Properties of Semi-Projective Modules and their Endomorphism Rings

Manoj Kumar Patel

Abstract In this paper, we have studied the properties of semi-projective module and its endomorphism rings related with Hopfian, co-Hopfian, and directly finite modules. We have provide an example of module which are semi-projective but not quasi-projective. We also prove that for semi-projective module *M* with $dim M < \infty$ or *CodimM* $\lt \infty$, M^n is Hopfian for every integer $n \gt 1$. Apart from this we have studied the properties of pseudo-semi-injective module and observed that for pseudosemi-injective module, co-Hopficity weakly co-Hopficity and directly finiteness are equivalent. Finally proved that for pseudo-semi-injective module *M, N* be fully invariant M-cyclic submodule of *M* with *N* is essential in *M*, then *N* is weakly co-Hopfian if and only if *M* is weakly co-Hopfian.

Keywords Semi-projective · Pseudo-semi-injective · Hopfian · Co-Hopfian

2000 Mathematics Subject Classification 16D10 · 16D40 · 16D60 · 16D70

1 Introduction

The notion of quasi-principally projective module was introduced by Wisbauer [\[14\]](#page-7-0) under the terminology of semi-projective modules. Tansee and Wongwai [\[11\]](#page-7-1) introduced the idea of *M*-principally projective module and defined a module M quasi-principally projective if it is M-principally projective. They also established several properties of the endomorphism ring of such modules and proved that quasi-principally projective modules are equivalent to semi-projective module. In this paper, we have established some properties of endomorphism ring of quasiprincipally projective module in terms of Hopfian modules and proved that a quasiprincipally projective module M is Hopfian if and only if M/N is Hopfian, where N is fully invariant small submodule of M.

M.K. Patel (\boxtimes)

S.T. Rizvi et al. (eds.), *Algebra and its Applications*, Springer Proceedings in Mathematics & Statistics 174, DOI 10.1007/978-981-10-1651-6_19

Department of Mathematics, NIT Nagaland, Dimapur 797103, India e-mail: mkpitb@gmail.com

[©] Springer Science+Business Media Singapore 2016

2 Preliminaries

Throughout this paper, by a ring *R* we always mean an associative ring with identity and every *R*-module *M* is an unitary right *R*-module. Let *M* be an *R*-module; a module *N* is called M-generated, if there is an epimorphism $M^{(I)} \longrightarrow N$ for some index set *I.* If *I* is finite then *N* is called finitely M-generated. In particular, a submodule *N* of *M* is called an *M*-cyclic submodule of *M* if $N = s(M)$ for some $s \in End M_R$ or if there exist an epimorphism from *M* to *N*, equivalently it is isomorphic to *M/L* for some submodule *L* of *M*. A submodule *K* of an *R*-module *M* is said to be small in *M*, written $K \ll M$, if for every submodule $L \subseteq M$ with $K + L = M$ implies $L = M$. A nonzero *R*-module *M* is called hollow if every proper submodule of it is small in *M*. A submodule *N* of *M* is called fully invariant submodule of *M*, if $f(N) \subseteq N$ for any $f \in S = End M_R$. A module *M* is called indecomposable, if $M \neq 0$ and cannot be written as a direct sum of nonzero submodules.

Consider the following conditions for an *R*-module *M*:

(*D*₁): For every submodule *A* of *M* there is a decomposition $M = M_1 \bigoplus M_2$ such that $M_1 \subseteq A$ and $A \cap M_2 \ll M$.

*(D*₂): If *A* ⊆ *M* such that *M*/*A* is isomorphic to a summand of *M*, then *A* is a summand of *M*.

(D₃): If *M*₁ and *M*₂ are summands of *M* with $M_1 + M_2 = M$, then $M_1 \cap M_2$ is a summand of *M*.

An *R*-module *M* is called a lifting module if *M* satisfies*(D*1*), M* is called discrete module if it satisfies (D_1) and (D_2) and quasi-discrete if it satisfies (D_1) and (D_3) .

We will freely make use of the standard notations, terminologies, and results of [\[1,](#page-7-2) [3,](#page-7-3) [14](#page-7-0)].

