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Exploratory factor analysis (EFA) and principal component analysis (PCA) are two
common methods for dimensionality assessment. Both methods assume that the
variables are continuous. In EFA, a few common factors are extracted from the
variables; whereas in PCA, a few components are created to account for the vari-
ations among variables. Linear EFA or PCA was enhanced by means of parallel
analysis (PA). In the PA method, a large number (e.g., 100) of datasets that have the
same size of response matrix of the real dataset are randomly simulated and then
analyzed with linear EFA or PCA. These eigenvalues obtained from random
datasets are compared with those of the real dataset. The number of factors is the
number of times when the eigenvalues derived from the real dataset are larger than
the 95th percentile (or mean) of the eigenvalue distribution of the simulated data-
sets. The PA method appears promising in dimensionality assessment for contin-
uous, dichotomous, and polytomous variables, and it can accommodate the Pearson
correlation and the polychoric correlation (Cho et al. 2009; Tran and Formann
2009; Weng and Cheng 2005).

Weng and Cheng (2005) concluded that the PA method performs well for
unidimensional dichotomous variables when the 95th or 99th percentile of the
random data eigenvalues criteria is used. Cho et al. (2009) observed that the PA
method based on the Pearson correlation performs at least as well as that based on
the polychoric correlation in most conditions. However, Tran and Formann (2009)
showed that the PA method does not perform well in assessing the dimensionality
of dichotomous variables based on the Pearson correlation or the tetrachoric cor-
relation. Finch and Monahan (2008) implemented a modified PA method based on
nonlinear factor analysis with the TESTFACT program (Wilson et al. 1991) and

C.-W. Liu (&) � W.-C. Wang
Education University of Hong Kong, Tai Po, Hong Kong
e-mail: cwliu@eduhk.hk

W.-C. Wang
e-mail: wcwang@eduhk.hk

© Springer Science+Business Media Singapore 2016
Q. Zhang (ed.), Pacific Rim Objective Measurement
Symposium (PROMS) 2015 Conference Proceedings,
DOI 10.1007/978-981-10-1687-5_26

395



parametric bootstrap sampling, and they concluded that the new method outper-
forms the DIMTEST method in identifying the unidimensional structure.
Timmerman and Lorenzo-Seva (2011) implemented the PA method with a mini-
mum rank factor analysis to assess the dimensionality of polytomous variables, and
they observed that this method outperforms traditional PA methods in most con-
ditions. They thus recommended the use of the polychoric correlation for polyto-
mous variables if there is no convergence problem. In this study, the PA method
implemented in the computer program FACTOR (Lorenzo-Seva and Ferrando
2006) was used to serve as a baseline, with which other methods were compared.

The Hull method can be regarded as a generalization of the scree test
(Lorenzo-Seva et al. 2011). A series of EFAs are conducted, each with a different
number of factors, starting from 1 to an upper bound. The upper bound can be
determined by the indicated number of factors via the PA method plus one for the
search range of the elbow on the scree plot. Each run has several goodness-of-fit
indices (e.g., the comparative fit index, root mean square error of approximation,
standardized root mean square residual, and common part accounted for) which are
plotted against the degrees of freedom in a two-dimensional scree-like plot. The Hull
method seeks an optimal balance between the fit and the degrees of freedom itera-
tively. The number of dimensions is determined, in which the elbow is located
heuristically on a break or discontinuity in the convex hull. Lorenzo-Seva et al. (2011)
conducted simulation studies on continuous variables to compare theHullmethod and
the PA method using the Bayesian information criterion, and observed that the Hull
method outperforms the PA method in recovering the correct number of dimensions.

The DETECT method is a statistical method for dimensionality assessment. It
aims to identify not only the number of dimensions, but also by which items a
dimension is predominantly measured. The DETECT method is based on covariance
theory that items measuring the same dimension would have positive covariances,
whereas items measuring different dimensions would have negative covariances,
given the latent traits or total scores have been taken into account (Stout et al. 1996;
Zhang 2007; Zhang and Stout 1999). The DETECT index is expected to be zero if
data are truly unidimensional. If data are multidimensional, the expected pairwise
conditional covariance will be positive when both items measure the same dimen-
sion, and negative when they measure different dimensions. At the outset, a genetic
algorithm, together with a hierarchical cluster analysis, can be used to search an
optimal subspace. The optimal dimensionality partition is obtained by searching all
over possible dimensions to maximize the DETECT index. The approximate simple
structure index and the ratio index can help determine whether a dataset displays an
approximately simple structure (in a simple structure, each item measures a single
dimension, but different items may measure different dimensions).

