Products of Generalized Semiderivations of Prime Near Rings

Asma Ali and Farhat Ali

Abstract Let *N* be a near ring. An additive mapping $F : N \longrightarrow N$ is said to be a generalized semiderivation on *N* if there exists a semiderivation $d : N \longrightarrow N$ associated with a function $q: N \longrightarrow N$ such that $F(xy) = F(x)y + q(x)d(y) =$ $d(x)g(y) + xF(y)$ and $F(g(x)) = g(F(x))$ for all $x, y \in N$. The purpose of the present paper is to prove some theorems in the setting of semigroup ideal of a 3-prime near ring admitting a pair of suitably-constrained generalized semiderivations, thereby extending some known results on derivations and generalized derivations. We show that if *N* is 2-torsion free and F_1 and F_2 are generalized semiderivations such that $F_1F_2 = 0$, then $F_1 = 0$ or $F_2 = 0$; we prove other theorems asserting triviality of F_1 or F_2 ; and we also prove some commutativity theorems.

Keywords 3-prime near-rings · Semiderivations · Generalized semiderivations

2010 Mathematics Subject Classification 16N60 · 16W25 · 16Y30

1 Introduction

Throughout the paper, *N* denotes a zero-symmetric left near ring with multiplicative centre *Z*; and for any pair of elements $x, y \in N$, [x, y] denotes the commutator $xy - yx$. A near ring *N* is called zero-symmetric if $0x = 0$, for all $x \in N$ (recall that left distributivity yields that $x0 = 0$). The near ring N is said to be 3-prime if $xNy = \{0\}$ for $x, y \in N$ implies that $x = 0$ or $y = 0$. A near ring N is called 2-torsion free if $(N, +)$ has no element of order 2. A nonempty subset *U* of *N* is

A. Ali $(\boxtimes) \cdot$ F. Ali

First author is supported by a grant from Science and Engineering Research Board (SERB), DST, New Delhi, India. Grant No. SR/S4/MS:852/13.

Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India e-mail: asma_ali2@rediffmail.com

F. Ali e-mail: 04farhatamu@gmail.com

[©] Springer Science+Business Media Singapore 2016

S.T. Rizvi et al. (eds.), *Algebra and its Applications*, Springer Proceedings in Mathematics & Statistics 174, DOI 10.1007/978-981-10-1651-6_16

called a semigroup right (resp. semigroup left) ideal if $UN \subseteq U$ (resp. $NU \subseteq U$); and if *U* is both a semigroup right ideal and a semigroup left ideal, it is called a semigroup ideal. An additive mapping $f : N \longrightarrow N$ is said to be a right (resp. left) generalized derivation with associated derivation *D* if $f(xy) = f(x)y + xD(y)$ (resp. $f(xy) = D(x)y + xf(y)$), for all $x, y \in N$, and f is said to be a generalized derivation with associated derivation *D* on *N* if it is both a right generalized derivation and a left generalized derivation on *N* with associated derivation *D*. Motivated by a definition given by Bergen [\[5\]](#page-17-0) for rings, we define an additive mapping $d : N \longrightarrow N$ is said to be a semiderivation on a near ring *N* if there exists a function $g: N \longrightarrow N$ such that (i) $d(xy) = d(x)q(y) + xd(y) = d(x)y + q(x)d(y)$ and (ii) $d(q(x)) =$ $q(d(x))$, for all $x, y \in N$. In case q is the identity map on N, d is of course just a derivation on *N*, so the notion of semiderivation generalizes that of derivation. But the generalization is not trivial for example take $N = N_1 \oplus N_2$, where N_1 is a zero symmetric near ring and N_2 is a ring. Then the map $d : N \longrightarrow N$ defined by $d((x, y)) = (0, y)$ is a semiderivation associated with function $q: N \longrightarrow N$ such that $g(x, y) = (x, 0)$. However *d* is not a derivation on *N*. An additive mapping *F* : $N \rightarrow N$ is said to be a generalized semiderivation of N if there exists a semiderivation $d: N \longrightarrow N$ associated with a map $g: N \longrightarrow N$ such that $(i) F(xy) = F(x)y + C(y)$ $g(x)d(y) = d(x)g(y) + xF(y)$ and (ii) $F(g(x)) = g(F(x))$ for all $x, y \in N$. All semiderivations are generalized semiderivations. If *g* is the identity map on *^N*, then all generalized semiderivations are merely generalized derivations, again the notion of generalized semiderivation generalizes that of generalized derivation. Moreover, the generalization is not trivial as the following example shows:

Example 1.1 Let *S* be a 2-torsion free left near ring and let

$$
N = \left\{ \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & z \end{pmatrix} \mid x, y, z \in S \right\}.
$$

Define maps $F, d, g: N \rightarrow N$ by

$$
F\begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & z \end{pmatrix} = \begin{pmatrix} 0 & xy & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}; \quad d\begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & z \end{pmatrix} = \begin{pmatrix} 0 & 0 & y \\ 0 & 0 & 0 \\ 0 & 0 & z \end{pmatrix}
$$

and

$$
g\begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & z \end{pmatrix} = \begin{pmatrix} 0 & x & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.
$$

It can be verified that *N* is a left near ring and *F* is a generalized semiderivation with associated semiderivation *^d* and a map *g* associated with *^d*. However *^F* is not a generalized derivation on *N*.

2 Preliminary Results

We begin with several lemmas, most of which have been proved elsewhere.

Lemma 2.1 ([\[2,](#page-17-1) Lemmas 1.2 and 1.3]) *Let N be a 3-prime near ring.*

- *(i) If* $z \in Z \setminus \{0\}$ *, then z is not a zero divisor.*
- *(ii) If* $Z \setminus \{0\}$ *and x is an element of N for which* $xz \in Z$ *, then* $x \in Z$.
- *(iii) If x is an element of N which centralizes some nonzero semigroup right ideal, then* $x \in Z$.
- *(iv) If* $Z \setminus \{0\}$ *contains an element z for which z* + *z* \in *Z, then* $(N, +)$ *is abelian.*

Lemma 2.2 ([\[2,](#page-17-1) Lemmas 1.3 and 1.4]) *Let N be a 3-prime near ring and U be a nonzero semigroup ideal of N.*

- *(i)* If $x \in N$ and $xU = \{0\}$, or $Ux = \{0\}$, then $x = 0$.
- *(ii) If* $x, y \in N$ *and* $xUy = \{0\}$ *, then* $x = 0$ *or* $y = 0$ *.*

Lemma 2.3 ([\[2,](#page-17-1) Lemma 1.5]) *If N is a 3-prime near ring and Z contains a nonzero semigroup left ideal or a nonzero semigroup right ideal, then N is a commutative ring.*

Lemma 2.4 ([\[4,](#page-17-2) Lemma 2.4]) *Let N be an arbitrary near ring. Let S and T be non empty subsets of N such that st* = $-ts$ *for all s* \in *S and t* \in *T. If a, b* \in *S and c is an element of T for which* $-c \in T$, *then* $(ab)c = c(ab)$ *.*

Lemma 2.5 *Let N be a 3-prime near ring and U be a nonzero semigroup ideal of N.* If N admits a nonzero semiderivation d of N associated with a map q, then $d \neq 0$ *on U.*

Proof Let $d(u) = 0$, for all $u \in U$. Replacing *u* by *xu*, we get $d(xu) = 0$, for all $x \in N$ and $u \in U$. Thus $d(x)g(u) + xd(u) = 0$, for all $x \in N$ and $u \in U$, i.e., $d(x)q(u) = 0$. The result follows by Lemma [2.2\(](#page-2-0)i).

