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Abstract In [4] (Structure of regular semigroups, 1979) K.S.S. Nambooripad in-
troduced biordered sets as a partial algebra (E,ωr ,ωl) where ωr and ωl are two
quasiorders on the set E satisfying biorder axioms; to study the structure of a regular
semigroup. John von Neumann (Continuous Geometry, 1960 in [5]) described the
complemented modular lattice of principle ideals of a regular ring. In this paper, we
introduced the biorder ideals of a regular ring and showed that these ideals form a
complemented modular lattice.
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In many algebraic systems like semigroups, rings, algebras, the idempotent elements
are important structural objects and can be used effectively in analyzing the struc-
ture of the algebraic system under consideration. The concept of biordered set was
originally introduced by Nambooripad [1972, 1979] to describe the structure of the
set of idempotents of a semigroup. He identified a partial binary operation on the set
of idempotents E(S) of a semigroup S arising from the binary operation in S. The
resulting structure on E(S) involving two quasiorders is abstracted as a biordered
set. In this paper, we propose to extend biordered set approach to rings to study the
structure of regular rings.

1 Preliminaries

First, we recall some basic definitions regarding semigroups, biordered sets, and
rings needed in the sequel. A set S in which for every pair of elements a, b ∈ S there
is an element a · b ∈ S which is called the product of a by b is called a groupoid.
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A groupoid S is a semigroup if the binary operation on S is associative. An element
a ∈ S is called regular if there exists an element a′ ∈ S such that aa′a = a, if every
element of S is regular then S is a regular semigroup. An element e ∈ S such that
e · e = e is called an idempotent and the set of all idempotents in S will be denoted
by E(S).

1.1 Biordered Sets

By a partial algebra E , we mean a set together with a partial binary operation on
E . Then (e, f ) ∈ DE if and only if the product e f exists in the partial algebra E . If
E is a partial algebra, we shall often denote the underlying set by E itself; and the
domain of the partial binary operation on E will then be denoted by DE . Also, for
brevity, we write e f = g, to mean (e, f ) ∈ DE and e f = g. The dual of a statement
T about a partial algebra E is the statement T ∗ obtained by replacing all products
e f by its left–right dual f e. When DE is symmetric, T ∗ is meaningful whenever T
is. On E we define

ωr = {(e, f ) : f e = e} ωl = {(e, f ) : e f = e}

andR = ωr ∩ (ωr )−1, L = ωl ∩ (ωl)−1, and ω = ωr ∩ ωl . We will refer ωr and ωl

as the right and the left quasiorder of E .

Definition 1 Let E be a partial algebra. Then E is a biordered set if the following
axioms and their duals hold

(1) ωr and ωl are quasi orders on E and

DE = (ωr ∪ ωl) ∪ (ωr ∪ ωl)−1

(2) f ∈ ωr (e) ⇒ fR f eωe
(3) gωl f and f, g ∈ ωr (e) ⇒ geωl f e.
(4) gωr f ωr e ⇒ g f = (ge) f
(5) gωl f and f, g ∈ ωr (e) ⇒ ( f g)e = ( f e)(ge).

We shall often write E =< E,ωl ,ωr > to mean that E is a biordered set with
quasiorders ωl, ωr . The relation ω defined is a partial order and

ω ∩ (ω)−1 ⊂ ωr ∩ (ωl)−1 = 1E .

Definition 2 LetM(e, f ) denote the quasiordered set (ωl(e) ∩ ωr ( f ),<)where<

is defined by g < h ⇔ egωr eh, and g f ωl h f. Then the set

S(e, f ) = {h ∈ M(e, f ) : g < h for all g ∈ M(e, f )}
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is called the sandwich set of e and f .

(1) f, g ∈ ωr (e) ⇒ S( f, g)e = S( f e, ge)

The biordered set E is said to be regular if S(e, f ) 
= ∅ ∀e, f ∈ E . The following
theorem shows that if S is a regular semigroup, then E(S) is a regular biordered set.

Theorem 1 ([4], Theorem 1.1) Let S be a semigroup such that E(S) 
= φ.

