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Preface

The international conference on “Algebra and its Applications” was organized by
the Department of Mathematics, Aligarh Muslim University, Aligarh, India, and
was held during December 15–17, 2014, under the UGC-DRS (SAP-II) pro-
gramme. The conference was sponsored by Aligarh Muslim University (AMU),
Science and Engineering Research Board (SERB), Department of Science and
Technology (DST), New Delhi and the National Board of Higher Mathematics
(NBHM), Mumbai.

The purpose of the conference was to bring together algebraists from all over the
world working in Algebra and related areas to present their recent research works,
exchange new ideas, discuss challenging issues and foster future collaborations in
Algebra and is applications. An important aim of the conference was to expose
young researchers to new research developments and ideas in Algebra via the talks
presented and the research interactions the conference provided.

This research volume based on the proceedings of the conference consists of
research literature on latest developments in various branches of algebra. It is the
outcome of the invited lectures and research papers presented at the conference. It
also includes some articles by invited algebraists who could not attend the con-
ference. This includes Professors Jae Keol Park, Busan National University, Busan,
South Korea; Akihiro Yamamura, Akita University, Japan; Shuliang Huang,
Chuzhou University, China; Shervin Sahebi and V. Rahmani, Islamic Azad
University, Tehran, Iran; Shreedevi K. Masuti and Parangama Sarkar, IIT Bombay,
Mumbai; C. Selvaraj, Periyar University, Salem, Tamil Nadu; T. Tamizh Chelvam,
Sundarnar University, Tamil Nadu; S. Tariq Rizvi, The Ohio State University,
Ohio, Lima, USA; N.K. Thakare, Pune University, Pune; A. Tamilselvi, Ramanujan
Institute for Advanced Study in Mathematics, Chennai; and V.S. Kapil, Himachal
Pradesh University, Shimla.

To maintain the quality of the work, all papers of the research volume are
peer-reviewed by global subject experts. As Algebra continues to experience
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tremendous growth and diversification, these articles highlight the
cross-fertilization of ideas between various branches of algebra and exhibit the
latest methods and techniques needed in solving a number of existing research
problems while provide new open questions for further research investigations.
These will cover a broad range of topics and variety of methodologies. It is
expected that this research volume will be a valuable resource for young as well as
experienced researchers in Algebra.

Professor Asma Ali was the convener of the conference and Professor M.
Mursaleen, the coordinator of the DRS programme. The conference had Professor
Patrick W. Keef, Whitman College, Walla, Walla, USA, the chief guest and
Professor Ashish K. Srivastava, Saint Louis University, St. Louis, USA, the guest
of honor. The enriching programme contained a keynote address on computer-aided
linear algebra by no less a mathematician than Professor Vasudevan Srinivas of a
premier research centre of India, the Tata Institute of Fundamental Research
(TIFR). Professor Vasudevan is also the recipient of Indian National Science
Academy (INSA) Medal for Young Scientists, elected Fellow of Indian Academy
of Science (IAS) and has received the B.M. Birla Science Award, Swarnajayanthi
Fellowship Award, Bhatnagar Prize, J.C. Bose Fellowship, and TWAS
Mathematics Prize.

A total of 13 plenary talks and 20 invited talks on current topics of algebra and
its applications were delivered by distinguished algebraists. The speakers included,
Professors Luisa Carini; Vincenzo De Filippis, Italy; Nanqing Ding, China;
Sudhir R. Ghorpade, IIT Bombay; Jugal K. Verma, Tony Joseph and
Ananthanarayan, IIT Bombay; Manoj Kummini, Chennai Mathematical Society,
Chennai; Sarang Sane, Indian Institute of Science, Bangalore; Kapil Hari Paranjape,
IISER Mohali, Chandigarh; M.K. Sen, University of Calcutta; B.N. Waphare,
University of Pune, Pune; A.R. Rajan, University of Kerala, Kerala; B.M. Pandeya,
Banaras Hindu University; P.G. Romeo, Cochin University of Sciences and
Technology (CUSAT), Kerala; Manoj Kumar Yadav, Harish-Chandra Research
Institute (HRI), Allahabad; R.P. Sharma, Himachal Pradesh University,
Summerhill, Shimla, and others. Another 44 research papers were presented by
young researchers in algebra. Overall, the conference was greatly successful in its
aims and objectives.

The organizing committee, for the first time in mathematics conferences held at
A.M.U. Aligarh, initiated the best paper presentation award. The award was initi-
ated to motivate and inspire the young talents below the age of 32 years, and carried
a participation certificate and a modest prize in cash.

We thank all our colleagues who contributed papers to this research volume and
those who graciously accepted to serve as referees of the submitted papers. We also
thank the organizing team, the members of the department and the student workers
who actively helped in making the conference a success. The conference could not
be so successful without their active help and participation. The financial support
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from all agencies listed is gratefully acknowledged. We also express our thanks to
Springer for bringing out this volume in a nice form. The professional help and
cooperation provided by Mr. Shamim Ahmad, Editor (Math. Sciences) is thankfully
appreciated and acknowledged.

Lima, USA Syed Tariq Rizvi
Aligarh, India Asma Ali
Messina, Italy Vincenzo De Filippis
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On Some Classes of Module Hulls

Jae Keol Park and S. Tariq Rizvi

Abstract The study of various types of hulls of a module has been of interest for
a long time. Our focus in this paper is to present results on some classes of these
hulls of modules, their examples, counter examples, constructions and their applica-
tions. Since the notion of hulls and its study were motivated by that of an injective
hull, we begin with a detailed discussion on classes of module hulls which satisfy
certain properties generalizing the notion of injectivity. Closely linked to these gen-
eralizations of injectivity, are the notions of a Baer ring and a Baer module. The
study of Baer ring hulls or Baer module hulls has remained elusive in view of the
underlying difficulties involved. Our main focus is to exhibit the latest results on
existence, constructions, examples and applications of Baer module hulls obtained
by Park and Rizvi. In particular, we show the existence and explicit description of
the Baer module hull of a module N over a Dedekind domain R such that N/t(N)

is finitely generated and AnnR(t(N)) �= 0, where t(N) is the torsion submodule of
N . When N/t(N) is not finitely generated, it is shown that N may not have a Baer
module hull. Among applications, our results yield that a finitely generated mod-
ule N over a Dedekind domain is Baer if and only if N is semisimple or torsion-
free. We explicitly describe the Baer module hull of the direct sum of Z with Zp

(p a prime integer) and extend this to a more general construction of Baer module
hulls over any commutative PID. We show that the Baer hull of a direct sum of two
modules is not necessarily isomorphic to the direct sum of the Baer hulls of the
modules, even if each relevant Baer module hull exists. A number of examples and
applications of various classes of hulls are included.

Dedication: Dedicated to the memory of Professor Bruno J. Müller
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2 J.K. Park and S.T. Rizvi

Keywords Hull · Quasi-injective · Continuous · Quasi-continuous · (FI-)
Extending · Baer module · Baer hull · Baer ring · Quasi-Baer ring · Dedekind
domain · Quasi-retractable · Fractional ideal
Classifications 16D10 · 16D50 · 16D25 · 16D40 · 16D80 · 16E60 · 16P40

1 Introduction

Since the discovery of the existence of the injective hull of an arbitrary module
independently in 1952 by Shoda [49] and in 1953 by Eckmann and Schopf [14], there
have been numerous papers dedicated to the study and description of various types of
hulls. These hulls are basically smallest extensions of rings and modules satisfying
some generalizations of injectivity (for example, quasi-injective, continuous, quasi-
continuous hulls, etc.) or satisfying properties related to such generalizations of
injectivity. For a given module M (or a given ring R), the investigations include in
general, to construct the smallest essential extension of M (or of R) which belongs
to a particular class of modules (or of rings) within a fixed injective hull of M (or a
fixed maximal quotient ring of R). We call this a hull of M (or of R) belonging to
that particular class. One benefit of these hulls is that such hulls generally lie closer
to the module M (or to the ring R) than its injective hull. This closeness may allow
for a better transfer of information between M (or R) and that particular hull of M
(or of R) from these classes than betweenM (or R) and its injective hull. These hulls
have also proved to be useful tools for the study of the structure of M (or of R). So
an important focus of investigations has been to obtain results on the existence and
explicit descriptions of various types of module hulls. This is the topic of this survey
paper.

We recall that a module M is said to be quasi-injective if, for each N ≤ M, any
f ∈ Hom(N,M) can be extended to an endomorphism of M. Among other well-
known generalizations of injectivity, the study of the continuous, quasi-continuous,
extending, and the FI-extending properties has been extensive in the literature (see
for example [4, 8, 13, 34–36, 43]). A module M is said to be extending if, for
each V ≤ M, there exists a direct summand W ≤⊕ M such that V ≤ess W . And an
extending module M is called quasi-continuous if for all direct summands M1 and
M2 ofM withM1 ∩ M2 = 0,M1 ⊕ M2 is also a direct summand ofM. Furthermore,
an extending moduleM is said to be continuous if every submodule N ofM which is
isomorphic to a direct summand is also a direct summand ofM. AmoduleM is called
FI-extending if every fully invariant submodule is essential in a direct summand of
M. For more details on FI-extending modules, see [4, 8], and [10, Sect. 2.3]. The
following implications hold true for modules:
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injective ⇒ quasi-injective ⇒ continuous

⇒ quasi-continuous ⇒ extending ⇒ FI-extending

while each of reverse implications does not hold true, in general.
Since the injective module hull of a module always exists [14, 49], the study of

module hulls with certain properties inside the injective hull of the module is more
natural in contrast to the study of ring hulls of a ring (the injective hull of a ring
may not even be a ring in general–and even if it is, for it to have a compatible ring
structure with the ring is another hurdle).

Section1 of the paper is devoted to results and examples (of either existence or
non-existence) of various hulls which generalize injective hulls. This includes the
consideration of quasi-injective, continuous, quasi-continuous and (FI-)extending
module hulls. For a givenmoduleM, letH = EndR(E(M)) denote the endomorphism
ring of its injective hull E(M). By Johnson andWong [23], the unique quasi-injective
hull of the moduleM is precisely given byHM. Goel and Jain [16] showed that there
always exists a unique quasi-continuous hull of every module. The quasi-continuous
hull of M is given by �M, where � is the subring generated by all idempotents of
H = End(E(M)). In contrast to this, it was shown by Müller and Rizvi in [35] that
continuous module hulls do not always exist. However, they did show the existence
of continuous hulls of certain classes of modules over a commutative ring (such as
nonsingular cyclic ones) and provided a description of these continuous hulls (see
[35, Theorem 8]). Similar to the case of continuousmodule hulls, it is also known that
extending module hulls do not always exist (for example, see [10, Example 8.4.13, p.
319]). For the case of FI-extendingmodule hulls, it was proved in [8, Theorem 6] that
every finitely generated projective module over a semiprime ring has an FI-extending
hull.

Closely linked to these notions, are the notions of a Baer ring and a Baer module.
A ring R in which the left (right) annihilator of every nonempty subset of R is
generated by an idempotent is called a Baer ring. It is well-known that this is a
left-right symmetric notion for rings. Kaplansky introduced the notion of Baer rings
in [26] (also see [27]). Having their roots in Functional Analysis, the class of Baer
rings and the more general class of quasi-Baer rings (discussed ahead) were studied
extensively by Kaplansky and many others who obtained a number of interesting
results on these classes of rings (see [1, 3, 6–12, 18, 19, 21, 22, 31–33, 37, 38, 41]).

More recently, the notion of a Baer ring was extended to an analogous module
theoretic notion using the endomorphism ring of the module by Rizvi and Roman in
[44]. According to [44], a module M is called a Baer module if, for any NR ≤ MR,
there exists e2 = e ∈ S such that �S(N) = Se, where �S(N) = {f ∈ S | f (N) = 0}
and S = End(MR). Equivalently, a moduleM is Baer if and only if for any left ideal I
of S, rM(I) = fM with f 2 = f ∈ S, where rM(I) = {m ∈ M | Im = 0}. Examples of
Baer modules include any nonsingular injective module. In particular, it is known
that every (K-)nonsingular extending module is a Baer module while the converse
holds under a certain dual condition. To study Baermodule hulls, we provide relevant
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results and properties of Baer modules and related notions in Sect. 3 of the paper.
These results will also be used in Sect. 4 of the paper.

In themain section, Sect. 4 of this expository paper, we introduce and discuss Baer
module hulls of certain classes modules over a Dedekind domain from our recent
work in [40]. We exhibit explicit constructions and examples of Baer module hulls
and provide their applications in this section. Properties of Baer module hulls will
also be discussed.

Extending the notion of a Baer ring, a quasi-Baer ring was introduced by Clark in
[12].A ring forwhich the left annihilator of every ideal is generated by an idempotent,
as a left ideal is called a quasi-Baer ring. It was initially defined by Clark to help
characterize a finite dimensional algebra over an algebraically closed field F to be a
twisted semigroup algebra of a matrix units semigroup over F. Historically, it is of
interest to note that the Hamilton quaternion division algebra over the real numbers
field R is a twisted group algebra of the Klein four group V4 over R. It was also
shown in [12] that any finite distributive lattice is isomorphic to a certain sublattice
of the lattice of all ideals of an artinian quasi-Baer ring. It is clear that every Baer
ring is quasi-Baer while the converse is not true in general. It is also obvious that
the two notions coincide for a commutative ring and for a reduced ring. In [41], a
number of interesting properties of quasi-Baer rings are obtained. See [10] for more
details on quasi-Baer rings.

Quasi-Baer modules were defined and investigated by Rizvi and Roman [44]
in the module theoretic setting. Recall from [44] that a module MR is called a
quasi-Baer module if for each N � M, �S(N) = Se for some e2 = e ∈ S, where S =
End(MR). ThusMR is quasi-Baer if and only if for any ideal J of S, rM(J) = fM for
some f 2 = f ∈ S. In [44] and [47], it is shown that the endomorphism ring of a
(quasi-)Baer module is a (quasi-)Baer ring. It is proved that there exist close connec-
tions between quasi-Baer modules and FI-extending modules. A number of interest-
ing properties of quasi-Baer modules and applications have also been presented.

As mentioned earlier, the notion of a “hull” with a certain property allows us to
work with an overmodule or overring which has better properties than the original
module or ring. It is worth mentioning that very little is known even about Baer ring
hulls. Recall from [10, Chap.8] that the Baer (resp., quasi-Baer) ring hull of a ring R
is the smallest Baer (resp., quasi-Baer) right essential overring of R in E(RR). To the
best of our knowledge, the only explicit results aboutBaer ring hulls in earlier existing
literature have been due to Mewborn [33] for commutative semiprime rings, Oshiro
[37] and [38] for commutative von Neumann regular rings, and Hirano, Hongan and
Ohori [19] for reduced right Utumi rings. All these results were recently extended
and a unified result was obtained for the case of an arbitrary semiprime ring using
quasi-Baer ring hulls by Birkenemier, Park, and Rizvi [7, Theorem 3.3]. The focus
of the present paper is on module hulls, more specifically on results and study of
Baer module hulls.
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For a given moduleM, the smallest Baer overmodule ofM in E(M) is called the
Baer module hull ofM. In short, we will often call it the Baer hull ofM and denote
it by B(M).

Park and Rizvi in [40] recently initiated the study of the Baer module hulls. We
introduce and discuss the results obtained in [40] on the Baer module hulls in Sect. 4.
We show that the Baer module hull exists for a module N over a Dedekind domain
R such that N/t(N) is finitely generated and AnnR(t(N)) �= 0, where t(N) is the
torsion submodule of N . An explicit description of this Baer module hull has been
provided. In contrast, an example exhibits a module N for which N/t(N) is not
finitely generated and which does not have a Baer module hull.

Among applications presented, we show that a finitely generated moduleN over a
Dedekind domain is Baer if and only ifN is semisimple or torsion-free.We explicitly
describe the Baer module hull of N = Zp ⊕ Z, where p is a prime integer, as V =
Zp ⊕ Z[1/p] and extend this to a more general construction of Baer module hulls
over any commutative PID. It is shown that unlike the case of (quasi-)injective hulls,
the Baer hull of the direct sum of two modules is not necessarily isomorphic to the
direct sum of the Baer hulls of the modules, even if all relevant Baer module hulls
exist. Several interesting examples and applications of various types of module hulls
are included throughout the paper.

All rings are assumed to have identity and all modules are assumed to be
unitary. For right R-modules MR and NR, we use Hom(MR,NR),HomR(M,N),
or Hom(M,N) to denote the set of all R-module homomorphisms from MR to
NR. Likewise, End(MR),EndR(M), or End(M) denote the endomorphism ring of
an R-module M. For a given R-homomorphism (or R-module homomorphism)
f ∈ HomR(M,N),Ker(f ) denotes the kernel of f . A submodule U of a module V is
said to be fully invariant in V if f (U) ⊆ U for all f ∈ End(V ).

We use E(MR) or E(M) for an injective hull of a module MR. For a module M,
we use K ≤ M,L � M, N ≤ess M, and U ≤⊕ M to denote that K is a submodule of
M,L is a fully invariant submodule of M,N is an essential submodule ofM, and U
is a direct summand of M, respectively.

IfM is an R-module, AnnR(M) stands for the annihilator ofM in R. For a module
M and a set �, let M(�) be the direct sum of |�| copies of M, where |�| is the
cardinality of �. When � is finite with |�| = n, then M(n) is used for M(�). For a
ring R and a positive integer n,Matn(R) and Tn(R) denote the n × n matrix ring and
the n × n upper triangular matrix ring over R, respectively.

For a ring R,Q(R) denotes the maximal right ring of quotients of R. The symbols
Q, Z, and Zn(n > 1) stand for the field of rational numbers, the ring of integers,
and the ring of integers modulo n, respectively. Ideals of a ring without the adjective
“left” or “right” mean two-sided ideals.

As mentioned, we will use the term Baer hull for Baer module hull in this paper.
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2 Quasi-Injective, Continuous, Quasi-Continuous,
Extending, and FI-Extending Hulls

We begin this section with a discussion on some useful generalizations of injec-
tivity which are related to the topics of study in this paper. In particular, we dis-
cuss the notions of quasi-injective, continuous, quasi-continuous, extending, and
FI-extending modules. Relationships between these notions, their examples, charac-
terizations, and other relevant properties are presented.

For a givenmoduleM, its injective hullE(M) is theminimal injective overmodule
ofM (equivalently, its maximal essential extension) and is unique up to isomorphism
overM (see [14] and [49]). We discuss module hulls satisfying some generalizations
of injectivity. One may expect that such minimal overmodulesH of a moduleM will
allow for a rich transfer of information between M and H. This, because each of
these hulls, with more general properties than injectivity, sits in between a module
M and a fixed injective hull E(M) of M. Therefore, that specific hull of the module
M usually lies closer to the module M that E(M).

A module M is said to be quasi-injective if for every submodule N of M, each
ϕ ∈ Hom(N,M) extends to anR-endomorphismofM. The following is awell-known
result.

Theorem 2.1 A module M is quasi-injective if and only if M is fully invariant in
E(M).

Quasi-injectivity is an important generalization of injectivity. All quasi-injective
modules satisfy the (C1), (C2), (C3), and (FI) conditions given next.

Proposition 2.2 Let M be a quasi-injective module. Then it satisfies the following
conditions.

(C1) Every submodule of M is essential in a direct summand of M.
(C2) If V ≤ M and V ∼= N ≤⊕ M, then V ≤⊕ M.
(C3) If M1 and M2 are direct summands of M such that M1 ∩ M2 = 0, then M1 ⊕

M2 is a direct summand of M.
(FI) Any fully invariant submodule of M is essential in a direct summand of M.

It is easy to see the relationship between the condition (C2) and the condition (C3)
as follows.

Proposition 2.3 If a module M satisfies (C2), then it satisfies (C3).

Conditions (C1), (C2), (C3), and (FI) help define the following notions.

Definition 2.4 Let M be a module.

(i) M is called continuous if it satisfies the (C1) and (C2) conditions.
(ii) M is said to be quasi-continuous if it has the (C1) and (C3) conditions.
(iii) M is called extending (or CS) if it satisfies the (C1) condition.
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(iv) M is called FI-extending if it satisfies the (FI) condition.

From the preceding, the following implications hold true for modules. However,
the reverse implications do not hold as illustrated in Example 2.5.

injective ⇒ quasi-injective ⇒ continuous

⇒quasi-continuous ⇒ extending ⇒ FI-extending.

Example 2.5 (i) Every injective module and every semisimple module are quasi-
injective. There exist simple modules which are not injective (e.g., Zp for any
prime integer p as aZ-module). Further, there is a quasi-injective module which
is neither injective nor semisimple. Let R = Z and M = Zpn , with p a prime
integer and n an integer such that n > 1. Then E(M) = Zp∞ , the Prüfer p-
group, and thus M is neither injective nor semisimple. But f (M) ⊆ M for any
f ∈ End(E(M)). SoM is quasi-injective by Theorem 2.1 (see [15, Example, p.
22]).

(ii) LetK be a field andF be a proper subfield ofK . SetKn = K for all n = 1, 2 . . . .

We take.

R =
{

(an)
∞
n=1 ∈

∞∏
n=1

Kn | an ∈ F eventually

}
,

which is a subring of
∏∞

n=1 Kn. Say I � R. Then we can verify that rR(I) = eR
with e2 = e ∈ R. Therefore IR ≤ess rR(�R(I)) = (1 − e)RR as R is semiprime.
So RR is extending. Further, since R is von Nuemann regular, RR also satisfies
(C2) condition.ThusRR is continuous.AsE(RR) = ∏∞

n=1 Kn,RR is not injective,
so RR is not quasi-injective.

(iii) Let R be a right Ore domain which is not a division ring (e.g., the ring Z of
integers). ThenRR is quasi-continuous. Take 0 �= x ∈ R such that xR �= R.Then
xRR

∼= RR, but xRR is not a direct summand of RR. Thus RR is not continuous.
(iv) Let F be a field and R = T2(F), the 2 × 2 upper triangular matrix ring over

F. Then we see that RR is extending. Let eij ∈ R be the matrix with 1 in the
(i, j)-position and 0 elsewhere. Put e = e12 + e22 and f = e22. Then e2 = e and
f 2 = f . Note that eR ∩ fR = 0. But eRR ⊕ fRR is not a direct summand of RR.

Thus RR is not quasi-continuous.
(v) Let R = Matn(Z[x]) (n is an integer such that n > 1). Then RR is FI-extending,

but RR is not extending. Further, the module M = ⊕∞
n=1Z is an FI-extending

Z-module which is not extending.

The next theorem allows us to transfer any given decomposition of the injective
hull E(M) of a quasi-continuous module M to a similar decomposition for M (the
converse always holds). This fact is also helpful in transference of properties between
between a quasi-continuous module M and its injective hull E(M) or a module in
between.
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Theorem 2.6 ([16], [20], and [39]) The following are equivalent for a module M.

(i) M is quasi-continuous.
(ii) M = X ⊕ Y for any two submodules X and Y which are complements of each

other.
(iii) fM ⊆ M for every f 2 = f ∈ EndR(E(M)).
(iv) E(M) = ⊕i∈�Ei implies M = ⊕i∈�(M ∩ Ei).
(v) Any essential extension V of M with a decomposition V = ⊕α∈�Vα implies

that M = ⊕α∈�(M ∩ Vα).

Remark 2.7 The equivalence of the conditions (i), (ii), (iii), and (iv) of Theorem
2.6 are comprised by results obtained in [16] and [20], while the condition (v) of
Theorem 2.6 is obtained in [39].

Definition 2.8 Let M be a class of modules and M be any module. We call, when
it exists, a module H the M hull of M if H is the smallest essential extension of M
in a fixed injective hull E(M) that belongs toM.

It is clear from the preceding definition that anM hull of amodule is uniquewithin
a fixed injective hull E(M) ofM. It may be worth to note that in [42, Definitions 4.7,
4.8, and 4.9, pp. 36–37], three types of continuous hulls of a module, Type I, Type II,
and Type III are introduced (see also [35, Definitions]). The authors of [42] and [35]
chose the Type III continuous hull of a module to be called as the continuous hull
of an arbitrary module for several reasons provided in [42] and [35]. Our Definition
2.8 follows the definition of continuous hull of Type III.

The next result due to Johnson and Wong [23] describes precisely how the quasi-
injective hull of a module can be constructed and that the quasi-injective hull of any
module always exists.

Theorem 2.9 Assume that M is a right R-module and let S = End(E(M)). Then
SM = {∑ fi(mi) | fi ∈ S and mi ∈ M} is the quasi-injective hull of M.

The following result for the existence of the quasi-continuous hull of a module is
obtained by Goel and Jain [16].

Theorem 2.10 Assume that M is a right R-module and S = End(E(M)). Let � be
the subring of S generated by the set of all idempotents of S. Then�M = {∑ fi(mi) |
fi ∈ � and mi ∈ M} is the quasi-continuous hull of M.

Recall that a module is called uniform if the intersection of any two nonzero
submodule is nonzero (i.e., the module ZZ). If M is a uniform module, then E(M)

is also uniform. Thus S = End(E(M)) has only trivial idempotents, so �M = M.
Therefore the quasi-continuous module hull of M isM itself.

A module is said to be directly finite if it is not isomorphic to a proper direct
summand of itself. A module is called purely infinite if it is isomorphic to the direct
sum of two copies of itself. Recall that a ring R is called directly finite if xy = 1
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implies yx = 1 for x, y ∈ R. We remark that a moduleM is directly finite if and only
if End(M) is directly finite.

The following result was obtained by Goodearl [17] in a categorical way. In [36],
Müller and Rizvi gave an algebraic proof of the result and extended it. They also
proved a strong “uniqueness” of the decomposition. The result was further extended
by them to a similar decomposition of a quasi-continuous module as provided in
Theorem 2.13 ahead.

Theorem 2.11 ([36, Theorem 1]) Every injective module E has a direct sum decom-
position, E = U ⊕ V , where U is directly finite, V is purely infinite, and U and V
have no nonzero isomorphic direct summands (or submodules). If E = U1 ⊕ V1 =
U2 ⊕ V2 are two such decompositions, then E = U1 ⊕ V2 holds too, and conse-
quently U1

∼= U2 and V1
∼= V2.

Given a quasi-continuous module M and a submodule A of M, it is easy to find
the direct summand of M in which A is essential (just consider M ∩ E(A)). This
summand was called an internal quasi-continuous hull of A in M by Müller and
Rizvi [36].

Another interesting property of a quasi-continuous module M obtained is that if
A and B are two isomorphic submodules ofM then the direct summands ofM which
are essential over A and B respectively, are unique up to isomorphism as follows.

Theorem 2.12 ([36, Theorem 4]) Assume that M is a quasi-continuous module and
Ai ≤ess Pi ≤⊕ M (i = 1, 2). If A1

∼= A2, then P1
∼= P2.

By using Theorem 2.12, the decomposition theorem of injective modules (Theo-
rem 2.11) can be extended to the case of quasi-continuous modules as follows.

Theorem 2.13 ([36, Proposition 6]) Every quasi-continuous module M has a direct
sum decomposition, M = U ⊕ V , where U is directly finite, V is purely infinite,
and U and V have no nonzero isomorphic direct summands (or submodules). If
M = U1 ⊕ V1 = U2 ⊕ V2 are two such decompositions, then M = U1 ⊕ V2 holds
too, and consequently U1

∼= U2 and V1
∼= V2.

The existence and description of continuous hulls of certain modules have been
investigated in [42] (and [35]). In contrast to Theorems 2.9 and 2.10,Müller andRizvi
[35, Example 3] construct the example of a nonsingular uniform cyclic module over
a noncommutative ring which cannot not have a continuous hull as follows.

Example 2.14 Let V be a vector space over a field F with basis elements vm, wk

(m, k = 0, 1, 2, . . . ). We denote by Vn the subspace of V generated by the
vm (m ≥ n) and all the wk . Also we denote by Wn the subspace generated by
the wk (k ≥ n). We write S for the shifting operator such that S(wk) = wk+1 and
S(vi) = 0 for all k, i.

Let R be the set of all ρ ∈ EndF(V ) such that ρ(vm) ∈ Vm, ρ(w0) ∈ W0 and
ρ(wk) = Skρ(w0), form, k = 0, 1, 2, . . . .Note that τρ(wk) = Skτρ(w0), for ρ, τ ∈
R, and so τρ ∈ R. Thus it is routine to check that R is a subring of EndF(V ). Further,
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we see that Vn = Rvn,Wn = Rwn, and Vn+1 ⊆ Vn for all n. (When f ∈ R and v ∈ V,

we also use f v for the image f (v) of v under f .)
Consider the left R-module M = W0. First, we show that M = Rw0 is uniform.

For this, take fw0 �= 0, gw0 �= 0 in M, where f , g ∈ R. We need to find h1, h2 ∈ R
such that h1fw0 = h2gw0 �= 0. Let

fw0 = b0w0 + b1w1 + · · · + bmwm ∈ Rw0

and
gw0 = c0w0 + c1w1 + · · · + cmwm ∈ Rw0,

where bi, cj ∈ F, i, j = 0, 1, . . . ,m, and some terms of bi and cj may be zero.
Put h1w0 = x0w0 + x1w1 + · · · + x�w� and h2w0 = y0w0 + y1w1 + · · · + y�w�,

where xi, yi ∈ F, i = 0, 1, . . . , � (also some terms of xi and yj may be zero). Since
h1(wk) = Skh1(w0) and h2(wk) = Skh2(w0) for k = 0, 1, 2 . . . ,weneed to find such
xi, yi ∈ F, 0 ≤ i ≤ � so that h1fw0 = h2gw0 �= 0 from the following equations:

b0x0 = c0y0, b0x1 + b1x0 = c0y1 + c1y0,

b0x2 + b1x1 + b2x0 = c0y2 + c1y1 + c2y0,

b0x3 + b1x2 + b2x1 + b3x0 = c0y3 + c2y1 + c2y1 + c3y0,

and so on.
Say α(t) = b0 + · · · + bmtm �= 0 and β(t) = c0 + · · · + cmtm �= 0 in the polyno-

mial ring F[t]. Then α(t)F[t] ∩ β(t)F[t] �= 0.
We may note that finding such x0, x1 . . . , x�, y0, y1 . . . , y� in F above is the same

as the job of finding x0, x1 . . . , x�, y0, y1, . . . , y� such that

α(t)(x0 + x1t + · · · + x�t
�) = β(t)(y0 + y1t + · · · + y�t

�) �= 0

in the polynomial ringF[t]. Observing that 0 �= α(t)β(t) ∈ α(t)F[t] ∩ β(t)F[t], take
h1w0 = c0w0 + c1w1 + · · · + cmwm by putting � = m, xi = ci for 0 ≤ i ≤ m, and
h2w0 = b0w0 + b1w1 + · · · + bmwm by putting � = m, yi = bi for 0 ≤ i ≤ m. Since
α(t)β(t) �= 0, we see that 0 �= h1fw0 = h2gw0 ∈ Rfw0 ∩ Rgw0. SoM is uniform.