Lemma 2.6 *Let N be a 3-prime near ring admitting a nonzero semiderivation d with a map g such that* $g(xy) = g(x)g(y)$ *for all x, y* \in *N. Then N satisfies the following partial distributive law:*

$$
(d(x)y + g(x)d(y))z = d(x)yz + g(x)d(y)z \text{ for all } x, y, z \in N.
$$

Proof Let *x*, *y*, $z \in N$, by defining *d* we have

$$
d(xyz) = d(xy)z + g(xy)d(z)
$$

= $(d(x)y + g(x)d(y))z + g(x)g(y)d(z)$. (2.1)

On the other hand,

$$
d(xyz) = d(x)yz + g(x)d(yz)
$$

= d(x)yz + g(x)(d(y)z + g(y)d(z))
= d(x)yz + g(x)d(y)z + g(x)g(y)d(z). (2.2)

Combining (2.1) and (2.2) , we obtain

$$
(d(x)y + g(x)d(y))z + g(x)g(y)d(z)
$$

= $d(x)yz + g(x)d(y)z + g(x)g(y)d(z)$ for all $x, y, z \in N$.

$$
(d(x)y + g(x)d(y))z = d(x)yz + g(x)d(y)z
$$
 for all $x, y, z \in N$.

Lemma 2.7 *Let N be a 2-torsion free 3-prime near ring and U be a nonzero semigroup ideal of N. If d is a nonzero semiderivation of N associated with a map g such that* $g(uv) = g(u)g(v)$, *for all* $u, v \in U$. If $a \in N$ *and* $ad(U) = \{0\}$ $($ *or* $d(U)a = \{0\}$ *), then* $a = 0$ *.*

Proof Let $ad(u) = 0$, for all $u \in U$. Replacing *u* by uv , $a(d(u)q(v) + ud(v)) = 0$, for all $u, v \in U$. Thus $ad(u)g(v) + aud(v) = 0$, for all $u, v \in U$ or $aud(v) = 0$, for all $u, v \in U$. Choosing *v* such that $d(v) \neq 0$ and applying Lemma [2.2\(](#page-2-0)ii), we get $a=0$.

Lemma 2.8 *Let N be a 2-torsion free 3-prime near ring and U be a nonzero semigroup ideal of N. Suppose that d is a semiderivation on N associated with a map g such that* $q(U) = U$ *. If* $d^2(U) = \{0\}$ *, then* $d = 0$ *.*

Proof Suppose $d^2(U) = \{0\}$. Then for $u, v \in U$ exploit the definition of *d* in different ways to obtain

$$
0 = d2(uv) = d(d(uv)) = d(d(u)v + g(u)d(v)) \text{ for all } u, v \in U,
$$

= $d2(u)v + g(d(u))d(v) + d(g(u))d(v) + g(u)d2(v),$
= $d(g(u))d(v) + d(g(u))d(v).$

Note that $g(d(u)) = d(g(u))$ and $g(U) = U$, we get

$$
2d(u)d(v) = 0 \text{ for all } u, v \in U.
$$

Since *N* is a 2-torsion free, we get

$$
d(u)d(v) = 0 \text{ for all } u, v \in U.
$$

Replacing *v* by *wv* in the above relation, we get

$$
d(u)d(wv) = 0 \text{ for all } u, v, w \in U.
$$

$$
d(u)(d(w)v + g(w)d(v)) = 0 \text{ for all } u, v, w \in U.
$$

$$
d(u)d(w)v + d(u)g(w)d(v) = 0 \text{ for all } u, v, w \in U
$$

This implies that

$$
d(u)g(w)d(v) = 0 \text{ for all } u, v, w \in U.
$$

 $d(u)wd(v) = 0$ for all $u, v, w \in U$.

$$
d(U)Ud(U) = \{0\}.
$$

Thus we obtain that $d = 0$ on U by Lemma [2.2\(](#page-2-0)ii).

Lemma 2.9 *Let N be a 3-prime near ring and U be a nonzero semigroup ideal of N. Suppose d is a nonzero semiderivation of N associated with a map g such that* $g(uv) = g(u)g(v)$, for all $u, v \in U$. If $d(U) \subseteq Z$, then N is a commutative ring.

Proof We begin by showing that $(N, +)$ is abelian, which by Lemma [2.1\(](#page-2-2)iv) is accomplished by producing $z \in Z \setminus \{0\}$ such that $z + z \in Z$. Let *a* be an element of *U* such that $d(a) \neq 0$. Then for all $x \in N$, $ax \in U$ and $ax + ax = a(x + x) \in U$, so that $d(ax) \in Z$ and $d(ax) + d(ax) \in Z$; hence we need only show that there exists $x \in N$ such that $d(ax) \neq 0$. Suppose this is not the case, so that $d((ax)a) =$ $0 = d(ax)q(a) + axd(a) = axd(a)$ for all $x \in N$. Since $d(a)$ is not zero divisor by Lemma [2.1\(](#page-2-2)i), we get $aN = \{0\}$, so that $a = 0$ —a contradiction. Therefore $(N, +)$ is abelian as required.

We are given that $[d(u), x] = 0$ for all $u \in U$ and $x \in N$. Replacing *u* by *uv*, we get $[d(uv), x] = 0$, which yields $[d(u)v + g(u)d(v), x] = 0$ for all $u, v \in U$ and *x* ∈ *N*. Since $(N, +)$ is abelian and $d(U)$ ⊂ *Z*, we have

$$
d(u)[v, x] + d(v)[x, g(u)] = 0 \text{ for all } u, v \in U \text{ and } x \in N. \tag{2.3}
$$

Replacing *x* by $g(u)$, we obtain $d(u)[v, g(u)] = 0$ for all $u, v \in U$; and choosing *u* ∈ *U* such that $d(u) ≠ 0$ and applying Lemma [2.1\(](#page-2-2)iii), we get $g(u) ∈ Z$. It then follows from [\(2.3\)](#page-4-0) that $d(u)[v, x] = 0$ for all $v \in U$ and $x \in N$; therefore $U \subseteq Z$ and Lemma [2.3](#page-2-3) completes the proof.

Lemma 2.10 *Let N be a 2-torsion free 3-prime near ring and U be a nonzero semigroup ideal of N. Suppose that d is a nonzero semiderivation of N associ*ated with a map q such that $q(U) = U$ and $q(uv) = q(u)q(v)$ for all $u, v \in U$. If $[d(U), d(U)] = \{0\}$, then N is a commutative ring.

Proof By hypothesis $[d(U), d(U)] = \{0\}$. Thus $d(u)d(vd(w)) = d(vd(w))d(u)$, for all *u*, *v*, *w* \in *U*, i.e., $d(u)(d(v)g(d(w)) + vd^2(w)) = (d(v)g(d(w)) + vd^2(w))$
 $d(u)$, for all *u*, *v*, *w* \in *U*. Then by Lemma 2.6, we get $d(u)d(v)q(d(w)) + d(u)$ $d(u)$, for all $u, v, w \in U$. Then by Lemma [2.6,](#page-2-4) we get $d(u)d(v)g(d(w)) + d(u)$
 $vd^2(w) = d(v)g(d(w))d(u) + vd^2(w)d(u)$. This implies that $d(u)d(v)d(d(w)) + d(u)$ $vd^2(w) = d(v)g(d(w))d(u) + vd^2(w)d(u)$. This implies that $d(u)d(v)d(g(w)) + d(u)yd^2(w) = d(v)d(g(w))d(u) + vd^2(w)d(u)$ i.e. $d(u)d(u)d(w) + d(u)yd^2(w)$ $d(u)v d^{2}(w) = d(v)d(q(w))d(u) + v d^{2}(w)d(u)$ i.e., $d(u)d(v)d(w) + d(u)v d^{2}$ $(w) = d(v)d(w)d(u) + vd^2(w)d(u)$ for all $u, v, w \in U$ and since $[d(U), d(U)] =$ {0}, we obtain

$$
d(u)v d^{2}(w) = v d^{2}(w) d(u) \text{ for all } u, v, w \in U.
$$
 (2.4)

Replace *v* by *xv*, to get

 $d(u)xvd^2(w) = xvd^2(w)d(u)$ for all $u, v, w \in U$ and $x \in N$.

