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Abstract The study of various types of hulls of a module has been of interest for
a long time. Our focus in this paper is to present results on some classes of these
hulls of modules, their examples, counter examples, constructions and their applica-
tions. Since the notion of hulls and its study were motivated by that of an injective
hull, we begin with a detailed discussion on classes of module hulls which satisfy
certain properties generalizing the notion of injectivity. Closely linked to these gen-
eralizations of injectivity, are the notions of a Baer ring and a Baer module. The
study of Baer ring hulls or Baer module hulls has remained elusive in view of the
underlying difficulties involved. Our main focus is to exhibit the latest results on
existence, constructions, examples and applications of Baer module hulls obtained
by Park and Rizvi. In particular, we show the existence and explicit description of
the Baer module hull of a module N over a Dedekind domain R such that N /t(N)
is finitely generated and Anng(#(N)) # 0, where ¢#(N) is the torsion submodule of
N. When N/t(N) is not finitely generated, it is shown that N may not have a Baer
module hull. Among applications, our results yield that a finitely generated mod-
ule N over a Dedekind domain is Baer if and only if N is semisimple or torsion-
free. We explicitly describe the Baer module hull of the direct sum of Z with Z,
(p a prime integer) and extend this to a more general construction of Baer module
hulls over any commutative PID. We show that the Baer hull of a direct sum of two
modules is not necessarily isomorphic to the direct sum of the Baer hulls of the
modules, even if each relevant Baer module hull exists. A number of examples and
applications of various classes of hulls are included.
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1 Introduction

Since the discovery of the existence of the injective hull of an arbitrary module
independently in 1952 by Shoda [49] and in 1953 by Eckmann and Schopf [14], there
have been numerous papers dedicated to the study and description of various types of
hulls. These hulls are basically smallest extensions of rings and modules satisfying
some generalizations of injectivity (for example, quasi-injective, continuous, quasi-
continuous hulls, etc.) or satisfying properties related to such generalizations of
injectivity. For a given module M (or a given ring R), the investigations include in
general, to construct the smallest essential extension of M (or of R) which belongs
to a particular class of modules (or of rings) within a fixed injective hull of M (or a
fixed maximal quotient ring of R). We call this a hull of M (or of R) belonging to
that particular class. One benefit of these hulls is that such hulls generally lie closer
to the module M (or to the ring R) than its injective hull. This closeness may allow
for a better transfer of information between M (or R) and that particular hull of M
(or of R) from these classes than between M (or R) and its injective hull. These hulls
have also proved to be useful tools for the study of the structure of M (or of R). So
an important focus of investigations has been to obtain results on the existence and
explicit descriptions of various types of module hulls. This is the topic of this survey
paper.

We recall that a module M is said to be quasi-injective if, for each N < M, any
f € Hom(N, M) can be extended to an endomorphism of M. Among other well-
known generalizations of injectivity, the study of the continuous, quasi-continuous,
extending, and the Fl-extending properties has been extensive in the literature (see
for example [4, 8, 13, 34-36, 43]). A module M is said to be extending if, for
each V < M, there exists a direct summand W <® M such that V <®* W. And an
extending module M is called quasi-continuous if for all direct summands M; and
M> of M with M|y N M> = 0, M; @ M, is also a direct summand of M. Furthermore,
an extending module M is said to be continuous if every submodule N of M which is
isomorphic to a direct summand is also a direct summand of M. A module M is called
Fl-extending if every fully invariant submodule is essential in a direct summand of
M. For more details on Fl-extending modules, see [4, 8], and [10, Sect.2.3]. The
following implications hold true for modules:
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injective = quasi-injective = continuous
= quasi-continuous = extending = Fl-extending

while each of reverse implications does not hold true, in general.

Since the injective module hull of a module always exists [14, 49], the study of
module hulls with certain properties inside the injective hull of the module is more
natural in contrast to the study of ring hulls of a ring (the injective hull of a ring
may not even be a ring in general-and even if it is, for it to have a compatible ring
structure with the ring is another hurdle).

Section 1 of the paper is devoted to results and examples (of either existence or
non-existence) of various hulls which generalize injective hulls. This includes the
consideration of quasi-injective, continuous, quasi-continuous and (FI-)extending
module hulls. For a given module M, let H = Endg(E (M)) denote the endomorphism
ring of its injective hull £(M). By Johnson and Wong [23], the unique quasi-injective
hull of the module M is precisely given by HM. Goel and Jain [16] showed that there
always exists a unique quasi-continuous hull of every module. The quasi-continuous
hull of M is given by Q2M, where 2 is the subring generated by all idempotents of
H = End(E(M)). In contrast to this, it was shown by Miiller and Rizvi in [35] that
continuous module hulls do not always exist. However, they did show the existence
of continuous hulls of certain classes of modules over a commutative ring (such as
nonsingular cyclic ones) and provided a description of these continuous hulls (see
[35, Theorem 8]). Similar to the case of continuous module hulls, it is also known that
extending module hulls do not always exist (for example, see [10, Example 8.4.13, p.
319]). For the case of FI-extending module hulls, it was proved in [8, Theorem 6] that
every finitely generated projective module over a semiprime ring has an FI-extending
hull.

Closely linked to these notions, are the notions of a Baer ring and a Baer module.
A ring R in which the left (right) annihilator of every nonempty subset of R is
generated by an idempotent is called a Baer ring. It is well-known that this is a
left-right symmetric notion for rings. Kaplansky introduced the notion of Baer rings
in [26] (also see [27]). Having their roots in Functional Analysis, the class of Baer
rings and the more general class of quasi-Baer rings (discussed ahead) were studied
extensively by Kaplansky and many others who obtained a number of interesting
results on these classes of rings (see [1, 3, 612, 18, 19, 21, 22, 31-33, 37, 38, 41]).

More recently, the notion of a Baer ring was extended to an analogous module
theoretic notion using the endomorphism ring of the module by Rizvi and Roman in
[44]. According to [44], a module M is called a Baer module if, for any Ng < Mg,
there exists ¢ = e € S such that £5(N) = Se, where £s(N) = {f € S | f(N) = 0}
and S = End(Mp). Equivalently, a module M is Baer if and only if for any left ideal /
of S, ry(I) = fM with f2 = f € S, where ry(I) = {m € M | Im = 0}. Examples of
Baer modules include any nonsingular injective module. In particular, it is known
that every (/C-)nonsingular extending module is a Baer module while the converse
holds under a certain dual condition. To study Baer module hulls, we provide relevant
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results and properties of Baer modules and related notions in Sect.3 of the paper.
These results will also be used in Sect.4 of the paper.

In the main section, Sect. 4 of this expository paper, we introduce and discuss Baer
module hulls of certain classes modules over a Dedekind domain from our recent
work in [40]. We exhibit explicit constructions and examples of Baer module hulls
and provide their applications in this section. Properties of Baer module hulls will
also be discussed.

Extending the notion of a Baer ring, a quasi-Baer ring was introduced by Clark in
[12]. A ring for which the left annihilator of every ideal is generated by an idempotent,
as a left ideal is called a quasi-Baer ring. It was initially defined by Clark to help
characterize a finite dimensional algebra over an algebraically closed field F to be a
twisted semigroup algebra of a matrix units semigroup over F. Historically, it is of
interest to note that the Hamilton quaternion division algebra over the real numbers
field R is a twisted group algebra of the Klein four group V4 over R. It was also
shown in [12] that any finite distributive lattice is isomorphic to a certain sublattice
of the lattice of all ideals of an artinian quasi-Baer ring. It is clear that every Baer
ring is quasi-Baer while the converse is not true in general. It is also obvious that
the two notions coincide for a commutative ring and for a reduced ring. In [41], a
number of interesting properties of quasi-Baer rings are obtained. See [10] for more
details on quasi-Baer rings.

Quasi-Baer modules were defined and investigated by Rizvi and Roman [44]
in the module theoretic setting. Recall from [44] that a module My is called a
quasi-Baer module if foreach N I M, £5(N) = Se for some 2 =e e S, where S =
End(Mpg). Thus My is quasi-Baer if and only if for any ideal J of S, ry (J) = fM for
some 2 =f € S. In [44] and [47], it is shown that the endomorphism ring of a
(quasi-)Baer module is a (quasi-)Baer ring. It is proved that there exist close connec-
tions between quasi-Baer modules and FI-extending modules. A number of interest-
ing properties of quasi-Baer modules and applications have also been presented.

As mentioned earlier, the notion of a “hull” with a certain property allows us to
work with an overmodule or overring which has better properties than the original
module or ring. It is worth mentioning that very little is known even about Baer ring
hulls. Recall from [10, Chap. 8] that the Baer (resp., quasi-Baer) ring hull of aring R
is the smallest Baer (resp., quasi-Baer) right essential overring of R in E(Rg). To the
best of our knowledge, the only explicit results about Baer ring hulls in earlier existing
literature have been due to Mewborn [33] for commutative semiprime rings, Oshiro
[37] and [38] for commutative von Neumann regular rings, and Hirano, Hongan and
Ohori [19] for reduced right Utumi rings. All these results were recently extended
and a unified result was obtained for the case of an arbitrary semiprime ring using
quasi-Baer ring hulls by Birkenemier, Park, and Rizvi [7, Theorem 3.3]. The focus
of the present paper is on module hulls, more specifically on results and study of
Baer module hulls.
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For a given module M, the smallest Baer overmodule of M in E(M) is called the
Baer module hull of M. In short, we will often call it the Baer hull of M and denote
it by ‘B(M).

