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Abstract Compressed Sensing (CS) is a fast growing signal processing technique
that compresses the signal while sensing and enables exact reconstruction of the
signal if the signal is sparse with a few numbers of measurements only. This
scheme results in reduction of storage requirement and low power consumption of
system compared to Nyquist sampling theorem, where the sampling frequency must
be at least double the maximum frequency present in the signal for the exact
reconstruction of the signal. This paper presents an in-depth study on recent trends
in CS focused on ECG compression. Compression Ratio (CR), %
Root-mean-squared Difference (% PRD), Signal-to-Noise Ratio (SNR), Root-Mean
Square Error (RMSE), Sparsity and power consumption are used as the perfor-
mance evaluation parameters. Finally, we have presented the conclusions based on
the literature review and discussed the major challenges in CS ECG
implementation.
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1 Introduction

Electrocardiogram (ECG) is an important and advanced diagnostic tool used for
various heart diseases diagnosis, such as arrhythmia, myocardial ischemia, and
cardiac infarction. The detail interpretation provides information about patient’s
health. The different heart activities are represented by different waves. A normal
ECG includes a P wave followed with QRS complex wave and lasts with T wave.
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Figure 1 shows the normal ECG waveform. The P wave is caused produced by the
depolarization of the atria muscles and associated with their contraction, while the
QRS complex wave is initiated by the depolarization of ventricles before to their
contraction. The detection of the QRS complex is an important step in automated
ECG analysis. Because of their distinctive shape, the QRS complex used as the
reference tip for automated heart rate monitoring and as the initial point for addi-
tional evaluation.

Therefore, the long-term ECG data records become an important aspect to
perceive information from these heart signals, resulting in increase in memory size
of data. Hence, the ECG data compression becomes an essential for decreasing the
data storage and the transmission times. ECG compression methods are categorized
into two main groups: (i) Direct compression methods (ii) Transform compression
methods. In the transform methods, the discrete wavelet transform-based techniques
are simple to implement and provides good localization in both time and frequency
scale.

The further best work in this area is described by embedded zero tree wavelet
(EZW) [1] and a set partitioning in hierarchical tree (SPIHT) [2, 3] protocols, which
work on the self similarity basis of the wavelet transform.

Compared to traditional ECG compression scheme, CS [4, 5, 6] transfers the
computational load from the encoder side to the decoder side, and thus provides
simple encoder hardware implementations. Also, there is no need to encode loca-
tions of the significant wavelet coefficients. This paper presents the detailed review
of different aspects of CS-based ECG compression. The paper is outlined as: Sect. 2
describes the CS acquisition and recovery model. Section 3 presents different
performance measures of signal. In Sect. 4, we have presented the detailed literature
reviews on current CS-based ECG compression followed by conclusions in Sect. 5.

Fig. 1 Normal ECG waveform
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2 Compressed Sensing (CS) Framework

2.1 Background

CS is a fast developing signal compression technique that acquires the signal and
exactly recovers with few numbers of samples than Shannon–Nyquist sampling. CS
takes advantage of signal sparsity property in some domain like wavelet transform.
Nyquist sampling depends on the greatest amount of rate of alteration of a signal,
whereas CS depends on the greatest amount of rate of knowledge in a signal.
The CS executes two main operations: compression and recovery of signal.

2.2 CS Sensing Model

Compressed sensing scheme is represented as follows:

y=Φf ð1Þ

where, f is the original input signal of length N × 1, y is the compressed output
signal of length M × 1, and Φ is the M × N sensing matrix. Here, as Φ is always
constant, CS is nonadaptive scheme.

The input signal x is further defined as

f =Ψx ð2Þ

where, x is the nonsparse input signal with length N and Ψ is the N × N sparsifying
basis. Combined form of Eqs. (1) and (2) as follows:

y=Θx ð3Þ

where, Θ = ΦΨ is commonly referred to as the sensing matrix. CS acquires
M < < N observations from N samples utilizing random linear estimate. In order to
implement a CS algorithm correctly, there are three key requirements:

(a) The input signal f must be a sparse in some domain.
(b) The Ψ and Φ must be incoherent.
(c) The Φ should satisfy the Restricted Isometric Property (RIP) [7] and defined

as

ð1− δsÞ fk k22 ≤ Θfk k22 ≤ ð1+ δsÞ fk k22 ð4Þ
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For exact and stable compression, and signal recovery, Candes et al. [8, 9]
recommends a minimum number of compressed measurements (m) based on the
sparsity and coherence constraints outlined.

m≥ c. μ2ðΨ,ΦÞs. logðNÞ ð5Þ

where, s is number of nonzero elements and c is a small fixed value. The sensing
matrix can be designed with random distribution [10] values from Bernoulli,
Gaussian, and uniform probability density functions.

