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A new paradigm for measurement in education and psychology, which mimics
much more closely what goes on in the physical sciences was foreshadowed by
Thurstone (1926) and Rasch (1961):

It should be possible to omit several test questions at different levels of the scale without
affecting the individual’s score [measure].

… a comparison between two individuals should be independent of which stimuli [test
questions] within the class considered were instrumental for comparison; and it should also
be independent of which other individuals were also compared, on the same or some other
occasion.

Taken to the extreme, we can imagine a group of language test takers (reading,
writing, speaking, or listening) being invariantly located on a scale without sharing
a single item in common. i.e. no item is taken by more than one person. This
context defines the limit case of omitting items and making comparisons inde-
pendent of the particular questions answered by any test taker.

More formally we can contrast a fully crossed pxi design (persons crossed with
items) in which all persons take the same set of items with a nested design i:p (all
items are unique to a specific person). The more common design in language
research is pxi simply because there is no method of data analysis that can extract
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invariant comparisons from an i:p design unless item calibrations are available from
a previous calibration study or are theoretically specified.

But the i:p design is routinely encountered in physical science measurement
contexts and in health care when, for example, parents report their child’s tem-
perature to a pediatrician. Children in different families do not share the same
thermometers. Furthermore, the thermometers may not even share the same mea-
surement mechanism (mercury in a tube vs. NexTemp technology, see Note 1). Yet,
there is little doubt that the children can be invariantly ordered and spaced on any of
several temperature scales.

The difference between the typical language testing and temperature scenarios is
that the same construct theory, engineering specifications and manufacturing
quality control procedures have been enforced for each and every thermometer,
even though the measurement mechanism may vary. In addition, considerable
resources have been expended in ensuring the measuring unit (°F or °C) has been
consistently mapped to the measurement outcome (e.g. column height of mercury
or cavity count turning black on a NexTemp thermometer) (Hunter 1980; Latour
1987). Substantive theory, engineering specifications, and functioning metrological
networks—not data- render comparable measurement from these disparate ther-
mometers. This contrast illustrates the dominant distinguishing feature between
measurement in the physical and educational sciences including EFL, ESL and
ENL language testing. Educational measurement does not, as a rule, make use of
substantive theory in the ways the physical sciences do (Taagepera 2008). Nor does
educational science embrace metric unification even when constructs (e.g. reading
ability) repeatedly assert their separate independent existences (Fisher 1997, 1999,
2000a, b; Fisher et al. 1995).

Typical applications of Rasch models in language testing are thin on substantive
theory. Rarely is there an a priori specification of the item calibrations (i.e. con-
strained model). Instead the researcher estimates both person parameters and item
parameters from the same pxi data set. For Kuhn (1961) this practice is at odds with
the scientific function of measurement in that substantive theory almost never will
be revealed by measuring. Rather “the scientist often seems to be struggling with
facts [measurement outcomes, raw scores], trying to force them to conformity with
a theory s(he) does not doubt” (p. 163). Kuhn is speaking about substantive con-
struct theory, not axiomatic measurement theory. Demonstrating data fit to a
descriptive Rasch Model or sculpting a data set by eliminating misfitting items and
persons and then rerunning the Rasch analysis to achieve satisfactory fit is,
specifically not, the “struggling” Kuhn is referring to.

The gold standard demonstration that a construct is well specified is the capability
to manufacture strictly parallel instruments. A strictly parallel instrument is one in
which the correspondence table linking attribute measure to measurement outcome
(count correct) is identical although items are different on each parallel instrument.
So, imagine two 4000 word 1300L articles, one on ‘atomic theory’ and one on
‘mythology’. Both articles are submitted to a machine that builds 45 four choice
cloze items distributed about one item for every 80–100 words. These one-off items
are assumed to have calibrations sampled from a normal distribution with a mean
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equal to 1300L and a standard deviation equal to 132L. With this information, an
ensemble Rasch model (Lattanzio et al. 2012) can produce a correspondence table
linking count correct to Lexile measure. Since the specifications (test length, text
measure, text length and item spread) are identical for the two articles, the corre-
spondence tables will also be identical; on both forms 25 correct answers converts to
1151L and 40 correct answers converts to 1513L, and so on. The same basic
structure plays out with NexTemp® thermometers. A NexTemp® thermometer has
45 cavities. Twenty-five cavities turning black converts to a temperature of 37.9 °C,
whereas 40 cavities turning black converts to 39.4 °C. In both cases theory, engi-
neering specifications and manufacturing guidelines combine to produce strictly
parallel instruments for measuring reading ability and human temperature and in
each case it is possible to manufacture large quantities of identical instruments. The
capacity to manufacture “strictly” parallel instruments is a milestone in an evolving
understanding of an attribute and its measurement. Richard Feynman wrote: “What I
cannot create, I don’t understand!” We demonstrate our understanding of how an
instrument works by creating copies that function like the original.

