Products of Generalized Semiderivations
of Prime Near Rings

Asma Ali and Farhat Ali

Abstract Let N be a near ring. An additive mapping F : N —> N is said to be
a generalized semiderivation on N if there exists a semiderivation d : N — N
associated with a function g : N —> N such that F(xy) = F(x)y 4+ g(x)d(y) =
d(x)g(y) + xF(y) and F(g(x)) = g(F(x)) for all x, y € N. The purpose of the
present paper is to prove some theorems in the setting of semigroup ideal of a
3-prime near ring admitting a pair of suitably-constrained generalized semideriva-
tions, thereby extending some known results on derivations and generalized deriva-
tions. We show that if N is 2-torsion free and F; and F, are generalized semideriva-
tions such that F| F, = 0, then F; = 0 or F, = 0; we prove other theorems asserting
triviality of F or F;; and we also prove some commutativity theorems.
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1 Introduction

Throughout the paper, N denotes a zero-symmetric left near ring with multiplicative
centre Z; and for any pair of elements x, y € N, [x, y] denotes the commutator
xy — yx. A near ring N is called zero-symmetric if Ox = 0, for all x € N (recall
that left distributivity yields that x0 = 0). The near ring N is said to be 3-prime
if xNy = {0} for x, y € N implies that x =0 or y = 0. A near ring N is called
2-torsion free if (N, +) has no element of order 2. A nonempty subset U of N is
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called a semigroup right (resp. semigroup left) ideal if UN € U (resp. NU C U);
and if U is both a semigroup right ideal and a semigroup left ideal, it is called
a semigroup ideal. An additive mapping f : N —> N is said to be a right (resp.
left) generalized derivation with associated derivation D if f(xy) = f(x)y + xD(y)
(resp. f(xy) = D(x)y +xf(y)), forall x, y € N, and f is said to be a generalized
derivation with associated derivation D on N if itis both aright generalized derivation
and a left generalized derivation on N with associated derivation D. Motivated by a
definition given by Bergen [5] for rings, we define an additive mappingd : N — N
is said to be a semiderivation on a near ring N if there exists a functiong : N — N
such that (i) d(xy) = d(x)g(y) + xd(y) = d(x)y + g(x)d(y) and (ii) d(g(x)) =
g(d(x)), for all x, y € N. In case g is the identity map on N, d is of course just
a derivation on N, so the notion of semiderivation generalizes that of derivation.
But the generalization is not trivial for example take N = N; @ N,, where N is a
zero symmetric near ring and N, is a ring. Then the map d : N — N defined by
d((x,y)) = (0, y) is a semiderivation associated with function g : N —> N such
that g(x, y) = (x, 0). However d is not a derivation on N. An additive mapping F :
N — N issaidtobe a generalized semiderivation of N if there exists a semiderivation
d : N — N associated with amap g : N —> N such that (i) F(xy) = F(x)y +
gx)d(y) =d(x)g(y) + xF(y) and (ii) F(g(x)) = g(F(x)) for all x,y € N. All
semiderivations are generalized semiderivations. If g is the identity map on N, then
all generalized semiderivations are merely generalized derivations, again the notion
of generalized semiderivation generalizes that of generalized derivation. Moreover,
the generalization is not trivial as the following example shows:

Example 1.1 Let S be a 2-torsion free left near ring and let
Oxy
N = 000 ) |x,y,z€e S
00z

Define maps F,d,g: N - N by

Oxy 0xyO0 Oxy 00y
F{000O]=(1000}; d{000})=]1000
00z 000 00z 00z
and
Oxy 0x0
gl000|=(000
00z 000

It can be verified that N is a left near ring and F is a generalized semiderivation
with associated semiderivation d and a map g associated with d. However F is not
a generalized derivation on N.
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2 Preliminary Results

We begin with several lemmas, most of which have been proved elsewhere.

Lemma 2.1 ([2, Lemmas 1.2 and 1.3]) Let N be a 3-prime near ring.

(i) If z € Z\{0}, then z is not a zero divisor.
(ii) If Z\{0} and x is an element of N for which xz € Z, then x € Z.
(iii) If x is an element of N which centralizes some nonzero semigroup right ideal,
then x € Z.
(iv) If Z\{0} contains an element z for which z + z € Z, then (N, +) is abelian.

Lemma 2.2 ([2, Lemmas 1.3 and 1.4]) Let N be a 3-prime near ring and U be a
nonzero semigroup ideal of N.

(i) If x € N and xU = {0}, or Ux = {0}, then x = 0.
(ii) Ifx,y € Nand xUy = {0}, thenx =0ory =0.

Lemma 2.3 ([2, Lemma 1.5]) If N is a 3-prime near ring and Z contains a nonzero
semigroup left ideal or a nonzero semigroup right ideal, then N is a commutative
ring.

Lemma 2.4 ([4, Lemma 2.4]) Let N be an arbitrary near ring. Let S and T be non
empty subsets of N such that st = —ts foralls € Sandt € T. Ifa,b € S and c is
an element of T for which —c € T, then (ab)c = c(ab).

Lemma 2.5 Let N be a 3-prime near ring and U be a nonzero semigroup ideal of
N. If N admits a nonzero semiderivation d of N associated with a map g, thend # 0
onU.

Proof Let d(u) =0, for all u € U. Replacing u by xu, we get d(xu) =0, for
all x e Nand u € U. Thus d(x)g(u) + xd(u) =0, forallx € N and u € U, i.e.,
d(x)g(u) = 0. The result follows by Lemma 2.2(i).

