n-Strongly Gorenstein Projective and Injective Complexes

C. Selvaraj and R. Saravanan

Abstract In this paper, we introduce and study the notions of n-strongly Gorenstein projective and injective complexes, which are generalizations of n-strongly Gorenstein projective and injective modules, respectively. Further, we characterize the so-called notions and prove that the Gorenstein projective (resp., injective) complexes are direct summands of n-strongly Gorenstein projective (resp., injective) complexes. Also, we discuss the relationships between n-strongly Gorenstein injective and n-strongly Gorenstein flat complexes, and for any two positive integers n and m, we exhibit the relationships between n-strongly Gorenstein projective (resp., injective) and m-strongly Gorenstein projective (resp., injective) complexes.

Keywords n-SG-projective complex \cdot n-SG-injective complex \cdot n-SG-flat complex

AMS Subject classification (2010) 16E05 · 16E30

1 Introduction

Throughout this paper, let R be an associative ring with identity and \mathcal{C} be the abelian category of complexes of R-modules. Unless stated otherwise, a complex and an R-module will be understood to be a complex of left R-modules and a left R-module respectively.

Bennis and Mahdou [2] introduced the notions of strongly Gorenstein projective, injective and flat modules which are further studied and characterized by Liu [8]. Later, Bennis and Mahdou [3] generalized the notion of strongly Gorenstein projective modules to *n*-strongly Gorenstein projective modules and [11] Zhao studied the homological behaviors of *n*-strongly Gorenstein projective, injective and flat modules. Zhang et al. [10] studied the notions of strongly Gorenstein projective

S.T. Rizvi et al. (eds.), *Algebra and its Applications*, Springer Proceedings in Mathematics & Statistics 174, DOI 10.1007/978-981-10-1651-6_17

C. Selvaraj (🖂) · R. Saravanan

Department of Mathematics, Periyar University, Salem 636 011, TN, India e-mail: selvavlr@yahoo.com

[©] Springer Science+Business Media Singapore 2016

and injective complexes. Motivated by the above works in this article, we introduce and study the notions of *n*-strongly Gorenstein projective and injective complexes, which are generalizations of *n*-strongly Gorenstein projective and injective modules, respectively. In [2, Theorem 2.7], it is proved that a module is Gorenstein projective if and only if it is a direct summand of a strongly Gorenstein projective module. Using [9, Theorem 2.3], we prove the following.

Theorem Let G be a complex. Then the following holds:

- (1) G is Gorenstein projective if and only if it is a direct summand of an n-SG-projective complex.
- (2) G is Gorenstein injective if and only if it is a direct summand of an n-SG-injective complex.

In [9, Theorem 3.1], the relationship between Gorenstein flat and Gorenstein injective complexes is given. In connection to [9, Theorems 3.1 and 3.3] and [7, Proposition 4.7], we have the following result.

Theorem *Let R be a left artinian ring and let the injective envelope of every simple left R-module be finitely generated. Then the following hold:*

- (1) If a complex G of left R-modules is n-SG-injective, then G^+ is an n-SG-flat complex of right R-modules.
- (2) If a complex G of right R-modules is n-SG-flat, then G⁺ is an n-SG-injective complex of left R-modules.

In Sect. 2, we recall some known definitions and terminologies which will be needed in the sequel.

In Sect. 3, we introduce and study the notions of *n*-strongly Gorenstein projective and injective complexes. We show that a complex is Gorenstein projective (resp., injective) if and only if it is a direct summand of an *n*-SG-projective (resp., injective) complex and prove that the modules in an *n*-SG-projective (resp., injective) complex are precisely the *n*-SG-projective (resp., injective) modules. Further, over a left artinian ring R, we discuss the relationships between *n*-SG-injective and *n*-SG-flat complexes.

In the last section, we study the relationships between n-SG-projective (resp., injective) and m-SG-projective (resp., injective) complexes for any two positive integers n and m.

2 Preliminaries

In this section, we first recall some known definitions and terminologies which we need in the sequel.

In this paper, a complex

$$\cdots \rightarrow C^{-1} \xrightarrow{\delta^{-1}} C^0 \xrightarrow{\delta^0} C^1 \xrightarrow{\delta^1} \cdots$$

will be denoted by *C* or (C, δ) . We will use subscripts to distinguish complexes. So if $\{C_i\}_{i \in I}$ is a family of complexes, C_i will be

$$\cdots \to C_i^{-1} \stackrel{\delta_i^{-1}}{\to} C_i^0 \stackrel{\delta_i^0}{\to} C_i^1 \stackrel{\delta_i^1}{\to} \cdots$$

Given an *R*-module *M*, we will denote by \overline{M} the complex

$$\cdots 0 \to 0 \to M \xrightarrow{id} M \to 0 \to 0 \cdots$$

with *M* in the 1st and 0th degrees. Similarly, we denote by \underline{M} the complex with *M* in the 0th degree and 0 in the other places. Note that an *R*-module *M* is injective (resp., projective) if and only if the complex \overline{M} is injective (resp., projective).