(1) The partial algebra E(S) is a biordered set.
(2) For e, f ∈ E(S) define

S1(e, f ) = {h ∈ M(e, f ) : eh f = e f }

Then S1(e, f ) ⊂ S(e, f ).
(3) If e, f ∈ E(S) then e f is a regular element of S if and only if S1(e, f ) =

S(e, f ) 
= φ.

(4) If S is regular, then E(S) is a regular biordered set.

Remark 1 For e ∈ E, ωr (e)
[
ωl(e)

]
are principal right [left] ideals and ω(e) is a

principal two sided ideal and are called biorder ideals generated by e.

1.2 Lattices

A lattice is a partially ordered set in which each pair of elements has a least upper
bound and a greatest lower bound. If a and b are elements of a lattice, we denote
their greatest lower bound (meet) and least upper bound (join) by a ∧ b and a ∨ b,
respectively. It is easy to see that a ∨ b and a ∧ b are unique. The notations a ∧ b
and a ∨ b are analogous to the notations for the intersection and union of two sets.
However someproperties of union and intersection of sets do not carry over to lattices,
for instance, the distributive laws are false in some lattices. But many of the well-
known lattices posses the modularity property which is a weak form of distributive
property.

Definition 3 A lattice is called modular (or a Dedekind lattice) if

(a ∨ b) ∧ c = a ∨ (b ∧ c) for all a ≤ c.

A lattice is bounded if it has both a maximum element and a minimum element,
we use the symbols 0 and 1 to denote the minimum element and maximum element
of a lattice. A bounded lattice L is said to be complemented if for each element a
of L , there exists at least one element b such that a ∨ b = 1 and a ∧ b = 0. The
element b is referred to as a complement of a. It is quite possible for an element of
a complemented lattice to have many different complements. An element x is called
a complement of a in b if a ∨ x = b and a ∧ x = 0.
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Definition 4 Two elements a and b of a lattice L are said to be perspective (in
symbols a ∼ b) if there exists x in L such that a ∨ x = b ∨ x, a ∧ x = b ∧ x = 0
Such an element x is called an axis of perspective.

1.3 Principal Ideals of Regular Ring

A ring is a set R together with two binary operations ‘+’, ‘·’ with the following
properties.

(1) The set (R,+) is an abelian group.
(2) The set (R, ·) is a semigroup.
(3) The operation · is distributive over +.

A ring (R,+, ·) is regular if for every a ∈ R there exists an element a′ such that
aa′a = a, i.e., the ring is regular if the multiplicative semigroup is a regular semi-
group.

Definition 5 A subset a of a ring R is called right ideal in case

x + y ∈ a, xz ∈ a

for each x, y ∈ a and z ∈ R.

Similarly, we a can define the left ideal and a is called an ideal if it is both a right
and a left ideal. The set of all right (left) ideals of R is denoted by RR(LR). The
intersection of any class of right(left) ideals is again a right (left) ideal and also for
any a ⊂ R there is a unique least extension ar , (al) which is a right (left) ideal.

Proposition 1 If R ⊂ RR is any class of right ideals, there exists both a smallest
right ideal (least upper bound of R) containing every element of R and a greatest
right ideal (greatest lower bound of R) contained in every element of R. Thus RR
is a continuous lattice with ⊂ and the operations thus defined. The zero element of
RR is (0)r = 0 and the unit element is (1)r = R.

Definition 6 A principal right [left] ideal is one of the from (a)r [(a)l ]. The class of
all principal right [left] ideals will be denoted by R̄R [L̄R].

In [5] John von Neumann describes the structure of principal ideals of a regular
ring. Here we recall some of those results.