3 *M***-Principally Projective Module**

Let *M* be a right *R*-module. A right *R*-module *N* is called *M*-principally projective

$$
M \xrightarrow{g \swarrow \downarrow f} M \longrightarrow s(M) \longrightarrow 0
$$

if every *R*-homomorphism *f* from *N* to an *M*-cyclic submodule *s(M)* of *M* can be lifted to an R -homomorphism q from N to M , such that the above diagram is commutative, i.e., $s \cdot g = f$. A right *R*-module *M* is called quasi-principally projective (or semi-projective) if it is *M*-principally projective. Some examples of semi-projective modules are \mathbb{Z}_4 , \mathbb{Z}_6 over \mathbb{Z} (set of integers). Clearly, every projective module and quasi-projective module are semi-projective. But converse need not be true:

- 1. The \mathbb{Z} -module \mathbb{Q} is semi-projective but not quasi-projective.
- 2. Let *R* be any integral domain with quotient field $F \neq R$. Then $M = F \oplus R$ is semi-projective (but in general not quasi-projective).
- 3. For any prime *p* in \mathbb{Z} , the Prufer p-group $\mathbb{Z}(p\infty)$ is not semi-projective.

Now, we provide an example of semi-projective module which is not *M*-principally projective module.

Example 3.1 Let $M_1 = \mathbb{Z}/p\mathbb{Z}$ and $M_2 = \mathbb{Z}/p^2\mathbb{Z}$ for any prime $p \in \mathbb{Z}$ be modules over \mathbb{Z} . Then we can easily check that both M_1 and M_2 are semi-projective modules. However M_1 is not M_2 -principally projective.

Proposition 3.2 *If M is quasi-projective module and K is fully invariant submodule of M then M/K is semi-projective module.*

Proof The Proof is straightforward and hence we omit it.

An *R*-module *M* is called Hopfian (resp. co-Hopfian), if every surjective (resp. injective) *R*-homomorphism $f : M \longrightarrow M$ is an automorphism. For example, every Noetherian *R*-modules are Hopfian and every Artinian *R*-modules are co-Hopfian. A module *M* is called directly finite, if *M* is not isomorphic to a proper summand of itself.

Lemma 3.3 *(Proposition 3.25, Mohamed and Muller (*1990*)*[6]*) An R-module M is directly finite if and only if* $f \cdot g = 1$ *implies* $g \cdot f = 1$ *for any* $f, g \in End M_R$.

In the following propositions, we relate semi-projective module with Hopfian, co-Hopfian and directly finite modules.

Proposition 3.4 *Let M be semi-projective co-Hopfian, then it is Hopfian.*

Proof Let *f* be surjective endomorphism on *M* and $I_M : M \longrightarrow M$ be an identity map on *M*. By semi-projectivity of *M* there exists an *R*-homomorphism $g : M \longrightarrow$ *M* such that $f \cdot g = I_M$, implies that g is monomorphism. Since M is co-Hopfian, then it follows that $f = g^{-1}$ is an automorphism on *M*. Therefore *M* is Hopfian.

Proposition 3.5 *For the semi-projective modules M, the following statements are equivalent: (i) M is Hopfian; (ii) M is co-Hopfian; (iii) M is directly finite.*

Proof Proof is trivial.

Proposition 3.6 *Let M be semi-projective and N is fully invariant small submodule of M. Then M is Hopfian if and only if M/N is Hopfian.*

Proof Assume that M/N is Hopfian. Let $f : M \longrightarrow M$ be any epimorphism, then semi-projectivity of *M* implies that there exist an homomorpshim $q : M \longrightarrow M$ such that *f* · *q* = *I_M*. Hence *M* ≅ *M* ⊕ *(kerf)* hence *K* = *(kerf)* is direct summand of *M*. Since *N* is fully invariant implies $f(N) \subseteq N$, now we have induced a map f' : $M/N \longrightarrow M/N$ which is clearly an epimorphism, the Hopficity of M/N implies that $f' : M/N \longrightarrow M/N$ is an isomorphism. Now by $(f', \pi)(K) = (\pi \cdot f)(K) = 0$, where $\pi : M \longrightarrow M/N$ be natural enjmorphism, we see that $\pi(K) = 0$, it means where $\pi : M \longrightarrow M/N$ be natural epimorphism, we see that $\pi(K) = 0$, it means *K* ⊂ *N*, but *K* ⊂ *N* \ll *M* implies that *K* $\ll M$. Since *M* is semi-projective there exist a splitting for *f*, i.e., $K = \text{ker } f$ is direct summand of *M*. Therefore $K =$ $ker f = 0$, implies that *M* is Hopfian.

Conversely, assume that *M* is Hopfian and $N \ll M$ if $f : M/N \longrightarrow M/N$ is an epimorphism. We have $f \cdot \pi : M \longrightarrow M/N$, where π is natural epimorphism from $M \rightarrow M/N$. Then by semi-projectivity of M, there exists $g \in End M_R$, such that $\pi \cdot q = f \cdot \pi$ implies that q is an epimorphism by 19.2, Wisbauer (1991) [\[14\]](#page-7-0) as π is a small epimorphism. Since M is Hopfian then q is an isomorphism.

