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Abstract Let R be a prime ring with center Z(R), J a nonzero left ideal, α an
automorphism of R and R admits a generalized (α, α)-derivation F associated with
a nonzero (α, α)-derivation d such that d(Z(R)) �= (0). In the present paper, we
prove that if any one of the following holds: (i) F([x, y]) − α([x, y]) ∈ Z(R) (i i)
F([x, y]) + α([x, y]) ∈ Z(R) (i i i) F(x ◦ y) − α(x ◦ y) ∈ Z(R) (iv) F(x ◦ y) −
α(x ◦ y) ∈ Z(R) for all x, y ∈ J , then R is commutative. Also some related results
have been obtained.
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derivations
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1 Introduction

In all that follows, unless stated otherwise, Rwill be an associative ringwith the center
Z(R). For any x, y ∈ R, the symbol [x, y] and x ◦ y stand for the Lie commutator
xy − yx and Jordan commutator xy + yx , respectively. A ring R is called 2-torsion
free, if whenever 2x = 0, with x ∈ R, then x = 0. If S ⊆ R, then we can define
the left (resp. right) annihilator of S as l(S) = {x ∈ R | xs = 0 for all s ∈ S} (resp.
r(S) = {x ∈ R | sx = 0 for all s ∈ S}).

Recall that a ring R is prime if for any a, b ∈ R, aRb = (0) implies a = 0 or
b = 0, and is semiprime if for any a ∈ R, aRa = (0) implies a = 0. An additive
subgroupU of R is said to be a Lie ideal of R if [u, r ] ∈ U for all u ∈ U and r ∈ R,
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and a Lie ideal U is called square-closed if u2 ∈ U for all u ∈ U . By a derivation,
we mean an additive mapping d : R −→ R such that d(xy) = d(x)y + xd(y) for
all x, y ∈ R. Let α and β be endomorphisms of R, an additive mapping d : R −→ R
is said to be an (α, β)-derivation if d(xy) = d(x)α(y) + β(x)d(y) holds for all
x, y ∈ R. Following [1], an additive mapping F : R −→ R is called a generalized
(α, β)-derivation on R if there exists an (α, β)-derivation d : R −→ R such that
F(xy) = F(x)α(y) + β(x)d(y) holds for all x, y ∈ R. Note that for IR the identity
map on R, this notion includes those of (α, β)-derivation when F = d, of derivation
when F = d and α = β = IR , and of generalized derivation, which is the case when
α = β = IR .

Many results indicate that the global structure of a ring R is often tightly connected
to the behavior of additivemappings defined on R. Awell known result of Posner [10]
states that if R is a prime ring and d a nonzero derivation of R such that [d(x), x] ∈
Z(R) for all x ∈ R, then R must be commutative. Over the last few decades, several
authors have investigated the relationship between the commutativity of the ring R
and certain specific types of derivations of R (see [3–5, 7] where further references
can be found).

Daif and Bell [6] showed that if in a semiprime ring R there exists a nonzero ideal
I of R and a derivation d such that d([x, y]) − [x, y] = 0 or d([x, y]) + [x, y] = 0
for all x, y ∈ I , then I ⊆ Z(R). In particular, if I = R then R is commuta-
tive. At this point, the natural question is what happens in case the derivation
is replaced by a generalized derivation. In [11], Quadri et al., proved that if R
is a prime ring, I a nonzero ideal of R and F a generalized derivation asso-
ciated with a nonzero derivation d such that any one of the following holds:
(i) F([x, y]) − [x, y] = 0 (i i) F([x, y]) + [x, y] = 0 (i i i) F(x ◦ y) − x ◦ y = 0
(iv) F(x ◦ y) + x ◦ y = 0 for all x, y ∈ I , then R is commutative. Following this
line of investigation, Ali, Kumar and Miyan [2], explored the commutativity of a
prime ring R admitting a generalized derivation F satisfying any one of the fol-
lowing conditions: (i) F([x, y]) − [x, y] ∈ Z(R) (i i) F([x, y]) + [x, y] ∈ Z(R)