Park and Rizvi in [40] recently initiated the study of the Baer module hulls. We
introduce and discuss the results obtained in [40] on the Baer module hulls in Sect. 4.
We show that the Baer module hull exists for a module N over a Dedekind domain
R such that N/¢t(N) is finitely generated and Anng(¢#(N)) # 0, where #(N) is the
torsion submodule of N. An explicit description of this Baer module hull has been
provided. In contrast, an example exhibits a module N for which N/#(N) is not
finitely generated and which does not have a Baer module hull.

Among applications presented, we show that a finitely generated module N over a
Dedekind domain is Baer if and only if N is semisimple or torsion-free. We explicitly
describe the Baer module hull of N = Z, ® Z, where p is a prime integer, as V =
Z, @ Z[1/p] and extend this to a more general construction of Baer module hulls
over any commutative PID. It is shown that unlike the case of (quasi-)injective hulls,
the Baer hull of the direct sum of two modules is not necessarily isomorphic to the
direct sum of the Baer hulls of the modules, even if all relevant Baer module hulls
exist. Several interesting examples and applications of various types of module hulls
are included throughout the paper.

All rings are assumed to have identity and all modules are assumed to be
unitary. For right R-modules Mz and Ng, we use Hom(Mg, Ng), Homg(M, N),
or Hom(M, N) to denote the set of all R-module homomorphisms from My to
Ng. Likewise, End(Mg), Endg (M), or End(M) denote the endomorphism ring of
an R-module M. For a given R-homomorphism (or R-module homomorphism)
f € Homg(M, N), Ker(f) denotes the kernel of /. A submodule U of a module V is
said to be fully invariant in V if f(U) C U for all f € End(V).

We use E(Mg) or E(M) for an injective hull of a module M. For a module M,
weuse K <M,L <M, N < M,and U <® M to denote that K is a submodule of
M, L is a fully invariant submodule of M, N is an essential submodule of M, and U
is a direct summand of M, respectively.

If M is an R-module, Anng (M) stands for the annihilator of M in R. For a module
M and a set A, let M be the direct sum of |A| copies of M, where |A| is the
cardinality of A. When A is finite with |A| = n, then M is used for M®). For a
ring R and a positive integer n, Mat, (R) and 7, (R) denote the n x n matrix ring and
the n x n upper triangular matrix ring over R, respectively.

For aring R, Q(R) denotes the maximal right ring of quotients of R. The symbols
Q, Z, and Z,(n > 1) stand for the field of rational numbers, the ring of integers,
and the ring of integers modulo n, respectively. Ideals of a ring without the adjective
“left” or “right” mean two-sided ideals.

As mentioned, we will use the term Baer hull for Baer module hull in this paper.
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2 Quasi-Injective, Continuous, Quasi-Continuous,
Extending, and FI-Extending Hulls

We begin this section with a discussion on some useful generalizations of injec-
tivity which are related to the topics of study in this paper. In particular, we dis-
cuss the notions of quasi-injective, continuous, quasi-continuous, extending, and
Fl-extending modules. Relationships between these notions, their examples, charac-
terizations, and other relevant properties are presented.

For a given module M, its injective hull £ (M) is the minimal injective overmodule
of M (equivalently, its maximal essential extension) and is unique up to isomorphism
over M (see [14] and [49]). We discuss module hulls satisfying some generalizations
of injectivity. One may expect that such minimal overmodules H of a module M will
allow for a rich transfer of information between M and H. This, because each of
these hulls, with more general properties than injectivity, sits in between a module
M and a fixed injective hull E(M) of M. Therefore, that specific hull of the module
M usually lies closer to the module M that E(M).

A module M is said to be quasi-injective if for every submodule N of M, each
¢ € Hom(N, M) extends to an R-endomorphism of M. The following is a well-known
result.

Theorem 2.1 A module M is quasi-injective if and only if M is fully invariant in
EWM).

Quasi-injectivity is an important generalization of injectivity. All quasi-injective
modules satisfy the (C), (C,), (Cs), and (FI) conditions given next.

Proposition 2.2 Let M be a quasi-injective module. Then it satisfies the following
conditions.

(C1) Every submodule of M is essential in a direct summand of M.

(Cy) IfV<MandV =N <® M, then V <® M.

(C3z) If My and M, are direct summands of M such that My N M, = O, then M| &
M, is a direct summand of M.

(FI)  Any fully invariant submodule of M is essential in a direct summand of M.

It is easy to see the relationship between the condition (C,) and the condition (C3)
as follows.

Proposition 2.3 If a module M satisfies (C,), then it satisfies (C3).
Conditions (Cy), (Cy), (C3), and (FI) help define the following notions.

Definition 2.4 Let M be a module.

(i) M is called continuous if it satisfies the (C;) and (C,) conditions.
(i1) M is said to be quasi-continuous if it has the (C;) and (Cs) conditions.
(iii)) M is called extending (or CS) if it satisfies the (C;) condition.
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(iv) M is called Fl-extending if it satisfies the (FI) condition.

From the preceding, the following implications hold true for modules. However,
the reverse implications do not hold as illustrated in Example 2.5.

injective = quasi-injective = continuous

=-quasi-continuous = extending = Fl-extending.

Example 2.5 (i) Every injective module and every semisimple module are quasi-
injective. There exist simple modules which are not injective (e.g., Z, for any
prime integer p as a Z-module). Further, there is a quasi-injective module which
is neither injective nor semisimple. Let R = Z and M = Z,», with p a prime
integer and n an integer such that n > 1. Then E(M) = Z,~, the Priifer p-
group, and thus M is neither injective nor semisimple. But f (M) € M for any
f € End(E(M)). So M is quasi-injective by Theorem 2.1 (see [15, Example, p.
22]).

(i) LetK beafield and F be a proper subfield of K. SetK,, = K foralln =1,2... .
We take.

o0
R = [(a,,),fo, e HK” |a, € F eventually] ,

n=1

which is a subring of [ ]2, K,,. Say I < R. Then we can verify that rg(/) = eR
with 2 = e € R. Therefore Iz <®° rg(£g(I)) = (1 — )Ry as R is semiprime.
So R is extending. Further, since R is von Nuemann regular, Ry also satisfies
(C,) condition. Thus Rg is continuous. As E(Rg) = H;’il K,, Rgisnotinjective,
S0 Ry is not quasi-injective.

(iii) Let R be a right Ore domain which is not a division ring (e.g., the ring Z of
integers). Then Ry, is quasi-continuous. Take 0 # x € R such that xR # R. Then
XRr = Rpg, but xRp is not a direct summand of Rg. Thus Ry is not continuous.

(iv) Let F be a field and R = T»(F), the 2 x 2 upper triangular matrix ring over
F. Then we see that Ry is extending. Let e;; € R be the matrix with 1in the
(i, j)-position and 0 elsewhere. Put e = e, + ey and f = e3,. Then e? = eand
f* =f. Note that eR N fR = 0. But eRg @ fRy is not a direct summand of Rg.
Thus Ry is not quasi-continuous.

(v) Let R = Mat,(Z[x]) (nis an integer such that n > 1). Then Ry, is FI-extending,
but Ry is not extending. Further, the module M = ®;,Z is an Fl-extending
Z-module which is not extending.

The next theorem allows us to transfer any given decomposition of the injective
hull E(M) of a quasi-continuous module M to a similar decomposition for M (the
converse always holds). This fact is also helpful in transference of properties between
between a quasi-continuous module M and its injective hull E(M) or a module in
between.
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Theorem 2.6 ([16], [20], and [39]) The following are equivalent for a module M.

(i) M is quasi-continuous.
(ii) M =X @Y for any two submodules X and Y which are complements of each
other.
(iii) fM C M for every f* = f € Endgr(E(M)).
(iv) E(M) = @jcpE; implies M = @jepn (M N E)).
(v) Any essential extension V of M with a decomposition V. = ®,crV, implies
that M = ®,er(M N V).

Remark 2.7 The equivalence of the conditions (i), (ii), (iii), and (iv) of Theorem
2.6 are comprised by results obtained in [16] and [20], while the condition (v) of
Theorem 2.6 is obtained in [39].

Definition 2.8 Let 9 be a class of modules and M be any module. We call, when
it exists, a module H the 9T hull of M if H is the smallest essential extension of M
in a fixed injective hull E(M) that belongs to 9.

It is clear from the preceding definition that an 9t hull of a module is unique within
a fixed injective hull E(M) of M. It may be worth to note that in [42, Definitions 4.7,
4.8, and 4.9, pp. 36-37], three types of continuous hulls of a module, Type I, Type II,
and Type III are introduced (see also [35, Definitions]). The authors of [42] and [35]
chose the Type III continuous hull of a module to be called as the continuous hull
of an arbitrary module for several reasons provided in [42] and [35]. Our Definition
2.8 follows the definition of continuous hull of Type III.