Given a complex *C* and an integer *m*, *C*[*m*] denotes the complex such that $C[m]^n = C^{m+n}$ and whose boundary operators are $(-1)^m \delta^{m+n}$. The *n*th cycle of a complex *C* is defined as Ker δ^n and is denoted by Z^nC . The *n*th boundary of *C* is defined as Im δ^{n-1} and is denoted by B^nC .

Let *C* be a complex of left *R*-modules (resp., of right *R*-modules) and let *D* be a complex of left *R*-modules. We denote by Hom(*C*, *D*) (respectively, $C \otimes D$) the usual homomorphism complex (resp., tensor product) of the complexes *C* and *D*. The *n*th degree term of the complex Hom(*C*, *D*) is given by

$$\operatorname{Hom}(C, D)^{n} = \prod_{t \in \mathbb{Z}} \operatorname{Hom}(C^{t}, D^{n+t})$$

and whose boundary operators are

$$(\delta^{n} f)^{m} = \delta_{D}^{n+m} f^{m} - (-1)^{n} f^{m+1} \delta_{C}^{m}.$$

The *n*th degree term of $C \otimes D$ is given by

$$(C \otimes D)^n = \bigoplus_{t \in \mathbb{Z}} (C^t \otimes_R D^{n-t})$$

and

$$\delta(x \otimes y) = \delta_C^t(x) \otimes y + (-1)^t x \otimes \delta_D^{n-t}(y),$$

for $x \in C^t$ and $y \in D^{n-t}$.

For a complex *C* of left *R*-modules, we have a functor $-\otimes \mathscr{C} : \mathscr{C}_R \to \mathscr{C}_{\mathbb{Z}}$, where \mathscr{C}_R denotes the category of right *R*-modules. The functor $-\otimes \mathscr{C} : \mathscr{C}_R \to \mathscr{C}_{\mathbb{Z}}$ being right exact, we can construct the left derived functors which we denote by

 $Tor_i(-, C)$. Given two complexes C and D of \mathscr{C} , we use $Ext^i(C, D)$ for $i \ge 0$ to denote the groups we obtain from the right derived functors of Hom and we use C^+ to denote the complex $Hom(C, \overline{\mathbb{Q}/\mathbb{Z}})$.

Recall that a complex *C* is projective (respectively, injective) if *C* is exact and Z^nC is a projective (respectively, an injective) *R*-module for each $i \in \mathbb{Z}$. A complex *C* is flat if *C* is exact and Z^nC is flat *R*-module for each $i \in \mathbb{Z}$. Equivalently, a complex *C* is projective (respectively, injective) if and only if Hom(*C*, -) (respectively, Hom (-, C)) is exact. Also a complex *C* is flat if and only if $- \otimes C$ is exact. For unexplained terminologies and notations we refer to [1, 4-6].

Definition 2.1 ([10]) A complex G is called strongly Gorenstein projective (for short *SG*-projective) if there exists an exact sequence of complexes

$$\mathbb{P}: \cdots \to P \xrightarrow{\delta} P \xrightarrow{\delta} P \xrightarrow{\delta} \cdots$$

such that (i) *P* is a projective complex; (ii) Ker $\delta_0 \cong G$; (iii) Hom(\mathbb{P} , *Q*) is exact for any projective complex *Q*.

Similarly, the SG-injective complexes are defined.

Definition 2.2 ([7]) A complex G of right R-modules is called strongly Gorenstein flat (for short SG-flat) if there exists an exact sequence of complexes of right R-modules

 $\mathbb{F}: \dots \to F \xrightarrow{\delta} F \xrightarrow{\delta} F \xrightarrow{\delta} \dots$

such that (i) *F* is flat; (ii) Ker $\delta_0 \cong G$; (iii) $\mathbb{F} \otimes I$ is exact for any injective complex *I*.

Definition 2.3 ([7]) Let n be a positive integer. A complex G of right R-modules is said to be an n-SG-flat if there exists an exact sequence of complexes

 $0 \to G \xrightarrow{\delta_{n+1}} F_n \xrightarrow{\delta_n} F_{n-1} \to \cdots \to F_1 \xrightarrow{\delta_1} G \to 0$

with F_i projective for any $1 \le i \le n$, such that $-\otimes I$ leaves the sequence exact whenever I is an injective complex.

Next, we present the characterizations of n-SG-flat complexes in order to use it further.

