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Abstract Wireless Sensor is one of the important communication device through
which data can be collected and transmitted from any type of terrain. The collection
of sensors constitutes a network that is a self-organized autonomous network which
is called Wireless Sensor Network (WSN). A number of security challenges are
addressed in WSN and one of the security issues is worms or virus attack. To study
the attack and analysis of the spread and control of worms, the epidemic mathe-
matical model becomes an important tool. We propose Susceptible (S), Infective
(I), Treated (T), Highly infected (H), Recovered (R), SITHR model to describe the
nonlinear dynamics of model. In this model, we propose that some infected indi-
viduals should move from treated phase to infected phase even after the use of a
protection mechanism. The universal dynamics of the transmission of the worms
can be analyzed by mathematical model and spreading behavior of a worm in WSN
can be determined by the value R0 basic reproduction number.

Keywords Wireless sensor networks � Basic reproduction number � Equilibrium
point � Worms � Stability

1 Introduction

A large number of sensor nodes constitute Wireless Sensor Networks (WSN), which
are equipped with limited resources like memory, processing power and coverage
area [1]. WSN applications in various area like military, intrusion detection,
surveillance, disaster management, monitoring, healthcare, etc. [2]. Basically sensor
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nodes are used to create a wireless network in any type of territory. After deployment
of nodes it collect data from its surroundings and delivers the collected data to the
control node that is called sink node in multihop communication via its neighbor
nodes. Sensor nodes have limited energy and it is very difficult to replace its battery
because the working areas are very difficult. Therefore, when node exhausts its
energy then it has no ability to transmit data in the network.

The WSN is one of the hot topics for academia and industry due to various
applications. There are some challenges with sensor nodes such as energy con-
sumption, deployment of nodes, security, etc. Sensor nodes are very soft target for
worm attack due to weak defense mechanism. So securities are one of the important
concerns for WSNs and need to be more attention. The other challenge is energy
saving, for energy saving there are various parameters to be discussed like topology
placement of nodes, etc.Workingmode of sensor nodes also play an important role to
save energy. Sensor nodes are working in two modes, sleep or active mode, in sleep
mode, all functional units of the nodes are in an inactive state,ability to transmit
directly and when the nodes are in active mode they are fully working and at that time
the energy of nodes is dissipated. So cleverly use the nodes to save the energy that
means, when no need to transmit or receive data the sensor node goes to sleep mode.

It is found that when worm appears in the sensor networks and nodes are in
active mode they can spread it with data or may be independently from one node to
another node, this happens due to lack of defense mechanism [3]. Figure 1 shows
the sensor field in which sensor nodes are scattered and data transmit between nodes
to nodes or from nodes to sink. When the data is transmitted from node to sink it
will take more hop to reach at sink by different mechanisms [4]. When the source
node sends data to sink via neighbor nodes, during the transmission of data there is
some obstruction in WSN such as worms and virus attack.

Computer viruses are self-replicating and they can propagate via network of
computer without any manual interference [4, 5]. In the digital world one of the

Fig. 1 Wireless sensor network field
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most dangerous threat is worm attack for communication network and computer.
Now day’s new types of worms are surfacing specially for portable devices like
laptops and phones. They have ability to transmit directly from device to device
through wireless technology for example, as Bluetooth or Wi-Fi [4, 5] Wireless
devices are targeted by malicious signals, for example Cabir worm and Mabir worm
and spreading the behavior of these worms and are epidemic in nature [6].
Therefore, to prevent the malware attacks on sensor nodes security mechanism
using epidemic models has been explored by various groups [4, 6–8]. Effect and
control of malicious signals on the computer network have been studied by various
authors by using the concepts of epidemical model [9–12]. Some researchers have
described epidemic models to consider time delay and control mechanism for virus
propagation [9–12].

To be able to understand the dynamical characteristics of worm propagation in
WSNs to study different epidemic models,it is found that there is a similarity
between computer network and WSNs in case of worm propagation. The epidemic
models broadly are useful to study worm spread in WSNs by some authors [4, 13].
In [13], the authors proposed a SIRS model with feedback controller and analyzed
Hopf bifurcation dynamics of malware prevalence in mobile wireless networks. The
authors in [4] proposed an epidemic model with vaccination compartment which
includes both temporal and spatial dynamics of worm spreading process, and some
mathematical analysis and numerical simulations were done to verify this model.
These models do not consider undetected nodes which is harmful for sensor
network.