Next, we show that each Vn is an essential extension of M (hence each Vi is
uniform). Indeed, let 0 �= μvn ∈ Rvn = Vn, where μ ∈ R. Say

μvn = an+kvn+k + · · · + an+k+�vn+k+� + bsws + · · · + bs+mwk+m.

If an+k = · · · = an+k+� = 0, then μvn ∈ W0.Otherwise, wemay assume that an+k �=
0. Let ω ∈ R such that ω(vn+k) = w0 and ω(vi) = 0 for i �= n + k and ω(wj) = 0 for
all j. Then 0 �= ωμvn = an+kw0 ∈ W0. Thus M = W0 is essential in Vn. Since M is
uniform, Vn is also uniform for all n.

Weprove that RM is nonsingular. For this, assume thatu ∈ Z(RM) (whereZ(RM) is
the singular submodule of RM) and letK = {α ∈ R | αu = 0}. ThenK is an essential
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left ideal of R. So K ∩ RS2 �= 0. Thus there is ρ ∈ R with ρS2 �= 0 and ρS2(u) = 0.
Say

u = akwk + ak+1wk+1 + · · · + anwn

with ak, ak+1, . . . , an ∈ F.Assume on the contrary that u �= 0.Thenwemay suppose
that ak �= 0. Because ρ(wn) = Snρ(w0) for n = 0, 1, 2, . . . ,

0 = ρS2(u) = akρS2(wk) + ak+1ρS2(wk+1) + · · · + anρS2(wn)

= akSk+2ρ(w0) + ak+1Sk+3ρ(w0) + · · · + anSn+2ρ(w0).f

Here we put ρ(w0) = b�w� + b�+1w�+1 + · · · + btwt .

If ρ(w0) = 0, then ρS2(w0) = ρ(w2) = S2ρ(w0) = 0. Also, ρS2(wm) = 0 for
allm = 1, 2, . . . , and ρS2(vi) = 0 for all i = 0, 1, . . . . So ρS2 = 0, a contradiction.
Hence ρ(w0) �= 0, and thus we may assume that b� �= 0. We note that

Sk+2ρ(w0) = b�w�+k+2 + b�+1w�+k+3 + · · · + btwt+k+2,

Sk+3ρ(w0) = b�w�+k+3 + b�+1w�+k+4 + · · · + btwt+k+3,

and so on. Thus

0 = ρS2(u) = akb�w�+k+2 + (akb�+1 + ak+1b�)w�+k+3 + · · · ,

and hence akb� = 0, which is a contradiction because ak �= 0 and b� �= 0. Therefore
u = 0, and soM is nonsingular.

We show now that Vn is continuous. Note that Vn is uniform. So clearly, Vn has
the (C1) condition. Thus, to show that Vn is continuous, it suffices to prove that every
R-monomorphism of Vn is onto for Vn to satisfy the (C2) condition.

Let ϕ : Vn → Vn be an R-monomorphism. We put

ϕ(vn) = ρvn ∈ Rvn = Vn, where ρ ∈ R.

We claim that ρvn /∈ Vn+1. For this, assume on the contrary that ρvn ∈ Vn+1. Let
λ ∈ R such that λvn = vn, λvk = 0 for k �= n, and λwm = 0 for all m. Then
ϕ(λvn) = λ(ρvn) = 0 since ρ(vn) ∈ Vn+1. But λvn = vn �= 0. Thus ϕ is not one-
to-one, a contradiction. Therefore ρvn /∈ Vn+1.

As ρvn ∈ Vn, write

ρvn = anvn + an+1vn+1 + · · · + an+�vn+� + b0w0 + · · · + bhwh,

where an, an+1, . . . , an+�, b0, b1, . . . , bh ∈ F, and an �= 0.
Take ν ∈ R such that νvn = a−1

n vn, νvk = 0 for k �= n and νwm = 0 for all m.

Then we see that vn = νρvn ∈ Rρvn. Therefore Rvn ⊆ Rρvn, and hence Vn = Rvn =
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Rρvn.Thusϕ(Rvn) = Rϕ(vn) = Rρvn = Vn, soϕ is onto. ThereforeVn is continuous
for all n.

Finally, note that the uniform nonsingular module M = Rw0 is not continuous,
since the shifting operatorS provides anR-monomorphismwhich is not onto. Hence,
M does not have a continuous hull (in E(M) = E(V )), because such a hull would
have to be contained in each Vn, and hence inM = ⋂

n Vn.

Despite Example 2.14, continuous hulls do exist for certain classes of modules
over a commutative ring. For the class of cyclic modules, the next result and Theo-
rem 2.17 due to Müller and Rizvi [35] show the existence of continuous hulls over
commutative rings.

Theorem 2.15 ([35, Theorem 8]) Every cyclic module over a commutative ring
whose singular submodule is uniform, has a continuous hull.

The next example, due to Müller and Rizvi [35], shows that in general, the quasi-
continuous hull of a module is distinct from the continuous hull, which in turn is
distinct from the (quasi-)injective hull of the module.

Example 2.16 ([35,Example2])LetFn = R forn = 1, 2, . . . , andputA = ∏∞
n=1 Fn,

where R is the field of real numbers. Let R be the subring of A generated by ⊕∞
n=1Fn

and 1A. Then E(RR) = Q(R) = A. In this case, we see that

V = {
(an)

∞
n=1 ∈ A | an ∈ Z eventually

}
is the quasi-continuous hull of RR, while

W = {
(an)

∞
n=1 ∈ A | an ∈ Q eventually

}
is the continuous hull of RR becauseW is the smallest continuous von Neumann reg-
ular ring between R andQ(R) (soW is the intersection of all intermediate continuous
von Neumann regular rings between R and Q(R)). We note that AW is an injective
hull of WW , and also AW is a quasi-injective hull of WW .

When M is a uniform cyclic module over a commutative ring, the following
theorem shows that M has a continuous hull (see [42]). Furthermore, it explicitly
describes the continuous hull of M. Recall that when MR is a right R-module, an
element c ∈ R is said to act regularly on M if mc = 0 with m ∈ M implies that
m = 0. Let C be the multiplicative set of elements of R which act regularly on M,
and let MC−1 = {mc−1 | m ∈ M, c ∈ C}.
Theorem 2.17 ([42, Theorem 4.15] and [10, Theorem 8.4.11, p. 319]) Let R be a
commutative ring, and M a uniform cyclic R-module. Then MC−1 is a continuous
hull of M.

In view of the existence of quasi-injective and quasi-continuous hulls for all
modules and from the existence of continuous hulls for some classes of modules in



On Some Classes of Module Hulls 13

Theorems 2.15 and 2.17, it is natural to consider the existence of extending hulls of
modules. However, the following example exhibits that there exists a free module of
finite rank over a commutative domain which has no extending hull.

Example 2.18 (cf. [40, Example 2.19] and [10, Example 8.4.13, p. 319]) We let
R = Z[x], the polynomial ring over Z. Then (R ⊕ R)R has no extending hull.

We recall that a module M satisfying the (FI) condition is called FI-extending.
Thus a module M is FI-extending if and only if every fully invariant submodule of
M is essential in a direct summand of M. A ring R is called right FI-extending if
RR is FI-extending. Similarly left FI-extending ring is defined. For more details on
FI-extending modules and rings, see [4, 8, 10].

The notion of an FI-extending module generalizes that of an extending module by
requiring that only every fully invariant submodule is essential in a direct summand
rather than every submodule. Many well-known submodule of a given module are
fully invariant. For example, the socle of a module, and the Jacobson radical of a
module, and the singular submodule of a module, are fully invariant. For a ring R,
all its fully invariant submodules are precisely the ideals of R. It was shown in [4,
Theorem 1.3] that any direct sum of FI-extending modules is FI-extending without
any additional requirements. Thus while a direct sum of extending modules may
not be extending, it does satisfy the extending property for all its fully invariant
submodules.

There are close connections between the FI-extending property and the quasi-Baer
property. For example, assume thatR is a semiprime ring. ThenR is right FI-extending
if and only if R is left extending if and only if R is a quasi-Baer ring from [4, Theorem
4.7]. Further, every nonsingular FI-extendingmodule is a quasi-Baer module (in fact,
this also holds true under much weaker nonsingularity conditions).

A commutative domain R is called Prüfer if R is semihereditary. Thus a com-
mutative domain is Prüfer if and only if every finitely generated ideal is projective.
Note that every extending module is FI-extending. If R is a commutative domain
which is not Prüfer (e.g., R = Z[x]) and n is an integer such that n > 1, then R(n)

R is
FI-extending, but R(n)

R is not extending (cf. Example 2.5(v)).
For a ring R, recall thatQ(R) denotes the maximal right ring of quotients of R. Let

B(Q(R)) be the set of all central idempotents ofQ(R). By [2], the subring RB(Q(R))

of Q(R) generated by R and B(Q(R)) is called the idempotent closure of R.
Between R and RB(Q(R)), LO (Lying Over), GU (Going Up), and INC (Incom-

parable) hold. Thereby, kdim(R) = kdim(RB(Q(R)), where kdim(−) is the classi-
cal Krull dimension of a ring, i.e., the supremum of all length of chains of prime
ideals. For prime radicals and Jacobson radicals of R and RB(Q(R)), we have
that P(RB(Q(R)) ∩ R = P(R) and J(RB(Q(R)) ∩ R = J(R), where P(−) and J(−)

denote the prime radical and the Jacobson radical of a ring, respectively. Also, R is
strongly π-regular if and only ifRB(Q(R)) is strongly π-regular (recall that a ringA is
called strongly π-regular if for each a ∈ A there exist x ∈ A and a positive integer n,
depending on a, such that an = an+1x. (See [10, Lemma 8.3.26 and Theorem 8.3.28,
pp. 296–297].)
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Further, by [10, Corollary 8.3.30, p. 298], R is von Neumann regular if and only
if RB(Q(R)) is von Neumann regular. When R is a semiprime ring with exactly n
(n a positive integer) minimal prime ideals P1,P2, . . . ,Pn, we have the following
structure theorem

RB(Q(R)) ∼= R/P1 ⊕ R/P2 ⊕ · · · ⊕ R/Pn

as rings from [10, Theorem 10.1.20, p. 370].

By using the above structure theorem for RB(Q(R)), it was shown in [7, Corollary
4.17] that if A is a unital C∗-algebra and n is a positive integer, then A has exactly n
minimal prime ideals if and only if AB(Q(A)) is a direct sum of n prime C∗-algebras
if and only if the extended centroid Cen(Q(A)) of A is C

n, where C is the field of
complex numbers.

An overring T of a ring R is called a right ring of quotients of R if RR is a dense
submodule of TR. Assume that R is a semiprime ring. Then from [7, Theorem 3.3],
the ring RB(Q(R)) is the smallest right FI-extending right ring of quotients of R. For
more details on RB(Q(R)), see [10, Sects. 8.3 and 10.1].

In the following definition, for a ring R, we fix a maximal right ring of quotients
Q(R) of R. Thus a right ring of quotients T of R is a subring of Q(R).

Definition 2.19 (see [6, Definition 2.1]) The smallest right FI-extending right ring
of quotients of a ring R is called the right FI-extending ring hull of R (when it exists).
Such hull is denoted by Q̂FI(R).

The existence of the right FI-extending ring hull Q̂FI(R) of a semiprime ringRwas
obtained and explicitly described by Birkenmeier, Park, and Rizvi in the following
interesting result.

Theorem 2.20 ([7, Theorem 3.3]) Assume that R is a semiprime ring. Then Q̂FI(R)

exists and Q̂FI(R) = RB(Q(R)).

Let R be a commutative semiprime ring. Then RB(Q(R)) is the smallest extending
ring of quotients of R by Theorem 2.20.

In contrast to Theorem 2.20, there exists a semiprime ring for which the right
extending ring hull does not exist. For this, we need the the next result.

Theorem 2.21 ([10, Theorem 6.1.4, p. 191]) Let R be a commutative domain. Then
the following are equivalent.

(i) R is a Prüfer domain.
(ii) Matn(R) is a (right) extending ring for every positive integer n.
(iii) Matk(R) is a (right) extending ring for some integer k > 1.
(iv) Mat2(R) is a (right) extending ring.

The smallest right extending right ring of quotients of a ring R is called the
right extending ring hull of R (when it exists). Such hull is denoted by Q̂E(R). By
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using Theorem 2.21, we obtain the following example which exhibits that the right
extending ring hull of a semiprime ring does not exist, in general.

Example 2.22 (see [10, Example 8.3.34, p. 300]) Let R = Matk(F[x, y]), where F
is a field and k is an integer such that k ≥ 2. Then the right extending ring hull Q̂E(R)

of R does not exist.
Assume on the contrary that Q̂E(R) exists. Note thatF(x)[y] andF(y)[x] are Prüfer

domains, where F(x) (resp., F(y)) is the field of fractions of F[x] (resp., F[y]). So
Matk(F(x)[y]) and Matk(F(y)[x]) are right extending rings by Theorem 2.21. Note
Q(R) = Matk(F(x, y)), where F(x, y) is the field of fractions of F[x, y]. Hence

Q̂E(R) ⊆ Matk(F(x)[y]) ∩ Matk(F(y)[x]) = Matk(F(x)[y] ∩ F(y)[x]).

To see that F(x)[y] ∩ F(y)[x] = F[x, y], let

γ(x, y) = f0(x)/g0(x) + (f1(x)/g1(x))y + · · · + (fm(x)/gm(x))ym

= h0(y)/k0(y) + (h1(y)/k1(y))x + · · · + (hn(y)/kn(y))x
n

be in F(x)[y] ∩ F(y)[x], where fi(x), gi(x) ∈ F[x], hj(y), kj(y) ∈ F[y], and gi(x) �=
0, kj(y) �= 0 for i = 0, 1, . . . ,m, j = 0, 1, . . . , n.LetF be the algebraic closure ofF.

If deg(g0(x)) ≥ 1, then there exists α ∈ F such that g0(α) = 0. Thus γ(α, y) cannot
be defined. On the other hand, we note that

γ(α, y) = h0(y)/k0(y) + (h1(y)/k1(y))α + · · · + (hn(y)/kn(y))α
n,

which is a contradiction. Thus g0(x) ∈ F. Similarly, g1(x), . . . , gm(x) ∈ F. Hence
γ(x, y) ∈ F[x, y]. Therefore F(x)[y] ∩ F(y)[x] = F[x, y], and so

Q̂E(R) = Matk(F(x)[y] ∩ F(y)[x]) = Matk(F[x, y]).

Thus Matk(F[x, y]) is a right extending ring, a contradiction from Theorem 2.21
because the commutative domain F[x, y] is not Prüfer. Therefore R = Matk(F[x, y])
has no right extending ring hull.

In contrast to Theorem 2.20, the existence of the right FI-extending ring hull of
a ring is not always guaranteed, even in the presence of nonsingularity, as the next
example shows.

Example 2.23 (see [5, Example 2.10(ii)], [6, Example 3.16], and [10, Example 8.2.9,
p. 278]) Let F be a field and put

R =
⎧⎨
⎩

⎡
⎣a 0 x
0 a y
0 0 c

⎤
⎦ | a, c, x, y ∈ F

⎫⎬
⎭ ∼=

[
F F ⊕ F
0 F

]
.

Then R is right nonsingular and Q(R) = Mat3(F).
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Let

H1 =
⎧⎨
⎩

⎡
⎣a 0 x
0 b y
0 0 c

⎤
⎦ | a, b, c, x, y ∈ F

⎫⎬
⎭ ∼=

[
F ⊕ F F ⊕ F

0 F

]
,

and let

H2 =
⎧⎨
⎩

⎡
⎣a + b a x

0 b y
0 0 c

⎤
⎦ | a, b, c, x, y ∈ F

⎫⎬
⎭ .

Note that R, H1, and H2 are subrings of Mat3(F). Define φ : H1 → H2 by

φ

⎡
⎣a 0 x
0 b y
0 0 c

⎤
⎦ =

⎡
⎣a a − b x − y
0 b y
0 0 c

⎤
⎦ .

Then φ is a ring isomorphism. It is routine to check that the ring R is not right FI-
extending. But, we can verify that H1 is a right FI-extending ring. Therefore H2 is
also right FI-extending because H1

∼= H2 (ring isomorphic).
Let F = Z2. Then there is no proper intermediate ring between R and H1, also

between R and H2. If Q̂FI(R) exists, then Q̂FI(R) ⊆ H1 ∩ H2 = R, so Q̂FI(R) = R.
Hence R is a right FI-extending ring, which is a contradiction.

In contrast to Example 2.18 where the extending hull of a finitely generated free
module of rank 2 does not exist, it was shown that the FI-extending hulls of every
finitely generated projective module over a semiprime ring does exist in [8]. Also
such an FI-extending hulls is described explicitly using Theorem 2.20 as in the next
theorem. For a module M, let FI(M) denote the FI-extending hull of M, when it
exists.

Theorem 2.24 ([8, Theorem 6]) Any finitely generated projective module PR over a
semiprime ringRhas theFI-extendinghullFI(PR). Indeed,FI(PR) ∼= e(⊕nQ̂FI(R)R)

where P ∼= e(⊕nRR), for some e2 = e ∈ End(⊕nRR) and some positive integer n.

From Theorems 2.20 and 2.24, the following result is obtained.

Corollary 2.25 ([8, Corollary 7]) Assume that R is a semiprime ring and PR is a
finitely generated projective module. Then Q̂FI(End(PR)) ∼= End(FI(PR)).

An application of Theorem 2.24 yields the following consequences.

Corollary 2.26 ([8, Corollary 13]) Let R be a semiprime ring. Then:

(i) If PR is a progenerator of the category Mod-R of right R-modules, then
FI(PR)Q̂FI(R) is a progenerator of the category Mod-Q̂FI(R) of right Q̂FI(R)-
modules.

(ii) If R and a ring S are Morita equivalent, then Q̂FI(R) and Q̂FI(S) are Morita
equivalent.
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3 Baer Modules

We introduce the definition of a Baer module MR via its endomorphism ring S =
End(MR) in contrast to defining this notion in terms of the base ring R. The use of
the endomorphism ring instead of the base ring R appears to offer a more natural
generalization of a Baer ring in the general module theoretic setting (see Definition
3.1 and the comments after Example 3.2).

Properties of Baermodules are included and examples are provided. Similar to the
ring theoretic concepts of nonsingularity and cononsingularity,K-nonsingularity and
K-cononsingularity, respectively are discussed for modules. Using these concepts,
strong connections between extending modules and Baer modules are provided,
which generalizes the Chatters-Khuri theorem to the module theoretic setting. We
include a characterization of rings R for which every projective right R-module is
Baer. Properties of Baer modules from this section will also be used in Sect. 4. For
more details on Baer modules and their properties, see [44–47], and [10, Chap.4].

We start with the following definition.

Definition 3.1 ([44, Definition 2.2]) A right R-moduleM is called a Baer module if,
for anyNR ≤ MR, there exists e2 = e ∈ S such that �S(N) = Se, where S = End(MR)

and �S(N) = {f ∈ S | f (N) = 0}. A right R-module M is Baer if and only if for any
left ideal I of S, rM(I) = fM with f 2 = f ∈ S, where rM(I) = {m ∈ M | Im = 0}.

A ring R is said to be a Baer ring if the right annihilator of any nonempty subset
of R is generated, as a right ideal, by an idempotent of R. Thus a ring R is a Baer ring
if and only if RR is a Baer module. Further, we can verify that a ring R is Baer if and
only if the left annihilator of any nonempty subset of R is generated, as a left ideal,
by an idempotent of R (see [27, Theorem 3, p. 2]).

Example 3.2 (i) Every semisimple module is a Baer module.
(ii) If R is a Baer ring and e2 = e ∈ R, then eRR is a Baer module (see Theorem

3.12).
(iii) ([44, Proposition 2.19]) A finitely generated Baer abelian group M is a Baer

Z-module if and only ifM is semisimple or torsion-free.
(iv) ([10, Corollary 4.3.6, p. 112]) Any finitely generated right Hilbert A-module

over an AW ∗-algebra A is a Baer module.
(v) ([44, Theorem 2.23]) A module M is an indecomposable Baer module if and

only if any nonzero endomorphism ofM is a monomorphism.
(vi) Any nonsingular extendingmodule is a Baer module (see [44, Theorem 2.14]).
(vii) For a commutative domain R and an integer n > 1,R(n)

R is a Baer module if
and only if R(n)

R is an extending module if and only if R is a Prüfer domain.
(viii) ([47, Theorem 3.16]) Let R be an n-fir (n a positive integer). Then R(n)

R is a
Baer module (recall that a ring R is said to be an n-fir if any right ideal of R
generated by at most n elements is free of unique rank).

In [30, Definition 3.1], Lee and Zhou also called a module MR Baer if, for any
nonempty subset X ofM, rR(X) = eR with e2 = e ∈ R. But Definition 3.1 is distinct
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from their definition. In fact, any semisimple module is a Baer module by Definition
3.1 (see Example 3.2(i)), but it may not be a Baer module in the sense of Lee and
Zhou [30] (for example Zp as a Z-module, where p is a prime integer, is a Baer
module in our sense).

Definition 3.3 ([44, Theorem 2.5]) Let M be a module. Then M is called K-
nonsingular if, for φ ∈ EndR(M),Ker(φ) ≤ess M implies φ = 0.

Example 3.4 (i) Any semisimple module is K-nonsingular.
(ii) ([44, Proposition 2.10]) Every nonsingular module is K-nonsingular.
(iii) ([44, Example 2.11]) The Z-module Zp, where p is a prime integer, is K-

nonsingular, but it is not nonsingular.
(iv) Any polyform module is K-nonsingular. Recall that a module M is said to be

polyform if every essential submodule ofM is a dense submodule. A polyform
module M is also called non-M-singular.

(v) For a ring R,RR is K-nonsingular if and only if RR is nonsingular if and only
if RR is polyform.

(vi) [46, Example 2.5]) LetM = Q ⊕ Z2 as aZ-module. ThenM isK-nonsingular.
But M is neither nonsingular nor polyform.

(vii) ([44, Lemma 2.15]) Every Baer module is K-nonsingular.
(viii) ([44, Lemma 2.6]) A module M is K-nonsingular if and only if, for any left

ideal I of S, rM(I) ≤ess M implies I = 0, where S = End(M).

While the nonsingularity of a module M provides the uniqueness of essential
closures inM (i.e.,M is a UC-module), theK-nonsingularity provides the uniqueness
of closures which happen to be direct summands ofM.

Theorem 3.5 ([46, Proposition 2.8]) Assume that M is a K-nonsingular module,
and let N ≤ M. If N ≤ess Ni ≤⊕ M, for i = 1, 2, then N1 = N2.

We recall that a ring R is said to be right cononsingular if for IR ≤ RR, �R(I) = 0
implies IR ≤ess RR. Dual to the notion in Definition 3.3, the following is a module
theoretic version of cononsingularity introduced in [44].

Definition 3.6 ([44, Definition 2.7]) A moduleMR is called K-cononsingular if for
all NR ≤ MR, �S(N) = 0 implies NR ≤ess MR, where S = End(MR).

Example 3.7 (i) For a ring R,RR isK-cononsingular if and only if R is right conon-
singular.

(ii) ([44, Lemma 2.13]) Every extending module is K-cononsingular.
(iii) For a commutative semiprime ring R,R(n)

R is K-cononsingular for every posi-
tive integer n.

(iv) Let R = Z[x]. Then (R ⊕ R)R is K-cononsingular by part (iii). But (R ⊕ R)R
is not extending by Theorem 2.21. Hence the converse of part (ii) is not true.

Proposition 3.8 ([44, Proposition 2.8(ii)])Assume that M is a right R-module. Then
M is K-cononsingular if and only if, for N ≤ M, rM(�S(N)) ≤⊕ M implies N ≤ess

rM�S(N), where S = EndR(M).
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It is shown by Chatters and Khuri [11, Theorem 2.1] that a ring R is right extend-
ing right nonsingular if and only if R is a Baer ring and right cononsingular. This
result is extended to an arbitrary module in the next theorem which exhibits strong
connections between a Baer module and an extending module.

Theorem 3.9 ([44, Theorem 2.12]) A module M is extending and K-nonsingular if
and only if M is Baer and K-cononsigular.

Definition 3.10 ([47, Definition 2.3]) Let MR be an R-module and S = EndR(M).
ThenMR is called quasi-retractable if HomR(M, rM(I)) �= 0 for every left ideal I of
S with rM(I) �= 0 (or, equivalently, if rS(I) �= 0 for every left ideal I with rM(I) �= 0).

Recall from [29] that a module M is said to be retractable if any 0 �= N ≤
M,Hom(M,N) �= 0. Examples of retractable modules include free modules, gener-
ators, and semisimple modules. Obviously retractable modules are quasi-retractable.
But there exists a quasi-retractable module which is not retractable. For example, let
F be a field. Put

R =
[
F F
0 F

]
and e =

[
1 0
0 0

]
∈ R.

Consider the moduleM = eR. Note that S := End(MR) ∼= eRe ∼= F, which is a field.
Let I be a left ideal of S such that rM(I) �= 0. Then I = 0 and so rM(I) = M. Hence,
Hom(MR, rM(I)) = End(MR) ∼= F �= 0. Thus,MR is quasi-retractable. ButMR is not
retractable, since the endomorphism ring S ofMR, which is isomorphic to F, consists
of isomorphisms and the zero endomorphism. On the other hand, asMR is not simple,
retractability of MR implies that there exist nonzero endomorphisms of MR which
are not onto (see [10, Example 4.2.4, p. 101]).

By [44, Theorem 4.1], the endomorphism ring of a Baer module is a Baer ring.
But the converse does not hold by [44, Example 4.3]. Indeed, letM = Zp∞ , the Prüfer
p-group (p a prime integer), as Z-module. Then S := EndZ(M) is the ring of p-adic
integers, so S is a commutative domain. Hence S is a Baer ring. ButM is not a Baer
Z-module.

In spite of the above example, the following result shows a connection between
the Baer property of a module and its endomorphism ring via its quasi-retractability.

Theorem 3.11 ([47, Theorem 2.5]) A module MR is Baer if and only if EndR(M) is
a Baer ring and MR is quasi-retractable.

Theorem 3.12 ([44, Theorem 2.17]) Any direct summand of a Baer module is a
Baer module.

We noted before,Zp ⊕ Z (p a prime integer) is not Baer as aZ-module, while both
Zp and Z are Baer Z-modules. For the Baer property of a finite direct sum of Baer
modules, we need the following. LetM andN be R-modules. ThenM is said to beN-
injective if, for anyW ≤ N and f ∈ Hom(W,M), there exists ϕ ∈ Hom(N,M) such
that ϕ|W = f . Recall from [47, Definition 1.3] that two modules M and N are said
to be relatively Rickart if, for every f ∈ Hom(M,N),Ker(f ) ≤⊕ M and for every
g ∈ Hom(N,M),Ker(g) ≤⊕ N .
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Theorem 3.13 ([47, Theorem 3.19] also see [10, Theorem 4.2.17, p. 105]) Assume
that {Mi | 1 ≤ i ≤ n} be a finite set of Baer modules. Let Mi and Mj be relatively
Rickart for i �= j, and Mi be Mj-injective for i < j. Then ⊕n

i=1Mi is a Baer module.

The study of rings R for which a certain class of R-modules is Baer is of natural
interest. In the following, R is semisimple artinian if and only if every injective
R-module is Baer.

Theorem 3.14 ([46, Theorem 2.20]) The following are equivalent for a ring R.

(i) Every injective (right) R-module is Baer.
(ii) Every (right) R-module is Baer.
(iii) R is semisimple artinian.

A ring R is said to be semiprimary if R/J(R) is artinian and J(R) is nilpotent.
Recall that a ring R is right (resp., left) hereditary if every right (resp., left) ideal
of R is projective. It is well-known that if a ring R is semisprimary, then R is right
hereditary if and only if R is left hereditary.

The following result provides a characterization of rings R for which every pro-
jective right R-module is Baer. Also see Theorem 4.11.

Theorem 3.15 ([47, Theorem 3.3]) The following are equivalent for a ring R.

(i) Every projective right R-module is a Baer module.
(ii) Every free right R-module is a Baer module.
(iii) R is a semiprimary, hereditary (Baer) ring.

Since condition (iii) is left-right symmetric, the left-handed versions of (i) and (ii)
also hold.

A module MR is called torsionless if it can be embedded in a direct product of
copies of RR. The following result characterizes a ring R for which every finitely
generated right R-module is a Baer module.

Recall that anR-moduleM is said to befinitely presented if there exists a short exact
sequence of R-modules 0 → K → R(n) → M → 0, where n is a positive integer and
K is a finitely generated R-module.

A ring R is called right �-coherent if every finitely generated torsionless right
R-module is finitely presented. Left �-coherent ring is defined similarly. Recall that
a ring R is said to be right semiheditary if every finitely generated right ideal of R is
projective. A left semihereditary ring is denied similarly.

Theorem 3.16 ([47, Theorem 3.5]) The following are equivalent for a ring R.

(i) Every finitely generated free right R-module is a Baer module.
(ii) Every finitely generated projective right R-module is a Baer module.
(iii) Every finitely generated torsionless right R-module is projective.
(iv) Every finitely generated torsionless left R-module is projective.
(v) R is left semihereditary and right �-coherent.
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(vi) R is right semihereditary and left �-coherent.
(vii) Matn(R) is a Baer ring for every positive integer n.

For a positive integer n, we recall that an n-generated module means a module
which is generated by n elements. A ring R is said to be right n-hereditary if every
n-generated right ideal of R is projective. Thus, a ring R is right semihereditary if and
only if it is right n-hereditary for all positive integers n. Given a fixed positive integer
n, we introduce the following characterization for every n-generated free R-module
to be Baer.

Theorem 3.17 ([47, Theorem 3.12]) Let R be a ring and n a positive integer. Then
the following are equivalent.

(i) Every n-generated free right R-module is a Baer module.
(ii) Every n-generated projective right R-module is a Baer module.
(iii) Every n-generated torsionless right R-module is projective (therefore R is right

n-hereditary).
(iv) Matn(R) is a Baer ring.