Lemma 2.6 Let N be a 3-prime near ring admitting a nonzero semiderivation d
with a map g such that g(xy) = g(x)g(y) for all x,y € N. Then N satisfies the
following partial distributive law:

(d@x)y + g(x)d(y)z =d(x)yz + g(x)d(y)z forallx, y,z € N.
Proof Letx,y, z € N, by defining d we have

d(xyz) = d(xy)z + g(xy)d(z)
= dXx)y +g(x)d(y)z + g(x)g(y)d(z). (2.1
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On the other hand,

d(xyz) =d(x)yz + gx)d(yz)
=d@)yz+gx)d(y)z + g(y)d(2))
=dx)yz+gx)d(y)z + g(x)g(y)d(2). (2.2)

Combining (2.1) and (2.2), we obtain

dx)y +g(x)d(y))z + g(x)g(y)d(z)
=dx)yz + gx)d(y)z + gx)g(y)d(z) forall x,y,z € N.

dx)y +9(x)d(y))z =dx)yz + gx)d(y)z forall x,y,ze N.

Lemma 2.7 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N. If d is a nonzero semiderivation of N associated with a
map g such that guv) = g(u)g(v), for all u,v € U. If a € N and ad(U) = {0}
(or d(U)a = {0}), then a = 0.

Proof Letad(u) = 0, for all u € U. Replacing u by uv, a(d(u)g(v) + udv)) =0,
forallu, v € U. Thus ad(u)g(v) 4+ aud(v) = 0, forallu, v € U or aud(v) = 0, for

all u, v € U. Choosing v such that d(v) # 0 and applying Lemma 2.2(ii), we get
a=0.

Lemma 2.8 Let N be a 2-torsion free 3-prime near ring and U be a nonzero semi-
group ideal of N. Suppose that d is a semiderivation on N associated with a map g

such that g(U) = U. Ifdz(U) = {0}, then d = 0.

Proof Supposed?(U) = {0}. Thenforu, v € U exploit the definition of  in different
ways to obtain

0 = d*(uv) = d(duv)) = d(du)v + g(u)d(v)) forallu, v € U,
= d*(w)v + g(d()d(v) + d(gw)d (v) + g(u)d*(v),
= d(g))d(v) + d(g(w)d (v).
Note that g(d (1)) = d(g(u)) and g(U) = U, we get
2d(u)d(v) = 0forallu,v € U.
Since N is a 2-torsion free, we get

d(u)d(w) =0forallu,v € U.



Products of Generalized Semiderivations of Prime Near Rings 279
Replacing v by wv in the above relation, we get
d(u)d(wv) =0forall u, v, w € U.
du)(dw)v + g(w)d(w)) =0forall u, v, w € U.
dw)d(w)v + d(u)g(w)d(v) =0 forall u,v,w e U.

This implies that
du)g(w)d(w) =0forallu, v, w € U.

du)wd(w) =0forall u,v,w € U.
dU)Ud(U) = {0}.

Thus we obtain that d = 0 on U by Lemma 2.2(ii).

Lemma 2.9 Let N be a 3-prime near ring and U be a nonzero semigroup ideal of
N. Suppose d is a nonzero semiderivation of N associated with a map g such that
gwv) = gu)g), forallu,v € U. Ifd(U) C Z, then N is a commutative ring.

Proof We begin by showing that (N, 4) is abelian, which by Lemma 2.1(iv) is
accomplished by producing z € Z\{0} such that z + z € Z. Let a be an element of
U such that d(a) # 0. Then for all x € N,ax e U andax +ax =a(x +x) € U,
so that d(ax) € Z and d(ax) + d(ax) € Z; hence we need only show that there
exists x € N such that d(ax) # 0. Suppose this is not the case, so that d((ax)a) =
0 =d(ax)g(a) + axd(a) = axd(a) for all x € N. Since d(a) is not zero divisor by
Lemma 2.1(i), we get aN = {0}, so that a = 0—a contradiction. Therefore (N, +)
is abelian as required.

We are given that [d(u), x] =0 for all u € U and x € N. Replacing u by uv,
we get [d(uv), x] = 0, which yields [d(u)v + g(u)d(v), x] = Oforallu, v € U and
x € N. Since (N, +) is abelian and d(U) C Z, we have

dw)[v,x]+d)[x,gm)] =0 forall u,v e U and x € N. (2.3)

Replacing x by g(u), we obtain d(u)[v, g(u)] = 0 for all u, v € U; and choosing
u € U such that d(u) # 0 and applying Lemma 2.1(iii), we get g(u) € Z. It then
follows from (2.3) that d(u)[v, x] = 0 for all v € U and x € N; therefore U C Z
and Lemma 2.3 completes the proof.

Lemma 2.10 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N. Suppose that d is a nonzero semiderivation of N associ-
ated with a map g such that g(U) = U and g(uv) = g(u)g(v) for all u,v € U. If
[d(U),d(U)] = {0}, then N is a commutative ring.



280 A. Aliand F. Ali

Proof By hypothesis [d(U), d(U)] = {0}. Thus d(u)d(vd(w)) = d(vd(w))d(u),
forallu, v, w € U, ie., du)(d)g(d(w)) + vd*(w)) = (d(v)g(d(w)) + vd*(w))
d(u), for all u, v, w € U. Then by Lemma 2.6, we get d(u)d(v)g(d(w)) + d(u)
vd*(w) = d(v)g(d(w))d(u) + vd?(w)d(u). This implies that d (u)d (v)d(g(w)) +
dw)vd*(w) = d)d(g(w))d ) + vd*>(w)d () ie., du)d)dw)+dw)vd?
(w) = d()d(w)d ) + vd*(w)d ) for all u, v, w € U and since [d(U), d(U)] =
{0}, we obtain

du)vd*(w) = vd*(w)d(u) for all u, v, w € U. 2.4)
Replace v by xv, to get
d(u)xvd®*(w) = xvd*(w)d(u) forall u,v,w € U and x € N.

