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Abstract The study of various types of hulls of a module has been of interest for
a long time. Our focus in this paper is to present results on some classes of these
hulls of modules, their examples, counter examples, constructions and their applica-
tions. Since the notion of hulls and its study were motivated by that of an injective
hull, we begin with a detailed discussion on classes of module hulls which satisfy
certain properties generalizing the notion of injectivity. Closely linked to these gen-
eralizations of injectivity, are the notions of a Baer ring and a Baer module. The
study of Baer ring hulls or Baer module hulls has remained elusive in view of the
underlying difficulties involved. Our main focus is to exhibit the latest results on
existence, constructions, examples and applications of Baer module hulls obtained
by Park and Rizvi. In particular, we show the existence and explicit description of
the Baer module hull of a module N over a Dedekind domain R such that N/t(N)

is finitely generated and AnnR(t(N)) �= 0, where t(N) is the torsion submodule of
N . When N/t(N) is not finitely generated, it is shown that N may not have a Baer
module hull. Among applications, our results yield that a finitely generated mod-
ule N over a Dedekind domain is Baer if and only if N is semisimple or torsion-
free. We explicitly describe the Baer module hull of the direct sum of Z with Zp

(p a prime integer) and extend this to a more general construction of Baer module
hulls over any commutative PID. We show that the Baer hull of a direct sum of two
modules is not necessarily isomorphic to the direct sum of the Baer hulls of the
modules, even if each relevant Baer module hull exists. A number of examples and
applications of various classes of hulls are included.
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1 Introduction

Since the discovery of the existence of the injective hull of an arbitrary module
independently in 1952 by Shoda [49] and in 1953 by Eckmann and Schopf [14], there
have been numerous papers dedicated to the study and description of various types of
hulls. These hulls are basically smallest extensions of rings and modules satisfying
some generalizations of injectivity (for example, quasi-injective, continuous, quasi-
continuous hulls, etc.) or satisfying properties related to such generalizations of
injectivity. For a given module M (or a given ring R), the investigations include in
general, to construct the smallest essential extension of M (or of R) which belongs
to a particular class of modules (or of rings) within a fixed injective hull of M (or a
fixed maximal quotient ring of R). We call this a hull of M (or of R) belonging to
that particular class. One benefit of these hulls is that such hulls generally lie closer
to the module M (or to the ring R) than its injective hull. This closeness may allow
for a better transfer of information between M (or R) and that particular hull of M
(or of R) from these classes than betweenM (or R) and its injective hull. These hulls
have also proved to be useful tools for the study of the structure of M (or of R). So
an important focus of investigations has been to obtain results on the existence and
explicit descriptions of various types of module hulls. This is the topic of this survey
paper.

We recall that a module M is said to be quasi-injective if, for each N ≤ M, any
f ∈ Hom(N,M) can be extended to an endomorphism of M. Among other well-
known generalizations of injectivity, the study of the continuous, quasi-continuous,
extending, and the FI-extending properties has been extensive in the literature (see
for example [4, 8, 13, 34–36, 43]). A module M is said to be extending if, for
each V ≤ M, there exists a direct summand W ≤⊕ M such that V ≤ess W . And an
extending module M is called quasi-continuous if for all direct summands M1 and
M2 ofM withM1 ∩ M2 = 0,M1 ⊕ M2 is also a direct summand ofM. Furthermore,
an extending moduleM is said to be continuous if every submodule N ofM which is
isomorphic to a direct summand is also a direct summand ofM. AmoduleM is called
FI-extending if every fully invariant submodule is essential in a direct summand of
M. For more details on FI-extending modules, see [4, 8], and [10, Sect. 2.3]. The
following implications hold true for modules:



On Some Classes of Module Hulls 3

injective ⇒ quasi-injective ⇒ continuous

⇒ quasi-continuous ⇒ extending ⇒ FI-extending

while each of reverse implications does not hold true, in general.
Since the injective module hull of a module always exists [14, 49], the study of

module hulls with certain properties inside the injective hull of the module is more
natural in contrast to the study of ring hulls of a ring (the injective hull of a ring
may not even be a ring in general–and even if it is, for it to have a compatible ring
structure with the ring is another hurdle).

Section1 of the paper is devoted to results and examples (of either existence or
non-existence) of various hulls which generalize injective hulls. This includes the
consideration of quasi-injective, continuous, quasi-continuous and (FI-)extending
module hulls. For a givenmoduleM, letH = EndR(E(M)) denote the endomorphism
ring of its injective hull E(M). By Johnson andWong [23], the unique quasi-injective
hull of the moduleM is precisely given byHM. Goel and Jain [16] showed that there
always exists a unique quasi-continuous hull of every module. The quasi-continuous
hull of M is given by �M, where � is the subring generated by all idempotents of
H = End(E(M)). In contrast to this, it was shown by Müller and Rizvi in [35] that
continuous module hulls do not always exist. However, they did show the existence
of continuous hulls of certain classes of modules over a commutative ring (such as
nonsingular cyclic ones) and provided a description of these continuous hulls (see
[35, Theorem 8]). Similar to the case of continuousmodule hulls, it is also known that
extending module hulls do not always exist (for example, see [10, Example 8.4.13, p.
319]). For the case of FI-extendingmodule hulls, it was proved in [8, Theorem 6] that
every finitely generated projective module over a semiprime ring has an FI-extending
hull.

Closely linked to these notions, are the notions of a Baer ring and a Baer module.
A ring R in which the left (right) annihilator of every nonempty subset of R is
generated by an idempotent is called a Baer ring. It is well-known that this is a
left-right symmetric notion for rings. Kaplansky introduced the notion of Baer rings
in [26] (also see [27]). Having their roots in Functional Analysis, the class of Baer
rings and the more general class of quasi-Baer rings (discussed ahead) were studied
extensively by Kaplansky and many others who obtained a number of interesting
results on these classes of rings (see [1, 3, 6–12, 18, 19, 21, 22, 31–33, 37, 38, 41]).

More recently, the notion of a Baer ring was extended to an analogous module
theoretic notion using the endomorphism ring of the module by Rizvi and Roman in
[44]. According to [44], a module M is called a Baer module if, for any NR ≤ MR,
there exists e2 = e ∈ S such that �S(N) = Se, where �S(N) = {f ∈ S | f (N) = 0}
and S = End(MR). Equivalently, a moduleM is Baer if and only if for any left ideal I
of S, rM(I) = fM with f 2 = f ∈ S, where rM(I) = {m ∈ M | Im = 0}. Examples of
Baer modules include any nonsingular injective module. In particular, it is known
that every (K-)nonsingular extending module is a Baer module while the converse
holds under a certain dual condition. To study Baermodule hulls, we provide relevant
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results and properties of Baer modules and related notions in Sect. 3 of the paper.
These results will also be used in Sect. 4 of the paper.

In themain section, Sect. 4 of this expository paper, we introduce and discuss Baer
module hulls of certain classes modules over a Dedekind domain from our recent
work in [40]. We exhibit explicit constructions and examples of Baer module hulls
and provide their applications in this section. Properties of Baer module hulls will
also be discussed.

Extending the notion of a Baer ring, a quasi-Baer ring was introduced by Clark in
[12].A ring forwhich the left annihilator of every ideal is generated by an idempotent,
as a left ideal is called a quasi-Baer ring. It was initially defined by Clark to help
characterize a finite dimensional algebra over an algebraically closed field F to be a
twisted semigroup algebra of a matrix units semigroup over F. Historically, it is of
interest to note that the Hamilton quaternion division algebra over the real numbers
field R is a twisted group algebra of the Klein four group V4 over R. It was also
shown in [12] that any finite distributive lattice is isomorphic to a certain sublattice
of the lattice of all ideals of an artinian quasi-Baer ring. It is clear that every Baer
ring is quasi-Baer while the converse is not true in general. It is also obvious that
the two notions coincide for a commutative ring and for a reduced ring. In [41], a
number of interesting properties of quasi-Baer rings are obtained. See [10] for more
details on quasi-Baer rings.

Quasi-Baer modules were defined and investigated by Rizvi and Roman [44]
in the module theoretic setting. Recall from [44] that a module MR is called a
quasi-Baer module if for each N � M, �S(N) = Se for some e2 = e ∈ S, where S =
End(MR). ThusMR is quasi-Baer if and only if for any ideal J of S, rM(J) = fM for
some f 2 = f ∈ S. In [44] and [47], it is shown that the endomorphism ring of a
(quasi-)Baer module is a (quasi-)Baer ring. It is proved that there exist close connec-
tions between quasi-Baer modules and FI-extending modules. A number of interest-
ing properties of quasi-Baer modules and applications have also been presented.

As mentioned earlier, the notion of a “hull” with a certain property allows us to
work with an overmodule or overring which has better properties than the original
module or ring. It is worth mentioning that very little is known even about Baer ring
hulls. Recall from [10, Chap.8] that the Baer (resp., quasi-Baer) ring hull of a ring R
is the smallest Baer (resp., quasi-Baer) right essential overring of R in E(RR). To the
best of our knowledge, the only explicit results aboutBaer ring hulls in earlier existing
literature have been due to Mewborn [33] for commutative semiprime rings, Oshiro
[37] and [38] for commutative von Neumann regular rings, and Hirano, Hongan and
Ohori [19] for reduced right Utumi rings. All these results were recently extended
and a unified result was obtained for the case of an arbitrary semiprime ring using
quasi-Baer ring hulls by Birkenemier, Park, and Rizvi [7, Theorem 3.3]. The focus
of the present paper is on module hulls, more specifically on results and study of
Baer module hulls.
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For a given moduleM, the smallest Baer overmodule ofM in E(M) is called the
Baer module hull ofM. In short, we will often call it the Baer hull ofM and denote
it by B(M).

