
Variations on the Grothendieck–Serre
Formula for Hilbert Functions
and Their Applications

Shreedevi K. Masuti, Parangama Sarkar and J.K. Verma

Abstract In this expository paper,we present proofs ofGrothendieck–Serre formula
for multi-graded algebras and Rees algebras for admissible multi-graded filtrations.
As applications, we derive formulas of Sally for postulation number of admissible
filtrations and Hilbert coefficients. We also discuss a partial solution of Itoh’s con-
jecture by Kummini and Masuti. We present an alternate proof of Huneke–Ooishi
Theorem and a generalisation for multi-graded filtrations.
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1 Introduction

The objective of this expository paper is to collect together several fundamental
results about Hilbert coefficients of admissible filtrations of ideals which can be
proved using various avatars of the Grothendieck–Serre formula for the difference of
the Hilbert function and Hilbert polynomial of a finite graded module of a standard
gradedNoetherian ring. The proofs presented here provide a unifiedway of approach-
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ing these results. Some of these results are not known in the multi-graded case. We
hope that the unified approach presented here could lead to suitable multi-graded
analogues of these results.

We begin by recalling the Grothendieck–Serre formula. For the sake of simplicity,
we assume that the graded rings considered in this paper are standard andNoetherian.

Let R =
∞⊕

n=0
Rn be a standard graded Noetherian ring where R0 is an Artinian local

ring. Let M = ⊕

n∈Z
Mn be a finite graded R-module of dimension d. The Hilbert

function of M is the function H(M, n) = λR0(Mn) for all n ∈ Z. Here λ denotes the
length function. Serre showed that there exists an integerm so that H(M, n) is given
by a polynomial P(M, x) ∈ Q[x] of degree d − 1 such that H(M, n) = P(M, n)

for all n > m. The smallest such m is called the postulation number of M. Let R+
denote the homogeneous ideal of R generated by elements of positive degree and
[Hi

R+(M)]n denote the nth graded component of the i th local cohomology module
Hi

R+(M) of M with respect to the ideal R+. We put λR0([Hi
R+(M)]n) = hiR+(M)n.

Theorem 1.1 (Grothendieck–Serre) For all n ∈ Z, we have

H(M, n) − P(M, n) =
d∑

i=0

(−1)i hiR+(M)n.

The GSF was proved in the fundamental paper [37] of J.-P. Serre. We quote from
[6]: “In this paper, Serre introduced the theory of coherent sheaves over algebraic
varieties over an algebraically closed field and a cohomology theory of such varieties
with coefficients in coherent sheaves. He did speak of algebraic coherent sheaves,
as at the first time he managed to introduce these theories with purely algebraic
tools, using consequently the Zariski topology instead of the complex topology and
homologicalmethods instead of tools frommultivariate complex analysis. Since then,
the cohomology theory introduced in Serre’s paper is often called Serre cohomology
or sheaf cohomology.

One of the achievement of Serre’s paper is the Grothendieck–Serre Formula,
which is given there in terms of sheaf cohomology and showed in this way that sheaf
cohomology gives a functorial understanding of the so called postulation problem
of algebraic geometry, the problem which classically consisted in understanding the
difference between the Hilbert function and the Hilbert polynomial of the coordinate
ring of a projective variety.”

The Grothendieck–Serre Formula (GSF) is valid for nonstandard graded rings
also if the Hilbert polynomial P(M, x) is replaced by the Hilbert quasi-polynomial
[4, Theorem 4.4.3]. The GSF has been generalised in several directions. For some
of the applications, we need it in the context of Z

s-graded modules over standard
N

s-graded rings. In order to state the GSF for Z
s-graded module, first we set up

notation and recall some definitions. Let (R,m) be a Noetherian local ring and
I1, . . . , Is be m-primary ideals of R. We put e = (1, . . . , 1), 0 = (0, . . . , 0) ∈ Z

s

and for all i = 1, . . . , s, ei = (0, . . . , 1, . . . , 0) ∈ Z
s where 1 occurs at i th posi-
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tion. For n = (n1, . . . , ns) ∈ Z
s, we write I n = I n11 · · · I nss and n+ = (n+

1 , . . . , n+
s )

where n+
i = max{0, ni } for all i = 1, . . . , s. For α = (α1, . . . ,αs) ∈ N

s, we put
|α| = α1 + · · · + αs . We define m = (m1, . . . ,ms) ≥ n = (n1, . . . , ns) if mi ≥ ni
for all i = 1, . . . , s. By the phrase “for all large n” we mean n ∈ N

s and ni � 0 for
all i = 1, . . . , s. For an N

s (or a Z
s)-graded ring T , the ideal generated by elements

of degree e is denoted by T++.

Definition 1.2 Aset of idealsF = {F(n)}n∈Zs is called aZ
s-graded I = (I1, . . . , Is)-

filtration if for all m, n ∈ Z
s, (i) I n ⊆ F(n), (ii) F(n)F(m) ⊆ F(n + m) and (iii)

if m ≥ n, F(m) ⊆ F(n).

Let R = ⊕

n∈Ns

Rn be a standard Noetherian N
s-graded ring defined over a local

ring (R0,m) and R++ = ⊕

n≥e
Rn. Let Proj(R) denote the set of all homogeneous

prime ideals P in R such that R++ � P. For a finitely generated module M , set
Supp++(M) = {P ∈ Proj(R) | MP �= 0}. Note that Supp++(M) = V++(Ann(M))

[7, Lemma 2.2.5], [15].

Definition 1.3 The relevant dimension of M is

rel. dim(M) =
{
s − 1 if Supp++(M) = ∅
max{dim (R/P) | P ∈ Supp++(M)} if Supp++(M) �= ∅.

By [15,Lemma1.1], dim Supp++(M) = rel. dim(M) − s.M.Herrmann,E.Hyry,
J. Ribbe and Z. Tang [15, Theorem 4.1] proved that if R = ⊕

n∈Ns

Rn is a stan-

dard Noetherian N
s-graded ring defined over an Artinian local ring (R0,m) and

M = ⊕

n∈Zs

Mn is a finitely generated Z
s-graded R-module then there exists a poly-

nomial, called the Hilbert polynomial of M , PM(x1, x2, . . . , xs) ∈ Q[x1, . . . , xs] of
total degree dim Supp++(M) satisfying PM(n) = λ(Mn) for all large n. Moreover
all monomials of highest degree in this polynomial have nonnegative coefficients.

The next two results are due to G. Colomé-Nin [7, Propositions 2.4.2 and 2.4.3]
for nonstandard multi-graded rings. In Sect. 2, we present her proofs to prove the
same results for standard multigraded rings for the sake of simplicity. These results
were proved in the bigraded case by A.V. Jayanthan and J.K. Verma [19].

Proposition 1.4 Let R = ⊕

n∈Ns

Rn be a standard Noetherian N
s -graded ring defined

over a local ring (R0,m) and M = ⊕

n∈Zs

Mn a finitely generatedZ
s -graded R-module.

Then

(1) For all i ≥ 0 and n ∈ Z
s , [Hi

R++(M)]n is finitely generated R0-module.

(2) For all large n and i ≥ 0, [Hi
R++(M)]n = 0.
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Theorem 1.5 (Grothendieck–Serre formula forZs-gradedmodules)Let R= ⊕

n∈Ns

Rn

be a standard NoetherianN
s -graded ring defined over an Artinian local ring (R0,m)

and M = ⊕

n∈Zs

Mn a finitely generated Z
s -graded R-module. Let HM(n) = λ(Mn)

and PM(x1, . . . , xs) be the Hilbert polynomial of M. Then for all n ∈ Z
s,

HM(n) − PM(n) =
∑

j≥0

(−1) j h j
R++(M)n.

The above formof theGSF leads to another version of it which gives the difference
between the Hilbert polynomial and the function of Z

s-graded filtrations of ideals in
terms of local cohomology modules of various forms of Rees rings and associated
graded rings of ideals. To define these, let t1, t2, . . . , ts be indeterminates and tn =
t1n1 · · · tsns . We put

R(F)=
⊕

n∈Ns

F(n)tn the Rees ring ofF ,

R′(F)=
⊕

n∈Zs

F(n)tn the extended Rees ring ofF,

G(F)=
⊕

n∈Ns

F(n)

F(n + e)
the associated multigraded ring ofF with respect toF(e),

Gi (F)=
⊕

n∈Ns

F(n)

F(n + ei )
the associated graded ring ofF with respect toF(ei ).

For F = {I n}n∈Zs , we set R(F) = R(I ) and R′(F) = R′(I ), G(F) = G(I ) and
Gi (F) = Gi (I ) for all i = 1, . . . , s.

Definition 1.6 A Z
s-graded I -filtration F = {F(n)}n∈Zs of ideals in R is called an

I -admissible filtration if F(n) = F(n+) and R′(F) is a finite R′(I )-module. For
s = 1, if a filtration F is I -admissible for some m-primary ideal I then it is also
I1-admissible.

Primary examples of I -admissible filtrations are {I n}n∈Zs in a Noetherian local
ring and {I n}n∈Zs in an analytically unramified local ring. Recall that for an ideal I
in R, the integral closure of I is the ideal

I := {x ∈ R | xn + a1x
n−1 + · · · + an−1x + an = 0 for some n ∈ N

and ai ∈ I i for i = 1, 2 . . . , n}.

We now set up the notation for a variety of Hilbert polynomials associated to
filtrations of ideals. Let I be an m-primary ideal of a Noetherian local ring (R,m)

of dimension d. For a Z-graded I -admissible filtration I = {In}n∈Z, Marley [23]
proved existence of a polynomial PI(x) ∈ Q[x] of degree d, written in the form,
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PI(n) = e0(I)

(
n + d − 1

d

)

− e1(I)

(
n + d − 2

d − 1

)

+ · · · + (−1)ded(I)

such that PI(n) = HI(n) for all large n, where HI(n) = λ(R/In) is the Hilbert
function of the filtration I. The coefficients ei (I) for i = 0, 1, . . . , d are integers,
called the Hilbert coefficients of I. The coefficient e0(I) is called the multiplic-
ity of I. P. Samuel [36] showed existence of this polynomial for the I -adic filtra-
tion {I n}n∈Z. Many results about Hilbert polynomials for admissible filtrations were
proved in [9, 33].

For m-primary ideals I1, . . . , Is, B. Teissier [38] proved that for all n sufficiently
large, the Hilbert function HI (n) = λ

(
R/I n

)
coincides with a polynomial

PI (n) =
∑

α=(α1,...,αs )∈Ns

|α|≤d

(−1)d−|α|eα(I )

(
n1 + α1 − 1

α1

)

· · ·
(
ns + αs − 1

αs

)

of degree d, called the Hilbert polynomial of I . Here we assume that s ≥ 2 in order
to write PI (n) in the above form. This was proved by P.B. Bhattacharya for s = 2 in
[1]. Here eα(I ) are integers which are called the Hilbert coefficients of I . D. Rees
[31] showed that eα(I ) > 0 for |α| = d. These are called the mixed multiplicities
of I .

For an I -admissible filtration F = {F(n)}n∈Zs in a Noetherian local ring (R,m)

of dimension d, Rees [31] showed the existence of a polynomial

PF (n) =
∑

α=(α1,...,αs )∈Ns

|α|≤d

(−1)d−|α|eα(F)

(
n1 + α1 − 1

α1

)

· · ·
(
ns + αs − 1

αs

)

of degree d which coincides with the Hilbert function HF (n) = λ
(
R/F(n)

)
for

all large n [31]. This polynomial is called the Hilbert polynomial of F . Rees [31,
Theorem 2.4] proved that eα(F) = eα(I ) for all α ∈ N

s such that |α| = d.

In Sect. 2, we prove the following version of the GSF for the extended Rees
algebras. It was proved for I -adic filtration and for nonnegative integers by Johnston–
Verma [20] and for Z-graded admissible filtration of ideals by C. Blancafort for all
integers [2].

