*n***-Strongly Gorenstein Projective and Injective Complexes**

C. Selvaraj and R. Saravanan

Abstract In this paper, we introduce and study the notions of *n*-strongly Gorenstein projective and injective complexes, which are generalizations of *n*strongly Gorenstein projective and injective modules, respectively. Further, we characterize the so-called notions and prove that the Gorenstein projective (resp., injective) complexes are direct summands of *n*-strongly Gorenstein projective (resp., injective) complexes. Also, we discuss the relationships between *n*-strongly Gorenstein injective and *n*-strongly Gorenstein flat complexes, and for any two positive integers *n* and *m*, we exhibit the relationships between *n*-strongly Gorenstein projective (resp., injective) and *m*-strongly Gorenstein projective (resp., injective) complexes.

Keywords *n*-*SG*-projective complex \cdot *n*-*SG*-injective complex \cdot *n*-*SG*-flat complex

AMS Subject classification (2010) 16E05 · 16E30

1 Introduction

Throughout this paper, let R be an associative ring with identity and $\mathscr C$ be the abelian category of complexes of *R*-modules. Unless stated otherwise, a complex and an *R*-module will be understood to be a complex of left *R*-modules and a left *R*-module respectively.

Bennis and Mahdou [\[2\]](#page-13-0) introduced the notions of strongly Gorenstein projective, injective and flat modules which are further studied and characterized by Liu [\[8\]](#page-13-1). Later, Bennis and Mahdou [\[3](#page-13-2)] generalized the notion of strongly Gorenstein projective modules to *n*-strongly Gorenstein projective modules and [\[11](#page-13-3)] Zhao studied the homological behaviors of *n*-strongly Gorenstein projective, injective and flat modules. Zhang et al. [\[10\]](#page-13-4) studied the notions of strongly Gorenstein projective

S.T. Rizvi et al. (eds.), *Algebra and its Applications*, Springer Proceedings in Mathematics & Statistics 174, DOI 10.1007/978-981-10-1651-6_17

C. Selvaraj (B) · R. Saravanan

Department of Mathematics, Periyar University, Salem 636 011, TN, India e-mail: selvavlr@yahoo.com

[©] Springer Science+Business Media Singapore 2016

and injective complexes. Motivated by the above works in this article, we introduce and study the notions of *n*-strongly Gorenstein projective and injective complexes, which are generalizations of *n*-strongly Gorenstein projective and injective modules, respectively. In [\[2](#page-13-0), Theorem 2.7], it is proved that a module is Gorenstein projective if and only if it is a direct summand of a strongly Gorenstein projective module. Using [\[9](#page-13-5), Theorem 2.3], we prove the following.

Theorem *Let G be a complex. Then the following holds:*

- *(1) G is Gorenstein projective if and only if it is a direct summand of an n-SGprojective complex.*
- *(2) G is Gorenstein injective if and only if it is a direct summand of an n-SG-injective complex.*

In [\[9](#page-13-5), Theorem 3.1], the relationship between Gorenstein flat and Gorenstein injective complexes is given. In connection to $[9,$ Theorems 3.1 and 3.3] and $[7,$ Proposition 4.7], we have the following result.

Theorem *Let R be a left artinian ring and let the injective envelope of every simple left R-module be finitely generated. Then the following hold:*

- *(1) If a complex G of left R-modules is n-SG-injective, then G*⁺ *is an n-SG-flat complex of right R-modules.*
- *(2) If a complex G of right R-modules is n-SG-flat, then G*⁺ *is an n-SG-injective complex of left R-modules.*

In Sect. [2,](#page-1-0) we recall some known definitions and terminologies which will be needed in the sequel.

In Sect. [3,](#page-4-0) we introduce and study the notions of *n*-strongly Gorenstein projective and injective complexes. We show that a complex is Gorenstein projective (resp., injective) if and only if it is a direct summand of an *n*-*SG*-projective (resp., injective) complex and prove that the modules in an *n*-*SG*-projective (resp., injective) complex are precisely the *n*-*SG*-projective (resp., injective) modules. Further, over a left artinian ring *R*, we discuss the relationships between *n*-*SG*-injective and *n*-*SG*-flat complexes.

In the last section, we study the relationships between *n*-*SG*-projective (resp., injective) and *m*-*SG*-projective (resp., injective) complexes for any two positive integers *n* and *m*.

2 Preliminaries

In this section, we first recall some known definitions and terminologies which we need in the sequel.

In this paper, a complex

$$
\cdots \to C^{-1} \stackrel{\delta^{-1}}{\to} C^0 \stackrel{\delta^0}{\to} C^1 \stackrel{\delta^1}{\to} \cdots
$$

will be denoted by *C* or (C, δ) . We will use subscripts to distinguish complexes. So if ${C_i}_{i \in I}$ is a family of complexes, C_i will be

$$
\cdots \rightarrow C_i^{-1} \stackrel{\delta_i^{-1}}{\rightarrow} C_i^0 \stackrel{\delta_i^0}{\rightarrow} C_i^1 \stackrel{\delta_i^1}{\rightarrow} \cdots.
$$

Given an *R*-module *M*, we will denote by \overline{M} the complex

$$
\cdots 0 \to 0 \to M \stackrel{id}{\to} M \to 0 \to 0 \cdots
$$

with *M* in the 1st and 0th degrees. Similarly, we denote by *M* the complex with *M* in the 0th degree and 0in the other places. Note that an *R*-module *M* is injective (resp., projective) if and only if the complex \overline{M} is injective (resp., projective).