Corollary 3.18 Let R be a ring. Then R is a Baer ring if and only if every cyclic
torsionless right R-module is projective.

4 Baer Module Hulls

We present recent results and examples on Baer hulls in this section. As mentioned
in the introduction, the study of even Baer ring hulls has been rather limited. And
the only results on Baer ring hulls that exist in earlier literature are from [19, 33, 37,
38], respectively for the classes of commutative semiprime rings, commutative von
Neumann regular rings, and reduced right Utumi rings. Some newer developments
on ring hulls were presented in [5–7, 9, 10]. The question about the existence of
Baer module hulls and their existence has not been addressed till now and is quite
challenging. The results presented here are the latest developments on Baer module
hulls of finitely generated modules over a commutative domain.

From [44] it is known thatN = Zp ⊕ Z (p a prime integer) is not a BaerZ-module,
while Zp and Z are. We construct the Baer hull of the module N in a more general
setting. Let R be a commutative noetherian domain. We first introduce a result from
[40] for intermediate modules between an analogous direct sum as an R-module
N and its injective hull E(N) to be Baer (Theorem 4.1). Then we use this result to
construct and characterize the Baer hull of a module N over a Dedekind domain
R, when AnnR(t(N)) �= 0 and N/t(N) is finitely generated, where t(N) denotes the
torsion submodule ofN (Theorems 4.4, 4.5, and 4.8).As a consequence, every finitely
generated module over a Dedekind domain, has a unique Baer hull precisely when
its torsion submodule is semisimple. For a module N such that N/t(N) is not finitely
generated, an example shows that N does not have a Baer hull (Example 4.12).



22 J.K. Park and S.T. Rizvi

Among applications presented, we show that a finitely generated module N over
a Dedekind domain is Baer if and only if N is semisimple or torsion-free (Corollary
4.6). This extends a result on finitely generated abelian groups. The isomorphism
problem between modules and their Baer hulls is discussed (Proposition 4.13 and
Example 4.14). It is also shown that the Baer hull of a direct sum of two modules is
not necessarily isomorphic to the direct sum of the Baer hulls of the modules, even if
all Baer hulls exist (Example 4.16). The Baer hull ofN = Zp ⊕ Z (p a prime integer)
as a Z-module, is shown to be precisely V = Zp ⊕ Z[1/p]. The disparity of the Baer
hull and the extending hull of Zp ⊕ Z is discussed (Example 4.17). A number of
other examples which illustrate the results are provided.

Let R be a commutative noetherian domain and F be its field of fractions. Assume
that N = MR ⊕ (⊕i∈�Ki), where M is semisimple with a finite number of homoge-
neous components, and {Ki}i∈� is a set of nonzero submodules of FR.

By using the preceding results, we obtain the following which identifies interme-
diate modules between N and E(N) which happen to be Baer modules.

Theorem 4.1 ([40, Theorem2.6])LetR be a commutative noetherian domain,which
is not a field. Assume that M is a nonzero semisimple R-module with only a finite
number of homogeneous components, and {Ki | i ∈ �} is a nonempty set of nonzero
submodules of FR, where F is the field of fractions of R. Let VR be an essential
extension of MR ⊕ (⊕i∈�Ki)R. Then the following are equivalent.

(i) V is a Baer module.
(ii) (1) V = M ⊕ W for some Baer essential extension W of (⊕i∈�Ki)R.

(2) HomR(W,M) = 0.

Let R be a commutative domain with the field of fractions F. A submodule K of
FR is called a fractional ideal of R if rK ⊆ R for some 0 �= r ∈ R. Thus KR

∼= (rK)R
and rK is an ideal of R. We note that any ideal of R is a fractional ideal.

For a fractional ideal K of R, we put K−1 = {q ∈ F | qK ⊆ R}, which is called
the inverse of K . We say that a fractional ideal K is invertible if KK−1 = R. It is
well-known that for a nonzero ideal I of a commutative domain R, IR is projective
if and only if II−1 = R. In this case, IR is finitely generated and I−1 is a fractional
ideal of R.

Recall that a commutative domain R is a Dedekind domain if and only if R is
hereditary. Thus for each nonzero ideal I of a Dedekind domain R, it follows that
II−1 = R because IR is projective. Furthermore, every nonzero fractional ideal of
a Dedekind domain is invertible. We note that a Dedekind domain is noetherian
because every ideal is projective (hence every ideal is finitely generated). See [28, p.
37]and [48, Chap.6] for more details on Dedekind domains.

Assume that I is an invertible ideal of a commutative domain R. Then we let

I−2 = I−1I−1, I−3 = I−1I−1I−1, and so on.

For convenience, we put I0 = R.



On Some Classes of Module Hulls 23

Assume that R is a Dedekind domain. Then for nonzero ideals I1, I2, . . . , In of R,
it can be checked that (I1I2 · · · In)−1 = I−1

n · · · I−1
2 I−1

1 (see [40, Lemma 2.8]).

Proposition 4.2 ([40, Lemma 2.9]) Assume that R is a Dedekind domain and I is a
nonzero ideal of R. We let A = ∑

�≥0 I
−�. Then:

(i) A = R[q1, q2, . . . , qn], where 1 = ∑n
u=1 ruqu for some ru ∈ I and qu ∈ I−1 with

1 ≤ u ≤ n.
(ii) A is a Dedekind domain.

In Proposition 4.2, since R is a Dedekind domain, R is a Prüfer domain. Because
A = R[q1, q2, . . . , qn] is an intermediate domain between R and its field of fractions,
A is a Prüfer domain (note that any intermediate domain between a Prüfer domain
and its field of fractions is a Prüfer domain). Since A is a noetherian domain, A is a
Dedekind domain.

Theorem 4.3 ([48, Theorem 6.11, p. 171]) Let R be a Dedekind domain and M an
R-module with nonzero annihilator in R. Then there exists a unique family {Pi, ni}i∈�

such that:

(i) The Pi are maximal ideals of R and there are only finitely many distinct ones.
(ii) {ni | i ∈ �} is a bounded family of positive integers.
(iii) M ∼= ⊕i∈�(R/Pni

i ) as R-modules.

LetRbe aDedekinddomain andN anR-module. Say t(N) is the torsion submodule
of N . Suppose that N/t(N) is finitely generated as an R-module. Since N/t(N) is
torsion-free, N/t(N) ∼= (⊕m

j=1Kj) (as R-modules) for some fractional ideals Kj, 1 ≤
j ≤ m, of R from [48, Theorem 6.16, p. 177] (see also Corollary 4.6). So N/t(N) is
projective, and hence

N ∼= t(N) ⊕ N/t(N) ∼= t(N) ⊕ (⊕m
j=1Kj)

as R-modules.
Our next result is a complete characterization for the existence of the Baer hull

of a module N when N/t(N) is finitely generated and AnnR(t(N)) �= 0 (also see
Theorem 4.5). Furthermore, we describe the Baer hull of N explicitly in this case.

We denote the Baer hull of a module M by B(M) when it exists.

Theorem 4.4 ([40, Theorem 2.13]) Let R be a Dedekind domain. Assume that M is
an R-module with nonzero annihilator in R, and {K1,K2, . . . ,Km} is a finite set of
nonzero fractional ideals of R. Then the following are equivalent.

(i) MR ⊕ (⊕m
j=1Kj)R has a Baer hull.

(ii) MR is semisimple.
(iii) MR ⊕ (⊕m

j=1Kj)R has a Baer essential extension.
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In this case, B(MR ⊕ (⊕m
j=1Kj)R) = MR ⊕ (⊕m

j=1KjA)R, where A = ∑
�≥0 I

−�

with I = AnnR(M). Furthermore, A = R[q1, q2, . . . , qn], where 1 = ∑n
u=1 ruqu with

ru ∈ I and qu ∈ I−1, 1 ≤ u ≤ n.

The following is a restatement of Theorem 4.4 for characterization of the Baer
hull of a module N over a Dedekind domain for the case when N/t(N) is finitely
generated and AnnR(t(N)) �= 0.

Theorem 4.5 ([40, Theorem 2.15]) Let R be a Dedekind domain. Assume that N is
anR-modulewithN/t(N) finitely generated andAnnR(t(N)) �= 0. Then the following
are equivalent.

(i) N has a Baer hull.
(ii) t(N) is semisimple.
(iii) N has a Baer essential extension.

By [44, Proposition 2.19 and Remark 2.20], a finitely generated module N over
a commutative PID is a Baer module if and only if N is semisimple or torsion-free.
This result is extended to the casewhen the base ring is a Dedekind domain as follows
by applying Theorems 4.4 and 4.5.

Corollary 4.6 ([40, Corollary 2.17]) Let R be aDedekind domain and N be a finitely
generated R-module. Then the following are equivalent.

(i) N is a Baer module.
(ii) N is semisimple or torsion-free.

The next theorem details the structure of finitely generated modules over a
Dedekind domain.

Theorem 4.7 ([48, Theorem 6.16, p. 177]) Let R be a Dedekind domain and N a
finitely generated R-module. Then there exist positive integers n1, n2, . . . , nk (k is a
nonnegative integer), nonzeromaximal ideals P1,P2, . . . ,Pk, and nonzero fractional
idealsK1,K2, . . . ,Km (m is a nonnegative integer) of R such thatN ∼= (⊕k

i=1R/Pni
i ) ⊕

(⊕m
j=1Kj) as R-modules.

Assume that N is a finitely generated module over a Dedekind domain. From
Theorem 4.7, N ∼= (⊕k

i=1R/Pni
i ) ⊕ (⊕m

j=1Kj), where Pi are nonzero maximal ideals
of R and Kj are nonzero fractional ideals of R (k and m are nonnegative integers). In
the following theorem, we characterize the existence of the Baer hull of such N and
describe the Baer hull of N explicitly.

Theorem 4.8 ([40, Theorem 2.18]) Let R be a Dedekind domain, and let N be a
finitely generated R-module. Then the following are equivalent.

(i) N has a Baer hull.
(ii) t(N) is semisimple.
(iii) N has a Baer essential extension.
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In this case, B(NR) ∼= (⊕k
i=1(R/Pi))R ⊕ (⊕m

j=1KjA)R, where A = ∑
�≥0 I

−� with
I = AnnR(t(N)). Further, A = R[q1, q2, . . . , qn], where 1 = ∑n

u=1 ruqu with ru ∈ I
and qu ∈ I−1, 1 ≤ u ≤ n.

The following remark exhibits an explicit description of A = ∑
�≥0 I

−� in Theo-
rem 4.4.

Remark 4.9 We have the following (see [40, Remark 3.1]).

(i) In Theorem 4.3, we put A = ∑
�≥0 I

−�, where I = AnnR(M). By Theorems
4.3 and 4.4, M ∼= ⊕i∈�R/Pi and {Pi | i ∈ �} is a finite set of maximal ideals
Pi. Let P1,P2, . . . ,Ps is all the distinct maximal ideals of {Pi | i ∈ �}.
Wecanverify thatA = ∑

P−�1
1 P−�2

2 · · ·P−�s
s ,where�1, �2, . . . , �s run through

all nonnegative integers. In fact, I ⊆ Pi for all i since I = P1P2 · · ·Ps. For
i, 1 ≤ i ≤ s,P−1

i ⊆ I−1 and therefore P−�
i ⊆ I−� for every nonnegative inte-

ger �. Hence,

P−�1
1 P−�2

2 · · ·P−�s
s ⊆ I−�1I−�2 · · · I−�s = I−(�1+�2+···+�s) ⊆ A.

Thus
∑

P−�1
1 P−�2

2 · · ·P−�s
s ⊆ A, where �1, �2, . . . , �s run through all nonneg-

ative integers. Conversely, I−1 = (P1P2 · · ·Ps)
−1 = P−1

1 P−1
2 · · ·P−1

s . There-
fore it follows that I−� = P−�

1 P−�
2 · · ·P−�

s for anynonnegative integer �.Hence
we obtain that A ⊆ ∑

P−�1
1 P−�2

2 · · ·P−�s
s , where �1, �2, . . . , �s run through all

nonnegative integers.
Consequently,A = ∑

P−�1
1 P−�2

2 · · ·P−�s
s , where �1, �2, . . . , �s run through all

nonnegative integers.
(ii) Let R be a commutative PID. Assume that M is a nonzero semisimple R-

module with nonzero annihilator in R. Then from Theorem 4.3,M has only a
finite number of homogeneous components. Let {Hk | 1 ≤ k ≤ s} be the set of
all homogeneous components ofM. For k, 1 ≤ k ≤ s, we putHk = ⊕αM(k,α)

with each M(k,α) simple. So M(k,α)
∼= R/pkR for k, 1 ≤ k ≤ s, with pk a

nonzero prime.
We put Pk = AnnR(Hk) for k, 1 ≤ k ≤ s. Then Pk = pkR. For a nonnega-
tive integer �, we can routinely verify that P−�

k = (1/p�
k)R for k, 1 ≤ k ≤ s.

Therefore,

P−�1
1 P−�2

2 · · ·P−�s
s = (1/p�1

1 )(1/p�2
2 ) · · · (1/p�s

s )R

for nonnegative integers �1, �2, . . . , �s.

Let A = ∑
�≥0 I

−�, where I = AnnR(M) = P1P2 · · ·Ps = p1p2 · · · psR. By the
preceding argument, A = R[1/p1, 1/p2, . . . , 1/ps]. Put a = p1p2 · · · ps. Then it fol-
lows that A = R[1/a] because I−� = (1/a�)R. Also note that AnnR(M) = aR.

Example 4.10 ([40, Example 3.2]) Let �i, i = 1, 2, 3 be nonempty sets and m be a
positive integer. Then by Remark 4.9(ii), we have
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B(Z
(�1)
2 ⊕ Z

(�2)
3 ⊕ Z

(�3)

5 ⊕ Z
(m)) = Z

(�1)
2 ⊕ Z

(�2)
3 ⊕ Z

(�3)

5 ⊕ Z[1/30](m)

as Z-modules because AnnZ(Z
(�1)
2 ⊕ Z

(�2)
3 ⊕ Z

(�3)

5 ) = 30Z.

For a ringR and a nonempty set�, we use CFM�(R) to denote the� × � column
finite matrix ring over the ring R.

Theorem 4.11 ([50, Theorem 2] and [47, Theorem 3.3]) Let R be a ring. Then the
following are equivalent.

(i) R is a semiprimary right (and left) hereditary ring.
(ii) CFM�(R) is a Baer ring for any nonempty set �.

Example 4.12 in the following shows that the hypothesis “{K1,K2, . . . ,Km} is
a finite set” in Theorem 4.4 and the hypothesis “N/t(N) is finitely generated” in
Theorem 4.5 are not superfluous conditions for the existence of the Baer hull of N .

Example 4.12 (see [40, Example 3.6]) Let �i, i = 1, 2, 3 be nonempty sets as in
Example 4.10. Since Z[1/30] is not a field, Z[1/30] is not semiprimary because
Z[1/30] is a domain. By Theorem 4.11, there exists a nonempty set � such that
CFM�(Z[1/30]) is not a Baer ring. Note that the set� is necessarily infinite. In fact,
if� is finite with the cardinality n, then CFM�(Z[1/30]) = Matn(Z[1/30]) is a Baer
ring asZ[1/30] is a Prüfer domain (see [10, Theorem 6.1.4, p. 191]), a contradiction.
Let

N = Z
(�1)
2 ⊕ Z

(�2)
3 ⊕ Z

(�3)

5 ⊕ Z
(�).

Then we have the following.

(i) V := Z
(�1)
2 ⊕ Z

(�2)
3 ⊕ Z

(�3)

5 ⊕ Z[1/30](�) is not a Baer Z-module. In fact, if V
is a Baer module, then Z[1/30](�) is Baer as a Z-module by Theorem 3.12. We
show that

EndZ(Z[1/30](�)) = EndZ[1/30](Z[1/30](�)).

For this, first we note that EndZ[1/30](Z[1/30](�)) ⊆ EndZ(Z[1/30](�)). Next,
let f ∈ EndZ(Z[1/30](�)). Assume on the contrary that f /∈ EndZ[1/30]
(Z[1/30](�)). Then there exist y ∈ Z[1/30](�) and q ∈ Z[1/30] such that
f (yq) − f (y)q �= 0. Put q = ab−1, where a, b ∈ R and b �= 0. So

0 �= (f (yq) − f (y)q)b = f (yq)b − f (y)a = f (yqb) − f (ya) = f (ya) − f (ya) = 0,

which is a contradiction. Therefore, f ∈ EndZ(Z[1/30](�)). Consequently, we
have that EndZ(Z[1/30](�)) = EndZ[1/30](Z[1/30](�)). From Theorem 3.11,

EndZ(Z[1/30](�)) = EndZ[1/30](Z[1/30](�)) = CFM�(Z[1/30])

is a Baer ring. So we get a contradiction.
(ii) N/t(N)(∼= Z

(�)) is not finitely generated as a Z-module because � is infinite.
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(iii) N has no Baer module hull as a Z-module.

In Proposition 4.13 and Example 4.14, we consider the isomorphism problem for
Baer hulls as follows: Let N1 and N2 be modules with Baer hullsB(N1) andB(N2),
respectively. Is it true that N1

∼= N2 if and only ifB(N1) ∼= B(N2) in this case?

Proposition 4.13 ([40, Proposition 3.8]) Let N1 and N2 are isomorphic modules. If
N1 has a Baer hullB(N1), then N2 has a Baer hullB(N2), andB(N1) ∼= B(N2) as
modules.

The next example shows that the converse of Proposition 4.13 does not hold true.
In other words, there exist modules N1 and N2 such that B(N1) = B(N2) (hence
B(N1) ∼= B(N2) as modules), but N1 � N2. Thus the isomorphism problem does
not hold for the case of Baer hulls.

Example 4.14 ([40, Example 3.9]) LetN1 = Z2 ⊕ Z3 ⊕ Z. Then by Theorem 4.4 or
Example 4.10, Z2 ⊕ Z3 ⊕ Z[1/6] is the Baer hull of N1 as Z-modules.

Next, letN2 = Z2 ⊕ Z3 ⊕ Z[1/3]. SayV is aBaermodulewithN2 ≤ V ≤ E(N2).
From Theorem 4.1, V = Z2 ⊕ Z3 ⊕ W for some Baer module W such that

Z[1/3] ≤ W ≤ Q and HomZ(W, Z2 ⊕ Z3) = 0.

Thus HomZ(W, Z2) = 0, and so 2kW = W for any nonnegative integer k (see the
proof of [40, Theorem 2.13]). Therefore 1/2k ∈ W for any positive integer k, and
thus Z[1/2, 1/3] ≤ W . Hence we have

Z2 ⊕ Z3 ⊕ Z[1/2, 1/3] = Z2 ⊕ Z3 ⊕ Z[1/6] ≤ V .

Because Z2 ⊕ Z3 ⊕ Z[1/6] is Baer as a Z-module, Z2 ⊕ Z3 ⊕ Z[1/6] is the Baer
hull of N2. However, N1 � N2 because Z � Z[1/3] as Z-modules.

In the next examples, we compare the direct sum of Baer hulls with the Baer hull
of a direct sum of modules.

Example 4.15 ([40, Example 2.19]) There exist two modules W1 and W2 such that
both W1 and W2 have Baer module hulls, but W1 ⊕ W2 has no Baer hull.

Let R = Z[x], the polynomial ring over Z. Put N = (R ⊕ R)R. Then t(N) = 0,
so t(N) is semisimple. However, N has no Baer hull. For this, note that if N is a
Baer module, then EndR(N) = Mat2(R) is a Baer ring from Theorem 3.12. So [10,
Theorem 6.1.4, p. 191] yields that the ring R = Z[x] must be Prüfer, which is a
contradiction.

Say B is the Baer hull of N . Put F = Q(x), the field of fractions of R. Note that
E(N) = F ⊕ F. Put U = F ⊕ R. Then by [10, Theorem 4.2.18, p. 107], UR is a
Baer module. Similarly, VR := (R ⊕ F)R is a Baer module. Thus B ⊆ U ∩ V = N ,
so B = N . Hence N is Baer, a contradiction. Therefore N has no Baer hull.
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Example 4.16 ([40, Example 3.10]) There exist two modules M and N such that
M,N , and M ⊕ N have Baer hulls B(M),B(N), and B(M ⊕ N), respectively. But

B(M ⊕ N) � B(M) ⊕ B(N).

LetM = Zp (p a prime integer) and N = Z as Z-modules. ThenB(M) = Zp and
B(N) = Z since Zp is a semisimple Z-module and Z is a Baer ring. Therefore we
have that B(M) ⊕ B(N) = Zp ⊕ Z.

On the other hand, B(M ⊕ N) = B(Zp ⊕ Z) = Zp ⊕ Z[1/p] (see Theorem 4.8
and Remark 4.9(ii)). Hence B(M ⊕ N) � B(M) ⊕ B(N) because Z � Z[1/p] as
Z-modules.

The following example exhibits the disparity of the Baer hull and the extending
hull of Zp ⊕ Z (p a prime integer).

Example 4.17 [40, Example 3.7]) (i) Let V = Zp ⊕ Z[1/p], where p is a prime
integer. Then by Remark 4.9(ii), V is the Baer hull of Zp ⊕ Z as a Z-module. Hence
in view of Theorem 3.9, one might expect that V is also the extending hull ofZp ⊕ Z

as a Z-module. But this is not true. Further, V is not even extending from [25,
Corollary 2]. In fact, the extending hull of Zp ⊕ Z is Zp∞ ⊕ Z, where Zp∞ is the
Prüfer p-group.

(ii) In the chain of Z-submodules Zp ≤ Zp2 ≤ · · · ≤ Zp∞ of Zp∞ (p a prime inte-
ger), Zp is the Baer hull (also quasi-injective hull) of itself, and Zp∞ is the injective
hull of each of the modules in the chain. However, Zpn(n > 1) has no Baer hull by
Theorem 4.8. Also note that Zp∞ has no Baer hull.
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Spined Product Decompositions
of Orthocryptogroups

Akihiro Yamamura

Abstract A semigroup is said to be an internal spined product of its subsemigroups
if it is naturally isomorphic to an external spined product of the subsemigroups.
We shall show that internal spined products can be identified with external spined
products in the class of orthocryptogroups. On the other hand, two concepts are not
equivalent in general as we give examples of external spined products that admit no
internal spined product decomposition. Further, we examine internal spined product
of orthocryptogroups. Using a lattice theoretic method, we obtain a unique decompo-
sition theorem similar to the Krull–Schmidt theorem in group theory. We also study
completely reducible orthocryptogroups in which any normal sub-orthocryptogroup
is a spined factor. We show that such an orthocryptogroup is an internal spined
product of simple sub-orthocryptogroups.

Keywords Orthocryptogroups · Spined products · Krull–Schmidt theorem · Ore
theorem

1 Introduction

An external spined product gives a convenient way to construct a new semigroup
fromold ones. It plays an important role in the structure theory of regular semigroups.
Suppose S1 and S2 are semigroups. Let φ1 : S1 → Q and φ2 : S2 → Q be epimor-
phisms. The external spined product of S1 and S2 over Q with respect to φ1 and
φ2 is defined to be the set of pairs (s1, s2) satisfying φ1(s1) = φ2(s2). Obviously, an
external spined product forms a subsemigroup of the external direct product S1 × S2.
We denote the external spined product by S1 ��Q S2. An external spined product is
called just a spined product in the literature of semigroup theory. An external spined
product of more than two factors is defined similarly. If � is the largest semilattice
homomorphic image of S1 and S2, respectively, and both φ1 and φ2 are the natural
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homomorphisms, then the external spined product can be formed over �. Similarly,
if Green’sH-relation of S1 and S2 are congruences and B = S1/H = S2/H, then the
external spined product with respect toH can be formed over B.

A semigroup is called cryptic if Green’s H-relation is a congruence. A cryptic
completely regular semigroup is called a cryptogroup. An orthodox semigroup is a
regular semigroup in which the set of idempotents forms a subsemigroup and an
orthocryptogroup is an orthodox cryptogroup. It was first studied by Yamada and
called a strictly inversive semigroup in [7]. He showed that an external spined product
of a Clifford semigroup and a band with respect to the structure decomposition is
an orthocryptogroup, and conversely, every orthocryptogroup S is isomorphic to an
external spined product C ��� E(S) of the largest Clifford semigroup homomorphic
image C and the band E(S) of idempotents of S over the structure semilattice �.

The group inverse of an element a in a completely regular semigroup is denoted
by a−1. The identity element of the subgroup of a completely regular semigroup
containing an element a is denoted by a0, that is, a0 = aa−1 = a−1a. It is known
(see [5]) that a completely regular semigroup satisfies the equation

(xy)−1 = (xy)0y−1(yx)0x−1(xy)0 (1.1)

and an orthocryptogroup satisfies the equation

(xy)0 = x0y0. (1.2)

Therefore an orthocryptogroup satisfies the equation

(xy)−1 = x0y−1x−1y0. (1.3)

The equational class of completely regular semigroups defined by (1.3) includes the
variety of orthocryptogroups but does not coincide [9].

The least band congruence of an orthocryptogroup S is Green’s H-relation and
so S has the H-decomposition

⋃
e∈E(S) S(e), where S(e) is the maximal subgroup

containing the idempotent e and E(S) is the band of idempotents of S. Note that
E(S) is isomorphic to the largest band image of S and E(S) ∼= S/H.

A nonempty subset of an orthocryptogroup S is called a sub-orthocryptogroup
if it forms an orthocryptogroup under the multiplication of S, that is, a nonempty
subset is a sub-orthocryptogroup if and only if it is closed under taking an inverse
and multiplication.

Suppose S is an orthocryptogroup and φ is the natural homomorphism of S onto
the largest band image B, that is, B ∼= S/H. A sub-orthocryptogroup H of S is
called full if E(H) = E(S). If S has theH-decomposition

⋃
e∈E(S) S(e), then H has

the H-decomposition
⋃

e∈E(S) H(e). The following lemma is obvious because an
orthocryptogroup is isomorphic to an external spined product of a Clifford semigroup
and a band, however, we give a direct proof.



Spined Product Decompositions of Orthocryptogroups 33

Lemma 1.1 Let H1, H2, . . . , Hn be full sub-orthocryptogroups of S. Suppose s1 ∈
H1(e1), s2 ∈ H2(e2), . . ., sn ∈ Hn(en) for e1, e2, . . . , en ∈ E(S). Then there exists
s ′
1 ∈ H1(e), s ′

2 ∈ H2(e), . . ., s ′
n ∈ Hn(e) such that s1s2 . . . sn = s ′

1s
′
2 . . . s ′

n, where e =
e1e2 . . . en.

Proof Note that s1 = s1e1 because s1 ∈ S(e1) and e1 is the identity element of S(e1).
Likewise, s2 . . . sn = e2 . . . ens2 . . . sn because s2 . . . sn ∈ S(e2 . . . en) and e2 . . . en
is the identity element of S(e2 . . . en). Then s1s2 . . . sn = s1e1e2 . . . ens2 . . . sn =
s1(e1e2 . . . en)(e1e2 . . . en)s2 . . . sn = s1e2 . . . ene1s2 . . . sn.Likewisewe have s1e2 . . .

ene1s2s3 . . . sn = s1e2 . . . ene1s2e3 . . . ene1e2s3 . . . sn and similarly s1s2 . . . sn =
(s1e2 . . . en)(e1s2e3 . . . en)(e1e2s3e4 . . . en) . . . (e1 . . . en−1sn). Now we set s ′

i = e1e2
. . . ei−1si ei+1 . . . en . Then s1s2 . . . sn = s ′

1s
′
2 . . . s ′

n and s
′
i ∈ Hi (e) for every i = 1, 2,

. . . , n. �

2 Internal Spined Products

Let S be a semigroup and φ a homomorphism of S onto Q. Suppose H1 and H2 are
subsemigroups of S such that φ(H1) = φ(H2) = Q. If the external spined product
H1 ��Q H2 over Qwith respect toφ|H1 andφ|H2 is isomorphic to S under themapping
(h1, h2) �→ h1h2 where (h1, h2) ∈ H1 ��Q H2, then S is said to be the internal spined
product of H1 and H2 over Q. In such a case we denote S = H1 ��Q H2. Similarly,
we can define an internal spined product H1 ��Q H2 ��Q . . . ��Q Hn of finitelymany
subsemigroups.

By the definition, every internal spined product is always isomorphic to an external
spined product of its subsemigroups. On the other hand, an external spined product
does not always admit an internal spined product decomposition as we shall see next.
We note that an external direct product of groups always admits an internal direct
product decomposition of its subgroups.

Example 1 Aband is said to be normal (left normal, right normal, resp.) if it satisfies
the equation xyzx = xzyx (xyz = xzy, yzx = zyx , resp.). Let B be a band defined
on the set {e, f, a, b, c, d} with the following multiplication Table 1.

Table 1 Multiplication table of B

e f a b c d

e e b a b a b

f c f c d c d

a a b a b a b

b a b a b a b

c c d c d c d

d c d c d c d
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Table 2 Multiplication table of L

l1 l2 l3 l4

l1 l1 l3 l3 l3
l2 l4 l2 l4 l4
l3 l3 l3 l3 l3
l4 l4 l4 l4 l4

Table 3 Multiplication table of R

r1 r2 r3 r4

r1 r1 r4 r3 r4
r2 r3 r2 r3 r4
r3 r3 r4 r3 r4
r4 r3 r4 r3 r4

Clearly, {e}, { f }, and {a, b, c, d} areD-classes of B, which are rectangular bands,
and B is a strong semilattice of them. Note that a band is normal if it is a strong
semilattice of rectangular bands [6]. Therefore, B is normal and has the structure
decomposition B = {e} ∪ { f } ∪ {a, b, c, d}. It is well known that a normal band is
an external spined product of a left normal band and a right normal band [6]. It is
easy to see B is isomorphic to an external spined product of four element left normal
band L = {l1, l2, l3, l4} and a four element right normal band R = {r1, r2, r3, r4} over
the structure semilattice� = {α, β, 0} that is the three element non-chain semilattice
(Tables2 and 3).

Note that L and R have the structure decomposition L = {l1} ∪ {l2} ∪ {l3, l4}
and R = {r1} ∪ {r2} ∪ {r3, r4}, respectively. Then L ��� R is isomorphic to B under
the mapping; (l1, r1) �→ e, (l2, r2) �→ f , (l3, r3) �→ a, (l3, r4) �→ b, (l4, r3) �→ c,
(l4, r4) �→ d.

