalian
neurogenesis in the cerebral cortex was presented by Altman (1962), followed by a
demonstration of adult neurogenesis in the dentate gyrus of the hippocampus in
1963 (Altman 1963). In 1969, Joseph Altman discovered and named the rostral
migratory stream (RMS) as the source of adult generated granule cell neurons in the
olfactory bulb (Altman 1969). In 1980s, the scientific community ignored these
findings despite use of the most direct method of demonstrating cell proliferation in
the early studies, i.e., 3H-thymidine autoradiography. By that time, Shirley Bayer
(and Michael Kaplan) again showed that adult neurogenesis exists in mammals
(rats) (Bayer 1982; Bayer et al. 1982), and Nottebohm showed the same phe-
nomenon in birds (Goldman et al. 1983) sparking renewed interest in the topic. The
field did not recover from this until the late 1990s when researchers, including
Elizabeth Gould, Fred Gage, and Peter Eriksson, published a series of papers that
initiated an explosion of research on the existence, function, and implications of
adult mammalian neurogenesis. Studies in the 1990s (Reynolds et al. 1992; Gage
et al. 1995) finally put research on adult neurogenesis into a mainstream pursuit.
Also in the early 1990s, hippocampal neurogenesis was demonstrated in nonhuman
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primates and humans (Eriksson et al. 1998; Gould et al. 1999a, b). In 2008, neu-
rogenesis in the cerebellum of adult rabbits has also been characterized (Ponti et al.
2008). Further, some authors (particularly Elizabeth Gould) have suggested that
adult neurogenesis may also occur in regions within the brain not generally asso-
ciated with neurogenesis including the neocortex (Gould et al. 1999a, b; Zhao et al.
2003; Shankle et al. 1999). However, others have questioned the scientific evidence
of these findings, arguing that the new cells may be of glial origin (Rakic 2002).
When bromodeoxyuridine (BrdU), the nucleotide analogue was used as lineage
tracer to demonstrate neurogenesis, it showed that neurogenesis is an almost life
long process in mammals including human (Kuhn et al. 1996; Eriksson et al. 1998).
However, these neuronal developments are highly conserved in region specific
manner among embryonic, early postnatal and particularly in adult brain.

13.3 Adult Neurogenesis: The Site and Process

Neurogenesis occurs throughout life in the adult mammalian brain including humans
(Eriksson et al. 1998; Roy et al. 2000; Wang et al. 2011). In rodents new neurons are
continually born throughout adulthood from neural stem/progenitor cells predomi-
nantly in two regions of the brain: (1) the subependyma of the lateral ventricles
(SVZ) where neural stem cells and progenitor generate new neurons (Neuroblast)
that migrate to the olfactory bulb via the rostral migratory stream (RMS) to form
olfactory bulb interneurons and (2) subgranular zone (SGZ) of the hippocampal
dentate gyrus to form mature granule cells, these two regions referred to as “neu-
rogenic niches” (Gage 2000). Following injury such as stroke, neuroblasts generated
in the subventricular zone migrate also into areas which are not normally neurogenic,
e.g., striatum and cerebral cortex (Ekdahl et al. 2009). However, recent work has
shown these cells migrate to the striatum in humans (Ernst et al. 2014) and not the
olfactory bulb (Bergmann et al. 2012). Many of the newborn cells die shortly after
they are born (Dayer et al. 2003) but a number of them become functionally inte-
grated into the surrounding brain tissue (Toni et al. 2007, 2008).

During their development from neural stem cells/progenitors to mature func-
tionally integrated neurons various choices are made, such as proliferation or qui-
escence, cell survival or death, migration or establishment, growth or retraction of
processes, synaptic assembly or pruning, or tuning of synaptic transmission. The
process is altered by physiological stimuli as well as several brain diseases. The
process of adult neurogenesis is a tightly regulated and finely tuned dynamic event
which is subjected to be modulated with different physiological and patho-
pharmacological cues. Mostly neurogenesis in adult brain with normal physiologi-
cal condition is believed to be rare, but injury may trigger the process (Gould 2007).
The process of generating new neurons, i.e., neurogenic process consists of four
phases: proliferation, migration, differentiation, and survival after that functionally
active new neurons integrated on the existing neural circuitry therefore contributes to
various brain functions under both normal and disease state (Ming and Song 2011)
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(Fig. 13.1). Although a vast number of neurons are formed. Only a very small pro-
portion of them becomes stable and integrated into the existing network and therefore
survives for a long period of time throughout the life (Kempermann et al. 2003).