Park and Rizvi in [40] recently initiated the study of the Baer module hulls. We
introduce and discuss the results obtained in [40] on the Baer module hulls in Sect. 4.
We show that the Baer module hull exists for a module N over a Dedekind domain
R such that N/t(N) is finitely generated and AnnR(t(N)) �= 0, where t(N) is the
torsion submodule of N . An explicit description of this Baer module hull has been
provided. In contrast, an example exhibits a module N for which N/t(N) is not
finitely generated and which does not have a Baer module hull.

Among applications presented, we show that a finitely generated moduleN over a
Dedekind domain is Baer if and only ifN is semisimple or torsion-free.We explicitly
describe the Baer module hull of N = Zp ⊕ Z, where p is a prime integer, as V =
Zp ⊕ Z[1/p] and extend this to a more general construction of Baer module hulls
over any commutative PID. It is shown that unlike the case of (quasi-)injective hulls,
the Baer hull of the direct sum of two modules is not necessarily isomorphic to the
direct sum of the Baer hulls of the modules, even if all relevant Baer module hulls
exist. Several interesting examples and applications of various types of module hulls
are included throughout the paper.

All rings are assumed to have identity and all modules are assumed to be
unitary. For right R-modules MR and NR, we use Hom(MR,NR),HomR(M,N),
or Hom(M,N) to denote the set of all R-module homomorphisms from MR to
NR. Likewise, End(MR),EndR(M), or End(M) denote the endomorphism ring of
an R-module M. For a given R-homomorphism (or R-module homomorphism)
f ∈ HomR(M,N),Ker(f ) denotes the kernel of f . A submodule U of a module V is
said to be fully invariant in V if f (U) ⊆ U for all f ∈ End(V ).

We use E(MR) or E(M) for an injective hull of a module MR. For a module M,
we use K ≤ M,L � M, N ≤ess M, and U ≤⊕ M to denote that K is a submodule of
M,L is a fully invariant submodule of M,N is an essential submodule ofM, and U
is a direct summand of M, respectively.

IfM is an R-module, AnnR(M) stands for the annihilator ofM in R. For a module
M and a set �, let M(�) be the direct sum of |�| copies of M, where |�| is the
cardinality of �. When � is finite with |�| = n, then M(n) is used for M(�). For a
ring R and a positive integer n,Matn(R) and Tn(R) denote the n × n matrix ring and
the n × n upper triangular matrix ring over R, respectively.

For a ring R,Q(R) denotes the maximal right ring of quotients of R. The symbols
Q, Z, and Zn(n > 1) stand for the field of rational numbers, the ring of integers,
and the ring of integers modulo n, respectively. Ideals of a ring without the adjective
“left” or “right” mean two-sided ideals.

As mentioned, we will use the term Baer hull for Baer module hull in this paper.
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2 Quasi-Injective, Continuous, Quasi-Continuous,
Extending, and FI-Extending Hulls

We begin this section with a discussion on some useful generalizations of injec-
tivity which are related to the topics of study in this paper. In particular, we dis-
cuss the notions of quasi-injective, continuous, quasi-continuous, extending, and
FI-extending modules. Relationships between these notions, their examples, charac-
terizations, and other relevant properties are presented.

For a givenmoduleM, its injective hullE(M) is theminimal injective overmodule
ofM (equivalently, its maximal essential extension) and is unique up to isomorphism
overM (see [14] and [49]). We discuss module hulls satisfying some generalizations
of injectivity. One may expect that such minimal overmodulesH of a moduleM will
allow for a rich transfer of information between M and H. This, because each of
these hulls, with more general properties than injectivity, sits in between a module
M and a fixed injective hull E(M) of M. Therefore, that specific hull of the module
M usually lies closer to the module M that E(M).

A module M is said to be quasi-injective if for every submodule N of M, each
ϕ ∈ Hom(N,M) extends to anR-endomorphismofM. The following is awell-known
result.

Theorem 2.1 A module M is quasi-injective if and only if M is fully invariant in
E(M).

Quasi-injectivity is an important generalization of injectivity. All quasi-injective
modules satisfy the (C1), (C2), (C3), and (FI) conditions given next.

Proposition 2.2 Let M be a quasi-injective module. Then it satisfies the following
conditions.

(C1) Every submodule of M is essential in a direct summand of M.
(C2) If V ≤ M and V ∼= N ≤⊕ M, then V ≤⊕ M.
(C3) If M1 and M2 are direct summands of M such that M1 ∩ M2 = 0, then M1 ⊕

M2 is a direct summand of M.
(FI) Any fully invariant submodule of M is essential in a direct summand of M.

It is easy to see the relationship between the condition (C2) and the condition (C3)
as follows.

Proposition 2.3 If a module M satisfies (C2), then it satisfies (C3).

Conditions (C1), (C2), (C3), and (FI) help define the following notions.

Definition 2.4 Let M be a module.

(i) M is called continuous if it satisfies the (C1) and (C2) conditions.
(ii) M is said to be quasi-continuous if it has the (C1) and (C3) conditions.
(iii) M is called extending (or CS) if it satisfies the (C1) condition.
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(iv) M is called FI-extending if it satisfies the (FI) condition.

From the preceding, the following implications hold true for modules. However,
the reverse implications do not hold as illustrated in Example 2.5.

injective ⇒ quasi-injective ⇒ continuous

⇒quasi-continuous ⇒ extending ⇒ FI-extending.

Example 2.5 (i) Every injective module and every semisimple module are quasi-
injective. There exist simple modules which are not injective (e.g., Zp for any
prime integer p as aZ-module). Further, there is a quasi-injective module which
is neither injective nor semisimple. Let R = Z and M = Zpn , with p a prime
integer and n an integer such that n > 1. Then E(M) = Zp∞ , the Prüfer p-
group, and thus M is neither injective nor semisimple. But f (M) ⊆ M for any
f ∈ End(E(M)). SoM is quasi-injective by Theorem 2.1 (see [15, Example, p.
22]).

(ii) LetK be a field andF be a proper subfield ofK . SetKn = K for all n = 1, 2 . . . .

We take.

R =
{

(an)
∞
n=1 ∈

∞∏
n=1

Kn | an ∈ F eventually

}
,

which is a subring of
∏∞

n=1 Kn. Say I � R. Then we can verify that rR(I) = eR
with e2 = e ∈ R. Therefore IR ≤ess rR(�R(I)) = (1 − e)RR as R is semiprime.
So RR is extending. Further, since R is von Nuemann regular, RR also satisfies
(C2) condition.ThusRR is continuous.AsE(RR) = ∏∞

n=1 Kn,RR is not injective,
so RR is not quasi-injective.

(iii) Let R be a right Ore domain which is not a division ring (e.g., the ring Z of
integers). ThenRR is quasi-continuous. Take 0 �= x ∈ R such that xR �= R.Then
xRR

∼= RR, but xRR is not a direct summand of RR. Thus RR is not continuous.
(iv) Let F be a field and R = T2(F), the 2 × 2 upper triangular matrix ring over

F. Then we see that RR is extending. Let eij ∈ R be the matrix with 1 in the
(i, j)-position and 0 elsewhere. Put e = e12 + e22 and f = e22. Then e2 = e and
f 2 = f . Note that eR ∩ fR = 0. But eRR ⊕ fRR is not a direct summand of RR.

Thus RR is not quasi-continuous.
(v) Let R = Matn(Z[x]) (n is an integer such that n > 1). Then RR is FI-extending,

but RR is not extending. Further, the module M = ⊕∞
n=1Z is an FI-extending

Z-module which is not extending.

The next theorem allows us to transfer any given decomposition of the injective
hull E(M) of a quasi-continuous module M to a similar decomposition for M (the
converse always holds). This fact is also helpful in transference of properties between
between a quasi-continuous module M and its injective hull E(M) or a module in
between.
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Theorem 2.6 ([16], [20], and [39]) The following are equivalent for a module M.

(i) M is quasi-continuous.
(ii) M = X ⊕ Y for any two submodules X and Y which are complements of each

other.
(iii) fM ⊆ M for every f 2 = f ∈ EndR(E(M)).
(iv) E(M) = ⊕i∈�Ei implies M = ⊕i∈�(M ∩ Ei).
(v) Any essential extension V of M with a decomposition V = ⊕α∈�Vα implies

that M = ⊕α∈�(M ∩ Vα).

Remark 2.7 The equivalence of the conditions (i), (ii), (iii), and (iv) of Theorem
2.6 are comprised by results obtained in [16] and [20], while the condition (v) of
Theorem 2.6 is obtained in [39].

Definition 2.8 Let M be a class of modules and M be any module. We call, when
it exists, a module H the M hull of M if H is the smallest essential extension of M
in a fixed injective hull E(M) that belongs toM.

It is clear from the preceding definition that anM hull of amodule is uniquewithin
a fixed injective hull E(M) ofM. It may be worth to note that in [42, Definitions 4.7,
4.8, and 4.9, pp. 36–37], three types of continuous hulls of a module, Type I, Type II,
and Type III are introduced (see also [35, Definitions]). The authors of [42] and [35]
chose the Type III continuous hull of a module to be called as the continuous hull
of an arbitrary module for several reasons provided in [42] and [35]. Our Definition
2.8 follows the definition of continuous hull of Type III.

The next result due to Johnson and Wong [23] describes precisely how the quasi-
injective hull of a module can be constructed and that the quasi-injective hull of any
module always exists.

Theorem 2.9 Assume that M is a right R-module and let S = End(E(M)). Then
SM = {∑ fi(mi) | fi ∈ S and mi ∈ M} is the quasi-injective hull of M.

The following result for the existence of the quasi-continuous hull of a module is
obtained by Goel and Jain [16].

Theorem 2.10 Assume that M is a right R-module and S = End(E(M)). Let � be
the subring of S generated by the set of all idempotents of S. Then�M = {∑ fi(mi) |
fi ∈ � and mi ∈ M} is the quasi-continuous hull of M.