On the other hand, it is easy to verify that there is no proper subsemigroup of
B whose largest semilattice homomorphic image is �. It follows that there is no
subsemigroups B1 and B2 of B so that B is the internal spined product B1 ���

B2. Therefore, B admits no internal spined product with respect to the structure
decomposition even though B is an external spined product.

Example 2 Next we consider a spined product of completely simple semigroups.
Let S1 be the two element right zero semigroup. Note that S1 can be considered as
the Rees matrix semigroupM(G1; I,�; P), where G1 is the trivial group, I = {1},
� = {1, 2}, and the sandwich matrix P is defined by

(
p11
p21

)
=

(
1
1

)
.
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Next let S2 be a Rees matrix semigroupM(G2; I,�; Q), where G2 = {1, g, g2}
is the cyclic group of order three, I = {1}, � = {1, 2}, and the sandwich matrix Q

is defined by

(
q11
q21

)
=

(
g
1

)
. Note that S2 is not a rectangular group because the set

of idempotents does not form a subsemigroup. Clearly both S1/H and S2/H are the
two element right zero semigroup B. Then the external spined product S1 ��B S2
over B can be considered as the Rees matrix semigroup M(G1 × G2; I,�; R),

where the sandwich matrix R is defined by

(
r11
r21

)
=

(
(1, g)

(1, 1)

)
. It is easy to see that

S is isomorphic to S2. On the other hand, there exists no subsemigroup isomorphic
to S1 because M(G1 × G2; I,�; R) does not contain the two element right zero
semigroup. Therefore, S1 ��B S2 admits no internal spined product with respect toH.

3 Internal Spined Products of Orthocryptogroups

Suppose S is an orthocryptogroup and φ is the natural homomorphism of S onto
the largest band image B, that is, B ∼= S/H. Let H1, H2, . . . , Hn be full sub-
orthocryptogroups of S. They have the same largest band image B and so we
can consider the external spined product over B. Recall that if S is isomor-
phic to the external spined product H1 ��B H2 ��B . . . ��B Hn under the mapping
(s1, s2, . . . , sn) �→ s1s2 . . . sn , then S is said to be the internal spined product of
H1, H2, . . . , Hn .

Lemma 3.1 If S is the internal spined product of full sub-orthocryptogroups
H1, H2, . . . , Hn, then the following conditions hold.

(A1) Elements of Hi (e) and Hj (e) (i 
= j ) commute for every e ∈ E(S).
(A2) For e ∈ E(S) every element s of S(e) is expressed uniquely as s = s1s2 . . . sn,

where si ∈ Hi (e).

Conversely, if full sub-orthocryptogroups H1, H2, . . . , Hn satisfy (A1) and (A2),
then S is the internal spined product H1 ��B H2 ��B . . . ��B Hn.

Proof If S = H1 ��B H2 ��B . . . ��B Hn , then clearly (A1) and (A2) are satisfied.
We now suppose (A1) and (A2) hold for full sub-orthocryptogroups H1, H2, . . . , Hn .
Define a mapping ψ of the external spined product H1 ��B H2 ��B . . . ��B Hn

into S by ψ(s1, s2, . . . , sn) = s1s2 . . . sn . We shall show that ψ is an isomor-
phism onto S. Take two elements (s1, s2, . . . , sn) and (t1, t2, . . . , tn) of H1 ��B

H2 ��B . . . ��B Hn . Suppose that s1 ∈ H1(e), s2 ∈ H2(e), . . . , sn ∈ Hn(e) and t1 ∈
H1( f ), t2 ∈ H2( f ), . . . , tn ∈ Hn( f ). Let h = e f . Then we have ψ((s1, s2, . . . , sn)
(t1, t2, . . . , tn)) = ψ(s1t1, s2t2, . . . , sntn) = s1t1s2t2s3t3 . . . sntn = s1ht1s2ht2s3t3 . . .

sntn = s1s2hht1t2s3t3 . . . sntn = s1s2t1t2s3t3 . . . sntn since elements of Hi (h) and
Hj (h) commute by (A1). Similarly we can show s1s2t1t2s3t3 . . . sntn = s1s2 . . . snt1t2
. . . tn = ψ(s1, s2, . . . , sn)ψ(t1, t2, . . . , tn). Next, suppose that ψ(s1, s2, . . . , sn) =
ψ(t1, t2, . . . , tn), where s1 ∈ H1(e), s2 ∈ H2(e), . . . , sn ∈ Hn(e) and t1 ∈ H1( f ),
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t2 ∈ H2( f ), . . . , tn ∈ Hn( f ). We have s1s2 . . . sn = t1t2 . . . tn . Then we have e = f
and (A2) implies (s1, s2, . . . , sn) = (t1, t2, . . . , tn). Clearly ψ is surjective by (A2).
Therefore ψ is an isomorphism. �

A sub-orthocryptogroup N of S is called normal if N is full and s−1Ns ⊂ N
for every s in S (see [8]). For any s ∈ S and e ∈ E(S) we have (s−1es)(s−1es) =
s−1(ess−1)(ess−1)s = s−1ess−1s = s−1es. Hence, s−1es ∈ E(S) and so E(S) is
normal. Obviously S itself is normal.

For a normal sub-orthocryptogroup N we define a relation ρN of S by s ρN t if
and only if sH t and st−1 ∈ N . It is easy to see that ρN is an idempotent-separating
congruence of S and N coincides with its kernel Ker(ρN ) = {s | s ρN e for some e ∈
E(S)}. Conversely, for every idempotent-separating congruence ρ the kernel
Ker(ρ) = {s | s ρ e for some e ∈ E(S)} is a normal sub-orthocryptogroup of S, and
furthermore we have ρKer(ρ) = ρ.

Lemma 3.2 If S is the internal spined product of full sub-orthocryptogroups
H1, H2, . . . , Hn, then the following conditions hold.

(B1) Every Hi is normal.
(B2) S = H1H2 . . . Hn.
(B3) Hi ∩ (H1 . . . Hi−1Hi+1 . . . Hn) = E(S) for every i = 1, 2, . . . n.

Conversely, if sub-orthocryptogroups H1, H2, . . . , Hn satisfy (B1), (B2), and (B3),
then S is the internal spined product H1 ��B H2 ��B . . . ��B Hn.

Proof First we suppose S is the internal spined product H1 ��B H2 ��B . . . ��B Hn .
Then H1, H2, . . . , Hn satisfy (A1) and (A2) by Lemma 3.1. Take elements h in H1

and s in S. Suppose h ∈ H1( f ) and s ∈ S(e). By (A2), there exists an element si in
Hi (e) for i = 1, 2, . . . , n such that s = s1s2 . . . sn . Since all si belong to the subgroup
S(e), we have s−1 = s−1

n . . . s−1
2 s−1

1 . Note that s−1
1 hs1 ∈ H1 ∩ S(e f e) = H1(e f e)

because s1, h ∈ H1. Then we have s−1
2 (s−1

1 hs1)s2 = s−1
2 (e f e)(s−1

1 hs1)(e f e)s2 =
(s−1

1 hs1)s
−1
2 (e f e)(e f e)s2 = (s−1

1 hs1)s
−1
2 s2 because elements of H1(e f e) and

H2(e f e) commuteby (A1).On theother hand, (s−1
1 hs1)s

−1
2 s2 = (s−1

1 hs1)e = s−1
1 hs1.

Inductively we can show s−1
n . . . s−1

2 (s−1
1 hs1)s2 . . . sn = s−1

1 hs1. It follows that
s−1hs = s−1

1 hs1 ∈ H1. Thus H1 is normal. Similarly we can show Hi is normal
for i = 2, . . . , n. Obviously, (A2) implies (B2). Now, take an element s in H1 ∩
(H2 . . . Hn). Then s = s2 . . . sn for some s2 ∈ H2, . . . , sn ∈ Hn . Suppose s ∈ H1(e)
for some e ∈ E(S). ByLemma1.1wemay assume that si ∈ Hi (e). Thenwe have e =
s−1s = s−1s2 . . . sn . By (A2) we have e = s−1 = s2 = . . . = sn and s = e. Hence,
E(S) = H1 ∩ (H2 . . . Hn). Similarly we can show Hi ∩ (H1 . . . Hi−1Hi+1 . . . Hn) =
E(S) for every i = 2, . . . , n. Therefore, (B1), (B2), and (B3) hold.

Conversely, we suppose (B1), (B2), and (B3). Take elements s in Hi (e) and
t in Hj (e) (i 
= j). Since sts−1 ∈ Hj and ts−1t−1 ∈ Hi , we have sts−1t−1 ∈
Hi ∩ Hj . By (B3) we have sts−1t−1 ∈ E(S) ∩ S(e). Hence, sts−1t−1 = e. On the
other hand, s−1t−1ts = s−1es = s−1s = e. Then st = ste = sts−1t−1ts = ets =
ts. Hence, (A1) holds. Next, take an element s in S(e). By (B2) s = s1s2 . . . sn
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for some si ∈ Hi (i = 1, 2, . . . , n). Moreover, we may take si ∈ Hi (e) for i =
1, 2, . . . , n by Lemma 1.1. Suppose s1s2 . . . sn = t1t2 . . . tn , where si , ti ∈ Hi (e) for
every i = 1, 2, . . . , n. Then, t−1

1 s1 = t2 . . . tns−1
n . . . s−1

2 . Note that t−1
1 s1 ∈ H1(e).

Since we have already shown (A1) holds, t2 . . . tns−1
n . . . s−1

2 = t2s
−1
2 t3s

−1
3 . . . tns−1

n .
Thus t2 . . . tns−1

n . . . s−1
2 ∈ H2(e)H3(e) . . . Hn(e). By (B3) we have t−1

1 s1 =
t2 . . . tns−1

n . . . s−1
2 = e. Therefore, s1 = t1. Similarly we can show si = ti for every

i = 2, . . . , n. Consequently we obtained (A2). �

In group theory, the external direct productG = G1 × G2 always admits an inter-
nal direct decomposition of its subgroups isomorphic to G1 and G2. Let H1 be
{(g1, 1) | g1 ∈ G1} and H2 be {(1, g2) | g2 ∈ G2}, respectively. Then G is the inter-
nal direct product of H1 and H2. Thus, the concept of external and internal direct
products are equivalent. This is not the case with wider classes of semigroups as we
have seen in the preceding section. Fortunately spined products of orthocryptogroups
over the largest band image are similar to direct products of groups.

Theorem 3.3 Every external spined product of orthocryptogroups over the largest
band image admits an internal spined product decomposition.

Proof Suppose S is the external spined product of S1 and S2 over the band
B, where S1/H ∼= B ∼= S2/H. We define subsemigroups H1 and H2 of S to be
H1 = {(s, e) | s ∈ S1(e), e ∈ E(S2)} and H2 = {(e, t) | t ∈ S2(e), e ∈ E(S1)},
respectively. It is routine to check H1 and H2 satisfy (B1), (B2), and (B3). Hence,
S is the internal spined product of H1 and H2. It can be similarly shown for
S1 ��B S2 ��B . . . ��B Sn for n ≥ 3. �

4 Spined Product Decompositions

Decomposing an algebraic system into indecomposable ones is an essential prob-
lem in mathematics. In group theory, the Krull–Schmidt theorem guarantees the
uniqueness of direct product decompositions of groups satisfying certain finiteness
conditions into indecomposable factors (see [2]). Ore [4] proved the Krull–Schmidt
theorem using a lattice theoretic method. We shall prove the uniqueness of internal
spined product decompositions of orthocryptogroups into indecomposable factors
using a lattice theoretic method.

A lattice is said to be of finite length if there is a bound on the length of its chains.
Two elements a and b in a lattice with the least element 0 and the greatest element
1 are said to be complementary if a ∨ b = 1 and a ∧ b = 0 hold. In such a case, b
is said to be complement of a and vice versa. Two elements in a lattice that have a
common complement c are said to be c-related. A lattice L is called modular if it
satisfies the modular law

a ≤ b ⇒ (c ∨ a) ∧ b = (c ∧ b) ∨ a (a, b, c ∈ L) (4.1)
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Let L be a modular lattice with the least element 0. A subset {a1, a2, . . . , an} of
finitely many elements of L is said to be independent if ai 
= 0 (i = 1, 2, . . . , n) and

ai ∧ (a1 ∨ . . . ∨ ai−1 ∨ ai+1 ∨ . . . ∨ an) = 0 (4.2)

for every i = 1, 2, . . . , n. If an element a ∈ L is represented as the join of an
independent set, that is, a = a1 ∨ . . . ∨ an where {a1, a2, . . . , an} is independent,
then a is said to be the direct join of the elements a1, a2, . . . , an and we write
a = a1 × . . . × an . An element a in a lattice L is said to be indecomposable if a 
= 0
and it admits no direct join a = b × c with b 
= a and c 
= a. If a is written as a
direct join of indecomposable elements, then it is called a complete decomposition
of a. The following theorem is due to Ore (see [1, 3] for a proof).

Proposition 4.1 In a modular lattice L of finite length, if

1 = a1 × . . . × am

and
1 = b1 × . . . × bn

are two complete decompositions of 1, then each ai is a′
i -related to some b j for

i = 1, 2, . . . ,m, where a′
i = a1 × . . . × ai−1 × ai+1 × . . . × am. �

We shall show that the set of normal sub-orthocryptogroups of an orthocryp-
togroup S forms a lattice. Suppose M and N are normal sub-orthocryptogroups of
S. Take m ∈ M and n ∈ N . Note that S satisfies the Eqs. (1.2) and (1.3). Then we
have mn = mn(mn)0 = mnm−1mn0 ∈ NM since mnm−1 ∈ N and n0 ∈ M . Thus,
MN ⊂ NM and vice versa. Hence, MN = NM . Then (MN )(MN ) = MMNN =
MN and so MN is closed under multiplication. Next we take m ∈ M and n ∈ N .
We have (mn)−1 = m0n−1m−1n0 ∈ MNMN = MN . Hence, MN is closed under
taking inverse. Since M and N are full, M ⊂ ME(S) ⊂ MN and N ⊂ E(S)N ⊂
MN . Thus MN include both M and N . Next take s ∈ MN and h ∈ S. Sup-
pose s ∈ S(e). By Lemma 1.1 we can write s = mn for some m ∈ M(e) and n ∈
N (e). Then we have h−1sh = h−1mnh = h−1m(h−1m)0nh = h−1mhh−1m0nh ∈
MN since h−1mh ∈ M and h−1m0nh ∈ N . Thus MN is normal. Therefore, MN
is the smallest normal sub-orthocryptogroup including both M and N . On the other
hand, M ∩ N is the largest normal sub-orthocryptogroup contained in both M and
N . Consequently, the set of normal sub-orthocryptogroups forms a lattice with the
join MN and the meet M ∩ N . This lattice has the greatest element S and the least
element E(S). Moreover, we have the following.

Lemma 4.2 The lattice of normal sub-orthocryptogroups of an orthocryptogroup
is modular.

Proof Let S be an orthocryptogroup. Suppose that A, B,C are normal sub-ortho
cryptogroups of S satisfying A ⊂ B. It is enough to show (CA) ∩ B ⊂ (C ∩ B)A.
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Take an arbitrary element s from (CA) ∩ B. Then s = ca, where c ∈ C , a ∈ A and
s ∈ B. Note that sa−1 = caa−1. Since A ⊂ B, we have sa−1 ∈ B. On the other hand,
caa−1 ∈ C because C is full. Therefore, s = ca = caa−1a = (sa−1)a ∈ (C ∩ B)A
and so (CA) ∩ B ⊂ (C ∩ B)A. �

It is easy to see that the lattice of normal sub-
orthocryptogroups is isomorphic to the lattice of idempotent-separating congruences
under the correspondence N ↔ ρN . Therefore the lattice of idempotent-separating
congruences of an orthocryptogroup is modular by Lemma 4.2.

We say that an orthocryptogroup S is spined indecomposable if S 
= E(S) and
the internal spined product decomposition S = S1 ��B S2, where B = S/H, implies
either S1 = S or S2 = S. Note that an orthocryptogroup S always admits the internal
spined product decomposition S = S ��B E(S).

We shall next give a sufficient condition for an orthocryptogroup to admit a spined
product decomposition into spined indecomposable factors. An orthocryptogroup S
is said to satisfy the ascending chain condition if N1 ⊂ N2 ⊂ N3 ⊂ . . . is a chain of
normal sub-orthocryptogroups, then there exists t for which Nt = Nt+1 = Nt+2 =
. . ., and S is said to satisfy the descending chain condition if K1 ⊃ K2 ⊃ K3 ⊃ . . . is
a chain of normal sub-orthocryptogroups then there exists t for which Kt = Kt+1 =
Kt+2 = . . ..

Theorem 4.3 Suppose S satisfies either the ascending or descending chain condi-
tion. Then S is an internal spined product of a finitely many spined indecomposable
factors.

Proof Suppose the conclusion does not hold. Then S is not spined indecompos-
able and so it is decomposed as H0 ��B K0, where H0 and K0 are proper sub-
orthocryptogroups. By the assumption, either H0 or K0 is not spined indecomposable,
say H0. By induction, there is a sequence of sub-orthocryptogroups H0, H1, H2, . . .,
where every Hi is a proper spined factor of Hi−1. Then we have a descending chain
S � H0 � H1 � H2 � . . .. It is easy to see Hi is normal in S. If S satisfies the
descending chain condition, this is a contradiction. Now we suppose S satisfies the
ascending chain condition. Since each Hi is a spined factor of Hi−1, there is a normal
sub-orthocryptogroup Ki in Hi−1 satisfying Hi−1 = Hi ��B Ki . Since each Ki is nor-
mal in S, we have an ascending chain K0 � K0 ��B K1 � K0 ��B K1 ��B K2 � . . .,
which is a contradiction. �

We note that a modular lattice is of finite length if and only if it satisfies both
the chain conditions (see [3]). Therefore, if an orthocryptogroup S satisfies both the
chain conditions, then the lattice of normal sub-orthocryptogroups is of finite length
and vice versa.

Theorem 4.4 Let S be an orthocryptogroup satisfying both the chain conditions and
B = S/H. If S has two spined product decompositions H1 ��B H2 ��B . . . ��B Hm

and K1 ��B K2 ��B . . . ��B Kn,where Hi (i = 1, 2, . . . ,m)and K j ( j = 1, 2, . . . , n)
are spined indecomposable, then m = n and there exists a bijection 	 of the family
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{Hi | i = 1, 2, . . . ,m} onto the family {Ki | j = 1, 2, . . . , n} such that Hi is isomor-
phic and H ′

i -related to 	(Hi ).

Proof Note that the lattice of normal sub-orthocryptogroups of S is modular by
Lemma 4.2, and it is of finite length because S satisfies both the chain conditions.
By Lemma 3.2, {H1, H2, . . . , Hm} and {K1, K2, . . . , Kn} are independent, respec-
tively. Therefore both H1 ��B H2 ��B . . . ��B Hm and K1 ��B K2 ��B . . . ��B Kn

are complete decompositions of S.
Suppose n ≤ m. By Proposition 4.1, H1 is H ′

1-related to some K j (say K1). Recall
that H ′

1 = H2 ��B . . . ��B Hm . We have S = K1 ��B H ′
1 = K1 ��B H2 ��B . . . ��B

Hm . By induction, we obtain S = K1 ��B K2 ��B . . . ��B Kn ��B Hn+1 ��B . . . ��B

Hm after renumbering K j . On the other hand, we have S = K1 ��B K2 ��B . . . ��B

Kn . Therefore, we have m = n. Moreover, each Hi is H ′
i -related to K j for some j

by Proposition 4.1.
Next we shall show that if H1 and K j (say K1) is H ′

1-related, then H1 and K1

are isomorphic. Suppose that S = H1 ��B H ′
1 = K1 ��B H ′

1. Define a mapping ψ :
H1 → K1 as follows. For h ∈ H1(e) (e ∈ E(S)) we set ψ(h) = k where k is an
element of K1(e) satisfying h = ka for some a ∈ H ′

1(e). Such an element is uniquely
determined by Lemma 3.1 and so ψ is well defined.

Suppose thatψ(h1) = ψ(h2) = k for h1, h2 ∈ H1(e) (e ∈ E(S)). Then h1 = ka1
and h2 = ka2 for some a1, a2 ∈ H ′

1(e). We have h−1
1 h2 = (ka1)−1

ka2 = a−1
1 k−1ka2 = a−1

1 a2 as k, a1 ∈ S(e). Thus a−1
1 a2 = h−1

1 h2 ∈ H1(e). On the
other hand, a−1

1 a2 ∈ H ′
1(e). Since H1(e) ∩ H ′

1(e) = {e}, we have a−1
1 a2 = e. There-

fore, a1 = a1e = a1a
−1
1 a2 = ea2 = a2. It follows that h1 = ka1 = ka2 = h2 and ψ

is injective. It is easy to see ψ is surjective.
Next we shall show that ψ is a homomorphism. Take arbitrary elements h1 ∈

H1(e) and h2 ∈ H1( f ), where e, f ∈ E(S). Suppose ψ(h1) = k1 and ψ(h2) = k2.
Then h1 = k1a1 and h2 = k2a2 for some a1 ∈ H ′

1(e) and a2 ∈ H ′
1( f ). Then we

have h1h2 = k1a1k2a2 = k1a1e f k2a2 = k1a1e f e f k2a2 = k1e f k2a1e f a2=k1k2a1a2
since S is orthodox and a1e f (∈ H ′

1(e f )) and e f k2(∈ K1(e f )) commute by Lemma
3.1. Note that k1k2 ∈ K1(e f ) and a1a2 ∈ H1(e f ). Therefore, ψ(h1h2) = k1k2 =
ψ(h1)ψ(h2). Consequently, ψ is an isomorphism of H1 onto K1. �

5 Completely Reducible Orthocryptogroups

In the preceding sections, we have considered internal spined products of finitely
many sub-orthocryptogroups. We now consider internal spined product of an arbi-
trary family of sub-orthocryptogroups and examine orthocryptogroups in which any
normal sub-orthocryptogroup is an internal spined product factor.

Let B be a band and {Sλ | λ ∈ �} a nonempty family of orthocryptogroups such
that E(Sλ) ∼= B for everyλ in�. Note that each Sλ has the same largest homomorphic
band image B. Consider the set P of functions defined on � for which there exists
e f in B satisfying the following.
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1. f (λ) ∈ Sλ(e f ).
2. f (λ) = e f for all but finitely many λ ∈ �.

For f, g ∈ P , we define a multiplication f g by ( f g)(λ) = f (λ)g(λ). It is easy to
see that f g belongs to P and P forms an orthocryptogroup under this multiplication.
Then the set of the idempotents is isomorphic to B and we identify it with B. We
say that P is the external spined product of the family {Sλ | λ ∈ �} and denote it by
��λ∈� Sλ. Note that if� is finite, then ��λ∈� Sλ is exactly the external spined product
defined in Sect. 1.

Suppose S is an orthocryptogroup and {Hλ | λ ∈ �} is a family of full sub-
orthocryptogroups of S. If the external spined product ��λ∈� Hλ is isomorphic
to S under the mapping f �→ f (λ1) f (λ2) . . . f (λn), where f (τ ) = e f (∈ E(S))

for τ ∈ � \ {λ1, λ2, . . . , λn}, then S is said to be the internal spined product of
{Hλ | λ ∈ �} and denoted by S =��λ∈� Sλ.

A family of sub-orthocryptogroups {Hλ | λ ∈ �} of S is called independent if any
finite subset is independent in the lattice of sub-orthocryptogroups, that is, any finite
subset satisfies (4.2). A proof of the following lemma is similar to the one for Lemma
3.2 and so we omit it.

Lemma 5.1 If an orthocryptogroup S is the internal spined product of a family of
full sub-orthocryptogroups {Hλ | λ ∈ �}, then the following conditions hold.

(C1) Every Hλ is normal.
(C2) S is generated by

⋃
λ∈� Hλ.

(C3) {Hλ | λ ∈ �} is independent.
Conversely, if the family {Hλ | λ ∈ �} of full sub-orthocryptogroups satisfy (C1),

(C2), and (C3), then S is the internal spined product ��λ∈� Hλ. �

A full sub-orthocryptogroup H of S is said to be a spined factor if there exists a full
sub-orthocryptogroup K such that S = H ��B K . For example, both E(S) and S are
spined factors. An orthocryptogroup S is called simple if S 
= E(S) and there exists
no proper normal sub-orthocryptogroup other than E(S). We say that S is completely
reducible if there exists a family {Hλ | λ ∈ �} of simple full sub-orthocryptogroups
such that S = ��λ∈� Hλ.

Theorem 5.2 Let S be an orthocryptogroup. Then the following conditions are
equivalent.

(1) S is completely reducible.
(2) There is a family of simple normal sub-orthocryptogroups {Hλ | λ ∈ �} such

that S is generated by
⋃

λ∈� Hλ.
(3) Every normal sub-orthocryptogroup H is a spined factor.

Proof (1) implies (2). Suppose S = ��λ∈� Hλ where Hλ is simple. By Lemma 5.1,
Hλ is normal and S is generated by

⋃
λ∈� Hλ.

(2) implies (3). Let H be a normal sub-orhtocryptogroup of S. If H = S, then we
can take K = E(S). So we may assume H 
= S. Let A be the set of all subsets A
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of � such that the family {H} ∪ {Hλ | λ ∈ A} is independent. Since H 
= S and S is
generated by

⋃
λ∈� Hλ, there exists λ ∈ � such that Hλ 
⊂ H . Then Hλ ∩ H = E(S)

because Hλ is simple. Therefore A is not empty. By Zorn’s lemma, there exists a
maximal element M in A. Let L be the sub-orthocryptogroup generated by H ∪
(
⋃

λ∈M Hλ).UsingLemma1.1,we can show L is also normal as H and Hλ are normal.
If L 
= S, then there exists ρ ∈ � such that Hρ 
⊂ L . Since Hρ is simple and Hρ ∩ L
is normal, we have Hρ ∩ L = E(S). Then the family {H, Hρ} ∪ {Hλ | λ ∈ M} is
independent, which contradicts to the maximality of M . It follows that L = S. Let K
be the sub-orthocryptogroup generated by

⋃
λ∈M Hλ. By Lemma 3.2, S = H ��B K

and so H is a spined factor.
(3) implies (1). We may assume that S 
= E(S). First, we shall show that for

any proper normal sub-orthocryptogroup H , there exists a normal simple sub-
orthocryptogroup T such that H ∩ T = E(S). Choose an element u ∈ S such that
u /∈ H . Let B be the family of the normal sub-orthocryptogroups of S containing H
but not u. By Zorn’s lemma, there exists a maximal element M in the family. Next
we shall show that M is a maximal normal sub-orthocryptogroup. Suppose M is not.
Then M � L for some proper normal sub-orthocryptogroup L . By our assumption,
there exists a proper sub-orthocryptogroup V such that S = L ��B V . If MV ⊂ M
then V ⊂ E(S)V ⊂ MV ⊂ M . This implies L ��B V ⊂ LM = L , which is a con-
tradiction. Therefore, M � MV . By the maximality of M we have u ∈ MV ∩ L . By
Lemma 4.2,MV ∩ L = M(V ∩ L) = ME(S) = M . This contradicts to the fact that
u /∈ M . Therefore, M is a maximal normal sub-orthocryptogroup. By our assump-
tion, S = M ��B T for some T . If T is not simple, then there exists a nontrivial proper
normal sub-orthocryptogroup D � T . Then M ��B D is normal by Lemmas 1.1 and
3.2, but M � M ��B D � S, which is a contradiction. Therefore, T is simple. Since
H ⊂ M and M ∩ T = E(S), we have H ∩ T = E(S).

By the preceding argument, there exists a simple normal sub-orthocryptogroup
T 
= E(S) since we are assuming S 
= E(S). We consider the family of indepen-
dent sets of simple normal sub-orthocryptogroups of S. By Zorn’s lemma, there
exists a maximal set {Hλ | λ ∈ �}. Let H0 be the sub-orthocryptogroup generated
by

⋃
λ∈� Hλ. Note that H0 is normal. If H0 � S, there exists a normal simple sub-

orthocryptogroup C such that H0 ∩ C = E(S) by the preceding argument. Then the
family {Hλ | λ ∈ �} ∪ {C} is independent, which contradicts to themaximality of the
set {Hλ | λ ∈ �}. Hence, H0 = S and so S = ��λ∈� Hλ byLemma5.1. Consequently,
S is completely reducible. �

Finally we characterize simple orthocryptogroups. Recall that a completely reg-
ular semigroup S can be decomposed into a semilattice � of completely simple
semigroups Rγ (γ ∈ �). Each Rγ is a J class of S. Such a completely simple semi-
group is called completely simple component of S. In particular, every completely
simple component is a rectangular group if S is an orthocryptogroup.
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Theorem 5.3 Let S be a simple orthocryptogroup. If S is a semilattice � of rectan-
gular groups Rγ (γ ∈ �), then there exists an element δ in� such that Rδ

∼= G × Bδ ,
where G is a simple group and Bδ is a rectangular band, and Rγ is a rectangular
band for every γ ∈ � \ {δ}.
Proof Since S is simple, S 
= E(S) and so at least one completely simple component
is not a rectangular band. We shall show that there exists exactly one completely
simple component that is not a rectangular band. Suppose that Rδ 
= E(Rδ) and
Rτ 
= E(Rτ ) for δ, τ ∈ � (δ 
= τ ). We may assume τ � δ. Let H be a set defined by

(⋃
τ≤ρ

E(Rρ)

)
∪

⎛
⎝⋃

τ�ρ

Rρ

⎞
⎠ .

We shall show H is normal. Take h ∈ H and s ∈ S. If either h or s belongs to⋃
τ�ρ Rρ then so does s−1hs. We now suppose that h and s belong to

⋃
τ≤ρ E(Rρ).

In this case, h and s are idempotents and so is s−1hs. Thus, s−1hs belongs to⋃
τ≤ρ E(Rρ). It follows that H is a proper normal sub-orthocryptogroup of S. This

contradicts to the assumption that S is simple. Hence, there exists exactly one com-
pletely simple component Rδ that is not a rectangular band.

Suppose Rδ = G × Bδ for some nontrivial group G and a rectangular band Bδ

and that the other completely simple components are rectangular bands. Suppose that
G is not simple. There exists a proper normal subgroup N of G. Let R′

δ = N × Bδ .
Let J be a set defined by ⎛

⎝ ⋃
γ∈�\{δ}

Rγ

⎞
⎠ ∪ R′

δ.