There are only two critical periods for neural progeny survival: (1) during
transition from amplifying neuroprogenitors to neuroblast (Sierra et al. 2010; Platel
et al. 2010); and (2) during the integration stage of the immature neurons (Tashiro
et al. 2006; Mouret et al. 2008). In two months, the surviving neurons receive input

Fig. 13.1 Neurogenesis in “neurogenic” brain regions, i.e., in the adult Dentate Gyrus and
Subventricular Zone. a A coronal section of rat brain tissue showing the formation of neuroblast
cells from neural progenitor cells in SVZ region. b A sagittal section view of an adult rodent brain
showing the two restricted regions that exhibit active adult neurogenesis: dentate gyrus (DG) in the
hippocampal formation (HP); the lateral ventricle (LV) to the rostral migratory stream (RMS) to
the olfactory bulb (OB)
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from other neurons (Van et al. 1999; Piatti et al. 2006), with some forming func-
tional synapses, and possessing electrophysiological properties indistinguishable
from those of the mature neuron (Ge et al. 2008).

A. Dentate gyrus of hippocampus as the site of adult Neurogenesis:

In case of adult hippocampal neurogenesis, neuroprogenitor cells in the sub-
granular zone (SGZ) of dentate gyrus give rise to form newborn neuroblast which
are incorporated in the circuitry as mature neurons at the end of a 4 week period and
the majority of them are presumed to die by apoptosis at the immature neuron stage
or in the first 1–4 days of their life, during the transition from amplifying neuro-
progenitors to neuroblast. These apoptotic newborn cells are rapidly cleared out
from the SGZ neurogenic niche through phagocytosis by unchallenged microglia,
i.e., by the resident brain immune cells without producing inflammation (Sierra
et al. 2010). After this time point, only very small changes in cell number occur
(Fig. 13.2).

SGZ SVZ 

Radial glia-like 

Progenitor Cells

Neuroblast

Immature Neuron

Mature Neuron

Radial glia-like 

Transient amplifying cells

Neuroblast

Migrating Neuroblast & Immature 
Neuron

Interneurons

Fig. 13.2 Developmental stages of adult neurogenesis in the both SVZ and SGZ region of brain.
Dentate gyrus of the hippocampus. Summary of five developmental stages during adult
hippocampal neurogenesis: (1) activation of quiescent radial glia-like cell in both subgranular
zone (SGZ) and subventricular zone (SGZ); (2) proliferation of intermediate progenitors in the
SGZ region whereas transient amplifying cells generated from radial glia-like cells in SVZ region;
(3) generation of neuroblasts; (4) migration and integration of immature neurons; (5) maturation of
adult-born dentate granule cells in hippocampal region whereas in SVZ region after migration to
specific region immature neurons differentiate into different subtypes of interneurons
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From the SGZ, neuronal and glial progenitors with limited self-renewal capacity
migrate into the granule cell layer and develop primarily into granule cells, a few
becomes interneurons (Liu et al. 2003; Livneh and Mizrahi 2011; Seaberg and
Vander Kooy 2002). The continuous integration of adult-born hippocampal neurons
is important for synaptic transmission and bidirectional plasticity in the dentate
gyrus.

In adult subgranular zone (SGZ), the intermediate progenitors are generated
from proliferating radial and non-radial precursor cells and these intermediates give
rise to neuroblast. The nascent or immature neurons move into the inner granular
cell layer where they differentiate into hippocampus as dentate granular cells. There
they extend dendrites to molecular layer and axons to the CA3 region. These new
born neurons integrate with existing neuronal circuitry developing their synaptic
integrity (Fig. 13.3) (Ming and Song 2011; Ge et al. 2008). Ambient GABA release
followed by GABAergic and glutamatergic synaptic inputs initially activate those
neurons. Output synapse may be formed on the appropriate target cells in CA3 and
hilus. Axons of new born granular neurons in adults establish contacts with hilar
interneurons, mossy cells as well as pyramidal cells in CA3 and glutamate is
released as neurotransmitter (Toni et al. 2008). These new born neurons are featured
by hyper-excitability and synaptic plasticity in comparison with mature granule
cells which has been reduced with continued maturity as also reflected in their basic
electro-physiological properties when measured (Schmidt-Hieber et al. 2004; Ming
and Song 2011).