Recall that a module is called uniform if the intersection of any two nonzero
submodule is nonzero (i.e., the module ZZ). If M is a uniform module, then E(M)

is also uniform. Thus S = End(E(M)) has only trivial idempotents, so �M = M.
Therefore the quasi-continuous module hull of M isM itself.

A module is said to be directly finite if it is not isomorphic to a proper direct
summand of itself. A module is called purely infinite if it is isomorphic to the direct
sum of two copies of itself. Recall that a ring R is called directly finite if xy = 1
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implies yx = 1 for x, y ∈ R. We remark that a moduleM is directly finite if and only
if End(M) is directly finite.

The following result was obtained by Goodearl [17] in a categorical way. In [36],
Müller and Rizvi gave an algebraic proof of the result and extended it. They also
proved a strong “uniqueness” of the decomposition. The result was further extended
by them to a similar decomposition of a quasi-continuous module as provided in
Theorem 2.13 ahead.

Theorem 2.11 ([36, Theorem 1]) Every injective module E has a direct sum decom-
position, E = U ⊕ V , where U is directly finite, V is purely infinite, and U and V
have no nonzero isomorphic direct summands (or submodules). If E = U1 ⊕ V1 =
U2 ⊕ V2 are two such decompositions, then E = U1 ⊕ V2 holds too, and conse-
quently U1

∼= U2 and V1
∼= V2.

Given a quasi-continuous module M and a submodule A of M, it is easy to find
the direct summand of M in which A is essential (just consider M ∩ E(A)). This
summand was called an internal quasi-continuous hull of A in M by Müller and
Rizvi [36].

Another interesting property of a quasi-continuous module M obtained is that if
A and B are two isomorphic submodules ofM then the direct summands ofM which
are essential over A and B respectively, are unique up to isomorphism as follows.

Theorem 2.12 ([36, Theorem 4]) Assume that M is a quasi-continuous module and
Ai ≤ess Pi ≤⊕ M (i = 1, 2). If A1

∼= A2, then P1
∼= P2.

By using Theorem 2.12, the decomposition theorem of injective modules (Theo-
rem 2.11) can be extended to the case of quasi-continuous modules as follows.

Theorem 2.13 ([36, Proposition 6]) Every quasi-continuous module M has a direct
sum decomposition, M = U ⊕ V , where U is directly finite, V is purely infinite,
and U and V have no nonzero isomorphic direct summands (or submodules). If
M = U1 ⊕ V1 = U2 ⊕ V2 are two such decompositions, then M = U1 ⊕ V2 holds
too, and consequently U1

∼= U2 and V1
∼= V2.

The existence and description of continuous hulls of certain modules have been
investigated in [42] (and [35]). In contrast to Theorems 2.9 and 2.10,Müller andRizvi
[35, Example 3] construct the example of a nonsingular uniform cyclic module over
a noncommutative ring which cannot not have a continuous hull as follows.

Example 2.14 Let V be a vector space over a field F with basis elements vm, wk

(m, k = 0, 1, 2, . . . ). We denote by Vn the subspace of V generated by the
vm (m ≥ n) and all the wk . Also we denote by Wn the subspace generated by
the wk (k ≥ n). We write S for the shifting operator such that S(wk) = wk+1 and
S(vi) = 0 for all k, i.

Let R be the set of all ρ ∈ EndF(V ) such that ρ(vm) ∈ Vm, ρ(w0) ∈ W0 and
ρ(wk) = Skρ(w0), form, k = 0, 1, 2, . . . .Note that τρ(wk) = Skτρ(w0), for ρ, τ ∈
R, and so τρ ∈ R. Thus it is routine to check that R is a subring of EndF(V ). Further,
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we see that Vn = Rvn,Wn = Rwn, and Vn+1 ⊆ Vn for all n. (When f ∈ R and v ∈ V,

we also use f v for the image f (v) of v under f .)
Consider the left R-module M = W0. First, we show that M = Rw0 is uniform.

For this, take fw0 �= 0, gw0 �= 0 in M, where f , g ∈ R. We need to find h1, h2 ∈ R
such that h1fw0 = h2gw0 �= 0. Let

fw0 = b0w0 + b1w1 + · · · + bmwm ∈ Rw0

and
gw0 = c0w0 + c1w1 + · · · + cmwm ∈ Rw0,

where bi, cj ∈ F, i, j = 0, 1, . . . ,m, and some terms of bi and cj may be zero.
Put h1w0 = x0w0 + x1w1 + · · · + x�w� and h2w0 = y0w0 + y1w1 + · · · + y�w�,

where xi, yi ∈ F, i = 0, 1, . . . , � (also some terms of xi and yj may be zero). Since
h1(wk) = Skh1(w0) and h2(wk) = Skh2(w0) for k = 0, 1, 2 . . . ,weneed to find such
xi, yi ∈ F, 0 ≤ i ≤ � so that h1fw0 = h2gw0 �= 0 from the following equations:

b0x0 = c0y0, b0x1 + b1x0 = c0y1 + c1y0,

b0x2 + b1x1 + b2x0 = c0y2 + c1y1 + c2y0,

b0x3 + b1x2 + b2x1 + b3x0 = c0y3 + c2y1 + c2y1 + c3y0,

and so on.
Say α(t) = b0 + · · · + bmtm �= 0 and β(t) = c0 + · · · + cmtm �= 0 in the polyno-

mial ring F[t]. Then α(t)F[t] ∩ β(t)F[t] �= 0.
We may note that finding such x0, x1 . . . , x�, y0, y1 . . . , y� in F above is the same

as the job of finding x0, x1 . . . , x�, y0, y1, . . . , y� such that

α(t)(x0 + x1t + · · · + x�t
�) = β(t)(y0 + y1t + · · · + y�t

�) �= 0

in the polynomial ringF[t]. Observing that 0 �= α(t)β(t) ∈ α(t)F[t] ∩ β(t)F[t], take
h1w0 = c0w0 + c1w1 + · · · + cmwm by putting � = m, xi = ci for 0 ≤ i ≤ m, and
h2w0 = b0w0 + b1w1 + · · · + bmwm by putting � = m, yi = bi for 0 ≤ i ≤ m. Since
α(t)β(t) �= 0, we see that 0 �= h1fw0 = h2gw0 ∈ Rfw0 ∩ Rgw0. SoM is uniform.

Next, we show that each Vn is an essential extension of M (hence each Vi is
uniform). Indeed, let 0 �= μvn ∈ Rvn = Vn, where μ ∈ R. Say

μvn = an+kvn+k + · · · + an+k+�vn+k+� + bsws + · · · + bs+mwk+m.

If an+k = · · · = an+k+� = 0, then μvn ∈ W0.Otherwise, wemay assume that an+k �=
0. Let ω ∈ R such that ω(vn+k) = w0 and ω(vi) = 0 for i �= n + k and ω(wj) = 0 for
all j. Then 0 �= ωμvn = an+kw0 ∈ W0. Thus M = W0 is essential in Vn. Since M is
uniform, Vn is also uniform for all n.

Weprove that RM is nonsingular. For this, assume thatu ∈ Z(RM) (whereZ(RM) is
the singular submodule of RM) and letK = {α ∈ R | αu = 0}. ThenK is an essential
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left ideal of R. So K ∩ RS2 �= 0. Thus there is ρ ∈ R with ρS2 �= 0 and ρS2(u) = 0.
Say

u = akwk + ak+1wk+1 + · · · + anwn

with ak, ak+1, . . . , an ∈ F.Assume on the contrary that u �= 0.Thenwemay suppose
that ak �= 0. Because ρ(wn) = Snρ(w0) for n = 0, 1, 2, . . . ,

0 = ρS2(u) = akρS2(wk) + ak+1ρS2(wk+1) + · · · + anρS2(wn)

= akSk+2ρ(w0) + ak+1Sk+3ρ(w0) + · · · + anSn+2ρ(w0).f

Here we put ρ(w0) = b�w� + b�+1w�+1 + · · · + btwt .

If ρ(w0) = 0, then ρS2(w0) = ρ(w2) = S2ρ(w0) = 0. Also, ρS2(wm) = 0 for
allm = 1, 2, . . . , and ρS2(vi) = 0 for all i = 0, 1, . . . . So ρS2 = 0, a contradiction.
Hence ρ(w0) �= 0, and thus we may assume that b� �= 0. We note that

Sk+2ρ(w0) = b�w�+k+2 + b�+1w�+k+3 + · · · + btwt+k+2,

Sk+3ρ(w0) = b�w�+k+3 + b�+1w�+k+4 + · · · + btwt+k+3,

and so on. Thus

0 = ρS2(u) = akb�w�+k+2 + (akb�+1 + ak+1b�)w�+k+3 + · · · ,

and hence akb� = 0, which is a contradiction because ak �= 0 and b� �= 0. Therefore
u = 0, and soM is nonsingular.

We show now that Vn is continuous. Note that Vn is uniform. So clearly, Vn has
the (C1) condition. Thus, to show that Vn is continuous, it suffices to prove that every
R-monomorphism of Vn is onto for Vn to satisfy the (C2) condition.

Let ϕ : Vn → Vn be an R-monomorphism. We put

ϕ(vn) = ρvn ∈ Rvn = Vn, where ρ ∈ R.

We claim that ρvn /∈ Vn+1. For this, assume on the contrary that ρvn ∈ Vn+1. Let
λ ∈ R such that λvn = vn, λvk = 0 for k �= n, and λwm = 0 for all m. Then
ϕ(λvn) = λ(ρvn) = 0 since ρ(vn) ∈ Vn+1. But λvn = vn �= 0. Thus ϕ is not one-
to-one, a contradiction. Therefore ρvn /∈ Vn+1.

As ρvn ∈ Vn, write

ρvn = anvn + an+1vn+1 + · · · + an+�vn+� + b0w0 + · · · + bhwh,

where an, an+1, . . . , an+�, b0, b1, . . . , bh ∈ F, and an �= 0.
Take ν ∈ R such that νvn = a−1

n vn, νvk = 0 for k �= n and νwm = 0 for all m.