The next result due to Johnson and Wong [23] describes precisely how the quasi-
injective hull of a module can be constructed and that the quasi-injective hull of any
module always exists.

Theorem 2.9 Assume that M is a right R-module and let S = End(E(M)). Then
SM = {3 f;(m;) | f; € S and m; € M} is the quasi-injective hull of M.

The following result for the existence of the quasi-continuous hull of a module is
obtained by Goel and Jain [16].

Theorem 2.10 Assume that M is a right R-module and S = End(E(M)). Let Q2 be
the subring of S generated by the set of all idempotents of S. Then QM = {>_ fi(m;) |
f; € Q and m; € M} is the quasi-continuous hull of M.

Recall that a module is called uniform if the intersection of any two nonzero
submodule is nonzero (i.e., the module Zy). If M is a uniform module, then E(M)
is also uniform. Thus § = End(E(M)) has only trivial idempotents, so QM = M.
Therefore the quasi-continuous module hull of M is M itself.

A module is said to be directly finite if it is not isomorphic to a proper direct
summand of itself. A module is called purely infinite if it is isomorphic to the direct
sum of two copies of itself. Recall that a ring R is called directly finite if xy = 1
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implies yx = 1 for x, y € R. We remark that a module M is directly finite if and only
if End(M) is directly finite.

The following result was obtained by Goodearl [17] in a categorical way. In [36],
Miiller and Rizvi gave an algebraic proof of the result and extended it. They also
proved a strong “uniqueness” of the decomposition. The result was further extended
by them to a similar decomposition of a quasi-continuous module as provided in
Theorem 2.13 ahead.

Theorem 2.11 ([36, Theorem 1]) Every injective module E has a direct sum decom-
position, E = U @ V, where U is directly finite, V is purely infinite, and U and V
have no nonzero isomorphic direct summands (or submodules). IfE = U; @ V| =
U, & V, are two such decompositions, then E = Uy @ V, holds too, and conse-
quently Uy E2 Uy and Vi = V.

Given a quasi-continuous module M and a submodule A of M, it is easy to find
the direct summand of M in which A is essential (just consider M N E(A)). This
summand was called an internal quasi-continuous hull of A in M by Miiller and
Rizvi [36].

Another interesting property of a quasi-continuous module M obtained is that if
A and B are two isomorphic submodules of M then the direct summands of M which
are essential over A and B respectively, are unique up to isomorphism as follows.

Theorem 2.12 ([36, Theorem 4]) Assume that M is a quasi-continuous module and
A <SP <® M (i=1,2). IfA) = Ay, then P; = P,.

By using Theorem 2.12, the decomposition theorem of injective modules (Theo-
rem 2.11) can be extended to the case of quasi-continuous modules as follows.

Theorem 2.13 ([36, Proposition 6]) Every quasi-continuous module M has a direct
sum decomposition, M = U @ V, where U is directly finite, V is purely infinite,
and U and V have no nonzero isomorphic direct summands (or submodules). If
M =U, &V, =U,®V, are two such decompositions, then M = U; & V, holds
too, and consequently U; = U, and Vi = V.

The existence and description of continuous hulls of certain modules have been
investigated in [42] (and [35]). In contrast to Theorems 2.9 and 2.10, Miiller and Rizvi
[35, Example 3] construct the example of a nonsingular uniform cyclic module over
a noncommutative ring which cannot not have a continuous hull as follows.

Example 2.14 Let V be a vector space over a field F with basis elements v,,, wy
(m, k=0,1,2,...). We denote by V, the subspace of V generated by the
v, (m > n) and all the wy. Also we denote by W, the subspace generated by
the wy (k > n). We write S for the shifting operator such that S(wy) = w41 and
S(v;) = 0 for all &, i.

Let R be the set of all p € Endp(V) such that p(v,,) € V,,, p(wo) € Wy and
p(wy) = SFp(wy), form, k =0, 1,2, ... Note that 7p(wy) = S*7p(wy), for p, 7 €
R, and so 7p € R. Thus it is routine to check that R is a subring of Endz (V). Further,
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we see that V,, = Rv,, W,, = Rw,,, and V,,.; C V, foralln. (Whenf € Randv € V,
we also use fv for the image f(v) of v under f.)

Consider the left R-module M = W,. First, we show that M = Rwy is uniform.
For this, take fwy # 0, gwy # 0 in M, where f, g € R. We need to find i, h, € R
such that hfwy = hogwy # 0. Let

fwo = bowy + byw; + - - - + byw,, € Rwy

and
gwo = cowp + ciwi + -+ - + Cpw, € Rwy,

where b;, ¢ € F,i,j =0,1, ..., m, and some terms of b; and ¢; may be zero.

Put hywo = xowo + x1wy + - - - + xpwy and hrwy = yowo + 1w + - - - + yewy,
where x;,y; € F, i =0,1, ..., ¢ (also some terms of x; and y; may be zero). Since
hy(wy) = S*hy (wo) and 7y (wy) = S¥hy(wg) fork =0, 1, 2. .., weneed to find such
Xi,yi € F,0 <i < {sothat hijfwy = hogwy # 0 from the following equations:

boxo = coyo, boxi + bixo = coy1 + ciyo,
boxy + b1xi + baxg = coy2 + c1y1 + ¢2Yo,
boxz + b1xz + baxy + b3xg = coy3 + c2y1 + c2y1 + €3y,

and so on.

Say a(t) = by + -+ -+ but™ #0and 5(t) = co + - - - + cit™ # 0 in the polyno-
mial ring F[¢]. Then a(t)F[t] N B(2)F[t] # O.

‘We may note that finding such xo, xy ..., X¢, Yo, 1 - - ., ¥¢ in F above is the same
as the job of finding xo, x; . .., X¢, Yo, Y1, - - - , Y¢ sSuch that

a(t)(xo + xit + - +xt") = BO Yo + Y1t + -+ yet’) #0

in the polynomial ring F[¢]. Observing that 0 # a(2) 5(t) € a(t)F[t] N B(t)F[t], take
hiwy = cowp + cyw; + - - - + cw,, by putting £ = m, x; = ¢; for 0 < i <m, and
hhwy = bowy + byw; + - - - + by,w,, by putting £ = m, y; = b; for0 < i < m. Since
a(t)B(t) # 0, we see that 0 # hfwy = hogwy € Rfwg N Rgwy. So M is uniform.

Next, we show that each V), is an essential extension of M (hence each V; is
uniform). Indeed, let 0 # pv, € Rv, = V,, where i1 € R. Say

HVp = GuyiVnik + +*+ + ik eVnphre + Dswy + -+ + Doy Wiy

Ifa,x =+ = appkre = 0, then pv, € Wy. Otherwise, we may assume that a,x 7%
0.Letw € R such that w(v,41) = wo and w(v;) = Ofori # n + k and w(w;) = 0 for
all j. Then 0 # wpv, = a,4rwo € Wo. Thus M = W is essential in V,,. Since M is
uniform, V,, is also uniform for all n.

We prove that g M is nonsingular. For this, assume thatu € Z(zM) (where Z(xM) is
the singular submodule of kM) and let K = {av € R | au = 0}. Then K is an essential
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left ideal of R. So K N RS? # 0. Thus there is p € R with pS? # 0 and pS?(u) = 0.
Say
U= QWi + Qg1 Wit1 + - -+ + AWy

withag, ary1, ..., a, € F. Assume on the contrary that u # 0. Then we may suppose
that a; # 0. Because p(w,) = §"p(wp) forn =0,1,2, ...,

0 = pS*(u) = arpS*(wy) + ap41pS* (Wit1) + -+ - + aupS* (wy,)
= a S p(wo) + a1 p(wo) + - -+ + @, S p(wo) f

Here we put p(wo) = byw; + beryweyr + -+ - + bywy.

If p(wg) = 0, then pS?(wp) = p(w,) = S?p(wp) = 0. Also, pS>(w,,) = 0 for
alm=1,2,...,and pSz(vi) =0foralli=0,1,....So p82 = 0, a contradiction.
Hence p(wg) # 0, and thus we may assume that b, # 0. We note that

Sk+zp(w0) = bewyypi2 + ber1Werkaz + -0+ bwiia,

S p(wo) = bewe ks + by 1 Werkia + -+ bwriisa,

and so on. Thus
0 = pS*(u) = arbyweiii2 + (@bes1 + arptb)Weps + -+

and hence a;b, = 0, which is a contradiction because a; % 0 and b, # 0. Therefore
u = 0, and so M is nonsingular.

We show now that V), is continuous. Note that V), is uniform. So clearly, V, has
the (C;) condition. Thus, to show that V,, is continuous, it suffices to prove that every
R-monomorphism of V,, is onto for V,, to satisfy the (C,) condition.

Let ¢ : V, — V, be an R-monomorphism. We put

p(v,) = pv, € Rv, =V,, where peR.

We claim that pv, ¢ V, 4. For this, assume on the contrary that pv, € V4. Let
A € R such that \v, = v,, Avy =0 for k #n, and \w,, =0 for all m. Then
p(Av,) = A(pv,) = 0 since p(v,) € V,41. But v, = v, # 0. Thus ¢ is not one-
to-one, a contradiction. Therefore pv, ¢ V4.

