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Abstract Let N be a near ring. An additive mapping F : N −→ N is said to be
a generalized semiderivation on N if there exists a semiderivation d : N −→ N
associated with a function g : N −→ N such that F(xy) = F(x)y + g(x)d(y) =
d(x)g(y) + xF(y) and F(g(x)) = g(F(x)) for all x, y ∈ N . The purpose of the
present paper is to prove some theorems in the setting of semigroup ideal of a
3-prime near ring admitting a pair of suitably-constrained generalized semideriva-
tions, thereby extending some known results on derivations and generalized deriva-
tions. We show that if N is 2-torsion free and F1 and F2 are generalized semideriva-
tions such that F1F2 = 0, then F1 = 0 or F2 = 0; we prove other theorems asserting
triviality of F1 or F2; and we also prove some commutativity theorems.
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1 Introduction

Throughout the paper, N denotes a zero-symmetric left near ring with multiplicative
centre Z ; and for any pair of elements x, y ∈ N , [x, y] denotes the commutator
xy − yx . A near ring N is called zero-symmetric if 0x = 0, for all x ∈ N (recall
that left distributivity yields that x0 = 0). The near ring N is said to be 3-prime
if xNy = {0} for x, y ∈ N implies that x = 0 or y = 0. A near ring N is called
2-torsion free if (N ,+) has no element of order 2. A nonempty subset U of N is
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called a semigroup right (resp. semigroup left) ideal if UN ⊆ U (resp. NU ⊆ U );
and if U is both a semigroup right ideal and a semigroup left ideal, it is called
a semigroup ideal. An additive mapping f : N −→ N is said to be a right (resp.
left) generalized derivationwith associated derivation D if f (xy) = f (x)y + xD(y)
(resp. f (xy) = D(x)y + x f (y)), for all x, y ∈ N , and f is said to be a generalized
derivationwith associated derivation D on N if it is both a right generalized derivation
and a left generalized derivation on N with associated derivation D. Motivated by a
definition given by Bergen [5] for rings, we define an additive mapping d : N −→ N
is said to be a semiderivation on a near ring N if there exists a function g : N −→ N
such that (i) d(xy) = d(x)g(y) + xd(y) = d(x)y + g(x)d(y) and (i i) d(g(x)) =
g(d(x)), for all x, y ∈ N . In case g is the identity map on N , d is of course just
a derivation on N , so the notion of semiderivation generalizes that of derivation.
But the generalization is not trivial for example take N = N1 ⊕ N2, where N1 is a
zero symmetric near ring and N2 is a ring. Then the map d : N −→ N defined by
d((x, y)) = (0, y) is a semiderivation associated with function g : N −→ N such
that g(x, y) = (x, 0). However d is not a derivation on N . An additive mapping F :
N → N is said to be a generalized semiderivation of N if there exists a semiderivation
d : N −→ N associated with a map g : N −→ N such that (i) F(xy) = F(x)y +
g(x)d(y) = d(x)g(y) + xF(y) and (i i) F(g(x)) = g(F(x)) for all x, y ∈ N . All
semiderivations are generalized semiderivations. If g is the identity map on N , then
all generalized semiderivations are merely generalized derivations, again the notion
of generalized semiderivation generalizes that of generalized derivation. Moreover,
the generalization is not trivial as the following example shows:

Example 1.1 Let S be a 2-torsion free left near ring and let

N =
⎧
⎨

⎩

⎛

⎝
0 x y
0 0 0
0 0 z

⎞

⎠ | x, y, z ∈ S

⎫
⎬

⎭
.

Define maps F, d, g : N → N by

F

⎛

⎝
0 x y
0 0 0
0 0 z

⎞

⎠ =
⎛

⎝
0 xy 0
0 0 0
0 0 0

⎞

⎠ ; d

⎛

⎝
0 x y
0 0 0
0 0 z

⎞

⎠ =
⎛

⎝
0 0 y
0 0 0
0 0 z

⎞

⎠

and

g

⎛

⎝
0 x y
0 0 0
0 0 z

⎞

⎠ =
⎛

⎝
0 x 0
0 0 0
0 0 0

⎞

⎠ .

It can be verified that N is a left near ring and F is a generalized semiderivation
with associated semiderivation d and a map g associated with d. However F is not
a generalized derivation on N .
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2 Preliminary Results

We begin with several lemmas, most of which have been proved elsewhere.

Lemma 2.1 ([2, Lemmas 1.2 and 1.3]) Let N be a 3-prime near ring.

(i) If z ∈ Z\{0}, then z is not a zero divisor.
(ii) If Z\{0} and x is an element of N for which xz ∈ Z, then x ∈ Z.
(iii) If x is an element of N which centralizes some nonzero semigroup right ideal,

then x ∈ Z.
(iv) If Z\{0} contains an element z for which z + z ∈ Z, then (N ,+) is abelian.

Lemma 2.2 ([2, Lemmas 1.3 and 1.4]) Let N be a 3-prime near ring and U be a
nonzero semigroup ideal of N .

(i) If x ∈ N and xU = {0}, or Ux = {0}, then x = 0.
(ii) If x, y ∈ N and xUy = {0}, then x = 0 or y = 0.

Lemma 2.3 ([2, Lemma 1.5]) If N is a 3-prime near ring and Z contains a nonzero
semigroup left ideal or a nonzero semigroup right ideal, then N is a commutative
ring.

Lemma 2.4 ([4, Lemma 2.4]) Let N be an arbitrary near ring. Let S and T be non
empty subsets of N such that st = −ts for all s ∈ S and t ∈ T . If a, b ∈ S and c is
an element of T for which −c ∈ T , then (ab)c = c(ab).

Lemma 2.5 Let N be a 3-prime near ring and U be a nonzero semigroup ideal of
N . If N admits a nonzero semiderivation d of N associated with a map g, then d �= 0
on U.

Proof Let d(u) = 0, for all u ∈ U . Replacing u by xu, we get d(xu) = 0, for
all x ∈ N and u ∈ U . Thus d(x)g(u) + xd(u) = 0, for all x ∈ N and u ∈ U , i.e.,
d(x)g(u) = 0. The result follows by Lemma 2.2(i).