B. Subventricular zone of lateral ventricle and olfactory bulb as site of adult
Neurogenesis:

In adult SVZ, the neuroblast is generated from transient amplifying cells derived
from proliferating glial cells. Through astrocytic tube neuroblast cell migrate
towards olfactory bulb forming a chain of cells, which is named as rostral migratory
stream (RMS) (Lois 1996). After reaching to olfactory bulb, nascent neurons
detached from RMS, radially migrate and differentiate. When majority become
GABAergic granular neurons lacking axons and forming dendro-dendritic synapses
and appearing as tufted cells, others may be dopaminergic or glutamatergic (Lledo
et al. 2006; Brill et al. 2009) (Fig. 13.2).

The adult neurogenic niche is majorly composed of mature neurons, different
progeny of neuronal precursors along with endothelial cells, ependymal cells,
astrocytes and microglia. Associations with vascular endothelial cells are appearing
as the important regulator of proliferation of adult neuronal precursors. Adult SVZ
astrocyte release glutamate, crucial for neuroblast survival, and also express Robo
receptor related to immediate migration of neuroblast through RMS who express
Slit1 (Kaneko et al. 2010; Platel et al. 2010). Ependymal cells act like a shield for
neuronal progenitor spetecting the neurogenic niche and release Noggin, an
antagonist of bone morphogenic protein (BMP) to form a migratory gradient (Lim
et al. 2000). They also help to create a concentration gradient of molecules by
beating their cilia to direct migration (Sawamoto et al. 2006).
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13.4 Microglia: The Non-NSC Derivative in Adult
Neurogenesis

Among different glial populations in brain, microglia holds its position unique as
they are not derived from gliogenesis from neuro-glial stem or progenitor cells in
brain. So these cells are the outsiders who entered, populate and integrated in the
developing to matured brain tissue boundary. Presently, microglial
myelo-monocytic lineage and blood relation is established (Prinz and Mildner
2011). There are controversies regarding time of entry of and origin/establishment
of microglia in brain from precursor myeloid lineage cells. One strong view states
that microglial progenitors which form resident microglial populations in brain are
different from blood monocyte lineage and these myeloid lineage cells are derived
from primitive yolk sac macrophages. They enter very early in embryonic brain
development and populate between embryonic days 7–11 in developing brain
(Dahlstrand et al. 1995; Chan et al. 2007; Ginhoux et al. 2013). This Myb-negative,
Csf1 receptor positive and PU.1 transcription factor dependent cells, which are
different from blood, are believed to populate forming brain in early embryo prior to
neuronal expansion. Hence they become the prime candidate who contributes to the
basic environment in rudimentary brain for future neurogenesis.

Though being a very important candidate in embryonic neurogenesis, its role in
adult neurogenesis is also very important for its capability to modulate inflamma-
tory condition and maintenance of the integrity and physiology of brain microen-
vironment. In general, aging brain shows substantive decrease of neurogenesis and
inflammatory changes in microglia (Rao et al. 2006; Walter et al. 2011; Dilger and
Johnson 2008). Microglia are found in the sites of neurogenesis, which have dif-
ferent functions in comparison with the non-neurogenic regions (Going et al. 2006).
In the initial studies in rodents, brain inflammation and microglia activation were
found to be detrimental for the survival of the new hippocampal neurons early after
they had been born. The role of inflammation for adult neurogenesis has, however,
turned out to be much more complex. Recent experimental evidence indicates that
microglia under certain circumstances can be beneficial and support the different
steps in neurogenesis, progenitor proliferation, survival, migration, and differenti-
ation. Here, we summarize the current knowledge on the role of microglia in adult
neurogenesis in the intact and injured mammalian brain.

13.4.1 Microglial Cells Influence Adult Neurogenesis

Microglia are located within the neurogenic niches and has become interesting
candidates for modulating neurogenesis in both the healthy and injured brain. The
microenvironment or the niche in which neural progenitor cells live critically
influences the process of neurogenesis, which spans several steps including the
proliferation of stem or progenitor cells; the survival of immature or mature neu-
rons; the migration of new neuroblasts to their appropriate locations; and the
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differentiation of neuroblasts to a neuronal phenotype and the construction of
synaptic connectivity (Ekdahl et al. 2009). As an important component of the brain
microenvironment and due to their invariant participation in most pathological
processes in the CNS, microglia are increasingly implicated as a potential nonneural
regulator of neurogenesis.