Lemma 1 Let R be a ring, e ∈ R, then

• e is idempotent if and only if (1 − e) is idempotent.
• 〈e〉r if the set of all x such that x = ex is a principal right ideal.
• 〈e〉r and 〈1 − e〉r are mutual inverses.
• If 〈e〉r = 〈 f 〉r and If 〈1 − e〉r = 〈1 − f 〉r where e and f are idempotents, then
e = f .
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Theorem 2 Two right ideals a and b are inverses if and only if there exists an
idempotent e such that a = 〈e〉r and b = 〈1 − e〉r .
Proof Let a and b be inverse right ideals, then there exists elements x, ywith x + y =
1, x ∈ a, y ∈ b. If z ∈ a then xz + yz = x . Since z, xz ∈ a, yz ∈ a. But yz ∈ b, hence
yz = 0.Thus z = xz ∈ (x)r for every z ∈ a anda ⊂ (x)r . Bust x ∈ a, hencea = (x)r .
Similarly b = (y)r = (1 − x)r , since x + y = 1. Finally, since z = xz for every z ∈ a
this holds for z = x and x is idempotent. �

Theorem 3 The following statements are equivalent

(1) Every principal right ideal 〈a〉r has an inverse right ideal.
(2) For every a there exists an idempotent e such that 〈a〉r = 〈e〉r .
(3) For every a there exists an idempotent x such that axa = a.
(4) For every a there exists an idempotent f such that 〈a〉l = 〈 f 〉l .
(5) Every principal ideal 〈a〉l has an inverse left ideal.
Definition 7 A ringR is said to be regular ifR possesses anyone of the equivalent
properties of the above Theorem.

Theorem 4 The set R̄R is a complemented modular lattice partially ordered by ⊂,
the meet being ∩ and join ∪, its zero is (0)r and its unit is (1)r .

2 Biorder Ideals of Regular Rings

Analogous to von Neumann’s construction of the principal ideals of a regular ring,
we proceed to describe the structure of the biorder ideals of regular rings.

Proposition 2 Let e and f be idempotents in a regular ring R. Then the following
are equivalent:

(1) e f = 0
(2) eωl(1 − f )
(3) f ωr (1 − e)

Proof Suppose e f = 0. Then

e(1 − f ) = e − e f = e.

Conversely, eωl(1 − f ) then e(1 − f ) = e − e f = e and hence e f = 0. Proof (3)
is similar. �

Proposition 3 Let e and f be idempotents in a regular ring R. Then the following
holds.

(1) eωl f if and only if (1 − f )ωr (1 − e)
(2) eωr f if and only if (1 − f )ωl(1 − e)
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Proof Let eωl f . Then,

(1 − e)(1 − f ) = 1 − e − f + e f = 1 − e − f + e = 1 − f

Conversely, suppose (1 − e)(1 − f ) = (1 − f ), then

1 − e − f + e f = 1 − f

hence eωl f . Proof (2) is similar. �

Corollary 1 Let e and f be idempotents in the ring R. Then the following old.

(1) ωl(e) = ωl( f ) if and only if ωr (1 − e) = ωr (1 − f )
(2) ωr (e) = ωr ( f ) if and only if ωl(1 − e) = ωl(1 − f )

Proposition 4 Let e and f be idempotents in the ring R, if ωr (e) = ωr ( f ),ωr (1 −
e) = ωr (1 − f ), where e, f are idempotents, then e = f

Proof Since ωr (e) = ωr ( f ), e f = f . Therefore, (1 − e) f = 0. Since ωr (1 − e) =
ωr (1 − f ), by replacing e and f by (1 − e) and (1 − f ) respectively, we get e(1 −
f ) = 0. That is, e f = e and so e = f . �

Lemma 2 Let e, f, g ∈ ER with e f = f e = 0. Then e + f is an idempotent and
the following hold.

(1) eω(e + f ) and f ω(e + f )
(2) If eωlg and f ωlg, then (e + f )ωlg
(3) If eωrg and f ωrg, then (e + f )ωrg

Proof Given e, f ∈ ER with e f = f e = 0, then

(e + f )2 = e2 + e f + f e + f 2 = e + f.

(1) e(e + f ) = e2 + e f = e + e f = e, and (e + f )e = e2 + f e = e + f e = e.
Thus eω(e + f ). Similarly, we can prove f ω(e + f ).

(2) Given eωlg and f ωlg. Therefore, (e + f )g = eg + f g = e + f , i.e., (e +
f )ωlg. Proof (3) is similar. �

Lemma 3 Let ωr (e) ∪ ωr ( f ) = ωr (e + f ′′) where f ′′R f ′ and f ′ = (1 − e) f .