Lemma 2.6 Let N be a 3-prime near ring admitting a nonzero semiderivation d
with a map g such that g(xy) = g(x)g(y) for all x, y ∈ N. Then N satisfies the
following partial distributive law:

(d(x)y + g(x)d(y))z = d(x)yz + g(x)d(y)z for all x, y, z ∈ N .

Proof Let x, y, z ∈ N , by defining d we have

d(xyz) = d(xy)z + g(xy)d(z)

= (d(x)y + g(x)d(y))z + g(x)g(y)d(z). (2.1)



278 A. Ali and F. Ali

On the other hand,

d(xyz) = d(x)yz + g(x)d(yz)

= d(x)yz + g(x)(d(y)z + g(y)d(z))

= d(x)yz + g(x)d(y)z + g(x)g(y)d(z). (2.2)

Combining (2.1) and (2.2), we obtain

(d(x)y + g(x)d(y))z + g(x)g(y)d(z)

= d(x)yz + g(x)d(y)z + g(x)g(y)d(z) for all x, y, z ∈ N .

(d(x)y + g(x)d(y))z = d(x)yz + g(x)d(y)z for all x, y, z ∈ N .

Lemma 2.7 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N . If d is a nonzero semiderivation of N associated with a
map g such that g(uv) = g(u)g(v), for all u, v ∈ U. If a ∈ N and ad(U ) = {0}
(or d(U )a = {0}), then a = 0.

Proof Let ad(u) = 0, for all u ∈ U . Replacing u by uv, a(d(u)g(v) + ud(v)) = 0,
for all u, v ∈ U . Thus ad(u)g(v) + aud(v) = 0, for all u, v ∈ U or aud(v) = 0, for
all u, v ∈ U . Choosing v such that d(v) �= 0 and applying Lemma 2.2(ii), we get
a = 0.

Lemma 2.8 Let N be a 2-torsion free 3-prime near ring and U be a nonzero semi-
group ideal of N . Suppose that d is a semiderivation on N associated with a map g
such that g(U ) = U. If d2(U ) = {0}, then d = 0.

Proof Supposed2(U ) = {0}. Then foru, v ∈ U exploit the definitionofd in different
ways to obtain

0 = d2(uv) = d(d(uv)) = d(d(u)v + g(u)d(v)) for all u, v ∈ U,

= d2(u)v + g(d(u))d(v) + d(g(u))d(v) + g(u)d2(v),

= d(g(u))d(v) + d(g(u))d(v).

Note that g(d(u)) = d(g(u)) and g(U ) = U , we get

2d(u)d(v) = 0 for all u, v ∈ U.

Since N is a 2-torsion free, we get

d(u)d(v) = 0 for all u, v ∈ U.
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Replacing v by wv in the above relation, we get

d(u)d(wv) = 0 for all u, v, w ∈ U.

d(u)(d(w)v + g(w)d(v)) = 0 for all u, v, w ∈ U.

d(u)d(w)v + d(u)g(w)d(v) = 0 for all u, v, w ∈ U.

This implies that
d(u)g(w)d(v) = 0 for all u, v, w ∈ U.

d(u)wd(v) = 0 for all u, v, w ∈ U.

d(U )Ud(U ) = {0}.

Thus we obtain that d = 0 on U by Lemma 2.2(ii).

Lemma 2.9 Let N be a 3-prime near ring and U be a nonzero semigroup ideal of
N . Suppose d is a nonzero semiderivation of N associated with a map g such that
g(uv) = g(u)g(v), for all u, v ∈ U. If d(U ) ⊆ Z, then N is a commutative ring.

Proof We begin by showing that (N ,+) is abelian, which by Lemma 2.1(iv) is
accomplished by producing z ∈ Z\{0} such that z + z ∈ Z . Let a be an element of
U such that d(a) �= 0. Then for all x ∈ N , ax ∈ U and ax + ax = a(x + x) ∈ U ,
so that d(ax) ∈ Z and d(ax) + d(ax) ∈ Z ; hence we need only show that there
exists x ∈ N such that d(ax) �= 0. Suppose this is not the case, so that d((ax)a) =
0 = d(ax)g(a) + axd(a) = axd(a) for all x ∈ N . Since d(a) is not zero divisor by
Lemma 2.1(i), we get aN = {0}, so that a = 0—a contradiction. Therefore (N ,+)

is abelian as required.
We are given that [d(u), x] = 0 for all u ∈ U and x ∈ N . Replacing u by uv,

we get [d(uv), x] = 0, which yields [d(u)v + g(u)d(v), x] = 0 for all u, v ∈ U and
x ∈ N . Since (N ,+) is abelian and d(U ) ⊆ Z , we have

d(u)[v, x] + d(v)[x, g(u)] = 0 for all u, v ∈ U and x ∈ N . (2.3)

Replacing x by g(u), we obtain d(u)[v, g(u)] = 0 for all u, v ∈ U ; and choosing
u ∈ U such that d(u) �= 0 and applying Lemma 2.1(iii), we get g(u) ∈ Z . It then
follows from (2.3) that d(u)[v, x] = 0 for all v ∈ U and x ∈ N ; therefore U ⊆ Z
and Lemma 2.3 completes the proof.

Lemma 2.10 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N . Suppose that d is a nonzero semiderivation of N associ-
ated with a map g such that g(U ) = U and g(uv) = g(u)g(v) for all u, v ∈ U. If
[d(U ), d(U )] = {0}, then N is a commutative ring.
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Proof By hypothesis [d(U ), d(U )] = {0}. Thus d(u)d(vd(w)) = d(vd(w))d(u),
for all u, v, w ∈ U , i.e., d(u)(d(v)g(d(w)) + vd2(w)) = (d(v)g(d(w)) + vd2(w))

d(u), for all u, v, w ∈ U . Then by Lemma 2.6, we get d(u)d(v)g(d(w)) + d(u)
vd2(w) = d(v)g(d(w))d(u) + vd2(w)d(u). This implies that d(u)d(v)d(g(w)) +
d(u)vd2(w) = d(v)d(g(w))d(u) + vd2(w)d(u) i.e., d(u)d(v)d(w) + d(u)vd2

(w) = d(v)d(w)d(u) + vd2(w)d(u) for all u, v, w ∈ U and since [d(U ), d(U )] =
{0}, we obtain

d(u)vd2(w) = vd2(w)d(u) for all u, v, w ∈ U. (2.4)

Replace v by xv, to get

d(u)xvd2(w) = xvd2(w)d(u) for all u, v, w ∈ U and x ∈ N .