The spectral clustering (SC) method aims to classify data structure into clusters
on a manifold space (Luxburg 2007). It is widely used to cluster image data or
pattern representation in computer science, statistics, etc. Moreover, it is easy to
implement via standard linear algebra methods and usually outperforms traditional
approaches such as the k-means clustering algorithm (Luxburg 2007). Once the
number of clusters (dimensions) is determined, the SC method continues to classify
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variables (items) to different clusters. Analogous to the DETECT method, the SC
method identifies not only the number of clusters, but also the cluster to which an
item belongs. Although the SC method is promising, to the authors’ knowledge, it
has never been applied to dimensionality assessment within the IRT framework. In
this study, we thus evaluated the performance of an extended version of the SC
method within the IRT framework. The details of the SC method and its extended
version are given in the following section.

To sum up, this study aimed to compare the PA, DETECT, Hull, and SC
methods in dimensionality assessment of IRT data through simulations. Most IRT
models, including the one-, two-, and three-parameter logistic models for
dichotomous items (Birnbaum 1968; Rasch 1960), and the partial credit model
(Masters 1982), generalized partial credit model (Muraki 1992), and graded
response model for polytomous items were examined. The rest of this article is
organized as follows. First, we introduce the background of the SC method and its
variant of spectral multi-manifold clustering (SMMC), which is rarely (or never)
used in the IRT field. Second, we describe the IRT models that were used for data
generation. Third, we summarize the results of the simulations that were conducted
to evaluate the performance of the PA, DETECT, Hull, and SC methods in
dimensionality assessment. Finally, we draw some conclusions and make sugges-
tions for future studies.

Spectral Multi-manifold Clustering (SMMC)

In machine-learning terminology, a low-dimensional manifold is a topological
space hidden in a high-dimensional data space. Conceptually, each item is located
in an N-dimensional space, and items measuring the same construct should form a
one-dimensional manifold. Trying to discover the dimensionality of item response
data is intuitively analogous to discovering their latent manifolds. The character-
istics of the similar items are learned by a machine-learning algorithm based on the
responses. The properties of a high-dimensional data space are preserved in a
low-dimensional embedding of the data, a process known as dimensionality
reduction. After feature extraction, the next step is to classify items into appropriate
clusters in the low-dimensional data space. The two-step processes are carried out
consecutively in the SC method.

In essence, the SC method starts with generating an undirected affinity matrix
G(V, E), which is derived from pairwise similarities (e.g., Euclidean distance). The
term “undirected” means an equal weight between two data points, regardless of
their direction. V and E stand for vertices (i.e., data points) and edge (i.e., the weight
distance between vertices), respectively. The affinity matrix can be constructed by
the ε-neighborhood graph, the k-nearest neighbor graphs, or the fully connected
graph. The choice of construction depends on the problems to be solved. First, one
can select the k-nearest neighbor graphs where a data point connects to only
k-nearest data points near itself, finally resulting in a sparse, undirected, and
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weighted adjacency matrix W (Luxburg 2007). Second, the normalized SC algo-
rithm can be used (Shi and Malik 2000), which meets the objectives of clustering
(i.e., minimize the between-cluster similarities and maximize the within-cluster
similarities), consistence (i.e., the clustering results converge to a true partition
when data increase), and simple computation (Luxburg 2007). Therefore, the data
points can be mapped into a low-dimensional space, where the characteristics of
sets of items become more evident than in the original space (i.e., similar items are
close to one another than to other items). Finally, the number of dimensions is
determined by counting the first k smallest eigenvalues equal to zero, and then the
traditional k-means algorithm can be used to cluster an eigenvector matrix derived
from a generalized eigenproblem. Items within the same cluster are deemed as
measuring the same dimension.

The normalized SC algorithm is outlined as follows. First, a similarity graph is
constructed using the k-nearest neighbor method (or the other methods outlined
above). Second, an unnormalized graph Laplacian matrix is computed, which is
defined as L = D − W, where D is a degree matrix, defined as the diagonal matrix
with the degrees d1,…, dI on the diagonal. The di is defined as. Third, a generalized
eigenproblem Lu = λDu is solved to derive the first k generalized eigenvector
u1, …, uk corresponding to the k smallest eigenvalues, then a matrix U 2 ℝI×K is
obtained, where K is the number of intrinsic dimension. The element of U is yi 2 ℝK

for i = 1, …, I. Fourth, the items are grouped by the k-means algorithm into
clusters.