Theorem 1.7 ([25, Theorem 4.3]) Let (R,m) be a Noetherian local ring of dimen-
sion d and I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs be an I -
admissible filtration of ideals in R. Then

(1) hiR++(R′(F))n < ∞ for all i ≥ 0 and n ∈ Z
s .

(2) PF (n) − HF (n) = ∑

i≥0
(−1)i hiR++(R′(F))n for all n ∈ Z

s .

In Sect. 3, we derive explicit formulas in terms of the Ratliff–Rush closure fil-
tration of a multi-graded filtration of ideals for the graded components of the local
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cohomology modules of certain Rees rings and associated graded rings. For an ideal
I in a Noetherian ring R, L.J. Ratliff and D. Rush [30] introduced the ideal

Ĩ =
⋃

k≥1

(I k+1 : I k),

called the Ratliff–Rush closure of I. If I has a regular element then the ideal Ĩ
has some nice properties such as for all large n, ( Ĩ )n = I n, Ĩ n = I n etc. If I is an
m-primary regular ideal then Ĩ is the largest ideal with respect to inclusion having
the same Hilbert polynomial as that of I. Blancafort [2] introduced Ratliff–Rush
closure filtration of an N-graded good filtration. Let (R,m) be a Noetherian local
ring and I1, . . . , Is bem-primary ideals of R.LetF = {F(n)}n∈Zs be an I -admissible
filtration of ideals in R. We need the concept of the Ratliff–Rush closure of F in
order to find formulas for certain local cohomology modules.

Definition 1.8 The Ratliff–Rush closure filtration of F = {F(n)}n∈Zs is the fil-
tration of ideals F̆ = {F̆(n)}n∈Zs given by

(1) F̆(n) = ⋃

k≥1
(F(n + ke) : F(e)k) for all n ∈ N

s,

(2) F̆(n) = F̆(n+) for all n ∈ Z
s .

The next three results to be proved in Sect. 3 are needed to prove several results
about Hilbert coefficients in Sect. 5.

Proposition 1.9 ([25, Proposition 3.5]) Let (R,m) be a Cohen–Macaulay local ring
of dimension two with infinite residue field and I1, . . . , Is bem-primary ideals in R.

LetF = {F(n)}n∈Zs be an I -admissible filtration of ideals in R. Then for all n ∈ N
s,

[H 1
R(F)++(R(F))]n ∼= F̆(n)

F(n)
.

Proposition 1.10 ([2, Theorem 3.5]) Let (R,m) be a Cohen–Macaulay local ring of
dimension two with infinite residue field, I anm-primary ideal of R andF = {In}n∈Z
be an I -admissible filtration of ideals in R. Then

[H 1
R(F)+(R′(F))]n =

{
Ĭn/In if n ≥ 0
0 if n < 0.

Theorem 1.11 ([25, Theorem 3.3]) Let (R,m) be a Noetherian local ring of dimen-
sion d ≥ 1 with infinite residue field and I1, . . . , Is be m-primary ideals in R such
that grade(I1 · · · Is) ≥ 1. LetF = {F(n)}n∈Zs be an I -admissible filtration of ideals
in R. Then for all n ∈ N

s and i = 1, . . . , s,

[H 0
Gi (F)++(Gi (F))]n = F̆(n + ei ) ∩ F(n)

F(n + ei )
.
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In Sect. 4, we present several applications of the GSF for Rees algebra and asso-
ciated graded ring of an ideal. The first application due to J.D. Sally, who pioneered
these techniques for the study of Hilbert–Samuel coefficients, shows the connection
of the postulation number with reduction number. Let (R,m) be a Noetherian local
ring, I be anm-primary ideal andF = {In}n∈Z be an admissible I -filtration of ideals
in R.

Definition 1.12 A reduction of an I -admissible filtration F = {In}n∈Z is an ideal
J ⊆ I1 such that JIn = In+1 for all large n.A minimal reduction ofF is a reduction
of F minimal with respect to inclusion. For a minimal reduction J of F , we set

rJ (F) = min{m : J In = In+1 for n ≥ m} and
r(F) = min{rJ (I) : J is a minimal reduction of F}.

For F = {I n}n∈Z, we set rJ (F) = rJ (I ) and r(F) = r(I ).

Definition 1.13 An integer n ∈ Z is called the postulation number of F , denoted
by n(F), if PF (m) = HF (m) for all m > n and PF (n) �= HF (n). It is denoted by
n(F).

The next result was proved by J.D. Sally [35] for the m-adic filtration. Her proof
remains valid for any admissible filtration.

Theorem 1.14 Let (R,m) be a Cohen–Macaulay local ring of dimension d ≥ 1
with infinite residue field, I an m-primary ideal and F = {In} be an I -admissible
filtration of ideals in R. Let HR(n) = λ (In/In+1) and PR(X) ∈ Q[X ] such that
PR(n) = HR(n) for all large n. Suppose grade G(F)+ ≥ d − 1. Then for a minimal
reduction J = (x1, . . . , xd) of F , HR(rJ (F) − d) �= PR(rJ (F) − d) and HR(n) =
PR(n) for all n ≥ rJ (F) − d + 1.

The following result is due to Marley [23, Corollary 3.8]. We give another proof
which follows from the above theorem.

Theorem 1.15 ([23, Corollary 3.8]) Let (R,m) be a Cohen–Macaulay local ring of
dimension d ≥ 1 with infinite residue field, I an m-primary ideal and F = {In} be
an I -admissible filtration of ideals in R. Let gradeG(F)+ ≥ d − 1. Then r(F) =
n(F) + d.

In Sect. 5, we discuss several results about nonnegativity of Hilbert coefficients of
multi-graded filtrations of ideals as easy consequences of theGSF for such filtrations.
We prove the following result which implies earlier results of Northcott, Narita, and
Marley.

Theorem 1.16 ([25, Theorem 5.6]) Let (R,m) be a Cohen–Macaulay local ring of
dimension d ≥ 1 and I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs be
an I -admissible filtration of ideals in R. Then



130 S.K. Masuti et al.

(1) eα(F) ≥ 0 where α = (α1, . . . ,αs) ∈ N
s, |α| ≥ d − 1.

(2) eα(F) ≥ 0 where α = (α1, . . . ,αs) ∈ N
s, |α| = d − 2 and d ≥ 2.

Wealso discuss the results of S. Itoh about nonnegativity and vanishing of the third
coefficient of the normalHilbert polynomial of the filtration {I n}n∈Z in an analytically
unramified Cohen–Macaulay local ring. We prove an analogue of a theorem due
to Sally for admissible filtrations in two-dimensional Cohen–Macaulay local rings
which gives explicit formulas for all the coefficients of their Hilbert polynomial.
Here again we show that these formulas follow in a natural way from the variant of
GSF for Rees algebra of the filtration.

Proposition 1.17 Let (R,m) be a two-dimensional Cohen–Macaulay local ring, I
be anym-primary ideal of R and F = {In}n∈Z an admissible I -filtration of ideals in
R. Then

(1) λ
(
H 2

R(F)+(R(F)0
) = e2(F),

(2) λ
(
H 2

R(F)+(R(F))1
) = e0(F) − e1(F) + e2(F) − λ

(
R

Ĭ1

)

,

(3) λ
(
H 2

R(F)+(R(F))−1
) = e1(F) + e2(F).

C. Huneke [14] and A. Ooishi [28] independently proved that if (R,m) is a
Cohen–Macaulay local ring of dimension d ≥ 1 and I is an m-primary ideal then
e0(I ) − e1(I ) = λ(R/I ) if and only if r(I ) ≤ 1. Huckaba and Marley [13] proved
this result for Z-graded admissible filtrations. In Sect. 6, we present a proof, due
to Blancafort, for Z-graded admissible filtrations of Huneke–Ooishi Theorem. The
original proofs due to Huneke and Ooishi did not employ local cohomology and
relied on use of superficial sequences. Our purpose in presenting the alternative
proof using the GSF for Rees algebras is to motivate the proof of an analogue of the
Huneke–Ooishi Theorem for multi-graded filtrations of ideals.

Theorem 1.18 ([3, Theorem 4.3.6]) Let (R,m) be a Cohen–Macaulay local ring
with infinite residue field of dimension d ≥ 1, I1 anm-primary ideal andF = {In}n∈Z
be an I1-admissible filtration of ideals in R. Then the following are equivalent:

(1) e0(F) − e1(F) = λ (R/I1) ,

(2) r(F) ≤ 1.

In this case, e2(F) = · · · = ed(F) = 0,G(F) is Cohen–Macaulay, n(F) ≤ 0, r(F)

is independent of the reduction chosen and F = {I n1 }.
Using the GSF for multi-graded Rees algebras we prove the following analogue

of the Huneke–Ooishi Theorem for multi-graded admissible filtrations.

Theorem 1.19 ([25, Theorem 5.5]) Let (R,m) be a Cohen–Macaulay local ring of
dimension d ≥ 1 and I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs be
an I -admissible filtration of ideals in R. Then for all i = 1, . . . , s,
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(1) e(d−1)ei (F) ≥ e1(F (i)),

(2) e(Ii ) − e(d−1)ei (F) ≤ λ(R/F(ei )),
(3) e(Ii ) − e(d−1)ei (F) = λ(R/F(ei )) if and only if r(F (i)) ≤ 1 and e(d−1)ei (F) =
e1(F (i)), where F (i) = {F(nei )}n∈Z is an Ii -admissible filtration.

The vanishing of the constant term of the Hilbert polynomial of a filtration gives
insight into the filtration as well as the local ring. For any m-primary ideal I in
an analytically unramified local ring (R,m) of dimension d, the normal Hilbert
function of I is defined to be the function H(I, n) = λ(R/I n). Rees showed that
for large n, it is given by the normal Hilbert polynomial

P(I, x) = e0(I )

(
x + d − 1

d

)

− e1(I )

(
x + d − 2

d − 1

)

+ · · · + (−1)ded(I ).

The integers e0(I ), e1(I ), . . . , ed(I ) are called the normal Hilbert coefficients of
I. Rees defined a 2-dimensional normal analytically unramified local ring (R,m)

to be pseudo-rational if e2(I ) = 0 for all m-primary ideals. It can be shown that
two-dimensional local rings having a rational singularity are pseudo-rational. It is
natural to characterise e2(I ) = 0 in terms of computable data. This was considered
by Huneke [14] in which he proved.

Theorem 1.20 ([14, Theorem 4.5]) Let (R,m) be a two-dimensional analytically
unramifiedCohen–Macaulay local ring. Let I be anm-primary ideal. Then e2(I ) = 0
if and only if I n = (x, y)I n−1 for n ≥ 2 and for any minimal reduction (x, y) of I.

A similar result was proved by Itoh [18] about vanishing of e2(I ). Using the GSF
for multi-graded filtrations, we prove the following theorem which characterises the
vanishing of the constant term of theHilbert polynomial of amulti-graded admissible
filtration and derive results of Itoh and Huneke as consequences.

Theorem 1.21 ([25, Theorem 5.7]) Let (R,m) be a Cohen–Macaulay local ring
of dimension two and I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs be
an I -admissible filtration of ideals in R. Then e0(F) = 0 implies e(Ii ) − eei (F) =
λ

(
R

F̆(ei )

)
for all i = 1, . . . , s. Suppose F̆ is I -admissible filtration, then the converse

is also true.

2 Variations on the Grothendieck–Serre Formula

The main aim of this section is to prove the Grothendieck–Serre formula (Theorem
2.3) and its variations. In [7, Propositions 2.4.2 and 2.4.3], Colomé-Nin proved the
Grothendieck–Serre formula for nonstandardmulti-graded rings. For the sake of sim-
plicity, we present her proof for standard multi-graded rings. As a consequence we
prove [25, Theorem 4.3] (Theorem 2.5) which relates the difference of Hilbert poly-
nomial and Hilbert function of an I -admissible filtration to the Euler characteristic
of the extended multi-Rees algebra.
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We recall the following Lemma from [7] which is needed to prove Theorem 2.3.