Using (2.4), the above relation yields that d(u)xvd?*(w) = xd(u)vd*(w), for all
u,v,we Uandx € N,ie.,[du), xJvd*(w) = 0,forallu, v, w € U andx € N by
Lemma2.6. Thus [d(u), x]Ud?*(w) = 0,forallu, w € U andx € N.Sinced*(U) #
0 by Lemma 2.8, Lemma 2.2(ii) gives d(U) € Z, and the result follows by Lemma
2.9.

Lemma 2.11 Let N be a 3-prime near ring and U be a nonzero semigroup ideal of
N. If F is a nonzero generalized semiderivation of N with associated semiderivation
d and a map g associated with d such that g(U) = U, then F % 0on U.

Proof Let F(u) =0 for all u € U. Replacing u by ux, we get F(ux) = 0 for all
u € Uandx € N. Thus

Fux +guw)d(x) =0=Ud(x) forallx € N
and it follows by Lemma 2.2(i) that d = 0. Therefore, we have

F(xu)=Fx)u=0forallu € U forallx ¢ N

and another appeal to Lemma 2.2(i) gives F = 0, which is a contradiction.

Lemma 2.12 Let N be a 3-prime near ring admitting a generalized semiderivation
F associated with a semiderivation d. If g is an onto map associated with d such that
g(xy) = g(x)g(y) forallx,y € N, then N satisfies the following partial distributive
laws:

(i) (F(x)y+g(x)d(y)z= F(x)yz+gx)d(y)z forall x,y,z € N.
(ii) (d(x)g(y) +xF(y)z=dx)g(y)z +xF(y)z forall x,y,z € N.

Proof (i) Letx,y,z€ N,

F(xyz) = F(xy)z + g(xy)d(z)
= (F(x)y +g(x)d(y)z + g(x)g(y)d(z).
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On the other hand,

F(xyz) = F(x)yz + g(x)d(yz)
= Fx)yz+gx)d(y)z + g(y)d(z))
= Fx)yz+g9x)d(y)z + gx)g(y)d(2).

Combining both expressions of F(xyz), we obtain
(F(x)y 4+ gx)d(y)z = F(x)yz + g(x)d(y)z forall x,y, zeN.

(ii) For all x, y,z € N we have F((xy)z) = F(xy)z + g(xy)d(z) = (d(x)g(y) +
xF(y))z+g(x)g(y)d(z) and  F(x(yz2)) =dx)g(yz) +xF(yz) = d(x)g(y)
9(2) + x(F(Y)z + g(»)d(z)) = d(x)g(y)z + xF(y)z + g(x)g(y)d(z). Comparing
the two expression, we get the required result.

Lemma 2.13 Let N be a 3-prime near ring and U be a nonzero semigroup ideal
of N. Suppose that F is a nonzero generalized semiderivation of N with associated
semiderivation d and a map g associated with d such that g(U) = U and g(uv) =
gw)g) forallu,v e U.Ifa € NandaF(U) =0 (or F(U)a = 0), thena = 0.

Proof Suppose that a F(U) = {0}. Then for u,v € U
aF(uv) =aF(u)v+ag(u)d(v) =aud(v) =0forallu,v e U anda € N.
So by Lemma 2.2(ii), a = 0 or d(U) = {0}. If d(U) = {0}, then
ad(u)g(v) +auF(v) =0=auF(v) forallu,v € U;

and since F(U) # {0} by Lemma 2.11,a = 0.

Lemma 2.14 Let N be a 3-prime near ring admitting a generalized semiderivation
F associated with a semiderivation d and an additive map g associated with d. Then
N satisfies the following laws:

(i) d(x)y +gx)d(y) = g(x)d(y) +d(x)y forall x,y € N.
(ii) d(x)g(y) +xd(y) = xd(y) +d(x)g(y) forallx,y € N.
(iii) F(x)y 4+ gx)d(y) = gx)d(y) + F(x)y forallx,y € N.
(iv) d(x)g(y) +xF(y) = xF(y) +d(x)g(y) forallx,y € N.

Proof (1) d(x(y+y) =dx)(y+y) +9x)d(y +y) =dx)y+d(x)y +g(x)
d(y) +g(x)d(y), and d(xy +xy) = d(xy) +d(xy) =d(x)y + g(x)d(y) +d(x)
vy + g(x)d(y). Comparing these two equations, we get the desired result.

(i1) Again, calculate d((x + x)y) and d(xy + xy) and compare.
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(i) Fx(y + y) = FO)O + y) + g)d(y+y) = F(x)y + F(x)y + g(x)
d(y)+g(x)d(y), and F(xy+xy)=Fx)y+gkx)d(y)+ Fx)y+gx)d(y).
Comparing these two equations, we get the desired result.

(iv) Again, calculate F((x + x)y) and F(xy + xy) and compare.

Lemma 2.15 Let N be a 3-prime near ring and U be a nonzero semigroup ideal
of N. Suppose that N admits nonzero semiderivations d,, d, associated with a map
g such that g(uv) = g(u)g(v) forallu,v € U. If d1(x)d>(y) + dr(¥)di(x) € Z for
all x,y € U and at least one of d\(U) N Z and dy(U) N Z is nonzero, then N is a
commutative ring.

Proof Assume that d(U) N Z # {0}. Let x € U such that d;(x) € Z\{0}, and

y € U.Thend,(x)dx(y) + d2(y)di(x) = di(x)(2d2(y)) = di(x)(d2(2y)) € Z.There-
fore, d,(2U) C Z. Since 2U is nonzero semigroup left ideal, our conclusion follows
by Lemma 2.9, then N is commutative ring.