Using [\(2.4\)](#page-5-0), the above relation yields that $d(u)xvd^2(w) = xd(u)v^2(w)$, for all $u, v, w \in U$ and $x \in N$, i.e., $\left[d(u), x\right]vd^2(w) = 0$, for all $u, v, w \in U$ and $x \in N$ by Lemma [2.6.](#page-2-4) Thus $\left[d(u), x\right]Ud^2(w) = 0$, for all *u*, *w* ∈ *U* and *x* ∈ *N*. Since $d^2(U) \neq$ 0 by Lemma [2.8,](#page-3-1) Lemma [2.2\(](#page-2-0)ii) gives $d(U) \subseteq Z$, and the result follows by Lemma [2.9.](#page-4-1)

Lemma 2.11 *Let N be a 3-prime near ring and U be a nonzero semigroup ideal of N. If F is a nonzero generalized semiderivation of N with associated semiderivation d* and a map q associated with d such that $q(U) = U$, then $F \neq 0$ on U.

Proof Let $F(u) = 0$ for all $u \in U$. Replacing *u* by ux , we get $F(ux) = 0$ for all $u \in U$ and $x \in N$. Thus

$$
F(u)x + g(u)d(x) = 0 = Ud(x) \text{ for all } x \in N
$$

and it follows by Lemma $2.2(i)$ $2.2(i)$ that $d = 0$. Therefore, we have

$$
F(xu) = F(x)u = 0 \text{ for all } u \in U \text{ for all } x \in N
$$

and another appeal to Lemma [2.2\(](#page-2-0)i) gives $F = 0$, which is a contradiction.

Lemma 2.12 *Let N be a 3-prime near ring admitting a generalized semiderivation F associated with a semiderivation d. If g is an onto map associated with d such that* $g(x y) = g(x) g(y)$ for all $x, y \in N$, then N satisfies the following partial distributive *laws:*

(i)
$$
(F(x)y + g(x)d(y))z = F(x)yz + g(x)d(y)z
$$
 for all $x, y, z \in N$.
\n(ii) $(d(x)g(y) + xF(y))z = d(x)g(y)z + xF(y)z$ for all $x, y, z \in N$.

Proof (i) Let $x, y, z \in N$,

$$
F(xyz) = F(xy)z + g(xy)d(z)
$$

=
$$
(F(x)y + g(x)d(y))z + g(x)g(y)d(z).
$$

On the other hand,

$$
F(xyz) = F(x)yz + g(x)d(yz)
$$

=
$$
F(x)yz + g(x)(d(y)z + g(y)d(z))
$$

=
$$
F(x)yz + g(x)d(y)z + g(x)g(y)d(z).
$$

Combining both expressions of $F(xyz)$, we obtain

$$
(F(x)y + g(x)d(y))z = F(x)yz + g(x)d(y)z \text{ for all } x, y, z \in N.
$$

(ii) For all $x, y, z \in N$ we have $F((xy)z) = F(xy)z + g(xy)d(z) = (d(x)g(y) + xF(y))z + q(x)g(y)d(z)$ and $F(x(yz)) = d(x)g(yz) + xF(yz) = d(x)g(y)$ $x F(y)$)z + g(x)g(y)d(z) and $F(x(yz)) = d(x)g(yz) + xF(yz) = d(x)g(y)$
 $g(z) + x(F(y)z + g(y)dx) = d(x)g(y)z + xF(y)z + g(x)g(y)dx$? Comparing $g(z) + x(F(y)z + g(y)d(z)) = d(x)g(y)z + xF(y)z + g(x)g(y)d(z)$. Comparing
the two expression we get the required result the two expression, we get the required result.

Lemma 2.13 *Let N be a 3-prime near ring and U be a nonzero semigroup ideal of N. Suppose that F is a nonzero generalized semiderivation of N with associated semiderivation d and a map g associated with d such that* $q(U) = U$ *and* $q(uv) =$ $g(u)g(v)$ *for all* $u, v \in U$ *. If* $a \in N$ *and* $aF(U) = 0$ *(or* $F(U)a = 0$ *), then* $a = 0$ *.*

Proof Suppose that $aF(U) = \{0\}$. Then for $u, v \in U$

$$
aF(uv) = aF(u)v + ag(u)d(v) = aud(v) = 0
$$
 for all $u, v \in U$ and $a \in N$.

So by Lemma [2.2\(](#page-2-0)ii), $a = 0$ or $d(U) = \{0\}$. If $d(U) = \{0\}$, then

$$
ad(u)g(v) + auF(v) = 0 = auF(v) \text{ for all } u, v \in U;
$$

and since $F(U) \neq \{0\}$ by Lemma [2.11,](#page-5-1) $a = 0$.

Lemma 2.14 *Let N be a 3-prime near ring admitting a generalized semiderivation F associated with a semiderivation d and an additive map g associated with d. Then N satisfies the following laws:*

- (i) $d(x)y + g(x)d(y) = g(x)d(y) + d(x)y$ for all $x, y \in N$.
- (ii) $d(x)g(y) + xd(y) = xd(y) + d(x)g(y)$ for all $x, y \in N$.
- (iii) $F(x)y + g(x)d(y) = g(x)d(y) + F(x)y$ for all $x, y \in N$.
- (iv) $d(x)g(y) + xF(y) = xF(y) + d(x)g(y)$ for all $x, y \in N$.

Proof (i) $d(x(y + y)) = d(x)(y + y) + g(x)d(y + y) = d(x)y + d(x)y + g(x)$ $d(y) + q(x)d(y)$, and $d(xy + xy) = d(xy) + d(xy) = d(x)y + q(x)d(y) + d(x)$ $y + q(x)d(y)$. Comparing these two equations, we get the desired result. (ii) Again, calculate $d((x + x)y)$ and $d(xy + xy)$ and compare.

(iii) $F(x(y + y)) = F(x)(y + y) + g(x)d(y + y) = F(x)y + F(x)y + g(x)$ $d(y) + g(x)d(y)$, and $F(xy + xy) = F(x)y + g(x)d(y) + F(x)y + g(x)d(y)$. Comparing these two equations, we get the desired result.

(iv) Again, calculate $F((x + x)y)$ and $F(xy + xy)$ and compare.

Lemma 2.15 *Let N be a 3-prime near ring and U be a nonzero semigroup ideal of N. Suppose that N admits nonzero semiderivations d*1*, d*² *associated with a map* g such that $g(uv) = g(u)g(v)$ for all $u, v \in U$. If $d_1(x)d_2(y) + d_2(y)d_1(x) \in Z$ for *all* $x, y \in U$ *and at least one of* $d_1(U) \cap Z$ *and* $d_2(U) \cap Z$ *is nonzero, then N is a commutative ring.*

Proof Assume that $d_1(U) \cap Z \neq \{0\}$. Let $x \in U$ such that $d_1(x) \in Z \setminus \{0\}$, and $y \in U$. Then $d_1(x)d_2(y) + d_2(y)d_1(x) = d_1(x)(2d_2(y)) = d_1(x)(d_2(2y)) \in Z$. Therefore, $d_2(2U) \subseteq Z$. Since 2U is nonzero semigroup left ideal, our conclusion follows by Lemma [2.9,](#page-4-1) then *N* is commutative ring.

Lemma 2.16 *Let N be a 2-torsion free 3-prime near ring. If U is a nonzero semigroup ideal of N, then* $2U \neq \{0\}$ *and* $d(2U) \neq \{0\}$ *for any nonzero semiderivation d* associated with a map *q* such that $q(U) = U$.