As pv, € V,, write

PUn = AuUn + Aui1Vny1 + ++ + QupeVnre + bowo + - - - + bpwy,
where a,,, ay11, ..., e, bo, by, ..., by € F,and a, # 0.

Take v € R such that vv, = a,'v,, vvy = 0 for k # n and vw,, = 0 for all m.
Then we see that v, = vpv, € Rpv,. Therefore Rv, C Rpv,, and hence V,, = Rv,, =
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Rpv,. Thus ¢(Rv,) = Rp(v,) = Rpv, = V,, so pisonto. Therefore V,, is continuous
for all n.

Finally, note that the uniform nonsingular module M = Rwy is not continuous,
since the shifting operator S provides an R-monomorphism which is not onto. Hence,
M does not have a continuous hull (in E(M) = E(V)), because such a hull would
have to be contained in each V,, and hence in M = [, V,,.

Despite Example 2.14, continuous hulls do exist for certain classes of modules
over a commutative ring. For the class of cyclic modules, the next result and Theo-
rem 2.17 due to Miiller and Rizvi [35] show the existence of continuous hulls over
commutative rings.

Theorem 2.15 ([35, Theorem 8]) Every cyclic module over a commutative ring
whose singular submodule is uniform, has a continuous hull.

The next example, due to Miiller and Rizvi [35], shows that in general, the quasi-
continuous hull of a module is distinct from the continuous hull, which in turn is
distinct from the (quasi-)injective hull of the module.

Example 2.16 ([35,Example2])LetF, = Rforn=1,2,...,andputA = l_lf; F,,
where R is the field of real numbers. Let R be the subring of A generated by &2 | F),
and 14. Then E(Rg) = Q(R) = A. In this case, we see that

V= {(an)flil €Ala, e’ eventually}
is the quasi-continuous hull of Rg, while

W = {(a,,)ff;] €Ala,eQ eventually}
is the continuous hull of Rg because W is the smallest continuous von Neumann reg-
ular ring between R and Q(R) (so W is the intersection of all intermediate continuous
von Neumann regular rings between R and Q(R)). We note that Ay is an injective
hull of Wy, and also Ay is a quasi-injective hull of Wy, .

When M is a uniform cyclic module over a commutative ring, the following
theorem shows that M has a continuous hull (see [42]). Furthermore, it explicitly
describes the continuous hull of M. Recall that when M is a right R-module, an
element ¢ € R is said to act regularly on M if mc = 0 with m € M implies that
m = 0. Let C be the multiplicative set of elements of R which act regularly on M,
andlet MC™' = {mc™' |meM,c e C).

Theorem 2.17 ([42, Theorem 4.15] and [10, Theorem 8.4.11, p. 319]) Let R be a
commutative ring, and M a uniform cyclic R-module. Then MC~' is a continuous
hull of M.

In view of the existence of quasi-injective and quasi-continuous hulls for all
modules and from the existence of continuous hulls for some classes of modules in
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Theorems 2.15 and 2.17, it is natural to consider the existence of extending hulls of
modules. However, the following example exhibits that there exists a free module of
finite rank over a commutative domain which has no extending hull.

Example 2.18 (cf. [40, Example 2.19] and [10, Example 8.4.13, p. 319]) We let
R = Z][x], the polynomial ring over Z. Then (R & R)g has no extending hull.

We recall that a module M satisfying the (FI) condition is called Fl-extending.
Thus a module M is Fl-extending if and only if every fully invariant submodule of
M is essential in a direct summand of M. A ring R is called right Fl-extending if
Rp is Fl-extending. Similarly left FI-extending ring is defined. For more details on
FI-extending modules and rings, see [4, 8, 10].

The notion of an FI-extending module generalizes that of an extending module by
requiring that only every fully invariant submodule is essential in a direct summand
rather than every submodule. Many well-known submodule of a given module are
fully invariant. For example, the socle of a module, and the Jacobson radical of a
module, and the singular submodule of a module, are fully invariant. For a ring R,
all its fully invariant submodules are precisely the ideals of R. It was shown in [4,
Theorem 1.3] that any direct sum of Fl-extending modules is FI-extending without
any additional requirements. Thus while a direct sum of extending modules may
not be extending, it does satisfy the extending property for all its fully invariant
submodules.

There are close connections between the FI-extending property and the quasi-Baer
property. For example, assume that R is a semiprime ring. Then R is right FI-extending
if and only if R is left extending if and only if R is a quasi-Baer ring from [4, Theorem
4.7]. Further, every nonsingular FI-extending module is a quasi-Baer module (in fact,
this also holds true under much weaker nonsingularity conditions).

A commutative domain R is called Priifer if R is semihereditary. Thus a com-
mutative domain is Priifer if and only if every finitely generated ideal is projective.
Note that every extending module is Fl-extending. If R is a commutative domain
which is not Priifer (e.g., R = Z[x]) and = is an integer such that n > 1, then R,(e") is
FI-extending, but R,(;’) is not extending (cf. Example 2.5(v)).

For aring R, recall that Q(R) denotes the maximal right ring of quotients of R. Let
B(Q(R)) be the set of all central idempotents of Q(R). By [2], the subring RB(Q(R))
of Q(R) generated by R and B(Q(R)) is called the idempotent closure of R.

Between R and RB(Q(R)), LO (Lying Over), GU (Going Up), and INC (Incom-
parable) hold. Thereby, kdim(R) = kdim(RB(Q(R)), where kdim(—) is the classi-
cal Krull dimension of a ring, i.e., the supremum of all length of chains of prime
ideals. For prime radicals and Jacobson radicals of R and RB(Q(R)), we have
that P(RB(Q(R)) "R = P(R) and J(RB(Q(R)) N R = J(R), where P(—) and J(—)
denote the prime radical and the Jacobson radical of a ring, respectively. Also, R is
strongly w-regular if and only if RB(Q(R)) is strongly 7-regular (recall that aring A is
called strongly m-regular if for each a € A there exist x € A and a positive integer n,
depending on g, such that a" = a"'x. (See [10, Lemma 8.3.26 and Theorem 8.3.28,
pp- 296-297].)
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Further, by [10, Corollary 8.3.30, p. 298], R is von Neumann regular if and only
if RB(Q(R)) is von Neumann regular. When R is a semiprime ring with exactly n
(n a positive integer) minimal prime ideals Py, P», ..., P,, we have the following
structure theorem

RB(Q(R)) =R/P1 ®R/P» & --- ®R/P,

as rings from [10, Theorem 10.1.20, p. 370].

By using the above structure theorem for RB(Q(R)), it was shown in [7, Corollary
4.17] that if A is a unital C*-algebra and n is a positive integer, then A has exactly n
minimal prime ideals if and only if AB(Q(A)) is a direct sum of n prime C*-algebras
if and only if the extended centroid Cen(Q(A)) of A is C", where C is the field of
complex numbers.

An overring T of a ring R is called a right ring of quotients of R if R is a dense
submodule of Tk. Assume that R is a semiprime ring. Then from [7, Theorem 3.3],
the ring RB(Q(R)) is the smallest right FI-extending right ring of quotients of R. For
more details on RB(Q(R)), see [10, Sects. 8.3 and 10.1].

In the following definition, for a ring R, we fix a maximal right ring of quotients
Q(R) of R. Thus a right ring of quotients 7" of R is a subring of Q(R).

Definition 2.19 (see [6, Definition 2.1]) The smallest right FI-extending right ring
of quotients of aring R is called the right FI-extending ring hull of R (when it exists).
Such hull is denoted by Oy (R).

The existence of the right FI-extending ring hull Ori(R) of a semiprime ring R was
obtained and explicitly described by Birkenmeier, Park, and Rizvi in the following
interesting result.

Theorem %:20 ([7, Theorem 3.3]) Assume that R is a semiprime ring. Then @Fl (R)
exists and Qp1(R) = RB(Q(R)).

Let R be a commutative semiprime ring. Then RB(Q(R)) is the smallest extending
ring of quotients of R by Theorem 2.20.

In contrast to Theorem 2.20, there exists a semiprime ring for which the right
extending ring hull does not exist. For this, we need the the next result.

Theorem 2.21 ([10, Theorem 6.1.4, p. 191]) Let R be a commutative domain. Then
the following are equivalent.

(i) R is a Priifer domain.

(ii) Mat,(R) is a (right) extending ring for every positive integer n.
(iii) Mat,(R) is a (right) extending ring for some integer k > 1.
(iv) Mat,(R) is a (right) extending ring.

The smallest right extending right ring of quotients of a ring R is called the
right extending ring hull of R (when it exists). Such hull is denoted by Qg (R). By
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using Theorem 2.21, we obtain the following example which exhibits that the right
extending ring hull of a semiprime ring does not exist, in general.

Example 2.22 (see [10, Example 8.3.34, p. 300]) Let R = Mat; (F[x, y]), where F
is a field and & is an integer such that k > 2. Then the right extending ring hull @E (R)
of R does not exist.