2.3 CS Signal Reconstruction Model

Because Φ is not a square matrix, this CS problem becomes under determined
problem with many possible solutions. These CS recovery algorithms require
information of a representation basis where the signal is compressible or sparse for
approximate or accurate recovery of signal. Reconstruction algorithms in CS
exploit the sparse solution by minimizing L0, L1, L2 norm over solution space.
L0-norm minimization will accurately reconstruct the original signal under the
sparse condition, with slow speed and is NP (Non-Polynomial) hard. The L2-norm
minimization is fast but it does not find the sparse solution resulting in error. The
L1-norm gives exact sparse solution with efficient reconstruction speed. Hence,
L1-norm is the good alternative to L0-norm and L2-norm minimization to find the
accurately sparse solution. Finally, original signal can be reconstructed by calcu-
lating x using L1 norm minimization as given by equation below:

min x ̂k k1 Subject to y=Θx ̂=ΨΦx ̂ ð6Þ

The sparsity and incoherence conditions guarantee the high probability of sparse
exact solution using Eq. (6).There are different CS reconstruction algorithms
available based on convex optimization method for e.g. Basis Pursuit (BP) [11], BP
denoising (BPDN) [11], M-BPDN [12], LASSO [13] and greedy methods like
OMP [14, 15], CoSaMP [16].

3 Performance Evaluation Parameters

There are different distortion measures used for performance evaluation of signal
like % root-mean squared difference (PRD), Compression ratio (CR), Root-mean
square error (RMS), Signal-to-noise ratio (SNR), and sparsity.
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3.1 Percentage Root-Mean Squared Difference (PRD)

PRD is the measure of the difference between the input signal and recovered signal
and given as:

PRDð%Þ= ∑N
n=1 ðf ðnÞ− f ð̂nÞÞ2
∑N

n=1 f 2ðnÞ
ð7Þ

Measurement of PRD without the DC level in the input signal is given as

PRDð%Þ= ∑N
n=1 ðf ðnÞ− f ð̂nÞÞ2

∑N
n=1 ðf ðnÞ− f Þ̄2

× 100 ð8Þ

Here, f ðnÞ is the input signal, f ð̂nÞ is the recovered signal, f ̄ is the mean of the
signal, and N is the length of signal.

3.2 Compression Ratio (CR)

CR is used to measure the reduction in the dimensionality of the signal and
given as:

CR=
M
N

ð9Þ

where the input signal is of the length N and M is the number of measurements
taken from sensing matrix.

3.3 Root-Mean Square Error (RMSE)

RMSE is given as:

RMS=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

n=1 ðf ðnÞ− f ð̂nÞÞ2
N

s
ð10Þ

where, f ðnÞ is the original signal and f ð̂nÞ is the recovered output signal and N is the
length of input signal.
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3.4 Signal-to-Noise Ratio (SNR)

SNR is given as

SNR=10× log
∑N

n=1 ðf ðnÞ− f Þ̄2

∑N
n=1 ðf ðnÞ− f ð̂nÞÞ2

 !
ð11Þ

where f ðnÞ is the original input signal, f ð̂nÞ is the recovered output signal, f ̄ is the
average of the signal, and N is the length of input signal.

3.5 Sparsity

When a given signal contains only few no. of nonzero (K) coefficients, it is called as
sparse signal and given as

Sparsityð%Þ= ðN −KÞ
N

×100 ð12Þ

where, N is the signal length, K is the number of nonzero coefficients of the signal
and (N-K) is the number of discarded coefficients of the signal.

4 Application of Compressed Sensing (CS) for ECG
Signal Compression

An extensive literature survey have been performed on CS-based ECG compression
papers. Table 1 shows the comparative summary of literature papers for CS-based
ECG signal compression.