Proposition 2.4 ([7]) *Let R be a right coherent ring and G be any complex of right R-modules. Then the following are equivalent;*

(1) G is n-SG-flat;

(2) There exists an exact sequence of complexes of right R-modules

$$0 \to G \stackrel{\delta_{n+1}}{\to} F_n \stackrel{\delta_n}{\to} F_{n-1} \to \cdots \to F_1 \stackrel{\delta_1}{\to} G \to 0$$

with F_i flat for any $1 \le i \le n$, such that $\bigoplus_{i=2}^{n+1} Im \delta_i$ is SG-flat; There exists an exact sector G_i

(3) There exists an exact sequence of complexes of right R-modules

$$0 \to G \xrightarrow{\delta_{n+1}} F_n \xrightarrow{\delta_n} F_{n-1} \to \cdots \to F_1 \xrightarrow{\delta_1} G \to 0$$

with F_i flat for any $1 \le i \le n$, such that $\bigoplus_{i=2}^{n+1} Im \delta_i$ is Gorenstein flat.

3 *n*-Strongly Gorenstein Projective and Injective Complexes

In this section, we introduce and study the n-SG-projective and injective complexes which are generalizations of SG-projective and injective modules, respectively. Also we extend the results in [3, 11] on *n*-strongly Gorenstein projective and injective modules to that of complexes.

Definition 3.1 Let *n* be a positive integer. A complex *G* is said to be an *n*-strongly Gorenstein projective (for short n-SG-projective) if there exists an exact sequence of complexes

$$0 \to G \xrightarrow{\delta_{n+1}} P_n \xrightarrow{\delta_n} P_{n-1} \to \cdots \to P_1 \xrightarrow{\delta_1} G \to 0$$

with P_i projective for any $1 \le i \le n$, such that Hom(-, Q) leaves the sequence exact whenever Q is a projective complex.

Definition 3.2 Let *n* be a positive integer. A complex *G* is said to be an *n*-strongly Gorenstein injective (for short n-SG-injective) if there exists an exact sequence of complexes

 $0 \to G \stackrel{\alpha_{n+1}}{\to} I_n \stackrel{\alpha_n}{\to} I_{n-1} \to \cdots \to I_1 \stackrel{\alpha_1}{\to} G \to 0$

with I_i injective for any $1 \le i \le n$, such that Hom(E, -) leaves the sequence exact whenever E is an injective complex.

Note that 1-SG-projective (resp., injective) complexes are just SG-projective (resp., injective) complexes. It is also clear that for any i with $2 \le i \le n+1$, the complex Im δ_i (resp., Im α_i) in the above exact sequence is *n*-SG-projective (resp., injective). The following proposition shows that the class of all *n-SG*-projective (resp., injective) complexes is between the class of all *SG*-projective (resp., injective) complexes and the class of all Gorenstein projective (resp., injective) complexes.

Proposition 3.3 Let *n* be a positive integer. Then:

- (1) Every SG-projective (resp., injective) complex is an n-SG-projective (resp., injective) complex.
- (2) Every n-SG-projective (resp., injective) complex is a Gorenstein projective (resp., injective) complex.

Proof Since the *SG*-injective complex is the dual notion of *SG*-projective, we prove the results for *SG*-projective case.

(1) Let G be an SG-projective complex. There exists an exact sequence of complexes

$$0 \to G \xrightarrow{f} P \xrightarrow{g} G \to 0,$$

where P is a projective complex, such that Hom(-, Q) leaves the sequence exact whenever Q is a projective complex. Then we get an exact sequence of complexes of the form

$$X: 0 \to G \xrightarrow{f} P \xrightarrow{fg} P \xrightarrow{fg} \cdots \to P \xrightarrow{g} G \to 0$$

such that Hom(X, Q) is exact for any projective complex Q. Therefore G is an n-SG-projective complex.

(2) Let G be an *n*-SG-projective complex. There exists an exact sequence of complexes

$$Y: 0 \to G \stackrel{\delta_{n+1}}{\to} P_n \stackrel{\delta_n}{\to} P_{n-1} \to \cdots \to P_1 \stackrel{\delta_1}{\to} G \to 0$$

with P_i projective for any $1 \le i \le n$, such that Hom(-, Q) leaves the sequence exact whenever Q is a projective complex. Thus, we get the following exact sequence of complexes

$$Y':\cdots \to P_1 \stackrel{\delta_{n+1}\delta_1}{\to} P_n \stackrel{\delta_n}{\to} P_{n-1} \to \cdots \to P_1 \stackrel{\delta_{n+1}\delta_1}{\to} P_n \stackrel{\delta_n}{\to} \cdots$$

such that $Im(\delta_{n+1}\delta_1) \cong G$. Let Q be any projective complex. Then the exactness of Hom(Y', Q) follows from the exactness of Hom(Y, Q) and hence G is a Gorenstein projective complex.

Proposition 3.4 Let $\{G_i\}_I$ be any family of complexes. Then

- (1) If G_i is n-SG-projective for every $i \in I$, then $\bigoplus_I G_i$ is an n-SG-projective complex.
- (2) If G_i is n-SG-injective for every $i \in I$, then $\prod_{I} G_i$ is an n-SG-injective complex.