Assume on the contrary that @E (R) exists. Note that F'(x)[y] and F (y)[x] are Priifer
domains, where F(x) (resp., F(y)) is the field of fractions of F[x] (resp., F[y]). So
Mat; (F (x)[y]) and Mat (F (y)[x]) are right extending rings by Theorem 2.21. Note
O(R) = Maty(F (x, y)), where F(x, y) is the field of fractions of F[x, y]. Hence

Ok (R) € Maty (F(x)[y]) N Mat,(F (y)[x]) = Maty (F (x)[y] N F(3)[x]).

To see that F(x)[y] N F(y)[x] = F[x, y], let

Y, y) = fo(x)/go(x) + (Fi(x) /g1 (x)y + - - + (i (X) /g (X))y™
= ho)/ko(y) + (i () /ky ())x + - - - + (h, (v) [k ()"

bein F(x)[y] N F(y)[x], where fi(x), gi(x) € Flx], hj(y), k() € Flyl, and g;(x) #
0, kj(y) #0fori=0,1,...,m,j=0,1,...,n Let F be the algebraic closure of F.
If deg(go(x)) > 1, then there exists a € F such that go(a) = 0. Thus v(«, y) cannot
be defined. On the other hand, we note that

Y(a,y) = ho/ko(y) + (i) /i) + - - - + (h(0) [k ()",

which is a contradiction. Thus go(x) € F. Similarly, g (x), ..., g.(x) € F. Hence
Y(x,y) € Flx,y]. Therefore F(x)[y] N F(y)[x] = F[x, y], and so

Or(R) = Mat(F(x)[y] N F(y)[x]) = Mat (F[x, y)).

Thus Mat, (F[x, y]) is a right extending ring, a contradiction from Theorem 2.21
because the commutative domain F[x, y] is not Priifer. Therefore R = Mat; (F[x, y])
has no right extending ring hull.

In contrast to Theorem 2.20, the existence of the right FI-extending ring hull of
a ring is not always guaranteed, even in the presence of nonsingularity, as the next
example shows.

Example 2.23 (see [5, Example 2.10(ii)], [6, Example 3.16], and [10, Example 8.2.9,
p. 278]) Let F be a field and put

a0 x
R = Oay|l|lac,x,yeF; = FF@F.
0 F
00 c

Then R is right nonsingular and Q(R) = Mat;(F).
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Let
a0 x
H, = O0by|lab,c,x,yeF %[F%FF;?F]
00 ¢
and let
a+b ax
H, = 0O by|lab,c,x,y€eF
0 Oc

Note that R, H;, and H, are subrings of Mats(F'). Define ¢ : H; — H; by

a0 x aa—bx—y
o|l0by| =10 b y
00c 0 0 c

Then ¢ is a ring isomorphism. It is routine to check that the ring R is not right FI-
extending. But, we can verify that H, is a right FI-extending ring. Therefore H, is
also right FI-extending because H; = H, (ring isomorphic).

Let F = Z,. Then there is no proper intermediate ring between R and Hj, also
between R and H,. If @FI (R) exists, then @FI (R) CH{NHy =R, so @FI (R) =R
Hence R is a right FI-extending ring, which is a contradiction.

In contrast to Example 2.18 where the extending hull of a finitely generated free
module of rank 2 does not exist, it was shown that the FI-extending hulls of every
finitely generated projective module over a semiprime ring does exist in [8]. Also
such an FI-extending hulls is described explicitly using Theorem 2.20 as in the next
theorem. For a module M, let §J(M) denote the Fl-extending hull of M, when it
exists.

Theorem 2.24 ([8, Theorem 6]) Any finitely generated projective module Provera
semiprime ring R has the Fl-extending hull §J(Pg). Indeed, §I(Pg) = e(D"Qp1(R)r)
where P = e(®"Rg), for some e* = e € End(®"Rg) and some positive integer n.

From Theorems 2.20 and 2.24, the following result is obtained.

Corollary 2.25 ([8, Corollary 7]) Assume Athat R is a semiprime ring and Py is a
finitely generated projective module. Then Qpr(End(Pg)) = End(§JI(Pg)).

An application of Theorem 2.24 yields the following consequences.
Corollary 2.26 ([8, Corollary 13]) Let R be a semiprime ring. Then:

(i) If Pg is a progenerator of the category Mod-R of right R-modules, then
SJ(PR)QFI(R) is a progenerator of the category Mod- QFI(R) of right QFI(R)
modules.

(ii) If R and a ring S are Morita equivalent, then @FI(R) and @FI(S) are Morita
equivalent.
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3 Baer Modules

We introduce the definition of a Baer module My via its endomorphism ring S =
End(Mp) in contrast to defining this notion in terms of the base ring R. The use of
the endomorphism ring instead of the base ring R appears to offer a more natural
generalization of a Baer ring in the general module theoretic setting (see Definition
3.1 and the comments after Example 3.2).

Properties of Baer modules are included and examples are provided. Similar to the
ring theoretic concepts of nonsingularity and cononsingularity, JC-nonsingularity and
IC-cononsingularity, respectively are discussed for modules. Using these concepts,
strong connections between extending modules and Baer modules are provided,
which generalizes the Chatters-Khuri theorem to the module theoretic setting. We
include a characterization of rings R for which every projective right R-module is
Baer. Properties of Baer modules from this section will also be used in Sect. 4. For
more details on Baer modules and their properties, see [44—47], and [10, Chap.4].

We start with the following definition.

Definition 3.1 ([44, Definition 2.2]) A right R-module M is called a Baer module if,
for any Nz < Mp, there exists e = e € S such that £5(N) = Se, where S = End(Mj)
and £g(N) = {f € S | f(N) = 0}. A right R-module M is Baer if and only if for any
left ideal I of S, ry (I) = fM with f2 = f € S, where ryy(I) = {m € M | Im = 0}.

A ring R is said to be a Baer ring if the right annihilator of any nonempty subset
of R is generated, as a right ideal, by an idempotent of R. Thus a ring R is a Baer ring
if and only if Rg is a Baer module. Further, we can verify that a ring R is Baer if and
only if the left annihilator of any nonempty subset of R is generated, as a left ideal,
by an idempotent of R (see [27, Theorem 3, p. 2]).

Example 3.2 (i) Every semisimple module is a Baer module.
(i) If R is a Baer ring and ¢> = ¢ € R, then eRy is a Baer module (see Theorem
3.12).
(iii) ([44, Proposition 2.19]) A finitely generated Baer abelian group M is a Baer
Z-module if and only if M is semisimple or torsion-free.
@iv) ([10, Corollary 4.3.6, p. 112]) Any finitely generated right Hilbert A-module
over an AW*-algebra A is a Baer module.
(v) ([44, Theorem 2.23]) A module M is an indecomposable Baer module if and
only if any nonzero endomorphism of M is a monomorphism.
(vi) Any nonsingular extending module is a Baer module (see [44, Theorem 2.14]).
(vii) For a commutative domain R and an integer n > 1, R};’) is a Baer module if
and only if R;e") is an extending module if and only if R is a Priifer domain.
(viii) ([47, Theorem 3.16]) Let R be an n-fir (n a positive integer). Then Rg) is a
Baer module (recall that a ring R is said to be an n-fir if any right ideal of R
generated by at most n elements is free of unique rank).

In [30, Definition 3.1], Lee and Zhou also called a module My Baer if, for any
nonempty subset X of M, rx(X) = eR with ¢ = e € R. But Definition 3.1 is distinct
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from their definition. In fact, any semisimple module is a Baer module by Definition
3.1 (see Example 3.2(i)), but it may not be a Baer module in the sense of Lee and
Zhou [30] (for example Z, as a Z-module, where p is a prime integer, is a Baer
module in our sense).

Definition 3.3 ([44, Theorem 2.5]) Let M be a module. Then M is called K-
nonsingular if, for ¢ € Endg(M), Ker(¢) <®° M implies ¢ = 0.

Example 3.4 (i) Any semisimple module is -nonsingular.

(ii) ([44, Proposition 2.10]) Every nonsingular module is K-nonsingular.

(iii) ([44, Example 2.11]) The Z-module Z,, where p is a prime integer, is K-
nonsingular, but it is not nonsingular.

(iv) Any polyform module is C-nonsingular. Recall that a module M is said to be
polyform if every essential submodule of M is a dense submodule. A polyform
module M is also called non-M-singular.

(v) For aring R, Ry is K-nonsingular if and only if Ry is nonsingular if and only
if Rg is polyform.

(vi) [46,Example2.5])LetM = Q @ Z; as a Z-module. Then M is KC-nonsingular.
But M is neither nonsingular nor polyform.

(vii) ([44, Lemma 2.15]) Every Baer module is K-nonsingular.
(viii) ([44, Lemma 2.6]) A module M is K-nonsingular if and only if, for any left
ideal I of S, ry; (1) <*% M implies I = 0, where S = End(M).

While the nonsingularity of a module M provides the uniqueness of essential
closuresin M (i.e., M is a UC-module), the K-nonsingularity provides the uniqueness
of closures which happen to be direct summands of M.

Theorem 3.5 ([46, Proposition 2.8]) Assume that M is a K-nonsingular module,
andlet N < M. IfN < N; <® M, fori =1, 2, then N = N.