In a multidimensional space, we conjecture that items in the same group (i.e.,
measuring the same dimension) may intersect with, or be nearly close to, other
groups of items, especially when these dimensions are highly correlated. However,
the normalized SC algorithm merely includes a local similarity among points in the
neighborhood. It may not be informative to accurately cluster items. Thus, the
structural similarity (i.e., similar local tangent space) is another source of infor-
mation derived from the data. Wang et al. (2011) proposed the SMMC algorithm to
consider the information of local similarity and structural similarity to compositely
create an affinity matrixW. The main idea is that if two items are close to each other
and have similar tangent spaces, they may come from the same manifold (dimen-
sion). Then, local tangent space i at an item i can be approximated mixtures of
probabilistic principal component analyzers (Tipping and Bishop 1999). The tan-
gent space of pairwise points can be defined as, where h is the number of
dimensions of the manifolds; ω is a weighting parameter; and form the principal
angles between two tangent spaces and. The is defined as where, l = 2, …, h.

The local similarity sij is defined as

sij ¼ 1 if xi 2 KnnðxjÞ or xj 2 KnnðxiÞ
0 otherwise

�
ð1Þ

where Knn(x) denotes k-nearest neighbors of x. Finally, the local similarity function
and structural similarity function are integrated to generate the affinity value:
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wij ¼ sijtij ¼
Ph

l¼1 cosð/lÞ
h ix

if xi 2 KnnðxjÞ or xj 2 KnnðxiÞ
0 otherwise

(
: ð2Þ

Each item response vector is transformed into a standardized score to remove the
impact of different variances of response vector in calculating the Euclidean dis-
tance between items.

Overall, the SMMC method uses only the distance information of local simi-
larity function and structural similarity of the items, and does not assume the
underlying item response function. More item categories could reduce the mea-
surement error in calculating the Euclidean distances between items (i.e., the ordinal
scale could be approximated as an interval scale as the number of categories
increases), which could increase the accuracy. Sample size could also be an
important factor and were investigated in the simulation studies.

Multidimensional IRT Models

The multidimensional generalized partial credit model (MGPCM) (Yao and
Schwarz 2006) was used to generate item responses. It is commonly used for
achievement tests in the psychometric literature. The item response function of the
MGPCM is defined as

PrðZni ¼ zjhn; niÞ ¼
exp½zðaTi hn � diÞ � Rz

k¼0sik
RC�1
m¼0 exp½mðaTi hn � diÞ � Rm

k¼0sik�
� � ; ð3Þ

where Zi 2 [0, 1, …, C − 1] is the observable response variable; z is the observed
response; C is the number of categories; θn is the latent trait vector representing
D × 1 dimensions for person, n; ni is item i’s parameter vector containing a D × 1
slope parameter vector of αi, an intercept parameter of di; and threshold parameters
of τi0,…, τiC−1. τi0 is set at 0 by convention. The MGPCM is compensatory because
the latent traits θ are connected by a linear combination of αi, when an item
measures multiple latent traits. Dimensionality is the minimum number of latent
traits that is adequate to explain the underlying examinees’ performance (assuming
local independence and monotonicity) and groups of items being sensitive to dif-
ferences along the dimensions (Reckase 2009; Svetina and Levy 2014).

To be in line with most literature on dimensionality assessment, we focus on
simple structures of latent traits in this study. That is, each item measures a single
dimension and different items may measure different latent traits. Simple structures
are also referred to as between-item multidimensionality, in contract to within-item
multidimensionality where an item may measure multiple latent traits simultane-
ously (Adams et al. 1997).
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Simulations

The SMMC, PA, and Hull methods have been implemented and are available at
http://lamda.nju.edu.cn/code_SMMC.ashx (Wang et al. 2011) and http://psico.fcep.
urv.es/utilitats/factor/, respectively, where the last two methods have been imple-
mented in a stand-alone program called FACTOR 8.1 (Lorenzo-Seva and Ferrando
2006). The DOS version of the poly-DETECT program is generously provided by
the author (Zhang 2007).