In the adult brain, resting or surveying microglia, which are characterized by
many fine perpendicular processes extending from a few long prolongations, have
been regarded as sensor cells for the detection of abnormalities or changes in the
brain and help to maintain environmental homeostasis. Once stimulated by means
of brain injury or immunological stimuli resting or ramified microglia transform
into activated or amoeboid microglia and therefore migrate rapidly to the injury site
along the chemokine gradient in vitro and also in response to chemoattractants
including ATP&NO released directly or indirectly by the injured neurons. Thus,
exert effect on the survival of neurons. Positive or negative effect of microglia on
neuronal survival is context-dependent such as type of stimulus, timing of micro-
glial activation and age of animals.

Microglia can release factors that influence adult neurogenesis and glial devel-
opment (Butovsky et al. 2006). Microglial cells can thus exert dual effects.
Inflammation-associated microglia can attenuate neurogenesis, whereas microglia
activated by certain T helper cell cytokines promotes neurogenesis. The impact on
oligodendrocyte development is of particular interest, as microglial cells migrate
along white matter tracts during their postnatal invasion, at a time when oligo-
dendrocytes are differentiating.

Whether microglia support or damage the survival and development of neural
progenitor cells also remains controversial. Microglia instructed by T-cell master
cytokines IL-4 and low concentrations of IFN-c support adult oligodendrogenesis
as well as neurogenesis and offer neuroprotection, involving complex regulation of
insulin-like growth factor (IGF)-I and tumor necrosis factor (TNF)-a. By contrast,
treatment with LPS or amyloid-b (Ab) aggregates, which represent cytotoxic
challenges, or with high levels of IFN-c, do not support cell renewal; they may even
impede it. IL-4 or IL-4-activated microglia can reverse this impediment (Hanisch
and Kettenmann 2007).

However, just like the dual roles in neuroprotection, whether a specific
cytokine-activated microglial cell will take a pro- or anti-neurogenic role is also
context-dependent. For example, microglial cells activated by IFN-c, a
proinflammatory cytokine can be neurotoxic or supportive of neurogenesis,
depending on the concentration of IFN-c. TGF-b, which is considered to be ben-
eficial to neurogenesis, can actually exert a negative influence on neurogenesis
when it is chronically produced in the aged brain. Additionally, if other cytokines
exist in the same niche simultaneously, the outcome will be determined by the
balance among the various cytokines microglial dysfunction may also be involved
in the down regulation of neurogenesis in the aged or diseased brain. The cellular
source of IFN-c and IL-4 in vivo is likely to be Tcells, therefore it is reasonable to
assume that the T cell-mediated immune response is an integral part of the
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regulation of microglial phenotype or function, and thus can influence neuronal
survival or neurogenesis directly or indirectly (Luo and Chen 2012).

Besides neurogenesis there is some significant role of microglia remains as
follows:

1. In the developing brain microglia helps in neuronal differentiation and in the
regulation of neuronal apoptosis through the production of neurotrophins.

2. In response to neuronal injury they secrete neurotrophic factors such as IGF1,
BDNF, TGFb, NGF, etc., cytokines and plasminogen. Thus helps in tissue
repair and neuronal regeneration.

3. They help in successful axonal regeneration by phagocyting the myelin debris
that contains some inhibitory molecules that prevent axon growth. Thereby
helps in neuronal survival.

4. During normal brain development they cause “Synaptic Pruning” and therefore
help in new connection formation or regeneration.

13.4.2 Active Microglial Participation

During normal development of brain, neurogenesis and neuronal circuit formation
is an obvious event which should be regulated with high precision. The resident
macrophage of brain, i.e., microglia plays the key role to clear the incorrect con-
nections or projections and apoptotic corps of erroneously placed neuronal bodies.
For minimal basal level of such errors, the resident ramified or surveilling microglia
in the adult SGZ niche are enough to rapidly phagocytose the apoptotic corps of
such neurons (Sierra et al. 2010; Bachstetter and Gemma 2013). Under any
abnormal condition or during any pathophysiological impact which can produce
inflammatory conditions, microglia become activated and responds immediately
transforming into the reactive form mostly transforming towards amoeboid mor-
phology. This can be either beneficial or detrimental depending on the extent or
level of activation, duration of activity as well as site of their action in the neu-
rogenic niches. The whole event is highly dependent on the balance between
secreted pro- and anti-inflammatory molecular mediators in the microenvironment
(Ekdahl et al. 2009). Some studies also hinted that microglial activation and T-cell
recruitment are also required for enriched environment induced SGZ neurogenesis
(Ziv et al. 2006).