Lemma 2.16 Let N be a 2-torsion free 3-prime near ring. If U is a nonzero semi-
group ideal of N, then 2U # {0} and d(2U) # {0} for any nonzero semiderivation
d associated with a map g such that g(U) = U.

Proof Letx € Nwithx 4+ x # 0. Thenforeveryu € U,u(x + x) = ux + ux € 2U;
and by Lemma 2.2(i), we get {0} # U(x + x) € 2U. Since 2U is a semigroup left
ideal, it follows by Lemma 2.5 that d(2U) # {0}.

Lemma 2.17 Let N be a 3-prime near ring. If F is a generalized semiderivation
with associated semiderivation d and a map g associated with d such that g(U) = U,
then F(Z) C Z.

Proof Let z € Z and x € N. Then F(zx) = F(xz); that is F(z)x + g(2)d(x) =
d(x)g(z) + xF(z). Applying Lemma 2. 14(iii), we get g(z)d (x) + F(z)x = d(x)g(z)
+ xF(2); zd(x) + F(2)x =d(x)z + xF(z). It follows that F'(z)x = x F(z) for all
x€N,so F(Z)C Z.

Lemma 2.18 Let N be a 3-prime near ring and U be a nonzero semigroup ideal
of N. Suppose that N admits a semiderivation d associated with a map g such that
g(U) = U and g(uv) = g(u)g(v) forallu,v € U. Ifdz(U) # {0} and a € N such
that [a,d(U)] = {0}, thena € Z.

Proof Let C(a) = {x € N|ax = xa}. Note that d(U) C C(a). Thus, if y € C(a)
and u € U, both d(yu) and d(u) are in C(a); hence (d(y)g(u)+ yd(u))a =
a(d(y)g() + yd(u)) and d(y)g(u)a + yd(w)a = ad(y)g(u) + ayd(u); d(y)ua +
vd(u)a = ad(y)u + ayd(u). Since yd(u) € C(a), we conclude that d(y)ua = ad
(y)u. Thus

d(C(a))U C C(a). (2.5)

Choosing z € U such that d*(z) #0, and let y =d(z). Then y € C(a); and
by (2.5), d(y)u € C(a) and d(y)uv € C(a) for all u,v € U. Thus, 0 = [a, d(y)
uv] = ad(y)uv — d(y)uva = d(y)uav — d(y)uva = d(y)u(av — va). Thus d(y)
U(av—va) =0 for all ve U; and by Lemma 2.2(ii), a centralizes U.
By Lemma 2.1(iii), a € Z.
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Lemma 2.19 Let N be a 3-prime near ring and F be a generalized semiderivation
of N with associated nonzero semiderivation d and a map g associated with d
such that g(U) = U and g(uv) = g(u)g(v) forallu, v € U. Ifd(F(N)) = {0}, then
d*(x)d(y) +d(x)d*(y) =0 forallx,y € N and F(d(N)) = {0}.

Proof Assume that d(F(x)) =0 for all x € N. It follows that d(F(xy)) =
d(F(x)y) +d(g(x)d(y)) =d(F(x)y) +d(xd(y)) =0 forall x,y € N, thatis,

d(F(x))g(y) + F(x)d(y) + d(x)g(d(y)) + xd*(y) = O forall x, y € N.

This implies that
F@x)d(y) +d(x)d(g(y) +xd*(y) = 0.

F(x)d(y)+dx)d(y) + xdz(y) =O0forallx,y e N. (2.6)
Applying d again, we get

F(x)d*(y) + d*(x)d(y) + d(x)d*(y) + d(x)d*(y) + xd*(y) = O forall x,y € N.

(2.7)

Taking d(y) instead of y in (2.6) gives F (x)d*(y) + d(x)d*(y) + xd*(y) = 0, hence
(2.7) yields

d*(x)d(y) + d(x)d*(y) =0 forall x, y € N. (2.8)

Now, substitute d(x) for x in (2.6), to obtain F(d(x))d(y) + d*(x)d(y) + d(x)d?
(y) = 0; and use (2.8) to conclude that F(d(x))d(y) = 0 for all x, y € N. Thus, by
Lemma 2.7, F(d(x)) =0 forall x € N.

Lemma 2.20 Let N be a 2-torsion free 3-prime near ring and F be a nonzero gener-
alized semiderivation of N with associated semiderivation d and a map g associated
with d such that g(U) = U; g(uv) = g(u)g(v) forallu,v € U and F(V) C U for
some nonzero semigroup ideal V contained in U. If a € N and [a, F(U)] = {0},
thena € Z.

Proof If d =0, then for all x e U and y € N, aF(x)y = F(x)ya; hence F(U)
[a, y] = {0} and a € Z by Lemma 2.13. Therefore, we may assume d # 0. Let
C(a) denotes the centralizer of a, and let y € C(a) for all u € U, F(yu) € C(a)
-ie. (dy)gm) + yF(u))a =a(d(y)g(u) + yF(u)) and by Lemma 2.12(ii) d(y)
gw)a + yF(u)a = ad(y)g(u) + ayF(u);d(y)ua + yF(u)a = ad(y)u + ayF (u).
Now yF(u)a = ayF(u), and it follows that d(y)u € C(a); therefore d(C(a))U isa
semigroup right ideal which centralizes a, and if d(C(a))U # {0}. Lemma 2.1(iii)
yields a € Z. Assume now that d(C(a))U = {0}, in which case d(C(a)) = {0} and
hence d(F(U)) = {0}. It follows that for all x € N and v € V, d(F(xF (v))) =
0=d(F(x)F(v) + g(x)d(F(v))) = d(F(x)F(v)) =d(F(x))g(F(v)) + F(x)d
(F(v)) =d(F(x))F(v), so that d(F(N))F(V)={0} and by Lemma 2.13,
d(F(N)) = {0}. By Lemma 2.19
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d*>(x)d(y) + d(x)d*(y) =0 forall x,y € N and F(d(N)) = {0}. (2.9)