It is easy to see that J is a proper normal sub-orthocryptogroup of S. This is a
contradiction. Therefore, G must be simple. �
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Generalized Skew Derivations and g-Lie
Derivations of Prime Rings

Vincenzo De Filippis

Abstract Let R be a prime ring of characteristic different from 2, Qr its right
Martindale quotient ring andC its extended centroid. Suppose that F is a nonzerogen-
eralized skewderivationof R,with the associated automorphismα, and p(x1, . . . , xn)
a noncentral polynomial over C , such that

F

(
[x, y]

)
= [F(x),α(y)] + [α(x), F(y)]

for all x, y ∈ {p(r1, . . . , rn) : r1, . . . , rn ∈ R}. Then α is the identity map on R and
F is an ordinary derivation of R.

Keywords Generalized skew derivation · Prime ring

Classifications 16W25 · 16N60

1 Introduction

Let R be a prime ring of characteristic different from 2. Throughout this paper Z(R)

always denotes the center of R, Qr the right Martindale quotient ring of R and
C = Z(Qr ) the center of Qr (C is usually called the extended centroid of R). Let
S ⊆ R be a subset of R.

An additive map d : R → R is called derivation of S if d(xy) = d(x)y + xd(y),
for all x, y ∈ S. An additive map G : R → R is called generalized derivation of
S if there exists a derivation d of R such that G(xy) = G(x)y + xd(y), for all
x, y ∈ S. The additive map F : R → R is called Lie derivation of S if F([x, y]) =
[F(x), y] + [x, F(y)], for any x, y ∈ S. Of course any derivation is a Lie derivation.
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The problem of whether a Lie derivation is a derivation has been studied by several
authors (see for example [3, 21] and the references therein).

Motivated by this, here we introduce the definition of g-Lie derivations. More
precisely, let f, g : R → R be two additive maps and S ⊆ R a subset of R. If
f ([x, y]) = [ f (x), g(y)] + [g(x), f (y)], for any x, y ∈ S, then f is called g-Lie
derivation of S. It is clear that any Lie derivation is a 1-Lie derivation. The simplest
example of g-Lie derivation is the following:

Example 1.1 Let n ≥ 2 be an integer and C a field of characteristic 2n − 1. Let R
be a prime C-algebra, 0 �= λ ∈ C , f (x) = λx and g(x) = nx , for any x ∈ R. Then
f is a g-Lie derivation of R in the sense of the above definition. Moreover f is not
a Lie derivation of R.

One natural question could bewhether a g-Lie derivation of S ⊆ R is a Lie derivation
of S. Here we consider a first step of this problem. To be more specific, in this paper
we study the form of a generalized skew derivation f acting as a g-Lie derivation on
the subset {p(r1, . . . , rn) : r1, . . . , rn ∈ R}, where g is the associated automorphism
with f and p(x1, . . . , xn) is a noncentral polynomial in n non-commuting variables.

More precisely, letα be an automorphismof R. An additivemapping d : R −→ R
is called a skew derivation of R if

d(xy) = d(x)y + α(x)d(y)

for all x, y ∈ R and α is called an associated automorphism of d. An additive map-
ping G : R −→ R is said to be a generalized skew derivation of R if there exists a
skew derivation d of R with associated automorphism α such that

G(xy) = G(x)y + α(x)d(y)

for all x, y ∈ R; d is said to be an associated skew derivation of G and α is called an
associated automorphism of G. Any mapping of R with form G(x) = ax + α(x)b
for some a, b ∈ R and α ∈ Aut (R), is called inner generalized skew derivation. In
particular, if a = −b, then G is called inner skew derivation. If a generalized skew
derivation (respectively, a skew derivation) is not inner, then it is usually called outer.

In light of above definitions, one can see that the concept of generalized skew
derivation unifies the notions of skew derivation and generalized derivation.

It is well known that automorphisms, derivations, and skew derivations of R
can be extended to Qr . In [4] Chang extends the definition of generalized skew
derivation to the right Martindale quotient ring Qr of R as follows: by a (right)
generalized skew derivation we mean an additive mapping G : Qr −→ Qr such that
G(xy) = G(x)y + α(x)d(y) for all x, y ∈ Q, where d is a skew derivation of R
and α is an automorphism of R. Moreover, there exists G(1) = a ∈ Qr such that
G(x) = ax + d(x) for all x ∈ R.
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The main result of this article is

Theorem 1 Let R be a prime ring of characteristic different from2, Qr its rightMar-
tindale quotient ring and C its extended centroid. Suppose that F is a nonzero gener-
alized skew derivation of R, with the associated automorphism α, and p(x1, . . . , xn)
a noncentral polynomial over C, such that

F

(
[x, y]

)
= [F(x),α(y)] + [α(x), F(y)]

for all x, y ∈ {p(r1, . . . , rn) : r1, . . . , rn ∈ R}. Then α is the identity map on R and
F is an ordinary derivation of R.

2 Preliminaries

We now collect some Facts which follow from results in [6–9] and will be used in
the sequel.

Fact 2.1 In [11] Chuang and Lee investigate polynomial identities with skew deriva-
tions. They prove that if �(xi , D(xi )) is a generalized polynomial identity for R,
where R is a prime ring and D is an outer skew derivation of R, then R also sat-
isfies the generalized polynomial identity �(xi , yi ), where xi and yi are distinct
indeterminates.

Fact 2.2 Let R be a prime ring and I be a two-sided ideal of R. Then I , R, and Qr

satisfy the same generalized polynomial identities with coefficients in Qr (see [6]).
Furthermore, I , R, and Qr satisfy the same generalized polynomial identities with
automorphisms (see [8, Theorem1]).

Remark 2.3 Wewould like to point out that in [18] Lee proves that every generalized
derivation can be uniquely extended to a generalized derivation of U and thus all
generalized derivations of R will be implicitly assumed to be defined on the whole
U . In particular Lee proves the following result:

Theorem 3 in [18] Every generalized derivation g on a dense right ideal of R can be
uniquely extended to U and assumes the form g(x) = ax + d(x), for some a ∈ U
and a derivation d on U .

We also need the following:

Remark 2.4 Let R be a non-commutative prime ring of characteristic different from
2, D1 and D2 be derivations of R such that D1(x)D2(x) = 0 for all X ∈ R. Then
either D1 = 0 or D2 = 0.

Proof It is a reduced version of Theorem 3 in [22]. �
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Remark 2.5 Let R be a prime ring and 0 �= a ∈ R. If [x1, x2]a ∈ Z(R), for any
x1, x2 ∈ R, then either R is commutative or a = 0.

Proof Since for all x1, x2 ∈ R we have [[x1, x2]a, [x1, x2]] = 0, then [x1, x2]
[a, [x1, x2]] = 0. As a consequence of [19, Theorem 2], either R is commutative
or a ∈ Z(R). Moreover, in this last case and by our hypothesis, it follows that either
a = 0 or a �= 0 and [x1, x2] ∈ Z(R), for all x1, x2 ∈ R, that is R is commutative. �

Remark 2.6 Let R be a non-commutative prime ring and a ∈ R be such that

[x1, x2]a[y1, y2] − [y1, y2]a[x1, x2] (2.1)

is a generalized polynomial identity for R. Then a = 0.

Proof In relation (2.1) we replace y2 with y2t , for any t ∈ R. Using again (2.1), we
have that R satisfies

[y1, y2]
[
a[x1, x2], t

]
+

[
[x1, x2]a, y2

]
[y1, t]. (2.2)

For t = a[x1, x2] in (2.2), it follows that[
[x1, x2]a, y2

][
y1, [x1, x2]a

]
(2.3)

is a generalized polynomial identity for R. Let x1, x2 ∈ R and D1 and D2 be the
inner derivations of R induced respectively by [x1, x2]a and a[x1, x2]. By (2.3)
we get D1(y1)D2(y2) = 0, for any y1, y2 ∈ R. By Remark 2.4 we have that either
D1 = 0 or D2 = 0. This means that, for any x1, x2 ∈ R, either [x1, x2]a ∈ Z(R) or
a[x1, x2] ∈ Z(R).

Let x1, x2 ∈ R be such that a[x1, x2] ∈ Z(R).

Thus, by (2.3) it follows

[
[x1, x2]a, y2

]
[y1, t] = 0, for any y1, y2, t ∈ R and,

using again Remark 2.4, we have that [x1, x2]a ∈ Z(R), for any x1, x2 ∈ R. There-
fore, by Remark 2.5 and since R is not commutative, we get a = 0. �

Remark 2.7 Let R be a non-commutative prime ring and F : R → R a generalized
derivation of R. If F acts as a Lie derivation of [R, R], then F is an usual derivation
of R.

Proof Since F acts as a Lie derivation, we have that [R, R] satisfies F([u, v]) −
[F(u), v] − [u, F(v)]. UsingRemark 2.3, one has that there exist a ∈ U and a deriva-
tion d on U such that F(x) = ax + d(x), for any x ∈ R.

By easy calculations it follows that [R, R] satisfies the generalized identity uav −
vau, that is R satisfies
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[x1, x2]a[y1, y2] − [y1, y2]a[x1, x2].

Hence, by Remark 2.6, we get a = 0 and F = d is an ordinary derivation of R. �

As an easy consequence we also have that

Remark 2.8 Let R be a non-commutative prime ring, a ∈ R and F : R → R be such
that F(x) = ax , for any x ∈ R. If F acts as a Lie derivation of [R, R], then a = 0,
that is F = 0.

3 The Case of Inner Generalized Skew Derivations

In the first part of this section we will prove the following:

Proposition 3.1 Let R be a non-commutative prime ring of characteristic different
from 2, Qr be its right Martindale quotient ring and C be its extended centroid.
Suppose that α is an inner automorphism of R induced by the invertible element
q ∈ Qr and F is an inner generalized skew derivation of R defined as follows:
F(x) = ax + qxq−1b, for all x ∈ R and suitable fixed a, b ∈ Qr . If

F

(
[x, y]

)
= [F(x),α(y)] + [α(x), F(y)]

for all x, y ∈ [R, R], then a + b = 0 and either q ∈ C or q−1b ∈ C.

We assume that R satisfies the following generalized polynomial identity

�(x1, x2, y1, y2) =[
a[x1, x2] + q[x1, x2]q−1b, q[y1, y2]q−1

]
+

[
q[x1, x2]q−1, a[y1, y2] + q[y1, y2]q−1b

]

− a

[
[x1, x2], [y1, y2]

]
− q

[
[x1, x2], [y1, y2]

]
q−1b. (3.1)

Lemma 3.2 If q−1a ∈ C, then q−1b ∈ C and a + b = 0.

Proof Left multiplying (3.1) by q−1 and since q−1a ∈ C , one has that R satisfies

(
[x1, x2](a + q−1bq)[y1, y2] − [y1, y2](a + q−1bq)[x1, x2]

)
q−1 (3.2)

so that, right multiplying by q, it follows that

[x1, x2](a + q−1bq)[y1, y2] − [y1, y2](a + q−1bq)[x1, x2] (3.3)
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is a generalized polynomial identity for R. Therefore, by Remark 2.6 we get a =
−q−1bq. Moreover, since q−1a ∈ C , we notice that 0 = [q−1a, q] = q−1aq − a,
that is q−1aq = a = −q−1bq. Therefore q−1b = −q−1a ∈ C and a + b = 0, as
required. �

Remark 3.3 Notice that, in case q ∈ C then F is a generalized derivation of R and
the conclusion of Proposition 3.1 follows directly from Remark 2.7. Moreover, in
light of Lemma 3.2, we are also done in the case q−1a ∈ C .

We begin with the following

Fact 3.4 (Lemma 1.5 in [12]) Let H be an infinite field and n ≥ 2. If A1, . . . , Ak are
not scalar matrices in Mm(H) then there exists some invertible matrix P ∈ Mm(H)

such that each matrix PA1P−1, . . . , PAk P−1 has all nonzero entries.

Lemma 3.5 Let R = Mm(C), m ≥ 2 and let C be infinite, Z(R) the center of R,
a, b, q elements of R andq is invertible. If R satisfies�(x1, x2, y1, y2) thena + b = 0
and one of the following holds:

(a) q ∈ Z(R);
(b) q−1b ∈ Z(R).

Proof If either q ∈ Z(R) or q−1a ∈ Z(R), then the conclusion follows from
Remark 3.3.

We assume that q−1a /∈ Z(R) and q /∈ Z(R), that is both q−1a and q are not
scalar matrices, and prove that a contradiction follows.

By Fact 3.4, there exists some invertible matrix P ∈ Mm(C) such that eachmatrix
P(q−1a)P−1, PqP−1 has all nonzero entries. Denote by ϕ(x) = Px P−1 the inner
automorphism induced by P . Without loss of generality we may replace q and q−1a
with ϕ(q) and ϕ(q−1a), respectively, and denote q = ∑

qlmelm and q−1a = almelm ,
for some qlm, alm ∈ C .

Let ei j be the usual matrix unit, with 1 in the (i, j)-entry and zero elsewhere.
For any i �= j and [x1, x2] = [eii , ei j ] = ei j , [y1, y2] = [e ji , ei j ] = e j j − eii in (3.1),
then [

aei j + qei jq
−1b, q(e j j − eii )q

−1

]

+
[
qei jq

−1, a(e j j − eii ) + q(e j j − eii )q
−1b

]
− 2aei j − 2qei jq

−1b = 0. (3.4)

Left multiplying (3.4) by ei jq−1 and right multiplying by qei j , we get 4ei j q−1aei j
qei j = 0, that is a jiq ji = 0, which is a contradiction. �
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Lemma 3.6 Let R = Mm(C)(m ≥ 2). Then Proposition 3.1 holds.

Proof If one assumes that C is infinite, the conclusion follows from Lemma 3.5.
Now, let E be an infinite field which is an extension of the field C and let R =

Mt (E) ∼= R ⊗C E . Consider the generalized polynomial �(x1, x2, y1, y2), which
is a multilinear generalized polynomial identity for R. Clearly, �(x1, x2, y1, y2)
is a generalized polynomial identity for R too, and the conclusion follows from
Lemma 3.5.

Lemma 3.7 Either �(x1, x2, y1, y2) is a nontrivial generalized polynomial identity
for R or a + b = 0 and one of the following holds:

(a) q ∈ Z(R);
(b) q−1b ∈ Z(R).

Proof Consider the generalized polynomial (3.1)

�(x1, x2, y1, y2) =[
a[x1, x2] + q[x1, x2]q−1b, q[y1, y2]q−1

]
+

[
q[x1, x2]q−1, a[y1, y2] + q[y1, y2]q−1b

]

− a

[
[x1, x2], [y1, y2]

]
− q

[
[x1, x2], [y1, y2]

]
q−1b.

Byour hypothesis, R satisfies this generalized polynomial identity.Replacing [x1, x2]
by q−1[x1, x2]q and [y1, y2] by q−1[y1, y2]q, we have that R satisfies the generalized
polynomial identity

[
aq−1[x1, x2]q + [x1, x2]b, [y1, y2]

]
[
[x1, x2], aq−1[y1, y2]q + [y1, y2]b

]

− a

[
q−1[x1, x2]q, q−1[y1, y2]q

]
−

[
[x1, x2], [y1, y2]

]
b. (3.5)

If {aq−1, 1} are linearly independent over C then (3.5) is a nontrivial generalized
polynomial identity for R. Therefore, we may assume in all follows that {aq−1, 1}
are linearly dependent over C , that is aq−1 ∈ C .

By (3.5) we have that R satisfies

[x1, x2](ab)[y1, y2] − [y1, y2](a + b)[x1, x2]
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and by Remark 2.6 it follows that a + b = 0. Hence the generalized polynomial (3.1)
reduces to

�(x1, x2, y1, y2) =[
a[x1, x2] − q[x1, x2]q−1a, q[y1, y2]q−1

]
+

[
q[x1, x2]q−1, a[y1, y2] − q[y1, y2]q−1a

]

− a

[
[x1, x2], [y1, y2]

]
+ q

[
[x1, x2], [y1, y2]

]
q−1a. (3.6)

Left multiplying (3.6) by q−1 and by easy computations, one has that R satisfies

q−1a

(
[x1, x2]q[y1, y2]q−1 + [y1, y2]q[x1, x2]q−1 − [x1, x2][y1, y2] + [y1, y2][x1, x2]

)

+ [x1, x2]q−1a[y1, y2] − [y1, y2]q−1a[x1, x2] + [y1, y2]a[x1, x2]q−1 − [x1, x2]a[y1, y2]q−1.

(3.7)

If {q−1a, 1} are linearly dependent over C , then q−1a ∈ C , that is q−1b ∈ C and we
are done. On the other hand, if {q−1a, 1} are linearly independent over C and since
(3.7) is a trivial generalized polynomial identity for R, then R satisfies

[x1, x2]q−1a[y1, y2] − [y1, y2]q−1a[x1, x2] + [y1, y2]a[x1, x2]q−1 − [x1, x2]a[y1, y2]q−1.

(3.8)

Moreover, if q ∈ C , then the conclusion follows from Remark 3.3, so that we may
assume q /∈ C . In this last case, by (3.8) it follows that R satisfies the nontrivial
generalized polynomial identity

[x1, x2]q−1a[y1, y2] − [y1, y2]q−1a[x1, x2]

which is a contradiction.

Proof of Proposition 3.1. The generalized polynomial�(x1, x2, y1, y2) is a general-
ized polynomial identity for R. By Lemma 3.7, wemay assume that�(x1, x2, y1, y2)
is a nontrivial generalized polynomial identity for R and, by [6] it follows that
�(x1, x2, y1, y2) is a nontrivial generalized polynomial identity for Qr . By the well-
knownMartindale’s theorem of [20], Qr is a primitive ring having nonzero soclewith
the field C as its associated division ring. By [15] (p.75) Qr is isomorphic to a dense
subring of the ring of linear transformations of a vector space V over C , containing
nonzero linear transformations of finite rank. Assume first that dimCV = k ≥ 2 is a
finite positive integer, thenQr

∼= Mk(C) and the conclusion follows fromLemma3.6.
Let now dimCV = ∞.
Let x0, y0 ∈ R. By Litoff’s theorem (see Theorem 4.3.11 in [2]) there exists an

idempotent element e ∈ R such that x0, y0, a, b, q, q−1a, q−1b ∈ eRe ∼= Mk(C) for
some integer k. Of course
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[
a[r1, r2] + q[r1, r2]q−1b, q[s1, s2]q−1

]
+

[
q[r1, r2]q−1, a[s1, s2] + q[s1, s2]q−1b

]

− a

[
[r1, r2], [s1, s2]

]
− q

[
[r1, r2], [s1, s2]

]
q−1b = 0, ∀r1, r2, s1, s2 ∈ eRe. (3.9)

For sake of clearness, here we write F(x) = ax + qxq−1b, for any x ∈ eRe. By
Lemma 3.6 one of the following holds:

(a) eRe is commutative, in particular q−1b, q are central elements of eRe. In this
case F(x) = (a + b)x , for any x ∈ eRe, that is F is a generalized derivation
of eRe. Moreover, since eRe satisfies (3.9) and q is a central element of eRe,
we have that F acts as a Lie derivation on the set [eRe, eRe]. Thus, by Remark
2.7 it follows that F is an ordinary derivation of eRe, in particular F(x0y0) =
F(x0)y0 + x0F(y0).

(b) a + b = 0 and q is a central element of eRe. In this case F(x) = ax − xa, for
any x ∈ eRe, that is F is an inner ordinary derivation of eRe and once again
F(x0y0) = F(x0)y0 + x0F(y0) holds.

(c) a + b = 0 and q−1b, q−1a are central elements of eRe. In this case F(x) = 0,
for any x ∈ eRe, in particular F(x0) = F(y0) = 0.

Therefore, in any case F(x0y0) = F(x0)y0 + x0F(y0) holds. Repeating this process
for any x, y ∈ R, it follows that F satisfies the rule F(xy) = F(x)y + xF(y) for
any x, y ∈ R, that is F acts as a derivation on R, as required.

Now we extend the previous result to the case the automorphism α is not neces-
sarily inner

Proposition 3.8 Let R be a non-commutative prime ring of characteristic different
from 2, Qr be its right Martindale quotient ring and C be its extended centroid.
Suppose that F is an inner generalized skew derivation of R, with associated auto-
morphismα, defined as follows: F(x) = ax + α(x)b for all x ∈ R and suitable fixed
a, b ∈ Qr . If F �= 0 and

F

(
[x, y]

)
= [F(x),α(y)] + [α(x), F(y)]

for all x, y ∈ [R, R], then α is the identity map on R and a + b = 0.

In order to prove Proposition 3.8 we need to fix the following useful results:

Remark 3.9 Let R be a prime ring of characteristic different from 2.
If

[[x1, x2], [y1, y2]] ∈ Z(R), for all x1, x2, y1, y2 ∈ R, then R is commutative.

Proof Since R is a prime ring satisfying the polynomial identity

[[[x1, x2], [y1, y2]], x3
]
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then there exists a field K such that R and Mt (K ), the ring of all t × t matrices over
K , satisfy the same polynomial identities (see [16]).
Suppose t ≥ 2. Let x1 = e11, x2 = e22, y1 = e22 and y2 = e21. By calculation we
obtain

[[x1, x2], [y1, y2]] = e11 − e22 /∈ Z(R), a contradiction. So t = 1 and R is
commutative. �
Remark 3.10 Let R be a prime ring of characteristic different from 2 and a ∈ R.
If a

[[x1, x2], [y1, y2]] = 0 (respectively
[[x1, x2], [y1, y2]] a = 0), for all x1, x2, y1,

y2 ∈ R, then either a = 0 or R is commutative.

Proof By Remark 3.9 we may assume that the polynomial
[[x1, x2], [y1, y2]] is not

central in R. Therefore a = 0 follows from [10]. �
Remark 3.11 Let R be a prime ring of characteristic different from 2 and a ∈ R. If[
a[x1, x2], [x1, x2]

] = 0 (respectively
[[x1, x2]a, [x1, x2]

] = 0), for all x1, x2 ∈ R,
then either a ∈ Z(R) = 0.

Proof It is easy consequence of [1]. �
Proof of Proposition 3.8 If there exists an invertible element q ∈ Qr such that
α(x) = qxq−1, for all x ∈ R, then the conclusion follows from Proposition 3.1.
Hence, in what follows we assume that α is not an inner automorphism of R and
prove that a contradiction follows. Thus, since R satisfies

[
a[x1, x2] + α([x1, x2])b,α([y1, y2])

]

+
[
α([x1, x2]), a[y1, y2] + α([y1, y2])b

]

− a

[
[x1, x2], [y1, y2]

]
− α

([
[x1, x2], [y1, y2]

])
b (3.10)

then [
a[x1, x2] + [t1, t2]b, [z1, z2]

]

+
[
[t1, t2]), a[y1, y2] + [z1, z2]b

]

− a

[
[x1, x2], [y1, y2]

]
−

[
[t1, t2], [z1, z2]

]
b (3.11)

is a generalized identity for R. In particular R satisfies a

[
[x1, x2], [y1, y2]

]
, which

implies that a = 0 (see Remark 3.10). Hence (3.11) reduces to

[t1, t2]b[z1, z2] − [z1, z2]b[t1, t2]

and, by Remark 2.6, we get b = 0, which implies the contradiction F = 0.
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4 The Proof of Theorem 1

As mentioned in the Introduction, we can write F(x) = ax + f (x), for all x ∈ R,
where a ∈ Qr and f is a skew derivation of R. Letα be the automorphism associated
with f . That is f (xy) = f (x)y + α(x) f (y), for all x, y ∈ R.

Remark 4.1 Let S be the additive subgroup generated by the set

p(R) = {p(r1, . . . , rn) : r1, . . . , rn ∈ R} �= 0.

Of course F([x, y]) = [F(x),α(y)] + [α(x), F(y)], for all x, y ∈ S. Since
p(x1, . . . , xn) is not central in R, by [5] and char(R) �= 2, it follows that there
exists a noncentral Lie ideal L of R such that L ⊆ S. Moreover it is well known
that there exists a nonzero ideal I of R such that [I, R] ⊆ L (see [14, pp. 4–5], [13,
Lemma 2, Proposition 1], [17, Theorem 4]).

Proof of Theorem 1. By Remark 4.1 we assume there exists a noncentral ideal I of
R such that

[
a[x1, x2] + f ([x1, x2]),α([y1, y2])

]
+

[
α([x1, x2]), a[y1, y2] + f ([y1, y2]),

]

− a

[
[x1, x2], [y1, y2]

]
− f

([
[x1, x2], [y1, y2]

])
(4.1)

is satisfied by I . Since I and R satisfy the same generalized identitieswith derivations
and automorphisms, then (4.1) is a generalized differential identity for R, that is R
satisfies

[
a[x1, x2] + f (x1)x2 + α(x1) f (x2) − f (x2)x1 − α(x2) f (x1),α([y1, y2])

]
[
α([x1, x2]), a[y1, y2] + f (y1)y2 + α(y1) f (y2) − f (y2)y1 − α(y2) f (y1)

]

− a

[
[x1, x2], [y1, y2]

]
−

(
f (x1)x2 + α(x1) f (x2) − f (x2)x1 − α(x2) f (x1)

)
[y1, y2]

− α([x1, x2])
(
f (y1)y2 + α(y1) f (y2) − f (y2)y1 − α(y2) f (y1)

)

+
(
f (y1)y2 + α(y1) f (y2) − f (y2)y1 − α(y2) f (y1)

)
[x1, x2]

+ α([y1, y2])
(
f (x1)x2 + α(x1) f (x2) − f (x2)x1 − α(x2) f (x1)

)
(4.2)

In all that follows we assume R is not commutative and f �= 0, otherwise F(x) =
ax , for all x ∈ R and, by Remark 2.8, we have the contradiction F = 0. Moreover,
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we also assume α is not the identity map on R, if not F(x) = ax + xb, for all x ∈ R
and, by Remark 2.7, it follows a = −b and F is an ordinary inner derivation of R.

In case f is an inner skew derivation of R, then we get the required conclusions
by Proposition 3.8. Hence we now assume that f is not inner and show that a number
of contradictions follows.

Since 0 �= f is not inner, then, by relation (4.2), it follows that R satisfies

[
a[x1, x2] + t1x2 + α(x1)t2 − t2x1 − α(x2)t1,α([y1, y2])

]
[
α([x1, x2]), a[y1, y2] + z1y2 + α(y1)z2 − z2y1 − α(y2)z1

]

− a

[
[x1, x2], [y1, y2]

]
−

(
t1x2 + α(x1)t2 − t2x1 − α(x2)t1

)
[y1, y2]

− α([x1, x2])
(
z1y2 + α(y1)z2 − z2y1 − α(y2)z1

)

+
(
z1y2 + α(y1)z2 − z2y1 − α(y2)z1

)
[x1, x2]

+ α([y1, y2])
(
t1x2 + α(x1)t2 − t2x1 − α(x2)t1

)
(4.3)

and in particular, by computation we get that(
t1x2 − α(x2)t1

)
α([y1, y2]) −

(
t1x2 − α(x2)t1

)
[y1, y2] (4.4)

is satisfied by R.
If there exists an invertible element q ∈ Qr such that q /∈ C and α(x) = qxq−1,

for all x ∈ R, we replace any ti with qti in (4.4) and left multiplying by q−1, one
has that R satisfies [t1, x2]

(
q[y1, y2]q−1 − [y1, y2]

)
. Since R is not commutative

and in light of Remark 2.5, the last relation implies q[y1, y2]q−1 = [y1, y2], for any
y1, y2 ∈ R, that is q[y1, y2] = [y1, y2]q, for any y1, y2 ∈ R. In this case, it is well
known that the contradiction q ∈ C follows.

On the other hand, in case α is not inner, then by (4.4) it follows that R satisfies
the generalized identity(

t1x2 − t3t1

)
[z1, z2] −

(
t1x2 − t3t1

)
[y1, y2] (4.5)

and, for y1 = y2 = 0 and x2 = t3, we have that R satisfies the polynomial identity
[t1, x2][z1, z2], which implies again the contradiction that R is commutative.
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Additive Representations of Elements
in Rings: A Survey

Ashish K. Srivastava

Abstract This article presents a brief survey of the work done on various additive
representations of elements in rings. In particular, we study rings where each element
is a sum of units; rings where each element is a sum of idempotents; rings where
each element is a sum of idempotents and units; and rings where each element is a
sum of additive commutators. We have also included a number of open problems in
this survey to generate further interest among readers in this topic.
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1 Additive Unit Representation

The historical origin of study of the additive unit structure of ringsmay be traced back
to thework ofDieudonné on noncommutativeGalois theory [11]. In [26], Hochschild
studied additive unit representations of elements in simple algebras and proved that
each element of a simple algebra over any field is a sum of units. Later, Zelinsky
[53] proved that the ring of linear transformations is generated additively by its unit
elements. Zelinsky showed that every linear transformation of a vector space V over
a division ring is the sum of two invertible linear transformations, except when V is
one-dimensional over F2, the field of two elements. Zelinsky also noted in his paper
that this result follows from a previous result of Wolfson [52]. See [14] for another
proof of this result.

Apart from the ring of linear transformations, there are several other natural classes
of rings that are generated by their unit elements. Let X be a completely regular
Hausdorff space. Then every element in the ring C(X) of real-valued continuous
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functions onX is the sum of two units. For any f (x) ∈ C(X), we have f (x) = [(f (x) ∨
0) + 1] + [(f (x) ∧ 0) − 1]. Every element in a real or complex Banach algebra B is
the sum of two units. For any a ∈ B, there exists a scalar λ ( �= 0) such that a − λ
is a unit and a = (a − λ) + λ. On the other hand, any ring having a homomorphic
image isomorphic to F2 × F2 cannot be additively generated by its units because in
F2 × F2, the element (1, 0) cannot be expressed as a sum of any number of units.

In this area of research, a lot of focus has been on representing ring elements as
the sum of a fixed number of unit elements.

Definition 1 An element x in a ring R is called a k-good element if x can be written
as the sum of k units in R. We say that a ring R is a k-good ring if each element x ∈ R
is a k-good element. The unit sum number of a ring R is defined as

usn(R) =
⎧⎨
⎩

k if k is the smallest integer such that R is k-good
ω if every element of R is a sum of units but R is not k-good for any k
∞ there exists an element a in R that cannot be written as sum of units

A natural question that one may think at this point is the following: given any
positive integer n ≥ 2, can we construct a ring whose unit sum number is exactly
n. The answer is yes and it follows from a construction of Herwig and Ziegler [25].
Although Herwig and Ziegler stated their result in a weaker form, but a careful
examination of their proof reveals that they actually prove more that we they have
stated.