Using (2.4), the above relation yields that d(u)xvd2(w) = xd(u)vd2(w), for all
u, v, w ∈ U and x ∈ N , i.e., [d(u), x]vd2(w) = 0, for all u, v, w ∈ U and x ∈ N by
Lemma2.6. Thus [d(u), x]Ud2(w) = 0, for all u, w ∈ U and x ∈ N . Since d2(U ) �=
0 by Lemma 2.8, Lemma 2.2(ii) gives d(U ) ⊆ Z , and the result follows by Lemma
2.9.

Lemma 2.11 Let N be a 3-prime near ring and U be a nonzero semigroup ideal of
N . If F is a nonzero generalized semiderivation of N with associated semiderivation
d and a map g associated with d such that g(U ) = U, then F �= 0 on U.

Proof Let F(u) = 0 for all u ∈ U . Replacing u by ux , we get F(ux) = 0 for all
u ∈ U and x ∈ N . Thus

F(u)x + g(u)d(x) = 0 = Ud(x) for all x ∈ N

and it follows by Lemma 2.2(i) that d = 0. Therefore, we have

F(xu) = F(x)u = 0 for all u ∈ U for all x ∈ N

and another appeal to Lemma 2.2(i) gives F = 0, which is a contradiction.

Lemma 2.12 Let N be a 3-prime near ring admitting a generalized semiderivation
F associated with a semiderivation d. If g is an onto map associated with d such that
g(xy) = g(x)g(y) for all x, y ∈ N, then N satisfies the following partial distributive
laws:

(i) (F(x)y + g(x)d(y))z = F(x)yz + g(x)d(y)z for all x, y, z ∈ N .

(ii) (d(x)g(y) + xF(y))z = d(x)g(y)z + xF(y)z for all x, y, z ∈ N .

Proof (i) Let x, y, z ∈ N ,

F(xyz) = F(xy)z + g(xy)d(z)

= (F(x)y + g(x)d(y))z + g(x)g(y)d(z).
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On the other hand,

F(xyz) = F(x)yz + g(x)d(yz)

= F(x)yz + g(x)(d(y)z + g(y)d(z))

= F(x)yz + g(x)d(y)z + g(x)g(y)d(z).

Combining both expressions of F(xyz), we obtain

(F(x)y + g(x)d(y))z = F(x)yz + g(x)d(y)z for all x, y, z ∈ N .

(ii) For all x, y, z ∈ N we have F((xy)z) = F(xy)z + g(xy)d(z) = (d(x)g(y) +
xF(y))z + g(x)g(y)d(z) and F(x(yz)) = d(x)g(yz) + xF(yz) = d(x)g(y)
g(z) + x(F(y)z + g(y)d(z)) = d(x)g(y)z + xF(y)z + g(x)g(y)d(z). Comparing
the two expression, we get the required result.

Lemma 2.13 Let N be a 3-prime near ring and U be a nonzero semigroup ideal
of N . Suppose that F is a nonzero generalized semiderivation of N with associated
semiderivation d and a map g associated with d such that g(U ) = U and g(uv) =
g(u)g(v) for all u, v ∈ U. If a ∈ N and aF(U ) = 0 (or F(U )a = 0), then a = 0.

Proof Suppose that aF(U ) = {0}. Then for u, v ∈ U

aF(uv) = aF(u)v + ag(u)d(v) = aud(v) = 0 for all u, v ∈ U and a ∈ N .

So by Lemma 2.2(ii), a = 0 or d(U ) = {0}. If d(U ) = {0}, then

ad(u)g(v) + auF(v) = 0 = auF(v) for all u, v ∈ U ;

and since F(U ) �= {0} by Lemma 2.11, a = 0.

Lemma 2.14 Let N be a 3-prime near ring admitting a generalized semiderivation
F associated with a semiderivation d and an additive map g associated with d. Then
N satisfies the following laws:

(i) d(x)y + g(x)d(y) = g(x)d(y) + d(x)y for all x, y ∈ N .

(ii) d(x)g(y) + xd(y) = xd(y) + d(x)g(y) for all x, y ∈ N .

(iii) F(x)y + g(x)d(y) = g(x)d(y) + F(x)y for all x, y ∈ N .

(iv) d(x)g(y) + xF(y) = xF(y) + d(x)g(y) for all x, y ∈ N .

Proof (i) d(x(y + y)) = d(x)(y + y) + g(x)d(y + y) = d(x)y + d(x)y + g(x)
d(y) + g(x)d(y), and d(xy + xy) = d(xy) + d(xy) = d(x)y + g(x)d(y) + d(x)
y + g(x)d(y). Comparing these two equations, we get the desired result.
(ii) Again, calculate d((x + x)y) and d(xy + xy) and compare.
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(iii) F(x(y + y)) = F(x)(y + y) + g(x)d(y + y) = F(x)y + F(x)y + g(x)
d(y) + g(x)d(y), and F(xy + xy) = F(x)y + g(x)d(y) + F(x)y + g(x)d(y).
Comparing these two equations, we get the desired result.
(iv) Again, calculate F((x + x)y) and F(xy + xy) and compare.

Lemma 2.15 Let N be a 3-prime near ring and U be a nonzero semigroup ideal
of N . Suppose that N admits nonzero semiderivations d1, d2 associated with a map
g such that g(uv) = g(u)g(v) for all u, v ∈ U. If d1(x)d2(y) + d2(y)d1(x) ∈ Z for
all x, y ∈ U and at least one of d1(U ) ∩ Z and d2(U ) ∩ Z is nonzero, then N is a
commutative ring.