Lemma 2.1 ([7, Lemma 2.2.8]) Let R = ⊕

n∈Ns

Rn be a standard Noetherian N
s -

graded ring defined over a local ring (R0,m) and M = ⊕

n∈Zs

Mn a finitely gen-

erated Z
s -graded R-module. Let x ∈ Rn where n ≥ e and x /∈ ⋃

P∈Ass(M)

P. Then

rel. dim(M/xM) = rel. dim(M) − 1.

Proposition 2.2 Let R = ⊕

n∈Ns

Rn be a standard Noetherian N
s -graded ring defined

over a local ring (R0,m) and M = ⊕

n∈Zs

Mn a finitely generatedZ
s -graded R-module.

Then

(1) For all i ≥ 0 and n ∈ Z
s , [Hi

R++(M)]n is finitely generated R0-module.

(2) For all large n and i ≥ 0, [Hi
R++(M)]n = 0.

Proof Note that R++ is finitely generated. We prove both (1) and (2) together by
induction on i. Suppose i = 0. Note that H 0

R++(M) ⊆ M and hence H 0
R++(M) is

finitely generated R-module. Let {γ1, . . . , γq} be a generating set of H 0
R++(M) as

an R-module and deg(γ j ) = p( j) = (p( j1), . . . , p( js)) for all j = 1, . . . , q. Let
αi = max{|p( j i)| : j = 1, . . . , q} for all i = 1, . . . , s and α = (α1, . . . ,αs). Since
H 0

R++(M) is R++-torsion, there exists an integer t ≥ 1 such that Rt++H 0
R++(M) = 0.

Then for all n ≥ α + te,

[H 0
R++(M)]n = Rn−p(1)γ1 + · · · + Rn−p(q)γq ⊆ Rt

++H
0
R++(M) = 0.

Fix n ∈ Z
s . Since R is a standard Noetherian N

s-graded ring defined over R0, there
exist elements ai1, . . . , aiki ∈ Rei for all i = 1, . . . , s such that each nonzero ele-
ment of [H 0

R++(M)]n can be written as sum of monomials
∏

1≤i≤s
ati1i1 · · · atikiiki

γ j of

degree n with coefficients from R0 where j = 1, . . . , q, ti1, . . . , tiki ≥ 0. Since
0 ≤ ti1, . . . , tiki ≤ ni − p( j i), the number of monomial generators are finite. Hence
[H 0

R++(M)]n is finitely generated R0-module.

Now assume i > 0. Let M ′ denote M/H 0
R++(M). Consider the short exact

sequence of R-modules

0 −→ H 0
R++(M) −→ M −→ M ′ −→ 0

which gives long exact sequence of local cohomology modules

· · · −→ Hi
R++(H 0

R++(M)) −→ Hi
R++(M) −→ Hi

R++(M ′) −→ · · · .

Since H 0
R++(M) is R++-torsion, Hi

R++(H 0
R++(M)) = 0 for all i ≥ 1. Thus
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Hi
R++(M) � Hi

R++(M ′) for all i ≥ 1. (2.2.1)

By [7, Lemma 2.4.1], there exists an element x ∈ Rp for some p ≥ e such that
x /∈ P for all P ∈ Ass(M ′) = Ass(M)\V (R++).Fix i ≥ 1.Consider the short exact
sequence of R-modules

0 −→ M ′(−p)
.x−→ M ′ −→ M ′/xM ′ −→ 0

which gives long exact sequence of local cohomologymoduleswhose r th component
is

· · · −→
[
Hi−1

R++

(
M ′/xM ′)

]

r
−→ [

Hi
R++(M ′)

]

r−p

.x−→ [
Hi

R++(M ′)
]

r

−→ [
Hi

R++

(
M ′/xM ′)]

r
−→ · · · .

By inductive hypothesis
[
Hi−1

R++

(
M ′/xM ′)

]

m
= 0 for all large m, say, for all m ≥ k

for some k ∈ N
s . Then for all n ≥ k, we have the exact sequence

0 −→ [
Hi

R++(M ′)
]

n−p

.x−→ [
Hi

R++(M ′)
]

n
.

Since Hi
R++(M ′) is R++-torsion and x ∈ R++, we have

[
Hi

R++(M ′)
]

m
= 0 for all

m ≥ k − p. Hence we prove part (2).
Fix i > 0 and n ∈ Z

s . By [7, Lemma 2.4.1], there exists an element y ∈ R++
such that y /∈ P for all P ∈ Ass(M ′) = Ass(M)\V (R++) and we can assume
degree(y) = m such that [Hi

R++(M ′)]r = 0 for all r ≥ n + m. Consider the short
exact sequence of R-modules

0 −→ M ′(−m)
.y−→ M ′ −→ M ′/yM ′ −→ 0

which gives long exact sequence of cohomology modules whose (m + n)th
component is

· · · −→
[
Hi−1

R++

(
M ′/yM ′)

]

m+n
−→ [

Hi
R++(M ′)

]

n

.y−→ [
Hi

R++(M ′)
]

m+n
−→ · · · .

Since [Hi
R++(M ′)]m+n = 0 and by induction hypothesis

[
Hi−1

R++

(
M ′/yM ′)

]

m+n
is

finitely generated R0-module, from the above exact sequence, we get [Hi
R++(M ′)]n

is finitely generated R0-module. Hence by Eq. (2.2.1), we get the required result. �
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Theorem 2.3 (Grothendieck–Serre formula for multi-graded modules) Let R =⊕

n∈Ns

Rn be a standard NoetherianN
s -graded ring defined over an Artinian local ring

(R0,m) and M = ⊕

n∈Zs

Mn a finitely generated Z
s -graded R-module. Let HM(n) =

λ(Mn) and PM(x1, . . . , xs) be the Hilbert polynomial of M. Then for all n ∈ Z
s,

HM(n) − PM(n) =
∑

j≥0

(−1) j h j
R++(M)n.

Proof For alln∈ Z
s,wedefineχM (n)= ∑

j≥0
(−1) j h j

R++(M)n and fM(n) = HM(n) −
PM(n). We use induction on rel. dim(M). Suppose rel. dim(M) = s − 1. Then
Supp++(M) = V++(Ann(M)) = ∅. Therefore there exists an integer k ≥ 1 such
that Rk++M = 0. Hence H 0

R++(M) = M and Hi
R++(M) = 0 for all i ≥ 1. Since

PM(X1, . . . , Xs) has degree−1,we have PM(n) = 0 for all n ∈ Z
s . Thus we get the

required equality.
Assume that rel. dim(M) ≥ s. Let M ′ denote M/H 0

R++(M). Consider the short
exact sequence of R-modules

0 −→ H 0
R++(M) −→ M −→ M ′ −→ 0

which gives long exact sequence of local cohomology modules

· · · −→ Hi
R++(H 0

R++(M)) −→ Hi
R++(M) −→ Hi

R++(M ′) −→ · · · .

Note that H 0
R++(M) is R++-torsion. Hence for all i ≥ 1, Hi

R++(H 0
R++(M)) = 0 and

Hi
R++(M) � Hi

R++(M ′). (2.3.1)

SinceHM(n) = HM ′(n) + h0R++(M)n andhencebyProposition2.2part (2), PM (n) =
PM ′(n). Thus

HM(n)− PM(n)= HM ′(n)+ h0R++(M)n − PM ′(n)= HM ′(n)− PM ′(n)+ h0R++(M)n.

Therefore by the Eq. (2.3.1), it is enough to prove the result for M ′. By [7, Lemma
2.4.1], there exists an element x ∈ Rp for some p ≥ e such that x /∈ P for all P ∈
Ass(M ′) = Ass(M)\V (R++). Consider the short exact sequence of R-modules

0 −→ M ′(−p)
.x−→ M ′ −→ M ′/xM ′ −→ 0

which gives long exact sequence of cohomology modules whose r th component is
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· · · −→
[
Hi−1

R++

(
M ′/xM ′)

]

r
−→ [

Hi
R++(M ′)

]

r−p

.x−→ [
Hi

R++(M ′)
]

r

−→ [
Hi

R++

(
M ′/xM ′)]

r
−→ · · · .

Thus for all n ∈ Z
s, HM ′/xM ′(n) = HM ′(n) − HM ′(n − p). Hence PM ′/xM ′(n) =

PM ′(n) − PM ′(n − p). By Lemma 2.1, rel. dim(M ′/xM ′) < rel. dim(M ′). There-
fore for all n ∈ Z

s,

fM ′(n) − fM ′(n − p) = fM ′/xM ′(n) = χM ′/xM ′(n) = χM ′(n) − χM ′(n − p).

Hence fM ′(n) − χM ′(n) = fM ′(n − p) − χM ′(n − p).Since for all largen, fM ′(n) −
χM ′(n) = 0, we get the required result. �

Proposition 2.4 Let S′ be a Z
s -graded ring and S = ⊕

n∈Ns S′
n. Then Hi

S++(S′) ∼=
Hi

S++(S) for all i > 1 and we have the exact sequence

0 −→ H 0
S++(S) −→ H 0

S++(S′) −→ S′

S
−→ H 1

S++(S) −→ H 1
S++(S′) −→ 0.

Proof Consider the short exact sequence of S-modules

0 −→ S −→ S′ −→ S′

S
−→ 0.

This gives the long exact sequence of S-modules

· · · −→ Hi
S++(S) −→ Hi

S++(S′) −→ Hi
S++

(
S′

S

)

−→ · · · .

Since S′
S is S++-torsion, H 0

S++

(
S′
S

)
= S′

S and Hi
S++

(
S′
S

)
= 0 for all i > 0. Hence the

result follows. �

The GSF for multi-graded Rees algebras proved below generalises the theorems
[19, Theorem 5.1], [24, Theorem 1] and [2, Theorem 4.1].

Theorem 2.5 ([25, Theorem 4.3]) Let (R,m) be a Noetherian local ring of dimen-
sion d and I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs be an I -
admissible filtration of ideals in R. Then

(1) hiR++(R′(F))n < ∞ for all i ≥ 0 and n ∈ Z
s .

(2) PF (n) − HF (n) = ∑

i≥0
(−1)i hiR++(R′(F))n for all n ∈ Z

s .
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Proof (1) Denote
R′(F)

R′(F)(ei )
by G ′

i (F). By the change of ring principle,

H j
Gi (I )++

(G ′
i (F)) ∼= H j

R++(G ′
i (F)) for all i = 1, . . . , s and j ≥ 0. For a fixed i , con-

sider the short exact sequence of R(I )-modules

0 −→ R′(F)(ei ) −→ R′(F) −→ G ′
i (F) −→ 0. (2.5.1)

This induces the long exact sequence of R-modules

0 −→ [H0
R++ (R′(F))]n+ei −→ [H0

R++ (R′(F))]n −→ [H0
R++ (G ′

i (F))]n −→ [H1
R++ (R′(F))]n+ei −→ · · · .

By Propositions 2.2 and 2.4, [H j
R++(R′(F))]n = 0 for all large n and j ≥ 0. Since

(
G ′

i (F)

Gi (F)

)

n
= 0 for all n ∈ N

s or ni < 0, by Propositions 2.2 and 2.4, [H j
R++(G ′

i (F))]n
is finitely generated (Gi (I ))0-module for all n ∈ N

s or ni < 0 and j ≥ 0. Since
(Gi (I ))0 is Artinian, [H j

R++(G ′
i (F))]n has finite length for all n ∈ N

s or ni < 0 and

j ≥ 0. Hence using decreasing induction on n, we get that h j
R++(R′(F))n < ∞ for

all j ≥ 0 and n ∈ Z
s .