As in the proof of Theorem 4.1 of [3], we calculate F'(d(x)d(y)) in two ways, obtain-
ing  F(d(x)d(y)) = F(d(x))d(y) + g(d(x))d*(y) = d(g(x))d*(y) = d(x)d*(y)
and F(d(x)d(y)) = d*(x)g(d(y)) +dx)F(d(y)) = d*(x)d(g(y)) = d*(x)d(y).
Comparing the two results, we get d(x)d?(y) = d*>(x)d(y) for all x, y € N, which
together with (2.9) gives d?>(x)d(y) = 0 for all x, y € N and hence d*> = 0. But by
Lemma 2.8, this contradicts our assumption that d # 0; thus d(C(a))U # {0} and
our proof is complete.

3 Some Results Involving Two Generalized Semiderivations

The theorems that we prove in this section extend the results proved in [4].

Theorem 3.1 Let N be a 3-prime near ring and U be a nonzero semigroup ideal of
N. Suppose that N admits a nonzero generalized semiderivation F with associated
semiderivation d and a map g associated with d such that g(U) = U and g(uv) =
gw)g) forallu,v e U. If F(U) C Z, then (N, +) is abelian. Moreover, if N is
2-torsion free, then N is a commutative ring.

Proof We begin by showing that (N, 4) is abelian, which by Lemma 2.1(iv) is
accomplished by producing z € Z\{0} such that z + z € Z. Let a be an element of
U such that F'(a) # 0. Then forallx € N,ax € U andax +ax = a(x +x) € U,
so that F(ax) € Z and F(ax) + F(ax) € Z; hence we need only to show that
there exists x € N such that F(ax) # 0. Suppose that this is not the case, so that
F((ax)a) =0 = F(ax)a + g(ax)d(a) = g(a)g(x)d(a) = axd(a) for all x € N.
By Lemma 2.2(ii) either a = 0 or d(a) = 0.

If d(a) =0, then F(xa) = F(x)a + g(x)d(a); that is, F(xa) = F(x)a € Z,
for all x € N. Thus, [F(u)a,y] =0 for all y € N and u € U. This implies that
F(u)la,y] =0 for all u € U and y € N and Lemma 2.1(i) gives a € Z. Thus,
0= F(ax) = F(xa) = F(x)a for all x € N. Replacing x by u € U, we have
F(U)a = 0, and by Lemmas 2.1(i) and 2.11, we get a = 0. Thus we have a contra-
diction.

To complete the proof, we show that if NV is 2-torsion free, then N is commutative.

Consider first case d = 0. This implies that F(ux) = F(u)x € Z forallu e U
and x € N. By Lemma 2.11, we have u € U such that F(u) € Z\{0}, so N is com-
mutative by Lemma 2.1(ii).

Now consider the case d # 0. Let ¢ € Z\{0}. This implies that x € U, F(xc) =
F(x)c+ g(x)d(c) = F(x)c +xd(c) € Z. Thus (F(x)c+ xd(c))y = y(F(x)c +
xd(c))forallx, y € Uandc € Z.Therefore,by Lemma?2.12(i), F (x)cy + xd(c)y =
yF(x)c+ yxd(c) forall x,y € U and ¢ € Z. Since d(c) € Z and F(x) € Z, we
obtain d(c)[x, y] =0forallx,y € U and c € Z. Let d(Z) # {0}. Choosing c such
that d(c) # 0 and noting that d(c) is not a zero divisor, we have [x, y] = 0 for all
x,y € U.By Lemma 2.1(iii), U € Z; hence N is commutative by Lemma 2.3.
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The remaining caseisd # 0and d(Z) = {0}. Suppose we can show thatU N Z #
{0}. Taking z € (U N Z2)\{0} and x € N, we have F(xz) = F(x)z € Z; therefore
F(N) € Z by Lemma 2.1(ii). Let F(x) € Z forallx € N.

Since d(Z) = 0, for all x, y € N. We have

0 =d(F(xy)).
0=d(Fx)y+gx)d(y)).
0= F(x)d(y) + g(x)d*(y) + d(g(x))g(d(y)) forall x, y € Z.

Hence F(xd(y)) = —d(g(x))g(d(y)) € Z forall x, y € N. By hypothesis, we have
d(x)d(y) € Z forall x, y € N. This implies that

dx)dx)d(y) —d(y)d(x)) =0forall x,y € N.
Left multiplying by d(y), we arrive at
d(y)d(x)N(d(x)d(y) —d(y)d(x)) = {0} forall x,y € N.
Since N is a 3-prime near ring, we get
[d(x),d(y)]=0forallx,y € N.

Using Lemma 2.10, N is a commutative ring.

Assume that UNZ = {0}. For each u € U, F(u?) = F(wu + g(u)du) =
Fu+udw) =u(Fu)+dw) e UNZ. So Fw? =0, thus for all u e U
andx € N, F(u?x) = F(u®)x + g(uz)d(x) =u?d(x) e UN Z.Sou?d(x) = 0and
Lemma 2.7, u*> = 0. Since F(xu) = F(x)u + gx)d(u) = F(x)u + xd(u) € Z for
all u € U and x € N. We have (F(x)u + xd(u))u = u(F(x)u + xd(u)) and right
multipling by u gives uxd(u)u = 0. Consequently, d(u)uNd(u)u = {0}. So that
dw)u =0 for all u € U,so F(u)u =0 for all u € U. But by Lemma 2.11, there
exist ug € U for which F(ug) # 0; and F(ug) € Z, we get uy = 0, contradiction.
Therefore, U N Z # {0} as required.