Descriptive Rasch Models Versus Causal Rasch Models

Andrich (2004) makes the case that Rasch models are powerful tools precisely
because they are prescriptive, not descriptive, and when model prescriptions meet
data, anomalies arise. Rasch models invert the traditional statistical data-model
relationship. Rasch models state a set of requirements that data must meet if those
data are to be useful in making measurements. These model requirements are
independent of the data. It does not matter if the data are bar presses, counts correct
on a reading test, or wine taste preferences, if these data are to be useful in making
measures of rat perseverance, reading ability, or vintage quality all three sets of data
must conform to the same invariance requirements. When data fail to fit a model,
Rasch measurement theory (Rasch 1960; Andrich 1988, 2010; Wright 1977, 1999)
does not respond by relaxing the invariance requirements and adding, say, an item
specific discrimination parameter to improve fit, as does Item Response Theory
(Hambleton et al. 1991). Rather, the Rasch approach is to examine the items serving
as the medium for making observations, and to change them in ways likely to
produce new data conforming with theory and data model expectations.

A causal Rasch model (in which item calibrations come from theory, not data) is
then doubly prescriptive (Stenner et al. 2009a, b). First, in accord with Rasch, it is
prescriptive regarding the data structures that must be present:

The comparison between two stimuli should be independent of which particular individuals
were instrumental for the comparison; and it should also be independent of which other
stimuli within the considered class were or might also have been compared. Symmetrically,
a comparison between two individuals should be independent of which particular stimuli
within the class considered were instrumental for comparison; and it should also be
independent of which other individuals were also compared, on the same or on some other
occasion (Rasch 1961, p. 321).
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Second, causal Rasch Models (Burdick et al. 2006; Stenner et al. 2008) prescribe
the values imposed by substantive theory on the item calibration estimates. Thus,
the data, to be useful in making measures, must conform to both Rasch model
invariance requirements and to substantive theory invariance requirements as
specified by the theoretical item calibrations.

When data meet both sets of requirements then those data are useful not just for
making measures of some vaguely defined construct but are useful for making
measures of that precise construct specified by the equation that produced the
theoretical item calibrations. We emphasize that these dual invariance requirements
come into stark relief in the extreme case of no connectivity across stimuli or
examinees (i:p). How, for example, are two readers to be measured on the same
scale if they share no common text passages or items? If you read a Hunger Games
novel and answer machine generated questions about it, and I read a Lord of the
Rings novel and answer machine generated questions about it, how would it be
possible to realize an invariant comparison of our reading abilities except by means
of predictive theory? How else would it be possible to know that you read 250L
better than I, and, furthermore, that you comprehended 95 % of what you read,
whereas I comprehended 75 % of what I read? Most importantly, by what other
means than theory would it ever be possible to reproduce this result to within a
small range of error using another two completely different books as the basis of
comparison?

Given that seemingly nothing is in common between the above two reading
experiences, invariant comparisons might be thought impossible. Yet in the ther-
mometer example, it is in fact a routine everyday experience for different instru-
ments to be interpreted as informing comparable measures of temperature. Why are
we so quick to accept that you have a 104 °F high grade fever and I have a 100 °F
low grade fever (based on measurements from two different thermometers) and yet
find the book reading example inexplicable? Is it because there are fundamental
differences between physical science measurement and behavioral science mea-
surement? No! The answer lies in well-developed construct theory, rigorously
established instrument engineering principles, and uniform metrological conven-
tions (Fisher 2009).