We recall that a ring R is said to be right cononsingular if for Iy < Rg, £g(I) =0
implies Iz <% Rg. Dual to the notion in Definition 3.3, the following is a module
theoretic version of cononsingularity introduced in [44].

Definition 3.6 ([44, Definition 2.7]) A module My, is called KC-cononsingular if for
all Ng < Mg, £s(N) = 0 implies Ny <®° Mg, where S = End(Mpg).

Example 3.7 (i) Foraring R, Rg is KC-cononsingular if and only if R is right conon-
singular.
(i) ([44, Lemma 2.13]) Every extending module is K-cononsingular.
(iii) For a commutative semiprime ring R, R;e”) is KC-cononsingular for every posi-
tive integer n.
(iv) Let R = Z[x]. Then (R & R)g is K-cononsingular by part (iii). But (R @ R)g
is not extending by Theorem 2.21. Hence the converse of part (ii) is not true.

Proposition 3.8 ([44, Proposition 2.8(ii)]) Assume that M is a right R-module. Then
M is KC-cononsingular if and only if, for N < M, ry;(Ls(N)) <® M implies N <
ryls(N), where S = Endgr(M).
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It is shown by Chatters and Khuri [11, Theorem 2.1] that a ring R is right extend-
ing right nonsingular if and only if R is a Baer ring and right cononsingular. This
result is extended to an arbitrary module in the next theorem which exhibits strong
connections between a Baer module and an extending module.

Theorem 3.9 ([44, Theorem 2.12]) A module M is extending and K-nonsingular if
and only if M is Baer and K-cononsigular.

Definition 3.10 ([47, Definition 2.3]) Let Mg be an R-module and S = Endg(M).
Then Mk, is called quasi-retractable if Homg(M, ry;(I)) # O for every left ideal I of
S with ), (I) # 0 (or, equivalently, if rg(I) # O for every leftideal I with ry, (1) # 0).

Recall from [29] that a module M is said to be retractable if any 0 # N <
M, Hom(M, N) # 0. Examples of retractable modules include free modules, gener-
ators, and semisimple modules. Obviously retractable modules are quasi-retractable.
But there exists a quasi-retractable module which is not retractable. For example, let

F be a field. Put
FF 10
R=|:0Fi| and e=|:001| € R.

Consider the module M = eR. Note that S := End(Mg) = eRe = F, which s a field.
Let I be a left ideal of S such that r4; (1) # 0. Then I = 0 and so ry,(I) = M. Hence,
Hom(Mg, ry(I)) = End(Mg) = F # 0. Thus, M is quasi-retractable. But My is not
retractable, since the endomorphism ring S of Mg, which is isomorphic to F, consists
of isomorphisms and the zero endomorphism. On the other hand, as Mk is not simple,
retractability of Mg implies that there exist nonzero endomorphisms of My which
are not onto (see [10, Example 4.2.4, p. 101]).

By [44, Theorem 4.1], the endomorphism ring of a Baer module is a Baer ring.
But the converse does not hold by [44, Example 4.3]. Indeed, let M = Z,,~, the Priifer
p-group (p a prime integer), as Z-module. Then S := Endz (M) is the ring of p-adic
integers, so S is a commutative domain. Hence S is a Baer ring. But M is not a Baer
Z-module.

In spite of the above example, the following result shows a connection between
the Baer property of a module and its endomorphism ring via its quasi-retractability.

Theorem 3.11 ([47, Theorem 2.5]) A module My is Baer if and only if Endgr(M) is
a Baer ring and My is quasi-retractable.

Theorem 3.12 ([44, Theorem 2.17]) Any direct summand of a Baer module is a
Baer module.

We noted before, Z,, @ Z (p a prime integer) is not Baer as a Z-module, while both
7, and Z are Baer Z-modules. For the Baer property of a finite direct sum of Baer
modules, we need the following. Let M and N be R-modules. Then M is said to be N-
injective if, forany W < N and f € Hom(W, M), there exists ¢ € Hom(N, M) such
that ¢|w = f. Recall from [47, Definition 1.3] that two modules M and N are said
to be relatively Rickart if, for every f € Hom(M, N), Ker(f) <® M and for every
g € Hom(N, M), Ker(g) <® N.
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Theorem 3.13 ([47, Theorem 3.19] also see [10, Theorem 4.2.17, p. 105]) Assume
that {M; | 1 <i < n} be a finite set of Baer modules. Let M; and M; be relatively
Rickart for i # j, and M; be M;-injective for i < j. Then ®}_,M; is a Baer module.

The study of rings R for which a certain class of R-modules is Baer is of natural
interest. In the following, R is semisimple artinian if and only if every injective
R-module is Baer.

Theorem 3.14 ([46, Theorem 2.20]) The following are equivalent for a ring R.

(i) Every injective (right) R-module is Baer.
(ii) Every (right) R-module is Baer.
(iii) R is semisimple artinian.

A ring R is said to be semiprimary if R/J(R) is artinian and J(R) is nilpotent.
Recall that a ring R is right (resp., left) hereditary if every right (resp., left) ideal
of R is projective. It is well-known that if a ring R is semisprimary, then R is right
hereditary if and only if R is left hereditary.

The following result provides a characterization of rings R for which every pro-
jective right R-module is Baer. Also see Theorem 4.11.

Theorem 3.15 ([47, Theorem 3.3]) The following are equivalent for a ring R.

(i) Every projective right R-module is a Baer module.
(ii) Every free right R-module is a Baer module.
(iii) R is a semiprimary, hereditary (Baer) ring.

Since condition (iii) is left-right symmetric, the left-handed versions of (i) and (ii)
also hold.

A module My, is called rorsionless if it can be embedded in a direct product of
copies of Rg. The following result characterizes a ring R for which every finitely
generated right R-module is a Baer module.

Recall that an R-module M is said to be finitely presented if there exists a short exact
sequence of R-modules 0 — K — R™ — M — 0, where n is a positive integer and
K is a finitely generated R-module.

A ring R is called right T1-coherent if every finitely generated torsionless right
R-module is finitely presented. Left IT-coherent ring is defined similarly. Recall that
aring R is said to be right semiheditary if every finitely generated right ideal of R is
projective. A left semihereditary ring is denied similarly.

Theorem 3.16 ([47, Theorem 3.5]) The following are equivalent for a ring R.

(i) Every finitely generated free right R-module is a Baer module.

(ii) Every finitely generated projective right R-module is a Baer module.
(iii) Every finitely generated torsionless right R-module is projective.
(iv) Every finitely generated torsionless left R-module is projective.

(v) R is left semihereditary and right T1-coherent.
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(vi) R is right semihereditary and left T1-coherent.
(vii) Mat,(R) is a Baer ring for every positive integer n.

For a positive integer n, we recall that an n-generated module means a module
which is generated by n elements. A ring R is said to be right n-hereditary if every
n-generated right ideal of R is projective. Thus, a ring R is right semihereditary if and
only if it is right n-hereditary for all positive integers n. Given a fixed positive integer
n, we introduce the following characterization for every n-generated free R-module
to be Baer.

Theorem 3.17 ([47, Theorem 3.12]) Let R be a ring and n a positive integer. Then
the following are equivalent.

(i) Every n-generated free right R-module is a Baer module.
(ii) Every n-generated projective right R-module is a Baer module.
(iii) Every n-generated torsionless right R-module is projective (therefore R is right
n-hereditary).
(iv) Mat,(R) is a Baer ring.

Corollary 3.18 Let R be a ring. Then R is a Baer ring if and only if every cyclic
torsionless right R-module is projective.

4 Baer Module Hulls

We present recent results and examples on Baer hulls in this section. As mentioned
in the introduction, the study of even Baer ring hulls has been rather limited. And
the only results on Baer ring hulls that exist in earlier literature are from [19, 33, 37,
38], respectively for the classes of commutative semiprime rings, commutative von
Neumann regular rings, and reduced right Utumi rings. Some newer developments
on ring hulls were presented in [5-7, 9, 10]. The question about the existence of
Baer module hulls and their existence has not been addressed till now and is quite
challenging. The results presented here are the latest developments on Baer module
hulls of finitely generated modules over a commutative domain.

From [44] itis known that N = Z, @ Z (p a prime integer) is not a Baer Z-module,
while Z,, and Z are. We construct the Baer hull of the module N in a more general
setting. Let R be a commutative noetherian domain. We first introduce a result from
[40] for intermediate modules between an analogous direct sum as an R-module
N and its injective hull E(N) to be Baer (Theorem 4.1). Then we use this result to
construct and characterize the Baer hull of a module N over a Dedekind domain
R, when Anng(#(N)) # 0 and N/¢(N) is finitely generated, where #(N) denotes the
torsion submodule of N (Theorems 4.4, 4.5, and 4.8). As a consequence, every finitely
generated module over a Dedekind domain, has a unique Baer hull precisely when
its torsion submodule is semisimple. For a module N such that N /¢(N) is not finitely
generated, an example shows that N does not have a Baer hull (Example 4.12).
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Among applications presented, we show that a finitely generated module N over
a Dedekind domain is Baer if and only if N is semisimple or torsion-free (Corollary
4.6). This extends a result on finitely generated abelian groups. The isomorphism
problem between modules and their Baer hulls is discussed (Proposition 4.13 and
Example 4.14). It is also shown that the Baer hull of a direct sum of two modules is
not necessarily isomorphic to the direct sum of the Baer hulls of the modules, even if
all Baer hulls exist (Example 4.16). The Baer hull of N = Z, ® Z (p a prime integer)
as a Z-module, is shown to be precisely V = Z, @ Z[1/p]. The disparity of the Baer
hull and the extending hull of Z, ® Z is discussed (Example 4.17). A number of
other examples which illustrate the results are provided.