Microglia modulates hippocampal neurogenesis by pruning of newborn cells
during the first critical period of survival. Ramified microglia more efficiently clears
apoptotic newborn neurons by a special modification of their process forming
phagocytic pouches independently from the cell body either in terminal or en
passant branches in an immunologically silent process. Efficiency of phagocytosis
is measured by the clearance time, the Ph-index and by the phagocytic capacity
(Sierra et al. 2010). In response to disease or injury or trauma, i.e., any kind of
tissue damage, damage associated molecular patterns (DAMPs) are released which
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in turn activated microglia into amoeboid form therefore engulf the apoptotic cell
less efficiently than ramified microglia (Bachstetter and Gemma 2013).

Phagocytosis of necrotic and apoptotic cells during brain development, neu-
rodegenerative diseases, and senescence, is essential for the maintenance of tissue
homeostasis throughout the lifespan. In the adult brain phagocytosis of apoptotic
debris is performed by microglia (Neumann et al. 2009) as it is beneficial because it
reduces the secretion of pro-inflammatory cytokines, chemoattractants and the
migration of T lymphocytes.

In the basal condition, phagocytosis of apoptotic newborn neurons is performed
by ramified unchallenged microglia through terminal or en passant branches
forming “ball and chain” structures more efficiently as it was observed that high
proportion of apoptotic cells (phagocytic index >90 %, phagocytic capac-
ity >35 %) completely engulfed within 1.2–1.5 h (Sierra et al. 2010) than the
phagocytosis performed by amoeboid microglia observed during neurodegeneration
(Hanisch and Kettenmann 2007). The rest of the apoptotic cells which are not
engulfed by microglia, i.e., <10 % due to delay between the onset of the apoptotic
program and the exposure of signals primed the local unchallenged microglia to
execute phagocytosis. High phagocytic potential of unchallenged microglia can be
even further enhanced during neurodegeneration. Removal of structures (cells,
dendrites, or synapses from damaged neurons) that have lost their function by
microglia is beneficial for the system as it makes space for new connections and
thereby helping the system to regenerate.

13.4.3 Ramified Microglia and Their Effect on Adult
Hippocampal Neurogenesis

In intact brain, microglia regulates several steps of adult hippocampal neurogenesis.
In the SGZ, progenitor cells migrate to the granule cell layer and differentiate into a
neuronal phenotype, with most NPCs dying in the first few days of life. Within two
months, the surviving neurons receive input, form functional synapses with their
target cells, and exhibit electrophysiological properties indistinguishable from those
of mature neurons. In intact brain, ramified microglia eliminates apoptotic newborn
cells during the first few days of their life by phagocytosis. This phagocytosis
occurs by a special modification of the microglial processes, which form phagocytic
pouches that engulf the apoptotic cells. Microglia can also affect proliferation,
differentiation, and survival, through the secretion of neurotrophic factors. Finally
microglia communicates with nearby neurons through the CX3CR1/CX3CL1 sig-
naling. Interactions between CX3CL1 and CX3CR1 contribute to the ability of
microglia to maintain a surveillant/ramified phenotype. Disruption of this signaling
results in a change in microglia phenotype and function. This leads to the decreased
of hippocampal neurogenesis (Bachstetter and Gemma 2013) (Fig. 13.3).
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13.4.4 Microglia Derived Factors in Neurogenesis

Besides phagocytosis microglia also supports neurogenesis by several different
mechanism: (1) microglia could have a direct instructive role in dictating the
commitment to a neuronal phenotype, (2) microglia could promote proliferation
through secretion of neurotrophic factors, and (3) microglia could produce factors
that regulate survival of neuronal cells.

(a)

(b)

Fig. 13.3 Silver-Gold staining of young adult rat brain tissue of SGZ region of brain. a Neuronal
cell layer of hippocampus just above the dentate gyrus region showing different cellular
distribution within this region, b enlarged view of marked region shows the presence of densely
stained cell probable microglia found in CA1 region of hippocampus. Neuron-microglia
interaction in this region is visible prominently (indicated by green arrows). Both amoeboid
(indicated by violet arrows) and ramified, irregular shaped microglia (indicated by red arrow)
present in hippocampal region to exhibit their involvement in neurogenesis. Photographed taken
by Nikon Eclipse TS 100 microscope with CCD camera (5 megepixel) Nikon DS-Fi2 (Nikon
Corporation, Japan)
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In vitro studies demonstrate that microglia have the capacity to guide the dif-
ferentiation of precursor cells isolated from embryonic brain as well as adult mouse
neural precursor cells toward a neuronal phenotype (Aarum et al. 2003). Microglia
can affect proliferation and survival, in addition to neuron differentiation. Data
showing that addition of microglia-conditioned media in SVZ-derived culture
increased neuroblast production (Walton et al. 2006).