In the present study, we propose SITHR model to study the dynamics of
spreading of a virus in WSNs and find the stability of the network. Assume that all
the nodes are susceptible towards malicious attack and become infectious and
transmit the worm with data or may be spread through wireless communication. It is
found that some sensor nodes are not detected early the worm attack, so they are not
using any antivirus to prevent malicious attacks. So, it is found that those unde-
tected infectious nodes become highly infected with time. After some time infected
nodes are detected, and these nodes are sent immediately into sleep mode. Because
they do not spread worms to the neighbor nodes in sleep mode and run the antivirus
to remove the worms from nodes. By this method the lifetime of a WSN can
be increased. An efficient antivirus is to be used either to recover these infected
nodes or to remove them from the network without disturbing network stability,
because these infected nodes become dangerous for WSN. Those sensor nodes,
which are detected early, are sent to the treated compartment and malicious signals
can be eradicated early from sensor network. It may be a possibility that due to
slower treatment rate some nodes move to highly infected compartments. Hence, by
increasing the treatment rate we may decrease the severity in the WSNs or we may
say that overhead occurred due to the malicious signal can be removed. When the
transmission overhead of the nodes is minimized, the energy dissipation of nodes
can be minimized and it increases the lifetime of WSN. The diagnosed nodes which
are not treated timely may move to highly infected state they can remove or
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recover to elongate lifetime of a network. This model explores the treatment and
control of early and late detected nodes to elongate WSNs life.

2 Model Formulation

Different subclass of sensor nodes at any time t, are Susceptible S(t), Infectious I(t),
Treatment T(t), Infected H(t), and Recovered R(t) of Total size N(t) i.e.,

NðtÞ = SðtÞ + IðtÞ + TðtÞ + HðtÞ + RðtÞ; ð2:1Þ

In Fig. 2 we describe the dynamical transfer of sub class. The SITHR model is
given by:

dS
dt ¼ aN � b SIN � lS;
dI
dt ¼ bSIN � ðcþ kþ lÞI;
dT
dt ¼ kI � ðrþ lþ qÞT ;
dH
dt ¼ cIþ rT � ðdþ lþ/ÞH;

dR
dt ¼ qT þ/H � lR

9>>>>>>>=
>>>>>>>;

ð2:2Þ

where Sð0Þ = S0, Ið0Þ = I0, Tð0Þ ¼ T0, Hð0Þ = H0 8 t� 0. In order to express
system of Eq. (2.2) as a portion of the entire population, and since the recovered
class R(t) does not appear in the first four equations of system (2.2), we use the
following substitution s = S

N ; i =
I
N ; z =

T
N ; h = H

N. Hence resulting system of
equation shall be:

Fig. 2 Malicious signal transmission diagram in wireless system network
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ds
dt ¼ a� bsi� ls;
di
dt ¼ bsi� ðcþ kþ lÞi;
dz
dt ¼ ki� ðrþ lþ qÞz;
dh
dt ¼ ciþ rz� ðdþ lþ/Þh;

9>>>>>=
>>>>>;

ð2:3Þ

where a considered to be constant rate for new nodes which connected to the WSN,
l is the crashing rate of sensor nodes, b is coefficient of transmission, r is the rate of
transmission from T class to H class, k is the rate of treatment, / is the rate of
recovery from H class to R class, q is the recovery rate from T class to R class, d is
the rate of hardware failure and c the rate at which the infective individuals move
from I class to H class. We will discuss the system in the domain C ¼
ðs; i; z; hÞ2 <4

þ
� �

: Since the model monitors sensor nodes of different class, so all
the state variables remain non negative for all t greater than or equal to zero.

3 Existence of Positive Equilibrium

For equilibrium points, we have ds
dt ¼ 0; didt ¼ 0; dzdt ¼ 0; dhdt ¼ 0; and after a straight

forward calculation, we get equilibrium points as: P0 = ðs; i; z; hÞ = a
l ; 0; 0; 0

� �
for

worm free state and P� = s�; i�; z�; h�ð Þ for endemic state, where,

s� =
c + k + l

b
; i� =

l
b

R0 � 1ð Þ; z� =
kl

bðr + l + qÞ ðR0 � 1Þ;

h� ¼ l
b

cþ rk
ðrþ lþ qÞ

� �
ðR0 � 1Þ;

where R0 [14] is the basic reproduction number given by R0 ¼ ab
lðcþ kþ lÞ. It is clear

that P* exist and unique if and only if R0 > 1.