Let R be a commutative noetherian domain and F be its field of fractions. Assume
that N = Mr & (P;caK;), where M is semisimple with a finite number of homoge-
neous components, and {K;};ca is a set of nonzero submodules of Fp.

By using the preceding results, we obtain the following which identifies interme-
diate modules between N and E(N) which happen to be Baer modules.

Theorem 4.1 ([40, Theorem 2.6]) Let R be a commutative noetherian domain, which
is not a field. Assume that M is a nonzero semisimple R-module with only a finite
number of homogeneous components, and {K; | i € A} is a nonempty set of nonzero
submodules of Fr, where F is the field of fractions of R. Let Vg be an essential
extension of Mg @ (®;cpK;)r. Then the following are equivalent.

(i) V is a Baer module.
(ii) (1) V =M @ W for some Baer essential extension W of (B;caKi)g.
(2) Homg(W, M) = 0.

Let R be a commutative domain with the field of fractions F. A submodule K of
Fris called a fractional ideal of R if rK C R for some 0 # r € R. Thus Kz = (rK)g
and rK is an ideal of R. We note that any ideal of R is a fractional ideal.

For a fractional ideal K of R, we put K~! = {g € F | ¢gK C R}, which is called
the inverse of K. We say that a fractional ideal K is invertible if KK—' = R. It is
well-known that for a nonzero ideal I of a commutative domain R, I is projective
if and only if /=" = R. In this case, Iy is finitely generated and /~' is a fractional
ideal of R.

Recall that a commutative domain R is a Dedekind domain if and only if R is
hereditary. Thus for each nonzero ideal I of a Dedekind domain R, it follows that
II"" = R because Iy is projective. Furthermore, every nonzero fractional ideal of
a Dedekind domain is invertible. We note that a Dedekind domain is noetherian
because every ideal is projective (hence every ideal is finitely generated). See [28, p.
37]and [48, Chap. 6] for more details on Dedekind domains.

Assume that / is an invertible ideal of a commutative domain R. Then we let

I=r1"'1', 13=r1'1', andsoon.

For convenience, we put [ 0—=R.
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Assume that R is a Dedekind domain. Then for nonzero ideals Iy, I, ..., I, of R,
it can be checked that (11, ---1,)™' = I;'-- - I; 'I;" (see [40, Lemma 2.8]).

Proposition 4.2 ([40, Lemma 2.9]) Assume that R is a Dedekind domain and I is a
nonzero ideal of R. We let A =3, I7¢. Then:

(i) A=Rlq1,q,...,qnl, wherel = ZZ:I ruqu for somer, € I and q, € 17" with
1<u<n.
(ii) A is a Dedekind domain.

In Proposition 4.2, since R is a Dedekind domain, R is a Priifer domain. Because
A = R[q1, g2, ..., qn] is an intermediate domain between R and its field of fractions,
A is a Priifer domain (note that any intermediate domain between a Priifer domain
and its field of fractions is a Priifer domain). Since A is a noetherian domain, A is a
Dedekind domain.

Theorem 4.3 ([48, Theorem 6.11, p. 171]) Let R be a Dedekind domain and M an
R-module with nonzero annihilator in R. Then there exists a unique family {P;, n;}icr
such that:

(i) The P; are maximal ideals of R and there are only finitely many distinct ones.
(ii) {n; | i € T} is a bounded family of positive integers.
(iii) M = @;er (R/P!") as R-modules.

Let R be a Dedekind domain and N an R-module. Say #(/V) is the torsion submodule
of N. Suppose that N/#(N) is finitely generated as an R-module. Since N/#(N) is
torsion-free, N/t(N) = (EB;”: 1Kj) (as R-modules) for some fractional ideals Kj, 1 <

Jj < m, of R from [48, Theorem 6.16, p. 177] (see also Corollary 4.6). So N/t(N) is
projective, and hence

N = t(N) ® N/t(N) = 1(N) & (&, K))

as R-modules.

Our next result is a complete characterization for the existence of the Baer hull
of a module N when N/#(N) is finitely generated and Anng(#(N)) # 0 (also see
Theorem 4.5). Furthermore, we describe the Baer hull of N explicitly in this case.

We denote the Baer hull of a module M by 5(M) when it exists.

Theorem 4.4 ([40, Theorem 2.13]) Let R be a Dedekind domain. Assume that M is
an R-module with nonzero annihilator in R, and {K,, K>, . .., K,,} is a finite set of
nonzero fractional ideals of R. Then the following are equivalent.

(i) Mg ® (®7L,K))r has a Baer hull.

(ii) Mg is semisimple.
(iii) Mgp & (GBJ’-"ZIK_;)R has a Baer essential extension.
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In this case, B(Mg & (®_,Kj)r) = Mg ® (S]L,KjA)g, where A =73, (I~
with I = Anng(M). Furthermore, A = Rlq1, q2, - .., qu], where 1 = ZZZI ruqy with

re€landg, el 1 <u<n.

The following is a restatement of Theorem 4.4 for characterization of the Baer
hull of a module N over a Dedekind domain for the case when N /#(N) is finitely
generated and Anng(#(N)) # 0.

Theorem 4.5 ([40, Theorem 2.15]) Let R be a Dedekind domain. Assume that N is
an R-module with N /t(N) finitely generated and Anng(t(N)) # 0. Then the following
are equivalent.

(i) N has a Baer hull.
(ii) t(N) is semisimple.
(iii) N has a Baer essential extension.

By [44, Proposition 2.19 and Remark 2.20], a finitely generated module N over
a commutative PID is a Baer module if and only if N is semisimple or torsion-free.
This result is extended to the case when the base ring is a Dedekind domain as follows
by applying Theorems 4.4 and 4.5.

Corollary 4.6 ([40, Corollary 2.17]) Let R be a Dedekind domain and N be a finitely
generated R-module. Then the following are equivalent.

(i) N is a Baer module.
(ii) N is semisimple or torsion-free.

The next theorem details the structure of finitely generated modules over a
Dedekind domain.

Theorem 4.7 ([48, Theorem 6.16, p. 177]) Let R be a Dedekind domain and N a
finitely generated R-module. Then there exist positive integers ny, ny, ..., n (k is a
nonnegative integer), nonzero maximal ideals Py, P,, . . ., P, and nonzero fractional
ideals Ky, K, ..., K, (misanonnegative integer) of R suchthat N = (@leR/P;"') ®
(&L, K;)) as R-modules.

Assume that N is a finitely generated module over a Dedekind domain. From
Theorem 4.7, N = (@f.‘: \R/P!) & (EB}”Z ,K;), where P; are nonzero maximal ideals
of R and Kj are nonzero fractional ideals of R (k and m are nonnegative integers). In
the following theorem, we characterize the existence of the Baer hull of such N and

describe the Baer hull of N explicitly.

Theorem 4.8 ([40, Theorem 2.18]) Let R be a Dedekind domain, and let N be a
finitely generated R-module. Then the following are equivalent.

(i) N has a Baer hull.
(ii) t(N) is semisimple.
(iii) N has a Baer essential extension.



On Some Classes of Module Hulls 25

In this case, B(Ng) = (B_,(R/P;)r (®FL,KjA)R, where A =3, I~ with
I = Anng(t(N)). Further, A = R[q1, q2, - . ., qn], where 1 = Zzzl ruqu with r, € 1
and g, el 1<u<n

The following remark exhibits an explicit description of A = 3 o0 ~* in Theo-
rem 4.4.

Remark 4.9 We have the following (see [40, Remark 3.1]).

(i) In Theorem 4.3, weputA=>, , I7¢, where I = Anng(M). By Theorems

43 and 4.4, M = @;crR/P; and {P; | i € T'} is a finite set of maximal ideals
P;.Let Py, P,, ..., Py is all the distinct maximal ideals of {P; | i € I'}.
We can verify thatA = ZP;Z‘P;)Z . -PS_ZS, where £, £5, ..., £srunthrough
all nonnegative integers. In fact, I C P; for all i since I = PP, - - - P,. For
i1 <i<s, P/ ! C 17! and therefore P ¢ C It for every nonnegative inte-
ger £. Hence,

P;ZIP;ZZ . .PS—ZS g ]—Z]I—Zz . 'I_ZS — I—(Zl+£2+~-+€5) g A.

Thus > PI_KIPZ_K2 - ~PS‘Z»Y C A, where ¢y, €5, ..., £, run through all nonneg-
ative integers. Conversely, I"'=(PPy---P) ' = PI_IPZ_1 .- -Ps’l. There-
fore it follows that/=¢ = P;“P;* - .- P=* forany nonnegative integer £. Hence
we obtain thatA € > sz‘ P;ZZ e P;@*‘, where £, €, . .., £, run through all
nonnegative integers.