Theorem 3.2 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N. Let F| and F, be generalized semiderivations on N with
associated semiderivations d, and d, respectively with at least one of d,, d, not zero
and a map g associated with d| and d, such that g(uv) = g(u)g(v) forallu,v € U
and g(U) = U. If Fi(x)d>(y) + F>(x)d(y) =0 for all x,y € U, then F; =0 or
F,=0.

Proof By hypothesis

Fi(x)dy(y) + F2(x)d;(y) =0 forall x,y € U. 3.1)
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Replacing x by uv in (3.1), we get
(di()g() + uF1()dz(y) + (d2(u)g(v) + uF>(v))di(y) = O forallu, v,y € U.
Using Lemmas 2.12(ii) and 2.14(iv), we conclude that
(di(w)g() + uF(v)dz(y) + (UF>(v) + dy(w) g(v))d (y) = 0.
di(u)g()da(y) + uF 1 (v)da(y) + uF2(v)d (y) + da2 () g(v)d; (y) = 0.
di(w)vdar(y) + u(Fi()dy(y) + F2(v)di(y)) + da(u)vdi (y) = O forallu, v, y € U.
Since middle summand is O by (3.1), we conclude that
di(w)vdy(y) + dr(u)vd,(y) =0 forallu, v,y € U. 3.2)
Substituting yz for y in (3.2), we get
di(w)vdy(yt) + dy(u)vd, (yt) =0 forall u, v, y,t € U.
d ()v(da(y)g(t) + yda (1)) + do () v(dy (¥)g(1) + ydi (1)) = 0.
Using Lemma 2.14(ii), we have
dy (W) v(d2(y)g(1) + yda (1)) + dr ) v (ydi (1) + di(y)g(1)) = 0.
This implies that
di()vdy (V)1 + (dy(u)vyds (1) + do(u)vyd, (1)) + da(u)vd; (y)t = 0.
Again the middle summand is 0, so
di(w)vd(y)t + dr(u)vd, (y)t =0forall u,v,y,t € U. (3.3)
Replacing ¢ by td; (w) in (3.3), where w € U, we have
di(w)v(dy(y)td(w)) + dr(u)(vd, (y)t)dj(w) =0 forall u, v, y,t,w € U.
Using (3.2), we get
dy(w)v(—d\(y)tdr(w)) — dy (w)vd; (y)tdr(w) = 0.
This implies that

2dy (u)vd(¥)tdr(w) =0 forall u, v, y, t,w € U.
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Since N is 2-torsion free, we get

di(w)vd, (y)td,(w) =0 forallu, v, y,t,w € U.
Thusd (U)Ud;(U)Ud,(U) = {0}; and by Lemmas 2.2(ii) and 2.5, one of d; , d, must

be 0. Assuming withoutloss thatd; = 0,in which cased, # 0, we get F1(U)d>(U) =
{0}, so by Lemmas 2.7 and 2.11, we have F; = 0.

Theorem 3.3 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N. Let F| and F, be generalized semiderivations on N with
associated semiderivations dy and d, respectively and a map g associated with d,
and dy such that g(uv) = g(u)g(v) forallu,v € U and g(U) = U. Ifd, and d, are
not both zero and F1 F, acts on U as a generalized semiderivation with associated
semiderivation d\d, and a map g associated with d\d,, then F), = 0 or F, = 0.

Proof By the hypothesis, we have
F1Fy(xy) = FiF>(x)y + g(x)did2(y) forall x, y € U.
Fi Fy(xy) = F1Fa(x)y + xdidy(y) forall x, y € U. (3.4)
We also have
FiF>(xy) = Fi(F(xy)) = Fi(F2(x)y + g(x)d2 ()
= Fi(F2(x)y) + Fi(g(x)dx(y))
= Fi(F2(x)y) + Fi(xda(y)).
ie.
FiF(xy) = FiF>(x)y + g(F2(x)di (y) + Fi(x)d2(y) + g(x)dida(y)
= FiF(x)y + Fa(g(x)di(y) + Fi(x)da(y) + g(x)didx(y)
= FiF(x)y + F(x)di (y) + Fi(x)d2(y) + xd1dy(y) forall x, y € U.  (3.5)
Comparing (3.4) and (3.5), we get
Fy(x)d, (y) + F1(x)dy(y) = Oforall x, y € U.

Hence application of Theorem 3.2 yields that F; =0 or F, = 0.

Theorem 3.4 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N. Let F\ and F, be generalized semiderivations on N with
associated semiderivations d| and d; respectively and a map g associated with d, and
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dy such that g(uv) = g(u)g() for all u,v € U and g(U) = U. If F1F>,(U) = {0},
then Fy =0or F, = 0.

Proof By the hypothesis
FiFU) = {0}

FiF>(xy) = Fi(F2(xy)) =0 = Fi(F2(x)y + g(x)da(y))
= Fi(F(x0)y) + Fi(xdx(y))
= FF(x)y + g(F2(x)di(y) + Fi(x)dx(y) + g(x)dida(y)
= F(9(x)d\(y) + Fi(x)d2(y) + xdidy(y) forall x, y € U.
This implies that
Fy(x)d(y) + xd1da(y) + Fi(x)dy(y) = O forall x,y € U. (3.6)
Replacing x by zx in (3.6), we have
Fy(zx)d(y) + zxdidy () + Fi(zx)da(y) = O forall x, y,z € U.
(d2(2)g(x) + zF2(x)d1(y) + zxdida(y) + (d1(2)g(x) + zF1(x))da(y) = 0.
(d2(2)g(x) + 2F2(x))di () + 2xdi1da (y) + (2F1 (x) + d1(2)g9(x))d2(y) = 0.
dr(2)g(x)d1(y) + zF2(x)d1 () + zxdid2(y) + 2F1(x)d2(y) + di(2)g(x)d2(y) = 0.
dr(2)xdi () + 2(Fa(x)di () + xdida () + F1(x)da(y)) + di(z)xd2(y) = 0.
Since the middle summand is O by (3.6), we have
dr(z)xd, (y) +di(z)xda(y) = O forall x, y,z € U.