In this study, the independent variables included: (a) number of respondents
(N = 250; 1000; 2000), (b) number of response categories (C = 2, 4, 6), (c) number
of dimensions (D = 1, 2, 3), (d) correlation among dimensions (r = 0, 0.4, 0.8), and
(e) number of items per dimension (L = 10, 20). Each dimension had the same
number of items in order to obtain a constant amount of information across
dimensions, so that the effect of the number of items would not be confounded with
that of the number of dimensions. This setting was also adopted in the literature
(Garrido et al. 2011; Svetina 2012). A total of 100 replications in each condition
were implemented. For each simulated dataset, the four methods (PA, Hull,
DETECT, and SMMC) were adopted, and their performance in detecting the cor-
rect dimensionality was compared.

The dependent variable was the accuracy rate, defined as the proportion of times
in the 100 replications that the number of dimensions was identified correctly.
Additionally, for the SMMC and DETECT methods, it was interesting to know how
accurate an item was assigned to its corresponding dimension, given that the
number of dimensions had already been identified correctly. The following hit rate
was proposed to reflect the accuracy:

PAR
r¼1

PI
i¼1 hri

AR� I
; ð4Þ

where AR was the number of times that the number of dimensions was correctly
identified in 100 replications; hri was a dummy variable and was equal to 1 if an
item was correctly assigned to its dimension, and 0 otherwise; and I was the test
length. When the hit rate was 1, all items were correctly assigned to their dimen-
sions; when the hit rate was 0, none of the items was correctly assigned.

Parameter configurations were as follows. In the SMMC method, the dimension
of the manifolds was set at 1, meaning that each manifold was assumed to be
unidimensional; the number of mixtures was set at 2 due to a relatively small
number of items; the number of neighbors was set at 2; and the weighting parameter
was arbitrarily set at 10. The number of clusters was determined by the eigengap
heuristic (Luxburg 2007), which counts the number of times from the first eigen-
value to the last one that the difference in two successive eigenvalues was relatively
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smaller than 10−6. As for the PA method, a total of 100 random datasets were
generated, and their Pearson correlation matrices were calculated. Factors were
extracted using the unweighted least squares with the Promin oblique rotation.
Finally, the 95th percentile criterion was used to determine the number of dimen-
sions. The same factor extraction method as in the PA method was adopted for the
Hull method, and the comparative fit index was used to describe model-data fit in
the Hull method. Regarding the DETECT method, an exploratory approach was
adopted, because no prior information about the dimensionality was utilized in the
simulations. The minimum number of respondents per score strata was set at 5,
meaning that the strata with less than 5 respondents would be removed from the
calculation of conditional covariances and then collapsed into adjacent strata. The
number of mutations in the genetic algorithm was set at 2 for 10-item tests and 4 for
20-item tests. The maximum number of dimensions for the exploratory search was
set at 6. Cross-validation, strongly recommended in small sample sizes or short tests
(Monahan et al. 2007), was utilized, in which the respondents were randomly split
into two halves to serve as the training and validation subsets. To examine the
dimensional structure, the critical values for approximate simple structure index
(ASSI) and ratio index (R) were set at 0.25 and 0.36, respectively, which were the
default values in poly-DETECT program. When they both were smaller than the
critical values, the dataset would be declared as approximate simple structure.
The expected conditional covariance was calculated for the affinity matrix.

Only simple structures were considered in this study. In simulating item
responses, the discriminate parameter vector αi was set at 1 for the MGPCM; the
person parameter vector θn was generated from a multivariate normal distribution
with mean vector 0 and covariance-variance matrix R with diagonal elements equal
to 1. The correlations among dimensions were all set at a constant. To be consistent
with most IRT literature, the person parameters were treated as random effects, but
the item parameters as fixed effects, across replications. The intercept parameter δ
was set from −2 to 2 with an equal interval between two adjacent items for each
dimension. The settings of item and person parameters were generally consistent
with simulation and empirical studies in the IRT literature (Muraki 1992). For
example, Muraki (1992) uses the range from −1.68 to 1.68 in simulations and
obtains a range from −4.47 to 3.37 in an empirical example.

The τi1, …, τiC were drawn from a uniform interval from −2 to 2 with the order
of τi1 < τi2 < … < τi(C−1) < τiC.