Theorem 2 (Herwig and Ziegler, [25]) For each n ≥ 2, there exists a domain R with
usn(R) = n.

The key point in proving this theorem is the observation that if R is an integral
domain, n ≥ 2, an integer and x, a nonzero element of R, then R is contained in a
domain S satisfying the following properties:

(1) x is the sum of n units in S, and
(2) if an element of R is the sum of k < n units in S, then it is the sum of k units in

R as well.

Now that we know there exists domain with any given arbitrary unit sum number,
it makes sense to ask if we can construct specific class of rings with any given unit
sum number.

First, we consider matrix rings. The following result is due to Henriksen [24].

Theorem 3 Let R be any ring.

(1) Any diagonal matrix over R is a 2-good element.
(2) The matrix ring Mn(R) is 3-good for all n ≥ 2.

In view of the above theorem, it immediately follows that if R is a ring that can be
realized as amatrix ringMn(S), n ≥ 2 over some ring S, then the only possible values
of unit sum number for R are 2 and 3.

Henriksen [24] gave examples of rings R for which Mn(R) is not 2-good. The
example given by Henriksen was generalized by Vámos [47] in the next proposition.
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Proposition 4 Let R be a ring, n ≥ 2 an integer and let L = Ra1 + · · · + Ran be a
left ideal of R generated by the elements a1, . . . , an ∈ R. Let A be the n × n matrix
whose entries are all zero except for the first column which is (a1, . . . , an)T . Suppose
that

(1) L cannot be generated by fewer than n elements, and
(2) zero is the only 2-good element in L.

Then A is not 2-good.

Example 1 If R is a commutative noetherian domain of Krull dimension greater than
1, then for any n ≥ 1 there is an n-generated ideal of R which cannot be generated
by fewer than n elements. It follows that if R is any of the rings Z[x] or F[x, y],
where F is a field, then condition (2) is also satisfied by any proper ideal of R. So for
these rings, Mn(R) is not 2-good for all n ≥ 2. Thus, usn(Mn(R)) = 3 if R = Z[x]
or F[x, y].

Since for matrix ringsMn(R) the only possible values for unit sum number are 2
and 3, all the focus has been on finding class of rings R for which Mn(R) will have
unit sum number 2. We give below a list of results in this direction.

We say that an n × n matrix A over a ring R admits a diagonal reduction if there
exist invertiblematricesP,Q ∈ Mn(R) such thatPAQ is a diagonalmatrix. Following
Ara et al. [1], a ring R is called an elementary divisor ring if every square matrix
over R admits a diagonal reduction. This definition is less stringent than the one
proposed by Kaplansky in [29]. The class of elementary divisor rings includes right
self-injective von Neumann regular rings, unit regular rings.

As we have already seen that if R is any ring, then any n × n (where n ≥ 2)
diagonal matrix over R is the sum of two invertible matrices. Thus it follows that

Lemma 5 If R is an elementary divisor ring, thenMn(R) has unit sum number 2 for
n ≥ 2.

A permutationmatrix is a squarematrix that has exactly one 1 in each row and col-
umn, and all other entries 0. An n × nmatrix A = [aij] is said to avoid a permutation
matrix P = [pij] if, for all i, j, such that pij = 1, aij = 0.

Theorem 6 (Vámos and Wiegand [48]) Let R be any ring and n ≥ 2. If A ∈ Mn(R)

avoids a permutation matrix P, then A is 2-good.

Call a matrix A = [aij] to be b-banded if for each i, j with |i − j| ≥ b, aij = 0.
For example, a diagonal matrix is a 1-banded matrix. As a consequence of the above
theorem, it follows that

Corollary 7 (Vámos and Wiegand [48]) If A ∈ Mn(R) is a b-banded matrix with
n ≥ 2b, then A is 2-good.

Define the meeting number m(P,B) of a permutation matrix P with a matrix B as

m(P,B) := |{positions i, j where both B,P are nonzero}|.
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Proposition 8 Let B = diag(B1,B2, . . . ,Bt) be an n × n matrix and each Bi is a
matrix of size at most n

2 . Then there exists an n × n permutation matrix Q that avoids
the blocks of B.

The above proposition yields that

Corollary 9 If B is an n × n matrix in block diagonal form where the blocks have
size ≤ n/2, then B is 2-good.

We have seen that if R is k-good, thenMn(R) is k-good. Clearly, the converse is not
true. For example, M2(F2) is 2-good, but F2 is not 2-good. This shows corner ring
of a k-good ring need not be k-good. Also, R being k-good does not imply R[x] is
k-good. In fact, usn(R[x]) = ∞ as the only units in the polynomial ring are the units
in R.

In case of infinitematrices too the situation is not bad.Wang and Chen [49] proved
the following.

Theorem 10 Let R be a 2-good ring. Then the ring B(R) of all ω × ω row-and-
column-finite matrices over R has unit sum number 2. However, if R is any arbitrary
ring, then the ring B(R) has unit sum number 2 or 3.

In 1958 Skornyakov asked: Is every von Neumann regular ring, which does not
have a homomorphic image isomorphic toF2 × F2, additively generated by its units?

This question of Skornyakov was answered in the negative by George Bergman
who constructed an example of a vonNeumann regular ring in which not all elements
are sums of units. Bergman’s example given below was first reported in a paper by
Handelman [21].

Example 2 Let k be any field, and A = k[[x]] be the power series ring in one variable
over k. LetK be the field of fractions ofA. LetR = {r ∈ End(Ak) : there exists q ∈ K ,
a positive integer n, with r(a) = qa for all a ∈ (xn)}. ThenR is a vonNeumann regular
ring which is not generated by its units.

So the above example is an example of a von Neumann regular ring with unit
sum number ∞. But, in general, we do not yet know what are all possible values for
unit sum number of a von Neumann regular ring. For (von Neumann regular) right
self-injective rings, the complete characterization of unit sum numbers was given
by Khurana and Srivastava in [30] and [31]. If R is a right self-injective ring then
R/J(R) is a von Neumann regular right self-injective ring. Since unit sum number of
R is same as the unit sum number of R/J(R), in order to classify unit sum numbers of
right self-injective rings, it suffices to do that for any von Neumann regular right self-
injective ring. Kaplansky developed type theory as a classification tool for certain
class of rings of operators and that theory applies to von Neumann regular right
self-injective rings. A careful examination of the type theory leads us to the fact that
a von Neumann regular right self-injective ring R is a direct product of an abelian
regular ring and proper matrix rings over elementary divisor rings. It was this crucial
observation that helped Khurana and Srivastava to extend the result of Zelinsky and
give complete description of unit sum number of right self-injective rings.
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Theorem 11 (Khurana and Srivastava, [30] and [31]) The unit sum number of a
nonzero right self-injective ring R is 2, ω or ∞. Moreover,

(1) usn(R) = 2 if and only if R has no homomorphic image isomorphic to F2.
(2) usn(R) = ω if and only if R has a homomorphic image isomorphic to F2, but
has no homomorphic image isomorphic to F2 × F2. In this case every non-invertible
element of R is a sum of either two or three units.
(3) usn(R) = ∞ if and only if R has a homomorphic image isomorphic to F2 × F2.

As the above theorem shows that for right self-injective von Neumann regular
rings, the only possibility of unit sum numbers is 2, ω and ∞, we propose the
following problem.

Problem 12 Does there exist a von Neumann regular ring with unit sum number
other than 2, ω and ∞?

The following conjecture proposed in [42] still remains open.

Conjecture 13 A unit regular ring R has unit sum number 2 if and only if R has no
homomorphic image isomorphic to F2.

In [16] it is shown that if the identity in a ring R with stable range one is a sum
of two units, then every von Neumann regular element in R is a sum of two units.
Consequently, it follows that every element in a unit regular ring R is a sum of two
units if the identity in R is a sum of two units.

The following problem was posed by Henriksen and it is still open.

Problem 14 (Henriksen, [24]) If R is a simple algebra over a field with more than
2 elements, and R has an idempotent e �= 0 and 1, then R is generated additively by
its units. Does R have a finite unit sum number?

Definition 15 The unit sum number of a moduleM, denoted by usn(M), is the unit
sum number of its endomorphism ring.

In the sense of above definition, Zelinsky’s result states that usn(VD) = 2 for a
vector space over a division ringD except when V is one-dimensional overD. Laszlo
Fuchs raised the question of determining when an endomorphism ring is generated
additively by automorphisms. For abelian groups, this question has been studied by
many authors. In [20] Hill showed that ifG is a totally projective p-group with p �= 2,
then any endomorphism of G is the sum of two automorphisms. As a consequence,
Hill also obtained that if the primary group G is a direct sum of countable groups
and has an odd prime associated with it, then any endomorphism of G is the sum of
two automorphisms. For a primary group G having no elements of infinite height,
Stringall [45] gave necessary and sufficient conditions for endomorphism ring of G
to be additively generated by its automorphisms. Khurana and Srivastava studied this
question for several classes of modules in [31]. They proved the following.
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Theorem 16 Let M be a quasi-continuous module with finite exchange property.
Then the unit sum number of M is 2 if and only if End(M) has no homomorphic
image isomorphic to F2.

As a continuous module is quasi-continuous and also satisfies the exchange prop-
erty, it follows that the unit sum number of a continuous (and hence also of injective
and quasi-injective) module M is 2 if and only if End(M) has no homomorphic
image isomorphic to F2. In [31] it is also shown that the unit sum number of a flat
cotorsion (in particular, pure injective) module M is 2 if and only if End(M) has no
homomorphic image isomorphic to F2.

Let M be a module and X , a class of R-modules closed under isomorphisms. In
[18], a moduleM is called X -automorphism-invariant if there exists an X -envelope
u : M → X satisfying that for any automorphism g : X → X there exists an endo-
morphism f : M → M such that u ◦ f = g ◦ u.

Recently, Guil Asensio, Keskin Tütüncü and Srivastava [17] have shown that

Theorem 17 If X is a class of modules closed under isomorphisms and M, an
X -automorphism-invariant module with u : M → X, a monomorphic X -envelope
such that End(X)/J(End(X)) is a von Neumann regular right self-injective ring and
idempotents lift modulo J(End(X)). Then the unit sum number of M is 2 if and only
if End(M) has no homomorphic image isomorphic to F2.

In particular, as a consequence of the above theorem, we have the following.

Theorem 18 Let M be a module that is invariant under automorphisms of its injec-
tive envelope or pure-injective envelope then the unit sum number of M is 2 if and
only if End(M) has no homomorphic image isomorphic to F2. Also, if M is a flat
module that is invariant under automorphisms of its cotorsion envelope then the unit
sum number of M is 2 if and only if End(M) has no homomorphic image isomorphic
to F2.

1.1 Additive Unit Representation of Rings of Integers
of Number Fields

Let K = Q(ξ) be a number field (that is, a finite extension of Q) and let OK be the
ring of integers of K . The following theorem due to Frei [13] shows abundance of
ring of integers of number field additively generated by units.

Theorem 19 For any number field K, there exists a number field L containing
K, such that the ring of integers of L is generated additively by its units, that is,
usn(OL) ≤ ω.

The following result of Jarden and Narkiewicz [28] is quite interesting as it shows
that although there are so many ring of integers of number field additively generated
by their units, but the ring of integers of any number field of finite degree cannot
have a finite unit sum number.
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Theorem 20 If R is a finitely generated integral domain of characteristic zero and
n ≥ 1 is an integer, then there exists a constant An(R) such that every arithmetic
progression in R having more than An(R) elements contains an element which is not
a sum of n units.

As a consequence, it follows that a finitely generated integral domain of zero
characteristic cannot be n-good for any n. Thus, in particular

Theorem 21 The ring of integers of any number field of finite degree cannot have
finite unit sum number.

In [3] and [4], the authors give conditions under which rings of integers of various
number fields are generated additively by their units.

Theorem 22 Let K = Q(
√
d), where d ∈ Z is square-free. Then usn(OK) = ω if

and only if

(1) d ∈ {−1,−3} or
(2) d > 0, d �≡ 1 mod 4, and d + 1 or d − 1 is a perfect square, or
(3) d > 0, d ≡ 1 mod 4, and d + 4 or d − 1 is a perfect square.

Theorem 23 Let d be a cube-free integer and K = Q(
3
√
d). Then usn(OK) = ω if

and only if

(1) d is square-free, d �≡ ±1 mod 9, and d + 1 or d − 1 is a perfect cube, or
(2) d = 28.

1.2 Further Generalizations of Zelinsky’s Result

Chen [10] has recently shown that if V is a countably generated right vector space
over a division ring D where |D| > 3, then for each linear transformation T on VD,
there exist invertible linear transformations P andQ on VD such that T − P, T − P−1

and T 2 − Q2 are invertible. Wang and Zhou continued this line of investigation in
[50]. They considered the following properties

• A ring R is said to satisfy the property (P), if for all a ∈ R, there exists a unit u ∈ R
such that a + u, a − u−1 are units.

• A ring R is said to satisfy the property (Q), if for all a ∈ R, there exists a unit u ∈ R
such that a − u, a − u−1 are units.

Wang and Zhou showed the following.

Theorem 24 Let EndD(V ) be the ring of linear transformations of a right vector
space V over a division ring D.

(1) If |D| > 3, then EndD(V ) satisfies (P).
(2) If |D| > 2, then EndD(V ) satisfies (Q).
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In [40] a ring R is said to be a twin-good ring if for each x ∈ R there exists a unit
u ∈ R such that both x + u and x − u are units in R. Clearly every twin-good ring
is 2-good. However, there are numerous examples of 2-good rings which are not
twin-good. For example, F3 is 2-good but not twin-good. Clearly, if D is a division
ring such that |D| ≥ 4, then D is twin-good.

Siddique and Srivastava [40] proved the following.

Lemma 25 Let R be any ring.

(1) Let R be an elementary divisor ring. Then the matrix ring Mn(R) is twin-good
for each n ≥ 3.

(2) If R is an abelian regular ring, then the matrix ring Mn(R) is twin-good for
each n ≥ 2. In particular, if D is a division ring, then the matrix ring Mn(D) is
twin-good for each n ≥ 2.

Using structure theory of von Neumann regular right self-injective rings and the
above lemma, Siddique and Srivastava [40] obtained the following.

Theorem 26 A right self-injective ring R is twin-good if and only if R has no homo-
morphic image isomorphic to F2 or F3.

As a consequence, it follows that

Corollary 27 For any linear transformation T on a right vector space V over a
division ring D, there exists an invertible linear transformation S on V such that
both T − S and T + S are invertible, except when V is one-dimensional over F2 or
F3.

Corollary 28 Let M be a quasi-continuous module with finite exchange property
and R = End(M). Then R is twin-good if and only if R has no homomorphic image
isomorphic to F2 or F3.

In particular, the endomorphism ring of a continuous module or a flat cotorsion
(in particular, pure injective) or a Harada module is twin-good if and only if it has
no homomorphic image isomorphic to F2 or F3.

We would like to raise the following problem.

Problem 29 Let R be a Dedekind domain with finite class number c. Let n ≥ 2c. Is
Mn(R) a twin-good ring?

The result of Siddique and Srivastava has recently been generalized in [32] where
it is shown that

Theorem 30 If no field of order less than n + 2 is a homomorphic image of a right
self-injective ring R, then for any element a ∈ R and central units u1, . . . , un in R,
there exists a unit u ∈ R, such that a + uiu is a unit in R for each i.
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In fact, in the above theorem, instead of assuming that units u1, . . . , un are in
center of ring R, it suffices to assume that the group of units U(R) is abelian.

In [46] Tang andZhou have shown that each linear transformation of a vector space
V over a division ringD is a sum of two commuting invertible linear transformations
if and only if V is finite-dimensional and |D| ≥ 3. Recently, it has been generalized in
[39] where it is shown that if E is a�-injective module such that each endomorphism
of E is a sum of two commuting automorphisms then E is directly finite. We propose
the following conjecture.

Conjecture 31 Let E be an injective module. Then each endomorphism of E can
be expressed as a sum of two commuting automorphisms if and only if E is directly
finite and End(E) has no homomorphic image isomorphic toMn(F2) for any n.

2 Additive Idempotent Representation

Hirano and Tominaga [27] studied rings in which each element is the sum of two
idempotents. These rings may be seen as a generalization of Boolean rings. Let S and

T be Boolean rings and M be an T -S-bimodule. Then the ring R =
[
S 0
M T

]
satisfies

the property that each element of R is the sum of two idempotents. However, this
ring R is not Boolean. For n ≥ 2, the matrix ringMn(R) over any ring R contains an
element which is not the sum of two idempotents.

Hirano and Tominaga proved the following.

Theorem 32 The following conditions are equivalent for a ring R;

(1) R is a commutative ring in which each element is the sum of two idempotents.
(2) R is a ring in which each element is the sum of two commuting idempotents.
(3) x3 = x for each element x ∈ R.

As a consequence of this theorem, they further deduced that

Theorem 33 If R is a PI ring in which each element is the sum of two idempotents,
then R/N(R) satisfies the identity x3 = x where N(R) denotes the prime radical of
R.

2.1 Clean Rings

An element x in a ring R is called a clean element if there exists a unit u ∈ R and
an idempotent e ∈ R such that x = e + u. A ring in which every element is a clean
element is called a clean ring. Clean rings were introduced byNicholson as examples
of exchange rings [35].

Šter gives another characterization for clean elements in [45].
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Lemma 34 Let a be any element in a ring R. Then a is a clean element if and only
if there exists an idempotent e ∈ R and a unit u ∈ R such that ua = eu + 1.

Examples of Clean Rings.

(1) The ring of linear transformations is a clean ring [38].
(2) Every unit regular ring is clean [6].
(3) IfM is a module that is invariant under automorphisms of its injective envelope

or pure-injective envelope then the endomorphism ring ofM is a clean ring [17].
(4) If M is a flat module that is invariant under automorphisms of its cotorsion

envelope then the endomorphism ring of M is a clean ring [17].
(5) The endomorphism ring of any continuous module is clean [7].

We give below some basic facts about clean rings.

Proposition 35 Let R be any ring.

(1) R is clean if and only if R/J(R) is clean and idempotents lift modulo the Jacobson
radical J(R) [35].

(2) If R is clean, then R is an exchange ring [35]. Bergman’s example mentioned in
the first section is example of an exchange ring which is not clean.

(3) If R is an exchange ring with central idempotents, then R is clean [35].
(4) R is semiperfect if and only if R is clean and R does not contain an infinite set of

orthogonal idempotents [8].

Burgess and Rapahel [5] have shown that every ring can be embedded in a clean
ring as an essential ring extension. Recall that a ring extension R ⊆ S is called an
essential ring extension if for each nonzero ideal I of S, I ∩ R �= 0. This shows the
abundance of clean rings.

Properties of Clean Rings.

(1) The center of a clean ring need not be clean [5].
(2) If R is a clean ring, then the matrix ring Mn(R) is also a clean ring [19].
(3) The corner ring of a clean ring need not be a clean ring [43].

The most important recent development in the theory of clean rings has been the
work of Šter who constructed for n ≥ 2, a ring R such thatMn(R) is clean butMk(R)

is not clean for k < n. This shows, in particular, that

Theorem 36 (Šter, [44])The property of being a clean ring is not aMorita-invariant
property.

The following question has been raised by Šter [44].

Problem 37 Does there exist a ring R such thatMn(R) is clean for every n ≥ 2 but
R is not clean?
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There are numerous generalizations of clean rings available in the literature, but
there are still some basic questions unanswered about clean rings. We list below
some of them.

Problem 38 Characterize clean von Neumann regular rings.

The following conjecture proposed in [42] is still open.

Conjecture 39 Let R be a clean ring. Then the unit sum number of R is 2 if and
only if R has no homomorphic image isomorphic to F2.

Very little is known about clean group rings. The following question is worth
looking at.

Problem 40 Characterize rings R and groups G such that the group ring R[G] is
clean.

Let (X, d) be a locally finite metric space in the sense that all balls of finite radius
are finite. Following Gromov [15], Ara et al. [2] defined the translation ring T(X,R)

of X over R to be the ring of all square matrices [a(x, y)], indexed by X × X and
with entries from R, such that a(x, y) = 0 whenever d(x, y) > l for some constant l
depending on the matrix. The least such l is called the bandwidth of the matrix. Thus
the Gromov translation ring T(X,R) is the ring of infinite matrices over R, indexed
by X × X, with constant bandwidth. The translation ring also makes sense when d is
just a locally finite pseudo metric. Ara et al. [2] showed that if X is a discrete tree and
R is any von Neumann regular ring then the translation ring T(X,R) is an exchange
ring.

We would like to propose following questions.

Problem 41 Is T(X,F) a clean ring where F is a field?

Problem 42 Let R be a ring with unit sum number 2. Is the translation ring T(X,R)

also a ring with unit sum number 2?

If R is a clean ring then a set of idempotents E ⊂ R such that each element in R
can be expressed as e + u, where e ∈ E and u is a unit in R, will be called a clean-
generator set of R. If R is a clean ring, then the clean-dimension of R, denoted by
clean-dim(R), is defined as clean-dim(R) = min{|E| : E is a clean-generator set of
R}. It is easy to see that if D is a division ring, then clean-dim(D) = 2.

Problem 43 What is clean-dim(Mn(D)), where D is a division ring?

3 Some Other Additive Representations

3.1 Additive Regular Representation

Chatters, Ginn and Robson studied rings that are additively generated by their regular
elements (see [9], and [37]). Recall that an element x in a ring R is called a regular
element if x is not a left or right zero-divisor. Here are the main results concerning
additive regular representation of elements in a ring.
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Theorem 44 Let R be any ring.

(1) If R is a prime right Goldie ring, then each element of R is the sum of at most
two regular elements.

(2) If R is a semiprime right Goldie ring, then R is generated additively by its regular
elements if and only if R does not have a direct summand isomorphic to F2 ⊕ F2.
Furthermore, each element of R is the sum of two regular elements if R does not
have a direct summand isomorphic to F2.

(3) If R is a left and right noetherian ring in which 2 is a regular element, then R is
generated additively by its regular elements.

3.2 Additive Commutator Representation

In [33] a ring R is called a commutator ring if each element of R is a sum of additive
commutators. One of the twelve open problems asked by Kaplansky in 1956 was
whether there exists a division ring which is a commutator ring. Harris [22] answered
the question of Kaplansky in the affirmative by constructing a division ring in which
element is a sum of additive commutators. All the results in this subsection are due
to Mesyan ([33] and [34]).

Properties of commutator rings.

(1) Any homomorphic image of a commutator ring is again a commutator ring.
(2) Finite direct products of commutator rings are also commutator rings.
(3) If R ⊆ S are rings such that R is a commutator ring and S is generated over R

by elements centralizing R, then S is also a commutator ring. In particular, this
means that matrix rings, group rings, and polynomial rings over commutator
rings are also commutator rings.

(4) Over any ring, the ring of infinite matrices that are both row-finite and column-
finite are commutator rings.

(5) A finite-dimensional algebra over any field can never be a commutator ring. This
implies, in particular, that no PI ring can be a commutator ring as every PI ring
has a homomorphic image that is finite-dimensional over a field.

Mesyan also proved that

Theorem 45 Any ring can be embedded in a commutator ring.

The idea behind the proof of the above theorem is to construct for any ring R and
any set I, a ring AI(R) = R < {xi}i∈I, {yi}i∈I : [xi, xj] = [yi, yj] = [xi, yj] = 0 for
i �= j, and [xi, yi] = 1 > which is a commutator ring.

Let K be a field and E be an arbitrary directed graph. Let E0 be the set of vertices,
and E1 be the set of edges of directed graph E. Consider two maps r : E1 → E0 and
s : E1 → E0. For any edge e in E1, s(e) is called the source of e and r(e) is called
the range of e. If e is an edge starting from vertex v and pointing toward vertex w,
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then we imagine an edge starting from vertex w and pointing toward vertex v and
call it the ghost edge of e and denote it by e∗. We denote by (E1)∗, the set of all ghost
edges of directed graph E. If v ∈ E0 does not emit any edges, i.e. s−1(v) = ∅, then
v is called a sink and if v emits an infinite number of edges, i.e. |s−1(v)| = ∞, then
v is called an infinite emitter. If a vertex v is neither a sink nor an infinite emitter,
then v is called a regular vertex.

The Leavitt path algebra of E with coefficients in K , denoted by LK(E), is the
K-algebra generated by the setsE0,E1, and (E1)∗, subject to the following conditions:

(A1) vivj = δijvi for all vi, vj ∈ E0.
(A2) s(e)e = e = er(e) and r(e)e∗ = e∗ = e∗s(e) for all e in E1.

(CK1) e∗
i ej = δijr(ei) for all ei, ej ∈ E1.

(CK2) If v ∈ E0 is any regular vertex, then v = ∑
{e∈E1:s(e)=v} ee∗.

Conditions (CK1) and (CK2) are known as the Cuntz-Krieger relations. IfE0 is finite,
then

∑
vi∈E0

vi is an identity for LK(E) and if E0 is infinite, then E0 generates a set of

local units for LK(E).
Let us denote the set of all paths in E by P(E). Given two vertices u, v ∈ E0 such

that there is a path p ∈ P(E)with s(p) = u and r(p) = v, let d(u, v) denote the length
of the shortest such path. For each u ∈ E0 and m ∈ N, denote D(u,m) = {v ∈ E0 :
d(u, v) ≤ m}.

Mesyan studied commutator Leavitt path algebras in [34] and proved the follow-
ing.

Theorem 46 The Leavitt path algebra LK(E) of a graph E over a field K is a
commutator ring if and only if the following conditions hold;

(1) E is acyclic.
(2) E0 contains only regular vertices.
(3) The characteristic p of K is not zero.
(4) For each u ∈ E0, there is an m ∈ N such that for allw ∈ E0 satisfying d(u, w) =

m + 1, the number of paths q = e1e2 . . . ek ∈ P(E) such that s(q) = u, r(q) = w

and s(e2), . . . , s(ek) ∈ D(u,m) is a multiple of p.
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Abstract Let R be a prime ring with center Z(R), J a nonzero left ideal, α an
automorphism of R and R admits a generalized (α, α)-derivation F associated with
a nonzero (α, α)-derivation d such that d(Z(R)) �= (0). In the present paper, we
prove that if any one of the following holds: (i) F([x, y]) − α([x, y]) ∈ Z(R) (i i)
F([x, y]) + α([x, y]) ∈ Z(R) (i i i) F(x ◦ y) − α(x ◦ y) ∈ Z(R) (iv) F(x ◦ y) −
α(x ◦ y) ∈ Z(R) for all x, y ∈ J , then R is commutative. Also some related results
have been obtained.
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1 Introduction

In all that follows, unless stated otherwise, Rwill be an associative ringwith the center
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and a Lie ideal U is called square-closed if u2 ∈ U for all u ∈ U . By a derivation,
we mean an additive mapping d : R −→ R such that d(xy) = d(x)y + xd(y) for
all x, y ∈ R. Let α and β be endomorphisms of R, an additive mapping d : R −→ R
is said to be an (α, β)-derivation if d(xy) = d(x)α(y) + β(x)d(y) holds for all
x, y ∈ R. Following [1], an additive mapping F : R −→ R is called a generalized
(α, β)-derivation on R if there exists an (α, β)-derivation d : R −→ R such that
F(xy) = F(x)α(y) + β(x)d(y) holds for all x, y ∈ R. Note that for IR the identity
map on R, this notion includes those of (α, β)-derivation when F = d, of derivation
when F = d and α = β = IR , and of generalized derivation, which is the case when
α = β = IR .

Many results indicate that the global structure of a ring R is often tightly connected
to the behavior of additivemappings defined on R. Awell known result of Posner [10]
states that if R is a prime ring and d a nonzero derivation of R such that [d(x), x] ∈
Z(R) for all x ∈ R, then R must be commutative. Over the last few decades, several
authors have investigated the relationship between the commutativity of the ring R
and certain specific types of derivations of R (see [3–5, 7] where further references
can be found).

Daif and Bell [6] showed that if in a semiprime ring R there exists a nonzero ideal
I of R and a derivation d such that d([x, y]) − [x, y] = 0 or d([x, y]) + [x, y] = 0
for all x, y ∈ I , then I ⊆ Z(R). In particular, if I = R then R is commuta-
tive. At this point, the natural question is what happens in case the derivation
is replaced by a generalized derivation. In [11], Quadri et al., proved that if R
is a prime ring, I a nonzero ideal of R and F a generalized derivation asso-
ciated with a nonzero derivation d such that any one of the following holds:
(i) F([x, y]) − [x, y] = 0 (i i) F([x, y]) + [x, y] = 0 (i i i) F(x ◦ y) − x ◦ y = 0
(iv) F(x ◦ y) + x ◦ y = 0 for all x, y ∈ I , then R is commutative. Following this
line of investigation, Ali, Kumar and Miyan [2], explored the commutativity of a
prime ring R admitting a generalized derivation F satisfying any one of the fol-
lowing conditions: (i) F([x, y]) − [x, y] ∈ Z(R) (i i) F([x, y]) + [x, y] ∈ Z(R)

(i i i) F(x ◦ y) − x ◦ y ∈ Z(R) (iv) F(x ◦ y) + x ◦ y ∈ Z(R) for all x, y ∈ I , a
nonzero right ideal of R. On the other hand, Marubayashi et al. [8], established that
if a 2-torsion free prime ring R admits a nonzero generalized (α, β)-derivation F as-
sociated with an (α, β)-derivation d such that either F([u, v]) = 0 or F(u ◦ v) = 0
for all u, v ∈ U , whereU is a nonzero square-closed Lie ideal of R, thenU ⊆ Z(R).
In the present paper, our purpose is to prove the cited results for the case when the
generalized (α, α)-derivation F acts on one sided ideal of R.

2 Main Results

In the remaining part of this paper, α and β will denote automorphisms of R. And
we shall do a great deal of calculation with commutators and anti-commutators,
routinely using the following basic identities: For all x, y, z ∈ R;
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[xy, z] = x[y, z] + [x, z]y and [x, yz] = y[x, z] + [x, y]z

xo(yz) = (xoy)z − y[x, z] = y(xoz) + [x, y]z

(xy)oz = x(yoz) − [x, z]y = (xoz)y + x[y, z].

Theorem 2.1 Let R be a prime ringwith center Z(R) and J a nonzero left ideal of R.
Suppose that R admits a generalized (α, α)-derivation F associated with a nonzero
(α, α)-derivation d such that d(Z(R)) �= (0). If F([x, y]) − α([x, y]) ∈ Z(R) for
all x, y ∈ J , then R is commutative.