Given a complex *C* and an integer *m*, *C*[*m*] denotes the complex such that $C[m]^n = C^{m+n}$ and whose boundary operators are $(-1)^m \delta^{m+n}$. The *n*th cycle of a complex *C* is defined as $\text{Ker} \delta^n$ and is denoted by $Z^n C$. The *n*th boundary of *C* is defined as $Im \delta^{n-1}$ and is denoted by B^nC .

Let *C* be a complex of left *R*-modules (resp., of right *R*-modules) and let *D* be a complex of left *R*-modules. We denote by $Hom(C, D)$ (respectively, $C \otimes D$) the usual homomorphism complex (resp., tensor product) of the complexes *C* and *D*. The *n*th degree term of the complex $Hom(C, D)$ is given by

$$
\text{Hom}(C, D)^n = \prod_{t \in \mathbb{Z}} \text{Hom}(C^t, D^{n+t})
$$

and whose boundary operators are

$$
(\delta^n f)^m = \delta_D^{n+m} f^m - (-1)^n f^{m+1} \delta_C^m.
$$

The *n*th degree term of $C \otimes D$ is given by

$$
(C \otimes D)^n = \bigoplus_{t \in \mathbb{Z}} (C^t \otimes_R D^{n-t})
$$

and

$$
\delta(x \otimes y) = \delta_C^t(x) \otimes y + (-1)^t x \otimes \delta_D^{n-t}(y),
$$

for $x \in C^t$ and $y \in D^{n-t}$.

For a complex *C* of left *R*-modules, we have a functor $-\otimes \mathcal{C} : \mathcal{C}_R \to \mathcal{C}_Z$, where \mathcal{C}_R denotes the category of right *R*-modules. The functor $-\otimes \mathcal{C}: \mathcal{C}_R \to \mathcal{C}_Z$ being right exact, we can construct the left derived functors which we denote by

Tor_i(- , *C*). Given two complexes *C* and *D* of *C*, we use $Ext^i(C, D)$ for $i \ge 0$ to denote the groups we obtain from the right derived functors of Hom and we use *C*⁺ to denote the complex $Hom(C, \overline{\mathbb{Q}/\mathbb{Z}})$.

Recall that a complex *C* is projective (respectively, injective) if *C* is exact and Z^nC is a projective (respectively, an injective) *R*-module for each $i \in \mathbb{Z}$. A complex *C* is flat if *C* is exact and Z^nC is flat *R*-module for each $i \in \mathbb{Z}$. Equivalently, a complex *C* is projective (respectively, injective) if and only if $Hom(C, -)$ (respectively, Hom $(-, C)$) is exact. Also a complex *C* is flat if and only if $-\otimes C$ is exact. For unexplained terminologies and notations we refer to [\[1,](#page-13-7) [4](#page-13-8)[–6](#page-13-9)].

Definition 2.1 ([\[10](#page-13-4)]) A complex *G* is called strongly Gorenstein projective (for short *SG*-projective) if there exists an exact sequence of complexes

$$
\mathbb{P}: \cdots \to P \stackrel{\delta}{\to} P \stackrel{\delta}{\to} P \stackrel{\delta}{\to} \cdots
$$

such that (i) *P* is a projective complex; (ii) Ker $δ₀ ≅ G$; (iii) Hom(P, *Q*) is exact for any projective complex *Q*.

Similarly, the *SG*-injective complexes are defined.

Definition 2.2 ([\[7](#page-13-6)]) A complex *G* of right *R*-modules is called strongly Gorenstein flat (for short *SG*-flat) if there exists an exact sequence of complexes of right *R*modules

 $\mathbb{F}: \cdots \to F \stackrel{\delta}{\to} F \stackrel{\delta}{\to} F \stackrel{\delta}{\to} \cdots$

such that (i) F is flat; (ii) Ker $\delta_0 \cong G$; (iii) $\mathbb{F} \otimes I$ is exact for any injective complex *I*.

Definition 2.3 ([\[7](#page-13-6)]) Let *n* be a positive integer. A complex *G* of right *R*-modules is said to be an *n*-*SG*-flat if there exists an exact sequence of complexes

$$
0 \to G \stackrel{\delta_{n+1}}{\to} F_n \stackrel{\delta_n}{\to} F_{n-1} \to \cdots \to F_1 \stackrel{\delta_1}{\to} G \to 0
$$

with F_i projective for any $1 \le i \le n$, such that $-\otimes I$ leaves the sequence exact whenever *I* is an injective complex.

Next, we present the characterizations of *n*-*SG*-flat complexes in order to use it further.