Clearly, each of us has had ample confirmation that weight denominated in
pounds and kilograms can be well measured by any reputable manufacturer’s
bathroom scale. Experience with diverse bathroom scales has convinced us that,
within a pound or two of error, these instruments will produce not just invariant
relative differences between two persons but will also meet the more stringent
expectation of invariant absolute magnitudes for each individual independent of
instrument. Over centuries, instrument engineering has steadily improved to the
point that for most purposes “uncertainty of measurement” (usually interpreted as
the standard deviation of a distribution of imagined or actual replications taken on a
single person) can be effectively ignored for most bathroom scale applications. And,
quite importantly, by convention (i.e., the written or unwritten practice of a com-
munity) weight is denominated in standardized units (kilograms or pounds). The
choice of any given unit is arbitrary, but what is decisive is that a unit is agreed to by
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the community and is slavishly maintained through consistent implementation,
instrument manufacture, and reporting. At present, language ability (reading, writ-
ing, speaking, and listening) does not enjoy a common construct definition, nor a
widely promulgated set of instrument specifications, nor a conventionally accepted
unit of measurement. The challenges that must be addressed in defining constructs,
specifying instrument characteristics, and standardizing units include cultural
assumptions about number and objectivity, political challenges in shaping legisla-
tion, resource allocation, and the expectations and procedures of social scientists
(Fisher 2012, n.d.). In this context, the Lexile Framework for Reading (Stenner et al.
2006) stands as an exemplar of how psychosocial measurement can be unified in a
manner precisely parallel to the way unification was achieved for length, tempera-
ture, weight and dozens of other useful attributes (Stenner and Stone 2010).

A causal (constrained) Rasch model (Stenner et al. 2009a, b) that fuses a sub-
stantive theory to a set of axioms for conjoint additive measurement affords a much
richer context for the identification and interpretation of anomalies than does a
descriptive i.e. unconstrained Rasch model. First, with the measurement model and
the substantive theory fixed, anomalies are understood as problems with the data.
Attending to the data ideally leads to improved observation models (e.g. new task
types) that reduce unintended dependencies and variability. An example of this kind
of improvement in measurement was realized when the Duke of Tuscany put a top
on some of the early thermometers, thus reducing the contaminating influences of
barometric pressure on the measurement of temperature. In contrast with the
descriptive paradigm dominating much of education science, the Duke did not
propose parameterizing barometric pressure in the model in the hope that the
boiling point of water at sea level, as measured by open top thermoscopes, would
then match the model expectations at 3000 ft above sea level (for more on the
history of temperature see Chang 2004).

Second, with both model and construct theory fixed our task is to produce
measurement outcomes that fit the invariance requirements of both measurement
theory and construct theory. By analogy, not all fluids are ideal as thermometric
fluids. Water, for example, is non-monotonic in its expansion with increasing
temperature. Mercury, in contrast, has many useful properties as a thermometric
fluid. Does the discovery that not all fluids are useful thermometric fluids invalidate
the concept of temperature? No! In fact, a single fluid with the necessary properties
would suffice to validate temperature as a useful construct. The existence of a
persistent invariant framework makes it possible to identify anomalous behavior
(water’s strange behavior) and interpret it in an expanded theoretical framework
(Chang 2004).

Analogously, finding that not all reading item types produce data that conform to
the dual invariance requirements of a Rasch model and the Lexile theory does not
invalidate either the axioms of conjoint measurement theory or the Lexile reading
theory. Rather, the anomalous behaviors of some kinds of text (recipes, and, poems)
are open invitations to expand the theory to account for these deviations from
expectation. Notice here the subtle shift in perspective. We do not need to find 1000
unicorns; one will do to establish the reality of the class. The finding that reader
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behavior on a minimum of two types of reading tasks can be regularized by the joint
actions of the Lexile theory and a Rasch model is sufficient evidence for the
existence of the reading construct (Markus and Borsboom 2013). Of course,
actualizing this scientific reality to make the reading construct a universally uniform
and available object in the world requires the investment of significant social, legal,
and economic resources (Fisher 2005, 2009, 2000a, b, 2011, n.d.; Fisher and
Stenner n.d.).