Proof Define

ωr (e) ∪ ωr ( f ) = {eg + f h : g, h ∈ ER; gh = hg = 0}
= {eg = e f h + (1 − e) f h : g, h ∈ ER; gh = hg = 0}
= {e(g + f h) + (1 − e) f h : g, h ∈ ER; gh = hg = 0}

Let f ′ = (1 − e) f . Then f ′ ∈ S( f, 1 − e) so that f ′ ∈ ER, f f ′ = f ′ and
(1 − e) f ′ = f ′. So e f ′ = 0 and ωr (e) ∪ ωr ( f ) = ωr (e) ∪ ωr ( f ′). Define
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f ′′ = f ′(1 − e)., then f ′ f ′′ = f ′ f ′(1 − e) = f ′(1 − e) = f ′′ and f ′′ f ′ = f ′(1 −
e) f ′ = f ′ f ′ = f ′. Further f ′′ is an idempotent, ωr ( f ′) = ωr ( f ′′) and ωr (e) ∪
ωr ( f ) = ωr (e) ∪ ωr ( f ′′). Now, e f ′′ = e f ′(1 − e) = 0 and f ′′e = f ′(1 − e)e = 0
so, by Lemma above (e + f ′′) is an idempotent.

Next we proceed to prove that ωr (e) ∪ ωr ( f ) = ωr (e + f ′′). For, consider e +
f ′′, then

e + f ′′ = e2 + ( f ′′)2 = e · e + f ′′ · f ′′ ∈ ωr (e) ∪ ωr ( f ′′) where e f ′′ = 0.

So, ωr (e + f ′′) ⊆ ωr (e) ∪ ωr ( f ′′) and eωr (e + f ′′) and f ′′ωr (e + f ′′). That is

ωr (e) ⊆ ωr (e + f ′′) and ωr ( f ′′) ⊆ ωr (e + f ′′)

thus ωr (e) ∪ ωr ( f ′′) ⊆ ωr (e + f ′′), hence ωr (e) ∪ ωr ( f ) = ωr (e + f ′′). �

Denote by �R the class of all principal ωr−ideals and by �L the class of all
principal ωl-ideals. In the light of the above lemma we have the following theorem:

Theorem 5 �R is closed with respect to the operation ∪ defined in �R.

Next we introduce the notion of annihilators in principal ωr and ωl-ideals.

Definition 8 For every ωr -ideal we define

(ωr (e))L = {
y : yz = 0 for every z ∈ ωr (e)

}

and for every ωl -ideal,

(ωl(e))R = {
y : zy = 0 for every z ∈ ωl(e)

}

then (ωr (e))L is a left ideal and (ωl(e))R is a right ideal.

Proposition 5 For e ∈ ER, (ωl(e))R is a principal ωr -ideal and (ωr (e))L is a prin-
cipal ωl -ideal. In fact, (ωl(e))R = ωr (1 − e) and (ωr (e))L = ωl(1 − e).

Proof

ωr (e) = {g : e.g. = g}
= {g : (1 − e)g = 0}
= {g : u(1 − e) = 0; for every u ∈ ER}
= {

g : for every h ∈ ωl(e), hg = 0
}

where h = u(1 − e). Since h(1 − e) = u(1 − e)(1 − e) = u(1 − e) = h we have
h ∈ ωl(1 − e). Thus ωr (e) = (ωl(1 − e))R . �

Lemma 4 Let e, f ∈ ER and ωr (e) and ωr ( f ) are ideals generated by e and f ,
then
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(1) ωr (e) ⊂ ωr ( f ) ⇒ (ωr (e))L ⊃ (ωr ( f ))L

(2) ωr (e) = (ωr (e))LR and (ωr (e))L = (ωr (e))LRL

Proof (1) Let g ∈ (ωr ( f ))L , then gh = 0 for every h ∈ ωr ( f ). If ωr (e) ⊂ ωr ( f )
then for h ∈ ωr (e), gh = 0 for every h ∈ ωr (e). Thus g ∈ (ωr (e))L and so

(ωr ( f ))L ⊂ (ωr (e))L .