Proof Let $x \in N$ with $x + x \neq 0$. Then for every $u \in U$, $u(x + x) = ux + ux \in 2U$; and by Lemma [2.2\(](#page-2-0)i), we get $\{0\} \neq U(x + x) \subseteq 2U$. Since 2*U* is a semigroup left ideal, it follows by Lemma [2.5](#page-2-5) that $d(2U) \neq \{0\}$.

Lemma 2.17 *Let N be a 3-prime near ring. If F is a generalized semiderivation with associated semiderivation d and a map g associated with d such that* $g(U) = U$, *then* $F(Z) \subseteq Z$.

Proof Let $z \in Z$ and $x \in N$. Then $F(zx) = F(xz)$; that is $F(z)x + g(z)d(x) =$ $d(x)g(z) + xF(z)$. Applying Lemma [2.14\(](#page-6-0)iii), we get $g(z)d(x) + F(z)x = d(x)g(z)$ + $xF(z)$; $zd(x)$ + $F(z)x$ = $d(x)z$ + $xF(z)$. It follows that $F(z)x = xF(z)$ for all $x \in N$, so $F(Z) \subseteq Z$.

Lemma 2.18 *Let N be a 3-prime near ring and U be a nonzero semigroup ideal of N. Suppose that N admits a semiderivation d associated with a map g such that* $g(U) = U$ and $g(uv) = g(u)g(v)$ for all $u, v \in U$. If $d^2(U) \neq \{0\}$ and $a \in N$ such *that* $[a, d(U)] = \{0\}$ *, then* $a \in Z$ *.*

Proof Let $C(a) = \{x \in N | ax = xa\}$. Note that $d(U) \subseteq C(a)$. Thus, if $y \in C(a)$ and $u \in U$, both $d(yu)$ and $d(u)$ are in $C(a)$; hence $(d(y)g(u) + yd(u))a =$ $a(d(y)g(u) + yd(u))$ and $d(y)g(u)a + yd(u)a = ad(y)g(u) + ayd(u); d(y)ua +$ $y d(u)a = ad(y)u + ay d(u)$. Since $y d(u) \in C(a)$, we conclude that $d(y)ua = ad$ $(y)u$. Thus

$$
d(C(a))U \subseteq C(a). \tag{2.5}
$$

Choosing $z \in U$ such that $d^2(z) \neq 0$, and let $y = d(z)$. Then $y \in C(a)$; and by [\(2.5\)](#page-7-0), $d(y)u \in C(a)$ and $d(y)uv \in C(a)$ for all $u, v \in U$. Thus, $0 = [a, d(y)]$ uv] = $ad(y)uv - d(y)uv = d(y)u$ $av - d(y)uv = d(y)u(av - va)$. Thus $d(y)$ $U(av - va) = 0$ for all $v \in U$; and by Lemma [2.2\(](#page-2-0)ii), *a* centralizes *U*. By Lemma [2.1\(](#page-2-2)iii), $a \in Z$.

Lemma 2.19 *Let N be a 3-prime near ring and F be a generalized semiderivation of N with associated nonzero semiderivation d and a map g associated with d* such that $q(U) = U$ and $q(uv) = q(u)q(v)$ for all $u, v \in U$. If $d(F(N)) = \{0\}$, then $d^{2}(x)d(y) + d(x)d^{2}(y) = 0$ for all $x, y \in N$ and $F(d(N)) = \{0\}.$

Proof Assume that $d(F(x)) = 0$ for all $x \in N$. It follows that $d(F(xy)) = 0$ $d(F(x)y) + d(q(x)d(y)) = d(F(x)y) + d(xd(y)) = 0$ for all $x, y \in N$, that is,

$$
d(F(x))g(y) + F(x)d(y) + d(x)g(d(y)) + xd^{2}(y) = 0 \text{ for all } x, y \in N.
$$

This implies that

$$
F(x)d(y) + d(x)d(g(y)) + xd^{2}(y) = 0.
$$

$$
F(x)d(y) + d(x)d(y) + xd^{2}(y) = 0 \text{ for all } x, y \in N.
$$
 (2.6)

Applying *d* again, we get

$$
F(x)d^{2}(y) + d^{2}(x)d(y) + d(x)d^{2}(y) + d(x)d^{2}(y) + xd^{3}(y) = 0 \text{ for all } x, y \in N.
$$
\n(2.7)\nTaking $d(y)$ instead of y in (2.6) gives $F(x)d^{2}(y) + d(x)d^{2}(y) + xd^{3}(y) = 0$, hence\n(2.7) yields

$$
d^{2}(x)d(y) + d(x)d^{2}(y) = 0 \text{ for all } x, y \in N.
$$
 (2.8)

Now, substitute $d(x)$ for x in [\(2.6\)](#page-8-0), to obtain $F(d(x))d(y) + d^2(x)d(y) + d(x)d^2$ $(y) = 0$; and use [\(2.8\)](#page-8-2) to conclude that $F(d(x))d(y) = 0$ for all *x*, $y \in N$. Thus, by Lemma [2.7,](#page-3-2) $F(d(x)) = 0$ for all $x \in N$.

Lemma 2.20 *Let N be a 2-torsion free 3-prime near ring and F be a nonzero generalized semiderivation of N with associated semiderivation d and a map g associated* with d such that $q(U) = U$; $q(uv) = q(u)q(v)$ for all $u, v \in U$ and $F(V) \subseteq U$ for *some nonzero semigroup ideal V contained in U. If* $a \in N$ *and* $[a, F(U)] = \{0\}$ *, then* $a \in Z$.

Proof If $d = 0$, then for all $x \in U$ and $y \in N$, $aF(x)y = F(x)y$ *a*; hence $F(U)$ $[a, y] = \{0\}$ and $a \in Z$ by Lemma [2.13.](#page-6-1) Therefore, we may assume $d \neq 0$. Let *C*(*a*) denotes the centralizer of *a*, and let $y \in C(a)$ for all $u \in U$, $F(yu) \in C(a)$ -i.e. $(d(y)g(u) + yF(u))a = a(d(y)g(u) + yF(u))$ and by Lemma [2.12\(](#page-5-2)ii) $d(y)$ $g(u)a + yF(u)a = ad(y)g(u) + ayF(u); d(y)ua + yF(u)a = ad(y)u + ayF(u).$ Now $y F(u)a = ay F(u)$, and it follows that $d(y)u \in C(a)$; therefore $d(C(a))U$ is a semigroup right ideal which centralizes *a*, and if $d(C(a))U \neq \{0\}$. Lemma [2.1\(](#page-2-2)iii) yields $a \in \mathbb{Z}$. Assume now that $d(C(a))U = \{0\}$, in which case $d(C(a)) = \{0\}$ and hence $d(F(U)) = \{0\}$. It follows that for all $x \in N$ and $v \in V$, $d(F(x F(v))) =$ $0 = d(F(x)F(v) + q(x)d(F(v))) = d(F(x)F(v)) = d(F(x))q(F(v)) + F(x)d$ $(F(v)) = d(F(x))F(v)$, so that $d(F(N))F(V) = \{0\}$ and by Lemma [2.13,](#page-6-1) $d(F(N)) = \{0\}$. By Lemma [2.19](#page-8-3)

$$
d^{2}(x)d(y) + d(x)d^{2}(y) = 0 \text{ for all } x, y \in N \text{ and } F(d(N)) = \{0\}. \tag{2.9}
$$

As in the proof of Theorem 4.1 of [\[3\]](#page-17-3), we calculate $F(d(x)d(y))$ in two ways, obtain-
ing $F(d(x)d(y)) = F(d(x))d(y) + g(d(x))d^2(y) = d(g(x))d^2(y) = d(x)d^2(y)$ ing $F(d(x)d(y)) = F(d(x))d(y) + g(d(x))d^2(y) = d(g(x))d^2(y) = d(x)d^2(y)$
and $F(d(x)d(y)) = d^2(x)d(d(y)) + d(x)F(d(y)) = d^2(x)d(g(y)) = d^2(x)d(y)$ and $F(d(x)d(y)) = d^2(x)g(d(y)) + d(x)F(d(y)) = d^2(x)d(g(y)) = d^2(x)d(y)$.
Comparing the two results we get $d(x)d^2(y) = d^2(x)d(y)$ for all $x, y \in N$ which Comparing the two results, we get $d(x)d^2(y) = d^2(x)d(y)$ for all $x, y \in N$, which together with [\(2.9\)](#page-9-0) gives $d^2(x)d(y) = 0$ for all $x, y \in N$ and hence $d^2 = 0$. But by Lemma [2.8,](#page-3-1) this contradicts our assumption that $d \neq 0$; thus $d(C(a))U \neq \{0\}$ and our proof is complete.