Then we see that vn = νρvn ∈ Rρvn. Therefore Rvn ⊆ Rρvn, and hence Vn = Rvn =
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Rρvn.Thusϕ(Rvn) = Rϕ(vn) = Rρvn = Vn, soϕ is onto. ThereforeVn is continuous
for all n.

Finally, note that the uniform nonsingular module M = Rw0 is not continuous,
since the shifting operatorS provides anR-monomorphismwhich is not onto. Hence,
M does not have a continuous hull (in E(M) = E(V )), because such a hull would
have to be contained in each Vn, and hence inM = ⋂

n Vn.

Despite Example 2.14, continuous hulls do exist for certain classes of modules
over a commutative ring. For the class of cyclic modules, the next result and Theo-
rem 2.17 due to Müller and Rizvi [35] show the existence of continuous hulls over
commutative rings.

Theorem 2.15 ([35, Theorem 8]) Every cyclic module over a commutative ring
whose singular submodule is uniform, has a continuous hull.

The next example, due to Müller and Rizvi [35], shows that in general, the quasi-
continuous hull of a module is distinct from the continuous hull, which in turn is
distinct from the (quasi-)injective hull of the module.

Example 2.16 ([35,Example2])LetFn = R forn = 1, 2, . . . , andputA = ∏∞
n=1 Fn,

where R is the field of real numbers. Let R be the subring of A generated by ⊕∞
n=1Fn

and 1A. Then E(RR) = Q(R) = A. In this case, we see that

V = {
(an)

∞
n=1 ∈ A | an ∈ Z eventually

}
is the quasi-continuous hull of RR, while

W = {
(an)

∞
n=1 ∈ A | an ∈ Q eventually

}
is the continuous hull of RR becauseW is the smallest continuous von Neumann reg-
ular ring between R andQ(R) (soW is the intersection of all intermediate continuous
von Neumann regular rings between R and Q(R)). We note that AW is an injective
hull of WW , and also AW is a quasi-injective hull of WW .

When M is a uniform cyclic module over a commutative ring, the following
theorem shows that M has a continuous hull (see [42]). Furthermore, it explicitly
describes the continuous hull of M. Recall that when MR is a right R-module, an
element c ∈ R is said to act regularly on M if mc = 0 with m ∈ M implies that
m = 0. Let C be the multiplicative set of elements of R which act regularly on M,
and let MC−1 = {mc−1 | m ∈ M, c ∈ C}.
Theorem 2.17 ([42, Theorem 4.15] and [10, Theorem 8.4.11, p. 319]) Let R be a
commutative ring, and M a uniform cyclic R-module. Then MC−1 is a continuous
hull of M.

In view of the existence of quasi-injective and quasi-continuous hulls for all
modules and from the existence of continuous hulls for some classes of modules in



On Some Classes of Module Hulls 13

Theorems 2.15 and 2.17, it is natural to consider the existence of extending hulls of
modules. However, the following example exhibits that there exists a free module of
finite rank over a commutative domain which has no extending hull.

Example 2.18 (cf. [40, Example 2.19] and [10, Example 8.4.13, p. 319]) We let
R = Z[x], the polynomial ring over Z. Then (R ⊕ R)R has no extending hull.

We recall that a module M satisfying the (FI) condition is called FI-extending.
Thus a module M is FI-extending if and only if every fully invariant submodule of
M is essential in a direct summand of M. A ring R is called right FI-extending if
RR is FI-extending. Similarly left FI-extending ring is defined. For more details on
FI-extending modules and rings, see [4, 8, 10].

The notion of an FI-extending module generalizes that of an extending module by
requiring that only every fully invariant submodule is essential in a direct summand
rather than every submodule. Many well-known submodule of a given module are
fully invariant. For example, the socle of a module, and the Jacobson radical of a
module, and the singular submodule of a module, are fully invariant. For a ring R,
all its fully invariant submodules are precisely the ideals of R. It was shown in [4,
Theorem 1.3] that any direct sum of FI-extending modules is FI-extending without
any additional requirements. Thus while a direct sum of extending modules may
not be extending, it does satisfy the extending property for all its fully invariant
submodules.

There are close connections between the FI-extending property and the quasi-Baer
property. For example, assume thatR is a semiprime ring. ThenR is right FI-extending
if and only if R is left extending if and only if R is a quasi-Baer ring from [4, Theorem
4.7]. Further, every nonsingular FI-extendingmodule is a quasi-Baer module (in fact,
this also holds true under much weaker nonsingularity conditions).

A commutative domain R is called Prüfer if R is semihereditary. Thus a com-
mutative domain is Prüfer if and only if every finitely generated ideal is projective.
Note that every extending module is FI-extending. If R is a commutative domain
which is not Prüfer (e.g., R = Z[x]) and n is an integer such that n > 1, then R(n)

R is
FI-extending, but R(n)

R is not extending (cf. Example 2.5(v)).
For a ring R, recall thatQ(R) denotes the maximal right ring of quotients of R. Let

B(Q(R)) be the set of all central idempotents ofQ(R). By [2], the subring RB(Q(R))

of Q(R) generated by R and B(Q(R)) is called the idempotent closure of R.
Between R and RB(Q(R)), LO (Lying Over), GU (Going Up), and INC (Incom-

parable) hold. Thereby, kdim(R) = kdim(RB(Q(R)), where kdim(−) is the classi-
cal Krull dimension of a ring, i.e., the supremum of all length of chains of prime
ideals. For prime radicals and Jacobson radicals of R and RB(Q(R)), we have
that P(RB(Q(R)) ∩ R = P(R) and J(RB(Q(R)) ∩ R = J(R), where P(−) and J(−)

denote the prime radical and the Jacobson radical of a ring, respectively. Also, R is
strongly π-regular if and only ifRB(Q(R)) is strongly π-regular (recall that a ringA is
called strongly π-regular if for each a ∈ A there exist x ∈ A and a positive integer n,
depending on a, such that an = an+1x. (See [10, Lemma 8.3.26 and Theorem 8.3.28,
pp. 296–297].)



14 J.K. Park and S.T. Rizvi

Further, by [10, Corollary 8.3.30, p. 298], R is von Neumann regular if and only
if RB(Q(R)) is von Neumann regular. When R is a semiprime ring with exactly n
(n a positive integer) minimal prime ideals P1,P2, . . . ,Pn, we have the following
structure theorem

RB(Q(R)) ∼= R/P1 ⊕ R/P2 ⊕ · · · ⊕ R/Pn

as rings from [10, Theorem 10.1.20, p. 370].

By using the above structure theorem for RB(Q(R)), it was shown in [7, Corollary
4.17] that if A is a unital C∗-algebra and n is a positive integer, then A has exactly n
minimal prime ideals if and only if AB(Q(A)) is a direct sum of n prime C∗-algebras
if and only if the extended centroid Cen(Q(A)) of A is C

n, where C is the field of
complex numbers.

An overring T of a ring R is called a right ring of quotients of R if RR is a dense
submodule of TR. Assume that R is a semiprime ring. Then from [7, Theorem 3.3],
the ring RB(Q(R)) is the smallest right FI-extending right ring of quotients of R. For
more details on RB(Q(R)), see [10, Sects. 8.3 and 10.1].

In the following definition, for a ring R, we fix a maximal right ring of quotients
Q(R) of R. Thus a right ring of quotients T of R is a subring of Q(R).

Definition 2.19 (see [6, Definition 2.1]) The smallest right FI-extending right ring
of quotients of a ring R is called the right FI-extending ring hull of R (when it exists).
Such hull is denoted by Q̂FI(R).

The existence of the right FI-extending ring hull Q̂FI(R) of a semiprime ringRwas
obtained and explicitly described by Birkenmeier, Park, and Rizvi in the following
interesting result.

Theorem 2.20 ([7, Theorem 3.3]) Assume that R is a semiprime ring. Then Q̂FI(R)

exists and Q̂FI(R) = RB(Q(R)).

Let R be a commutative semiprime ring. Then RB(Q(R)) is the smallest extending
ring of quotients of R by Theorem 2.20.

In contrast to Theorem 2.20, there exists a semiprime ring for which the right
extending ring hull does not exist. For this, we need the the next result.

Theorem 2.21 ([10, Theorem 6.1.4, p. 191]) Let R be a commutative domain. Then
the following are equivalent.

(i) R is a Prüfer domain.
(ii) Matn(R) is a (right) extending ring for every positive integer n.
(iii) Matk(R) is a (right) extending ring for some integer k > 1.
(iv) Mat2(R) is a (right) extending ring.

The smallest right extending right ring of quotients of a ring R is called the
right extending ring hull of R (when it exists). Such hull is denoted by Q̂E(R). By
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using Theorem 2.21, we obtain the following example which exhibits that the right
extending ring hull of a semiprime ring does not exist, in general.

Example 2.22 (see [10, Example 8.3.34, p. 300]) Let R = Matk(F[x, y]), where F
is a field and k is an integer such that k ≥ 2. Then the right extending ring hull Q̂E(R)

of R does not exist.
Assume on the contrary that Q̂E(R) exists. Note thatF(x)[y] andF(y)[x] are Prüfer

domains, where F(x) (resp., F(y)) is the field of fractions of F[x] (resp., F[y]). So
Matk(F(x)[y]) and Matk(F(y)[x]) are right extending rings by Theorem 2.21. Note
Q(R) = Matk(F(x, y)), where F(x, y) is the field of fractions of F[x, y]. Hence

Q̂E(R) ⊆ Matk(F(x)[y]) ∩ Matk(F(y)[x]) = Matk(F(x)[y] ∩ F(y)[x]).