(i i i) F(x ◦ y) − x ◦ y ∈ Z(R) (iv) F(x ◦ y) + x ◦ y ∈ Z(R) for all x, y ∈ I , a
nonzero right ideal of R. On the other hand, Marubayashi et al. [8], established that
if a 2-torsion free prime ring R admits a nonzero generalized (α, β)-derivation F as-
sociated with an (α, β)-derivation d such that either F([u, v]) = 0 or F(u ◦ v) = 0
for all u, v ∈ U , whereU is a nonzero square-closed Lie ideal of R, thenU ⊆ Z(R).
In the present paper, our purpose is to prove the cited results for the case when the
generalized (α, α)-derivation F acts on one sided ideal of R.

2 Main Results

In the remaining part of this paper, α and β will denote automorphisms of R. And
we shall do a great deal of calculation with commutators and anti-commutators,
routinely using the following basic identities: For all x, y, z ∈ R;
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[xy, z] = x[y, z] + [x, z]y and [x, yz] = y[x, z] + [x, y]z

xo(yz) = (xoy)z − y[x, z] = y(xoz) + [x, y]z

(xy)oz = x(yoz) − [x, z]y = (xoz)y + x[y, z].

Theorem 2.1 Let R be a prime ringwith center Z(R) and J a nonzero left ideal of R.
Suppose that R admits a generalized (α, α)-derivation F associated with a nonzero
(α, α)-derivation d such that d(Z(R)) �= (0). If F([x, y]) − α([x, y]) ∈ Z(R) for
all x, y ∈ J , then R is commutative.

Proof It is easy to check that d(Z(R)) ⊆ Z(R). Since d(Z(R)) �= (0), there exists
0 �= c ∈ Z(R) such that 0 �= d(c) ∈ Z(R). By assumption, we have

F([x, y]) − α([x, y]) ∈ Z(R) for all x, y ∈ J. (1)

Replacing y by cy in (1), we get

(F([x, y]) − α([x, y]))α(c) + α([x, y])d(c) ∈ Z(R) for all x, y ∈ J. (2)

Combining (1) and (2) and noting that the fact α(c) ∈ Z(R), we find that α([x, y])
d(c) ∈ Z(R), which implies that [α([x, y])d(c), r ] = 0 = [α([x, y]), r ]d(c) for all
x, y ∈ J and r ∈ R. Since R is prime and 0 �= d(c) ∈ Z(R), we have

[α([x, y]), r ] = 0 for all x, y ∈ J ; r ∈ R. (3)

Replacing y by yx in (3) and using (3), we get

α([x, y])[α(x), r ] = 0 for all x, y ∈ J ; r ∈ R. (4)

Replacing r by rα(s) in (4) and using (4), we arrive at α([x, y])r [α(x), α(s)] = 0
for all x, y ∈ J and r, s ∈ R. The primeness of R yields that for each x ∈ J , either
α([x, y]) = 0 or [α(x), α(s)] = 0. Equivalently, either [x, J ] = 0 or [x, R] = 0. Set
J1 = {x ∈ J | [x, J ] = 0} and J2 = {x ∈ J | [x, R] = 0}. Then, J1 and J2 are both
additive subgroups of I such that J = J1 ∪ J2. Thus, by Brauer’s trick, we have
either J = J1 or J = J2. If J = J1, then [J, J ] = 0, and if J = J2, then [J, R] = 0.
In both cases, we conclude that J is commutative and so, by a result of [9], R is
commutative.

Corollary 2.2 Let R be a prime ring with center Z(R) and J a nonzero left ideal
of R. Suppose that R admits a generalized (α, α)-derivation F associated with a
nonzero (α, α)-derivation d such that d(Z(R)) �= (0). If F(xy) − α(xy) ∈ Z(R)

for all x, y ∈ J , then R is commutative.
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Proof For any x, y ∈ J , we have F([x, y]) − α([x, y]) = (F(xy) − α(xy)) −
(F(yx) − α(yx)) ∈ Z(R), and hence the result follows.