We had the following expectations on the simulation results. The PA, Hull, and
DETECT methods would be superior to the SMMC method, because the former
three methods considered the ordinal nature of categorical data, whereas the latter
was a nonparametric method and only consider the continuous nature. The SMMC
method might outperform the others as the number of categories is large.
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Results

Dichotomous Items

Table 1 shows the accuracy rates and the mean numbers of misspecified dimensions
(in parentheses) for two-category items following the one-, two-, and
three-dimensional generalized partial credit models. First, consider one-dimensional
data. The PA and Hull methods performed almost perfectly across all conditions.
The DETECT method did not yield results when the sample size N = 250
(DETECT program warned the calculated conditional covariances was inaccurate
and did not give results), but yielded good accuracy rates when N = 1000 or 2000.
The SMMC method performed satisfactorily only when N = 1000 or 2000, and test
length L = 20 items (but sometimes, it failed to converge).

Next, consider two- and three-dimensional data. When N = 250 and r = 0 or 0.4,
the PA and Hull methods outperformed the other two methods in the accuracy rates;
when N = 250 and r = 0.8, the SMMC method performed relatively better.
The DETECT method was the best when N = 1000 or 2000. The hit rates were
perfect or nearly perfect for the DETECT method and very high for the SMMC
method. Generally, it was much more difficult to identify dimensionality when
r = 0.8 than when r = 0.4 or 0. Fortunately, the DETECT method still yielded a
very high accuracy rate when r = 0.8, given that N = 2000 and L = 20.

Polytomous Items

Tables 2 and 3 show the accuracy rates and the mean numbers of misspecified
dimensions (in parentheses) for four-category items and six-category items fol-
lowing the one-, two-, and three-dimensional generalized partial credit models,
respectively. A comparison of Tables 1 (two-category items), 2 (four-category
items), and 3 (six-category items) revealed that the more response categories, the
easier the identification of dimensionality. Given the great similarity between
Tables 2 and 3, the following discussion focuses on Table 3. First, consider
one-dimensional data. The PA method performed perfectly in the identification of
the single dimension and outperformed the other three methods. The DETECT
method did not yield results when N = 250 but performed almost perfectly when
N = 1000 or 2000. The Hull method performed perfectly when L = 10 but very
poorly when L = 20 and N = 1000 or 2000. The SMMC method performed sat-
isfactorily when N = 1000 or 2000 (but sometimes, it failed to converge).

Next, consider two- and three-dimensional data. When N = 250 and r = 0 or 0.4,
the PA, Hull, and SMMC methods performed almost perfectly in the identification
of the two or three dimensions, whereas the DETECT method did not yield results.
When N = 250 and r = 0.8, the SMMC method was the best. When N = 1000 or
2000, the DETECT method always yielded a perfect accuracy rate. The PA method
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always yielded a perfect accuracy rate when r = 0 or 0.4, but it performed very
poorly when r = 0.8. The Hull method performed poorly when L = 20 or r = 0.8.
The SMMC performed almost perfectly across all conditions. The hit rates were
always perfect for the DETECT method, except when the sample size was 250, and
often perfect for the SMMC method. In summary, the following recommendations
appear applicable:

1. The PA method is recommended when sample sizes are small, and the number
of dimension is one or the correlations among dimensions are low.

2. The DETECT method is recommended when sample sizes are large.
3. The SMMC method can be a supplement to the PA and DETECT methods when

the number of categories is large.

Conclusion and Discussion

The SMMC method makes no assumption on the responding process, seeming to be
a promising alternative for dimensionality assessment. Although the SMMC per-
forms worse than other methods in general, it can serve as a supplement to the PA
and DETECT methods.

Future studies can aim at evaluating these four methods and other methods under
a more comprehensive design. For example, multidimensional scaling and boot-
strap generalization are promising methods of dimensionality assessment (Finch
and Monahan 2008; Meara et al. 2000). In this study, only simple structures were
investigated. The dimensionality assessment of complex structures, in which an
item may measure more than one dimension and the dimensions can be compen-
satory or noncompensatory (Embretson 1997; Sympso 1978; Whitely 1980), is of
great importance and left for future studies. The PA method used in this study
adopted the Pearson correlation in order to be consistent with the literature
(Timmerman and Lorenzo-Seva 2011; Weng and Cheng 2005). Actually, the
polychoric correlation can be used for ordinal data (Cho et al. 2009; Timmerman
and Lorenzo-Seva 2011).

References

Adams, R. J., Wilson, M., & Wang, W.-C. (1997). The multidimensional random coefficients
multinomial logit model. Applied Psychological Measurement, 21(1), 1–23.

Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability.
In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores (Chaps. 17–20).
Reading, MA: Addison-Wesley.

Cho, S.-J., Li, F., & Bandalos, D. (2009). Accuracy of the parallel analysis procedure with
polychoric correlations. Educational and Psychological Measurement, 69(5), 748–759.