Assume $ker f \neq 0$, then there exists $x \in M$ such that $f(x + N) = N$ implies $f.\pi(x) = \pi.g(x) = g(x) + N = N$ gives that $g(x) \in N \Rightarrow x \in g^{-1}(N) \subseteq N$. It follows that $ker f = N$, therefore M/N is Hopfian.

Corollary 3.7 *Let M be finitely generated semi-projective module. Then M is Hopfian if and only if M/J (M) is Hopfian.*

Proof We know that $J(M)$ is fully invariant submodule of M. If M is finitely generated then we have $J(M) \ll M$. Thus by the above proposition proof is obvious.

Corollary 3.8 *Let M be semi-projective, N and L are submodules of M such that* $N + L = M$ and $N \cap L \ll M$. Then M/N and M/L are Hopfian.

Proof We have $M/(N \cap L) = N/(N \cap L) \oplus L/(N \cap L)$, by above Proposition [3.6,](#page-2-0) $M/(N \cap L)$ is Hopfian, hence so its direct summand, as $N/(N \cap L) \cong (N +$ L *)*/ $L = M/L$, similarly $L/(N \cap L) \cong (N + L)/N = M/N$ is Hopfian.

The next proposition is the generalization of Pandeya et.al. (Proposition 3.8) [\[7](#page-7-4)], whose proof is straightforward and hence we omit it.

Proposition 3.9 *Let M be finitely generated semi-projective hollow module then M is directly finite if and only if each homomorphic image is directly finite.*

For any module *M*, we denote the Goldie dimension of *M* by *dimM* and the dual Goldie dimension of *M* by *CodimM*.

Proposition 3.10 Let M be semi-projective modules with $dim M < \infty$ or *CodimM* $< \infty$ *. Then Mⁿ is Hopfian for every integer n* ≥ 1 *.*

Proof We can easily seen that M^n satisfies the hypothesis of the statement, since $dim M^n = n(dimM)$, $Codim M^n = n(CodimM)$, and M is semi-projective module implies that M^n is semi-projective. Hence it remains to prove that M is Hopfian. Let $f : M \longrightarrow M$ be any epimorphism, then semi-projectivity of M implies

that there exist an homomorpshim $q : M \longrightarrow M$ such that $f \cdot q = I_M$. Hence $M \cong M \oplus (ker f)$. This yields $dim M = dim M + dim(ker f)$ and $Codim M =$ $CodimM + Codim(ker f)$. If $dimM < \infty$ then first of these equations will imply that $dim(ker f) = 0$, hence $ker f = 0$ that is f is an automorphism. If $Codim M <$ ∞ , then second of these equations will imply that $Codim(ker f) = 0$, hence $ker f =$ 0 that is *f* is an automorphism. Thus in both cases, we get our assumed surjective endomorphism is an automorphism that is M is Hopfian implies that M^n is Hopfian.

Corollary 3.11 *Let M be semi-projective modules with* $Codim M < \infty$ *. Then for any fully invariant submodule K of M and any integer n* \geq 1*, the module* $(M/K)^n$ *is Hopfian.*

Proof Immediate consequence of Propositions [3.2](#page-2-1) and [3.10.](#page-3-0)

Corollary 3.12 *Let R be a ring with dim* $R_R < \infty$ *. Then* $M_n(R)$ *is directly finite for every integer* $n > 1$ *.*

Proof Since R_R is projective, assume that $\dim R_R < \infty$ then by Proposition [3.9,](#page-3-1) we see that R^n is Hopfian for all integer $n \geq 1$. Then it is proved by the observation that *M* is Hopfian then $End M_R$ is directly finite.

Lemma 3.13 *Let N be a submodule of a semi-projective module M. Then N is a summand if M/N is isomorphic to a summand of M.*

Proof The Proof is straightforward and hence we omit it.

Therefore, we say that a semi-projective module satisfies (D_2) condition. In general, we have the following implication:

Projective \Rightarrow Quasi-projective \Rightarrow semi-projective \Rightarrow Discrete.

Corollary 3.14 *Let M be semi-projective module, then the following statements are equivalent: (*1*)M is discrete; (*2*)M is quasi-discrete; (*3*)M is lifting.*

Proof $(1) \Rightarrow (2) \Rightarrow (3)$ are clear from definitions and $(3) \Rightarrow (1)$ immediate from Lemma [3.13.](#page-4-0)

Corollary 3.15 *An indecomposable semi-projective module M is discrete if and only if M is hollow.*

Proof The Proof is straightforward and hence we omit it.