Proposition 2.4 ([\[7](#page-13-6)]) *Let R be a right coherent ring and G be any complex of right R-modules. Then the following are equivalent;*

(1) G is n-SG-flat;

(2) There exists an exact sequence of complexes of right R-modules

$$
0 \to G \stackrel{\delta_{n+1}}{\to} F_n \stackrel{\delta_n}{\to} F_{n-1} \to \cdots \to F_1 \stackrel{\delta_1}{\to} G \to 0
$$

with F_i *flat for any* $1 \leq i \leq n$, *such that* $\bigoplus_{i=1}^{n+1}$ *Im* δ*ⁱ is SG-flat;*

i=2 *(3) There exists an exact sequence of complexes of right R-modules*

$$
0 \to G \stackrel{\delta_{n+1}}{\to} F_n \stackrel{\delta_n}{\to} F_{n-1} \to \cdots \to F_1 \stackrel{\delta_1}{\to} G \to 0
$$

with F_i *flat for any* $1 \leq i \leq n$, *such that* $\bigoplus_{i=1}^{n+1}$ *i*=2 *Im* δ*ⁱ is Gorenstein flat.*

3 *n***-Strongly Gorenstein Projective and Injective Complexes**

In this section, we introduce and study the *n*-*SG*-projective and injective complexes which are generalizations of *SG*-projective and injective modules, respectively. Also we extend the results in [\[3,](#page-13-2) [11](#page-13-3)] on *n*-strongly Gorenstein projective and injective modules to that of complexes.

Definition 3.1 Let *n* be a positive integer. A complex *G* is said to be an *n*-strongly Gorenstein projective (for short *n*-*SG*-projective) if there exists an exact sequence of complexes

$$
0 \to G \stackrel{\delta_{n+1}}{\to} P_n \stackrel{\delta_n}{\to} P_{n-1} \to \cdots \to P_1 \stackrel{\delta_1}{\to} G \to 0
$$

with P_i projective for any $1 \le i \le n$, such that Hom(- , Q) leaves the sequence exact whenever *Q* is a projective complex.

Definition 3.2 Let *n* be a positive integer. A complex *G* is said to be an *n*-strongly Gorenstein injective (for short *n*-*SG*-injective) if there exists an exact sequence of complexes

 $0 \to G \stackrel{\alpha_{n+1}}{\to} I_n \stackrel{\alpha_n}{\to} I_{n-1} \to \cdots \to I_1 \stackrel{\alpha_1}{\to} G \to 0$

with I_i injective for any $1 \le i \le n$, such that $Hom(E, -)$ leaves the sequence exact whenever *E* is an injective complex.

Note that 1-*SG*-projective (resp., injective) complexes are just *SG*-projective (resp., injective) complexes. It is also clear that for any *i* with $2 \le i \le n + 1$, the complex Im δ_i (resp., Im α_i) in the above exact sequence is *n*-*SG*-projective (resp., injective). The following proposition shows that the class of all *n*-*SG*-projective

(resp., injective) complexes is between the class of all *SG*-projective (resp., injective) complexes and the class of all Gorenstein projective (resp., injective) complexes.

Proposition 3.3 *Let n be a positive integer. Then:*

- *(1) Every SG-projective (resp., injective) complex is an n-SG-projective (resp., injective) complex.*
- *(2) Every n-SG-projective (resp., injective) complex is a Gorenstein projective (resp., injective) complex.*

Proof Since the *SG*-injective complex is the dual notion of *SG*-projective, we prove the results for *SG*-projective case.

(1) Let *G* be an *SG*-projective complex. There exists an exact sequence of complexes

$$
0 \to G \stackrel{f}{\to} P \stackrel{g}{\to} G \to 0,
$$

where *P* is a projective complex, such that $Hom(-, Q)$ leaves the sequence exact whenever O is a projective complex. Then we get an exact sequence of complexes of the form

$$
X: 0 \to G \stackrel{f}{\to} P \stackrel{fg}{\to} P \stackrel{fg}{\to} \cdots \to P \stackrel{g}{\to} G \to 0
$$

such that $Hom(X, Q)$ is exact for any projective complex Q . Therefore G is an *n*-*SG*-projective complex.

(2) Let *G* be an *n*-*SG*-projective complex. There exists an exact sequence of complexes

$$
Y: 0 \to G \stackrel{\delta_{n+1}}{\to} P_n \stackrel{\delta_n}{\to} P_{n-1} \to \cdots \to P_1 \stackrel{\delta_1}{\to} G \to 0
$$

with *P_i* projective for any $1 \le i \le n$, such that Hom(- , Q) leaves the sequence exact whenever \hat{O} is a projective complex. Thus, we get the following exact sequence of complexes

$$
Y':\cdots\to P_1\stackrel{\delta_{n+1}\delta_1}{\to}P_n\stackrel{\delta_n}{\to}P_{n-1}\to\cdots\to P_1\stackrel{\delta_{n+1}\delta_1}{\to}P_n\stackrel{\delta_n}{\to}\cdots.
$$

such that $Im(\delta_{n+1}\delta_1) \cong G$. Let Q be any projective complex. Then the exactness of Hom(*Y* , *Q*) follows from the exactness of Hom(*Y*, *Q*) and hence *G* is a Gorenstein projective complex. \Box

Proposition 3.4 *Let* {*Gi*}*^I be any family of complexes. Then*

- *(1)* If G_i is n-SG-projective for every $i \in I$, then $\bigoplus_{I} G_i$ is an n-SG-projective *complex.*
- *(2) If G_i is n*-*SG*-injective for every *i* ∈ *I*, then $\prod_l G_i$ *is an n*-*SG*-injective complex.