(2) Let χM(n) = ∑

i≥0
(−1)i hiR++(M)n where M is an R(I )-module. Then from the

short exact sequence (2.5.1), Theorem 2.3 and Proposition 2.4, for each i = 1, . . . , s
and n ∈ N

s or ni < 0,

χR′(F)(n + ei ) − χR′(F)(n) = −χG ′
i (F)(n)

= −χGi (F)(n)

= PGi (F)(n) − HGi (F)(n)

= (PF (n + ei ) − PF (n)) − (HF (n + ei ) − HF (n)).

Let h(n) = χR′(F)(n) − (PF (n) − HF (n)). Then h(n + ei ) = h(n) for all n ∈ N
s

or ni < 0 and i = 1, . . . , s. Since h(n) = 0 for all large n, h(n) = 0 forall n ∈ Z
s .

�

3 Formulas for Local Cohomology Modules

In this section, we derive formulas for the graded components of the local coho-
mology modules of certain Rees rings and associated graded rings in terms of the
Ratliff–Rush closure filtration of a multi-graded filtration of ideals. These gener-
alise [2, Proposition 2.5 and Theorem 3.5]. We use these formulas to derive various
properties of the Hilbert coefficients in further sections.

In the following proposition we derive a formula for Hd
G(F)+(G(F))n.
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Proposition 3.1 Let (R,m) be a Cohen–Macaulay local ring of dimension d ≥ 1,
I an m-primary ideal and F = {In} be an I -admissible filtration of ideals in R. Let
(x1, . . . , xd) be a minimal reduction ofF . Put xk = (xk1 , . . . , x

k
d ) for all k ≥ 1. Then

for all n ∈ Z,

Hd
G(F)+(G(F))n = lim−→

k

Idk+n

xk I(d−1)k+n + Idk+n+1
.

Proof Let x∗
i = xi + I2 be the image of xi inG(F).Since

√
G(F)+ =√

(x∗
1 , . . . , x

∗
d ),

by [5, Theorem 5.2.9], Hd
G(F)+(G(F))= lim−→

k

Hd((x∗
1 )

k, . . . , (x∗
d )

k,G(F)) where

Hd((x∗
1 )

k, . . . , (x∗
d )

k,G(F)) is the dth cohomology of the Koszul complex of G(F)

with respect to the elements (x∗
1 )

k, . . . , (x∗
d )

k . Thus we get the required result. �

Proposition 3.2 Let (R,m) be a Cohen–Macaulay local ring of dimension d ≥ 1,
I an m-primary ideal and F = {In} be an I -admissible filtration of ideals in R. Let
(x1, . . . , xd) be a minimal reduction ofF . Put xk = (xk1 , . . . , x

k
d ) for all k ≥ 1. Then

for all n ∈ Z,

Hd
R(F)+(R(F))n = lim−→

k

Idk+n

xk I(d−1)k+n
.

Proof Since
√R(F)+ =√

(x1t, . . . , xd t),wehaveHd
R(F)+(R(F))= lim−→

k

Hd((x1t)
k,

. . . , (xd t)
k,R(F)) by [5, Theorem 5.2.9] where Hd((x1t)k, . . . , (xd t)k,R(F)) is

the dth cohomology of the Koszul complex of R(F) with respect to the elements
(x1t)k, . . . , (xd t)k . Thus we get the required result. �

Lemma 3.3 ([Rees’ Lemma] [31, Lemma 1.2] [25, Lemma 2.2]) Let (R,m, k) be
a Noetherian local ring of dimension d with infinite residue field k and I1, . . . , Is be
m-primary ideals of R. Let F = {F(n)}n∈Zs be an I -admissible filtration of ideals
in R and S be a finite set of prime ideals of R not containing I1 · · · Is . Then for each
i = 1, . . . , s, there exists an element xi ∈ Ii not contained in any of the prime ideals
of S and an integer ri such that for all n ≥ ri ei ,

F(n) ∩ (xi ) = xiF(n − ei ).

Theorem 3.4 ([31, Theorem 1.3] [25, Theorem 2.3]) Let (R,m) be a Noetherian
local ring of dimension d with infinite residue field and I1, . . . , Is be m-primary
ideals of R. Let F = {F(n)}n∈Zs be an I -admissible filtration of ideals in R.

Then there exist a set of elements {xi j ∈ Ii : j = 1, . . . , d; i = 1, . . . , s} such that
(y1, . . . , yd)F(n) = F(n + e) for all large n where y j = x1 j · · · xs j ∈ I1 · · · Is for
all j = 1, . . . , d. Moreover, if the ring is Cohen–Macaulay local then there exist
elements xi1 ∈ Ii and integers ri for all i = 1, . . . , s such that for all n ≥ ri ei ,
F(n) ∩ (xi1) = xi1F(n − ei ) and y1 = x11 · · · xs1.
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Proposition 3.5 ([25, Proposition 3.5]) Let (R,m) be a Cohen–Macaulay local ring
of dimension two with infinite residue field and I1, . . . , Is bem-primary ideals in R.

LetF = {F(n)}n∈Zs be an I -admissible filtration of ideals in R. Then for all n ∈ N
s,

[H 1
R(F)++(R(F))]n ∼= F̆(n)

F(n)
.

Proof By Lemma 3.3 and Theorem 3.4, there exists a regular sequence {y1, y2} such
that (y1, y2)F(n) = F(n + e) for all large n. For all k ≥ 1, consider the following
complex of R(F)-modules

Fk. : 0 −→ R(F)
αk−→ R(F)(ke)2

βk−→ R(F)(2ke) −→ 0,

where αk(1) = (y1k tke, y2k tke) and βk(u, v) = y2k tkeu − y1k tkev. Since radical of
the ideal (y1t e, y2t e)R(F) is same as radical of the ideal R(F)++, by [5, Theorem
5.2.9],

[H 1
R(F)++(R(F))]n ∼= lim−→

k

(ker βk)n

(im αk)n
.

Suppose (u, v) ∈ (ker βk)n for any n ∈ N
s . Then y2ku − y1kv = 0. Since {y1, y2}

is a regular sequence, u = y1k p for some p ∈ R. Thus v = y2k p. Hence (u, v) =
(y1k p, y2k p). This implies for all n ∈ N

s, (u, v) ∈ (ker βk)n if and only if (u, v) =
(y1k p, y2k p) for some p ∈ (F(n + ke) : (y1k, y2k)). For k � 0, by [25, Proposition
3.1], F̆(n) = (F(n + ke) : (y1k, y2k)) for all n ∈ N

s . Hence for all n ∈ N
s and k �

0, (ker βk)n ∼= F̆(n). Also for all n ∈ N
s,

(im αk)n = {(y1k ptke, y2k ptke) : p ∈ R(F)n} ∼= F(n).

Hence [H 1
R(F)++(R(F))]n ∼= F̆(n)

F(n)
for all n ∈ N

s . �

Proposition 3.6 Let (R,m) be a Cohen–Macaulay local ring of dimension two
with infinite residue field, I anm-primary ideal andF = {In}n∈Z be an I -admissible
filtration of ideals in R. Then

[H 1
R(F)+(R(F))]n =

{
Ĭn/In if n ≥ 0
R if n < 0.

Proof By Proposition 3.5, we get [H 1
R(F)+(R(F))]n = Ĭn/In for all n ≥ 0. Let J

be minimal reduction of F generated by superficial sequence y1, y2. For all k ≥ 1,
consider the following complex of R(F)-modules
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Fk. : 0 −→ R(F)
αk−→ R(F)(k)2

βk−→ R(F)(2k) −→ 0,

where αk(1) = (y1k tk, y2k tk) and βk(u, v) = y2k tku − y1k tkv. Since radical of the
ideal (y1t, y2t)R(F) is same as radical of the idealR(F)+, by [5, Theorem 5.2.9],

[H 1
R(F)+(R(F))]n ∼= lim−→

k

(ker βk)n

(im αk)n
.

Now for n < 0, R(F)n = 0. Hence (im αk)n = 0.
Suppose (u, v) ∈ (ker βk)n for any n < 0. Then y2ku − y1kv = 0. Since {y1, y2}

is a regular sequence, u = y1k p for some p ∈ R. Thus v = y2k p. Hence (u, v) =
(y1k p, y2k p). This implies for all n < 0, (u, v) ∈ (ker βk)n if and only if (u, v) =
(y1k p, y2k p) for some p ∈ (F(n + k) : (y1k, y2k)) = R. �

Proposition 3.7 ([2, Theorem 3.5]) Let (R,m) be a Cohen–Macaulay local ring of
dimension two with infinite residue field, I an m-primary ideal and F = {In}n∈Z be
an I -admissible filtration of ideals in R. Then

[H 1
R(F)+(R′(F))]n =

{
Ĭn/In if n ≥ 0
0 if n < 0.

Proof Since [H 1
R(F)++(R′(F))]n = [H 1

R(F)++(R(F))]n for all n ∈ N by Proposition

2.4, using Proposition 3.6, we get [H 1
R(F)++(R′(F))]n = Ĭn/In .

Let J be minimal reduction ofF generated by superficial sequence y1, y2. For all
k ≥ 1, consider the following complex of R(F)-modules

Fk. : 0 −→ R′(F)
αk−→ R′(F)(k)2

βk−→ R′(F)(2k) −→ 0,

where αk(1) = (y1k tk, y2k tk) and βk(u, v) = y2k tku − y1k tkv. Since radical of the
ideal (y1t, y2t)R(F) is same as radical of the idealR(F)+, by [5, Theorem 5.2.9],

[H 1
R(F)+(R′(F))]n ∼= lim−→

k

(ker βk)n

(im αk)n
.

for all n ∈ Z\N,

(im αk)n = {(y1k ptke, y2k ptke) : p ∈ R′(F)n = R} ∼= R.

Thus [H 1
R(F)+(R′(F))]n = 0 for all n ∈ Z\N. �

Lemma 3.8 ([25, Lemma 2.11]) Let I1, . . . , Is bem-primary ideals in a Noetherian
local ring (R,m) of dimension d ≥ 1 such that grade(I1 · · · Is) ≥ 1. Let F =
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{F(n)}n∈Zs be an I -admissible filtration of ideals in R. Denote R(I )++ as R++.

Then
λR[Hd

R++(R′(F))]n ≤ λR[Hd
R++(R′(F))]n−ei

for all n ∈ Z
s and i = 1, . . . , s.

Proof By Lemma 3.3 and Theorem 3.4, there exists an ideal J = (y1, . . . , yd) ⊆
I1 · · · Is such that y1 = x11 · · · xs1 is a nonzerodivisor, xi1 ∈ Ii forall i = 1, . . . , s and
JF(n) = F(n + e) for all large n. Hence

√R(I )++ = √
(y1t, . . . , yd t). Consider

the short exact sequence of R(I )-modules,

0 −→ R′(F)(−ei )
xi1ti−→ R′(F) −→ R′(F)

xi1tiR′(F)
−→ 0.

This gives a long exact sequence of n-graded components of local cohomology
modules,

· · · −→ [Hd
R(I )++ (R′(F))]n−ei −→ [Hd

R(I )++ (R′(F))]n −→
[

Hd
R(I )++

( R′(F)

xi1tiR′(F)

)]

n
−→ 0.

Let T = R(I )
xi1tiR(I ) .Now R′(F)

xi1 tiR′(F)
is aT -module and

√(
R(I )

xi1tiR(I )

)

++
=√

(y2t, · · · , yd t)T .

Hence Hd
R(I )++

(
R′(F)

xi1tiR′(F)

)
= 0 which implies the required result. �

Theorem 3.9 ([25, Theorem 3.3]) Let (R,m) be a Noetherian local ring of dimen-
sion d ≥ 1 with infinite residue field and I1, . . . , Is be m-primary ideals in R such
that grade(I1 · · · Is) ≥ 1. LetF = {F(n)}n∈Zs be an I - admissible filtration of ideals
in R. Then for all n ∈ N

s and i = 1, . . . , s,

[H 0
Gi (F)++(Gi (F))]n = F̆(n + ei ) ∩ F(n)

F(n + ei )
.