Proof Assume that d1(U ) ∩ Z �= {0}. Let x ∈ U such that d1(x) ∈ Z\{0}, and
y ∈ U . Thend1(x)d2(y) + d2(y)d1(x) = d1(x)(2d2(y)) = d1(x)(d2(2y)) ∈ Z . There-
fore, d2(2U ) ⊆ Z . Since 2U is nonzero semigroup left ideal, our conclusion follows
by Lemma 2.9, then N is commutative ring.

Lemma 2.16 Let N be a 2-torsion free 3-prime near ring. If U is a nonzero semi-
group ideal of N , then 2U �= {0} and d(2U ) �= {0} for any nonzero semiderivation
d associated with a map g such that g(U ) = U.

Proof Let x ∈ N with x + x �= 0.Then for everyu ∈ U ,u(x + x) = ux + ux ∈ 2U ;
and by Lemma 2.2(i), we get {0} �= U (x + x) ⊆ 2U . Since 2U is a semigroup left
ideal, it follows by Lemma 2.5 that d(2U ) �= {0}.
Lemma 2.17 Let N be a 3-prime near ring. If F is a generalized semiderivation
with associated semiderivation d and amap g associated with d such that g(U ) = U,
then F(Z) ⊆ Z.

Proof Let z ∈ Z and x ∈ N . Then F(zx) = F(xz); that is F(z)x + g(z)d(x) =
d(x)g(z) + xF(z).ApplyingLemma2.14(iii),wegetg(z)d(x) + F(z)x = d(x)g(z)
+ xF(z); zd(x) + F(z)x = d(x)z + xF(z). It follows that F(z)x = xF(z) for all
x ∈ N , so F(Z) ⊆ Z .

Lemma 2.18 Let N be a 3-prime near ring and U be a nonzero semigroup ideal
of N . Suppose that N admits a semiderivation d associated with a map g such that
g(U ) = U and g(uv) = g(u)g(v) for all u, v ∈ U. If d2(U ) �= {0} and a ∈ N such
that [a, d(U )] = {0}, then a ∈ Z.

Proof Let C(a) = {x ∈ N |ax = xa}. Note that d(U ) ⊆ C(a). Thus, if y ∈ C(a)
and u ∈ U , both d(yu) and d(u) are in C(a); hence (d(y)g(u) + yd(u))a =
a(d(y)g(u) + yd(u)) and d(y)g(u)a + yd(u)a = ad(y)g(u) + ayd(u); d(y)ua +
yd(u)a = ad(y)u + ayd(u). Since yd(u) ∈ C(a), we conclude that d(y)ua = ad
(y)u. Thus

d(C(a))U ⊆ C(a). (2.5)

Choosing z ∈ U such that d2(z) �= 0, and let y = d(z). Then y ∈ C(a); and
by (2.5), d(y)u ∈ C(a) and d(y)uv ∈ C(a) for all u, v ∈ U . Thus, 0 = [a, d(y)
uv] = ad(y)uv − d(y)uva = d(y)uav − d(y)uva = d(y)u(av − va). Thus d(y)
U (av − va) = 0 for all v ∈ U ; and by Lemma 2.2(ii), a centralizes U .
By Lemma 2.1(iii), a ∈ Z .
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Lemma 2.19 Let N be a 3-prime near ring and F be a generalized semiderivation
of N with associated nonzero semiderivation d and a map g associated with d
such that g(U ) = U and g(uv) = g(u)g(v) for all u, v ∈ U. If d(F(N )) = {0}, then
d2(x)d(y) + d(x)d2(y) = 0 for all x, y ∈ N and F(d(N )) = {0}.
Proof Assume that d(F(x)) = 0 for all x ∈ N . It follows that d(F(xy)) =
d(F(x)y) + d(g(x)d(y)) = d(F(x)y) + d(xd(y)) = 0 for all x, y ∈ N , that is,

d(F(x))g(y) + F(x)d(y) + d(x)g(d(y)) + xd2(y) = 0 for all x, y ∈ N .

This implies that
F(x)d(y) + d(x)d(g(y)) + xd2(y) = 0.

F(x)d(y) + d(x)d(y) + xd2(y) = 0 for all x, y ∈ N . (2.6)

Applying d again, we get

F(x)d2(y) + d2(x)d(y) + d(x)d2(y) + d(x)d2(y) + xd3(y) = 0 for all x, y ∈ N .

(2.7)
Taking d(y) instead of y in (2.6) gives F(x)d2(y) + d(x)d2(y) + xd3(y) = 0, hence
(2.7) yields

d2(x)d(y) + d(x)d2(y) = 0 for all x, y ∈ N . (2.8)

Now, substitute d(x) for x in (2.6), to obtain F(d(x))d(y) + d2(x)d(y) + d(x)d2

(y) = 0; and use (2.8) to conclude that F(d(x))d(y) = 0 for all x, y ∈ N . Thus, by
Lemma 2.7, F(d(x)) = 0 for all x ∈ N .

Lemma 2.20 Let N be a 2-torsion free 3-prime near ring and F be a nonzero gener-
alized semiderivation of N with associated semiderivation d and a map g associated
with d such that g(U ) = U; g(uv) = g(u)g(v) for all u, v ∈ U and F(V ) ⊆ U for
some nonzero semigroup ideal V contained in U. If a ∈ N and [a, F(U )] = {0},
then a ∈ Z.