Pooyan et al. [2] tested wavelet transform on the ECG signal and SPIHT
technique is used to encode the coefficients. SPIHT achieves CR = 21.4, PRD = 3.
1 with a very good reconstruction quality and outperforms all others compression
algorithm. SPIHT has a low computational complexity and easy to implement.
Polania et al. [17] proposed a 1-lead compression method. In this, the ECG signal’s
quasi periodic nature is exploited in between adjacent beats of samples. The author
utilized the distributed compressed sensing to explore the common support between
samples of adjacent beats. The drawback of the scheme is increase in the compu-
tational complexity at encoder. Experimentation is performed using the MIT-BIH
Arrhythmia Database. The proposed CS-based scheme accomplishes a good CR for
low PRDs and also out performs SPIHT. Polania et al. [18] incorporate two
properties of signal structure; in the first property the wavelet scale dependencies
are included into the recovery methods and second used the great common support
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Table 1 Comparative summary of literature for CS-based ECG signal compression

Author Sparsity basis, sensing
matrix, reconstruction
algorithm used

PRD (%) CR Strengths/Findings

Pooyan [3] Set partitioning in
hierarchical trees
(SPIHT) algorithm

3.1 21.4 High efficiency, easy to
implement,
computationally simple

Polania [17] Daubechies wavelets
(db4), random
gaussian matrix,
SOMP

2.57 7.23 Achieves a good
compression ratio,
outperforms SPIHT as
the PRD increases,
offers a low complexity
encoder

Polania [18] Wavelet
transform-based
tree-structure model,
bernoulli matrices,
MMB-CoSaMP and
MMB-IHT (Record
no.100)

IHT = 3.65,
CoSaMP = 3.86

6.4 Simple hardware design,
less data size, and small
computational need

Daniel [22] Wavelet bases,
random bernoulli
matrix, BP

9 2.5 Simple encoder design

Ansari-Ram
[23]

Biorothogonal4.4,
nonuniform binary
matrix, convex
optimization

8.58 5 Increases the overall
PRD

Akanks-ha
Mishra
[19–21]

29 different wavelet
families like coiflets,
daubichies, symlets,
biorthogonal, reverse
biorthogonal, random
gaussian matrix and
KLT sensing matrix,
BP

0.01
0.01

2
2

rbio3.9 shows best
sparsity. KLT sensing
matrix superior than
gaussian matrix

Anna Dixon
[24, 25]

Random gaussian
matrix, convex
optimization, OMP,
CoSaMP, ROLS,
NIHT

– – CoSaMP and L1-norm
convex gives best
accuracy, CoSaMP
preferred in noisy
conditions, OMP is best
for low computational
complexity

Mamaghanian
[33, 36]

Wavelet basis,
random gaussian
matrix, BP

<9 3.44 PRD = 0–9 % is “good
or very good” ECG
signal quality
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of wavelet domain coefficients. The two model-based algorithms namely modified
model-based MMB-CoSaMP and MMB–IHT are evaluated. For compression ratio
CR = 4, the PRD of MMB–IHT is 3.65 and for MMB-CoSaMP is 3.86. For nearly
all the ECG records, MMB-IHT shows superior execution than MMB-CoSaMP.

• Selection of Best Sparsity Basis for CS ECG Compression

One of the primary research areas for ECG compression is the choice of sparsity
basis. Mishra et al. [19, 20, 21] evaluated a best wavelet basis for ECG Signal
compression using Compressed Sensing approach by comparing several wavelet
families like Haar, Daubechies, Reverse Biorthogonal, and biorthogonal etc. These
families were evaluated using the performance metrics such as MSE, PSNR, PRD,
and Correlation Coefficient (CoC). Here, L1 optimization is used as the signal
reconstruction method. The result analysis is performed for five different com-
pression ratios, like 2:1, 4:1, 6:1, 8:1, 10:1 and from each CR the best fit wavelet
family was identified. From reverse biorthogonal wavelet family, rbio3.7 and
rbio3.9 shows the best results. Finally, the best Daubechies wavelet (db) is selected
for specific CR. For CR 2:1, db4 is chosen. Similarly, for CR 4:1, db8 is selected.
For CR 6:1, db4 is most suitable Daubechies wavelet.