Proof Let x ∈ F(n) and x∗ = x + F(n + ei ) ∈ [H 0
Gi (F)++(Gi (F))]n. Then

x∗Gi (F)k++ = 0 for some k ≥ 1. Therefore xF(e)k ⊆ F(n + ke + ei ). Hence x ∈
F̆(n + ei ).

Conversely, suppose x∗ ∈ F̆(n + ei ) ∩ F(n)/F(n + ei ). We show that there
exists m � 0 such that x∗Gi (F)m++ = 0. Since Gi (F)m++ ⊆

⊕

p≥me

F(p)/F(p + ei ),

it is enough to show that x∗(F(p)/F(p + ei )) = 0 for all large p. By [25, Propo-

sition 3.1], there exists m ∈ N
s with m ≥ e such that F̆(r) = F(r) for all r ≥ m.

Thus for all r ≥ m,

xF(r) ⊆ F̆(n + ei )F(r) ⊆ F̆(n + r + ei ) = F(n + r + ei ).
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Therefore (x + F(n + ei ))Gi (F)m++ = 0 for somem ≥ 1.Hence (x + F(n + ei )) ∈
[H 0

Gi (F)++(Gi (F))]n. �

4 The Postulation Number and the Reduction Number

In [35, Proposition 3] Sally gave a nice relation between the postulation number
and the reduction number of the filtration {mn}n∈N. In [23, Corollary 3.8] Marley
generalised this relation for any I -admissible filtration. In this section, we derive
these results using theGrothendieck–Serre formula.We recall fewpreliminary results
about superficial sequenceswhich are useful to apply induction in the study ofHilbert
coefficients.

Let (R,m) be a Noetherian local ring, I be an m-primary ideal and F = {In}n∈Z
be an I -admissible filtration of ideals in R.

Definition 4.1 Anelement x ∈ It\It+1 is called superficial element forF of degree
t if there exists an integer c ≥ 0 such that (In+t : x) ∩ Ic = In for all n ≥ c.

If the residue field of R is infinite, then there exists a superficial element of degree
1 [32, Proposition 2.3]. If grade (I1) ≥ 1 and x ∈ I1 is superficial for F , Huckaba
and Marley [13], showed that x is nonzerodivisor in R and (In+1 : x) = In for all
large n. If dimension of R is d ≥ 1, x ∈ I1\I2 is superficial element for F and x is a
nonzerodivisor on R then by [23, Lemma A.2.1], ei (F) = ei (F ′) for all 0 ≤ i < d
where R′ = R/(x) and F ′ = {In R′}n∈Z. The following lemma is due to Blancafort
[3, Lemma 3.1.6]. This lemma was first proved by Huckaba [11, Lemma 1.1] for
I -adic filtration.

Lemma 4.2 Let (R,m) be a Cohen–Macaulay local ring of dimension d ≥ 1, I
an m-primary ideal and F = {In}n∈Z be an I -admissible filtration of ideals in R.

Suppose J is a minimal reduction of F and there exists an x ∈ J\I2 such that x∗ =
x + I2 is a nonzerodivisor in G(F). Let R′ = R/(x). Then r(F) = r(F ′) where
F ′ = {In R′}n∈Z.

Proof Wedenote r(F) and r(F ′) by r and s respectively. It is clear that s ≤ r.Weuse
the notation “ ′ ” to denote the image in R′. Let n ≥ s and a ∈ In+1. Then a′ ∈ J ′ I ′

n.

Hence a = p + xq for some p ∈ J In and q ∈ R.Therefore xq ∈ In+1 which implies
q ∈ (In+1 : x). Since x∗ is a nonzerodivisor in G(F), we have (In+1 : x) = In for
all n ∈ Z. Hence we get the required result. �

Definition 4.3 If x = x1, . . . , xr ∈ I1, we say x is a superficial sequence for F if
for all 0 ≤ i < r, xi+1 is superficial for F/(x1, . . . , xi ).
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Suppose (R,m) is Cohen–Macaulay local ring of dimension d, I1 is anm-primary
ideal andF = {In} is an I1-admissible filtration of ideals in R. Suppose x1, . . . , xr ∈
I1 and 1 ≤ r ≤ d, then x1, . . . , xr is a superficial sequence for F if and only if
x1, . . . , xr is R-regular sequence and there exists an integer n0 ≥ 0 such that for all
1 ≤ i ≤ r,

(x1, . . . , xi ) ∩ In = (x1, . . . , xi )In−1 for all n ≥ n0.

This result was first proved by Valabrega and Valla [39, Corollary 2.7] for I -adic
filtration and then by Huckaba and Marley [13] for Z-graded admissible filtrations.
Marley [23, Proposition A.2.4] showed that if residue the field is infinite then any
minimal reduction of F can be generated by a superficial sequence for F . The
following lemma is due to Huckaba and Marley [13, Lemma 2.1].

Lemma 4.4 ([13, Lemma 2.1]) Let (R,m) be a Noetherian local ring of dimen-
sion d ≥ 1, I an m-primary ideal and F = {In} be an I -admissible filtration of
ideals in R. Let x1, . . . , xk be a superficial sequence for F . If gradeG(F)+ ≥ k
then x∗

1 , . . . , x
∗
k is a regular sequence in G(F) and hence G(F)/(x∗

1 , . . . , x
∗
k ) �

G(F/(x1, . . . , xk)) where x∗
i is image of xi in G(F).

Proof By induction it is enough to prove for k = 1. Let (In+1 : x1) ∩ Ic = In for all
n ≥ c. Let x∗ ∈ (0 : x∗

1 ) ∩ G(F)n for some n ∈ N. We show that x∗(G(F)+)c+1 =
0. Let 0 �= z∗ ∈ G(F)c+1

+ ∩ G(F)p. Now x∗z∗ ∈ G(F)n+p and x1xz ∈ In+p+2.

Therefore xz ∈ (In+p+2 : x1) ∩ Ic = In+p+1. Thus x∗z∗ = 0 in G(F). Hence x∗ ∈
(0 :G(F) (G(F)+)c+1) = 0. �

The next theoremwas proved for them-adic by Sally [35, Proposition 3].We have
adapted her proof for any admissible filtration.

Theorem 4.5 Let (R,m) be a Cohen–Macaulay local ring of dimension d ≥ 1 with
infinite residue field, I anm-primary ideal andF = {In} be an I -admissible filtration
of ideals in R. Let HR(n) = λ (In/In+1) and PR(X) ∈ Q[X ] such that PR(n) =
HR(n) for all large n. Suppose gradeG(F)+ ≥ d − 1. Then for a minimal reduction
J = (x1, . . . , xd) of F , HR(rJ (F) − d) �= PR(rJ (F) − d) and HR(n) = PR(n) for
all n ≥ rJ (F) − d + 1.

Proof We denote rJ (F) by r. We use induction on d. Let d = 1. Without loss of
generality we assume x1 is superficial. Then

H 0
G(F)+(G(F))n = {z∗ ∈ In/In+1 | z Il ∈ In+l+1 for all large l}.

For n ≥ r − 1, zxl1 ∈ In+l+1 = xl1 In+1 implies z ∈ In+1. Thus for all n ≥ r − 1,
H 0

G(F)+(G(F))n = 0.
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Nowwe prove that H 1
G(F)+(G(F))r−1 �= 0 and H 1

G(F)+(G(F))n = 0 for all n ≥ r.
For each n, consider the following map

Ik+n

xk1 In + Ik+n+1

φk−→ Ik+n+1

xk+1
1 In + Ik+n+2

where φk(z) = x1z.

For all large k, Ik+n+1 = x1 Ik+n. Hence for all large k, φk is surjective. Now suppose
φk(z) = 0 for some z ∈ Ik+n/xk1 In + Ik+n+1. Then x1z ∈ xk+1

1 In + Ik+n+2. There-
fore x1z = xk+1

1 a + b for somea ∈ In andb ∈ Ik+n+2.Thusb ∈ (x1) ∩ Ik+n+2.Since
x1 is superficial, for all large k, b ∈ x1 Ik+n+1 and hence z ∈ xk1 In + In+k+1. Thus for
all large k, φk is injective. Therefore by Proposition 3.1, for all large k,

H 1
G(F)+(G(F))n � Ik+n

xk1 In + Ik+n+1
.

Thus for all n ≥ r and for all large k, Ik+n = xk1 In ⊆ xk1 In + Ik+n+1. Hence
H 1

G(F)+(G(F))n = 0 for all n ≥ r.
Suppose H 1

G(F)+(G(F))r−1 = 0. Then for all large k,

Ik+r−1 = xk1 Ir−1 + Ik+r ⊆ xk1 Ir−1.

Let a ∈ Ik+r−2. Then x1a ∈ Ik+r−1 ⊆ xk1 Ir−1 implies a ∈ xk−1
1 Ir−1. Thus Ik+r−2 =

xk−1
1 Ir−1. Using this procedure repeatedly, we get Ir = x1 Ir−1 which is a contradic-
tion. Thus H 1

G(F)+(G(F))r−1 �= 0. Therefore by Theorem 2.3, we get the required
result.

Suppose d ≥ 2. Without loss of generality we assume x1, . . . , xd is superficial
sequence for F . Since gradeG(F)+ ≥ d − 1, by Lemma 4.4, we have x∗

1 is a
nonzerodivisor of G(F). By [3, Proposition 3.1.3] G(F)/(x∗

1 ) � G(F/(x1)). For
all n ∈ Z, consider the following exact sequence

0 −→ In−1

In

x∗
1−→ In

In+1
−→ In

x1 In−1 + In+1
� In + (x1)

In+1 + (x1)
−→ 0. (4.5.1)

Then for all n ∈ Z,

HR/(x1)(n) = HR(n) − HR(n − 1) and hence PR/(x1)(n) = PR(n) − PR(n − 1).

Since dim R/(x1) = d − 1 and gradeG(F/(x1))+ ≥ d − 2, by induction and
Lemma 4.2, we have

HR/(x1)(r − d + 1) �= PR/(x1)(r − d + 1) and HR/(x1)(n) = PR/(x1)(n) for all n ≥ r − d + 2.



144 S.K. Masuti et al.

Since there exists an integer m, such that for all n ≥ m, PR(n) = HR(n), we have

PR(n − 1) − HR(n − 1) = PR(n) − HR(n) = · · ·
= PR(n + m) − HR(n + m) = 0 for all n ≥ r − d + 2.

Therefore

0 �= PR/(x1)(r − d + 1) − HR/(x1)(r − d + 1)

= [PR(r − d + 1) − HR(r − d + 1)] − [PR(r − d) − HR(r − d)]
= PR(r − d) − HR(r − d).

�
The following result is due to Marley [23, Corollary 3.8]. Here we give another

proof which follows from Theorem 4.5.

Theorem 4.6 ([23, Corollary 3.8]) Let (R,m) be a Cohen–Macaulay local ring of
dimension d ≥ 1 with infinite residue field, I an m-primary ideal and F = {In} be
an I -admissible filtration of ideals in R. Let gradeG(F)+ ≥ d − 1. Then rJ (F) =
n(F) + d for any minimal reduction J of F . In particular, r(F) = n(F) + d.

Proof Let HR(n) = λ (In/In+1) for all n and PR(X) ∈ Q[X ] such that PR(n) =
HR(n) for all large n. Let d = 1 and J be any minimal reduction of F . Denote
rJ (F) by r. Then degree of the polynomial PR(X) is zero. Hence PR(X) = a where
a is a nonzero constant. By Theorem 4.5, for all n ≥ r, PR(n) = HR(n). Therefore
for all n ≥ r, we have

λ

(
R

In

)

= (n − r)a + λ

(
R

Ir

)

= na +
(

λ

(
R

Ir

)

− ra

)

.