Proof If d = 0, then for all x ∈ U and y ∈ N , aF(x)y = F(x)ya; hence F(U )

[a, y] = {0} and a ∈ Z by Lemma 2.13. Therefore, we may assume d �= 0. Let
C(a) denotes the centralizer of a, and let y ∈ C(a) for all u ∈ U , F(yu) ∈ C(a)
-i.e. (d(y)g(u) + yF(u))a = a(d(y)g(u) + yF(u)) and by Lemma 2.12(ii) d(y)
g(u)a + yF(u)a = ad(y)g(u) + ayF(u);d(y)ua + yF(u)a = ad(y)u + ayF(u).
Now yF(u)a = ayF(u), and it follows that d(y)u ∈ C(a); therefore d(C(a))U is a
semigroup right ideal which centralizes a, and if d(C(a))U �= {0}. Lemma 2.1(iii)
yields a ∈ Z . Assume now that d(C(a))U = {0}, in which case d(C(a)) = {0} and
hence d(F(U )) = {0}. It follows that for all x ∈ N and v ∈ V , d(F(xF(v))) =
0 = d(F(x)F(v) + g(x)d(F(v))) = d(F(x)F(v)) = d(F(x))g(F(v)) + F(x)d
(F(v)) = d(F(x))F(v), so that d(F(N ))F(V ) = {0} and by Lemma 2.13,
d(F(N )) = {0}. By Lemma 2.19
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d2(x)d(y) + d(x)d2(y) = 0 for all x, y ∈ N and F(d(N )) = {0}. (2.9)

As in the proof of Theorem 4.1 of [3], we calculate F(d(x)d(y)) in twoways, obtain-
ing F(d(x)d(y)) = F(d(x))d(y) + g(d(x))d2(y) = d(g(x))d2(y) = d(x)d2(y)
and F(d(x)d(y)) = d2(x)g(d(y)) + d(x)F(d(y)) = d2(x)d(g(y)) = d2(x)d(y).
Comparing the two results, we get d(x)d2(y) = d2(x)d(y) for all x, y ∈ N , which
together with (2.9) gives d2(x)d(y) = 0 for all x, y ∈ N and hence d2 = 0. But by
Lemma 2.8, this contradicts our assumption that d �= 0; thus d(C(a))U �= {0} and
our proof is complete.

3 Some Results Involving Two Generalized Semiderivations

The theorems that we prove in this section extend the results proved in [4].

Theorem 3.1 Let N be a 3-prime near ring and U be a nonzero semigroup ideal of
N . Suppose that N admits a nonzero generalized semiderivation F with associated
semiderivation d and a map g associated with d such that g(U ) = U and g(uv) =
g(u)g(v) for all u, v ∈ U. If F(U ) ⊆ Z, then (N ,+) is abelian. Moreover, if N is
2-torsion free, then N is a commutative ring.

Proof We begin by showing that (N ,+) is abelian, which by Lemma 2.1(iv) is
accomplished by producing z ∈ Z\{0} such that z + z ∈ Z . Let a be an element of
U such that F(a) �= 0. Then for all x ∈ N , ax ∈ U and ax + ax = a(x + x) ∈ U ,
so that F(ax) ∈ Z and F(ax) + F(ax) ∈ Z ; hence we need only to show that
there exists x ∈ N such that F(ax) �= 0. Suppose that this is not the case, so that
F((ax)a) = 0 = F(ax)a + g(ax)d(a) = g(a)g(x)d(a) = axd(a) for all x ∈ N .
By Lemma 2.2(ii) either a = 0 or d(a) = 0.

If d(a) = 0, then F(xa) = F(x)a + g(x)d(a); that is, F(xa) = F(x)a ∈ Z ,
for all x ∈ N . Thus, [F(u)a, y] = 0 for all y ∈ N and u ∈ U . This implies that
F(u)[a, y] = 0 for all u ∈ U and y ∈ N and Lemma 2.1(i) gives a ∈ Z . Thus,
0 = F(ax) = F(xa) = F(x)a for all x ∈ N . Replacing x by u ∈ U , we have
F(U )a = 0, and by Lemmas 2.1(i) and 2.11, we get a = 0. Thus we have a contra-
diction.

To complete the proof, we show that if N is 2-torsion free, then N is commutative.
Consider first case d = 0. This implies that F(ux) = F(u)x ∈ Z for all u ∈ U

and x ∈ N . By Lemma 2.11, we have u ∈ U such that F(u) ∈ Z\{0}, so N is com-
mutative by Lemma 2.1(ii).

Now consider the case d �= 0. Let c ∈ Z\{0}. This implies that x ∈ U , F(xc) =
F(x)c + g(x)d(c) = F(x)c + xd(c) ∈ Z . Thus (F(x)c + xd(c))y = y(F(x)c +
xd(c)) for all x, y ∈ U and c ∈ Z . Therefore, byLemma2.12(i), F(x)cy + xd(c)y =
yF(x)c + yxd(c) for all x, y ∈ U and c ∈ Z . Since d(c) ∈ Z and F(x) ∈ Z , we
obtain d(c)[x, y] = 0 for all x, y ∈ U and c ∈ Z . Let d(Z) �= {0}. Choosing c such
that d(c) �= 0 and noting that d(c) is not a zero divisor, we have [x, y] = 0 for all
x, y ∈ U . By Lemma 2.1(iii), U ⊆ Z ; hence N is commutative by Lemma 2.3.
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The remaining case is d �= 0 and d(Z) = {0}. Supposewe can show thatU ∩ Z �=
{0}. Taking z ∈ (U ∩ Z)\{0} and x ∈ N , we have F(xz) = F(x)z ∈ Z ; therefore
F(N ) ⊆ Z by Lemma 2.1(ii). Let F(x) ∈ Z for all x ∈ N .

Since d(Z) = 0, for all x, y ∈ N . We have

0 = d(F(xy)).

0 = d(F(x)y + g(x)d(y)).

0 = F(x)d(y) + g(x)d2(y) + d(g(x))g(d(y)) for all x, y ∈ Z .

Hence F(xd(y)) = −d(g(x))g(d(y)) ∈ Z for all x, y ∈ N . By hypothesis, we have
d(x)d(y) ∈ Z for all x, y ∈ N . This implies that

d(x)(d(x)d(y) − d(y)d(x)) = 0 for all x, y ∈ N .

Left multiplying by d(y), we arrive at

d(y)d(x)N (d(x)d(y) − d(y)d(x)) = {0} for all x, y ∈ N .

Since N is a 3-prime near ring, we get

[d(x), d(y)] = 0 for all x, y ∈ N .