• Different Sensing Matrices for ECG Signal Compression

Polania et al. [17] used Random Gaussian Matrix with zero mean and 1/m
variance achieves a good compression ratio. Polania et al. [18] and Chae et al. [22]
tested Bernoulli matrices results in small data storage, less computational com-
plexity, and simple encoder hardware design. Mishra et al. [19, 20, 21] compared
the random Gaussian matrix and KLT sensing matrix performance for different
compression ratios: for Random Gaussian matrix with CR = 2, PSNR = 57.57,
PRD (%) = 0.01, MSE = 1.57, COC = 0.9994 where for KLT sensing matrix with
CR = 2, PSNR = 59.92, PRD (%) = 0.01, MSE = 1.20, COC = 0.9996. This
result shows that KLT sensing matrix shows better performance than random
Gaussian matrix. Ansari-Ram and Hosseini-Khayat [23] proposed a nonuniform
measurement matrix. This matrix acquires the QRS complex, i.e., region of interest
and increases the total PRD value. This method has a weakness since it is also
required to transmit sensing matrix to decoder end.

• CS Reconstruction Algorithms for ECG Compression

Dixon et al. [24, 25] evaluated comparative analysis on state-of-the-art CS
recovery algorithms: BP, convex optimization, OMP, CoSaMP, ROLS and NIHT
based on metrics like computational time, accuracy and noise tolerance. When
accuracy is needed CoSaMP and L1 based convex are the natural choices. In noisy
conditions CoSaMP outperforms L1-norm convex. OMP is preferable where
computational complexity is important like real-time implementation with low
power consumption.
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• Performance of CS ECG with Different Sparsity and Noisy Conditions

Chae et al. [22] evaluated the CS ECG compression performance under the noisy
ECG signal acquisition and with varied heartbeat rate because of body movements.
From results, we can conclude that the CS with noise is quite difficult to minimize
because of nonlinear nature of the recovered noise. The CS performance is com-
pared to TH-DWT for ECG compression, where TH-DWT outperforms CS in the
sense of CR. Care should be taken while applying CS for ECG compression as the
CS is very susceptible to noise and sparseness of the signal. The TH-DWT method
attains a PRD of 9 % at a CR = 5 whereas for the same PRD the CS attains a
CR = 1.67. With noisy signals, the TH-DWT shows a flat SNR up to a CR = 2.5
after which have a slight fall in SNR, while the CS performance sharply decreased
from a CR = 1.25.

• Application of Dictionary Approach for ECG Compression

Polania and Barner [26] proposed the multiscale dictionary learning approach for
the recovery of ECG signals and evaluated the results with wavelet and single scale
dictionary approach. Results show that these dictionary learning-based schemes
provide better performance than the CS scheme using standard wavelet dictionaries.
A multiscale dictionary in CS schemes improves the quality of the recovered ECG
signal when compared to single scale methods. The proposed method utilizes the
different wavelet subbands information at various scales to efficiently learn sparse
and redundant dictionaries for representation of the ECG. Pant and Sridhar
Krishnan [27] proposed the dictionary learning algorithms which produce a dic-
tionary which can be used with Lp

2d
–RLS method. This approach significantly

improves signal recovery performance of Lp
2d–RLS method for ECG signals.

Fira et al. [28, 29] obtained the best results for the CPCS method using opti-
mized projection matrix and patient-specific dictionary. The optimized dictionaries
show the excellent results for all the records. The great extent of quality score
achieved, for a 15:1 CR, 0.97 PRD and 15.46 QS is 50 % with CPCS technique
with patient-specific heart beats (PRD = 0.51, QS = 29.13) without preprocessing.
Singh and Dandapat [30] proposed distributed CS (DCS) for multichannel ECG
signals with sparse learned dictionary, which are suitable for sparsity control of a
signal. Pathology-specific and normal overcomplete dictionaries are used as the
sparsifying basis and learnt using K-SVD algorithm. This improves the efficiency of
the conventional CS in views of data size and reconstruction time.