Theorem 2.3 Let R be a prime ringwith center Z(R) and J a nonzero left ideal of R.
Suppose that R admits a generalized (α, α)-derivation F associated with a nonzero
(α, α)-derivation d such that d(Z(R)) �= (0). If F([x, y]) + α([x, y]) ∈ Z(R) for
all x, y ∈ J , then R is commutative.

Proof If F([x, y]) + α([x, y]) ∈ Z(R) for all x, y ∈ J , then the generalized (α, α)-
derivation−F satisfies the condition (−F)([x, y]) − α([x, y]) ∈ Z(R) for all x, y ∈
J . It follows from Theorem2.1 that R is commutative.

Theorem 2.4 Let R be a prime ringwith center Z(R) and J a nonzero left ideal of R.
Suppose that R admits a generalized (α, α)-derivation F associated with a nonzero
(α, α)-derivation d such that d(Z(R)) �= (0). If F(x ◦ y) − α(x ◦ y) ∈ Z(R) for all
x, y ∈ J , then R is commutative.

Proof We are given that

F(x ◦ y) − α(x ◦ y) ∈ Z(R) for all x, y ∈ J. (5)

Since d(Z(R)) �= (0), there exists 0 �= c ∈ Z(R) such that 0 �= d(c) ∈ Z(R). Re-
placing y by cy in (5), we get

(F(x ◦ y) − α(x ◦ y))α(c) + α(x ◦ y)d(c) ∈ Z(R) for all x, y ∈ J. (6)

Combining (5) and (6), we find that α(x ◦ y)d(c) ∈ Z(R) and hence α(x ◦ y) ∈
Z(R). This implies that

[α(x ◦ y), r ] = 0 for all x, y ∈ J ; r ∈ R. (7)

Replacing yx for y in (7) and using (7), we have

α(x ◦ y)[α(x), r ] = 0 for all x, y ∈ J ; r ∈ R. (8)

Replacing r by rα(s) in (8) and using (8), we have α(x ◦ y)r [α(x), α(s)] = 0 for
all x, y ∈ J and r, s ∈ R. The primeness of R yields that for each x ∈ J , either
α(x ◦ y) = 0 or [α(x), α(s)] = 0. Now applying similar arguments as used in the
proof of Theorem2.1, we have either x ◦ y = 0 for all x, y ∈ J ; or [J, R] = 0. In
the former case, replacing x by xz and using the fact x ◦ y = 0 we find [x, y]z = 0
for all x, y, z ∈ J . This implies that [x, y]J = 0 and hence [x, y]RJ = 0. Since J
is nonzero and R is prime, we get [J, J ] = 0. Thus, J is commutative and so R. In
the latter case, we have [J, R] = 0, in particular [J, J ] = 0 and hence we get the
required result.

Theorem 2.5 Let R be a prime ringwith center Z(R) and J a nonzero left ideal of R.
Suppose that R admits a generalized (α, α)-derivation F associated with a nonzero
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(α, α)-derivation d such that d(Z(R)) �= (0). If F(x ◦ y) + α(x ◦ y) ∈ Z(R) for all
x, y ∈ J , then R is commutative.

Proof If F(x ◦ y) + α(x ◦ y) ∈ Z(R) for all x, y ∈ J , then the generalized (α, α)-
derivation −F satisfies the condition (−F)(x ◦ y) − α(x ◦ y) ∈ Z(R) for all x, y ∈
J . It follows from Theorem2.4 that R is commutative.