Proof (1) For each i in I there exists an exact sequence of complexes

$$\mathbb{X}_i: 0 \to G_i \to P_{in} \to P_{in-1} \to \cdots \to P_{i1} \to G_i \to 0$$

with P_{ij} projective for $1 \le j \le n$, such that $\text{Hom}(\mathbb{X}_i, Q)$ is exact for any projective complex Q. Since the direct sum of projective complexes is projective, we obtain the following exact sequence of complexes

$$\bigoplus_{i\in I} \mathbb{X}_i : 0 \to \bigoplus_{i\in I} G_i \to \bigoplus_{i\in I} P_{in} \to \cdots \to \bigoplus_{i\in I} P_{i1} \to \bigoplus_{i\in I} G_i \to 0$$

with $\bigoplus_{i \in I} P_{ij}$ projective for $1 \le j \le n$. Let Q be any projective complex. Then $\operatorname{Hom}(\bigoplus X_i, Q) \cong \prod \operatorname{Hom}(X_i, Q)$ is exact, and hence $\bigoplus G_i$ is an *n*-SG-projective complex.

(2) The proof is similar to (1).

In [2, Theorem 2.7], it is proved that a module is Gorenstein projective if and only if it is a direct summand of a strongly Gorenstein projective module. Using [9, Theorem 2.3] and Proposition 3.3, we have the following.

Theorem 3.5 Let G be a complex. Then the following hold:

- (1) G is Gorenstein projective if and only if it is a direct summand of an n-SGprojective complex.
- (2) G is Gorenstein injective if and only if it is a direct summand of an n-SG-injective complex.

Proof (1) Let *G* be a Gorenstein projective complex. Then it is a direct summand of an *SG*-projective complex by [10, Theorem 1]. Hence *G* is a direct summand of an *n-SG*-projective complex by Proposition 3.3. Conversely, let *G* be a direct summand of an *n-SG*-projective complex *C*. Then *C* is Gorenstein projective by Proposition 3.3 (2). Since the class of all Gorenstein projective complexes is closed under direct summands by [9, Theorem 2.3], it follows that *G* is Gorenstein projective.

(2) The proof is similar to (1).

In [11, Theorem 3.9], Zhao and Huang have given some characterizations of n-SG-projective modules. Now, we have the similar characterization for n-SG-projective complexes in the following.

Proposition 3.6 Let G be any complex. Then the following are equivalent;

- (1) G is n-SG-projective;
- (2) There exists an exact sequence of complexes

$$0 \to G \stackrel{\delta_{n+1}}{\to} P_n \stackrel{\delta_n}{\to} P_{n-1} \to \cdots \to P_1 \stackrel{\delta_1}{\to} G \to 0$$

with P_i projective for any $1 \le i \le n$, such that $\bigoplus_{i=2}^{n+1} Im \delta_i$ is SG-projective;

 \square

(3) There exists an exact sequence of complexes

$$0 \to G \xrightarrow{\delta_{n+1}} P_n \xrightarrow{\delta_n} P_{n-1} \to \cdots \to P_1 \xrightarrow{\delta_1} G \to 0$$

with F_i projective for any $1 \le i \le n$, such that $\bigoplus_{i=2}^{n+1} Im \, \delta_i$ is Gorenstein projective.

Proof (1) \Rightarrow (2). Let *G* be an *SG*-projective complex. Then there exists an exact sequence of complexes

$$0 \to G \stackrel{\delta_{n+1}}{\to} P_n \stackrel{\delta_n}{\to} P_{n-1} \to \cdots \to P_1 \stackrel{\delta_1}{\to} G \to 0$$

with P_i projective for any $1 \le i \le n$, such that Hom(-, Q) leaves the sequence exact whenever Q is a projective complex. Now for each i with $2 \le i \le n + 1$, we have an exact sequence of complexes

$$0 \to \operatorname{Im} \delta_i \xrightarrow{\alpha_i} P_{i-1} \xrightarrow{\delta_{i-1}} \cdots \to P_1 \xrightarrow{\delta_{n+1}\delta_1} P_n \xrightarrow{\delta_n} \cdots \to P_i \xrightarrow{\delta_i} \operatorname{Im} \delta_i \to 0.$$

By adding these exact sequences, we obtain the following exact sequence

$$0 \to \bigoplus_{i=2}^{n+1} \operatorname{Im} \delta_i \xrightarrow{\alpha} \bigoplus_{i=1}^n P_i \xrightarrow{\delta} \cdots \to P_n \oplus P_0 \oplus \cdots \oplus P_{n-1} \to \cdots$$

where $\alpha = \text{diag}\{\alpha_1, \alpha_2, ..., \alpha_n\}$ and $\delta = \text{diag}\{\delta_{n+1}\delta_1, \delta_2, ..., \delta_n\}$. Hence it is clear that Im $\delta \cong \bigoplus_{i=2}^{n+1} \delta_i$ and $Ext_1(\bigoplus_{\substack{i=2\\n+1}}^{n+1} \text{Im } \delta_i, Q) \cong \prod_{i=2}^{n+1} Ext_1(\text{Im } \delta_i, Q) = 0$ for any projective

complex *Q*. Therefore $\bigoplus_{i=2}^{n+1}$ Im δ_i is *SG*-flat. (2) \Rightarrow (3) It follows from the Proposition 3.3.