Hence PF (n) = HF (n) for all n ≥ r. Suppose PF (r − 1) = HF (r − 1). Then

−a + λ

(
R

Ir

)

= λ

(
R

Ir−1

)

.

This implies PR(r − 1) = HR(r − 1)which contradicts Theorem 4.5. Thus rJ (F) −
1 = n(F) for any minimal reduction J of F . Hence we get the result for d = 1.

Suppose d ≥ 2 and J = (x1, . . . , xd) is a minimal reduction of F consisting of
superficial elements. Denote rJ (F) by r. For all n ∈ Z, we get

HR(n) = HF (n + 1) − HF (n) and hence PR(n) = PF (n + 1) − PF (n).

Since there exists an integerm, such that for all n ≥ m, PF (n) = HF (n),byTheorem
4.5, we have
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PF (n) − HF (n) = PF (n + 1) − HF (n + 1)

= · · ·
= PF (n + m) − HF (n + m) = 0 for all n ≥ r − d + 1.

Again using Theorem 4.5, we get

0 �= PR(r − d) − HR(r − d)

= [PF (r − d + 1) − HF (r − d + 1)] − [PF (r − d) − HF (r − d)]
= PF (r − d) − HF (r − d).

Thus rJ (F) − d = n(F) for any minimal reduction J of F . Hence r(F) =
n(F) + d. �

5 Nonnegativity and Vanishing of Hilbert Coefficients

In this section, we apply Grothendieck–Serre formula to derive various properties
of the Hilbert coefficients. We derive a result of Northcott, Narita, Marley, and Itoh.
We also derive a formula for the components of local cohomology modules of Rees
algebras in terms of the Hilbert coefficients (Proposition 5.11) which generalises [35,
Proposition 5] and [20, Proposition 3.3].

The following theorem is a generalisation of a result due to Northcott
[27, Theorem 1].

Theorem 5.1 (Northcott’s inequality) Let (R,m) be a d ≥ 1-dimensional Cohen–
Macaulay local ring, I an m-primary ideal and F = {In}n∈Z be an I -admissible
filtration of ideals in R. Then

e1(F) ≥ e0(F) − λ

(
R

I1

)

≥ 0.

Proof We use induction on d.Let d = 1. Since R is Cohen–Macaulay, putting n = 1
in the Difference Formula (Theorem 2.5) for Rees algebra of F , we have

e0(F) − e1(F) − λ

(
R

I1

)

= PF (1) − HF (1)

= λR[H 0
R(F)+(R′(F))]1 − λR[H 1

R(F)+(R′(F))]1
= −λR[H 1

R(F)+(R′(F))]1 ≤ 0.

Thus we get the first inequality. Suppose d ≥ 2 and the result is true for rings with
dimension upto d − 1. Without loss of generalitywe may assume that the residue
field of R is infinite. Let x ∈ I1 be a superficial element forF . Then e0(F) = e0(F ′)
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and e1(F) = e1(F ′) where “′” denotes the image in R′ = R/(x). Since λ(R′/I ′
1) =

λ(R/I1), by induction hypothesis we get the first inequality.
For any minimal reduction J of F , J is minimal reduction I1 by [31, Lemma

1.5]. Hence, we get the second inequality. �

Theorem 5.2 ([25, Theorem 5.6]) Let (R,m) be a Cohen–Macaulay local ring of
dimension d ≥ 1 and I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs be
an I -admissible filtration. Then

(1) eα(F) ≥ 0 where α = (α1, . . . ,αs) ∈ N
s, |α| ≥ d − 1.

(2) eα(F) ≥ 0 where α = (α1, . . . ,αs) ∈ N
s, |α| = d − 2 and d ≥ 2.

Proof (1)For |α| = d, the result follows from [31,Theorem2.4]. Suppose |α| = d −
1. We use induction on d. Let d = 1. Then putting n = 0 in the Difference Formula
(Theorem 2.5), we get e0(F) = λR[H 1

R++(R′(F))]0 ≥ 0. Let d ≥ 2 and assume the
result for rings of dimension d − 1.Then there exists i such thatαi ≥ 1.Without loss
of generality assume α1 ≥ 1. By Lemma 3.3, there exists a nonzerodivisor x ∈ I1
such that (x) ∩ F(n) = xF(n − e1) for all n ∈ N

s such that n1 � 0.Let R′ = R/(x)
andF ′ = {F(n)R′}n∈Zs . For all large n, consider the following short exact sequence

0 −→ (F(n) : (x))

F(n − e1)
−→ R

F(n − e1)
.x−→ R

F(n)
−→ R

(x,F(n))
−→ 0.

Since forall large n, (F(n) : (x)) = F(n − e1), we get PF ′(n) = PF (n) − PF (n −
e1). Hence (−1)d−1−|(α−e1)|b(α−e1)(F ′) = (−1)d−|α|eα(F) where

PF ′(n) =
∑

γ=(γ1,...,γs )∈Ns

|γ|≤d−1

(−1)d−1−|γ|bγ(F ′)
(
n1 + γ1 − 1

γ1

)

· · ·
(
ns + γs − 1

γs

)

.

Since |(α − e1)| = d − 2 = (d − 1) − 1, by induction b(α−e1)(F ′) ≥ 0. Hence for
|α| = d − 1, eα(F) ≥ 0.

(2) We prove the result using induction on d. For d = 2 the result follows from
the Difference Formula (Theorem 2.5) for n = 0 and Proposition 3.5. The rest is
same as for the case |α| = d − 1. �

As a consequence of this we get the following results which is proved by Marley
[23, Propositions 3.19 and 3.23]. The next one is a generalisation of a result due to
M. Narita [26, Theorem 1]. Here we give different proof.

Proposition 5.3 Let (R,m) be a d-dimensional (d ≥ 2) Cohen–Macaulay local
ring, I an m-primary ideal and F = {I n}n∈Z an admissible I -filtration. Then
e2(F) ≥ 0.
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Proof Comparing the expressions of coefficients of Hilbert polynomials for s = 1
and s ≥ 2, by Theorem 5.2, we get the required result. �

It is natural to ask whether ei (F) are nonnegative for i ≥ 3 in a Cohen–Macaulay
local ring. Narita [26, Theorem 2] and Marley [22, Example 2] gave an example of
an ideal in a Cohen–Macaulay local ring with e3(I ) < 0.

Example 5.4 [26, Theorem 2] Let � be a formal power series k[[X1, X2, X3, X4]]
over afield k andQ = �/�X3

4.ThenQ is aCohen–Macaulay local ringof dimension
3. Let x1, x2, x3, x4 be the images of X1, X2, X3, X4 in Q and I = Qx1 + Qx22 +
Qx23 + Qx2x4 + Qx3x4. Then

e3(I ) = −λQ′
(

((I Q′)2 : (x2Q′)2)
I Q′

)

= −λQ′
(
I Q′ + (x4Q′)2

I Q′

)

< 0 where Q′ = Q/(x1).

Example 5.5 [22, Example 2] Let I = (X3,Y 3, Z3, X2Y, XY 2,Y Z2, XY Z) in the
regular local ring R = k[X,Y, Z ](X,Y,Z). Then for all n ≥ 1,

PI (n) = 27

(
n + 2

3

)

− 18

(
n + 1

2

)

+ 4n + 1.

Hence e3(I ) = −1 < 0.

However, for F = {I n}n∈Z, Itoh proved that e3(F) is nonnegative in an analyti-
cally unramified Cohen–Macaulay local ring [17, Theorem 3]. In order to prove this,
he used an analogue of Theorem 2.3 (see [17, p.114]). In [12, Corollary 3.9], authors
gave an alternative proof of this result. We prove this result using the GSF. For this
purpose, we recall some results of Itoh about vanishing of graded components of
local cohomology modules. See also [10, Theorem 1.2].

Theorem 5.6 ([16, Theorem 2] [17, Proposition 13]) Let (R,m) be an analytically
unramifiedCohen–Macaulay local ring of dimension d ≥ 2.LetM = (t−1,R(F)+)

be the maximal homogeneous ideal of R′(F). Then the following statements hold
true for the filtration F = {I n}n∈Z :
(1) H 0

M(R′(F)) = H 1
M(R′(F)) = 0;

(2) H 2
M(R′(F) j = 0 for j ≤ 0;

(3) Hi
M(R′(F)) = Hi

R(F)+(R′(F)) for i = 0, 1, . . . , d − 1.

Theorem 5.7 ([17, Theorem 3]) Let (R,m) be an analytically unramified Cohen–
Macaulay local ring of dimension d ≥ 3 and I be an m-primary ideal in R. Then
e3(I ) ≥ 0.
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Proof ForF = {I n}n∈Z,we setR′(I ) := R′(F).We use induction on d. Let d = 3.
Then, by the Difference Formula (Theorem 2.5) for Rees algebras and Theorem 5.6,
we have

e3(I ) = h3R′
(I )+

R′(I )0 ≥ 0.

Let d > 3. We may assume that the residue field of R is infinite. Let J ⊆ I be a
reduction of I. Since I n = J n for all n, ei (I ) = ei (J ) for all i = 1, . . . , d. Therefore
it suffices to show that e3(J ) ≥ 0. By [17, Theorem 1 and Corollary 8], there exists a
system of generators x1, . . . , xd of J such that, if we put T = (T1, . . . , Td), R(T ) =
R[T ]m[T ] and C = R(T )/(

∑d
i=1 xi Ti ), then C is an analytically unramified Cohen–

Macaulay local ringof dimensiond − 1and e3(J ) = e3(JC).Hence, using induction
hypothesis the result follows. �

Itoh [17, p.116] proposed the following conjecture on the vanishing of e3(I ) which
is still open.

Conjecture 5.8 (Itoh’sConjecture) Let (R,m) be an analytically unramifiedGoren-
stein local ring of dimension d ≥ 3. Then e3(I ) = 0 if and only if I n+2 = I n I 2 for
every n ≥ 0.

Itoh proved the “if” part of the Conjecture 5.8 in [16, Proposition 10]. He also
proved the “only if” part of the Conjecture 5.8 for I = m [17, Theorem 3(2)]. By [17,
Corollary 8 and Proposition 17], it suffices to prove the Conjecture 5.8 for d = 3.
Let d = 3 and e3(I ) = 0 for an m-primary ideal in a Cohen–Macaulay ring R. By
[16, Proposition 3] and [17, Corollary 16 and (4.1)], I n+2 = I n I 2 for every n ≥ 0 if
and only ifR′

(I ) is Cohen–Macaulay.
It is not known whether the Itoh’s conjecture is true for I = m in a Cohen–

Macaulay local ring R (which need not be Gorenstein). Recently, in [8, Theorem
3.6], the authors proved that the Conjecture 5.8 holds true for I = m in a Cohen–
Macaulay local ring of type at most two. T.T. Phuong [29], showed that if R is
an analytically unramified Cohen–Macaulay local ring of dimension d ≥ 2 then
the equality e1(I ) = e0(I ) − λ(R/I ) + 1 leads to the vanishing of e3(I ). In [21],
authors generalised the result of [8]. They also obtained following result for an
arbitrary m-primary ideal I in an analytically unramified Cohen–Macaulay local
ring of dimension 3.

Theorem 5.9 ([21, Theorem 1.1]) Let (R,m) be an analytically unramified Cohen–
Macaulay local ring of dimension 3. Let M = (t−1,R′ +) and R′ = ⊕

n∈Z
I ntn. Sup-

pose that ē3(I ) = 0. Then

(1) H 3
M(R′

) = 0,
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(2) Suppose either that R is equicharacteristic or that I = m, and that I has a
reduction generated by x, y, z. If R′ is not Cohen–Macaulay, then e2(I ) −
λ

(
I 2

(x, y, z)I

)

≥ 3.

As a consequence they generalised [8, Theorem 3.6].

Corollary 5.10 ([21, Corollary 1.2]) Let (R,m) be an analytically unramified
Cohen–Macaulay local ring of dimension 3.