Proof It is easy to check that d(Z(R)) ⊆ Z(R). Since d(Z(R)) �= (0), there exists
0 �= c ∈ Z(R) such that 0 �= d(c) ∈ Z(R). By assumption, we have

F([x, y]) − α([x, y]) ∈ Z(R) for all x, y ∈ J. (1)

Replacing y by cy in (1), we get

(F([x, y]) − α([x, y]))α(c) + α([x, y])d(c) ∈ Z(R) for all x, y ∈ J. (2)

Combining (1) and (2) and noting that the fact α(c) ∈ Z(R), we find that α([x, y])
d(c) ∈ Z(R), which implies that [α([x, y])d(c), r ] = 0 = [α([x, y]), r ]d(c) for all
x, y ∈ J and r ∈ R. Since R is prime and 0 �= d(c) ∈ Z(R), we have

[α([x, y]), r ] = 0 for all x, y ∈ J ; r ∈ R. (3)

Replacing y by yx in (3) and using (3), we get

α([x, y])[α(x), r ] = 0 for all x, y ∈ J ; r ∈ R. (4)

Replacing r by rα(s) in (4) and using (4), we arrive at α([x, y])r [α(x), α(s)] = 0
for all x, y ∈ J and r, s ∈ R. The primeness of R yields that for each x ∈ J , either
α([x, y]) = 0 or [α(x), α(s)] = 0. Equivalently, either [x, J ] = 0 or [x, R] = 0. Set
J1 = {x ∈ J | [x, J ] = 0} and J2 = {x ∈ J | [x, R] = 0}. Then, J1 and J2 are both
additive subgroups of I such that J = J1 ∪ J2. Thus, by Brauer’s trick, we have
either J = J1 or J = J2. If J = J1, then [J, J ] = 0, and if J = J2, then [J, R] = 0.
In both cases, we conclude that J is commutative and so, by a result of [9], R is
commutative.

Corollary 2.2 Let R be a prime ring with center Z(R) and J a nonzero left ideal
of R. Suppose that R admits a generalized (α, α)-derivation F associated with a
nonzero (α, α)-derivation d such that d(Z(R)) �= (0). If F(xy) − α(xy) ∈ Z(R)

for all x, y ∈ J , then R is commutative.
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Proof For any x, y ∈ J , we have F([x, y]) − α([x, y]) = (F(xy) − α(xy)) −
(F(yx) − α(yx)) ∈ Z(R), and hence the result follows.

Theorem 2.3 Let R be a prime ringwith center Z(R) and J a nonzero left ideal of R.
Suppose that R admits a generalized (α, α)-derivation F associated with a nonzero
(α, α)-derivation d such that d(Z(R)) �= (0). If F([x, y]) + α([x, y]) ∈ Z(R) for
all x, y ∈ J , then R is commutative.

Proof If F([x, y]) + α([x, y]) ∈ Z(R) for all x, y ∈ J , then the generalized (α, α)-
derivation−F satisfies the condition (−F)([x, y]) − α([x, y]) ∈ Z(R) for all x, y ∈
J . It follows from Theorem2.1 that R is commutative.

Theorem 2.4 Let R be a prime ringwith center Z(R) and J a nonzero left ideal of R.
Suppose that R admits a generalized (α, α)-derivation F associated with a nonzero
(α, α)-derivation d such that d(Z(R)) �= (0). If F(x ◦ y) − α(x ◦ y) ∈ Z(R) for all
x, y ∈ J , then R is commutative.

Proof We are given that

F(x ◦ y) − α(x ◦ y) ∈ Z(R) for all x, y ∈ J. (5)

Since d(Z(R)) �= (0), there exists 0 �= c ∈ Z(R) such that 0 �= d(c) ∈ Z(R). Re-
placing y by cy in (5), we get

(F(x ◦ y) − α(x ◦ y))α(c) + α(x ◦ y)d(c) ∈ Z(R) for all x, y ∈ J. (6)

Combining (5) and (6), we find that α(x ◦ y)d(c) ∈ Z(R) and hence α(x ◦ y) ∈
Z(R). This implies that

[α(x ◦ y), r ] = 0 for all x, y ∈ J ; r ∈ R. (7)

Replacing yx for y in (7) and using (7), we have

α(x ◦ y)[α(x), r ] = 0 for all x, y ∈ J ; r ∈ R. (8)

Replacing r by rα(s) in (8) and using (8), we have α(x ◦ y)r [α(x), α(s)] = 0 for
all x, y ∈ J and r, s ∈ R. The primeness of R yields that for each x ∈ J , either
α(x ◦ y) = 0 or [α(x), α(s)] = 0. Now applying similar arguments as used in the
proof of Theorem2.1, we have either x ◦ y = 0 for all x, y ∈ J ; or [J, R] = 0. In
the former case, replacing x by xz and using the fact x ◦ y = 0 we find [x, y]z = 0
for all x, y, z ∈ J . This implies that [x, y]J = 0 and hence [x, y]RJ = 0. Since J
is nonzero and R is prime, we get [J, J ] = 0. Thus, J is commutative and so R. In
the latter case, we have [J, R] = 0, in particular [J, J ] = 0 and hence we get the
required result.

Theorem 2.5 Let R be a prime ringwith center Z(R) and J a nonzero left ideal of R.
Suppose that R admits a generalized (α, α)-derivation F associated with a nonzero
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(α, α)-derivation d such that d(Z(R)) �= (0). If F(x ◦ y) + α(x ◦ y) ∈ Z(R) for all
x, y ∈ J , then R is commutative.

Proof If F(x ◦ y) + α(x ◦ y) ∈ Z(R) for all x, y ∈ J , then the generalized (α, α)-
derivation −F satisfies the condition (−F)(x ◦ y) − α(x ◦ y) ∈ Z(R) for all x, y ∈
J . It follows from Theorem2.4 that R is commutative.

Corollary 2.6 Let R be a prime ring with center Z(R) and J a nonzero left ideal
of R. Suppose that R admits a generalized (α, α)-derivation F associated with a
nonzero (α, α)-derivation d such that d(Z(R)) �= (0). If F(xy) + α(xy) ∈ Z(R)

for all x, y ∈ J , then R is commutative.

Proof For any x, y ∈ I , we have F(x ◦ y) + α(x ◦ y) = (F(xy) + α(xy)) +
(F(yx) + α(yx)) ∈ Z(R), and hence our result follows.

Theorem 2.7 Let R be a prime ring and J a nonzero left ideal of R such that
r(J ) = 0. If R admits a generalized (α, β)-derivation F associated with a nonzero
(α, β)-derivation d such that F([x, y]) = 0 for all x, y ∈ J , then R is commutative.

Proof By assumption, we have

F([x, y]) = 0 for all x, y ∈ J. (9)

Replacing y by yx in (9) and using (9), we get β([x, y])d(x) = 0, which implies

[x, y]β−1(d(x)) = 0 for all x, y ∈ J. (10)

Now substituting r y for y in (10) and using (10), we obtain [x, r ]yβ−1(d(x)) = 0
for all x, y ∈ J and r ∈ R. In particular, [x, R]RJβ−1(d(x)) = 0 for all x ∈ J . The
primeness of R yields that for each x ∈ J , either [x, R] = 0 or Jβ−1(d(x)) = 0, in
this case d(x) = 0. In view of similar arguments as used in the proof of Theorem2.1,
we have either [J, R] = 0 or d(J ) = 0. If [J, R] = 0, then J is commutative and we
are done. If d(J ) = 0, then 0 = d(RJ ) = d(R)α(J ) + β(R)d(J ), which reduces
to d(R)α(J ) = 0. And hence d(R)α(RJ ) = 0 = d(R)α(R)α(J ) = d(R)Rα(I ).
Since J is nonzero and the last relation forces that d = 0, contradiction.

Using the same techniques with necessary variations, we can prove the following:

Theorem 2.8 Let R be a prime ring and J a nonzero left ideal of R such that
r(J ) = 0. If R admits a generalized (α, β)-derivation F associated with a nonzero
(α, β)-derivation d such that F(x ◦ y) = 0 for all x, y ∈ J , then R is commutative.

The following example demonstrates that R to be prime is essential in the hy-
pothesis of Theorems2.1, 2.3, 2.4 and 2.5.
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Example 2.9 Let S be any ring. Next, let R=

⎧⎨
⎩

⎛
⎝ 0 a b
0 0 c
0 0 0

⎞
⎠ |a, b, c ∈ S

⎫⎬
⎭ and

J=

⎧⎨
⎩

⎛
⎝ 0 a b
0 0 0
0 0 0

⎞
⎠ |a, b ∈ S

⎫⎬
⎭, a nonzero left ideal of R. Define maps F, d , α : R −→

R as follows: F

⎛
⎝ 0 a b
0 0 c
0 0 0

⎞
⎠ =

⎛
⎝0 0 −c
0 0 0
0 0 0

⎞
⎠ , d

⎛
⎝ 0 a b
0 0 c
0 0 0

⎞
⎠ =

⎛
⎝0 0 c
0 0 0
0 0 0

⎞
⎠ ,

α

⎛
⎝0 a b
0 0 c
0 0 0

⎞
⎠ =

⎛
⎝ 0 −a b
0 0 −c
0 0 0

⎞
⎠ , Then, it is straightforward to check that F is a

generalized (α, α)-derivation associated with a nonzero (α, α)-derivation d such that
d(Z(R)) �= (0). It is easy to see that (i) F([x, y]) − α([x, y]) ∈ Z(R) (i i) F([x, y])
+ α([x, y]) ∈ Z(R) (i i i) F(x ◦ y) − α(x ◦ y) ∈ Z(R) (iv) F(x ◦ y) − α(x ◦ y) ∈
Z(R) for all x, y ∈ J , however R is not commutative.

Acknowledgments The author would like to thank the referee for giving helpful comments and
suggestions.
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Generalized Derivations on Rings
and Banach Algebras

Shervin Sahebi and Venus Rahmani

Abstract Let R be aprime ringwithUtumiquotient ringU . If R admits a generalized
derivation F associatedwith a derivation d such that F([xm y, x]k)n − [xm y, x]k = 0
for all x, y ∈ R where m ≥ 0 and n, k ≥ 1 fixed integers, then R is commutative or
n = 1, d = 0 and F is an identity map. Moreover, we also examine the case R is
a semiprime ring. Finally, we apply the above result to noncommutative Banach
algebras.

Keywords Prime ring · Semiprime ring · Generalized derivation · Utumi quotient
ring · Banach algebra
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1 Introduction

Let R be an associative ring with center Z(R) and Utumi quotient ringU . The center
of U , denoted by C , is called the extended centroid of R (we refer the reader to [1]
for these objects). By a Banach algebra we shall mean complex normed algebra A
whose underlying vector space is a Banach space. The Jacobson radical rad(A) of A
is the intersection of all primitive ideals.

For any x, y ∈ R,we set [x, y]1 = [x, y] = xy − yx , and [x, y]k = [[x, y]k−1, y],
where k > 1 is an integer. A linear mapping d : R → R is called a derivation if sat-
isfies the Leibniz rule d(xy) = d(x)y + xd(y) for all x, y ∈ R. In particular, d is an
inner derivation induced by an element a ∈ R, if d(x) = [a, x] for all x ∈ R.
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A first glance at the above definitions shows that

d(xm) =
m−1∑
i=0

xid(x)xm−i−1; (1)

Moreover we have:

d[y, x]k = [d(y), x]k +
k∑

i=1

[[[y, x]i−1, d(x)], x]k−i , (2)

for all x, y ∈ R and k,m are fixed positive integers.
In [3], Bresar introduced the definition of generalized derivations. An additive

mapping F : R → R is called a generalized derivation if there exists a derivation
d : R → R such that F(xy) = F(x)y + xd(y) holds for all x, y ∈ R, and d is called
the associated derivationof F .Hence, the concept of generalizedderivation covers the
concept of derivation. In [12], Lee extended the definition of generalized derivation
as follows: by a generalized derivation we mean an additive mapping F : I → U
such that F(xy) = F(x)y + xd(y) holds for all x, y ∈ I , where I is a dense left
ideal of R and d is a derivation from I into U . Moreover, Lee also proved that
every generalized derivation can be uniquely extended to a generalized derivation
of U , and thus all generalized derivations of R will be implicitly assumed to be
defined on the whole ofU . Lee obtained the following: every generalized derivation
F on a dense left ideal of R can be uniquely extended to U and assumes the form
F(x) = ax + d(x) for some a ∈ U and a derivation d on U .

Let us introduce the background of our investigation. In [17], Singer and Werner
obtained a fundamental result which started investigation into the ranges of deriva-
tions on Banach algebras. They proved that any continuous derivation on a commu-
tative Banach algebra has its range in the Jacobson radical of the algebra. A very
interesting question is how to obtain noncommutative version of Singer–Werner
theorem. In [16] Sinclair obtained a fundamental result which started investigation
into the ranges of derivations on a noncommutative Banach algebra. He proved that
every continuous derivation of a Banach algebra leaves primitive ideals of the alge-
bra invariant. Meanwhile many authors obtained more information about derivations
of Banach algebras satisfying certain suitable conditions. For example, in [14] Park
proved that if d is a linear continuous derivation of a noncommutative Banach algebra
A such that [[d(x), x], d(x)] ∈ rad(A) for all x ∈ A then d(A) ⊆ rad(A). In [7],
Filippis extended the Park’s result to generalized derivations.

Many results in the literature indicate that global structure of a prime ring R is
often strongly connected to the behavior of additive mappings defined on R. In [5],
Daif and Bell showed that if in a semiprime ring R there exist a nonzero ideal I of R
and a derivation d such that d([x, y]) = [x, y] for all x, y ∈ I , then I ⊆ Z(R). At
this point, a natural question is what happens in case the derivation is replaced by
generalized derivation. In [15], Quadri, Khan and Rehman proved that if R is a prime
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ring, I a nonzero ideal of R and F a generalized derivation associated with a nonzero
derivation d such that F([x, y]) = [x, y] for all x, y ∈ I , then R is commutative.

More recently in [8], Filippis and Huang generalized the above as follows: Let R
be a prime ring, I a nonzero ideal of R and n a fixed positive integer; If R admits
a generalized derivation F with the property (F([x, y]))n = [x, y], for all x, y ∈ I ,
then either R is commutative or n = 1, d = 0 and F is the identity map on R.
Moreover, they study the semiprime case.

The present article is our motivation by the previous results.

The main results of this paper are as follows:

Theorem 1.1 Let R be a prime ring with extended centroid C, m ≥ 0 and n, k ≥ 1
fixed integers. If R admits a generalized derivation F associated with a derivation
d such that F([xm y, x]k)n = [xm y, x]k , then R is commutative or n = 1, d = 0 and
F is identity map on R.

In particular, we have the following theorem in semiprime case:

Theorem 1.2 Let R be a semiprime ringwith extended centroidC,m ≥ 0 andn, k ≥
1 fixed integers. If R admits a generalized derivation F associatedwith a derivation d
such that F([xm y, x]k)n = [xm y, x]k , then there exists a central idempotent element
e in U such that d vanishes identically on eU and the ring (1 − e)U is commutative.

Finally, we prove the following result regarding the noncommutativeBanach algebra.

Theorem 1.3 Let A be a noncommutative Banach algebra, ζ = La + d a continu-
ous generalized derivations of A, m ≥ 0 and n, k ≥ 1 fixed integers. If F([xm y, x]k)n
−[xm y, x]k ∈ rad(A), for all x, y ∈ A, then d(A) ⊆ rad(A).

2 Proof of the Main Results

The following lemmas are useful tools for the proof of Theorem 1.1.

Lemma 2.1 Let R = Mt (F), be the ring of all t × t matrices over a field F with t ≥
2, a, b ∈ R, m ≥ 0 and n, k ≥ 1 fixed integers. If (a[xm y, x]k + [b, [xm y, x]k])n −
[xm y, x]k = 0 for all x, y ∈ R, then a, b ∈ F · It .
Proof Let a = (ai j )t×t and b = (bi j )t×t where ai j , bi j ∈ F . Denote ei j the usual
matrix unit with 1 in (i, j)-entry and zero elsewhere. By choosing x = eii , y = ei j
for any i �= j , we have [xm y, x]k = [ei j , eii ]k = (−1)kei j and hence

0 = (a[xm y, x]k + [b, [xm y, x]k])n − [xm y, x]k
= (−1)kn((a + b)ei j − ei j b)

n − (−1)kei j (3)
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Right multiplying by ei j , yields bnji = 0 for any i �= j . This implies b is diagonal

matrix. Let b = ∑t
i=1 bii eii . For any F-automorphism θ of R, we have

(aθ [xm y, x]k + [bθ , [xm y, x]k])n − [xm y, x]k = 0

for every x, y ∈ R. Hence bθ must also be diagonal. We have (1 + ei j )b(1 − ei j ) =∑t
i=1 bii eii + (b j j − bii )ei j diagonal. Therefore, b j j = bii and so b ∈ F · It . Sim-

ilarly, left multiplying (3) by ei j , we can prove that a + b ∈ F · It and hence
a ∈ F · It �

Lemma 2.2 Let R be a prime ring with extended centroid C, and a, b ∈ R. Suppose
that (a[xm y, x]k + [b, [xm y, x]k])n − [xm y, x]k = 0 for any x, y ∈ R, where m ≥ 0
and n, k ≥ 1 are fixed integers. Then a, b ∈ C.

Proof By assumption, R satisfies the generalized polynomial identity

f (x, y) = (a[xm y, x]k + [b, [xm y, x]k])n − [xm y, x]k
We assume either a /∈ C or b /∈ C . Then f (x, y) = 0 is a nontrivial (GPI) for R.

By Martindale’s Theorem [13], R is then primitive ring having nonzero soc(R) with
C as the associated division ring. Hence by Jacobson’s Theorem [9], R is isomorphic
to a dense ring of linear transformations of vector space V over C . If dimCV = t ,
then R ∼= Mt (C). For t = 1, R is a commutative. If t ≥ 2, then by Lemma 2.1, we
have a contradiction. Assume next that dimCV = ∞. Let e and f be two orthogonal
idempotent elements of soc(R). Then f e = 0. For r ∈ soc(R), we have

0 = (a[em(r f ), e]k + [b, [em(r f ), e]k)n − [em(r f ), e]k
= (−1)kn((a + b)er f − er f b)n − (−1)ker f.

Right multiplying by e yields (er f b)ne = 0, i.e., ( f ber)n+1 = 0 for all r ∈
soc(R). By [6], f ber = 0 implying f be = 0. In particular, for any idempotent e ∈
soc(R), we have (1 − e)be = 0 = eb(1 − e) that is [b, e] = 0. Therefore, [b, E] =
0, where E is the additive subgroup generated by all idempotents of soc(R). Since
E is a noncentral Lie ideal of soc(R), this implies b ∈ C . Similarly, left multiplying
by f , we can prove that a + b ∈ C and hence a ∈ C , a contradiction. �

Now we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. By assumption we get

(F([xm y, x]k))n = (F(xm)[y, x]k + xmd([y, x]k))n = xm[y, x]k . (4)

Now since R is a prime ring and F is a generalized derivation of R, by Lee
[12, Theorem 3], F(x) = ax + d(x) for some a ∈ U and a derivation d on U . Let
d be the inner derivation induced by an element b ∈ U ; that is, d(x) = [b, x] and
d(y) = [b, y] for all x, y ∈ U . Thus by hypothesis, we have
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(a[xm y, x]k + [b, [xm y, x]k])n = [xm y, x]k .

In this case byLemma2.2,wehavea, b ∈ C . Then (a[xm y, x]k + [b, [xm y, x]k])n
− [xm y, x]k = 0 becomes an([xm y, x]k)n − [xm y, x]k = 0 which is polynomial
identity for R. Then R ⊆ Mt (K ) for somefield K andMt (K ) satisfiesan([xm y, x]k)n
− [xm y, x]k = 0. But by choosing x = eii , y = ei j we get

0 = an([xm y, x]k)n − [xm y, x]k = an((−1)kei j )
n − (−1)kei j .

If n ≥ 2, it yields 0 = (−1)kei j , a contradiction. Thus n = 1 and then
0 = an([xm y, x]k)n − [xm y, x]k = (a − 1)(−1)kei j . This implies a = 1. Thus we
have proved that R is commutative or n = 1, d = 0 and F is identity map on R. On
the other hand, if d is outer derivation, then hypothesis, (1) and (2) gives

{(a[xm y, x]k + [∑m−1
i=0 xid(x)xm−i−1y + xmd(y), x]k

+∑k−1
i=1 [[[xm y, x]i , d(x)], x]k−i−1)

n = [xm y, x]k}
(5)

for all x, y ∈ U . Now by Kharchenko’s Theorem [11],

{(a[xm y, x]k + [∑m−1
i=0 xi zxm−i−1y + xmu, x]k

+∑k−1
i=1 [[[xm y, x]i , z], x]k−i−1)

n = [xm y, x]k}

for all x, y, z, u ∈ U . If U is noncommutative, then there exists b′ ∈ U such that
b′ /∈ C . Now replacing z with [b′, x] and u with [b′, y], above identity becomes

(a[xm y, x]k + [b′, [xm y, x]k])n = [xm y, x]k
Then by above inner derivation case, it yields that b′ ∈ C , a contradiction.
In particular of Theorem 1.1, for m = 0 and k = 1 we get the result of

Fillipis [8].

Corollary 2.3 Let R be a prime ring with extended centroid C and n ≥ 1 fixed
positive integer. If R admits a generalized derivation F associated with a derivation
d such that F([y, x])n = [y, x], then R is commutative or n = 1, d = 0 and F is
identity map on R.

Now we are ready to prove the semiprime case.

The following result from [2], is a useful tool needed in the proof of the Theorem 1.2.

Lemma 2.4 Let R be a semiprime ring and M a maximal ideal of C. Then MU
is a prime ideal of U invariant under all derivations of U. Moreover, we have
∩{M |MU is maximal ideal of C} = 0
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Proof of Theorem 1.2. Since R is semiprime and F is a generalized derivation of
R we have F(x) = ax + d(x) for some a ∈ U and a derivation d onU [12, Theorem
3]. Now by the same argument in the proof of Theorem 1.1, for all x, y ∈ U , we have

{(a[xm y, x]k + [∑m−1
i=0 xid(x)xm−i−1y + xmd(y), x]k

+∑k−1
i=1 [[[xm y, x]i , d(x)], x]k−i−1)

n = [xm y, x]k}

Let M be anymaximal ideal ofC . SinceU is a B-algebra orthogonal complete [4]
and by Lemma 2.4,MU is a prime ideal ofU invariant under d. DenoteU = U/MU
and d the derivation induced by d on U , i.e., d̄(x̄) = d(x) for all x ∈ U . Therefore
we get

{(a[xm y, x]k + [∑m−1
i=0 xid(x)xm−i−1y + xmd(y), x]k

+∑k−1
i=1 [[[xm y, x]i , d(x)], x]k−i−1)

n = [xm y, x]k}

for all x, y ∈ U . It is clear that U is prime. Therefore by Corollary 2.3, either U
is commutative or d̄ = 0, that is either d(U ) ⊆ MU or [U,U ] ⊆ MU . In light of
previous argument, we have that both d(U )[U,U ] ⊆ MU , where MU runs over
all prime ideals of U . By Lemma 2.4, ∩MU = 0. Thus we get d(U )[U,U ] = 0.
Using the theory of orthogonal completion for semiprime rings (see [1, Chap. 3]), it
follows that there exists a central idempotent element e in U such that on the direct
sum decomposition R = eU ⊕ (1 − e)U , d vanishes identically on eU and the ring
(1 − e)U is commutative.

Here A will denote a complex noncommutative Banach algebras. Our final result
in this paper is about continuous generalized derivations on noncommutative Banach
algebras.

The following results are useful tools needed in the proof of Theorem 1.3.

Remark 2.5 (see [16]). Any continuous derivation of Banach algebra leaves the
primitive ideals invariant.

Remark 2.6 (see [17]). Any continuous linear derivation on a commutative Banach
algebra maps the algebra into its radical.

Remark 2.7 (see [10]). Any linear derivation on semisimple Banach algebra is con-
tinuous.

Proof of Theorem 1.3. By the hypothesis ζ is continuous and since La , the
left multiplication by some element a ∈ A, also continuous thus we have that the
derivation d is continuous. By Remark 2.5, for any primitive ideal P of A we
have ζ(P) ⊆ aP + d(P) ⊆ P . It means that the continuous generalized derivation ζ

leaves the primitive ideal invariant.Denote Ā = A/P for anyprimitive ideals P . Thus
we can define the generalized derivations ζP : Ā → Ā by ζP(x̄) = ζP(x + P) =
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ζ(x) + P for all x̄ ∈ Ā, where A/P = Ā. Since P is a primitive ideal, Ā is primitive
and so it is prime. The hypothesis F([xm y, x]k)n − [xm y, x]k ∈ rad(A) yields that
F([x̄m ȳ, x̄]k)n − [x̄m ȳ, x̄]k = 0̄ for all x̄, ȳ ∈ Ā. Now by Corollary 2.3, it is imme-
diate that either Ā is commutative or d = 0̄. That is [A, A] ⊆ P or d(A) ⊆ P . Now
we assume that P is a primitive ideal such that Ā is commutative. By Remarks 2.6
and 2.7, we know that there are no nonzero linear continuous derivations on com-
mutative semisimple Banach algebras. Therefore, d = 0̄ in Ā. Hence in any case we
get d(A) ⊆ P for all primitive ideal P of A. Thus we get d(A) ⊆ rad(A), and we
arrive the required conclusion.
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A Study of Suslin Matrices: Their Properties
and Uses

Ravi A. Rao and Selby Jose

Abstract We describe recent developments in the study of unimodular rows over a
commutative ring by studying the associated group SUmr (R), generated by Suslin
matrices associated to a pair of rows v, w with 〈v,w〉 = 1. We also sketch some
futuristic developments which we expect on how this association will help to solve a
long standing conjecture of Bass–Suslin (initially in the metastable range, and later
the entire expectation) regarding the completion of unimodular polynomial rows over
a local ring, as well as how this study will lead to understanding the geometry and
physics of the orbit space of unimodular rows under the action of the elementary
subgroup.

Keywords Unimodular rows · Orthogonal transformations · Reflections
2000 Mathematics Subject Classification 13C10 · 15A63 · 19A13 · 19B14

1 Introduction

We begin by recapitulating the birth and early use of the Suslin matrices. The genesis
is in the beautiful Sect. 5 of Suslin’s paper [56].Hehas said somuch,with suchfluency
and consummate ease; it begets an area of mathematics rich in its connections with
the rest of mathematics. The title of Sect. 5 ‘A procedure for constructing invertible
matrices’ is most intriguing. This section is also astounding in another sense; it is
the first instance we know where Suslin has penned a flow of thoughts without much
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elaboration; as was his normal style. Naturally, it behoves his admirers to unearth
the encrypted wisdom stored in it.

We intersperse this history with our own rambling thoughts of some of our imme-
diate expectations. (A computer-algebra aided study, (especially wise with (perhaps)
use of sparse matrices), will be helpful to ease some of our mendications.) We are
prejudiced in choosing outlets which we feel will lead to a solution of two of the
central problems in classical algebraic K -theory; both are questions regarding find-
ing a procedure to complete a unimodular row to an invertible matrix, one of length
d over a d-dimensional affine algebra over an algebraically closed field (posed by
Suslin), and the other of a unimodular polynomial row of any length over a local ring
(posed by Bass–Suslin). We have made some progress in these directions, using the
compressed Suslin matrices, and we refer the reader to [19] for the first problem, and
[42, 43] for the second one. But the reader will feel the stirrings that the subject of the
study of unimodular rows will soon evolve far beyond the range of these important
classical problems.

We proceed to detail the association of a composition of two reflections τ(v,w) ◦
τ(e1,e1) with a pair of rows v,w with 〈v,w〉 = 1. This association enables one to study
the orbit space of unimodular rows under elementary action. Moreover since τ(v,w) ◦
τ(e1,e1) is an orthogonal transformation, one gets a homomorphism from SUmr (R),
the subgroup of the linear group generated by the Suslin matrices, to the special
orthogonal group SO2(r+1)(R); which is a well studied object. This allows us to pull
back useful information in the study of unimodular rows.

The group SUmr (R) has properties resembling those of classical spinor groups;
and we feel that the further study of this group will lead to a better understanding of
the geometry and physics of the orbit space of unimodular rows under the action of
the elementary subgroup.

2 The Suslin Matrices

Given two rows v,w ∈ M1,r+1(R), r ≥ 1, in [56, Sect. 5] Suslin associates with them
a matrix Sr (v,w) ∈ M2r (R) of determinant 〈v,w〉2r−1 = (v · wt ),2

r−1
whose entries

are from the coordinates of v, w upto a sign. We call these the Suslin matrix w.r.t.
v, w. They are particularly interesting to us when they are in SL2r (R), i.e. when
〈v,w〉 = v · wt is 1. The explicit construction of the Suslin matrix is defered for the
moment.

Trimurthi of Suslin Matrices

So far the Suslin matrix has manifested in at least three different contexts.

• Establishing that the unimodular row (a0, a1, a22 , . . . , a
r
r ) can be completed to an

invertible matrix. See the seminal paper of Suslin [56]; especially Theorem 2,
Proposition 1.6 and the beautiful Sect. 5.
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• From studying the Koszul complex associated to a unimodular row. See [61,
Sect. 2], especially Proposition 2.2, Corollary 2.5.

• As orthogonal transformations on a certain space. See [28, Corollary 4.2].

More Recent Developments

Two recent developments are briefly mentioned here. The reader should refer to the
cited texts for notations which have not been explained here.

The Fundamental property of Suslin matrices in [27] led the referee to suspect a
link between Suslin matrices and Spin groups. This connection was established in
the thesis of Vineeth Chintala and appears in [15]. We sketch some of his ideas next.

For a commutative ring R, the hyperbolic space H(Rn) is the module Rn ×
Rn endowed with a quadratic form q such that q(v,w) = 〈v,w〉 = v · wt . To this
structure one can associate the Clifford algebra Cln(R) of the quadratic form, which
is isomorphic to the matrix ring M2n (R). Vineeth Chintala proved in [15] that the
map ϕ : H(Rn) �→ M2n (R) given by

ϕ(v,w) =
(

0 Sn−1(v,w)

Sn−1(w, v)t 0

)

induces a R-algebra isomorphism. One can then derive the Jose–Rao fundamental
property of Suslin matrices from this.