Proof (1) For each *i* in *I* there exists an exact sequence of complexes

$$
\mathbb{X}_i: 0 \to G_i \to P_{in} \to P_{in-1} \to \cdots \to P_{i1} \to G_i \to 0
$$

with P_{ii} projective for $1 \leq j \leq n$, such that Hom(\mathbb{X}_i , Q) is exact for any projective complex *Q*. Since the direct sum of projective complexes is projective, we obtain the following exact sequence of complexes

$$
\bigoplus_{i\in I} \mathbb{X}_i : 0 \to \bigoplus_{i\in I} G_i \to \bigoplus_{i\in I} P_{in} \to \cdots \to \bigoplus_{i\in I} P_{i1} \to \bigoplus_{i\in I} G_i \to 0
$$

with $\bigoplus P_{ij}$ projective for $1 \leq j \leq n$. Let *Q* be any projective complex. Then $Hom(\bigoplus \mathbb{X}_i, Q) \cong \prod \text{Hom}(\mathbb{X}_i, Q)$ is exact, and hence $\bigoplus G_i$ is an *n*-*SG*-projective complex.

(2) The proof is similar to (1). \Box

In [\[2,](#page-13-0) Theorem 2.7], it is proved that a module is Gorenstein projective if and only if it is a direct summand of a strongly Gorenstein projective module. Using [\[9,](#page-13-5) Theorem 2.3] and Proposition [3.3,](#page-5-0) we have the following.

Theorem 3.5 *Let G be a complex. Then the following hold:*

- *(1) G is Gorenstein projective if and only if it is a direct summand of an n-SGprojective complex.*
- *(2) G is Gorenstein injective if and only if it is a direct summand of an n-SG-injective complex.*

Proof (1) Let *G* be a Gorenstein projective complex. Then it is a direct summand of an *SG*-projective complex by [\[10](#page-13-4), Theorem 1]. Hence *G* is a direct summand of an *n*-*SG*-projective complex by Proposition [3.3.](#page-5-0) Conversely, let *G* be a direct summand of an *n*-*SG*-projective complex *C*. Then *C* is Gorenstein projective by Proposition [3.3](#page-5-0) (2). Since the class of all Gorenstein projective complexes is closed under direct summands by [\[9](#page-13-5), Theorem 2.3], it follows that *G* is Gorenstein projective.

(2) The proof is similar to (1).

In [\[11,](#page-13-3) Theorem 3.9], Zhao and Huang have given some characterizations of *n*-*SG*projective modules. Now, we have the similar characterization for *n*-*SG*-projective complexes in the following.

Proposition 3.6 *Let G be any complex. Then the following are equivalent;*

- *(1) G is n-SG-projective;*
- *(2) There exists an exact sequence of complexes*

$$
0 \to G \stackrel{\delta_{n+1}}{\to} P_n \stackrel{\delta_n}{\to} P_{n-1} \to \cdots \to P_1 \stackrel{\delta_1}{\to} G \to 0
$$

with P_i projective for any $1 \leq i \leq n$, *such that* $\bigoplus_{i=1}^{n+1} Im \delta_i$ *is SG-projective*; $\sqrt{n+1}$ *i*=2

(3) There exists an exact sequence of complexes

$$
0 \to G \stackrel{\delta_{n+1}}{\to} P_n \stackrel{\delta_n}{\to} P_{n-1} \to \cdots \to P_1 \stackrel{\delta_1}{\to} G \to 0
$$

with F_i projective for any $1 \leq i \leq n$, such that $\bigoplus_{i=1}^{n+1}$ *i*=2 *Im* δ*ⁱ is Gorenstein projective.*

Proof (1) \Rightarrow (2). Let *G* be an *SG*-projective complex. Then there exists an exact sequence of complexes

$$
0 \to G \stackrel{\delta_{n+1}}{\to} P_n \stackrel{\delta_n}{\to} P_{n-1} \to \cdots \to P_1 \stackrel{\delta_1}{\to} G \to 0
$$

with *P_i* projective for any $1 \le i \le n$, such that Hom($\overline{-}$, \overline{Q}) leaves the sequence exact whenever *Q* is a projective complex. Now for each *i* with $2 < i < n + 1$, we have an exact sequence of complexes

$$
0\to \operatorname{Im} \delta_i\stackrel{\alpha_i}{\to} P_{i-1}\stackrel{\delta_{i-1}}{\to}\cdots\to P_1\stackrel{\delta_{n+1}\delta_1}{\longrightarrow} P_n\stackrel{\delta_n}{\to}\cdots\to P_i\stackrel{\delta_i}{\to} \operatorname{Im} \delta_i\to 0.
$$

By adding these exact sequences, we obtain the following exact sequence

$$
0 \to \bigoplus_{i=2}^{n+1} \operatorname{Im} \delta_i \stackrel{\alpha}{\to} \bigoplus_{i=1}^n P_i \stackrel{\delta}{\to} \cdots \to P_n \oplus P_0 \oplus \cdots \oplus P_{n-1} \to \cdots
$$

where $\alpha = \text{diag}\{\alpha_1, \alpha_2, ..., \alpha_n\}$ and $\delta = \text{diag}\{\delta_{n+1}\delta_1, \delta_2, ..., \delta_n\}$. Hence it is clear that Im $\delta \cong \bigoplus_{n=1}^{n+1}$ *i*=2 δ_i and Ext_1 (\bigoplus $\bigoplus_{i=2}^{n+1} \text{Im } \delta_i, Q \geq \prod_{i=2}^{n+1}$ $\prod_{i=2} Ext_1(\text{Im }\delta_i, Q) = 0$ for any projective

complex *Q*. Therefore $\bigoplus_{n=1}^{n+1}$ Im δ_i is *SG*-flat.