To see that F(x)[y] ∩ F(y)[x] = F[x, y], let

γ(x, y) = f0(x)/g0(x) + (f1(x)/g1(x))y + · · · + (fm(x)/gm(x))ym

= h0(y)/k0(y) + (h1(y)/k1(y))x + · · · + (hn(y)/kn(y))x
n

be in F(x)[y] ∩ F(y)[x], where fi(x), gi(x) ∈ F[x], hj(y), kj(y) ∈ F[y], and gi(x) �=
0, kj(y) �= 0 for i = 0, 1, . . . ,m, j = 0, 1, . . . , n.LetF be the algebraic closure ofF.

If deg(g0(x)) ≥ 1, then there exists α ∈ F such that g0(α) = 0. Thus γ(α, y) cannot
be defined. On the other hand, we note that

γ(α, y) = h0(y)/k0(y) + (h1(y)/k1(y))α + · · · + (hn(y)/kn(y))α
n,

which is a contradiction. Thus g0(x) ∈ F. Similarly, g1(x), . . . , gm(x) ∈ F. Hence
γ(x, y) ∈ F[x, y]. Therefore F(x)[y] ∩ F(y)[x] = F[x, y], and so

Q̂E(R) = Matk(F(x)[y] ∩ F(y)[x]) = Matk(F[x, y]).

Thus Matk(F[x, y]) is a right extending ring, a contradiction from Theorem 2.21
because the commutative domain F[x, y] is not Prüfer. Therefore R = Matk(F[x, y])
has no right extending ring hull.

In contrast to Theorem 2.20, the existence of the right FI-extending ring hull of
a ring is not always guaranteed, even in the presence of nonsingularity, as the next
example shows.

Example 2.23 (see [5, Example 2.10(ii)], [6, Example 3.16], and [10, Example 8.2.9,
p. 278]) Let F be a field and put

R =
⎧⎨
⎩

⎡
⎣a 0 x
0 a y
0 0 c

⎤
⎦ | a, c, x, y ∈ F

⎫⎬
⎭ ∼=

[
F F ⊕ F
0 F

]
.

Then R is right nonsingular and Q(R) = Mat3(F).
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Let

H1 =
⎧⎨
⎩

⎡
⎣a 0 x
0 b y
0 0 c

⎤
⎦ | a, b, c, x, y ∈ F

⎫⎬
⎭ ∼=

[
F ⊕ F F ⊕ F

0 F

]
,

and let

H2 =
⎧⎨
⎩

⎡
⎣a + b a x

0 b y
0 0 c

⎤
⎦ | a, b, c, x, y ∈ F

⎫⎬
⎭ .

Note that R, H1, and H2 are subrings of Mat3(F). Define φ : H1 → H2 by

φ

⎡
⎣a 0 x
0 b y
0 0 c

⎤
⎦ =

⎡
⎣a a − b x − y
0 b y
0 0 c

⎤
⎦ .

Then φ is a ring isomorphism. It is routine to check that the ring R is not right FI-
extending. But, we can verify that H1 is a right FI-extending ring. Therefore H2 is
also right FI-extending because H1

∼= H2 (ring isomorphic).
Let F = Z2. Then there is no proper intermediate ring between R and H1, also

between R and H2. If Q̂FI(R) exists, then Q̂FI(R) ⊆ H1 ∩ H2 = R, so Q̂FI(R) = R.
Hence R is a right FI-extending ring, which is a contradiction.

In contrast to Example 2.18 where the extending hull of a finitely generated free
module of rank 2 does not exist, it was shown that the FI-extending hulls of every
finitely generated projective module over a semiprime ring does exist in [8]. Also
such an FI-extending hulls is described explicitly using Theorem 2.20 as in the next
theorem. For a module M, let FI(M) denote the FI-extending hull of M, when it
exists.

Theorem 2.24 ([8, Theorem 6]) Any finitely generated projective module PR over a
semiprime ringRhas theFI-extendinghullFI(PR). Indeed,FI(PR) ∼= e(⊕nQ̂FI(R)R)

where P ∼= e(⊕nRR), for some e2 = e ∈ End(⊕nRR) and some positive integer n.

From Theorems 2.20 and 2.24, the following result is obtained.

Corollary 2.25 ([8, Corollary 7]) Assume that R is a semiprime ring and PR is a
finitely generated projective module. Then Q̂FI(End(PR)) ∼= End(FI(PR)).

An application of Theorem 2.24 yields the following consequences.

Corollary 2.26 ([8, Corollary 13]) Let R be a semiprime ring. Then:

(i) If PR is a progenerator of the category Mod-R of right R-modules, then
FI(PR)Q̂FI(R) is a progenerator of the category Mod-Q̂FI(R) of right Q̂FI(R)-
modules.

(ii) If R and a ring S are Morita equivalent, then Q̂FI(R) and Q̂FI(S) are Morita
equivalent.
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3 Baer Modules

We introduce the definition of a Baer module MR via its endomorphism ring S =
End(MR) in contrast to defining this notion in terms of the base ring R. The use of
the endomorphism ring instead of the base ring R appears to offer a more natural
generalization of a Baer ring in the general module theoretic setting (see Definition
3.1 and the comments after Example 3.2).

Properties of Baermodules are included and examples are provided. Similar to the
ring theoretic concepts of nonsingularity and cononsingularity,K-nonsingularity and
K-cononsingularity, respectively are discussed for modules. Using these concepts,
strong connections between extending modules and Baer modules are provided,
which generalizes the Chatters-Khuri theorem to the module theoretic setting. We
include a characterization of rings R for which every projective right R-module is
Baer. Properties of Baer modules from this section will also be used in Sect. 4. For
more details on Baer modules and their properties, see [44–47], and [10, Chap.4].

We start with the following definition.

Definition 3.1 ([44, Definition 2.2]) A right R-moduleM is called a Baer module if,
for anyNR ≤ MR, there exists e2 = e ∈ S such that �S(N) = Se, where S = End(MR)

and �S(N) = {f ∈ S | f (N) = 0}. A right R-module M is Baer if and only if for any
left ideal I of S, rM(I) = fM with f 2 = f ∈ S, where rM(I) = {m ∈ M | Im = 0}.

A ring R is said to be a Baer ring if the right annihilator of any nonempty subset
of R is generated, as a right ideal, by an idempotent of R. Thus a ring R is a Baer ring
if and only if RR is a Baer module. Further, we can verify that a ring R is Baer if and
only if the left annihilator of any nonempty subset of R is generated, as a left ideal,
by an idempotent of R (see [27, Theorem 3, p. 2]).

Example 3.2 (i) Every semisimple module is a Baer module.
(ii) If R is a Baer ring and e2 = e ∈ R, then eRR is a Baer module (see Theorem

3.12).
(iii) ([44, Proposition 2.19]) A finitely generated Baer abelian group M is a Baer

Z-module if and only ifM is semisimple or torsion-free.
(iv) ([10, Corollary 4.3.6, p. 112]) Any finitely generated right Hilbert A-module

over an AW ∗-algebra A is a Baer module.
(v) ([44, Theorem 2.23]) A module M is an indecomposable Baer module if and

only if any nonzero endomorphism ofM is a monomorphism.
(vi) Any nonsingular extendingmodule is a Baer module (see [44, Theorem 2.14]).
(vii) For a commutative domain R and an integer n > 1,R(n)

R is a Baer module if
and only if R(n)

R is an extending module if and only if R is a Prüfer domain.
(viii) ([47, Theorem 3.16]) Let R be an n-fir (n a positive integer). Then R(n)

R is a
Baer module (recall that a ring R is said to be an n-fir if any right ideal of R
generated by at most n elements is free of unique rank).

In [30, Definition 3.1], Lee and Zhou also called a module MR Baer if, for any
nonempty subset X ofM, rR(X) = eR with e2 = e ∈ R. But Definition 3.1 is distinct
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from their definition. In fact, any semisimple module is a Baer module by Definition
3.1 (see Example 3.2(i)), but it may not be a Baer module in the sense of Lee and
Zhou [30] (for example Zp as a Z-module, where p is a prime integer, is a Baer
module in our sense).

Definition 3.3 ([44, Theorem 2.5]) Let M be a module. Then M is called K-
nonsingular if, for φ ∈ EndR(M),Ker(φ) ≤ess M implies φ = 0.

Example 3.4 (i) Any semisimple module is K-nonsingular.
(ii) ([44, Proposition 2.10]) Every nonsingular module is K-nonsingular.
(iii) ([44, Example 2.11]) The Z-module Zp, where p is a prime integer, is K-

nonsingular, but it is not nonsingular.
(iv) Any polyform module is K-nonsingular. Recall that a module M is said to be

polyform if every essential submodule ofM is a dense submodule. A polyform
module M is also called non-M-singular.

(v) For a ring R,RR is K-nonsingular if and only if RR is nonsingular if and only
if RR is polyform.

(vi) [46, Example 2.5]) LetM = Q ⊕ Z2 as aZ-module. ThenM isK-nonsingular.
But M is neither nonsingular nor polyform.

(vii) ([44, Lemma 2.15]) Every Baer module is K-nonsingular.
(viii) ([44, Lemma 2.6]) A module M is K-nonsingular if and only if, for any left

ideal I of S, rM(I) ≤ess M implies I = 0, where S = End(M).

While the nonsingularity of a module M provides the uniqueness of essential
closures inM (i.e.,M is a UC-module), theK-nonsingularity provides the uniqueness
of closures which happen to be direct summands ofM.

Theorem 3.5 ([46, Proposition 2.8]) Assume that M is a K-nonsingular module,
and let N ≤ M. If N ≤ess Ni ≤⊕ M, for i = 1, 2, then N1 = N2.

We recall that a ring R is said to be right cononsingular if for IR ≤ RR, �R(I) = 0
implies IR ≤ess RR. Dual to the notion in Definition 3.3, the following is a module
theoretic version of cononsingularity introduced in [44].