Equation (1) is a causal Rasch model for dichotomous data, which sets a mea-
surement outcome (expected score) equal to a sum of modeled probabilities

Expected score ¼:
X eðb�diÞ

1þ eðb�diÞ ð1Þ

The measurement outcome is the dependent variable and the measure (e.g.,
person parameter, b) and instrument (e.g., the parameters di pertaining to the dif-
ficulty d of item i) are independent variables. The measurement outcome (e.g.,
count correct on a reading test) is observed, whereas the measure and instrument
calibrations are not observed but can be estimated from the response data and
substantive theory, respectively. When an interpretation invoking a predictive
mechanism is imposed on the equation, the right-side variables are presumed to
characterize the process that generates the measurement outcome on the left side.
The symbol=: was proposed by Euler circa 1734 to distinguish an algebraic identity
from a causal identity (right hand side causes the left hand side). This symbol (=:)
was reintroduced by Judea Pearl and can be read as indicating that manipulation of
the right hand side via experimental intervention will cause the prescribed change in
the left hand side of the equation. Simple use of an equality (=) does not signal a
causal interpretation of the equation.

A Rasch model combined with a substantive theory embodied in a specification
equation provides a more or less complete explanation of how a measurement
instrumentworks (Stenner et al. 2009a, b).ARaschmodel in the absence of a specified
measurement mechanism is merely a probability model. A probability model absent a
theory may be useful for describing or summarizing a body of data, and for predicting
the left side of the equation from the right side, but a Raschmodel in which instrument
calibrations come from a substantive theory that specifies how the instrument works is
a causal model. That is, it enables prediction after intervention.

Below we summarize two key distinguishing features of causal Rasch models
and highlight how these features can contribute to improved ENL, EFL and ESL
measurement.

1. First, causal Rasch models are individually centered, meaning that a person’s
measure is estimated without recourse to any data on other individuals. The
measurement mechanism that transmits variation in the language attribute
(within person over time) to the measurement outcome (count correct on a
reading test) is hypothesized to function the same way for every person. This
hypothesis is testable at the individual level using Rasch Model fit statistics.
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2. Figuring prominently in the measurement mechanism for language measure-
ment is text complexity. The specification equation used to measure text com-
plexity is hypothesized to function the same way for most text genres and for
readers who are ENL, EFL and ESL. This hypothesis is, also, testable at the
individual level but aggregations can be made to examine invariance over text
types and reader characteristics.

EdSphere™ Reader App

The data for computing empirical text complexity measures came from the reader
appliance in EdSphere™. Students access tens of millions of professionally
authored digital text by opening EdSphere™ and clicking on the Reader
App. Digital articles are drawn from hundreds of periodicals including Highlights
for Children, Boys Life, Girls Life, Sports Illustrated, Newsweek, Discovery,
Science, The Economist, Scientific American, etc. Such a large repository of high
quality informational text is required to immerse students with widely varying
reading abilities in daily deliberate practice across the K-16 education experience.

Students use three search strategies to locate articles targeted at their Lexile
level: (1) click on suggested topics, (2) click the icon “Surprise Me”, or the most
frequently used method (3) type search terms into “Find a Book or Article” (see
Fig. 1). In the example below, a 1069L reader typed “climate change” in the search
box and found 13,304 articles close to her reading level. The first article is an
1100L 4-pager from Scientific American with a short abstract.

Readers browse the abstracts and refine the search terms until they find an
appropriate length article about their interest topic (or a teacher assigned topic) at
their reading level. Within one second of selecting an article, the machine builds a
set of embedded semantic cloze items. Students choose from the four options that
appear at the bottom of the page. The incorrect options have similar difficulty and
part of speech to the correct answer. The answer is auto-scored and the correct
answer is immediately restored in the text and color coded as to whether the student
answered correctly or incorrectly.