• Bayesian Learning Approach for ECG Compression

Zhang et al. [31] proposed the Bayesian learning approach for the reconstruction
of ECG signal which is sparser than existing compressed sensing solutions and it is
also faster due to the improved sparsity. However, Bayesian approach has a draw-
back such as lack of theoretical foundation between the Bayesian approach, RIP, and
incoherence. Some of the approaches fulfill the condition of RIP and incoherence,
but in case of the full rank Fourier matrix, the BCS is failed. Zhang et al. [32]
successfully applied the block sparse Bayesian learning (BSBL) structure to
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compress as well as recover non-sparse FECG signal and improved the performance
using the correlation structure of signals. Experiments are performed on the DaISy
Dataset and the OSET Dataset. Same sensing matrix is used with every experiment
for all the CS methods used to compress FECG recordings. Two categories CS
algorithms are tested. First category of recovery methods do not utilize block
structure of signals includes CoSaMP, BP, SL0, Elastic-Net, and EM-GM-AMP
which are from the class of greedy algorithms. The Basis Pursuit algorithm is used to
reconstruct adult ECG recordings. The second group of algorithms utilized the
structure of signals which includes, Block Basis Pursuit, Block-OMP, StructOMP,
BM-MAP-OMP, and CluSS-MCMC. Block Basis Pursuit and Block-OMP requires
a priori information of the block division. The result of comparison shows satis-
factory quality with BSBL-BO algorithm. The BSBL-BO is evaluated for various
factors such as impact of, the block partition effects, effect of compression ratio, and
the impact of number of nonzero column entries of the sensing matrix. The proposed
framework can be employed to many other telemedicine applications, such as
wireless electroencephalogram, and electromyography.

• On Quality of the Recovered ECG in the Views of Clinical usage

Mamaghanian et al. [33] evaluated the PRD values for NIHT, EIHT, and FLIHT
using the wavelet tree model. Among all, EIHT shows the great degrees of per-
formance for S-Sparse signals. For model-based reconstruction methods MB-NIHT
accomplish 95 % and more successful recoveries for M = 160 number of mea-
surements. The same is achieved for M = 224 with EIHT and M = 192 with
MB-FLIHT. Hence, NIHT and FLIHT results in a improved signal recovery per-
formance in view of the probability of signal reconstruction and the output
recovered PRD. This research shows that PRD values from 0–9 % are considered as
“good or very good” ECG signal quality for clinical diagnosis. Zigel et al. [34]
suggested a novel distortion metric named weighted diagnostic distortion
(WDD) for ECG signal compression. The result shows that the suggested WDD
metric is most appropriate for evaluating ECG recovered signals compared to the
PRD metric. Drawback of WDD is that it is expensive to calculate compared to
inexpensive measure of PRD.

• Real-Time CS Hardware Implementation for ECG Signal Compression

In the recent years significant research focus and efforts are made on the design,
development and implementation of real-time CS hardware for different applica-
tions. Duarte et al. [35] proposed the one pixel imaging using CS. Body area
network (BAN) is one of the recent application which is explored by many pub-
lications. Mamaghanian et al. [36] evaluated the performance of CS for wireless
BAN on shimmer embedded platform which outperform DWT based lossy com-
pression technique. Mishali et al. [37] designed “analog-domain CS system—a
modulated wideband converter (MWC)”. Chen et al. [38, 39] presented digital
based CS for ECG and EEG signals. Dixon et al. [25] evaluated the performance of
bio-medical signal sensors for BAN application on real time hardware.
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5 Conclusion

In this review paper, we have presented a complete survey of the CS area for
1-dimensional biomedical application focused on CS-based ECG signal compres-
sion. We have investigated the basic of CS technique and discussed theoretical and
mathematical basis of the important concepts. We have presented the reviews on
some of important areas of CS-based ECG compression like choice of most
excellent wavelet basis function for maximum sparsity of ECG signal, different
sensing matrices for ECG signal compression, evaluation of CS reconstruction
algorithms for ECG signal recovery with good accuracy and less reconstruction
time, performance of CS ECG signal in different sparseness and noisy conditions,
application of dictionary approach for ECG compression, Bayesian learning
approach for ECG signal compression or recovery and real-time CS hardware
implementation for ECG signal compression. Research on CS has demonstrated
that CS is suitable alternative compared to the state of the art ECG compression
techniques like SPIHT. From the review summary we can conclude that
biorthogonal wavelet family rbio3.7 and rbio3.9 gives best sparsity, Bernoulli’s
matrices results in simple encoder design, OMP is the best choice for real time
implementation. Dictionary learning approach will improve the CS reconstruction
performance, while recently emerged Bayesian learning approach will even out-
perform CS-based approaches. Low power consumption and reconstruction quality
of signal are the major challenges faced by real-time CS hardware implementation.
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