Consequently, A = > Pfg‘P;g2 e Ps‘lf, where €1, £, ..., £; run through all
nonnegative integers.

(i) Let R be a commutative PID. Assume that M is a nonzero semisimple R-
module with nonzero annihilator in R. Then from Theorem 4.3, M has only a
finite number of homogeneous components. Let {H | 1 < k < s} be the set of
allhomogeneous components of M. Fork, 1 <k <s,weputH, = &M, q)
with each M o) simple. So M ) = R/pkR for k,1 <k <s, with p; a
nonzero prime.

We put Py = Anng(H,) for k, 1 <k <s. Then P; = pyR. For a nonnega-
tive integer £, we can routinely verify that P,:e = (l/pi)R fork, 1 <k <s.
Therefore,

PTUP PO = (1D /pS)  (1/p)R

for nonnegative integers €1, £, ..., {;.

Let A=), oI" where I = Anng(M) = P\P;--- Py =pips---psR. By the
preceding argument, A = R[1/py, 1/p2, ..., 1/ps]. Puta = pyp, - - - ps. Then it fol-
lows that A = R[1/a] because I~¢ = (1/a")R. Also note that Anng(M) = aR.

Example 4.10 ([40, Example 3.2]) Let I';, i = 1, 2, 3 be nonempty sets and m be a
positive integer. Then by Remark 4.9(ii), we have
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%(Zg‘l) ® Z;Fz) ® Z;F_z) e Z(m)) — Zgl"l) ® ng‘z) ® Zgl";) ® Z[1/30](m)

as Z-modules because Anny, (Z(zr') ® ng ® Zgr3)) = 30Z.

For aring R and a nonempty set A, we use CFM, (R) to denote the A x A column
finite matrix ring over the ring R.

Theorem 4.11 ([50, Theorem 2] and [47, Theorem 3.3]) Let R be a ring. Then the
following are equivalent.

(i) R is a semiprimary right (and left) hereditary ring.
(ii) CEM, (R) is a Baer ring for any nonempty set A.

Example 4.12 in the following shows that the hypothesis “{K;, K>, ..., K} is
a finite set” in Theorem 4.4 and the hypothesis “N/¢#(N) is finitely generated” in
Theorem 4.5 are not superfluous conditions for the existence of the Baer hull of V.

Example 4.12 (see [40, Example 3.6]) Let I';,i = 1, 2, 3 be nonempty sets as in
Example 4.10. Since Z[1/30] is not a field, Z[1/30] is not semiprimary because
Z[1/30] is a domain. By Theorem 4.11, there exists a nonempty set A such that
CFM, (Z[1/30]) is not a Baer ring. Note that the set A is necessarily infinite. In fact,
if A is finite with the cardinality n, then CFM (Z[1/30]) = Mat,(Z[1/30]) is a Baer
ring as Z[1/30] is a Priifer domain (see [10, Theorem 6.1.4, p. 191]), a contradiction.
bt N — Zgﬁ) ® Z;FZ) ® ng ®ZW.

Then we have the following.

G V.= Z(;‘) ® ng ® ng ® Z[1/30]™) is not a Baer Z-module. In fact, if V
is a Baer module, then Z[1/30]™") is Baer as a Z-module by Theorem 3.12. We
show that

Endz(Z[1/30]"Y) = Endy /301 (Z[1/30]™).

For this, first we note that Endz;; /30)(Z[1/30]Y) € Endz(Z[1/30]“Y). Next,
let f € Endz(Z[1/30]Y). Assume on the contrary that f ¢ Endy 30

(Z[1/30]V). Then there exist y € Z[1/30]Y) and ¢ € Z[1/30] such that
fOq) —f()g #0.Put g = ab™', where a, b € R and b # 0. So

0# (O —fOMPb =f9b —f(y)a=f(ygb) —f(ya) =f(ya) — f(ya) =0,

which is a contradiction. Therefore, f € Endz(Z[1/30]Y)). Consequently, we
have that Endz(Z[1/30]'Y) = Endg;;30)(Z[1/30]"M). From Theorem 3.11,

Endz (Z[1/30]"Y) = Endzji/30(Z[1/30]"Y) = CEM (Z[1/30])

is a Baer ring. So we get a contradiction.
(i) N/t(N)(Z Z™) is not finitely generated as a Z-module because A is infinite.
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(iii) N has no Baer module hull as a Z-module.

In Proposition 4.13 and Example 4.14, we consider the isomorphism problem for
Baer hulls as follows: Let Ny and N, be modules with Baer hulls 28(N;) and B (N,),
respectively. Is it true that N; = N, if and only if B(N;) = B(V,) in this case?

Proposition 4.13 ([40, Proposition 3.8]) Let Ny and N, are isomorphic modules. If
N1 has a Baer hull B(Ny), then N, has a Baer hull B (N>), and B (N,) = B(N,) as
modules.

The next example shows that the converse of Proposition 4.13 does not hold true.
In other words, there exist modules N; and N, such that B(N;) = B(N,) (hence
B(N;) = B(N,) as modules), but N; 22 N,. Thus the isomorphism problem does
not hold for the case of Baer hulls.

Example 4.14 ([40, Example 3.9]) Let N; = Z, @ Z3 @ Z. Then by Theorem 4.4 or
Example 4.10, Z, @ Z3 @ Z[1/6] is the Baer hull of N; as Z-modules.

Next,letN, = Z, & Z3 & Z[1/3]. Say V isaBaermodule with N, < V < E(N,).
From Theorem 4.1, V = 7Z, & Z3 & W for some Baer module W such that

Z[1/3] < W <Q and Homgz(W,Z, & Z3) = 0.

Thus Homz(W, Z;) = 0, and so 2W = W for any nonnegative integer k (see the
proof of [40, Theorem 2.13]). Therefore 1/2F € W for any positive integer k, and
thus Z[1/2, 1/3] < W. Hence we have

Lo ®Zz ®ZL[1/2,1/3]1 =7, ® Z3 ® Z[1/6] < V.

Because Z, ® Z5; & Z[1/6] is Baer as a Z-module, Z, & Z3 @& Z[1/6] is the Baer
hull of N,. However, N; 22 N, because Z 2 Z[1/3] as Z-modules.

In the next examples, we compare the direct sum of Baer hulls with the Baer hull
of a direct sum of modules.

Example 4.15 ([40, Example 2.19]) There exist two modules W; and W, such that
both W; and W, have Baer module hulls, but W; & W, has no Baer hull.

Let R = Z[x], the polynomial ring over Z. Put N = (R & R)g. Then t(N) = 0,
so t(N) is semisimple. However, N has no Baer hull. For this, note that if N is a
Baer module, then Endg(N) = Mat,(R) is a Baer ring from Theorem 3.12. So [10,
Theorem 6.1.4, p. 191] yields that the ring R = Z[x] must be Priifer, which is a
contradiction.

Say B is the Baer hull of N. Put F = Q(x), the field of fractions of R. Note that
E(N)=F@®F. Put U=F ®R. Then by [10, Theorem 4.2.18, p. 107], Ug is a
Baer module. Similarly, V¢ := (R @ F)g is a Baer module. Thus BC UNV =N,
so B = N. Hence N is Baer, a contradiction. Therefore N has no Baer hull.



28 J.K. Park and S.T. Rizvi

Example 4.16 ([40, Example 3.10]) There exist two modules M and N such that
M, N, and M @ N have Baer hulls B(M), B(N), and B(M & N), respectively. But

BM & N) ZBM) D BN).

Let M = Z, (p a prime integer) and N = Z as Z-modules. Then B(M) = Z, and
B(N) = Z since Zj, is a semisimple Z-module and Z is a Baer ring. Therefore we
have that B(M) & B(N) = Z, ® Z.

On the other hand, B(M © N) = B(Z, ® Z) = Z, ® Z[1/p] (see Theorem 4.8
and Remark 4.9(ii)). Hence B(M @& N) 2£ B(M) @ B(N) because Z 2 Z[1/p] as
Z-modules.

The following example exhibits the disparity of the Baer hull and the extending
hull of Z, ® Z (p a prime integer).

Example 4.17 [40, Example 3.7]) (i) Let V =7, ® Z[1/p], where p is a prime
integer. Then by Remark 4.9(ii), V is the Baer hull of Z, @ Z as a Z-module. Hence
in view of Theorem 3.9, one might expect that V is also the extending hull of Z,, ® Z
as a Z-module. But this is not true. Further, V is not even extending from [25,
Corollary 2]. In fact, the extending hull of Z, ® Z is Z,~ ® Z, where Z,~ is the
Priifer p-group.

(ii) In the chain of Z-submodules Z, < Z> < --- < Zyx of Zy~ (p a prime inte-
ger), Z, is the Baer hull (also quasi-injective hull) of itself, and Z,~ is the injective
hull of each of the modules in the chain. However, Z,(n > 1) has no Baer hull by
Theorem 4.8. Also note that Z,~ has no Baer hull.
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