 $(3) \Rightarrow (1)$ It is obvious.

Similarly, we can characterize the *n*-SG-injective complexes.

In [9, Theorem 3.1], the relationship between Gorenstein flat and Gorenstein injective complexes is given. In connection to [9, Theorems 3.1 and 3.3] and Proposition 2.4, we have the following.

Theorem 3.7 Let *R* be a left artinian ring and let the injective envelope of every simple left *R*-module be finitely generated. Then the following hold:

- (1) If a complex G of left R-modules is n-SG-injective, then G^+ is an n-SG-flat complex of right R-modules.
- (2) If a complex G of right R-modules is n-SG-flat, then G⁺ is an n-SG-injective complex of left R-modules.

Proof (1) Let G be an *n*-SG-injective complex. Then using the characterization of n-SG-injective complexes similar to Proposition 3.6, we get an exact sequence of complexes

$$\mathbf{I}: \mathbf{0} \to G \stackrel{\delta_{n+1}}{\to} I_n \stackrel{\delta_n}{\to} I_{n-1} \to \cdots \to I_1 \stackrel{\delta_1}{\to} G \to \mathbf{0}$$

where I_j is an injective complex for $1 \le j \le n$ and $\bigoplus_{j=2}^{n+1} \text{Im } \delta_j$ is Gorenstein injective. Thus we have the following exact sequence of right *R*-modules

$$\mathbf{I}^+: \mathbf{0} \to G^+ \xrightarrow{\delta_1^+} I_1^+ \xrightarrow{\delta_2^+} I_2^+ \to \dots \to I_n^+ \xrightarrow{\delta_{n+1}^+} G^+ \to \mathbf{0}$$

where I_j^+ is a flat complex for $1 \le j \le n$. Since G is Gorenstein injective by Proposition 3.3, we have that Im $\delta_1^+ \cong G^+$ is Gorenstein flat by [9, Theorem 3.5]. Since \bigoplus^{n+1} Im δ_i is Gorenstein injective, we get that Im δ_i is Gorenstein injective for $2 \le j \le n+1$ by [9, Theorem 2.10]. Thus for every j with $1 \le j \le n$, Im δ_i^+ is Gorenstein flat by [9, Theorem 3.5]. Hence $\bigoplus_{j=1}^{n} \text{Im } \delta_{j}^{+}$ is Gorenstein flat since Gorenstein flat complexes are closed under direct sums. Therefore G^+ is *n*-SG-flat by Proposition 2.4.

(2) Let G be an n-SG-flat complex. Then by Proposition 2.4, we get an exact sequence of complexes of right *R*-modules

$$\mathbf{F}: \mathbf{0} \to G \stackrel{\delta_{n+1}}{\to} F_n \stackrel{\delta_n}{\to} F_{n-1} \to \cdots \to F_1 \stackrel{\delta_1}{\to} G \to \mathbf{0}$$

where F_j is a flat complex for $1 \le j \le n$ and $\bigoplus_{i=1}^{n+1} \text{Im } \delta_j$ is Gorenstein flat. Thus we have the following exact sequence of complexes of R-modules

$$\mathbf{F}^+: \mathbf{0} \to G^+ \xrightarrow{\delta_1^+} F_1^+ \xrightarrow{\delta_2^+} F_2^+ \to \cdots \to F_n^+ \xrightarrow{\delta_{n+1}^+} G^+ \to \mathbf{0}$$

where F_j^+ is an injective complex for $1 \le j \le n$. Since *G* is Gorenstein flat by [7, Proposition 4.2], we have that Im $\delta_1^+ \cong G^+$ is Gorenstein injective by [9, Theorem 3.1]. Since $\bigoplus_{j=1}^{n+1}$ Im δ_j is Gorenstein flat, we get that Im δ_j is Gorenstein flat for $2 \le j \le n+1$ by [9, Theorem 3.3]. Thus for every j with $1 \le j \le n$, Im δ_i^+ is Gorenstein injective by [9, Theorem 3.1]. Hence $\bigoplus_{j=1}^{n}$ Im δ_{j}^{+} is Gorenstein injective since Gorenstein injective complexes are closed under finite direct sums. Therefore G^+ is *n*-SG-injective by Proposition 3.3. \square

Corollary 3.8 Let R be a left artinian ring and let the injective envelope of every simple left *R*-module be finitely generated. Then the following hold:

- (1) If a complex G of R-modules is n-SG-injective, then G^{++} is an n-SG-injective complex.
- (2) If a complex G of right R-modules is n-SG-flat, then G^{++} is an n-SG-flat complex.