4 Pseudo-Semi-Injective Modules

Let *M* be a right *R*-module. *M* is called semi-injective if for any *M*-cyclic submodule *N* of *M*, monomorphism $q: N \longrightarrow M$ and corresponding to any homomorphism $f: N \longrightarrow M$ there exists a map $h \in End M_R$, such that $h \cdot g = f$, i.e., diagram is commutative.

We wish to consider the situation where the map *h* in this definition is required to be a monomorphism. For this to happen, a map *f* must be a monomorphism. This leads to the following definition.

A right *R*-module *M* is called pseudo-*M*-principally injective (or pseudo-semiinjective) if for any *M*-cyclic submodule *N* of *M* and R-monomorphism $f, g: N \longrightarrow$ *M* there exists a monomorphism $h \in End M_R$, such that $h \cdot g = f$.

It is easy to show that if *M* is pseudo-semi-injective module, then every monomorphism in $End M_R$ is an automorphism, that is every pseudo-semi-injective module is co-Hopfian.

It is clear that every semi-injective module is pseudo-semi-injective, however, converse need not be true. In the following Proposition, we impose the uniformness on pseudo-semi-injective module that is desirable to make it semi-injective modules.

Proposition 4.1 *Every uniform pseudo-semi-injective module is semi-injective.*

Proof Let *M* be uniform pseudo-semi-injective module and *N* be *M*-cyclic submodule of *M*, let $f : N \longrightarrow M$ be any homomorphism implies that $ker f \subseteq N$. If $ker f = N$ case is trivial. If $ker f = 0$, then f is a monomorphism which extend to a homomorphism *h* from *M* to *M*. If $ker f \neq 0$, since *N* is uniform then it can be easily checked that $g = I_N - f : N \longrightarrow M$ is injective map that is $\text{ker } g = 0$, where $I_N: N \longrightarrow M$ be the inclusion map. By definition of pseudo-semi-injectivity of *M*, there exists an extension *h* of g from *M* to *M* such that $g = I_N - f = h \cdot i$ implies that $f = (1 - h) \cdot i$, which gives that $(1 - h)$ is an extension of *f* to *M*. Thus, we conclude that *M* is semi-injective module.

Corollary 4.2 *Every semi-simple pseudo-semi-injective module is semi-injective.*

Proposition 4.3 *Let M be a pseudo-semi-injective module and f* : $M \rightarrow M$ *be a monomorphism. Then* $f(M)$ *is a direct summand of* M *.*

Proof The proof is straightforward and hence we omit it.

Proposition 4.4 *Let N be indecomposable pseudo M-principally injective modules, then every element* $f \in End N_R$ *is invertible if and only if ker* $f = 0$ *.*

Proof The invertible in $EndN_R$ is just the R-isomorphism from *N* to *N*. Thus it is clear that, if *f* is an invertible elements of $EndN_R$ then $ker f = 0$. Conversely suppose that $ker f = 0$ then *f* is a monomorphism and $f(N)$ is injective and so pseudo *M*-principally injective module. Then $f(N)$ is a direct summand of every extension of itself, thus $f(N)$ is a direct summand of N, and $f(N) \neq 0$ so $f(N) = N$,

since N is indecomposable. Therefore f is a surjective homomorphism and so f is an invertible element of *EndNR*.

A *R*-module *M* is called weakly co-Hopfian if any injective endomorphism *f* of *M* is essential, i.e., $f(M) \subset^e M$. The set of Integer Z is weakly co-Hopfian but not co-Hopfian.

Proposition 4.5 *Let M be pseudo-semi-injective module, then the following statements are equivalent: (i)M is co-Hopfian; (ii)M is weakly co-Hopfian;*

(iii)M is directly finite.

Proof $(1) \Rightarrow (2) \Rightarrow (3)$ are trivial. For $(3) \Rightarrow (1)$ Assume that $f : M \rightarrow M$ be an injective endomorphism, then $f(M) \cong M$ and so $f(M)$ is pseudo-*M*-principally injective. Thus, $f(M)$ is direct summand of M that is there exist a submodule K of *M* such that $f(M) \oplus K = M$. Hence, $M \oplus K \cong M \Rightarrow K = 0$ since *M* is directly finite. Therefore, $f(M) = M$ implies that f is surjective and hence M is co-Hopfian.