(2) Let g ∈ ωr (e). Consider h ∈ (ωr (e))L , for z ∈ ωr (e), hz = 0. Hence hg = 0 so
g ∈ (ωr (e))LR and ωr (e) ⊂ (ωr (e)LR . Now by (1) we have

ωr (e) ⊆ (ωr (e))LR; (ωr (e))L ⊇ (ωr (e))LRL

Replace ωr (e) by (ωr (e))L we get (ωr (e))L ⊆ (ωr (e))LR . Hence (ωr (e))L =
(ωr (e))LRL . But ωr (e) = (ωl(1 − e))RLR = (ωl(1 − e))R = ωr (e), thus ωr (e) =
(ωr (e))L . �

In the following proposition, we establish the relation between �L and �R by
using the relation between principal ω-ideals and annihilators.

Proposition 6 Let R be a regular ring and ER the set of idempotents on R. Let
�L and �R denote the lattice of principal ωl -ideals and principal ωr -ideals of ER.
Define φ and ψ on �L and �R by

φ(ωl(e)) = (ωl(e))R and ψ(ωr (e)) = (ωr (e))L

then φ and ψ are mutually inverse anti-isomorphisms.

Proof Let I ∈ �L . Therefore, there exists an idempotent, e such that I = ωl(e) and

φ(I ) = φ(ωl(e)) = (ωl(e))R = ωr (1 − e)

Thus φmaps�L to�R . Also φ reverses the order, for let I, J ∈ �L with I ⊆ J , then
there exists idempotents e, f ∈ ER such that ωl(e) ⊆ ωl( f ). But if ωl(e) ⊆ ωl( f )
then (ωl( f )R ⊆ (ωl(e))R and φ(J ) ⊆ φ(I ). Similarly ψ is an order reserving map
from �R to �L . Moreover for I ∈ �L and I = ωl(e) then

(ψφ(I )) = ψ(φ(ωl(e))) = ψ(ωr (1 − e)) = (ωr (1 − e))L = ωl (1 − (1 − e)) = ωl(e) = I.

For I in �R, (φψ)(I ) = I. Hence φ and ψ are mutually inverse anti-isomorphisms
between �L and �R . �

Lemma 5 Let ωr (e) and ωr ( f ) be principal right ω ideals generated by e and f .
Then (ωr (e) ∪ ωr ( f ))L = (ωr (e))L ∩ (ωr ( f ))L .
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Proof

(ωr (e))L ∩ (ωr ( f ))L = {
g : gh = 0 ∀ h ∈ ωr (e) and g : gh = 0 ∀ h ∈ ωr ( f )

}

= {
g : gh = 0 ∀ h ∈ ωr (e) ∪ ωr ( f )

}

= {
g : gh = 0 ∀ h ∈ (ωr (e) ∪ ωr ( f )

}

Hence (ωr (e))L ∩ (ωr ( f ))L = (ωr (e) ∪ ωr ( f ))L . �

Lemma 6 For two principal ωr -ideals, ωr (e) and ωr ( f ) their intersection is also a
principal ωr -ideal.

Proof By the above Lemma

ωr (e) ∩ ωr ( f ) = (ωr (e))LR ∩ (ωr ( f ))LR

= ((ωr (e))L ∪ (ωr ( f ))L)R

But (ωr (e))L and (ωr ( f ))L are principal ωl-ideals, and so (ωr (e))L ∪ (ωr ( f ))L is
also a principal ωl-ideal. Hence ωr (e) ∩ ωr ( f ) is a principal ωr -ideal. �

For any idempotent e ∈ ER , (1 − e) ∈ ER and ωr (e) ∪ ωr (1 − e) = ωr (e + 1 −
e) = ωr (1) = ER and ωr (e) ∩ ωr (1 − e) = {0}. Thus ωr (e) and ωr (1 − e) are com-
plements of each other in the lattice of principal right ω-ideals of ER . Similarly,
ωl(e) and ωl(1 − e) are complements of each other in the lattice of all principal left
ω-ideals of ER .

Thus we have the following theorem:

Theorem 6 Let R be a ring then the set of all principal ωl -ideals �L and the set of
all principal ωr -ideals �R of ER are complemented modular lattices ordered by the
relation⊂, the meet being ∩ and the join ∪; its zero is 0, and its unit is ωl(1)[ωr (1)].
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