Proof The proof follows from Theorem 3.7.

The following result shows the relationship between n-SG-projective complexes and n-SG-projective modules.

Proposition 3.9 Let G be a complex. If G is n-SG-projective, then G^i is an n-SG-projective R-module for all $i \in \mathbb{Z}$.

Proof Suppose G is an n-SG-projective complex. By Proposition 3.6, there exists an exact sequence of complexes

$$0 \to G \xrightarrow{\delta_{n+1}} P_n \xrightarrow{\delta_n} P_{n-1} \to \cdots \to P_1 \xrightarrow{\delta_1} G \to 0$$

where P_j is a projective complex for $1 \le j \le n$ and $\bigoplus_{j=2}^{n+1} \text{Im } \delta_j$ is Gorenstein projective. Then for each $i \in \mathbb{Z}$, we get an exact sequence of modules

$$0 \to G^i \xrightarrow{\delta^i_{n+1}} P^i_n \xrightarrow{\delta^i_n} P^i_{n-1} \to \dots \to P^i_1 \xrightarrow{\delta^i_1} G^i \to 0$$

such that P_j^i is a projective *R*-module for $1 \le j \le n$. Since $\bigoplus_{j=2}^{n+1} \operatorname{Im} \delta_j$ is a Gorenstein projective complex if and only if $\operatorname{Im} \delta_j$ is a Gorenstein projective complex for $2 \le j \le n+1$ by [9, Theorem 2.3]. Then by [9, Theorem 2.2], we have $\operatorname{Im} \delta_j$ is a Gorenstein projective complex if and only if $\operatorname{Im} \delta_j^i$ is a Gorenstein projective *R*-module for every $\sum_{n+1}^{n+1} \sum_{j=1}^{n+1} \sum_{j$

 $i \in \mathbb{Z}$ and $2 \le j \le n + 1$. Thus we get that $\bigoplus_{j=2}^{i+1} \text{Im } \delta_j^i$ is a Gorenstein projective *R*-module since the class of all Gorenstein projective modules is closed under direct sums. Therefore the result follows from [11, Theorem 3.9].

Corollary 3.10 Let M be an R-module. Then M is n-SG-projective if and only if the complex \overline{M} is n-SG-projective.

Proof Suppose M is an n-SG-projective module. Then there exists an exact sequence of R-modules

$$X: 0 \to M \to P_n \to P_{n-1} \to \cdots \to P_1 \to M \to 0,$$

where P_i is a projective *R*-module for $1 \le i \le n$, such that $\operatorname{Hom}_R(-, Q)$ leaves the sequence exact for any projective module Q. Thus, we get an exact sequence of complexes

 \square

n-Strongly Gorenstein Projective and Injective Complexes

$$\overline{X}: 0 \to \overline{M} \to \overline{P}_n \to \overline{P}_{n-1} \to \dots \to \overline{P}_1 \to \overline{M} \to 0$$

with \overline{P}_i a projective complex for $1 \le i \le n$. Now let Q' be any projective complex. Then it is a direct product of complexes of the form $\overline{P}[n]$ for some projective module P and $n \in \mathbb{Z}$. Then

$$Hom(\overline{X}, Q') \cong Hom(\overline{X}, \prod_{n \in \mathbb{Z}} \overline{P}[n])$$
$$\cong \prod_{n \in \mathbb{Z}} Hom(\overline{X}, \overline{P}[n])$$

is exact for all $n \in \mathbb{Z}$ and hence \overline{M} is *n*-SG-projective. The converse follows from Proposition 3.9.

The following example describes that there are 2-SG-projective complexes which are not necessarily 1-SG-projective.

Example 3.11

- Let R be a local ring and consider the ring S = R[X, Y]/(XY). Let [X] and [Y] be the residue classes in S of X and Y respectively. Then by [3, Example 2.6], we observe that the R-modules [X] and [Y] are 2-SG-projective but are not 1-SG-projective. Then by Corollary 3.10, the complexes [X] and [Y] are 2-SG-projective but are not SG-projective.
- (2) In general, *n*-SG-projective complexes need not be *m*-SG-projective whenever n ∤ m. Based on the assumptions in [11, Example 3.2], we observe that the modules S_i (1 ≤ i ≤ n) are *n*-strongly Gorenstein projective but are not *m*-strongly Gorenstein projective. Then by the Corollary 3.10, we see that the complexes S_i are *n*-SG-projective but are not *m*-SG-projective whenever n ∤ m.

4 *n-SG*-Projective and *m-SG*-Projective Complexes

In this section, we study the relationships between n-SG-projective (resp., injective) and m-SG-projective (resp., injective) complexes for any two positive integers n and m.