Three instructional supports are built into the Reader App to facilitate com-
prehension. First, suggested strategies are presented to students during the reading
process. Second, students have access to an in-line dictionary and thesaurus (one
click access). Finally, a text-to-speech engine has been integrated into EdSphere,
allowing words, phrases or sentences to be machine spoken to the reader.
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Text Complexity 719’s with Artifact Correction

Figure 2 presents the results of a multiyear study of the relationship between the-
oretical text complexity as measured by the Lexile Analyzer (freely available for
non-commercial use at Lexile.com) and empirical text complexity as measured by
the Edpshere™ platform. Each of the 719 articles included in this study was
evaluated by the analyzer for semantic demand (log transformed frequency of each
word’s appearance in a multibillion word corpus) and syntactic demand (log
transformed mean sentence length). The text preprocessing, what constitutes a
word, involves thousands of lines of code. Modern computing enables the mea-
surement of the Bible or Koran in a couple of seconds.

The Edpshere™ platform enables students to select articles of their choosing
from a collection of over 100 million articles which have been published and
measured over the past 20 years. As a student’s reading ability grows a 200L
window moves up the scale (100L below the student’s ability to 100L above) and
all articles relevant to a reader’s search term that have text complexity measures in
the window are returned to the reader. The machine generates a four choice cloze
every 70–80 words and the count correct combined with the readers Lexile measure

Fig. 1 Results from student’s keyword search for articles about climate change; results include,
publication titles, publication dates, and/or page length
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is used to compute an empirical text complexity for the article averaged over at least
50 readers and at least 1000 items.

The 719 articles chosen for this study were the first articles to meet the dual
requirements of at least 50 readers and at least 1000 item responses. Well estimated
reader measures were available prior to the encounter between an article and a
reader. Thus, each of the articles has a theoretical text complexity measure from the
Lexile Analyzer and an empirical text complexity from EdSphere. The correlation
between theory and empirical text complexity is r = 0.968 (r2 = 0.938).

Connecting Causal Rasch Models to theories of language development
(Hanlon 2013; Swartz et al. 2015) has made extensive use of Ericsson’s theory of
deliberate practice in the acquisition of language expertise (Ericsson 1996, 2002,
2006). Deliberate practice is a core tenant of Ericsson’s theory of expertise
development. Hanlon (2013) distills five core principles of deliberate practice in the
development of reading ability: targeted practice reading text that is not too easy
and not too hard, (2) real time corrective feedback on embedded response
requirements, (3) distributed practice over a long period of time (years, decades),
(4) intensive practice that avoids burnout and (5) self-directed options when one on
one coaching is not available. Each of these principles, when embedded into
instructional technologies, benefits from individually centered psychometric models
in which, for example, readers and text are measured in a common unit.

Fig. 2 Plot of Theoretical and Empirical text complexity measures
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Swartz et al. (2015) provide a complete description of EdSphere, its history and
components. The EdSphere Technology is designed to immerse students in delib-
erate practice in reading, writing, content vocabulary, and practice with conventions
of standard English: “These principles of deliberate practice are strengthened by
embedding psychometrically sound assessment approaches into learning activities.
For example students respond to cloze items while reading, compose short and long
constructed responses in response to prompts, correct different kinds of convention
errors (i.e. spelling, grammar, punctuation, capitalization) in authentic text, and
select words with common meanings from a Thesaurus-based activity. Each item
encountered by students is auto-generated and auto-scored by software. The results
of these learning embedded assessments are especially beneficial when assessment
item types are linked to a developmental scale” (Swartz et al. 2015).