But this is just (3.2) of Theorem 3.2, so we argue as in the proof of Theorem 3.2 that
dy = 0 or d, = 0. It now follows from (3.6) that

F,(x)di(y) + Fi(x)d»(y) =0forallx,y € U.

If one of dy, d, is nonzero, then F| or F; is O by Theorem 3.2, so we assume that
dl = d2 = 0. Then F1 Fz(xy) =0= F](Fz(x)y) = F2()C)F1 (y) for allx, y € U, so
that F,(U) F1(U) = {0}. Applying Lemma 2.13, we conclude that F; = Qor F, = 0.

We now consider a somewhat different condition that elements of F;(U) and
F,(U) anti-commute.
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Theorem 3.5 Let N be a 2-torsion free 3-prime near ring with nonzero semigroup
ideal U; and let F\ and F, be generalized semiderivations on N with associated
semiderivations di and d, respectively such that F1(U?) € U and F»(U*) € U and
a map g associated with d| and d, such that g(uv) = g(u)g(v) forallu, v € U and
gU)=U.1f

Fi(x)F>2(y) + F2(y) Fi(x) =0 forallx,y € U, 3.7

then Fi =0or F, =0.

Proof Assume that F; # 0and F, # 0. Note thatif w € F,(U?), —w € F»U); and
apply Lemma 2.4 to get (uv)w = w(uv) for all u, v € F;(U) and w € F,(U?). It
follows by Lemma 2.20 that F;(U) F;(U) C Z, and it is easy to see that

F](x)F](y)(Fl(x)Fl(y) — Fl(y)Fl(x)) = 0 fOf allx, y ceU.
This implies that
Fi)Fi(x)(Fi(x)Fi(y) = Fi(y)Fi1(x)) =0forallx,y € U.

Since F)(x)F;(y) and F;(y) Fi(x) are central, Lemma 2.1(i) shows that either both
are zero or one can be cancelled to yield

Fix)Fi(y) = Fi(y)Fi(x).

Thus [F1(U), F1(U)] = {0} and by Lemma 2.20, F,(U) C Z, hence N is acommu-
tative ring by Theorem 3.1. This fact together with (3.7) gives F;(U) F>(U) = {0}.
Contradicting our assumption that F} % 0 # F,. Therefore F; =0 or F, =0 as
required.

If U is closed under addition, then F(U?) C U for any generalized semiderivation
F; hence we have

Corollary 3.6 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N which is closed under addition. If F| and F, are generalized
semiderivations on N with associated semiderivations d and d, respectively and a
map g associated with d, and d, such that g(uv) = g(u)g(v) for all u,v € U and
gU)=U.1if

FIX)F() + F(y)Fi(x) =0 forall x,y e U,

then Fi =0or F, =0.
We now replace the hypothesis that F1(U) C U and F>(U) C U in Theorem 3.5
by some commutativity hypothesis.

Theorem 3.7 Let N be a 2-torsion free 3-prime near ring with nonzero semigroup
ideal U; and let Fy and F, be generalized semiderivations on N with associated
semiderivations dy and d, respectively and a map g associated with dy and d, such
that g(U) = U and g(uv) = gu)g(v) forallu,v € U. If
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Fix)F>(y) 4+ Fo(y)Fi(x) =0forallx,y € U,

then Fi = 0 or F, = 0 and one of the following is satisfied: (a) d\(Z) # {0} and
d(Z) #{0}; (b)) UNZ #{0}.

Proof (a) Letz; € Z such thatd;(z;) # 0. Then for all x, y € U, we have
Fi(zix)F2(y) + F2(y) Fi(zix) = 0.
(di(z1)g(x) + 21 Fi1(x)) F2(y) + F2(y)(F1(x)z1 + g(x)di(z1)) = 0.
di(21)g(x) Fa(y) + 21 Fi(0) Fa(y) + Fa () Fr()z1 + Fa(y)g(x)di(z1) = 0.
di(z)x Fa(y) + 21 (Fi(x) Fa(y) + F2(0) Fi (%)) + F2(y)xdi (z1) = 0.
It follows that
di(z))xF(y) + F,(y)xdi(z;) =0forallx,y € U.
Choosing z, € Z such that d,(z2) # 0 and using a similar argument, we now get
xy+yx=0forallx,y e U;

and applying Lemma 2.4 with S = U and T = U? shows that U? centralizes U2, so
that U? C Z by Lemma 2.1(iii) and hence N is commutative ring by Lemma 2.3. It
now follows that F'; (x) F>(y) = F»(y) Fi1(x) = —F>(y) Fi(x) forallx, y € U.Hence
Fi(U)F>(U) = {0}. Therefore F; =0 or F, = 0.

(b) We assume that F; # 0 and F, # 0. Let zg € (U N Z2)\{0}. By Lemma 2.17,
F1(z0) € Z; hence if Fy(zo) # 0 the condition

F (Zo)Fz(.X) + FZ(X)F] (Z()) =0forallx e U

gives 2F,(x) =0 = F,(x) for all x € U, so that F; =0 by Lemma 2.11. There-
fore, F(z9) = 0 and similarly F>(z0) = 0.Now z3 € (U N Z)\{0} also, so Fy(z}) =
0 = F»(z3); and since Fi(z3) = Fi(z0)zo + 9(z0)d1(20) = z0d1(z0) and F»(z3) =
F>(z0)z0 + 9(20)d2(z0) = z0d2(20). we have d(z9) = d2(zp) = 0. Observing that
Fi(zox) = Fi(zo)x + g(zo)d1 (x) = Fi(z0)x + zod1(x) and Fi(xzo) = F1(x)z0 +
g(x)di(z9) = Fi1(x)zo + xd;(z0) for all x € N, we see that Fj(x) = d;(x) for all
Xx € N, So that Fj is a semiderivation; and similarly F, is a semiderivation. We can
now derive a contradiction as in the proof of Theorem 3.5, with Lemmas 2.8 and
2.18 used instead of Lemma 2.20.