Using Lemma 2.10, N is a commutative ring.
Assume that U ∩ Z = {0}. For each u ∈ U , F(u2) = F(u)u + g(u)d(u) =

F(u)u + ud(u) = u(F(u) + d(u)) ∈ U ∩ Z . So F(u2) = 0, thus for all u ∈ U
and x ∈ N , F(u2x) = F(u2)x + g(u2)d(x) = u2d(x) ∈ U ∩ Z . So u2d(x) = 0 and
Lemma 2.7, u2 = 0. Since F(xu) = F(x)u + g(x)d(u) = F(x)u + xd(u) ∈ Z for
all u ∈ U and x ∈ N . We have (F(x)u + xd(u))u = u(F(x)u + xd(u)) and right
multipling by u gives uxd(u)u = 0. Consequently, d(u)uNd(u)u = {0}. So that
d(u)u = 0 for all u ∈ U ,so F(u)u = 0 for all u ∈ U . But by Lemma 2.11, there
exist u0 ∈ U for which F(u0) �= 0; and F(u0) ∈ Z , we get u0 = 0, contradiction.
Therefore, U ∩ Z �= {0} as required.
Theorem 3.2 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N . Let F1 and F2 be generalized semiderivations on N with
associated semiderivations d1 and d2 respectively with at least one of d1, d2 not zero
and a map g associated with d1 and d2 such that g(uv) = g(u)g(v) for all u, v ∈ U
and g(U ) = U. If F1(x)d2(y) + F2(x)d1(y) = 0 for all x, y ∈ U, then F1 = 0 or
F2 = 0.

Proof By hypothesis

F1(x)d2(y) + F2(x)d1(y) = 0 for all x, y ∈ U. (3.1)
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Replacing x by uv in (3.1), we get

(d1(u)g(v) + uF1(v))d2(y) + (d2(u)g(v) + uF2(v))d1(y) = 0 for all u, v, y ∈ U.

Using Lemmas 2.12(ii) and 2.14(iv), we conclude that

(d1(u)g(v) + uF1(v))d2(y) + (uF2(v) + d2(u)g(v))d1(y) = 0.

d1(u)g(v)d2(y) + uF1(v)d2(y) + uF2(v)d1(y) + d2(u)g(v)d1(y) = 0.

d1(u)vd2(y) + u(F1(v)d2(y) + F2(v)d1(y)) + d2(u)vd1(y) = 0 for all u, v, y ∈ U.

Since middle summand is 0 by (3.1), we conclude that

d1(u)vd2(y) + d2(u)vd1(y) = 0 for all u, v, y ∈ U. (3.2)

Substituting yt for y in (3.2), we get

d1(u)vd2(yt) + d2(u)vd1(yt) = 0 for all u, v, y, t ∈ U.

d1(u)v(d2(y)g(t) + yd2(t)) + d2(u)v(d1(y)g(t) + yd1(t)) = 0.

Using Lemma 2.14(ii), we have

d1(u)v(d2(y)g(t) + yd2(t)) + d2(u)v(yd1(t) + d1(y)g(t)) = 0.

This implies that

d1(u)vd2(y)t + (d1(u)vyd2(t) + d2(u)vyd1(t)) + d2(u)vd1(y)t = 0.

Again the middle summand is 0, so

d1(u)vd2(y)t + d2(u)vd1(y)t = 0 for all u, v, y, t ∈ U. (3.3)

Replacing t by td1(w) in (3.3), where w ∈ U , we have

d1(u)v(d2(y)td1(w)) + d2(u)(vd1(y)t)d1(w) = 0 for all u, v, y, t, w ∈ U.

Using (3.2), we get

d1(u)v(−d1(y)td2(w)) − d1(u)vd1(y)td2(w) = 0.

This implies that

2d1(u)vd1(y)td2(w) = 0 for all u, v, y, t, w ∈ U.
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Since N is 2-torsion free, we get

d1(u)vd1(y)td2(w) = 0 for all u, v, y, t, w ∈ U.

Thusd1(U )Ud1(U )Ud2(U ) = {0}; andbyLemmas2.2(ii) and2.5, oneofd1, d2 must
be 0.Assumingwithout loss thatd1 = 0, inwhich cased2 �= 0,we get F1(U )d2(U ) =
{0}, so by Lemmas 2.7 and 2.11, we have F1 = 0.

Theorem 3.3 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N . Let F1 and F2 be generalized semiderivations on N with
associated semiderivations d1 and d2 respectively and a map g associated with d1
and d2 such that g(uv) = g(u)g(v) for all u, v ∈ U and g(U ) = U. If d1 and d2 are
not both zero and F1F2 acts on U as a generalized semiderivation with associated
semiderivation d1d2 and a map g associated with d1d2, then F1 = 0 or F2 = 0.

Proof By the hypothesis, we have

F1F2(xy) = F1F2(x)y + g(x)d1d2(y) for all x, y ∈ U.

F1F2(xy) = F1F2(x)y + xd1d2(y) for all x, y ∈ U. (3.4)

We also have

F1F2(xy) = F1(F2(xy)) = F1(F2(x)y + g(x)d2(y))

= F1(F2(x)y) + F1(g(x)d2(y))

= F1(F2(x)y) + F1(xd2(y)).

i.e.

F1F2(xy) = F1F2(x)y + g(F2(x))d1(y) + F1(x)d2(y) + g(x)d1d2(y)

= F1F2(x)y + F2(g(x))d1(y) + F1(x)d2(y) + g(x)d1d2(y)

= F1F2(x)y + F2(x)d1(y) + F1(x)d2(y) + xd1d2(y) for all x, y ∈ U. (3.5)

Comparing (3.4) and (3.5), we get

F2(x)d1(y) + F1(x)d2(y) = 0 for all x, y ∈ U.

Hence application of Theorem 3.2 yields that F1 = 0 or F2 = 0.

Theorem 3.4 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N . Let F1 and F2 be generalized semiderivations on N with
associated semiderivations d1 and d2 respectively and amap g associatedwith d1 and
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d2 such that g(uv) = g(u)g(v) for all u, v ∈ U and g(U ) = U. If F1F2(U ) = {0},
then F1 = 0 or F2 = 0.

Proof By the hypothesis
F1F2(U ) = {0}.