Embretson, S. E. (1997). Multicomponent response models. Handbook of modern item response
theory (pp. 305–321), Springer.

A Comparison of Methods for Dimensionality Assessment of … 409



Finch, H., & Monahan, P. (2008). A bootstrap generalization of modified parallel analysis for IRT
dimensionality assessment. Applied Measurement in Education, 21(2), 119–140.

Garrido, L. E., Abad, F. J., & Ponsoda, V. (2011). Performance of Velicer’s minimum average
partial factor retention method with categorical variables. Educational and Psychological
Measurement, 71(3), 551–570.

Lorenzo-Seva, U., & Ferrando, P. J. (2006). Factor: A computer program to fit the exploratory
factor analysis model. Behavior Research Methods, Instruments, & Computers, 38, 88–91.

Lorenzo-Seva, U., Timmerman, M. E., & Kiers, H. A. L. (2011). The Hull method for selecting the
number of common factors. Multivariate Behavioral Research, 46(2), 340–364.

Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395–416.
Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.
Meara, K., Robin, F., & Sireci, S. G. (2000). Using multidimensional scaling to assess the

dimensionality of dichotomous item data. Multivariate Behavioral Research, 35(2), 229–259.
Monahan, P. O., Stump, T. E., Finch, H., & Hambleton, R. K. (2007). Bias of exploratory and

cross-validated DETECT index under unidimensionality. Applied Psychological Measurement,
31(6), 483–503.

Muraki, E. (1992). A generalized partial credit model: application of an EM algorithm. Applied
Psychological Measurement, 16(2), 159–176.

Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen,
Denmark: Danmarks Paedogogiske Institut, 1960. Chicago: University of Chicago Press, 1980.

Reckase, M. D. (2009). Multidimensional item response theory. New York: Springer-Verlag.
Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 22(8), 888–905.
Stout, W., Habing, B., Douglas, J., Kim, H. R., Roussos, L., & Zhang, Jinming. (1996).

Conditional covariance-based nonparametric multidimensionality assessment. Applied
Psychological Measurement, 20(4), 331–354.

Svetina, D. (2012). Assessing dimensionality of noncompensatory multidimensional item response
theory with complex structures. Educational and Psychological Measurement.

Svetina, D., & Levy, R. (2014). A framework for dimensionality assessment for multidimensional
item response models. Educational Assessment, 19(1), 35–57.

Sympson, J. B. (1978). A model for testing with multidimensional items. Paper presented at the
Proceedings of the 1977 computerized adaptive testing conference.

Timmerman, M. E., & Lorenzo-Seva, U. (2011). Dimensionality assessment of ordered
polytomous items with parallel analysis. Psychological Methods, 16(2), 209–220.

Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 61(3), 611–622.

Tran, U. S., & Formann, A. K. (2009). Performance of parallel analysis in retrieving
unidimensionality in the presence of binary data. Educational and Psychological
Measurement, 69(1), 50–61.

Wang, Y., Jiang, Y., Wu, Y., & Zhou, Z.-H. (2011). Spectral clustering on multiple manifolds.
IEEE Transactions on Neural Networks, 22(7), 1149–1161.

Weng, L.-J., & Cheng, C.-P. (2005). Parallel analysis with unidimensional binary data.
Educational and Psychological Measurement, 65(5), 697–716.

Whitely, S. E. (1980). Multicomponent latent trait models for ability tests. Psychometrika, 45(4),
479–494.

Wilson, D. T., Wood, R., & Gibbons, R. D. (1991). TESTFACT: Test scoring, item statistics, and
item factor analysis. SSI, Scientific Software International.

Yao, L., & Schwarz, R. D. (2006). A multidimensional partial credit model with associated item
and test statistics: an application to mixed-format tests. Applied Psychological Measurement,
30(6), 469–492.

Zhang, J. (2007). Conditional covariance theory and detect for polytomous items. Psychometrika,
72(1), 69–91.

Zhang, J., & Stout, W. (1999). The theoretical detect index of dimensionality and its application to
approximate simple structure. Psychometrika, 64(2), 213–249.

410 C.-W. Liu and W.-C. Wang


	26 A Comparison of Methods for Dimensionality Assessment of Categorical Item Responses
	Spectral Multi-manifold Clustering (SMMC)
	Multidimensional IRT Models
	Simulations
	Results
	Dichotomous Items
	Polytomous Items

	Conclusion and Discussion
	References