 $(2) \Rightarrow (3)$ It follows from the Proposition [3.3.](#page-5-0)

 $(3) \Rightarrow (1)$ It is obvious.

Similarly, we can characterize the *n*-*SG*-injective complexes.

In [\[9,](#page-13-5) Theorem 3.1], the relationship between Gorenstein flat and Gorenstein injective complexes is given. In connection to [\[9,](#page-13-5) Theorems 3.1 and 3.3] and Proposition [2.4,](#page-3-0) we have the following.

Theorem 3.7 *Let R be a left artinian ring and let the injective envelope of every simple left R-module be finitely generated. Then the following hold:*

- *(1) If a complex G of left R-modules is n-SG-injective, then G*⁺ *is an n-SG-flat complex of right R-modules.*
- *(2) If a complex G of right R-modules is n-SG-flat, then G*⁺ *is an n-SG-injective complex of left R-modules.*

Proof (1) Let *G* be an *n*-*SG*-injective complex. Then using the characterization of *n*-*SG*-injective complexes similar to Proposition [3.6,](#page-6-0) we get an exact sequence of complexes

$$
\mathbf{I}: 0 \to G \stackrel{\delta_{n+1}}{\to} I_n \stackrel{\delta_n}{\to} I_{n-1} \to \cdots \to I_1 \stackrel{\delta_1}{\to} G \to 0
$$

where I_j is an injective complex for $1 \le j \le n$ and $\bigoplus_{\alpha=1}^{n+1} \text{Im } \delta_j$ is Gorenstein injective.

Thus we have the following exact sequence of right R -modules

$$
\mathbf{I}^+: 0 \to G^+ \xrightarrow{\delta_1^+} I_1^+ \xrightarrow{\delta_2^+} I_2^+ \to \cdots \to I_n^+ \xrightarrow{\delta_{n+1}^+} G^+ \to 0
$$

where I_j^+ is a flat complex for $1 \le j \le n$. Since G is Gorenstein injective by Proposi-tion [3.3,](#page-5-0) we have that Im $\delta_1^+ \cong G^+$ is Gorenstein flat by [\[9](#page-13-5), Theorem 3.5]. Since $\bigoplus_{n=1}^{n+1}$ Im δ_j is Gorenstein injective, we get that Im δ_j is Gorenstein injective for $2 \le j \le n+1$ by [\[9](#page-13-5), Theorem 2.10]. Thus for every *j* with $1 \le j \le n$, Im δ_j^+ is Gorenstein flat by [\[9,](#page-13-5) Theorem 3.5]. Hence \bigoplus^n *j*=1 Im δ_j^+ is Gorenstein flat since Gorenstein flat complexes are closed under direct sums. Therefore *G*⁺ is *n*-SG-flat by Proposition [2.4.](#page-3-0)

(2) Let *G* be an *n*-*SG*-flat complex. Then by Proposition [2.4,](#page-3-0) we get an exact sequence of complexes of right *R*-modules

$$
\mathbf{F}: 0 \to G \stackrel{\delta_{n+1}}{\to} F_n \stackrel{\delta_n}{\to} F_{n-1} \to \cdots \to F_1 \stackrel{\delta_1}{\to} G \to 0
$$

where F_j is a flat complex for $1 \le j \le n$ and $\bigoplus_{n=1}^{n+1}$ *j*=2 Im δ_j is Gorenstein flat. Thus we have the following exact sequence of complexes of *R*-modules

$$
\mathbf{F}^+ : 0 \to G^+ \xrightarrow{\delta_1^+} F_1^+ \xrightarrow{\delta_2^+} F_2^+ \to \cdots \to F_n^+ \xrightarrow{\delta_{n+1}^+} G^+ \to 0
$$

where F_j^+ is an injective complex for $1 \le j \le n$. Since *G* is Gorenstein flat by [\[7,](#page-13-6) Proposition 4.2], we have that Im $\delta_1^+ \cong G^+$ is Gorenstein injective by [\[9](#page-13-5), Theorem 3.1]. Since \bigoplus^{n+1} *j*=2 Im δ_j is Gorenstein flat, we get that Im δ_j is Gorenstein flat for $2 \le j \le n + 1$ by [\[9](#page-13-5), Theorem 3.3]. Thus for every *j* with $1 \le j \le n$, Im δ_j^+ is Gorenstein injective by [\[9](#page-13-5), Theorem 3.1]. Hence $\bigoplus_{j=1}^{n}$ Im δ_j^+ is Gorenstein injective since Gorenstein injective complexes are closed under finite direct sums. Therefore G^+ is *n*-SG-injective by Proposition [3.3.](#page-5-0)

Corollary 3.8 *Let R be a left artinian ring and let the injective envelope of every simple left R-module be finitely generated. Then the following hold:*

- *(1)* If a complex G of R-modules is n-SG-injective, then G^{++} is an n-SG-injective *complex.*
- *(2) If a complex G of right R-modules is n-SG-flat, then* G^{++} *is an n-SG-flat complex.*

Proof The proof follows from Theorem [3.7.](#page-7-0)

The following result shows the relationship between *n*-*SG*-projective complexes and *n*-*SG*-projective modules.