(1) Suppose e3(I ) = 0. Then there is an inclusion H 3
R′ +

(R′
)−1 ⊆ (0 :H3

m(R) I ).

(2) Suppose e3(m) = 0. Then ē2(m) ≤ type(R).

(3) R′
(m) is Cohen–Macaulay if ē2(m) ≤ lengthR(I 2/mI ) + 2 for any ideal I such

that I = m, e3(m) = 0 and I has a minimal reduction.

Proof (1): By Theorem 5.9, H 3
M(R′

) = 0. Hence, by [17, Proposition 13(3)], we
get an exact sequence

0 −→ H 3
R′ +

(R′
)−1 −→ H 3

m(R) −→ H 4
M(R′

)−1 −→ 0.

Thus H 3
R′ +

(R′
)−1 ⊆ H 3

m(R). By the Difference Formula (Theorem 2.5) and Theo-

rem 5.6, we get
h3R′ +

(R′
)0 = ē3(I ) = 0. (5.10.1)

Now consider the exact sequence

0 −→ R′
(1) −→ R′ −→ G =

⊕

n≥0

I n

I n+1
−→ 0

which gives the long exact sequence

· · · −→ Hi

R′ +
(R′

)n+1 −→ Hi

R′ +
(R′

)n −→ Hi
G+

(G)n −→ · · · .

Using (5.10.1), we get an isomorphism H 3
R′ +

(R′
)−1 � H 3

G+
(G)−1. This implies that

H 3
R′ +

(R′
)−1 is an R/I -module. Therefore H 3

R′ +
(R′

)−1 ⊆ (0 :H3
m(R) I ).

(2) Taking I = m, by the Difference Formula (Theorem 2.5) and Theorem 5.6,
we get ē2(I ) = h3R′ +

(R′
)−1. Hence by (1) we get the result.

(3) Follows from Theorem5.9(2). �

The next result was first proved by Sally [35, Proposition 5] for the filtration
{mn}n∈Z and then by Johnston and Verma [20, Proposition 3.3] for the filtration
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{I n}n∈Z where I is an m-primary ideal of R. Here we prove the result for Z-graded
admissible filtrations.

Proposition 5.11 Let (R,m) be a two-dimensional Cohen–Macaulay local ring, I
be anym-primary ideal of R and F = {In}n∈Z an I -admissible filtration of ideals in
R. Then

(1) λ
(
H 2

R(F)+(R(F)0
) = e2(F),

(2) λ
(
H 2

R(F)+(R(F))1
) = e0(F) − e1(F) + e2(F) − λ

(
R

Ĭ1

)

,

(3) λ
(
H 2

R(F)+(R(F))−1
) = e1(F) + e2(F).

Proof We have

PF (n) − HF (n) =
∑

i≥0

(−1)i hiR(F)+(R′(F))n for all n ∈ Z. (5.11.1)

(1) Putting n = 0 in (5.11.1) and using Propositions 2.4 and 3.7, we get the required
result.

(2) Putting n = 1 in (5.11.1) and using Propositions 2.4 and 3.7, we get the required
result.

(3) Consider the short exact sequence ofR(F)-modules

0 −→ R(F)+ −→ R(F) −→ R ∼= R(F)/R(F)+ −→ 0

which induces a long exact sequence of local cohomology modules whose nth com-
ponent is

· · · −→ Hi
R(F)+ (R(F)+)n −→ Hi

R(F)+ (R(F))n −→ Hi
R(F)+ (R)n −→ · · · for all i ≥ 0.

Since R isR(F)+-torsion,H 0
R(F)+(R) = R andHi

R(F)+(R) = 0 for all i ≥ 1.Hence
Hi

R(F)+(R(F)+) ∼= Hi
R(F)+(R(F)) for all i ≥ 2 and we have the exact sequence

0 → H 0
R(F)+(R(F)+)n → H 0

R(F)+(R(F))n → R

→ H 1
R(F)+(R(F)+)n → H 1

R(F)+(R(F))n → 0. (5.11.2)

The short exact sequence of R(F)-modules

0 −→ R(F)+(1) −→ R(F) −→ G(F) −→ 0

induces the exact sequence

0 −→ H0
R(F)+ (G(F))−1 → H1

R(F)+ (R(F)+)0 → H1
R(F)+ (R(F))−1 → H1

R(F)+ (G(F))−1

→ H2
R(F)+ (R(F))0 → H2

R(F)+ (R(F))−1 → H2
R(F)+ (G(F))−1 → 0.

(5.11.3)
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Now H 0
R(F)+(G(F)) ⊆ G(F) are nonzero only in nonnegative degrees. Thus

H 1
R(F)+(R(F))−1

∼= R and H 1
R(F)+(R(F))0 = 0 byProposition 3.6. Therefore from

the exact sequence (5.11.2), we get the exact sequence

0 → R → H 1
R(F)+(R(F)+)0 → H 1

R(F)+(R(F))0 = 0.

Let f denote the map from H 1
R(F)+(R(F))−1 to H 0

R(F)+(G(F))−1 in the exact
sequence (5.11.3). First we prove that f is zero map. From the exact sequence
(5.11.3), we get the exact sequence

0 −→ R
g−→ R

f−→ H 1
R(F)+(G(F))−1.

Since R/g(R) is contained in H 1
R(F)+(G(F))−1 and by Proposition 2.2,

H 1
R(F)+(G(F))−1 is of finite length, we have λR (R/g(R)) is finite. Since g(R)

is principal ideal in R, we get R = g(R). Therefore f is the zero map. Hence we get
the exact sequence

0 → H1
R(F)+ (G(F))−1 → H2

R(F)+ (R(F))0 → H2
R(F)+ (R(F))−1 → H2

R(F)+ (G(F))−1 → 0.

Therefore by Theorem 2.3, we get

[HF (0) − HF (−1)] − [PF (0) − PF (−1)] = −λ
(
H1
R(F)+ (G(F))−1

)
+ λ

(
H2
R(F)+ (G(F))−1

)

= −λ
(
H2
R(F)+ (R(F))0

)
+ λ

(
H2
R(F)+ (R(F))−1

)
.

Thus by part (1) of the Proposition, we get

λ
(
H 2

R(F)+(R(F))−1
) = e2(F) − e2(F) + e1(F) + e2(F) = e1(F) + e2(F).

�

6 Huneke–Ooishi Theorem and a Multi-graded Version

In this section we give an application of the GSF to derive a result of Huneke [14] and
Ooishi [28] which states that if (R,m) is a Cohen–Macaulay local ring of dimension
d ≥ 1 and I is anm-primary ideal then e0(I ) − e1(I ) = λ(R/I ) if and only if r(I ) ≤
1. A similar result for admissible filtrations was proved in [3, Theorem 4.3.6] and
[13, Corollary 4.9]. In [25, Theorem 5.5], authors gave a partial generalisation of this
result for an I -admissible filtration. First we prove few preliminary results needed.

Lemma 6.1 (Sally machine) [34, Corollary 2.4] [13, Lemma 2.2] Let (R,m) be
a Noetherian local ring, I1 an m-primary ideal in R and F = {In}n∈Z be an I1-
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admissible filtration of ideals in R. Let x1, . . . , xr be a superficial sequence for F .

If gradeG(F/(x1, . . . , xr ))+ ≥ 1 then gradeG(F)+ ≥ r + 1.

Proof Weuse induction on r.Let r = 1 and y ∈ It such that image of y inG(F/(x1))t
is a nonzerodivisor. Then (In+t j : y j ) ⊆ (In, x1) for all n, j. Since x1 is a superficial
element forF , there exists integer c ≥ 0, such that (In+ j : x j

1 ) ∩ Ic = In for all j ≥ 1
and n ≥ c. Consider an integer p > c/t. For arbitrary n and j ≥ 1, we prove that

y p(In+ j : x j
1 ) ⊆ (In+ j+tp : x j

1 ) ∩ Ic = In+tp.

Let a ∈ (In+ j : x j
1 ). Then ay px j

1 ∈ In+ j+tp. Since pt > c, ay p ∈ (In+ j+tp : x j
1 ) ∩

Ic = In+tp. Therefore

(In+ j : x j
1 ) ⊆ (In+tp : y p) ⊆ (In, x1).

Thus (In+ j : x j
1 ) = In + x1(In+ j : x j+1

1 ) for all n and j ≥ 1. Iterating this formula
n times, we get

(In+ j : x j
1 ) = In + x1 In−1 + x21 In−2 + · · · + xn1 (In+ j : x j+n

1 ) = In.

Hence x∗
1 = x1 + I2 is a nonzerodivisor of G(F). Since G(F)/(x∗

1 ) � G(F/(x1)),
gradeG(F)+ ≥ 2.

Now assume r ≥ 2. Then by r = 1 case, we have gradeG(F/(x1, . . . , xr−1))+ ≥
2 > 1. By induction on r , we have gradeG(F)+ ≥ r and since x1, . . . , xr is a super-
ficial sequence for F , by Lemma 4.4, we obtain x∗

1 , . . . , x
∗
r is a regular sequence of

G(F). Since G(F)/(x∗
1 , . . . , x

∗
r ) � G(F/(x1, . . . , xr )), gradeG(F)+ ≥ r + 1.

�
The next lemma is due to Marley [23, Lemma 3.14].

Lemma 6.2 Let (R,m) be a Cohen–Macaulay local ring of dimension d ≥ 1, I
an m-primary ideal and F = {In}n∈Z be an I -admissible filtration of ideals in R.

Suppose x ∈ I1\I2 such that x∗ = x + I2 is a nonzerodivisor in G(F). Let R′ =
R/(x). Then n(F) = n(F ′) − 1 where F ′ = {In R′}n∈Z.

Proof We use the notation “′” to denote the image in R′. For all n, consider the
following short exact sequence of R-modules

0 −→ (In : x)/In −→ R/In
.x−→ R/In −→ R′/I ′

n −→ 0.

Therefore HF ′(n) = λ(R′/I ′
n) = λ((In : x)/In). Since x∗ is a nonzerodivisor in

G(F),we have (In+1 : x) = In for all n.Hence HF ′(n) = λ(In−1/In) = λ(R/In) −
λ(R/In−1) = HF (n) − HF (n − 1) for all n which implies PF ′(n) = PF (n) −
PF (n − 1) for all n. Thus HF ′(n) = PF ′(n) for all n ≥ n(F) + 2. Since
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PF ′(n(F) + 1) − HF ′(n(F) + 1) = [PF (n(F) + 1) − HF (n(F) + 1)]
−[PF (n(F)) − HF (n(F))]

= −[PF (n(F)) − HF (n(F))] �= 0,

we get the required result. �

The next theorem is due to Blancafort [3] which is a generalisation of a result
of Huneke [14] and Ooishi [28] proved independently. We make use of reduction
number and postulation number of admissible filtration of ideals to simplify her
proof.

Theorem 6.3 ([3, Theorem4.3.6])Let (R,m) be aCohen–Macaulay local ringwith
infinite residue field of dimension d ≥ 1, I1 anm-primary ideal and F = {In}n∈Z be
an I1-admissible filtration of ideals in R. Then the following are equivalent:

(1) e0(F) − e1(F) = λ (R/I1) ,

(2) r(F) ≤ 1.

In this case, e2(F) = · · · = ed(F) = 0,G(F) is Cohen–Macaulay, n(F) ≤ 0, r(F)

is independent of the reduction chosen and F = {I n1 }.
Proof (1) ⇒ (2) We use induction on d. Let d = 1. For all n ∈ Z, we have

PF (n) − HF (n) = −h1R(F)+(R′(F))n.

By putting n = 1 in this formula, we get e0(F) − e1(F) − λ (R/I1) =
−h1R(F)+(R′(F))1 = 0.Therefore byLemma3.8, for all n ≥ 1, h1R(F)+R′(F)n = 0.
Consider the short exact sequence of R(F)-modules,

0 −→ R′(F)(1)
t−1−→ R′(F) −→ G(F) −→ 0.