Corollary 2.6 Let R be a prime ring with center Z(R) and J a nonzero left ideal
of R. Suppose that R admits a generalized (α, α)-derivation F associated with a
nonzero (α, α)-derivation d such that d(Z(R)) �= (0). If F(xy) + α(xy) ∈ Z(R)

for all x, y ∈ J , then R is commutative.

Proof For any x, y ∈ I , we have F(x ◦ y) + α(x ◦ y) = (F(xy) + α(xy)) +
(F(yx) + α(yx)) ∈ Z(R), and hence our result follows.

Theorem 2.7 Let R be a prime ring and J a nonzero left ideal of R such that
r(J ) = 0. If R admits a generalized (α, β)-derivation F associated with a nonzero
(α, β)-derivation d such that F([x, y]) = 0 for all x, y ∈ J , then R is commutative.

Proof By assumption, we have

F([x, y]) = 0 for all x, y ∈ J. (9)

Replacing y by yx in (9) and using (9), we get β([x, y])d(x) = 0, which implies

[x, y]β−1(d(x)) = 0 for all x, y ∈ J. (10)

Now substituting r y for y in (10) and using (10), we obtain [x, r ]yβ−1(d(x)) = 0
for all x, y ∈ J and r ∈ R. In particular, [x, R]RJβ−1(d(x)) = 0 for all x ∈ J . The
primeness of R yields that for each x ∈ J , either [x, R] = 0 or Jβ−1(d(x)) = 0, in
this case d(x) = 0. In view of similar arguments as used in the proof of Theorem2.1,
we have either [J, R] = 0 or d(J ) = 0. If [J, R] = 0, then J is commutative and we
are done. If d(J ) = 0, then 0 = d(RJ ) = d(R)α(J ) + β(R)d(J ), which reduces
to d(R)α(J ) = 0. And hence d(R)α(RJ ) = 0 = d(R)α(R)α(J ) = d(R)Rα(I ).
Since J is nonzero and the last relation forces that d = 0, contradiction.

Using the same techniques with necessary variations, we can prove the following:

Theorem 2.8 Let R be a prime ring and J a nonzero left ideal of R such that
r(J ) = 0. If R admits a generalized (α, β)-derivation F associated with a nonzero
(α, β)-derivation d such that F(x ◦ y) = 0 for all x, y ∈ J , then R is commutative.

The following example demonstrates that R to be prime is essential in the hy-
pothesis of Theorems2.1, 2.3, 2.4 and 2.5.
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Example 2.9 Let S be any ring. Next, let R=

⎧
⎨

⎩

⎛

⎝
0 a b
0 0 c
0 0 0

⎞

⎠ |a, b, c ∈ S

⎫
⎬

⎭
and

J=

⎧
⎨

⎩

⎛

⎝
0 a b
0 0 0
0 0 0

⎞

⎠ |a, b ∈ S

⎫
⎬

⎭
, a nonzero left ideal of R. Define maps F, d , α : R −→

R as follows: F

⎛

⎝
0 a b
0 0 c
0 0 0

⎞

⎠ =
⎛

⎝
0 0 −c
0 0 0
0 0 0

⎞

⎠ , d

⎛

⎝
0 a b
0 0 c
0 0 0

⎞

⎠ =
⎛

⎝
0 0 c
0 0 0
0 0 0

⎞

⎠ ,

α

⎛

⎝
0 a b
0 0 c
0 0 0

⎞

⎠ =
⎛

⎝
0 −a b
0 0 −c
0 0 0

⎞

⎠ , Then, it is straightforward to check that F is a

generalized (α, α)-derivation associated with a nonzero (α, α)-derivation d such that
d(Z(R)) �= (0). It is easy to see that (i) F([x, y]) − α([x, y]) ∈ Z(R) (i i) F([x, y])
+ α([x, y]) ∈ Z(R) (i i i) F(x ◦ y) − α(x ◦ y) ∈ Z(R) (iv) F(x ◦ y) − α(x ◦ y) ∈
Z(R) for all x, y ∈ J , however R is not commutative.
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