Proposition 3.9 *Let G be a complex. If G is n-SG-projective, then Gⁱ is an n-SGprojective R-module for all* $i \in \mathbb{Z}$ *.*

Proof Suppose *G* is an *n*-*SG*-projective complex. By Proposition [3.6,](#page-6-0) there exists an exact sequence of complexes

$$
0 \to G \stackrel{\delta_{n+1}}{\to} P_n \stackrel{\delta_n}{\to} P_{n-1} \to \cdots \to P_1 \stackrel{\delta_1}{\to} G \to 0
$$

where P_j is a projective complex for $1 \le j \le n$ and $\bigoplus_{\alpha=1}^{n+1} \text{Im } \delta_j$ is Gorenstein projective. $n+1$ Then for each $i \in \mathbb{Z}$, we get an exact sequence of modules

$$
0 \to G^i \xrightarrow{\delta_{n+1}^i} P_n^i \xrightarrow{\delta_n^i} P_{n-1}^i \to \cdots \to P_1^i \xrightarrow{\delta_1^i} G^i \to 0
$$

such that P_j^i is a projective R-module for $1 \le j \le n$. Since $\bigoplus_{n=1}^{n+1} \text{Im } \delta_j$ is a Gorenstein $n+1$ *j*=2 projective complex if and only if Im δ_i is a Gorenstein projective complex for $2 \leq j \leq$ $n + 1$ by [\[9,](#page-13-5) Theorem 2.3]. Then by [9, Theorem 2.2], we have Im δ_i is a Gorenstein projective complex if and only if $\text{Im } \delta^i_j$ is a Gorenstein projective *R*-module for every

 $i \in \mathbb{Z}$ and $2 \le j \le n + 1$. Thus we get that $\bigoplus_{j=1}^{n+1}$ Im δ_j^i is a Gorenstein projective *R* $j=2$
module since the class of all Gorenstein projective modules is closed under direct sums. Therefore the result follows from $[11,$ $[11,$ Theorem 3.9].

Corollary 3.10 *Let M be an R-module. Then M is n-SG-projective if and only if the complex* \overline{M} *is n-SG-projective.*

Proof Suppose *M* is an *n*-*SG*-projective module. Then there exists an exact sequence of *R*-modules

$$
X: 0 \to M \to P_n \to P_{n-1} \to \cdots \to P_1 \to M \to 0,
$$

where P_i is a projective R -module for $1 \le i \le n$, such that $\text{Hom}_R(-, Q)$ leaves the sequence exact for any projective module *Q*. Thus, we get an exact sequence of complexes

n-Strongly Gorenstein Projective and Injective Complexes 303

$$
\overline{X}: 0 \to \overline{M} \to \overline{P}_n \to \overline{P}_{n-1} \to \cdots \to \overline{P}_1 \to \overline{M} \to 0
$$

with \overline{P}_i a projective complex for $1 \le i \le n$. Now let O' be any projective complex. Then it is a direct product of complexes of the form $\overline{P}[n]$ for some projective module *P* and $n \in \mathbb{Z}$. Then

$$
Hom(\overline{X}, Q') \cong Hom(\overline{X}, \prod_{n \in \mathbb{Z}} \overline{P}[n])
$$

$$
\cong \prod_{n \in \mathbb{Z}} Hom(\overline{X}, \overline{P}[n])
$$

is exact for all $n \in \mathbb{Z}$ and hence \overline{M} is *n*-*SG*-projective. The converse follows from Proposition [3.9.](#page-9-0)

The following example describes that there are 2-*SG*-projective complexes which are not necessarily 1-*SG*-projective.

Example 3.11

- (1) Let *R* be a local ring and consider the ring $S = R[X, Y]/(XY)$. Let [X] and [*Y*] be the residue classes in *S* of *X* and *Y* respectively. Then by [\[3](#page-13-2), Example 2.6], we observe that the *R*-modules [*X*] and [*Y*] are 2-*SG*-projective but are not 1-*SG*-projective. Then by Corollary [3.10,](#page-9-1) the complexes $\overline{[X]}$ and $\overline{[Y]}$ are 2-*SG*-projective but are not *SG*-projective.
- (2) In general, *n*-*SG*-projective complexes need not be *m*-*SG*-projective whenever $n \nmid m$. Based on the assumptions in [\[11](#page-13-3), Example 3.2], we observe that the modules S_i ($1 \le i \le n$) are *n*-strongly Gorenstein projective but are not *m*strongly Gorenstein projective. Then by the Corollary [3.10,](#page-9-1) we see that the complexes S_i are n -*SG*-projective but are not m -*SG*-projective whenever $n \nmid m$.

4 *n***-***SG***-Projective and** *m***-***SG***-Projective Complexes**

In this section, we study the relationships between *n*-*SG*-projective (resp., injective) and *m*-*SG*-projective (resp., injective) complexes for any two positive integers *n* and *m*.