This induces a long exact sequence,

0 −→ [H 0
R(F)+(G(F))]n −→ [H 1

R(F)+(R′(F))]n+1 −→ · · · .

Thus for all n ∈ N, [H 0
R(F)+(G(F))]n = 0. Hence G(F) is Cohen–Macaulay. Let

J = (x) be a minimal reduction of F . Without loss of generality x is superficial. For
each n, consider the following map

Ik+n

xk In

φk−→ Ik+n+1

xk+1 In
where φk(z) = xz.

For all large k, Ik+n+1 = x Ik+n . Hence for all large k, φk is surjective. Now suppose
φk(z) = 0 for some z ∈ Ik+n/xk In. Then xz ∈ xk+1 In. Therefore xz = xk+1a where
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a ∈ In, hence z ∈ xk In . Thus for all large k, φk is injective. Therefore by Proposition
3.2, for all large k,

H 1
R(F)+(R(F))n � Ik+n

xk In
.

By Lemma 3.8 and Proposition 2.4, H 1
R(F)+(R(F))n = 0 for all n ≥ 1. Then for all

large k and n ≥ 1,
Ik+n = xk In.

Let a ∈ Ik+n−1. Then xa ∈ Ik+n ⊆ xk In implies a ∈ xk−1 In. Thus Ik+n−1 = xk−1 In.
Using this procedure repeatedly we get In+1 = x In . Thus r(F) ≤ 1.

Let d ≥ 2 and x ∈ I1 be a superficial element for F . Let R′ = R/(x), F ′ =
{In R′}n∈Z and G ′ = G(F ′). Since ei (F) = ei (F ′) for all i < d, we have

e0(F ′) − e1(F ′) = e0(F) − e1(F) = λ

(
R

I1

)

= λ

(
R′

I1R′

)

.

Hence by induction hypothesis, G ′ is Cohen–Macaulay. Therefore by Sally machine
(Lemma 6.1),G(F) is Cohen–Macaulay. This implies that for anyminimal reduction
J of F , rJ (F) = n(F) + d by Theorem 4.6. Thus rJ (F) is independent of the
minimal reduction J of I.Let J be aminimal reduction ofF generated by superficial
sequence x1, . . . , xd . Let R = R/(x1, . . . , xd−1) and F = {In R}n∈Z. Since G(F) is
Cohen–Macaulay and x1, . . . , xd is superficial, using Theorem 4.6 and Lemmas 4.4,
4.2 and 6.2, for d − 1 times, by induction hypothesis we get

r(F) = n(F) + d = n(F) + 1 = r(F) ≤ 1.

(2) ⇒ (1) Let J be a minimal reduction of F such that r(F) = rJ (F) and J
is generated by superficial sequence x1, . . . , xd . Let R′ = R/(x1, . . . , xd−1) and
F ′ = {In R′}n∈Z. Then xd In R′ = In+1R′ for all n ≥ 1. Since x ′

d is nonzerodivisor,
(In+1R′ : x ′

d) = In R′ for all n ≥ 1. Therefore (x ′
d)

∗ (the image of x ′
d in G(F ′))

is nonzerodivisor in G(F ′). Hence G(F ′) is Cohen–Macaulay. Thus by Lemma
6.1, G(F) is Cohen–Macaulay. Therefore by Theorem 4.6, n(F) = r(F) − d ≤ 0.
Hence PF (n) = HF (n) for all n > 0. By putting n = 1 for d = 1 case we obtain
e0(F) − e1(F) = λ(R/I1).

Now we prove that if r(F) ≤ 1 then e2(F) = · · · = ed(F) = 0. Without loss of
generality assume d ≥ 2.The condition r(F) ≤ 1 impliesG(F) is Cohen–Macaulay
and n(F) = r(F) − d < 0. Let d = 2. Therefore e2(F) = PF (0) − HF (0) = 0.
Now assume d ≥ 3 and the result is true upto dimension d − 1. Let J be minimal
reduction of F generated by superficial sequence x1, . . . , xd . Let R′ = R/(x1, . . . ,
xd−1) andF ′ = {In R′}n∈Z. Then ei (F) = ei (F ′) = 0 for all 0 ≤ i < d. Since G(F)

is Cohen–Macaulay and n(F) = r(F) − d < 0, we get (−1)ded(F) = PF (0) −
HF (0) = 0. Therefore e0(F) − e1(F) − λ (R/I1) = PF (1) − HF (1) = 0.
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Let J be a minimal reduction of F such that r(F) = rJ (F) and r(F) ≤ 1. Then
I2 = J I1 ⊆ I 21 ⊆ I2.Suppose Ir = I r1 for all 1 ≤ r ≤ n.Then In+1 = J In ⊆ I1 I n1 ⊆
I n+1
1 ⊆ In+1. Thus F is {I n1 }n∈Z. �

Theorem 6.4 ([25, Theorem 5.5]) Let (R,m) be a Cohen–Macaulay local ring of
dimension d ≥ 1 and I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs be
an I -admissible filtration of ideals in R. Then for all i = 1, . . . , s,

(1) e(d−1)ei (F) ≥ e1(F (i)),

(2) e(Ii ) − e(d−1)ei (F) ≤ λ(R/F(ei )),
(3) e(Ii ) − e(d−1)ei (F) = λ(R/F(ei )) if and only if r(F (i)) ≤ 1 and e(d−1)ei (F) =
e1(F (i)), where F (i) = {F(nei )}n∈Z is an Ii -admissible filtration.

Proof (1) We apply induction on d. Let d = 1. Then by Theorem 2.5,

PF (rei ) − λ(R/F(rei )) = −λR[H 1
R++(R′(F))](rei ) for all r ≥ 0.

SinceF (i) is Ii -admissible,wehave e(F (i)) = e(Ii ).Henceusing PF (i) (r) = e(Ii )r −
e1(F (i)), we get

PF (i) (r) − λ(R/F(rei )) + [e1(F (i)) − e0(F)] = −λR[H 1
R++(R′(F))](rei ) ≤ 0.

Taking r � 0, we get e0(F) ≥ e1(F (i)). Let d ≥ 2. Without loss of generalitywe
may assume that the residue field of R is infinite. By Lemma 3.3, there exists a
nonzerodivisor xi ∈ Ii such that

(xi ) ∩ F(n) = xiF(n − ei ) for n ∈ N
s where ni � 0.

Let R′ = R/(xi ) and F ′ = {F(n)R′} and F ′(i) = {F(nei )R′}. For all n ∈ N
s such

that ni � 0, consider the following exact sequence

0 −→ (F(n) : (xi ))

F(n − ei )
−→ R

F(n − ei )
.xi−→ R

F(n)
−→ R

(xi ,F(n))
−→ 0.

Since for all n ∈ N
s where ni � 0, (F(n) : (xi )) = F(n − ei ), we get HF ′(n) =

HF (n) − HF (n − ei ) and hence PF (n) − PF (n − ei ) = PF ′(n). Therefore
e(d−2)ei (F ′) = e(d−1)ei (F) and e1(F ′(i)) = e1(F (i)). Therefore by induction, the
result follows.
(2) Using part (1), for all i = 1, . . . , s, we have

e(Ii ) − e(d−1)ei (F) ≤ e(Ii ) − e1(F (i)) ≤ λ(R/F(ei ))

where the last inequality follows from Theorem 5.1.
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(3) Let e(Ii ) − e(d−1)ei (F) = λ(R/F(ei )). Then by part (1),

λ(R/F(ei )) = e(Ii ) − e(d−1)ei (F) ≤ e(Ii ) − e1(F (i)) ≤ λ(R/F(ei )),

where the last inequality follows by Theorem 5.1. Hence e(d−1)ei (F) = e1(F (i)) and
e(Ii ) − e1(F (i)) = λ(R/F(ei )). Therefore, by Theorem 6.3, r(F (i)) ≤ 1.

Conversely, suppose r(F (i)) ≤ 1 and e(d−1)ei (F) = e1(F (i)). Again, by Theorem
6.3, e(Ii ) − e1(F (i)) = λ(R/F(ei )). Hence e(Ii ) − e(d−1)ei (F) = λ(R/F(ei )). �

Theorem 6.5 ([25, Theorem 5.7]) Let (R,m) be a Cohen–Macaulay local ring of
dimension two and I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs be
an I -admissible filtration of ideals in R. Then e0(F) = 0 implies e(Ii ) − eei (F) =
λ

(
R

F̆(ei )

)
for all i = 1, . . . , s. Suppose F̆ is I -admissible filtration, then the converse

is also true.

Proof Let e0(F) = 0.ByProposition 3.5, [H 1
R++(R′(F))]0 = 0.Hence byTheorem

2.5,
λR[H 2

R++(R′(F))]0 = e0(F) = 0.

By Lemma 3.8, λR[H 2
R++(R′(F))]ei = 0 for all i = 1, . . . , s. Then using Theorem

2.5 and Proposition 3.5, PF (ei ) − HF (ei ) = −λ
(
F̆(ei )
F(ei )

)
for all i = 1, . . . , s.Hence

e(Ii ) − eei (F) = λ
(

R
F̆(ei )

)
for all i = 1, . . . , s.

Suppose F̆ is I -admissible filtration and e(Ii ) − eei (F) = λ
(

R
F̆(ei )

)
for all i =

1, . . . , s. Then by [25, Proposition 3.1] and Theorem 3.9, for all n ≥ 0 and i =
1, . . . , s,

[H 0
Gi (F̆)++

(Gi (F̆))]n =
˘̆F(n + ei ) ∩ F̆(n)

F̆(n + ei )
= 0.

Since the Hilbert polynomial of F̆ is same as the Hilbert polynomial of F , by [25,
Theorem 5.3],

PF̆ (n) = HF̆ (n) for all n ≥ 0. (6.5.1)

Thus taking n = 0 in the Eq. (6.5.1), we get e0(F) = e0(F̆) = 0. �

As a consequence of the above theoremwe get a theorem of Huneke [14, Theorem
4.5] for integral closure filtrations. We also obtain a result by Itoh [18, Corollary 5]
following from the above theorem.

Corollary 6.6 ([18, Corollary 5], [25, Corollary 5.8]) Let (R,m) be a Cohen–
Macaulay local ring of dimension two and I be m-primary ideal of R. Let Q be
any minimal reduction of I. Then the following are equivalent.
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(1) e1(I ) − e0(I ) + λ
(

R
Ĭ

)
= 0.

(2) Ĭ 2 = QĬ .

(2′)
︸︸
I 2 = QĬ .

(3)
︸ ︸
I n+1 = Qn Ĭ for all n ≥ 1.

(4) e2(I ) = 0.

Proof We prove (4) ⇒ (3) ⇒ (2′) ⇒ (2) ⇒ (1) ⇒ (4).

(4) ⇒ (3) : Let F = {
︸︸
I n}n∈Z. Since e2(F) = e2(I ) = 0, by Theorem 6.5 and The-

orem 6.3, the result follows.
(3) ⇒ (2′) : Put n = 1 in (3).
(2′) ⇒ (2) Consider the filtration F = {I n}n∈Z. Then by [3, Proposition 3.2.3], for

all n ≥ 0,
︸︸
I n = ⋃

k≥1
(I nk+n : I nk). It suffices to show that Ĭ 2 ⊆

︸︸
I 2 .Let x, y ∈ Ĭ .Then

for some large k, x I k ⊆ I k+1 and y I k ⊆ I k+1. Hence xy I 2k ⊆ I 2k+2. This implies

that Ĭ 2 ⊆
︸︸
I 2 .

(2) ⇒ (1) : Follows from [14, Theorem 2.1].
(1) ⇒ (4) :LetF = {I n}n∈Z. Since F̆ is an I -admissible filtration, the result follows
by Theorem 6.5. �

Acknowledgments We thank Professor Markus Brodmann for discussions.
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