Definition 3.6 ([44, Definition 2.7]) A moduleMR is called K-cononsingular if for
all NR ≤ MR, �S(N) = 0 implies NR ≤ess MR, where S = End(MR).

Example 3.7 (i) For a ring R,RR isK-cononsingular if and only if R is right conon-
singular.

(ii) ([44, Lemma 2.13]) Every extending module is K-cononsingular.
(iii) For a commutative semiprime ring R,R(n)

R is K-cononsingular for every posi-
tive integer n.

(iv) Let R = Z[x]. Then (R ⊕ R)R is K-cononsingular by part (iii). But (R ⊕ R)R
is not extending by Theorem 2.21. Hence the converse of part (ii) is not true.

Proposition 3.8 ([44, Proposition 2.8(ii)])Assume that M is a right R-module. Then
M is K-cononsingular if and only if, for N ≤ M, rM(�S(N)) ≤⊕ M implies N ≤ess

rM�S(N), where S = EndR(M).
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It is shown by Chatters and Khuri [11, Theorem 2.1] that a ring R is right extend-
ing right nonsingular if and only if R is a Baer ring and right cononsingular. This
result is extended to an arbitrary module in the next theorem which exhibits strong
connections between a Baer module and an extending module.

Theorem 3.9 ([44, Theorem 2.12]) A module M is extending and K-nonsingular if
and only if M is Baer and K-cononsigular.

Definition 3.10 ([47, Definition 2.3]) Let MR be an R-module and S = EndR(M).
ThenMR is called quasi-retractable if HomR(M, rM(I)) �= 0 for every left ideal I of
S with rM(I) �= 0 (or, equivalently, if rS(I) �= 0 for every left ideal I with rM(I) �= 0).

Recall from [29] that a module M is said to be retractable if any 0 �= N ≤
M,Hom(M,N) �= 0. Examples of retractable modules include free modules, gener-
ators, and semisimple modules. Obviously retractable modules are quasi-retractable.
But there exists a quasi-retractable module which is not retractable. For example, let
F be a field. Put

R =
[
F F
0 F

]
and e =

[
1 0
0 0

]
∈ R.

Consider the moduleM = eR. Note that S := End(MR) ∼= eRe ∼= F, which is a field.
Let I be a left ideal of S such that rM(I) �= 0. Then I = 0 and so rM(I) = M. Hence,
Hom(MR, rM(I)) = End(MR) ∼= F �= 0. Thus,MR is quasi-retractable. ButMR is not
retractable, since the endomorphism ring S ofMR, which is isomorphic to F, consists
of isomorphisms and the zero endomorphism. On the other hand, asMR is not simple,
retractability of MR implies that there exist nonzero endomorphisms of MR which
are not onto (see [10, Example 4.2.4, p. 101]).

By [44, Theorem 4.1], the endomorphism ring of a Baer module is a Baer ring.
But the converse does not hold by [44, Example 4.3]. Indeed, letM = Zp∞ , the Prüfer
p-group (p a prime integer), as Z-module. Then S := EndZ(M) is the ring of p-adic
integers, so S is a commutative domain. Hence S is a Baer ring. ButM is not a Baer
Z-module.

In spite of the above example, the following result shows a connection between
the Baer property of a module and its endomorphism ring via its quasi-retractability.

Theorem 3.11 ([47, Theorem 2.5]) A module MR is Baer if and only if EndR(M) is
a Baer ring and MR is quasi-retractable.

Theorem 3.12 ([44, Theorem 2.17]) Any direct summand of a Baer module is a
Baer module.

We noted before,Zp ⊕ Z (p a prime integer) is not Baer as aZ-module, while both
Zp and Z are Baer Z-modules. For the Baer property of a finite direct sum of Baer
modules, we need the following. LetM andN be R-modules. ThenM is said to beN-
injective if, for anyW ≤ N and f ∈ Hom(W,M), there exists ϕ ∈ Hom(N,M) such
that ϕ|W = f . Recall from [47, Definition 1.3] that two modules M and N are said
to be relatively Rickart if, for every f ∈ Hom(M,N),Ker(f ) ≤⊕ M and for every
g ∈ Hom(N,M),Ker(g) ≤⊕ N .
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Theorem 3.13 ([47, Theorem 3.19] also see [10, Theorem 4.2.17, p. 105]) Assume
that {Mi | 1 ≤ i ≤ n} be a finite set of Baer modules. Let Mi and Mj be relatively
Rickart for i �= j, and Mi be Mj-injective for i < j. Then ⊕n

i=1Mi is a Baer module.

The study of rings R for which a certain class of R-modules is Baer is of natural
interest. In the following, R is semisimple artinian if and only if every injective
R-module is Baer.

Theorem 3.14 ([46, Theorem 2.20]) The following are equivalent for a ring R.

(i) Every injective (right) R-module is Baer.
(ii) Every (right) R-module is Baer.
(iii) R is semisimple artinian.

A ring R is said to be semiprimary if R/J(R) is artinian and J(R) is nilpotent.
Recall that a ring R is right (resp., left) hereditary if every right (resp., left) ideal
of R is projective. It is well-known that if a ring R is semisprimary, then R is right
hereditary if and only if R is left hereditary.

The following result provides a characterization of rings R for which every pro-
jective right R-module is Baer. Also see Theorem 4.11.

Theorem 3.15 ([47, Theorem 3.3]) The following are equivalent for a ring R.

(i) Every projective right R-module is a Baer module.
(ii) Every free right R-module is a Baer module.
(iii) R is a semiprimary, hereditary (Baer) ring.

Since condition (iii) is left-right symmetric, the left-handed versions of (i) and (ii)
also hold.

A module MR is called torsionless if it can be embedded in a direct product of
copies of RR. The following result characterizes a ring R for which every finitely
generated right R-module is a Baer module.

Recall that anR-moduleM is said to befinitely presented if there exists a short exact
sequence of R-modules 0 → K → R(n) → M → 0, where n is a positive integer and
K is a finitely generated R-module.

A ring R is called right �-coherent if every finitely generated torsionless right
R-module is finitely presented. Left �-coherent ring is defined similarly. Recall that
a ring R is said to be right semiheditary if every finitely generated right ideal of R is
projective. A left semihereditary ring is denied similarly.

Theorem 3.16 ([47, Theorem 3.5]) The following are equivalent for a ring R.

(i) Every finitely generated free right R-module is a Baer module.
(ii) Every finitely generated projective right R-module is a Baer module.
(iii) Every finitely generated torsionless right R-module is projective.
(iv) Every finitely generated torsionless left R-module is projective.
(v) R is left semihereditary and right �-coherent.
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(vi) R is right semihereditary and left �-coherent.
(vii) Matn(R) is a Baer ring for every positive integer n.

For a positive integer n, we recall that an n-generated module means a module
which is generated by n elements. A ring R is said to be right n-hereditary if every
n-generated right ideal of R is projective. Thus, a ring R is right semihereditary if and
only if it is right n-hereditary for all positive integers n. Given a fixed positive integer
n, we introduce the following characterization for every n-generated free R-module
to be Baer.

Theorem 3.17 ([47, Theorem 3.12]) Let R be a ring and n a positive integer. Then
the following are equivalent.

(i) Every n-generated free right R-module is a Baer module.
(ii) Every n-generated projective right R-module is a Baer module.
(iii) Every n-generated torsionless right R-module is projective (therefore R is right

n-hereditary).
(iv) Matn(R) is a Baer ring.

Corollary 3.18 Let R be a ring. Then R is a Baer ring if and only if every cyclic
torsionless right R-module is projective.

4 Baer Module Hulls

We present recent results and examples on Baer hulls in this section. As mentioned
in the introduction, the study of even Baer ring hulls has been rather limited. And
the only results on Baer ring hulls that exist in earlier literature are from [19, 33, 37,
38], respectively for the classes of commutative semiprime rings, commutative von
Neumann regular rings, and reduced right Utumi rings. Some newer developments
on ring hulls were presented in [5–7, 9, 10]. The question about the existence of
Baer module hulls and their existence has not been addressed till now and is quite
challenging. The results presented here are the latest developments on Baer module
hulls of finitely generated modules over a commutative domain.

From [44] it is known thatN = Zp ⊕ Z (p a prime integer) is not a BaerZ-module,
while Zp and Z are. We construct the Baer hull of the module N in a more general
setting. Let R be a commutative noetherian domain. We first introduce a result from
[40] for intermediate modules between an analogous direct sum as an R-module
N and its injective hull E(N) to be Baer (Theorem 4.1). Then we use this result to
construct and characterize the Baer hull of a module N over a Dedekind domain
R, when AnnR(t(N)) �= 0 and N/t(N) is finitely generated, where t(N) denotes the
torsion submodule ofN (Theorems 4.4, 4.5, and 4.8).As a consequence, every finitely
generated module over a Dedekind domain, has a unique Baer hull precisely when
its torsion submodule is semisimple. For a module N such that N/t(N) is not finitely
generated, an example shows that N does not have a Baer hull (Example 4.12).
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Among applications presented, we show that a finitely generated module N over
a Dedekind domain is Baer if and only if N is semisimple or torsion-free (Corollary
4.6). This extends a result on finitely generated abelian groups. The isomorphism
problem between modules and their Baer hulls is discussed (Proposition 4.13 and
Example 4.14). It is also shown that the Baer hull of a direct sum of two modules is
not necessarily isomorphic to the direct sum of the Baer hulls of the modules, even if
all Baer hulls exist (Example 4.16). The Baer hull ofN = Zp ⊕ Z (p a prime integer)
as a Z-module, is shown to be precisely V = Zp ⊕ Z[1/p]. The disparity of the Baer
hull and the extending hull of Zp ⊕ Z is discussed (Example 4.17). A number of
other examples which illustrate the results are provided.

Let R be a commutative noetherian domain and F be its field of fractions. Assume
that N = MR ⊕ (⊕i∈�Ki), where M is semisimple with a finite number of homoge-
neous components, and {Ki}i∈� is a set of nonzero submodules of FR.