Lemma 4.1 Let m, n and r be any positive integers such that $m = rn$. Then the *class of all m-SG-projective (resp., injective) complexes contains the class of all n-SG-projective (resp., injective) complexes.*

Proof Let *G* be an *n SG*-projective complex. Then there exists an exact sequence of complexes

$$
\mathbf{X}: 0 \to G \stackrel{\alpha_{n+1}}{\to} I_n \stackrel{\alpha_n}{\to} I_{n-1} \to \cdots \to I_1 \stackrel{\alpha_1}{\to} G \to 0
$$

with I_j injective for any $1 \le j \le n$, such that $\bigoplus_{j=1}^{n+1} \text{Im } \alpha_j$ is a Gorenstein projective complex. So Im δ_j is Gorenstein projective for every $1 \le j \le n$ by [\[9,](#page-13-5) Theorem 2.3]. Using the exact sequence X for r times, we have the following exact sequence

$$
\mathbf{Y}: 0 \to G \stackrel{\alpha_{n+1}}{\to} I_n \stackrel{\alpha_n}{\to} I_{n-1} \to \cdots \to I_1 \stackrel{\delta}{\to} I_n \to \cdots I_1 \stackrel{\alpha_1}{\to} G \to 0
$$

with *I_j* injective for any $1 \le j \le n$ and $\delta = \alpha_{n+1}\alpha_1$. Then $\bigoplus_{i=1}^{n+1} \text{Im } \alpha_j$ is Gorenstein *j*=2 projective since Im α_j and G are Gorenstein projective.

For any positive integer *n*, we use *n*-*SG*-Proj(*C*) (resp., *n*-*SG*-Inj(*C*)) to denote the subcategory of $\kappa \mathscr{C}$ consisting of *n*-*SG*-projective (resp., injective) complexes of left *R*-modules. The following results extend [\[11](#page-13-3), Proposition 3.4 (2) and Theorem 3.5] to that of complexes.

Proposition 4.2 *Let n and m be positive integers. Then the following hold:*

- (1) If $n|m$, then $n\text{-}SG\text{-}Proj(\mathscr{C}) \bigcap m\text{-}SG\text{-}Proj(\mathscr{C}) = n\text{-}SG\text{-}Proj(\mathscr{C})$.
- (2) If $n \nmid m$ and $m = kn + j$, where k is a positive integer and $0 < j < n$, then *n*-SG-Proj(*C*) \bigcap *m*-SG-Proj(*C*) ⊆ *j*-SG-Proj(*C*).

Proof (1) It follows from Lemma [4.1.](#page-10-0)

(2) By Lemma [4.1,](#page-10-0) we have that $m-SG\text{-Proj}(\mathscr{C}) \cap n-SG\text{-Proj}(\mathscr{C}) \subseteq m-SG\text{-}$ Proj(\mathscr{C}) \bigcap kn-*SG*-Proj(\mathscr{C}). Suppose that a complex *G* is in *m*-*SG*-Proj(\mathscr{C}) \bigcap kn -*SG*-Proj($\mathscr C$). Then there exists an exact sequence of complexes

$$
\mathbb{P}:0\to G\to P_m\to\cdots\to P_2\to P_1\to 0
$$

with *P_i* projective for any $1 \le i \le m$. Put $L_i = \text{Ker}(P_i \rightarrow P_{i-1})$ for any $2 \le i \le m$. Since *G* is *kn*-SG-projective, we see that *G* and *Lkn* are projectively equivalent, i.e., there exist projective complexes *P* and *Q* in *C* such that $G \oplus P \cong O \oplus L_{kn}$.

Now consider the following pullback diagram:

Then *X* is a projective complex. Next, consider the following pullback diagram

Hence *Y* is also projective. Combining the exact sequence $\mathbb P$ and the first row in the above diagram, we get the following exact sequence of complexes

$$
0 \to G \to P_m \to \cdots \to P_{kn+1} \to Y \to G \to 0
$$

such that $Hom(-, Q')$ leaves the sequence exact for any projective complex Q' . Thus *G* is *j*-SG-projective and hence n -SG-Proj(\mathcal{C}) $\bigcap m$ -SG-Proj(\mathcal{C}) $\subseteq j$ -SG- $Proj(\mathscr{C})$.

Dually, we have the following result for *n*-*SG*-injective complexes.

Proposition 4.3 *Let n and m be positive integers. Then the following hold:*

- *(1)* If $n|m$, then $n\text{-}SG\text{-}Inj(\mathscr{C}) \bigcap m\text{-}SG\text{-}Inj(\mathscr{C}) = n\text{-}SG\text{-}Inj(\mathscr{C})$.
- (2) If $n \nmid m$ and $m = kn + j$, where k is a positive integer and $0 < j < n$, then *n*-SG-Inj(*C*) \bigcap *m*-SG-Inj(*C*) ⊆ *j*-SG-Inj(*C*).

For any two positive integers *m* and *n*, we use (*m*, *n*) (resp., [*m*, *n*]) to denote the greatest common divisor (resp., least common multiple) of *m* and *n*.