Products of Generalized Semiderivations of Prime Near Rings 291

4 Some Commutativity Conditions

The skew-commutativity hypothesis of Theorems 3.4 and 3.5 suggests investigating
conditions of the form Fy(x)F>(y) + Fo(y)Fi(x) € ZorxF(y) + F(y)x € Z.

Theorem 4.1 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N which is closed under addition.

(i) Suppose N has nonzero generalized semiderivations Fy, F, with associated semi-
derivations dy and d, respectively and a map g associated with dy and d, such that
g(WU) =U and g(uv) = g(u)g(v) for all u,v € U. If Fi(x) F2(y) + F2(y)Fi(x) €
Z, for all x,y € U and at least one of F1(U) N Z and F>(U) N Z is nonzero, then
N is a commutative ring.

(ii) If N admits a nonzero generalized semiderivation F with associated semideriva-
tion d and a map g associated with d such that g(U) = U and g(uv) = g(u)g(v)
forallu,ve Uand UNZ # {0y and xF(y) + F(y)x € Z, forall x,y € U, then
N is commutative ring.

Proof (i) Assume that Fi(U) N Z # {0}. Let x € U such that Fi(x) € Z\{0}.
Then Fi(x) F2(y) + Fo () Fi(x) = 2F 1 (x) F2(y) = F1(x) F>,(2y) € Zforally e U.
Since Fi(x) € Z\{0}, Lemma 2.1(ii) gives F>(2y) € Zforally € U -i.e. F,(2U) <
Z.Since0 € Z,we get F,(2U) = {0} -i.e. 2F>(U) = {0}. But N is 2-torsion free, we
get F>(U) = {0} would contradict our hypothesis that F, # 0; hence F>(2U) # {0}
and we may choose y € U such that F,(2y) € Z\{0}. Since 2U < U, this shows
that F,(2y) and 2F,(2y) = F,(4y) are in F»(U) N Z\{0}, so that for all x € U,
Fi(x)(2F(2y)) € Z and hence F(x) € Z. Thus, F;(U) € Z and by Theorem 3.1,
N is a commutative ring.

(i1) Essentially the same argumentyields U € Z, and the result follows by Lemma 2.3.

Theorem 4.2 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N which is closed under addition. Suppose N admits nonzero
generalized semiderivations Fy and F, with associated semiderivations d; and
d, respectively and a map g associated with dy and d, such that g(U) = U and
gwv) = g(u)g(v) for all u,v € U. Suppose that Fi(x)F>(y) + F>2(y)Fi(x) € Z,
forallx,y e Uand Fy(U) CU; F,(U) CU.IfFi(N)NZ # {0} or ;:(N)NZ #
{0}, then N is a commutative ring.

Proof By Corollary 3.6, we cannot have F)(x)F,(y) + F>(y)Fi(x) =0 for all
x,y € U, hence there exist xg, yo € U such that ug = F(x9) F2(yo) + F2(y0)
Fi(x9) € (Z\{0}) N U. Since F;(Z) and F,(Z) are central by Lemma 2.17, if
Fi(ug) # 0 or Fo(ug) # 0 we have Fi(U) N Z # {0} or F,(U) N Z # {0} and our
conclusion follows by Theorem 4.1(i).

Assume, therefore, that Fj(ug) = F>(uo) = 0. For all x,y € U, Fi(upx)F,
(oY) + Fa(uoy) Fi(uox) = ug(di(x)da(y) + da(y)di (x)) € Z,henced, (x)da(y) +
dr(y)d,(x) € Z; and if di(up) # 0 or dp(up) # 0 our desired conclusion follows
by Lemma 2.15. Therefore we may assume d;(ug) = dy(ug) = 0. For all x,y €
N, Fi(xup) Fa(yuo) + Fa(yuo) Fi(xug) € Z,soul(Fi(x)F2(y) + Fa(y)Fi(x)) € Z
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and Fi(x)F>(y) + F2(y)Fi(x) € Z. Since Fi(N) N Z # {0} or F>,(N) N Z # {0},
our result follows by Theorem 4.1(i).

Acknowledgments The authors would like to thank the referee for his valuable suggestions.

References

1. Ali, A., Bell, H.E., Miyan, P.: Generalized derivations on prime near rings. Int. J. Math. Math.
Sci. Article ID 170749, 5 p. (2013)

2. Bell, H.E.: On Derivations in Near-Rings II, pp. 191-197. Kluwer Academic Publishers, Nether-
lands (1997)

3. Bell, H.E.: On prime near-rings with generalized derivation. Int. J. Math. Math. Sci. Article ID
490316, 5 p. (2008)

4. Bell, HEE., Argac, N.: Derivations, products of derivations and commutativity in near rings.
Algebr. Collog. 8(4), 399—407 (2001)

5. Bergen, J.: Derivations in prime rings. Can. Math. Bull. 26, 267-270 (1983)



	Products of Generalized Semiderivations  of Prime Near Rings
	1 Introduction
	2 Preliminary Results
	3 Some Results Involving Two Generalized Semiderivations
	4 Some Commutativity Conditions
	References