By using the preceding results, we obtain the following which identifies interme-
diate modules between N and E(N) which happen to be Baer modules.

Theorem 4.1 ([40, Theorem2.6])LetR be a commutative noetherian domain,which
is not a field. Assume that M is a nonzero semisimple R-module with only a finite
number of homogeneous components, and {Ki | i ∈ �} is a nonempty set of nonzero
submodules of FR, where F is the field of fractions of R. Let VR be an essential
extension of MR ⊕ (⊕i∈�Ki)R. Then the following are equivalent.

(i) V is a Baer module.
(ii) (1) V = M ⊕ W for some Baer essential extension W of (⊕i∈�Ki)R.

(2) HomR(W,M) = 0.

Let R be a commutative domain with the field of fractions F. A submodule K of
FR is called a fractional ideal of R if rK ⊆ R for some 0 �= r ∈ R. Thus KR

∼= (rK)R
and rK is an ideal of R. We note that any ideal of R is a fractional ideal.

For a fractional ideal K of R, we put K−1 = {q ∈ F | qK ⊆ R}, which is called
the inverse of K . We say that a fractional ideal K is invertible if KK−1 = R. It is
well-known that for a nonzero ideal I of a commutative domain R, IR is projective
if and only if II−1 = R. In this case, IR is finitely generated and I−1 is a fractional
ideal of R.

Recall that a commutative domain R is a Dedekind domain if and only if R is
hereditary. Thus for each nonzero ideal I of a Dedekind domain R, it follows that
II−1 = R because IR is projective. Furthermore, every nonzero fractional ideal of
a Dedekind domain is invertible. We note that a Dedekind domain is noetherian
because every ideal is projective (hence every ideal is finitely generated). See [28, p.
37]and [48, Chap.6] for more details on Dedekind domains.

Assume that I is an invertible ideal of a commutative domain R. Then we let

I−2 = I−1I−1, I−3 = I−1I−1I−1, and so on.

For convenience, we put I0 = R.
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Assume that R is a Dedekind domain. Then for nonzero ideals I1, I2, . . . , In of R,
it can be checked that (I1I2 · · · In)−1 = I−1

n · · · I−1
2 I−1

1 (see [40, Lemma 2.8]).

Proposition 4.2 ([40, Lemma 2.9]) Assume that R is a Dedekind domain and I is a
nonzero ideal of R. We let A = ∑

�≥0 I
−�. Then:

(i) A = R[q1, q2, . . . , qn], where 1 = ∑n
u=1 ruqu for some ru ∈ I and qu ∈ I−1 with

1 ≤ u ≤ n.
(ii) A is a Dedekind domain.

In Proposition 4.2, since R is a Dedekind domain, R is a Prüfer domain. Because
A = R[q1, q2, . . . , qn] is an intermediate domain between R and its field of fractions,
A is a Prüfer domain (note that any intermediate domain between a Prüfer domain
and its field of fractions is a Prüfer domain). Since A is a noetherian domain, A is a
Dedekind domain.

Theorem 4.3 ([48, Theorem 6.11, p. 171]) Let R be a Dedekind domain and M an
R-module with nonzero annihilator in R. Then there exists a unique family {Pi, ni}i∈�

such that:

(i) The Pi are maximal ideals of R and there are only finitely many distinct ones.
(ii) {ni | i ∈ �} is a bounded family of positive integers.
(iii) M ∼= ⊕i∈�(R/Pni

i ) as R-modules.

LetRbe aDedekinddomain andN anR-module. Say t(N) is the torsion submodule
of N . Suppose that N/t(N) is finitely generated as an R-module. Since N/t(N) is
torsion-free, N/t(N) ∼= (⊕m

j=1Kj) (as R-modules) for some fractional ideals Kj, 1 ≤
j ≤ m, of R from [48, Theorem 6.16, p. 177] (see also Corollary 4.6). So N/t(N) is
projective, and hence

N ∼= t(N) ⊕ N/t(N) ∼= t(N) ⊕ (⊕m
j=1Kj)

as R-modules.
Our next result is a complete characterization for the existence of the Baer hull

of a module N when N/t(N) is finitely generated and AnnR(t(N)) �= 0 (also see
Theorem 4.5). Furthermore, we describe the Baer hull of N explicitly in this case.

We denote the Baer hull of a module M by B(M) when it exists.

Theorem 4.4 ([40, Theorem 2.13]) Let R be a Dedekind domain. Assume that M is
an R-module with nonzero annihilator in R, and {K1,K2, . . . ,Km} is a finite set of
nonzero fractional ideals of R. Then the following are equivalent.

(i) MR ⊕ (⊕m
j=1Kj)R has a Baer hull.

(ii) MR is semisimple.
(iii) MR ⊕ (⊕m

j=1Kj)R has a Baer essential extension.
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In this case, B(MR ⊕ (⊕m
j=1Kj)R) = MR ⊕ (⊕m

j=1KjA)R, where A = ∑
�≥0 I

−�

with I = AnnR(M). Furthermore, A = R[q1, q2, . . . , qn], where 1 = ∑n
u=1 ruqu with

ru ∈ I and qu ∈ I−1, 1 ≤ u ≤ n.

The following is a restatement of Theorem 4.4 for characterization of the Baer
hull of a module N over a Dedekind domain for the case when N/t(N) is finitely
generated and AnnR(t(N)) �= 0.

Theorem 4.5 ([40, Theorem 2.15]) Let R be a Dedekind domain. Assume that N is
anR-modulewithN/t(N) finitely generated andAnnR(t(N)) �= 0. Then the following
are equivalent.

(i) N has a Baer hull.
(ii) t(N) is semisimple.
(iii) N has a Baer essential extension.

By [44, Proposition 2.19 and Remark 2.20], a finitely generated module N over
a commutative PID is a Baer module if and only if N is semisimple or torsion-free.
This result is extended to the casewhen the base ring is a Dedekind domain as follows
by applying Theorems 4.4 and 4.5.

Corollary 4.6 ([40, Corollary 2.17]) Let R be aDedekind domain and N be a finitely
generated R-module. Then the following are equivalent.

(i) N is a Baer module.
(ii) N is semisimple or torsion-free.

The next theorem details the structure of finitely generated modules over a
Dedekind domain.

Theorem 4.7 ([48, Theorem 6.16, p. 177]) Let R be a Dedekind domain and N a
finitely generated R-module. Then there exist positive integers n1, n2, . . . , nk (k is a
nonnegative integer), nonzeromaximal ideals P1,P2, . . . ,Pk, and nonzero fractional
idealsK1,K2, . . . ,Km (m is a nonnegative integer) of R such thatN ∼= (⊕k

i=1R/Pni
i ) ⊕

(⊕m
j=1Kj) as R-modules.

Assume that N is a finitely generated module over a Dedekind domain. From
Theorem 4.7, N ∼= (⊕k

i=1R/Pni
i ) ⊕ (⊕m

j=1Kj), where Pi are nonzero maximal ideals
of R and Kj are nonzero fractional ideals of R (k and m are nonnegative integers). In
the following theorem, we characterize the existence of the Baer hull of such N and
describe the Baer hull of N explicitly.

Theorem 4.8 ([40, Theorem 2.18]) Let R be a Dedekind domain, and let N be a
finitely generated R-module. Then the following are equivalent.

(i) N has a Baer hull.
(ii) t(N) is semisimple.
(iii) N has a Baer essential extension.
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In this case, B(NR) ∼= (⊕k
i=1(R/Pi))R ⊕ (⊕m

j=1KjA)R, where A = ∑
�≥0 I

−� with
I = AnnR(t(N)). Further, A = R[q1, q2, . . . , qn], where 1 = ∑n

u=1 ruqu with ru ∈ I
and qu ∈ I−1, 1 ≤ u ≤ n.

The following remark exhibits an explicit description of A = ∑
�≥0 I

−� in Theo-
rem 4.4.

Remark 4.9 We have the following (see [40, Remark 3.1]).

(i) In Theorem 4.3, we put A = ∑
�≥0 I

−�, where I = AnnR(M). By Theorems
4.3 and 4.4, M ∼= ⊕i∈�R/Pi and {Pi | i ∈ �} is a finite set of maximal ideals
Pi. Let P1,P2, . . . ,Ps is all the distinct maximal ideals of {Pi | i ∈ �}.
Wecanverify thatA = ∑

P−�1
1 P−�2

2 · · ·P−�s
s ,where�1, �2, . . . , �s run through

all nonnegative integers. In fact, I ⊆ Pi for all i since I = P1P2 · · ·Ps. For
i, 1 ≤ i ≤ s,P−1

i ⊆ I−1 and therefore P−�
i ⊆ I−� for every nonnegative inte-

ger �. Hence,

P−�1
1 P−�2

2 · · ·P−�s
s ⊆ I−�1I−�2 · · · I−�s = I−(�1+�2+···+�s) ⊆ A.

Thus
∑

P−�1
1 P−�2

2 · · ·P−�s
s ⊆ A, where �1, �2, . . . , �s run through all nonneg-

ative integers. Conversely, I−1 = (P1P2 · · ·Ps)
−1 = P−1

1 P−1
2 · · ·P−1

s . There-
fore it follows that I−� = P−�

1 P−�
2 · · ·P−�

s for anynonnegative integer �.Hence
we obtain that A ⊆ ∑

P−�1
1 P−�2

2 · · ·P−�s
s , where �1, �2, . . . , �s run through all

nonnegative integers.
Consequently,A = ∑

P−�1
1 P−�2

2 · · ·P−�s
s , where �1, �2, . . . , �s run through all

nonnegative integers.
(ii) Let R be a commutative PID. Assume that M is a nonzero semisimple R-

module with nonzero annihilator in R. Then from Theorem 4.3,M has only a
finite number of homogeneous components. Let {Hk | 1 ≤ k ≤ s} be the set of
all homogeneous components ofM. For k, 1 ≤ k ≤ s, we putHk = ⊕αM(k,α)

with each M(k,α) simple. So M(k,α)
∼= R/pkR for k, 1 ≤ k ≤ s, with pk a

nonzero prime.
We put Pk = AnnR(Hk) for k, 1 ≤ k ≤ s. Then Pk = pkR. For a nonnega-
tive integer �, we can routinely verify that P−�

k = (1/p�
k)R for k, 1 ≤ k ≤ s.