Proposition 4.4 *For any two positive integers m and n, we have the following:*

(1) $m-SG\text{-}Proj(\mathcal{C}) \cap n-SG\text{-}Proj(\mathcal{C}) = (m, n)\text{-}SG\text{-}Proj(\mathcal{C})$. (2) $m\text{-}SG\text{-}Proj(\mathscr{C}) \cap (m+1)\text{-}SG\text{-}Proj(\mathscr{C}) = 1\text{-}SG\text{-}Proj(\mathscr{C})$.

Proof (1) If $n|m$, then the result follows from Proposition [4.3](#page-12-0) (1). Now suppose $n \nmid m$ and $m = k_0 n + j_0$, where k_0 is a positive integer and $0 < j_0 < n$. By Propo-sition [4.3](#page-12-0) (2), we have that m -*SG*-Proj(\mathscr{C}) $\bigcap n$ -*SG*-Proj(\mathscr{C}) $\subseteq j_0$ -*SG*-Proj(\mathscr{C}). If $j_0 \nmid n$ and $n = k_1 j_0 + j_1$, with $0 < j_1 < j_0$, then by Proposition [4.3](#page-12-0) (2) again, we have that m -*SG*-Proj(\mathscr{C}) $\bigcap n$ -*SG*-Proj(\mathscr{C}) $\subseteq n$ -*SG*-Proj(\mathscr{C}) $\bigcap j_0$ -*SG*-Proj(\mathscr{C}) \subseteq *j*₁-*SG*-Proj(\mathscr{C}). Continuing the process, after finite steps, there exists a positive integer *t* such that $j_t = k_{t+2} j_{t+1}$ and $j_{t+1} = (m, n)$. Thus m -*SG*-Proj(*C*) \bigcap

 $n-SG\text{-Proj}(\mathscr{C}) \subseteq j_t\text{-}SG\text{-Proj}(\mathscr{C}) \cap j_{t+1}\text{-}SG\text{-Proj}(\mathscr{C}) = j_{t+1}\text{-}SG\text{-Proj}(\mathscr{C}) = (m, n)$ *SG*-Proj($\mathscr C$). Then the result follows from the fact that (m, n) -*SG*-Proj($\mathscr C$) $\subset m$ -*SG*-Proj(*C*) *n*-*SG*-Proj(*C*).

(2) It follows from (1). \Box

Corollary 4.5 *For any two positive integers m and n, we have the following: m-* $SG\text{-}Proj(\mathscr{C}) \bigcup n\text{-}SG\text{-}Proj(\mathscr{C}) \subseteq [m, n]\text{-}SG\text{-}Proj(\mathscr{C})$.

Proof It is clear from the fact that every *n*-*SG*-projective complex is *m*-*SG*projective whenever $n|m$.

For the case of *n*-*SG*-injective complexes, we have the following.

Proposition 4.6 *For any two positive integers m and n, we have the following:*

(1) $m-SG-Inj(\mathcal{C}) \cap n-SG-Inj(\mathcal{C}) = (m, n)-SG-Inj(\mathcal{C})$ *.* (2) $m-SG\text{-}Inj(\mathscr{C}) \bigcap (m+1)\text{-}SG\text{-}Inj(\mathscr{C}) = 1-SG\text{-}Inj(\mathscr{C})$.

Proof The proof is similar to Proposition [4.4.](#page-12-1) \Box

Corollary 4.7 *For any two positive integers m and n, we have the following:* $m\text{-}SG\text{-}Inj(\mathscr{C}) \bigcup n\text{-}SG\text{-}Inj(\mathscr{C}) \subseteq [m,n]\text{-}SG\text{-}Inj(\mathscr{C})$.

Proof It is clear from the fact that every *n*-*SG*-injective complex is *m*-*SG*-injective whenever $n|m$.

References

- 1. Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Graduate Texts in Mathematics, vol. 13, 2nd edn. Springer, New York (1992)
- 2. Bennis, D., Mahdou, N.: Strongly Gorenstein projective, injective and flat modules. J. Pure Appl. Algebra **210**, 437–445 (2007)
- 3. Bennis, D., Mahdou, N.: A generalization of strongly Gorenstein projective modules. J. Algebra Appl. **8**, 219–227 (2009)
- 4. Enochs, E., García Rozas, J.R.: Tensor products of complexes. Math. J. Okayama Univ. **39**, 17–39 (1997)
- 5. Enochs, E., Jenda, O.M.G.: Relative Homological Algebra. de Gruyter Expositions in Mathematics, vol. 30. Walter de Gruyter, Berlin (2000)
- 6. García Rozas, J.R.: Covers and Envelopes in the Category of Complexes of Modules. CRC Press, Boca Raton (1999)
- 7. Selvaraj, C., Saravanan, R.: *SG*-flat complexes and their generalizations, communicated to Vietnam J. Math
- 8. Yang, X., Liu, Z.: Strongly Gorenstein projective, injective and flat modules. J. Algebra **320**, 2659–2674 (2008)
- 9. Yang, X., Liu, Z.: Gorenstein projective, injective and flat complexes. J. Commut. Algebra **39**, 1705–1721 (2011)
- 10. Zhang, D., Ouyang, B.: Strongly Gorenstein projective and injective complexes. J. Nat. Sci. Hunan Norm. Univ. **35**, 1–5 (2012)
- 11. Zhao, G., Huang, Z.: *n*-strongly Gorenstein projective, injective and flat modules. Commun. Algebra **39**, 3044–3062 (2011)