3 Some Results Involving Two Generalized Semiderivations

The theorems that we prove in this section extend the results proved in [\[4](#page-17-2)].

Theorem 3.1 *Let N be a 3-prime near ring and U be a nonzero semigroup ideal of N. Suppose that N admits a nonzero generalized semiderivation F with associated semiderivation d and a map g associated with d such that* $g(U) = U$ *and* $g(uv) =$ $g(u)g(v)$ for all $u, v \in U$. If $F(U) \subseteq Z$, then $(N, +)$ is abelian. Moreover, if N is *2-torsion free, then N is a commutative ring.*

Proof We begin by showing that $(N, +)$ is abelian, which by Lemma [2.1\(](#page-2-2)iv) is accomplished by producing $z \in Z \setminus \{0\}$ such that $z + z \in Z$. Let *a* be an element of *U* such that $F(a) \neq 0$. Then for all $x \in N$, $ax \in U$ and $ax + ax = a(x + x) \in U$, so that $F(ax) \in Z$ and $F(ax) + F(ax) \in Z$; hence we need only to show that there exists $x \in N$ such that $F(ax) \neq 0$. Suppose that this is not the case, so that $F((ax)a) = 0 = F(ax)a + g(ax)d(a) = g(a)g(x)d(a) = axd(a)$ for all $x \in N$. By Lemma [2.2\(](#page-2-0)ii) either $a = 0$ or $d(a) = 0$.

If $d(a) = 0$, then $F(xa) = F(x)a + q(x)d(a)$; that is, $F(xa) = F(x)a \in Z$, for all $x \in N$. Thus, $[F(u)a, y] = 0$ for all $y \in N$ and $u \in U$. This implies that $F(u)[a, y] = 0$ for all $u \in U$ and $y \in N$ and Lemma [2.1\(](#page-2-2)i) gives $a \in Z$. Thus, $0 = F(ax) = F(xa) = F(x)a$ for all $x \in N$. Replacing x by $u \in U$, we have $F(U)a = 0$, and by Lemmas [2.1\(](#page-2-2)i) and [2.11,](#page-5-1) we get $a = 0$. Thus we have a contradiction.

To complete the proof, we show that if *N* is 2-torsion free, then *N* is commutative. Consider first case $d = 0$. This implies that $F(ux) = F(u)x \in Z$ for all $u \in U$ and $x \in N$. By Lemma [2.11,](#page-5-1) we have $u \in U$ such that $F(u) \in Z \setminus \{0\}$, so N is com-mutative by Lemma [2.1\(](#page-2-2)ii).

Now consider the case $d \neq 0$. Let $c \in Z \setminus \{0\}$. This implies that $x \in U$, $F(xc) =$ $F(x)c + g(x)d(c) = F(x)c + xd(c) \in Z$. Thus $(F(x)c + xd(c))y = y(F(x)c +$ $xd(c)$ for all $x, y \in U$ and $c \in Z$. Therefore, by Lemma [2.12\(](#page-5-2)i), $F(x)cy + xd(c)y =$ $y F(x)c + yx d(c)$ for all $x, y \in U$ and $c \in Z$. Since $d(c) \in Z$ and $F(x) \in Z$, we obtain $d(c)[x, y] = 0$ for all $x, y \in U$ and $c \in Z$. Let $d(Z) \neq \{0\}$. Choosing *c* such that $d(c) \neq 0$ and noting that $d(c)$ is not a zero divisor, we have [x, y] = 0 for all *x, y* ∈ *U*. By Lemma [2.1\(](#page-2-2)iii), $U \subseteq Z$; hence *N* is commutative by Lemma [2.3.](#page-2-3)

The remaining case is $d \neq 0$ and $d(Z) = \{0\}$. Suppose we can show that $U \cap Z \neq 0$ {0}. Taking $z \in (U \cap Z) \setminus \{0\}$ and $x \in N$, we have $F(xz) = F(x)z \in Z$; therefore $F(N) \subseteq Z$ by Lemma [2.1\(](#page-2-2)ii). Let $F(x) \in Z$ for all $x \in N$.

Since $d(Z) = 0$, for all $x, y \in N$. We have

$$
0 = d(F(xy)).
$$

\n
$$
0 = d(F(x)y + g(x)d(y)).
$$

\n
$$
0 = F(x)d(y) + g(x)d2(y) + d(g(x))g(d(y)) \text{ for all } x, y \in Z.
$$

Hence $F(xd(y)) = -d(g(x))g(d(y)) \in Z$ for all $x, y \in N$. By hypothesis, we have $d(x)d(y) \in Z$ for all $x, y \in N$. This implies that

$$
d(x)(d(x)d(y) - d(y)d(x)) = 0
$$
 for all $x, y \in N$.

Left multiplying by $d(y)$, we arrive at

$$
d(y)d(x)N(d(x)d(y) - d(y)d(x)) = \{0\} \text{ for all } x, y \in N.
$$

Since *N* is a 3-prime near ring, we get

$$
[d(x), d(y)] = 0 \text{ for all } x, y \in N.
$$

Using Lemma [2.10,](#page-4-2) *N* is a commutative ring.

Assume that $U \cap Z = \{0\}$. For each $u \in U$, $F(u^2) = F(u)u + q(u)d(u) =$ $F(u)u + ud(u) = u(F(u) + d(u)) \in U \cap Z$. So $F(u^2) = 0$, thus for all $u \in U$ and $x \in N$, $F(u^2x) = F(u^2)x + g(u^2)d(x) = u^2d(x) \in U \cap Z$. So $u^2d(x) = 0$ and Lemma [2.7,](#page-3-2) $u^2 = 0$. Since $F(xu) = F(x)u + q(x)d(u) = F(x)u + xd(u) \in Z$ for all $u \in U$ and $x \in N$. We have $(F(x)u + xd(u))u = u(F(x)u + xd(u))$ and right multipling by *u* gives $uxd(u)u = 0$. Consequently, $d(u)uNd(u)u = \{0\}$. So that $d(u)u = 0$ for all $u \in U$, so $F(u)u = 0$ for all $u \in U$. But by Lemma [2.11,](#page-5-1) there exist $u_0 \in U$ for which $F(u_0) \neq 0$; and $F(u_0) \in Z$, we get $u_0 = 0$, contradiction. Therefore, $U \cap Z \neq \{0\}$ as required.