4 The Stability Analysis

In this section we will discuss the stability analysis of the worm free equilibrium
and endemic equilibrium
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Theorem 1 The system (2.2) is locally asymptotically stable if basic reproduction
number R0 is less than unity at worm free equilibrium P0.

Proof At worm free equilibrium point P0, the Jacobian matrix is

J P0ð Þ ¼
�l � ba

l 0 0

0 ba
l � ðcþ kþ lÞ 0 0

0 k �ðrþ lþ qÞ 0
0 0 �r �ðdþ lþ/Þ

0
BBB@

1
CCCA ð4:1Þ

Eigenvalues of (4.1) are: x1 = � l;x2 ¼ ba
l � ðcþ kþ lÞ, x3 ¼ �ðrþ lþ qÞ;

x4 ¼ �ðdþ lþ/Þ. It is clear that x1 < 0, x3 < 0, x4 < 0 and x2 < 0 if ba
l �

ðc + k + lÞ \0) ab
lðcþ kþ lÞ\1 ) R0\1, therefore the system is locally

asymptotically stable at worm free equilibrium point P0 which proves the theorem.

Theorem 2 The system (2.2) is globally asymptotically stable if R0 � 1 at worm
free equilibrium P0.

Proof Consider the Lyapunov [15] function LðtÞ : <4 ! <þ defined by L tð Þ = xi.
Its derivative w.r.t t

_LðtÞ ¼ x
di
dt

¼ x bsi � ðcþ kþ lÞið Þ�x
ba
l

� ðcþ kþ lÞ
� 	

i ¼ x R0 � 1ð Þi;

It is clear that dLðtÞdt ¼ 0 only when i = 0. Therefore the maximum invariant

C ¼ ðs; i; z; hÞ 2 <4
þ

� �
is the singleton set. Therefore the global stability of worm

free equilibrium P0 when R0 � 1 from Lasalle invariance principle [15].

Theorem 3 The endemic equilibrium is locally asymptotic stable if R0 [ 1.

Proof The Jacobian matrix associated with endemic equilibrium is

JðP0Þ ¼
�lR0 � ba

lR0
0 0

lðR0 � 1Þ 0 0 0
0 k �ðrþ lþ qÞ 0
0 m r �ðdþ lþ/Þ

0
BB@

1
CCA ð4:2Þ

Eigenvalues of (4.2) are x1 ¼ �ðlþ dþ/Þ;x2 ¼ �ðcþ kþ lÞ;x3 ¼
�ðrþ lþ qÞ; x4 = –l(R0 > 1). It is clear that x1\0;x2\0;x3\0;x4\0, if
R0 > 1 therefore the system is locally asymptotically stable at endemic equilibrium
point P*.

Theorem 4 The Endemic equilibrium is globally asymptotically stable.

Proof Consider the suitable Lyapunov function
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_L ¼ s� s�

s

� 	
_sþ i� i�

i

� 	
iþ z� z�

z

� 	
_zþ h� h�

h

� 	
_h

¼ s� s�

s

� 	
b� bðs� s�Þði� i�Þ � lðs� s�Þð Þþ i� i�

i

� 	
bðs� s�Þði� i�Þð

�ðcþ kþ lÞði� i�ÞÞþ z� z�

z

� 	
kði� i�Þ � ðrþ qþ lÞðz� z�Þð Þ

þ h� h�

h

� 	
cði� i�Þ � rðz� z�Þ � ðdþ lþ/Þðh� h�Þð Þ

¼ a� as�

s

� 	
� ðs� s�Þ2

s
bði� i�Þþ lð Þþ ði� i�Þ2

i
bðs� s�Þ � ðcþ kþ lÞð Þ

� ðz� z�Þ2
z

ðrþ lþ qÞ � ðdþ lþ/Þ ðh� h�Þ2
h

þ k i� i� � z�i
z

þ z�i�

z

� 	

c i� i� � h�i
h

þ h�i�

h

� 	
þ r z� z� � h�z

h
þ z�h�

h

� 	

ð4:3Þ

) dL
dt ¼ P� Q where,

P ¼ aþ bðs� s�Þ2i�
s

þ bsði� i�Þ2
i

þ kiþ kz�i�

z
þ ciþ ch�i�

h
þ rzþ rz�h�

h

Q ¼ as�

s
þ ðs� s�Þ2

s
biþ lð Þþ ði� i�Þ2

i
bs� þ ðcþ kþ lÞð Þþ ðrþ lþ qÞ ðz� z�Þ2

z

ðdþlþ/Þ ðh� h�Þ2
h

þ ki� þ kiz�

z
þ ci� þ ch�i

h
þ rz� þ rh�z

h
dL
dt

¼ 0 , s ¼ s�; i ¼ i�; z ¼ z�; h ¼ h�

If P < Q then we get dL
dt � 0, and dL

dt ¼ 0 iff s ¼ s�; i ¼ i�; z ¼ z�; h ¼ h�;