Lemma 4.1 Let m, n and r be any positive integers such that m = rn. Then the class of all m-SG-projective (resp., injective) complexes contains the class of all n-SG-projective (resp., injective) complexes.

Proof Let G be an n SG-projective complex. Then there exists an exact sequence of complexes

$$\mathbf{X}: 0 \to G \xrightarrow{\alpha_{n+1}} I_n \xrightarrow{\alpha_n} I_{n-1} \to \cdots \to I_1 \xrightarrow{\alpha_1} G \to 0$$

with I_j injective for any $1 \le j \le n$, such that $\bigoplus_{j=2}^{n+1} \text{Im } \alpha_j$ is a Gorenstein projective complex. So Im δ_j is Gorenstein projective for every $1 \le j \le n$ by [9, Theorem 2.3]. Using the exact sequence **X** for *r* times, we have the following exact sequence

$$\mathbf{Y}: \mathbf{0} \to G \stackrel{\alpha_{n+1}}{\to} I_n \stackrel{\alpha_n}{\to} I_{n-1} \to \cdots \to I_1 \stackrel{\delta}{\to} I_n \to \cdots I_1 \stackrel{\alpha_1}{\to} G \to \mathbf{0}$$

with I_j injective for any $1 \le j \le n$ and $\delta = \alpha_{n+1}\alpha_1$. Then $\bigoplus_{j=2}^{n+1} \text{Im } \alpha_j$ is Gorenstein projective since Im α_j and *G* are Gorenstein projective.

For any positive integer *n*, we use n-SG-Proj(\mathscr{C}) (resp., n-SG-Inj(\mathscr{C})) to denote the subcategory of $_R\mathscr{C}$ consisting of n-SG-projective (resp., injective) complexes of left *R*-modules. The following results extend [11, Proposition 3.4 (2) and Theorem 3.5] to that of complexes.

Proposition 4.2 Let n and m be positive integers. Then the following hold:

- (1) If $n \mid m$, then n-SG-Proj(\mathscr{C}) $\cap m$ -SG-Proj(\mathscr{C}) = n-SG-Proj(\mathscr{C}).
- (2) If $n \nmid m$ and m = kn + j, where k is a positive integer and 0 < j < n, then n-SG-Proj(\mathscr{C}) $\cap m$ -SG-Proj(\mathscr{C}) $\subseteq j$ -SG-Proj(\mathscr{C}).

Proof (1) It follows from Lemma 4.1.

(2) By Lemma 4.1, we have that m-SG-Proj(\mathscr{C}) $\cap n$ -SG-Proj(\mathscr{C}) $\subseteq m$ -SG-Proj(\mathscr{C}) $\cap kn$ -SG-Proj(\mathscr{C}). Suppose that a complex G is in m-SG-Proj(\mathscr{C}) $\cap kn$ -SG-Proj(\mathscr{C}). Then there exists an exact sequence of complexes

$$\mathbb{P}: 0 \to G \to P_m \to \cdots \to P_2 \to P_1 \to 0$$

with P_i projective for any $1 \le i \le m$. Put $L_i = \text{Ker}(P_i \to P_{i-1})$ for any $2 \le i \le m$. Since G is kn-SG-projective, we see that G and L_{kn} are projectively equivalent, i.e., there exist projective complexes P and Q in \mathscr{C} such that $G \oplus P \cong Q \oplus L_{kn}$.

Now consider the following pullback diagram:

Then X is a projective complex. Next, consider the following pullback diagram

Hence *Y* is also projective. Combining the exact sequence \mathbb{P} and the first row in the above diagram, we get the following exact sequence of complexes

$$0 \to G \to P_m \to \cdots \to P_{kn+1} \to Y \to G \to 0$$

such that Hom(-, Q') leaves the sequence exact for any projective complex Q'. Thus G is *j*-SG-projective and hence n-SG-Proj(\mathscr{C}) $\bigcap m$ -SG-Proj(\mathscr{C}) $\subseteq j$ -SG-Proj(\mathscr{C}). \Box

Dually, we have the following result for n-SG-injective complexes.

Proposition 4.3 Let n and m be positive integers. Then the following hold:

- (1) If $n \mid m$, then n-SG-Inj(\mathscr{C}) $\cap m$ -SG-Inj(\mathscr{C}) = n-SG-Inj(\mathscr{C}).
- (2) If $n \nmid m$ and m = kn + j, where k is a positive integer and 0 < j < n, then n-SG-Inj(\mathscr{C}) $\bigcap m$ -SG-Inj(\mathscr{C}) $\subseteq j$ -SG-Inj(\mathscr{C}).

For any two positive integers m and n, we use (m, n) (resp., [m, n]) to denote the greatest common divisor (resp., least common multiple) of m and n.