Therefore,

P−�1
1 P−�2

2 · · ·P−�s
s = (1/p�1

1 )(1/p�2
2 ) · · · (1/p�s

s )R

for nonnegative integers �1, �2, . . . , �s.

Let A = ∑
�≥0 I

−�, where I = AnnR(M) = P1P2 · · ·Ps = p1p2 · · · psR. By the
preceding argument, A = R[1/p1, 1/p2, . . . , 1/ps]. Put a = p1p2 · · · ps. Then it fol-
lows that A = R[1/a] because I−� = (1/a�)R. Also note that AnnR(M) = aR.

Example 4.10 ([40, Example 3.2]) Let �i, i = 1, 2, 3 be nonempty sets and m be a
positive integer. Then by Remark 4.9(ii), we have
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B(Z
(�1)
2 ⊕ Z

(�2)
3 ⊕ Z

(�3)

5 ⊕ Z
(m)) = Z

(�1)
2 ⊕ Z

(�2)
3 ⊕ Z

(�3)

5 ⊕ Z[1/30](m)

as Z-modules because AnnZ(Z
(�1)
2 ⊕ Z

(�2)
3 ⊕ Z

(�3)

5 ) = 30Z.

For a ringR and a nonempty set�, we use CFM�(R) to denote the� × � column
finite matrix ring over the ring R.

Theorem 4.11 ([50, Theorem 2] and [47, Theorem 3.3]) Let R be a ring. Then the
following are equivalent.

(i) R is a semiprimary right (and left) hereditary ring.
(ii) CFM�(R) is a Baer ring for any nonempty set �.

Example 4.12 in the following shows that the hypothesis “{K1,K2, . . . ,Km} is
a finite set” in Theorem 4.4 and the hypothesis “N/t(N) is finitely generated” in
Theorem 4.5 are not superfluous conditions for the existence of the Baer hull of N .

Example 4.12 (see [40, Example 3.6]) Let �i, i = 1, 2, 3 be nonempty sets as in
Example 4.10. Since Z[1/30] is not a field, Z[1/30] is not semiprimary because
Z[1/30] is a domain. By Theorem 4.11, there exists a nonempty set � such that
CFM�(Z[1/30]) is not a Baer ring. Note that the set� is necessarily infinite. In fact,
if� is finite with the cardinality n, then CFM�(Z[1/30]) = Matn(Z[1/30]) is a Baer
ring asZ[1/30] is a Prüfer domain (see [10, Theorem 6.1.4, p. 191]), a contradiction.
Let

N = Z
(�1)
2 ⊕ Z

(�2)
3 ⊕ Z

(�3)

5 ⊕ Z
(�).

Then we have the following.

(i) V := Z
(�1)
2 ⊕ Z

(�2)
3 ⊕ Z

(�3)

5 ⊕ Z[1/30](�) is not a Baer Z-module. In fact, if V
is a Baer module, then Z[1/30](�) is Baer as a Z-module by Theorem 3.12. We
show that

EndZ(Z[1/30](�)) = EndZ[1/30](Z[1/30](�)).

For this, first we note that EndZ[1/30](Z[1/30](�)) ⊆ EndZ(Z[1/30](�)). Next,
let f ∈ EndZ(Z[1/30](�)). Assume on the contrary that f /∈ EndZ[1/30]
(Z[1/30](�)). Then there exist y ∈ Z[1/30](�) and q ∈ Z[1/30] such that
f (yq) − f (y)q �= 0. Put q = ab−1, where a, b ∈ R and b �= 0. So

0 �= (f (yq) − f (y)q)b = f (yq)b − f (y)a = f (yqb) − f (ya) = f (ya) − f (ya) = 0,

which is a contradiction. Therefore, f ∈ EndZ(Z[1/30](�)). Consequently, we
have that EndZ(Z[1/30](�)) = EndZ[1/30](Z[1/30](�)). From Theorem 3.11,

EndZ(Z[1/30](�)) = EndZ[1/30](Z[1/30](�)) = CFM�(Z[1/30])

is a Baer ring. So we get a contradiction.
(ii) N/t(N)(∼= Z

(�)) is not finitely generated as a Z-module because � is infinite.
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(iii) N has no Baer module hull as a Z-module.

In Proposition 4.13 and Example 4.14, we consider the isomorphism problem for
Baer hulls as follows: Let N1 and N2 be modules with Baer hullsB(N1) andB(N2),
respectively. Is it true that N1

∼= N2 if and only ifB(N1) ∼= B(N2) in this case?

Proposition 4.13 ([40, Proposition 3.8]) Let N1 and N2 are isomorphic modules. If
N1 has a Baer hullB(N1), then N2 has a Baer hullB(N2), andB(N1) ∼= B(N2) as
modules.

The next example shows that the converse of Proposition 4.13 does not hold true.
In other words, there exist modules N1 and N2 such that B(N1) = B(N2) (hence
B(N1) ∼= B(N2) as modules), but N1 � N2. Thus the isomorphism problem does
not hold for the case of Baer hulls.

Example 4.14 ([40, Example 3.9]) LetN1 = Z2 ⊕ Z3 ⊕ Z. Then by Theorem 4.4 or
Example 4.10, Z2 ⊕ Z3 ⊕ Z[1/6] is the Baer hull of N1 as Z-modules.

Next, letN2 = Z2 ⊕ Z3 ⊕ Z[1/3]. SayV is aBaermodulewithN2 ≤ V ≤ E(N2).
From Theorem 4.1, V = Z2 ⊕ Z3 ⊕ W for some Baer module W such that

Z[1/3] ≤ W ≤ Q and HomZ(W, Z2 ⊕ Z3) = 0.

Thus HomZ(W, Z2) = 0, and so 2kW = W for any nonnegative integer k (see the
proof of [40, Theorem 2.13]). Therefore 1/2k ∈ W for any positive integer k, and
thus Z[1/2, 1/3] ≤ W . Hence we have

Z2 ⊕ Z3 ⊕ Z[1/2, 1/3] = Z2 ⊕ Z3 ⊕ Z[1/6] ≤ V .

Because Z2 ⊕ Z3 ⊕ Z[1/6] is Baer as a Z-module, Z2 ⊕ Z3 ⊕ Z[1/6] is the Baer
hull of N2. However, N1 � N2 because Z � Z[1/3] as Z-modules.

In the next examples, we compare the direct sum of Baer hulls with the Baer hull
of a direct sum of modules.

Example 4.15 ([40, Example 2.19]) There exist two modules W1 and W2 such that
both W1 and W2 have Baer module hulls, but W1 ⊕ W2 has no Baer hull.

Let R = Z[x], the polynomial ring over Z. Put N = (R ⊕ R)R. Then t(N) = 0,
so t(N) is semisimple. However, N has no Baer hull. For this, note that if N is a
Baer module, then EndR(N) = Mat2(R) is a Baer ring from Theorem 3.12. So [10,
Theorem 6.1.4, p. 191] yields that the ring R = Z[x] must be Prüfer, which is a
contradiction.

Say B is the Baer hull of N . Put F = Q(x), the field of fractions of R. Note that
E(N) = F ⊕ F. Put U = F ⊕ R. Then by [10, Theorem 4.2.18, p. 107], UR is a
Baer module. Similarly, VR := (R ⊕ F)R is a Baer module. Thus B ⊆ U ∩ V = N ,
so B = N . Hence N is Baer, a contradiction. Therefore N has no Baer hull.



28 J.K. Park and S.T. Rizvi

Example 4.16 ([40, Example 3.10]) There exist two modules M and N such that
M,N , and M ⊕ N have Baer hulls B(M),B(N), and B(M ⊕ N), respectively. But

B(M ⊕ N) � B(M) ⊕ B(N).

LetM = Zp (p a prime integer) and N = Z as Z-modules. ThenB(M) = Zp and
B(N) = Z since Zp is a semisimple Z-module and Z is a Baer ring. Therefore we
have that B(M) ⊕ B(N) = Zp ⊕ Z.

On the other hand, B(M ⊕ N) = B(Zp ⊕ Z) = Zp ⊕ Z[1/p] (see Theorem 4.8
and Remark 4.9(ii)). Hence B(M ⊕ N) � B(M) ⊕ B(N) because Z � Z[1/p] as
Z-modules.

The following example exhibits the disparity of the Baer hull and the extending
hull of Zp ⊕ Z (p a prime integer).

Example 4.17 [40, Example 3.7]) (i) Let V = Zp ⊕ Z[1/p], where p is a prime
integer. Then by Remark 4.9(ii), V is the Baer hull of Zp ⊕ Z as a Z-module. Hence
in view of Theorem 3.9, one might expect that V is also the extending hull ofZp ⊕ Z

as a Z-module. But this is not true. Further, V is not even extending from [25,
Corollary 2]. In fact, the extending hull of Zp ⊕ Z is Zp∞ ⊕ Z, where Zp∞ is the
Prüfer p-group.

(ii) In the chain of Z-submodules Zp ≤ Zp2 ≤ · · · ≤ Zp∞ of Zp∞ (p a prime inte-
ger), Zp is the Baer hull (also quasi-injective hull) of itself, and Zp∞ is the injective
hull of each of the modules in the chain. However, Zpn(n > 1) has no Baer hull by
Theorem 4.8. Also note that Zp∞ has no Baer hull.
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