therefore the largest compact invariant set C ¼ ðs; i; z; hÞ 2 <4
þ : dLdt ¼ 0

n o
is the

singleton set {P*}. Hence by Lasalle’s invariance principle [15] P* globally
asymptotically stable in C.

5 Simulation and Result

Figure 3 explain the dynamical behavior of susceptible (S), infective (I), treated (T),
highly infected (H) and recovered (R) with respect to time (t). It has been observed
that the number of susceptible and infected nodes takes non-negative values and
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approaches to steady state. In this situation the worms persist in the WSN. In this
case R0 > 1 this shows asymptotic behavior of endemic equilibrium.

It has been observed from Fig. 4, when treatment rate is high, initially infective
nodes are removed quickly and after some time a treatment approach is applied in
a steady state.

Figure 5 demonstrates the analysis of susceptible class versus infective class by
the variation of different parameters. Initially all nodes are susceptible and becomes
infective after some time.

It has been observed from Fig. 6, when treatment rate is high, infective nodes get
removed from the network quickly and elongate the lifetime of a network.

Fig. 3 Shows dynamical demeanor of the system for different classes under the condition
(a = 0.35; b = 0.01; l = 0.001; c = 0.001; k = 0.06; r = 0.009; q = 0.01; d = 0.08; u = 0.01)

Fig. 4 Shows dynamical demeanor of the system for Treatment classes under the condition A a =
0.35; b = 0.01; l = 0.001; c = 0.001; k = 0.06; r = 0.009; q = 0.01; d = 0.08; u = 0.01; B a = 0.35;
b = 0.01; l = 0.001; c = 0.001; k = 0.09; r = 0.009; q = 0.01; d = 0.08; u = 0.01; C a = 0.35; b =
0.01; l = 0.001; c = 0.001; k = 0.1; r = 0.009; q = 0.01; d = 0.08; u = 0.01
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6 Conclusion

We developed mathematical model to describe the spreading and controlling
activities of malicious signals in WSN consisting of ordinary differential equations
to study the effect of treatment dynamics of worm transmission. We derive the
expression for basic reproduction R0 for determining the dynamic behavior of worm
transmission. The local and global stability of worm free equilibrium and endemic

Fig. 5 Shows dynamical demeanor of the system for susceptible versus infective under the
condition A a = 0.35; b = 0.01; l = 0.001; c = 0.001; k = 0.06; r = 0.009; q = 0.01; d = 0.08; u =
0.01; B a = .38; b = 0.01; l = 0.001; c = 0.001; k = 0.08; r = 0.01; q = 0.01; d = 0.08; u = 0.01;
C a = .4; b = 0.01; l = 0.001; c = 0.001; k = 0.1; r = 0.014; q = 0.01; d = 0.08; u = 0.01

Fig. 6 Shows dynamical demeanor of the system for infective versus treatment under the
condition A a = 0.35; b = 0.01; l = 0.001; c = 0.001; k = 0.06; r = 0.009; q = .01; d = 0.08; u =
0.01; B a = 0.35; b = 0.01; l = 0.001; c = 0.001; k = 0.09; r = 0.009; q = 0.01; d = 0.08; u = 0.01;
C a = 0.35; b = 0.01; l = 0.001; c = 0.001; k = 0.1; r = 0.009; q = 0.01; d = 0.08; u = 0.01
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equilibrium are established by using the Jacobian matrix and Lyapunov function. It
is establish that if R0, is less than or equal to one, then worms can be eradicated and
the system becomes globally stable and when R0 > 1 the endemic equilibrium will
be globally asymptotically stable. It is also observed that as the treatment rate
increases the spreading of malicious signal decreases. It saves energy of the sensor
nodes by operating in sleep and active modes and enhances the life of WSN.
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