Corollary 4.6 *If M is indecomposable pseudo-semi-injective module, then it is co-Hopfian.*

Proposition 4.7 *Let M be pseudo-semi-injective and nonsingular module. Then M Hopfian if and only if M co-Hopfian.*

Proof Let *M* is co-Hopfian and $f : M \longrightarrow M$ be surjective endomorphism of M. Then $M/ker f$ is nonsingular, and so *kerf* is essentially closed in *M*. since *M* is pseudo-semi-injective modules, then *ker f* is also pseudo-semi-injective. Thus, $M \cong M \oplus \text{ker } f$. As *M* is co-Hopfian, it is directly finite module by Proposition [4.5,](#page-6-0) so the above isomorphism implies that $ker f = 0$, i.e., f is an automorphism. Thus M is Hopfian. Conversely, It is well known that every Hopfian and co-Hopfian modules is directly finite so prove is done in the light of Proposition [4.5.](#page-6-0)

Proposition 4.8 *Let M be pseudo-semi-injective module and N be fully invariant M-cyclic submodule of M with N is essential in M. Then N is weakly co-Hopfian if and only if M is weakly co-Hopfian.*

Proof A sume that *N* is weakly co-Hopfian. Let $f : M \longrightarrow M$ be an injective endomorphism then by Proposition 2*.*3*, f (M)* is direct summand of *M*. Since *N* is fully invariant $f(N) \subseteq N$. Thus $f|_N : N \longrightarrow N$ is an injective homomophism, the weakly co-Hopficity of *N* implies that $f(N) \subseteq^e N$, since $N \subseteq^e M$ we deduce that $f(N) \subseteq^e M$ and we have $f(N) \subseteq f(M) \subseteq M$, thus $f(M) \subseteq^e M$ therefore M is weakly co-Hopfian.

Conversely, let $f : N \longrightarrow N$ be an injective endomorphism and $i : N \longrightarrow M$ be an inclusion map. Since *M* is pseudo-semi-injective module, there exists a monomorphism $h : M \longrightarrow M$ such that $i \cdot f = h \cdot i$. Since *M* is weakly co-Hopfian by Proposition 4.5, *M* is co-Hopfian, so *h* is an isomorphism. *N* is fully invariant *M*-cyclic submodule of *M* so it is pseudo-semi-injective and $h(N) \subseteq N \Rightarrow h^{-1}(N) \subseteq N$ so $h(N) = N$. But $f = h|_N$ hence $f : N \longrightarrow N$ is surjective, so *N* is co-Hopfian then by Proposition 4.5, proof is complete.

References

- 1. Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Springer, New York (1974)
- 2. Birkenmeier, G.F., Muller, B.J., Rizvi, S.T.: Modules in which every fully invariant submodule is essential in a direct summand. Commun. Algebr. **30**, 1395–1415 (2002)
- 3. Clark, J., Lomp, C., Vanaja, N., Wisbauer, R.: Lifting Modules Supplements and Projectivity in Module Theory. Birkhauser, Boston (2006)
- 4. Ghorbani, A., Haghany, A.: Generalized hopfian modules. J. Algebr. **255**, 324–341 (2002)
- 5. Haghany, A., Vedadi, M.R.: Study of semi-projective retractable modules. Algebr. Coll. **14**(3), 489–496 (2007)
- 6. Mohamed, S.H., Muller, B.J.: Continuous and Discrete module. Cambridge University Press, Cambridge (1990)
- 7. Pandeya, B.M., Pandey, A.K.: Almost perfect ring and directly finite module. Int. J. Math. Sci. **1**(1–2), 111–115 (2002)
- 8. Patel,M.K., Pandeya, B.M., Gupta, A.J., Kumar, V.: Generalization of semi-projective modules. Int. J. Comput. Appl. **83**(8), 1–6 (2013)
- 9. Patel, M.K., Pandeya, B.M., Gupta, A.J., Kumar, V.: Quasi-principally injective modules. Int. J. Algebr. **4**, 1255–1259 (2010)
- 10. Rangaswami, K.M., Vanaja, N.: Quasi Projective in abelian categories. Pac. J. Math. **43**, 221– 238 (1972)
- 11. Tansee, H., Wongwai, S.: A note on semi projective modules. Kyungpook Math. J. **42**, 369–380 (2002)
- 12. Varadarajan, K.: Properties of endomorphism rings. Acta. Math. Hungar. **74**(1–2), 83–92 (1997)
- 13. Kumar, V., Gupta, A.J., Pandeya, B.M., Patel, M.K.: M-SP-Injective module. Asian Eur. J. Math. **5**, 1–11 (2011)
- 14. Wisbauer, R.: Foundation of Module and Ring Theory. Gordon and Breach, London (1991)