Furthermore, loss of inducible Neurogenesis was paralleled by microglia
depletion in proliferating culture. While a number of growth factors secreted by
microglia could be responsible for such effect, evidence suggests that microglia are
capable of producing growth factors, such as Insulin-like growth factor1(IGF-1)
and Brain-derived neurotrophic factor (BDNF), which promote neurogenesis (Ziv
and Schwartz 2008). Following an enriched environment or physical activity,
beneficial microglia increase, and this increase correlates with an increase in hip-
pocampal neurogenesis (Ziv et al. 2006; Choi et al. 2008). However, other studies
have shown no correlation or an inverse correlation in the role of microglia in
neurogenesis stimulated by environmental enrichment (Gebara et al. 2013).

Microglia is an essential component of the neurogenic niche and therefore
controls various steps of neurogenesis such as neuronal proliferation, differentia-
tion, and survival of newborn neurons into the existing neuronal circuitry. How-
ever, the specific molecular and cellular mechanisms remains to be explore.
A deeper understanding of the physiological function of microglia in the different
steps of neurogenesis is needed.

13.5 Crosstalk Between Neuron and Microglia

A number of neuronal signals were found that can regulate microglia activation
(Biber et al. 2007), suggesting a neuron-microglia dialogue. Neurons may also
deliver signals that keep microglia in their surveillance mode indicating normal
function. Under physiological conditions several neuron-mediated signals have an
anti-inflammatory action at the level of the microglia. Cluster of differentiation
CD200 (also called OX2), CD47, CD55, CX3CL1 (fractalkine), are all
neuro-immunoregulatory proteins constitutively expressed in healthy neurons with
a cognate receptor on microglia (Kierdorf and Prinz 2013). Microglia can regulate
neurogenesis at a number of steps in the neurogenic process. Therefore, a bidi-
rectional regulation of neurons/neurogenesis and microglia might provide a means
to fine tune the neurogenic process. Neuronal signal that regulates microglia
function is the chemokine fractalkine. Fractalkine is constitutively expressed at high
levels on healthy neurons. The receptor for fractalkine, CX3CR1, is more highly
expressed on microglia, than macrophages. Data suggest that fractalkine signaling
may be involved in neuron-microglia dialogue in the neurogenic niche that regu-
lates neurogenesis. It is shown by genetic deletion or pharmacological antagonism
of CX3CR1 in young adult rats that CX3CR1 is important for the maintenance of
hippocampal neurogenesis, as animals with decreased CX3CR1 have less
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neurogenesis (Bachstetter et al. 2011). Furthermore, levels of fractalkine, which are
abundantly expressed in young healthy rodent brains, were decreased in aged
rodents (Bachstetter et al. 2011). It was suggested that the decrease in fractalkine
signaling may contribute to the increased neuroinflammation and decreased hip-
pocampal neurogenesis seen in the aged rodent brain.

Loss of fractalkine/CX3CR1 signaling in a non-disease model, not only affects
neurogenesis, it can cause impairments in motor learning, cognitive function and
synaptic plasticity through increased microglia activation and inflammation in the
CNS (Rogers et al. 2011). Microglia through the CX3CR1 receptor plays a phys-
iological role in adult hippocampal neurogenesis and cognitive function. During
explaining the dual roles of microglia, i.e., either neuroprotective or neurotoxic
nature of microglia we mainly stressed to the influence of microglia on neurons.
However, many studies indicate that neurons are not merely passive targets of
microglia but rather exert control over microglial activities (Biber et al. 2007).
There are considerable interactions between neurons and microglia. Microglia is not
merely surveyors of brain tissue but also receives and actively responds to signals
coming from neurons. Depending on whether they are healthy or injured, neurons
send “on” or “off” signals to influence microglial activation. We can observe the
close association of microglia with neurons in different places of CNS including
hippocampus in adult (Fig. 13.4).

It was hypothesized that activation of microglia as a consequence of neuronal
injury is primarily aimed at neuroprotection, with the loss of specific communi-
cations between neurons and microglia leading to the neurotoxic behavior of
microglia (Polazzi and Contestabile 2002).