F1F2(xy) = F1(F2(xy)) = 0 = F1(F2(x)y + g(x)d2(y))

= F1(F2(x)y) + F1(xd2(y))

= F1F2(x)y + g(F2(x))d1(y) + F1(x)d2(y) + g(x)d1d2(y)

= F2(g(x))d1(y) + F1(x)d2(y) + xd1d2(y) for all x, y ∈ U.

This implies that

F2(x)d1(y) + xd1d2(y) + F1(x)d2(y) = 0 for all x, y ∈ U. (3.6)

Replacing x by zx in (3.6), we have

F2(zx)d1(y) + zxd1d2(y) + F1(zx)d2(y) = 0 for all x, y, z ∈ U.

(d2(z)g(x) + zF2(x))d1(y) + zxd1d2(y) + (d1(z)g(x) + zF1(x))d2(y) = 0.

(d2(z)g(x) + zF2(x))d1(y) + zxd1d2(y) + (zF1(x) + d1(z)g(x))d2(y) = 0.

d2(z)g(x)d1(y) + zF2(x)d1(y) + zxd1d2(y) + zF1(x)d2(y) + d1(z)g(x)d2(y) = 0.

d2(z)xd1(y) + z(F2(x)d1(y) + xd1d2(y) + F1(x)d2(y)) + d1(z)xd2(y) = 0.

Since the middle summand is 0 by (3.6), we have

d2(z)xd1(y) + d1(z)xd2(y) = 0 for all x, y, z ∈ U.

But this is just (3.2) of Theorem 3.2, so we argue as in the proof of Theorem 3.2 that
d1 = 0 or d2 = 0. It now follows from (3.6) that

F2(x)d1(y) + F1(x)d2(y) = 0 for all x, y ∈ U.

If one of d1, d2 is nonzero, then F1 or F2 is 0 by Theorem 3.2, so we assume that
d1 = d2 = 0. Then F1F2(xy) = 0 = F1(F2(x)y) = F2(x)F1(y) for all x, y ∈ U , so
that F2(U )F1(U ) = {0}. Applying Lemma 2.13, we conclude that F1 = 0 or F2 = 0.

We now consider a somewhat different condition that elements of F1(U ) and
F2(U ) anti-commute.
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Theorem 3.5 Let N be a 2-torsion free 3-prime near ring with nonzero semigroup
ideal U; and let F1 and F2 be generalized semiderivations on N with associated
semiderivations d1 and d2 respectively such that F1(U 2) ⊆ U and F2(U 2) ⊆ U and
a map g associated with d1 and d2 such that g(uv) = g(u)g(v) for all u, v ∈ U and
g(U ) = U. If

F1(x)F2(y) + F2(y)F1(x) = 0 for all x, y ∈ U, (3.7)

then F1 = 0 or F2 = 0.

Proof Assume that F1 �= 0 and F2 �= 0. Note that ifw ∈ F2(U 2),−w ∈ F2(U ); and
apply Lemma 2.4 to get (uv)w = w(uv) for all u, v ∈ F1(U ) and w ∈ F2(U 2). It
follows by Lemma 2.20 that F1(U )F1(U ) ⊆ Z , and it is easy to see that

F1(x)F1(y)(F1(x)F1(y) − F1(y)F1(x)) = 0 for all x, y ∈ U.

This implies that

F1(y)F1(x)(F1(x)F1(y) − F1(y)F1(x)) = 0 for all x, y ∈ U.

Since F1(x)F1(y) and F1(y)F1(x) are central, Lemma 2.1(i) shows that either both
are zero or one can be cancelled to yield

F1(x)F1(y) = F1(y)F1(x).

Thus [F1(U ), F1(U )] = {0} and by Lemma 2.20, F1(U ) ⊆ Z , hence N is a commu-
tative ring by Theorem 3.1. This fact together with (3.7) gives F1(U )F2(U ) = {0}.
Contradicting our assumption that F1 �= 0 �= F2. Therefore F1 = 0 or F2 = 0 as
required.

IfU is closed under addition, then F(U 2) ⊆ U for any generalized semiderivation
F ; hence we have

Corollary 3.6 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N which is closed under addition. If F1 and F2 are generalized
semiderivations on N with associated semiderivations d1 and d2 respectively and a
map g associated with d1 and d2 such that g(uv) = g(u)g(v) for all u, v ∈ U and
g(U ) = U. if

F1(x)F2(y) + F2(y)F1(x) = 0 for all x, y ∈ U,

then F1 = 0 or F2 = 0.
We now replace the hypothesis that F1(U ) ⊆ U and F2(U ) ⊆ U in Theorem 3.5

by some commutativity hypothesis.

Theorem 3.7 Let N be a 2-torsion free 3-prime near ring with nonzero semigroup
ideal U; and let F1 and F2 be generalized semiderivations on N with associated
semiderivations d1 and d2 respectively and a map g associated with d1 and d2 such
that g(U ) = U and g(uv) = g(u)g(v) for all u, v ∈ U. If
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F1(x)F2(y) + F2(y)F1(x) = 0 for all x, y ∈ U,

then F1 = 0 or F2 = 0 and one of the following is satisfied: (a) d1(Z) �= {0} and
d2(Z) �= {0}; (b) U ∩ Z �= {0}.
Proof (a) Let z1 ∈ Z such that d1(z1) �= 0. Then for all x, y ∈ U , we have

F1(z1x)F2(y) + F2(y)F1(z1x) = 0.

(d1(z1)g(x) + z1F1(x))F2(y) + F2(y)(F1(x)z1 + g(x)d1(z1)) = 0.

d1(z1)g(x)F2(y) + z1F1(x)F2(y) + F2(y)F1(x)z1 + F2(y)g(x)d1(z1) = 0.

d1(z1)xF2(y) + z1(F1(x)F2(y) + F2(y)F1(x)) + F2(y)xd1(z1) = 0.

It follows that

d1(z1)xF2(y) + F2(y)xd1(z1) = 0 for all x, y ∈ U.