Theorem 3.2 *Let N be a 2-torsion free 3-prime near ring and U be a nonzero semigroup ideal of N. Let F*¹ *and F*² *be generalized semiderivations on N with associated semiderivations* d_1 *and* d_2 *respectively with at least one of* d_1 *,* d_2 *not zero and a map g associated with* d_1 *and* d_2 *such that* $g(uv) = g(u)g(v)$ *for all* $u, v \in U$ and $g(U) = U$. If $F_1(x)d_2(y) + F_2(x)d_1(y) = 0$ for all $x, y \in U$, then $F_1 = 0$ or $F_2 = 0.$

Proof By hypothesis

$$
F_1(x)d_2(y) + F_2(x)d_1(y) = 0 \text{ for all } x, y \in U.
$$
 (3.1)

Replacing *x* by uv in [\(3.1\)](#page-10-0), we get

$$
(d_1(u)g(v) + uF_1(v))d_2(y) + (d_2(u)g(v) + uF_2(v))d_1(y) = 0 \text{ for all } u, v, y \in U.
$$

Using Lemmas [2.12\(](#page-5-2)ii) and [2.14\(](#page-6-0)iv), we conclude that

$$
(d_1(u)g(v) + uF_1(v))d_2(y) + (uF_2(v) + d_2(u)g(v))d_1(y) = 0.
$$

$$
d_1(u)g(v)d_2(y) + uF_1(v)d_2(y) + uF_2(v)d_1(y) + d_2(u)g(v)d_1(y) = 0.
$$

 $d_1(u)v d_2(y) + u(F_1(v)d_2(y) + F_2(v)d_1(y)) + d_2(u)v d_1(y) = 0$ for all $u, v, y \in U$.

Since middle summand is 0 by (3.1) , we conclude that

$$
d_1(u)v d_2(y) + d_2(u)v d_1(y) = 0 \text{ for all } u, v, y \in U.
$$
 (3.2)

Substituting *yt* for *y* in [\(3.2\)](#page-11-0), we get

$$
d_1(u)v d_2(yt) + d_2(u)v d_1(yt) = 0 \text{ for all } u, v, y, t \in U.
$$

$$
d_1(u)v (d_2(y)g(t) + yd_2(t)) + d_2(u)v (d_1(y)g(t) + yd_1(t)) = 0.
$$

Using Lemma 2.14 (ii), we have

$$
d_1(u)v(d_2(y)g(t) + yd_2(t)) + d_2(u)v(yd_1(t) + d_1(y)g(t)) = 0.
$$

This implies that

$$
d_1(u)v d_2(y)t + (d_1(u)v y d_2(t) + d_2(u)v y d_1(t)) + d_2(u)v d_1(y)t = 0.
$$

Again the middle summand is 0, so

$$
d_1(u)v d_2(y)t + d_2(u)v d_1(y)t = 0 \text{ for all } u, v, y, t \in U.
$$
 (3.3)

Replacing *t* by $td_1(w)$ in [\(3.3\)](#page-11-1), where $w \in U$, we have

$$
d_1(u)v(d_2(y)td_1(w)) + d_2(u)(vd_1(y)t)d_1(w) = 0
$$
 for all $u, v, y, t, w \in U$.

Using (3.2) , we get

$$
d_1(u)v(-d_1(y)t d_2(w)) - d_1(u)v d_1(y)t d_2(w) = 0.
$$

This implies that

$$
2d_1(u)v d_1(y) t d_2(w) = 0
$$
 for all $u, v, y, t, w \in U$.

Since *N* is 2-torsion free, we get

$$
d_1(u)v d_1(y) t d_2(w) = 0
$$
 for all $u, v, y, t, w \in U$.

Thus $d_1(U)Ud_1(U)Ud_2(U) = \{0\}$; and by Lemmas [2.2\(](#page-2-0)ii) and [2.5,](#page-2-5) one of d_1, d_2 must be 0. Assuming without loss that $d_1 = 0$, in which case $d_2 \neq 0$, we get $F_1(U)d_2(U)$ $\{0\}$, so by Lemmas [2.7](#page-3-2) and [2.11,](#page-5-1) we have $F_1 = 0$.

Theorem 3.3 *Let N be a 2-torsion free 3-prime near ring and U be a nonzero semigroup ideal of N. Let F*¹ *and F*² *be generalized semiderivations on N with associated semiderivations* d_1 *and* d_2 *respectively and a map g associated with* d_1 and d_2 such that $g(uv) = g(u)g(v)$ for all $u, v \in U$ and $g(U) = U$. If d_1 and d_2 are *not both zero and F*1*F*² *acts on U as a generalized semiderivation with associated semiderivation* d_1d_2 *and a map g associated with* d_1d_2 *, then* $F_1 = 0$ *or* $F_2 = 0$ *.*

Proof By the hypothesis, we have

$$
F_1 F_2(xy) = F_1 F_2(x) y + g(x) d_1 d_2(y) \text{ for all } x, y \in U.
$$

$$
F_1 F_2(xy) = F_1 F_2(x) y + x d_1 d_2(y) \text{ for all } x, y \in U.
$$
 (3.4)

We also have

$$
F_1F_2(xy) = F_1(F_2(xy)) = F_1(F_2(x)y + g(x)d_2(y))
$$

$$
= F_1(F_2(x)y) + F_1(g(x)d_2(y))
$$

$$
= F_1(F_2(x)y) + F_1(xd_2(y)).
$$

i.e.

$$
F_1F_2(xy) = F_1F_2(x)y + g(F_2(x))d_1(y) + F_1(x)d_2(y) + g(x)d_1d_2(y)
$$

= $F_1F_2(x)y + F_2(g(x))d_1(y) + F_1(x)d_2(y) + g(x)d_1d_2(y)$

$$
= F_1 F_2(x) y + F_2(x) d_1(y) + F_1(x) d_2(y) + x d_1 d_2(y) \text{ for all } x, y \in U. \tag{3.5}
$$

Comparing (3.4) and (3.5) , we get

$$
F_2(x)d_1(y) + F_1(x)d_2(y) = 0 \text{ for all } x, y \in U.
$$

Hence application of Theorem [3.2](#page-10-1) yields that $F_1 = 0$ or $F_2 = 0$.

Theorem 3.4 *Let N be a 2-torsion free 3-prime near ring and U be a nonzero semigroup ideal of N. Let F*¹ *and F*² *be generalized semiderivations on N with associated semiderivations d*¹ *and d*² *respectively and a map ^g associated with d*¹ *and* d_2 such that $g(uv) = g(u)g(v)$ for all $u, v \in U$ and $g(U) = U$. If $F_1F_2(U) = \{0\}$, *then* $F_1 = 0$ *or* $F_2 = 0$ *.*

Proof By the hypothesis

$$
F_1F_2(U) = \{0\}.
$$

\n
$$
F_1F_2(xy) = F_1(F_2(xy)) = 0 = F_1(F_2(x)y + g(x)d_2(y))
$$

\n
$$
= F_1(F_2(x)y) + F_1(xd_2(y))
$$

\n
$$
= F_1F_2(x)y + g(F_2(x))d_1(y) + F_1(x)d_2(y) + g(x)d_1d_2(y)
$$

\n
$$
= F_2(g(x))d_1(y) + F_1(x)d_2(y) + xd_1d_2(y) \text{ for all } x, y \in U.
$$

This implies that

$$
F_2(x)d_1(y) + xd_1d_2(y) + F_1(x)d_2(y) = 0 \text{ for all } x, y \in U. \tag{3.6}
$$

Replacing *x* by *zx* in (3.6) , we have

$$
F_2(zx)d_1(y) + zx d_1 d_2(y) + F_1(zx)d_2(y) = 0 \text{ for all } x, y, z \in U.
$$

\n
$$
(d_2(z)g(x) + zF_2(x))d_1(y) + zx d_1 d_2(y) + (d_1(z)g(x) + zF_1(x))d_2(y) = 0.
$$

\n
$$
(d_2(z)g(x) + zF_2(x))d_1(y) + zx d_1 d_2(y) + (zF_1(x) + d_1(z)g(x))d_2(y) = 0.
$$

\n
$$
d_2(z)g(x)d_1(y) + zF_2(x)d_1(y) + zx d_1 d_2(y) + zF_1(x)d_2(y) + d_1(z)g(x)d_2(y) = 0.
$$