Fig. 13.4 Iba-1 expression showing the presence of microglial cells in SGZ region of adult rat
brain tissue. Existences of microglia in SGZ region, both amoeboid and elongated microglia are
found in the hippocampus. Photographed taken by Nikon Eclipse TS 100 microscope with CCD
camera (5 megepixel) Nikon DS-Fi2 (Nikon Corporation, Japan)
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Microglial activation is tightly restricted by signaling coming from neurons:

1. CD200-CD200R has been identified as one of the critical pathways in attenu-
ating microglial activation. CD200 is a member of the immunoglobulin super-
family and is expressed on the neuronal membrane surface, while the CD200
receptor (CD200R) is primarily present in the macrophage lineage, which
includes microglia. This interaction helps microglia to maintain their quiescent
or surveying state. The disruption of CD200-CD200R interactions results in an
accelerated microglial response, whereas intensified CD200-CD200R interac-
tions contribute to attenuation in neurodegeneration (Chitnis et al. 2007).

2. Apart from direct interactions through receptor-ligand combinations, electrical
activity and soluble factors such as neurotrophins and anti-inflammatory agents
released from intact neurons also maintain microglial quiescence. In a
neuron-glia co-culture, the blockade of neuronal electrical activity by tetrodo-
toxin or a glutamate receptor antagonist facilitated microglial activation induced
by IFN-c (Neumann 2001).

3. Injured neurons induced either neuroprotective or neurotoxic behaviors in
microglia depending on the manner of injury.

13.6 Microglia, Neuroinflammation, and Neurogenesis—
Exterior to Interior

Overall, microglial activities in the sites of neurogenesis in adult and inflammatory
influences vary with spatial, behavioral and obviously in pathological conditions.
Several studies demonstrated that proinflammatory condition adversely affect the
process of neurogenesis in adult (Ekdahl et al. 2003), Butovsky et al. (2006)
demonstrated that selective cytokines in dose dependent manner is capable to
continue neurogenesis in adult. In presence of any kind of stress, injury or insult, or
bacterial or viral infection induce neuroinflammatory reaction in brain as a result
CNS combat these challenges bi-directionally. On one hand, an inflammatory
cascade becomes activated to eliminate the pathogen whereas on the other hand a
repair process characterized by enhanced Neurogenesis. Depending on the nature of
different challenges experienced by the brain, adult neurogenesis is either enhanced
or blocked. Uncontrolled immune response impairs neural progenitor cells (NPCs)
survival, proliferation and blocks repair processes whereas well-controlled immune
response can support NPCs survival and promote recovery (Butovsky et al. 2006).
The regenerative process involves the directed migration of NPCs to the site of
injury/inflammation, subsequent differentiation and final integration into the neu-
ronal circuits (Abrous et al. 2005). Inflammatory process in the neurogenic regions
of the brain greatly alters the microenvironment and thereby influences the fate of
these NPCs.
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Activation of microglia due to damage or insult helps in production of pro and
anti-inflammatory cytokines and chemokines such as IL-1b, TNFa, IL-6, IL-18,
MCP-1, SDF-1, various reactive oxygen and nitrogen species (Rock et al. 2004). In
presence of LPS or endotoxin insult (uncontrolled local immune response) in adult
rat brain causing acute neuroinflammation specified by microglial activation in
dentate gyrus region of SGZ showing a sharp decline in hippocampal neurogenesis
(Monje et al. 2003) as microglia upon activation release an array of proinflam-
matory mediators which are anti-neurogenic in nature such as IL-1b, IL-6, IL-18
and TNFa. Thus, microglial activation by endotoxin blocks both neurogenesis and
oligodendrogenesis. However, whether the effect of activated microglia on injured
or inflamed CNS either positive or negative is determined by the type of activation.
Microglia that encounters well-controlled adaptive immunity in the form of CD4+
T cells showing correlation with a protective phenotype. Microglia activated by Th1
and Th2 cytokine mediated adaptive immune response such as IL-4 and IFN-c
neuronal survival. IL-4 induced microglia precisely induce oligodendrogenesis via
the insulin-like growth factor (IGF-1) signaling whereas low level of IFN-c stim-
ulated microglia show bias towards neurogenesis (Butovsky et al. 2005).
Proinflammatory mediators released from microglia culminate in neurodegeneration
by altering neural stem cell niche. Beside this, MCP-1 and SDF-1 released by
activated microglia functions as a positive chemoattractant which promotes the
survival and proliferation of NPCs and also directs the migration towards the site of
infections or injury via its cognate receptor CCR2 and CXCR4, respectively,
expressed on NPCs, thus promoting regenerative homeostasis (Das and Basu 2008).