Proposition 4.4 For any two positive integers *m* and *n*, we have the following:

(1) m-SG-Proj(\mathscr{C}) $\bigcap n$ -SG-Proj(\mathscr{C}) = (m, n)-SG-Proj(\mathscr{C}). (2) m-SG-Proj(\mathscr{C}) $\bigcap (m+1)$ -SG-Proj(\mathscr{C}) = 1-SG-Proj(\mathscr{C}).

Proof (1) If *n*|*m*, then the result follows from Proposition 4.3 (1). Now suppose $n \nmid m$ and $m = k_0n + j_0$, where k_0 is a positive integer and $0 < j_0 < n$. By Proposition 4.3 (2), we have that m-SG-Proj(\mathscr{C}) $\bigcap n$ -SG-Proj(\mathscr{C}) $\subseteq j_0$ -SG-Proj(\mathscr{C}). If $j_0 \nmid n$ and $n = k_1 j_0 + j_1$, with $0 < j_1 < j_0$, then by Proposition 4.3 (2) again, we have that m-SG-Proj(\mathscr{C}) $\bigcap n$ -SG-Proj(\mathscr{C}) $\bigcap j_0$ -SG-Proj(\mathscr{C}) $\bigcap j_0$ -SG-Proj(\mathscr{C}) $\subseteq j_1$ -SG-Proj(\mathscr{C}). Continuing the process, after finite steps, there exists a positive integer *t* such that $j_t = k_{t+2} j_{t+1}$ and $j_{t+1} = (m, n)$. Thus *m*-SG-Proj(\mathscr{C}) \bigcap

n-SG-Proj(\mathscr{C}) $\subseteq j_t$ -SG-Proj(\mathscr{C}) $\bigcap j_{t+1}$ -SG-Proj(\mathscr{C}) = j_{t+1} -SG-Proj(\mathscr{C})=(m, n)-SG-Proj(\mathscr{C}). Then the result follows from the fact that (m, n)-SG-Proj(\mathscr{C}) $\subseteq m$ -SG-Proj(\mathscr{C}) $\bigcap n$ -SG-Proj(\mathscr{C}).

(2) It follows from (1).

Corollary 4.5 For any two positive integers m and n, we have the following: m-SG-Proj(\mathscr{C}) $\bigcup n$ -SG-Proj(\mathscr{C}) $\subseteq [m, n]$ -SG-Proj(\mathscr{C}).

Proof It is clear from the fact that every *n*-SG-projective complex is *m*-SG-projective whenever n|m.

For the case of *n*-SG-injective complexes, we have the following.

Proposition 4.6 For any two positive integers m and n, we have the following:

(1) m-SG-Inj(\mathscr{C}) $\bigcap n$ -SG-Inj(\mathscr{C}) = (m, n)-SG-Inj(\mathscr{C}). (2) m-SG-Inj(\mathscr{C}) $\bigcap (m + 1)$ -SG-Inj(\mathscr{C}) = 1-SG-Inj(\mathscr{C}).

Proof The proof is similar to Proposition 4.4.

Corollary 4.7 For any two positive integers m and n, we have the following: m-SG-Inj(\mathscr{C}) $\bigcup n$ -SG-Inj(\mathscr{C}) $\subseteq [m, n]$ -SG-Inj(\mathscr{C}).

Proof It is clear from the fact that every *n*-*SG*-injective complex is *m*-*SG*-injective whenever n|m.

References

- 1. Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Graduate Texts in Mathematics, vol. 13, 2nd edn. Springer, New York (1992)
- Bennis, D., Mahdou, N.: Strongly Gorenstein projective, injective and flat modules. J. Pure Appl. Algebra 210, 437–445 (2007)
- 3. Bennis, D., Mahdou, N.: A generalization of strongly Gorenstein projective modules. J. Algebra Appl. 8, 219–227 (2009)
- Enochs, E., García Rozas, J.R.: Tensor products of complexes. Math. J. Okayama Univ. 39, 17–39 (1997)
- 5. Enochs, E., Jenda, O.M.G.: Relative Homological Algebra. de Gruyter Expositions in Mathematics, vol. 30. Walter de Gruyter, Berlin (2000)
- García Rozas, J.R.: Covers and Envelopes in the Category of Complexes of Modules. CRC Press, Boca Raton (1999)
- 7. Selvaraj, C., Saravanan, R.: SG-flat complexes and their generalizations, communicated to Vietnam J. Math
- Yang, X., Liu, Z.: Strongly Gorenstein projective, injective and flat modules. J. Algebra 320, 2659–2674 (2008)
- Yang, X., Liu, Z.: Gorenstein projective, injective and flat complexes. J. Commut. Algebra 39, 1705–1721 (2011)
- Zhang, D., Ouyang, B.: Strongly Gorenstein projective and injective complexes. J. Nat. Sci. Hunan Norm. Univ. 35, 1–5 (2012)
- Zhao, G., Huang, Z.: n-strongly Gorenstein projective, injective and flat modules. Commun. Algebra 39, 3044–3062 (2011)

 \square