\n
$$
d_2(z)xd_1(y) + z(F_2(x)d_1(y) + xd_1 d_2(y) + F_1(x)d_2(y)) + d_1(z)xd_2(y) = 0.
$$

Since the middle summand is 0 by (3.6) , we have

$$
d_2(z) \, d_1(y) + d_1(z) \, d_2(y) = 0 \text{ for all } x, \, y, \, z \in U.
$$

But this is just [\(3.2\)](#page-11-0) of Theorem [3.2,](#page-10-1) so we argue as in the proof of Theorem [3.2](#page-10-1) that $d_1 = 0$ or $d_2 = 0$. It now follows from [\(3.6\)](#page-13-0) that

$$
F_2(x)d_1(y) + F_1(x)d_2(y) = 0 \text{ for all } x, y \in U.
$$

If one of d_1 , d_2 is nonzero, then F_1 or F_2 is 0 by Theorem [3.2,](#page-10-1) so we assume that $d_1 = d_2 = 0$. Then $F_1F_2(xy) = 0 = F_1(F_2(x)y) = F_2(x)F_1(y)$ for all $x, y \in U$, so that $F_2(U)F_1(U) = \{0\}$. Applying Lemma [2.13,](#page-6-1) we conclude that $F_1 = 0$ or $F_2 = 0$.

We now consider a somewhat different condition that elements of $F_1(U)$ and $F_2(U)$ anti-commute.

Theorem 3.5 *Let N be a 2-torsion free 3-prime near ring with nonzero semigroup ideal U ; and let F*¹ *and F*² *be generalized semiderivations on N with associated semiderivations d₁ and d₂ respectively such that* $F_1(U^2) \subseteq U$ and $F_2(U^2) \subseteq U$ and *a map g associated with* d_1 *and* d_2 *such that* $g(uv) = g(u)g(v)$ *for all* $u, v \in U$ *and* $q(U) = U$. If

$$
F_1(x)F_2(y) + F_2(y)F_1(x) = 0 \text{ for all } x, y \in U,
$$
\n(3.7)

then $F_1 = 0$ *or* $F_2 = 0$ *.*

Proof Assume that $F_1 \neq 0$ and $F_2 \neq 0$. Note that if $w \in F_2(U^2)$, $-w \in F_2(U)$; and apply Lemma [2.4](#page-2-6) to get $(uv)w = w(uv)$ for all $u, v \in F_1(U)$ and $w \in F_2(U^2)$. It follows by Lemma [2.20](#page-8-4) that $F_1(U)F_1(U) \subseteq Z$, and it is easy to see that

$$
F_1(x)F_1(y)(F_1(x)F_1(y) - F_1(y)F_1(x)) = 0
$$
 for all $x, y \in U$.

This implies that

$$
F_1(y)F_1(x)(F_1(x)F_1(y) - F_1(y)F_1(x)) = 0
$$
 for all $x, y \in U$.

Since $F_1(x)F_1(y)$ and $F_1(y)F_1(x)$ are central, Lemma [2.1\(](#page-2-2)i) shows that either both are zero or one can be cancelled to yield

$$
F_1(x)F_1(y) = F_1(y)F_1(x).
$$

Thus $[F_1(U), F_1(U)] = \{0\}$ and by Lemma [2.20,](#page-8-4) $F_1(U) \subseteq Z$, hence *N* is a commu-tative ring by Theorem [3.1.](#page-9-1) This fact together with [\(3.7\)](#page-14-0) gives $F_1(U)F_2(U) = \{0\}$. Contradicting our assumption that $F_1 \neq 0 \neq F_2$. Therefore $F_1 = 0$ or $F_2 = 0$ as required.

If *U* is closed under addition, then $F(U^2) \subseteq U$ for any generalized semiderivation *F*; hence we have

Corollary 3.6 *Let N be a 2-torsion free 3-prime near ring and U be a nonzero semigroup ideal of N which is closed under addition. If F*¹ *and F*² *are generalized semiderivations on N with associated semiderivations d*¹ *and d*² *respectively and a map g associated with* d_1 *and* d_2 *such that* $g(uv) = g(u)g(v)$ *for all* $u, v \in U$ *and* $g(U) = U$. *if*

$$
F_1(x)F_2(y) + F_2(y)F_1(x) = 0 \text{ for all } x, y \in U,
$$

then $F_1 = 0$ *or* $F_2 = 0$ *.*

We now replace the hypothesis that $F_1(U) \subseteq U$ *and* $F_2(U) \subseteq U$ *in Theorem* [3.5](#page-13-1) *by some commutativity hypothesis.*

Theorem 3.7 *Let N be a 2-torsion free 3-prime near ring with nonzero semigroup ideal U ; and let F*¹ *and F*² *be generalized semiderivations on N with associated semiderivations d*¹ *and d*² *respectively and a map ^g associated with d*¹ *and d*² *such that* $g(U) = U$ *and* $g(uv) = g(u)g(v)$ *for all* $u, v \in U$. If

$$
F_1(x)F_2(y) + F_2(y)F_1(x) = 0 \text{ for all } x, y \in U,
$$

then $F_1 = 0$ *or* $F_2 = 0$ *and one of the following is satisfied: (a)* $d_1(Z) \neq \{0\}$ *and* $d_2(Z) \neq \{0\};$ (*b*) $U \cap Z \neq \{0\}.$

Proof (a) Let $z_1 \in Z$ such that $d_1(z_1) \neq 0$. Then for all $x, y \in U$, we have

$$
F_1(z_1x)F_2(y) + F_2(y)F_1(z_1x) = 0.
$$

\n
$$
(d_1(z_1)g(x) + z_1F_1(x))F_2(y) + F_2(y)(F_1(x)z_1 + g(x)d_1(z_1)) = 0.
$$

\n
$$
d_1(z_1)g(x)F_2(y) + z_1F_1(x)F_2(y) + F_2(y)F_1(x)z_1 + F_2(y)g(x)d_1(z_1) = 0.
$$

\n
$$
d_1(z_1)xF_2(y) + z_1(F_1(x)F_2(y) + F_2(y)F_1(x)) + F_2(y)xd_1(z_1) = 0.
$$

It follows that

$$
d_1(z_1)xF_2(y) + F_2(y)xd_1(z_1) = 0
$$
 for all $x, y \in U$.

Choosing $z_2 \in Z$ such that $d_2(z_2) \neq 0$ and using a similar argument, we now get

$$
xy + yx = 0 \text{ for all } x, y \in U;
$$

and applying Lemma [2.4](#page-2-6) with $S = U$ and $T = U^2$ shows that U^2 centralizes U^2 , so that $U^2 \subset Z$ by Lemma [2.1\(](#page-2-2)iii) and hence *N* is commutative ring by Lemma [2.3.](#page-2-3) It now follows that $F_1(x)F_2(y) = F_2(y)F_1(x) = -F_2(y)F_1(x)$ for all $x, y \in U$. Hence $F_1(U)F_2(U) = \{0\}$. Therefore $F_1 = 0$ or $F_2 = 0$.