There are several experimental proofs of microglial response and inflammatory
changes with the exteriorly altered or interiorly modified conditions, which ulti-
mately modify the neurogenesis. In enriched environment (EE) condition SGZ
neurogenesis is found associated with increased MHCII expression of local
microglia and inflammation (Ziv et al. 2006). Different Iba1 expression was found
in dentate gyrus (DG), but not in hippocampal CA1 and CA3 regions and suppress
inflammation in the region in EE condition (Williamson et al. 2012). Wheel running
experiments also show considerable effect to suppress age-related microglia
induced inflammation resulting in increase in adult neurogenesis (van Praag et al.
2005). This exercise increases IGF-1, anti-inflammatory cytokine IL-1ra and che-
mokine CX3CL1 expressing microglia, but reduces MHCII, proinflammatory
TNFa expression and T-cells in the sites of DG showing their resting state (Olah
et al. 2009; Kohman et al. 2012; Pervaiz and Hoffman-Goetz 2011). Status
epilepticus (SE) model shows excitatory signals affect microglial state and neuro-
genesis by increasing IGF-1 expression to activate microglia (Choi et al. 2008).

The role of microglia in postnatal and adult neurogenesis differs from the general
mechanism of action in embryonic neurogenesis. Cunningham and team reported
that microglia regulate the pool of neuronal precursor cells (NPC) by phagocytosing
Tbr2+ and Pax6+ cells in late embryos (Cunningham et al. 2013). Mostly embryonic
microglia varies from morphological and functional features of postnatal and adult
microglia. Pre and early postnatal microglia are mostly amoeboid, active expressing
Runt-related transcription factor 1 (Runx1) (Zusso et al. 2012; Ghosh et al. 2015).
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They are also showing active Notch1 signaling with Jagged-1 and Delta-1 ligand
(Cao et al. 2008). In that state they are active and involved with proinflammatory
and phagocytic states. This state of microglia actively supports neurogenesis and
oligodendrogliogenesis in perinatal phases (Butovsky et al. 2014). But with gaining
adulthood microglia transforms to resting ramified state. TGFb signaling plays
important role in this transition (Erblich et al. 2011). In normal matured brain
microglia produce proinflammatory mediators generally in pathogenic conditions.
As SVG is a site of lifelong neurogenesis presence of microglia is observed in that
region in adult brain. These microglia in postnatal phase initially increases neu-
rogenesis and oligodendrogliogenesis via proinflammatory cytokine mediated
fashion where cytokines like IL-1b, IL-6, TNFa, IFNc, etc., are involved
(Shigemoto-Mogami et al. 2014). A progressive reduction of neurogenesis and
gaining of resting phenotype of microglia in this region is also observed, which may
indicate tight regulation of neurogenesis in adult. The SVZ region is vascularized
with plexus of blood vessels. Several soluble factors release from blood vessels
which help to accumulate microglia when needed (Ihrie and Alvarez-Buylla 2011).
Some signaling like CXCL12/CXCR4 may be involved in such accumulation in the
NSC/NPC niche of adult SVZ (Arno et al. 2014).

13.7 Conclusion

Adult neurogenesis seems to recapitulate several processes that occur during neu-
rogenesis and neuronal circuit formation in embryonic development. However, the
microenvironmental detailing of niche organization, clonal properties, cellular and
molecular regulatory mechanisms and their differences in both the process are still
to be deduced clearly. However, presence and active participation of microglia in
both embryonic and adult neurogenesis are clearly depicted in the studies so far,
and their important regulatory roles in embryonic and adult neurogenesis are
beyond any doubt now. Particularly, microglial active participation in inflammatory
state in adult brain neurogenesis is becoming the crucial for recovery from brain
injury and various neuronal damages. Therefore, from the above discussions it can
be stated that various inflammatory mediators from normal to pathological condi-
tions help to shape the process of neurogenesis. Where in neonatal stages microglial
proinflammatory morpho-functional conditions and neurogenesis are not in direct
conflict, but the situation is not the same in adult. Inflammation and activated
microglia, in general, are found detrimental to adult neurogenesis and repair. But
plenteous experimental evidences are showing that several inflammatory mediators
secreted from microglia or present in microenvironment have positive effect on
neurogenesis or neuronal healing in adult. The nature and balance of inflammatory
mediators are important to direct and optimize the process (Das and Basu 2008;
Ekdahl et al. 2009). Microglia also indicates that it may receive signals from
adjacent inner to distant outer environment in and around the site of neurogenesis or
sense internal–external cues to figure out the tempo and state of the process of
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neurogenesis (Sato 2015). Therefore, microglia in normal and pathogenic brain can
act as a very important component contributing inflammatory development and
controlling neurogenesis in adult.
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