Choosing z2 ∈ Z such that d2(z2) �= 0 and using a similar argument, we now get

xy + yx = 0 for all x, y ∈ U ;

and applying Lemma 2.4 with S = U and T = U 2 shows thatU 2 centralizesU 2, so
that U 2 ⊆ Z by Lemma 2.1(iii) and hence N is commutative ring by Lemma 2.3. It
now follows that F1(x)F2(y) = F2(y)F1(x) = −F2(y)F1(x) for all x, y ∈ U . Hence
F1(U )F2(U ) = {0}. Therefore F1 = 0 or F2 = 0.
(b) We assume that F1 �= 0 and F2 �= 0. Let z0 ∈ (U ∩ Z)\{0}. By Lemma 2.17,
F1(z0) ∈ Z ; hence if F1(z0) �= 0 the condition

F1(z0)F2(x) + F2(x)F1(z0) = 0 for all x ∈ U

gives 2F2(x) = 0 = F2(x) for all x ∈ U , so that F1 = 0 by Lemma 2.11. There-
fore, F1(z0) = 0 and similarly F2(z0) = 0. Now z20 ∈ (U ∩ Z)\{0} also, so F1(z20) =
0 = F2(z20); and since F1(z20) = F1(z0)z0 + g(z0)d1(z0) = z0d1(z0) and F2(z20) =
F2(z0)z0 + g(z0)d2(z0) = z0d2(z0). we have d1(z0) = d2(z0) = 0. Observing that
F1(z0x) = F1(z0)x + g(z0)d1(x) = F1(z0)x + z0d1(x) and F1(xz0) = F1(x)z0 +
g(x)d1(z0) = F1(x)z0 + xd1(z0) for all x ∈ N , we see that F1(x) = d1(x) for all
x ∈ N , So that F1 is a semiderivation; and similarly F2 is a semiderivation. We can
now derive a contradiction as in the proof of Theorem 3.5, with Lemmas 2.8 and
2.18 used instead of Lemma 2.20.
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4 Some Commutativity Conditions

The skew-commutativity hypothesis of Theorems 3.4 and 3.5 suggests investigating
conditions of the form F1(x)F2(y) + F2(y)F1(x) ∈ Z or xF(y) + F(y)x ∈ Z .

Theorem 4.1 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N which is closed under addition.
(i) Suppose N has nonzero generalized semiderivations F1, F2 with associated semi-
derivations d1 and d2 respectively and a map g associated with d1 and d2 such that
g(U ) = U and g(uv) = g(u)g(v) for all u, v ∈ U. If F1(x)F2(y) + F2(y)F1(x) ∈
Z, for all x, y ∈ U and at least one of F1(U ) ∩ Z and F2(U ) ∩ Z is nonzero, then
N is a commutative ring.
(ii) If N admits a nonzero generalized semiderivation F with associated semideriva-
tion d and a map g associated with d such that g(U ) = U and g(uv) = g(u)g(v)
for all u, v ∈ U and U ∩ Z �= {0} and xF(y) + F(y)x ∈ Z, for all x, y ∈ U, then
N is commutative ring.

Proof (i) Assume that F1(U ) ∩ Z �= {0}. Let x ∈ U such that F1(x) ∈ Z\{0}.
Then F1(x)F2(y) + F2(y)F1(x) = 2F1(x)F2(y) = F1(x)F2(2y) ∈ Z for all y ∈ U .
Since F1(x) ∈ Z\{0}, Lemma 2.1(ii) gives F2(2y) ∈ Z for all y ∈ U -i.e. F2(2U ) ⊆
Z . Since 0 ∈ Z , we get F2(2U ) = {0} -i.e. 2F2(U ) = {0}. But N is 2-torsion free, we
get F2(U ) = {0} would contradict our hypothesis that F2 �= 0; hence F2(2U ) �= {0}
and we may choose y ∈ U such that F2(2y) ∈ Z\{0}. Since 2U ⊆ U , this shows
that F2(2y) and 2F2(2y) = F2(4y) are in F2(U ) ∩ Z\{0}, so that for all x ∈ U ,
F1(x)(2F2(2y)) ∈ Z and hence F1(x) ∈ Z . Thus, F1(U ) ⊆ Z and by Theorem 3.1,
N is a commutative ring.
(ii) Essentially the sameargument yieldsU ⊆ Z , and the result followsbyLemma2.3.

Theorem 4.2 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N which is closed under addition. Suppose N admits nonzero
generalized semiderivations F1 and F2 with associated semiderivations d1 and
d2 respectively and a map g associated with d1 and d2 such that g(U ) = U and
g(uv) = g(u)g(v) for all u, v ∈ U. Suppose that F1(x)F2(y) + F2(y)F1(x) ∈ Z,
for all x, y ∈ U and F1(U ) ⊆ U; F2(U ) ⊆ U. If F1(N ) ∩ Z �= {0} or F2(N ) ∩ Z �=
{0}, then N is a commutative ring.

Proof By Corollary 3.6, we cannot have F1(x)F2(y) + F2(y)F1(x) = 0 for all
x, y ∈ U , hence there exist x0, y0 ∈ U such that u0 = F1(x0)F2(y0) + F2(y0)
F1(x0) ∈ (Z\{0}) ∩U . Since F1(Z) and F2(Z) are central by Lemma 2.17, if
F1(u0) �= 0 or F2(u0) �= 0 we have F1(U ) ∩ Z �= {0} or F2(U ) ∩ Z �= {0} and our
conclusion follows by Theorem 4.1(i).

Assume, therefore, that F1(u0) = F2(u0) = 0. For all x, y ∈ U , F1(u0x)F2

(u0y) + F2(u0y)F1(u0x) = u20(d1(x)d2(y) + d2(y)d1(x)) ∈ Z , henced1(x)d2(y) +
d2(y)d1(x) ∈ Z ; and if d1(u0) �= 0 or d2(u0) �= 0 our desired conclusion follows
by Lemma 2.15. Therefore we may assume d1(u0) = d2(u0) = 0. For all x, y ∈
N , F1(xu0)F2(yu0) + F2(yu0)F1(xu0) ∈ Z , so u20(F1(x)F2(y) + F2(y)F1(x)) ∈ Z
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and F1(x)F2(y) + F2(y)F1(x) ∈ Z . Since F1(N ) ∩ Z �= {0} or F2(N ) ∩ Z �= {0},
our result follows by Theorem 4.1(i).
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