(b) We assume that $F_1 \neq 0$ and $F_2 \neq 0$. Let $z_0 \in (U \cap Z) \setminus \{0\}$. By Lemma [2.17,](#page-7-1) $F_1(z_0) \in Z$; hence if $F_1(z_0) \neq 0$ the condition

$$
F_1(z_0)F_2(x) + F_2(x)F_1(z_0) = 0
$$
 for all $x \in U$

gives $2F_2(x) = 0 = F_2(x)$ for all $x \in U$, so that $F_1 = 0$ by Lemma [2.11.](#page-5-1) Therefore, $F_1(z_0) = 0$ and similarly $F_2(z_0) = 0$. Now $z_0^2 \in (U \cap Z) \setminus \{0\}$ also, so $F_1(z_0^2) = 0$ $0 = F_2(z_0^2)$; and since $F_1(z_0^2) = F_1(z_0)z_0 + g(z_0)d_1(z_0) = z_0d_1(z_0)$ and $F_2(z_0^2) =$
 $F_2(z_0)z_0 + g(z_0)d_2(z_0) = z_0d_2(z_0)$ we have $d_2(z_0) = d_2(z_0) = 0$. Observing that $F_2(z_0)z_0 + g(z_0)d_2(z_0) = z_0d_2(z_0)$, we have $d_1(z_0) = d_2(z_0) = 0$. Observing that $F_1(z_0x) = F_1(z_0)x + g(z_0)d_1(x) = F_1(z_0)x + z_0d_1(x)$ and $F_1(xz_0) = F_1(x)z_0 +$ $g(x)d_1(z_0) = F_1(x)z_0 + xd_1(z_0)$ for all $x \in N$, we see that $F_1(x) = d_1(x)$ for all $x \in N$, So that F_1 is a semiderivation; and similarly F_2 is a semiderivation. We can now derive a contradiction as in the proof of Theorem [3.5,](#page-13-1) with Lemmas [2.8](#page-3-1) and [2.18](#page-7-2) used instead of Lemma [2.20.](#page-8-4)

4 Some Commutativity Conditions

The skew-commutativity hypothesis of Theorems [3.4](#page-12-2) and [3.5](#page-13-1) suggests investigating conditions of the form $F_1(x)F_2(y) + F_2(y)F_1(x) \in Z$ or $xF(y) + F(y)x \in Z$.

Theorem 4.1 *Let N be a 2-torsion free 3-prime near ring and U be a nonzero semigroup ideal of N which is closed under addition.*

 (i) Suppose N has nonzero generalized semiderivations F_1 , F_2 with associated semi*derivations d*¹ *and d*² *respectively and a map ^g associated with d*¹ *and d*² *such that* $g(U) = U$ and $g(uv) = g(u)g(v)$ for all $u, v \in U$. If $F_1(x)F_2(y) + F_2(y)F_1(x) \in$ *Z*, for all *x*, *y* ∈ *U* and at least one of $F_1(U) \cap Z$ and $F_2(U) \cap Z$ is nonzero, then *N is a commutative ring.*

(ii) If N admits a nonzero generalized semiderivation F with associated semiderivation d and a map g associated with d such that $g(U) = U$ *and* $g(uv) = g(u)g(v)$ *for all u, v* $\in U$ *and* $U \cap Z \neq \{0\}$ *and* $x F(y) + F(y)x \in Z$ *, for all x, y* $\in U$ *, then N is commutative ring.*

Proof (i) Assume that $F_1(U) \cap Z \neq \{0\}$. Let $x \in U$ such that $F_1(x) \in Z \setminus \{0\}$. Then $F_1(x)F_2(y) + F_2(y)F_1(x) = 2F_1(x)F_2(y) = F_1(x)F_2(2y) \in Z$ for all $y \in U$. Since *F*₁(*x*) ∈ *Z*\{0}, Lemma [2.1\(](#page-2-2)ii) gives *F*₂(2*y*) ∈ *Z* for all *y* ∈ *U* -i.e. *F*₂(2*U*) ⊆ *Z*. Since $0 \in Z$, we get $F_2(2U) = \{0\}$ -i.e. $2F_2(U) = \{0\}$. But *N* is 2-torsion free, we get $F_2(U) = \{0\}$ would contradict our hypothesis that $F_2 \neq 0$; hence $F_2(2U) \neq \{0\}$ and we may choose $y \in U$ such that $F_2(2y) \in Z \setminus \{0\}$. Since $2U \subseteq U$, this shows that *F*₂(2*y*) and $2F_2(2y) = F_2(4y)$ are in *F*₂(*U*)∩ *Z*\{0}, so that for all *x* ∈ *U*, $F_1(x)(2F_2(2y)) \in Z$ and hence $F_1(x) \in Z$. Thus, $F_1(U) \subseteq Z$ and by Theorem [3.1,](#page-9-1) *N* is a commutative ring.

(ii) Essentially the same argument yields $U \subseteq Z$, and the result follows by Lemma [2.3.](#page-2-3)

Theorem 4.2 *Let N be a 2-torsion free 3-prime near ring and U be a nonzero semigroup ideal of N which is closed under addition. Suppose N admits nonzero generalized semiderivations* F_1 *and* F_2 *with associated semiderivations* d_1 *and d*₂ *respectively and a map g associated with* d_1 *<i>and* d_2 *such that* $g(U) = U$ *and* $g(uv) = g(u)g(v)$ for all $u, v \in U$. Suppose that $F_1(x)F_2(y) + F_2(y)F_1(x) \in Z$, *for all x*, $y \in U$ *and* $F_1(U) \subseteq U$; $F_2(U) \subseteq U$. If $F_1(N) \cap Z \neq \{0\}$ or $F_2(N) \cap Z \neq \emptyset$ {0}*, then N is a commutative ring.*

Proof By Corollary [3.6,](#page-14-1) we cannot have $F_1(x)F_2(y) + F_2(y)F_1(x) = 0$ for all $x, y \in U$, hence there exist $x_0, y_0 \in U$ such that $u_0 = F_1(x_0)F_2(y_0) + F_2(y_0)$ *F*₁(x_0) ∈ ($Z \setminus \{0\}$) ∩ *U*. Since *F*₁(Z) and *F*₂(Z) are central by Lemma [2.17,](#page-7-1) if $F_1(u_0) \neq 0$ or $F_2(u_0) \neq 0$ we have $F_1(U) \cap Z \neq \{0\}$ or $F_2(U) \cap Z \neq \{0\}$ and our conclusion follows by Theorem [4.1\(](#page-16-0)i).

Assume, therefore, that $F_1(u_0) = F_2(u_0) = 0$. For all $x, y \in U$, $F_1(u_0x)F_2$ $(u_0y) + F_2(u_0y)F_1(u_0x) = u_0^2(d_1(x)d_2(y) + d_2(y)d_1(x)) \in Z$, hence $d_1(x)d_2(y)$ + $d_2(y)d_1(x) \in Z$; and if $d_1(u_0) \neq 0$ or $d_2(u_0) \neq 0$ our desired conclusion follows by Lemma [2.15.](#page-7-3) Therefore we may assume $d_1(u_0) = d_2(u_0) = 0$. For all $x, y \in$ $N, F_1(xu_0)F_2(yu_0) + F_2(yu_0)F_1(xu_0) \in Z$, so $u_0^2(F_1(x)F_2(y) + F_2(y)F_1(x)) \in Z$

and $F_1(x)F_2(y) + F_2(y)F_1(x) \in Z$. Since $F_1(N) \cap Z \neq \{0\}$ or $F_2(N) \cap Z \neq \{0\}$, our result follows by Theorem [4.1\(](#page-16-0)i).

Acknowledgments The authors would like to thank the referee for his valuable suggestions.

References

- 1. Ali, A., Bell, H.E., Miyan, P.: Generalized derivations on prime near rings. Int. J. Math. Math. Sci. Article ID 170749, 5 p. (2013)
- 2. Bell, H.E.: On Derivations in Near-Rings II, pp. 191–197. Kluwer Academic Publishers, Netherlands (1997)
- 3. Bell, H.E.: On prime near-rings with generalized derivation. Int. J. Math. Math. Sci. Article ID 490316, 5 p. (2008)
- 4. Bell, H.E., Argac, N.: Derivations, products of derivations and commutativity in near rings. Algebr. Colloq. **8**(4), 399–407 (2001)
- 5. Bergen, J.: Derivations in prime rings. Can. Math. Bull. **26**, 267–270 (1983)