Figure 3 is an individual-centered reading growth trajectory denominated in
Lexiles. All data comes from EdSphere. Student 1528 is an ESL seventh grade male
(first language Spanish) who read 347 articles of his choosing (138,695 words)
between May 2007 and April 2011. Each solid dot corresponds to a monthly
average Lexile measure. The growth curve fits the monthly means quite well, and
this young man is forecasted (big dot on the far right of the figure) to be a
college-ready reader when he graduates from high school in 2016. The open dots
distributed around 0 on the horizontal axis are the expected performance minus
observed performance (in percents) for each month. Expected performance is
computed using the Rasch model and inputs for each article’s text complexity and

Fig. 3 An individual-centered reading growth trajectory denominated in Lexiles
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the updated readers ability measure. Given these inputs, EdSphere forecasts a
percent correct for each article encounter. The observed performance is the
observed percentage correct for the month. The difference between what the sub-
stantive theory (Lexile Reading Framework) in cooperation with the Rasch model
expects and what is actually observed is plotted by month. The upper left hand
corner of the graphic summarizes the expected percentage correct over the four
years (73.5 %) and observed percentage correct (71.7 %) across the 3342 items
taken by this reader. Note that EdSphere is dynamically matching text complexity
of the articles the reader can choose to the increasing reader ability over time. So,
this graphic describes a within-person (intra-individual) test of the quantitative
hypothesis: Can EdSphere trade-off a change in reader ability for a change in text
complexity to hold constant the success rate (comprehension)? For this reader, the
answer appears to be a resounding yes! This trade-off or cancellation affords an
intra-personal test of the quantitative hypothesis (Michell 1999).

Figure 4 is a graphical depiction of the 99 % confidence interval for the artifact
corrected correlation between theoretical and empirical text complexity. The arti-
facts included measurement error, double range restriction and construct invalidity.
The artifact corrected correlation (coefficient of theoretical equivalence) is slightly
higher than r = 1.0 suggesting that the Lexile Theory accounts for all of the true
score variation in the empirical text complexity measures. The reader may be
puzzled about how a correlation can be higher than r = 1.0, of course it can’t be, but

Fig. 4 Artifact corrected correlation between theory observed text complexity
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an artifact corrected correlation can be if one or more artifactors used in the process
are, perhaps due to a sampling error, lower than their population values.

In the temperature example, a uniform increase or decrease is the amount of
soluble additive in each cavity, changes the correspondence table that links the
number of cavities that turn black to degrees Fahrenheit or Celsius. Similarly, an
increase or decrease in the text demand (Lexile) of the passages used to build
reading tests, predictably alters the correspondence table that links count correct to
Lexile reader measure. In the former case, a temperature theory that works in
cooperation with a Guttman model produces temperature measures. In the latter
case, a reading theory that works in cooperation with a Rasch model produces
reader measures. In both cases, the measurement mechanism is well understood,
and we exploit this understanding to address a vast array of counterfactuals
(Woodward 2003). If things had been different (with the instrument or object of
measurement), we could still answer the question as to what then would have
happened to what we observe (i.e., the measurement outcome). It is this kind of
relation that illustrates the meaning of the expression, “There is nothing so practical
as a good theory” (Lewin 1951).

Notes

1. The NexTemp® thermometer is a small plastic strip pocked with multiple
enclosed cavities. In the Fahrenheit version, 45 cavities arranged in a double
matrix serve as the functioning end of the unit. Spaced at 0.2 °F intervals, the
cavities cover a range from 96.0 °F to 104.8 °F. Each cavity contains three
cholesteric liquid crystal compounds and a soluble additive. Together, this
chemical composition provides discrete and repeatable change-of-state tem-
peratures consistent with the device’s numeric indicators. Change of state is
displayed optically (cavities turn from green to black) and is easily read.

2. Text complexity is predicted from a construct specification equation incorpo-
rating sentence length and word frequency components. The squared correlation
of observed and predicted item calibrations across hundreds of tests and millions
of students over the last 15 years averages about 0.93. Recently available
technology for measuring reading ability employs computer-generated items
built “on-the-fly” for any continuous prose text in a manner similar to that
described for mathematics items by Bejar et al. (2003). Counts correct are
converted into Lexile measures via a Rasch model estimation algorithm
employing theory-based calibrations. The Lexile measure of the target text and
the expected spread of the cloze items are given by theory and associated
equations. Differences between two readers’ measures can be traded off for a
difference in Lexile text measures to hold comprehension rate constant. When
the item generation protocol is uniformly applied, the only active ingredient in
the measurement mechanism is the choice of text complexity (choosing a 500L
article on panda bears) and the cloze protocol implemented by the machine.
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