The map Sn−1(v,w) �→ Sn−1(w, v)t can be used to construct an involution x �→
x∗ on Cln(R) = Cl0(R) ⊕ Cl2(R). One defines the Spin groups

Spin2n(R) = {x ∈ Cl0(R) | xx∗ = 1 and xH(Rn)x−1 = H(Rn)}.

This involution onCln(R) corresponds to the standard involution onM2n (R). One
can define the groups

Gn−1(R) = {g ∈ GL2n−1 | gSg∗is a Suslin matrix, for all Suslin matrices S}.

The subgroup of Gn−1(R) consisting of those which preserve the quadratic form
on H(Rn) is denoted by SGn−1(R). Vineeth Chintala proves that there is an isomor-
phism Spin2n(R) � SGn−1(R).

The subgroup generated by the Suslin matrices is thus the rational points of a
certain Spinor group.

The second new approach to Suslin matrices occurs in the work of Aravind Asok
and Jean Fasel in [2]. Here there is an edge map interpretation for any regular algebra
(with which 2 is invertible) in terms of Suslin matrices. We shall say a bit more about
this later; but refer to [2] for more details of this approach.

Use of Suslin Matrices

The Suslin matrices have proved useful in several contexts. The main application of
Suslin matrices, so far, have been in the following directions:
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• A unimodular row of the form (a0, a1, a22 , . . . , a
r
r ) can be completed to a matrix

βr (v,w), with v = (a0, a1, a2, . . . , ar ), and w any row with 〈v,w〉 = 1, of deter-
minant one. (We may also just write this as βr (v) for brevity.)

Suslin mentions in [56, Sect. 5] that a completion can be got by doing a series
of row and column operations on the matrix Sr (v,w) to reduce it to size (r + 1).
However, an explicit process (as suggested by Suslin, based on the sparseness of the
Suslin matrix) is far from clear, even in small sizes. A different reasoning justifes
this in [61, Sect. 2]. Undoubtedly, [56, Proposition 1.6] also gives a neat way of
writing a completion, and also ties up with the Suslin matrix.

It would be both nice and useful if a good algorithm can be developed to get a
βr (v,w) from a Sr (v,w). We believe that an appropriate βr (v,w) will replicate the
role played by Sr (v,w). The actual use of a “nice” (and explicit) β2(v,w) can be
seen in the works [44, Lemmas 2 and 3], [52, Sect. 5].

Note that it is unclear, and probably unjustified, to expect that any twoβr (v,w) got
from a Sr (v,w) are equivalent in Er+1(R). Indeed, there seem to be completions β
of (a2, b, c) which may not arise from a S2(v,w): The first completion of a unimod-
ular row of the form (a2, b, c) comes from the theory of cancellation of projective
modules in the paper [66] of Swan–Towber where an explicit completion is stated
in [66, Theorem 2.1]. Here are the two completions: Let aa′ + bb′ + cc′ = 1.

(
a2 b c

b + ac′ −c
′2 + ba′c′ −a′ + b′c′ − a′bb′

c − ab′ a′ + b′c′ + a′cc′ −b
′2 − a′b′c

)
,

(
a2 b c

−b − 2ac′ c
′2 a′ − b′c′

−c + 2ab′ −a′ − b′c′ b
′2

)
.

Can the Swan–Towber method of computation be extended to give completions
of the universal factorial row, in view of Suslin’s theorem in [56]? Is there some
interpretation of those completions akin to the theory which Suslin has built? (Note
that both approaches are derived from an explicit computation to show the transitivity
of the group of automorphisms of a projective module P ⊕ R on its unimodular
elements.)

Let us commence on a different tack. Bass observed that the projective module
Pv = ker(R2n v→ R) corresponding to a unimodular row v = (v1, v2, . . . , v2n) of
even length always has a unimodular element, i.e. it splits of a free summand iso-
morphic to R: w = (v2,−v1, v4,−v3, . . . ,−v2n, v2n−1) ∈ Pv and is a unimodular
row.

Raja Sridharan and Ravi Rao observed that if χ2(v) = (v2
1, v2, . . . , v2n−1) ∈

Um2n−1(R) then the projective module Pχ2(v) has a unimodular element. (See [36,
p. 120, Theorem 5.6] for a more general statement).

S.M. Bhatwadekar commented on seeing this that a unimodular row of the form
(a20, a1, a2, a

2
3 , a4, a5) has two independent sections! T.Y. Lam (with inputs from

R.G. Swan) also began the study of Sectionable sequences in [36, Sect. 5, p. 116]
to make a preliminary study of this phenomenon.

Can one recover Sus lin’s theorem on the completion of the ‘universal factorial
unimodular row’ by using such an argument? In particular, to begin with, can one
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show that a unimodular row of the form (a60, a1, . . . , a2n−1) has two independent
sections? etc.

• Suslin used it in the computation of K -theory and K-cohomology of group
varieties SLn , GLn , Sp2n , etc. in [62]. We refer the reader to [62] where Suslin
showed that

SK 1

(
ZZ[x1, . . . , xn, y1, . . . , yn]

(
∑n

i=1 xi yi − 1)

)
� ZZ,

with generator [Sn−1((x1, . . . , xn), (y1, . . . , yn))]. Is the group SLn(A)/En(A),
for A = ZZ[x1, . . . , xn, y1, . . . , yn]/(∑n

i=1 xi yi − 1), generated by [βn−1(v,w)],
for v,w ∈ Umn(A), with 〈v,w〉 = 1? (This may depend on n, but is it true atleast
in the metastable range n ≤ 2d − 3, where d is dimension of A?)

• Patching information in set-theoretic complete intersection problems.

M. Boratyński showed in [11] that an ideal I in a polynomial ring R over a field can
be generated upto radical by m = μ(I/I 2) elements, i.e.

√
I = √

( f1, . . . , fm),
for some f1, . . . , fm ∈ R.

This is the first recorded use of the matrices βr (v,w) in the subject of Serre’s
program, followed by the Eisenbud–Evans program, which bridges properties of
projective modules over a ring and the efficient generation of ideals in that ring. It
replaces the homological methods used by Serre, and later by others like N. Mohan
Kumar, M.P. Murthy in this context. The book [25] gives a nice introduction and
survey of major previous literature on this topic.

Let us quickly recall M. Boratyński’s idea: He says that if {x1, . . . , xm} ⊂ I with
{x1, . . . , xm} generating the R/I -module I/I 2, and if J is the ideal generated by
(x1, x2, x23 , . . . , x

m−1
m ), and I (m−1)!, then

√
J = √

I , and the projective R- module
got by taking the fibre product

P = Rm
t ×βm−1((x1,...,xm )) R

m
1−t

maps onto J , for any t ∈ R with (1 − t)I ⊂ (x1, . . . , xm). (Such a t is readily found,
and the fact that J is locally generated by the obvious m elements on the open
set D(1 − t), and by one element on D(t), is easily verified. This information is
‘patched’ via βm−1((x1, . . . , xm)).

By the Quillen–Suslin theorem [40, 53] P is free, and so J is generated by m
elements.

Thus,M.Boratyński encodedQuillen’s idea of local patching to ideals, and pushed
forward Serre’s program of projective generation of ideals; via a compressed version
of a Suslin matrix.

• Defining higher Mennicke symbols on orbits of unimodular rows.

R. Fossum, H. Foxby, B. Iversen defined, for n ≥ 2, a Mennicke n-symbol

Umn(R)
wt→ SK1R using the theory of acyclic based complexes. (We refer the reader

to [20]; a copy of which can be got by making a request.)
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Let v = (a1, . . . , an), w = (b1, . . . , bn) ∈ Umn(R), with 〈v,w〉 = v · wt = 1.
The Koszul complex

X (v) = (. . . → ∧k(Rn)
dv→ ∧k−1(Rn) → . . .)

is an acyclic based complex, with each Xk(v) = ∧k(Rn) a free module with a canon-
ical basis of exterior products ei1 ∧ . . . ∧ eik , ordered lexicographically. External
multiplication by w defines a contraction, say β for X (v).

Since (d + β)2 = 1 + β2, and β is nilpotent, we get an isomorphism, independent
of choice of the contraction,

X (v)odd = ⊕X2i−1(v) −→ ⊕X2i (v) = X (v)even .

wt(v) = (−1)(
2n−1
n )[d + β] ∈ SK 1(R)

Suslin interprets this map in [61, Sect. 2] and showed that

wt(v) = [Sn−1(v,w)] ∈ SK 1(R).

(The reader may consult [46] where details are worked out.)

• Dual is not isomorphic: Let
∑n

i=1 xi yi = 1. Let P be the projective module
corresponding to the unimodular rows (x1, . . . , xn). Then the dual P∗ of P , i.e.
HomR(P, R), is isomorphic to the projective R-module corresponding to the uni-
modular row w = (y1, . . . , yn) = w.

It can be seen easily that P and P∗ are isomorphic when rank P is odd; in
fact, the rows v, w are in the same elementary orbit by a lemma of M. Roitman in
[51, Lemma 1].

However, if n > 1 is odd then there are several approaches due to M.V. Nori,
R.G. Swan, who have independently shown (using topological arguments) that P ,
P∗ are not isomorphic. For an exposition of this see the homepage of R.G. Swan at
[64, 65].

Together with these approaches, we gave an approach via Suslin matrices follow-
ing an argument of Suslin in [61]. We refer the reader to [39] where some of the
approaches are collated. We mention the approach via Suslin matrices below: Let

R = ZZ[x1, . . . , x2n−1, y1, . . . , y2n−1](2n−1∑
i=1

xi yi − 1
) .

Suppose that vσ = w, for some σ ∈ GL2n−1(R). Then

wt (w) = wt (vσ) = wt (v) +
2n−1∑
i=0

(−1)i [∧iσ].
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Since SK1(R) = ZZ, [σ] = [S2n−2(v,w)]r , for some r . Hence, [∧iσ] =
r [∧i S2n−2(v,w)]. Therefore,

2n−1∑
i=0

(−1)i [∧iσ] = r
2n−1∑
i=0

(−1)i [∧i S2n−2(v,w)]

= r wt(x1, x2, x
−2
3 , . . . , x2n−2

2n−1)

= r(2n − 2)! wt(v).

Thus,

wt(w) = [S2n−2(w, v)] = (1 + r(2n − 2)!)wt(v) = (1 + r(2n − 2)!)[S2n−2(v,w)].

But since v is of odd length, [S2n−2(w, v)] = [S2n−2(w, v)t ] = [S2n−2(w, v)]t , by the
identities of Suslin (detailed a little later), and using the nomality of the elementary
linear subgroup (see [55, Corollary 1.4]). But S2n−2(v,w)S2n−2(w, v)t = I , and so
[S2n−2(v,w)] = [S2n−2(w, v)]−1.

Thus, one gets (2 + r(2n − 2)!)wt (v) = 0. A contradiction except when n =
2, r = −1. �
• The Suslin matrices can be used to derive properties of the orbit space of uni-
modular rows. Consider the following two principles:

� (Generalized Local Global Principle): Let v(X), w(X) ∈ Umr (R[X ]), r ≥ 3.
Suppose that v(X)p ∈ w(X)pEr (Rp[X ]), for all p ∈ Spec(R), and v(0) =
w(0), then is v(X) ∈ w(X)Er (R[X ])?

� (Generalized Monic Inversion Principle): Let v(X), w(X) ∈ Umr (R[X ]), r ≥
3.Let f (X) ∈ R[X ]be amonic polynomial. Suppose thatv(X) f (X) ∈ w(X) f (X)

Er (R[X ] f (X)), then is v(X) ∈ w(X)Er (R[X ])?
Both the abovequestionswere also raisedbyT.Y.Lam in [36,Chap.VIII, 5.6, 5.11].
We gave a partial answer in [46] where we showed thatχ2([v(X)]) = χ2([w(X)]),
if r is odd, and χ4([v(X)]) = χ4([w(X)]), if r is even. (Here if v = (v1, . . . , vr ) ∈
Umr (R) then χn([v]) denotes the class of the row (vn

1 , . . . , vr ) (under elementary
column operations. This is shown to be well defined in [74] by L.N. Vaserstein.)

• The Suslin matrices have thus been found useful for the study of unimodular rows;
which are associated to 1-stably free projective modules. Can such a similar study
also be done for any stably free projective module.

It is natural to expect that an analogous Suslin theory will develop for a pair
(p, a) ∈ P ⊕ R, (ψ, b) ∈ P∗ ⊕ R, with ψ(p) + ab = 1.

• Suslin studied the transitive action of the orthogonal group on rows of
length one in [56, Lemma 5.4]. The very existence of S3(v,w) implies that
O8(R) acts transitively on the set of rows of length one, i.e. {(v,w), v,w ∈
Um4(R), 〈v,w〉 = 1}. In [29, Corollary 4.5] we showed that SO2n(R) acts tran-
sitively on pairs having the further property that
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[v] =
{

χ2([v′)] if n is odd

χ4([v′]) if n is even

Consequently, in view of Lemma 25 which comes a little later, if R is an affine
algebra of dimension d over a perfect C1 field, or if R = A[X ], A a local ring in
which 2 is invertible, in viewof [42, Theorem1], then SO2(d+1)(R) acts transitively
on rows of length one.

• Bass–Milnor–Serre began the study of the stabilization for the linear group
GLn(R)/En(R) for n ≥ 3, where R is a commutative ring with identity. In [8],
they showed that K1(R) = GLd+3(R)/Ed+3(R), where d is the dimension of the
maximum spectrum. In [70], L.N. Vaserstein proved their conjectured bound of
(d + 2) for an associative ring with identity, where d is the stable dimension of the
ring. After that, in [71], he introduced the orthogonal and the unitary K1-functors,
and obtained stabilization theorems for them. He showed that the natural map

{
ϕn,n+1 : S(n,R)

E(n,R)
−→ S(n+1,R)

E(n+1,R)
in the linear case

ϕn,n+2 : S(n,R)

E(n,R)
−→ S(n+2,R)

E(n+2,R)
otherwise

(where S(n, R) is the group of automorphisms of the projective, symplectic and
orthogonal modules of rank n with determinant 1, and E(n, R) is the elementary
subgroup in the respective cases) is surjective for n ≥ d + 1 in the linear case, for
n ≥ d in the symplectic case, and for n ≥ 2d + 2 in the orthogonal case, and is
injective for n ≥ 2d + 4 in the symplectic and the orthogonal cases. Soon after, in
[73], he studied stabilization for groups of automorphisms of modules over rings
and modules with quadratic forms over rings with involution, and obtained similar
stabilization results.

TheSuslinmatrices havebeen founduseful in the studyof injective stabilization
for the K1-functor of the classical groups:

Let A be a nonsingular affine algebra of dimension d > 1 over a perfect C1-field.
In [49] it is shown that the natural map SLn(A)

En(A)
−→ SLn+1(A)

En+1(A)
is injective for n ≥ d + 1.

In [9] it is shown that if (d + 1) !A = A, then the natural map Spn(A)

En(A)
−→ Spn+2(A)

ESpn+2(A)

is injective for n ≥ d + 1. Similar results have also been obtained in the case of
the classical modules in [9]. The completion of the universal factorial row, and H.
Lindel–T. Vorst results in [37, 75] on the Bass–Quillen conjecture, played a crucial
role in proving these results.

In the symplectic situation, in [12] these results have been simplified to some
extent using a relative version of Quillen’s Local Global Principle in [1], coupled
with the Suslin completions of the factorial row. It is shown in [12] that vE2n(R, I ) =
vESp2n(R, I ), for any commutative ring R, and ideal I in R, and for any unimodular
row v ∈ Umn(R, I ), n ≥ 3. Using this one can recapture the earlier results; and also
show that if R be a finitely generated algebra of even dimension d over K , where
K = Z or a finite field or its algebraic closure, and if σ ∈ Spd(R) with (I2 ⊥ σ) ∈
ESpd+2(R), then σ is (symplectic) homotopic to the identity. In fact, σ = ρ(1) for
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some ρ(X) ∈ Spd(R[X ]) ∩ ESpd+2(R[X ]), with ρ(0) = Id . Finally, all these results
were improved in [22]; and optimal bounds were obtained there for smooth algebras
over an algebraically closed field by using the Fasel–Rao–Swan theorem in [19].
Results of such type are also expected over a perfect field of cohomological dimension
≤ 1; but not over fields of cohomological dimension two, is demonstrated in [22],
in view of N. Mohan Kumar’s examples in [38] of non-free stably free modules of
rank d − 1 over a field of cohomological dimension 1.

The relative strengthening of L.N. Vaserstein’s famous lemma (in [54]) that
e1E2n(R) = e1ESp2n(R) done in [12] can also be deduced from it and the Exci-
sion theorem of W. van der Kallen in [67, Theorem 3.21], via the Key lemma for
Suslin matrices. In fact, one can even get the stronger vE2n(R) = vESpϕ2n (R), for
any unimodular row v ∈ Um2n(R), and any invertible alternating matrix ϕ, for an
appropriate definition of ESpϕ2n (R). It is an instructive exercise for the reader to
figure this out using the material in this text.

The study of injective stabilization is useful to answer a question of Suslin in [59]
regarding whether a stably free projective module of rank (d − 1) over a (nonsin-
gular) affine algebra of dimension d over an algebraically closed field, with some
divisibility conditions, is free. This will be true for even dimensions if the injective
stability estimate for K1Sp falls to d − 1, over odd dimensional (nonsingular) affine
algebras of dimension d over a perfect C1-field. This will be true in any dimension if
the injective stability for K1 will fall to d over a d dimensional (nonsingular) affine
algebras over a perfect C1-field.

The latter was established in [19]; but as a consequence of establishing Suslin’s
question for nonsingular affine algebras over an algebraically closed field. (The
contracted Suslin matrices played a vital role in its proof.)

• The Suslin symbol: In [56, Sect. 5] introduced the groups Gr (A). Gr (A) is the
Witt group of nonsingular quadratic forms if r ≡ 0mod 4;Gr (A) is the symplectic
K1 functor of the ring A if r ≡ 1 mod 4; Gr (A) is the Witt group of nonsingular
skew-symmetric forms if r ≡ 2 mod 4; Gr (A) is the orthogonal K1 functor of the
ring A if r ≡ 3 mod 4.

One has the Suslin maps Sr : Umr+1(A) −→ Gr (A) defined as follows: Choose
a w such that 〈v,w〉 = 1, and set

Sr (v) =
{

[Sr (v,w)] if r = 2k + 1

[Sr (v,w) · Ir ] if r = 2k.

For example, if r = 1 then the resulting map S1 is precisely the well-known
Mennicke symbol which had an important role in the solution of the congruence
subgroup problem in [8]; for r = 2 S2 is the Vaserstein symbol introduced in [54],
and which was used to obtain some deep results on orbits of actions of SL3(A) on
Um3(A). Suslin has asked for the meaning and properties of these maps. Our work
in [29] was an initial attempt to understanding these maps and see if we could get
some properties. We mention some progress on these questions below.
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• Hermitian K-theory: One can reinterpret the groups Gr (A) in the context
of Hermitian K -theory as developed by M. Karoubi and, more recently,
M. Schlichting. In [2], the authors show that these groups are avatars of higher
Grothendieck–Witt groups. As said above, we have G1(A) = K Sp1(A) and
G3(A) = KO1(A). In Schlichting’s notation, one writes K Sp1(A) = GW 2

1 (A)

and KO1(A) = GW 0
1 (A), where the letters GW stand for “Grothendieck–Witt”

groups. These are bigraded abelian groups GW j
i (A) with i ∈ Z and j ∈ Z/4.

Suslin’s symbol Umr+1(A) → Gr (A) reads then as a collection of maps
Umr+1(A) → GWr+1

1 (A). In the same paper, A. Asok and J. Fasel show that
Suslin’s computation of the group SK1 of the ring

An = ZZ[x1, . . . , xn, y1, . . . , yn]
(
∑n

i=1 xi yi − 1)

refines in a computation of Grothendieck–Witt groups of A (with the price to
consider ZZ[1/2]-coefficients). Indeed, one finds

GWr+1
1 (Ar+1) = GW 0

0 (ZZ[1/2])

provided r ≥ 1.
There is an analogue of Quillen’s spectral sequence computing K -theory in terms
of codimension of the support in the theory of Grothendieck–Witt groups (see
e.g. [18]). Asok and Fasel show that in the case of the ring Ar+1, an edge map
in the corresponding spectral sequence is indeed an isomorphism. This allows to
compute this edge map for any regular algebra (with 2 invertible) of dimension
≤ r in terms of Suslin matrices.

• Study of orbit spaces, and classifying spaces: If R = C(X) is the ring of con-
tinuous real valued functions on a topological space X then every unimodular row
v ∈ Umn(C(X)), n ≥ 2, determines a map arg(v) : X −→ IRn \ {0} −→ Sn−1.
(The first is by evaluation, and the second is the standard homotopy equivalence.)
We thus get an element [arg(v)] of [X, Sn−1]. (As n ≥ 2, we may ignore base
points.) Clearly, rows in the same elementary orbit define homotopic maps. Thus,
we have a natural map Umn(C(X))/En(C(X)) −→ [X, Sn−1] = πn−1(X).

Note that J.F. Adams has shown that Sn−1 is not a H -space, unless n = 1, 2, 4, or
8. It is classically known that this is equivalent to saying that there is no suitable way
to multiply the two projection maps Sn−1 × Sn−1 in [Sn−1 × Sn−1, Sn−1]. However,
under suitable restrictions on the ‘dimension’ of X wemay expect to define a product.

Henceforth, let X be a finite CW-complex of dimension d ≥ 2. L.N. Vaser-
stein has shown that the ring C(X) has stable dimension d. Now let n ≥ 3, so
that Sn−1 will be atleast 1-connected. By the Suspension Theorem, the suspension
map S : [X; Sn−1] −→ [SX; Sn] is surjective if d ≤ 2(n − 2) + 1, and bijective
if d ≤ 2(n − 2). Moreover, we know that [SX, Sn] is an abelian group. Hence, the
orbit space has a structure of an abelian group. It is shown in [68, Theorem 7.7] that
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above map is a universal weak Mennicke symbol as defined by W. van der Kallen
in [68].

We refer the recent preprints of Aravind Asok and Jean Fasel (in particular, see
[3]) where there is a A1-homotopy interpretation of these results.

In the context of commutative rings, for n = 3 and d atmost 2, the orbit space
of unimodular rows modulo elementary action was shown to be bijective to the
elementary symplectic Witt group (denoted by WE (R)) by L.N. Vaserstein in [54]
and for d ≤ 2n − 4, to the universal weak Mennicke symbol by W. van der Kallen
in [68].

It would appear too strong to expect the bound to fall; and perhaps it is, but the
article [47] encourages us, as it shows (using Suslin matrices) that there is a nice
group structure on orbits of squares of unimodular rows when dim(R) ≤ 2n − 3.

We say that the orbit space Umr (R)/Er (R) has a Mennicke-like (or nice) struc-
ture if

[(a, a2, . . . , ar )] � [(b, a2, . . . , ar )] = [(ab, a2, . . . , ar )].

In [21, Theorem 3.9] it is shown that if A is an affine algebra of dimension d over
a perfect field k, of characteristic �= 2, and with c.d.2(k) ≤ 1, then if r = d + 1, the
van der Kallen group structure on it defined in [67] is Mennicke-like.

In [47] the Suslin matrix approach enables one to recapture this theorem when k
is algebraically closed; and also to improve upon it for r = d, when k is a finite field.
In fact, we realized later that the Suslin matrix approach in [47] would also enable
us to recapture [21, Theorem 3.9]. We leave it to the reader to verify these details.

As pointed out in ([47], due to the strong results of J. Fasel in [17], for a smooth
affine algebra over a field k, of characteristic �= 2, and with c.d.2(k) ≤ 2, the group
structure on the orbit spaceUmd+1(A)/Ed+1(A) is nice. Is this the optimal situation
for smooth affine algebras over a field?

The recent progress we have made is to relate these two studies, via the Suslin
symbol. We briefly sketch this next.

• Defining group structures, Witt group structures on orbits of unimodular
rows

One can define a Witt group WEUm(R), and a map from the orbit space
Umn(R)/En(R) −→ WEUm(R) sending [v] to [Sn−1(v,w)], for anyw, with 〈v,w〉 =
1. This map is a homomorphism, and is a Steinberg symbol if dim(R) ≤ 2n − 3. It
is also onto when dim(R) ≤ 2n − 3. One can commence here as the variant of the
Mennicke–Newmann lemma as in [69, Lemma 3.2] is available. We expect it to also
be injective under these conditions. This is mainly due to the inherent symmetry of
the Suslin matrices.

Note that these would mean that the orbit space would then have a nice abelian
Witt group structure under the condition dim(R) ≤ 2n − 3; which is an improvement
on the condition dim(R) ≤ 2n − 4 in the theorem of van der Kallen in [68] stated
above. More details will appear in [32].

• In [56, Sect. 3] Suslin points out that the fact that the universal factorial row can
be completed can be used to find a completion of a linear unimodular row of
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length (r + 1), provided r ! is a unit. In fact he shows that there is a factorial row
in the elementary orbit of any linear unimodular row. At the end of Sect. 5 he
poses Problem 4 which reposes a question posed by Bass in [7], with an additional
rider. We now know this as the Bass–Suslin conjecture; and it is one of the central
open questions of classical algebraic K-theory. Let R be a local ring. Bass asked
if Umr (R[X ]) = e1SLr (R[X ]). Suslin expects this if 1/(r − 1)! ∈ R. More gen-
erally, due to Suslin’s example, one would expect to find a factorial row in the
elementary orbit of any unimodular row over a polynomial ring over a local ring.

The results of M. Roitman in [51], and R.A. Rao in [41–43] bear testimony to
this. In [41–43] unimodular polynomial rows are studied via the Vaserstein symbol.
In [32] a similar study is undertaken via the Suslin symbol. This study promises to
solve this question in the metastable range; however, one expects that if one couples
this with the ideas developing in [48] then one could get a complete picture, based
on the beautiful symmetry of the Suslin matrices. More precisely, the structure of
the Suslin matrix forces a certain positioning; and the argument in [32] indicates that
some positionings (enforced by the positioning of the coordinates of a Suslin matrix)
are suitable to enable us to lift the yoke of restriction of injective stability estimates
of K1 so far.

Historical development often gives a clue to the route one should follow.
The study of completions of unimodular rows over a commutative noetherian ring

R of dimension d gives a hint of things to come. It began with J-P. Serre, followed
by H. Bass, ideas of general position; which were taken further by Eisenbud–Evans.
L.N. Vaserstein started studying group structures on orbits of unimodular rows using
Witt groups. But the paper [54] already contains enough of non-stable algebraic K -
theory arguments on a unimodular row; which were expanded upon by W. van der
Kallen in [67, 68]. Thus, the arguments of [42] give preliminary historical evidence
of getting completion of unimodular polynomial rows in dimension three by a stable
argument. Injective stabilization plays an important role here; but we suspect that this
happens because we have not done the linearization in a proper way which preserves
the anti-symmetry.

It is this combination of ideas that we strongly advocate in the polynomial case;
doing stable linearization, preserving the inherent symmetry of the Suslin matrices,
and taking nth roots,we believe should give a ‘polynomial time’ feedback completion
algorithm at the non-stable level. We hope to be able to present these ideas in [48].

3 Study of the Suslin Matrix

We begin with the study of the alternating matrices; which gives a good role model
to begin the topic.

The Alternating Matrix V(v, w)

Let v = (a, b, c), w = (a′, b′, c′) with 〈v,w〉 = aa′ + bb′ + cc′ = 1.
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We consider the 4 × 4 alternating matrix V (v,w) of Pfaffian one

V (v,w) =

⎛
⎜⎜⎝

0 a b c
−a 0 c′ −b′
−b −c′ 0 a′
−c b′ −a′ 0

⎞
⎟⎟⎠

We wish to analyze the action of ε ∈ E4(R) on V (v,w) by conjugation.
We first recall the Cohn transformations of a row below

Definition 1 Let v = (a0, a1, . . . , ar ), w = (b0, b1, . . . , br ) ∈ Rr+1 with 〈v,w〉 =
1. We say that the row

v∗ = vCi j (λ) = (a0, . . . , ai + λb j , . . . , a j − λbi , . . . , ar ),

for 0 ≤ i �= j ≤ r , is a Cohn transform of v w.r.t. the row w.

P.M. Cohn in [16] had shown that the matrices I2 + λ

(
a
b

) (
b −a

)
were not elemen-

tary matrices in general.
It was shown in [27, Lemma 2.1] that the Cohn orbit (got by a finite number

of successive Cohn transforms) is the same as the elementary orbit when r ≥ 2.
Moreover, see [33, Theorem 3.6], if 〈v,w〉 = 〈v′, w〉 = 1 then v′ can be got from v

by a finite number of Cohn transforms w.r.t. w.
Let us get back to analyzing the action of an elementary matrix on an alternating

matrix.
One has the following identities:

E12(λ)V (v,w)E12(λ)t = V (vC12(λ), w),

E13(λ)V (v,w)E13(λ)t = V (vC02(−λ), w),

E14(λ)V (v,w)E14(λ)t = V (vC01(λ), w),

E21(λ)V (v,w)E21(λ)t = V (v,wC21(λ)),

E31(λ)V (v,w)E31(λ)t = V (v,wC20(−λ)),

E41(λ)V (v,w)E41(λ)t = V (v,wC10(λ)).

(1)

Equation (1) describes completely the action of E4(R) on an alternating matrix
V (v,w).

We may consider the Vaserstein space V of dimension 6 consisting of all 4 × 4
alternatingmatrices over R. The above relations associates a linear transformation Tσ

of V with any σ ∈ SL4(R) by Tσ(V (v,w)) = σV (v,w)σt . The matrix of this linear
transformation w.r.t the usual ordered basis e1, . . . , e6 is not orthogonal. However,
with respect to the following permutation of the standard basis e1, . . . , e6 namely
e1, e2, e3, e6,−e5, e4 we get
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E12(x) → E62(x)E53(−x) E21(x) → E26(x)E35(−x)

E13(x) → E61(−x)E43(x) E31(x) → E16(x)E34(−x)

E14(x) → E51(−x)E42(x) E41(x) → E15(x)E24(x)

The images are all elementary orthogonal matrices. In particular, the matrix of Tσ

will be an orthogonal matrix. One observes also that the map E4(R)(R) is onto
EO4(R). This induces an injection of the quotient groups SL4(R)/E4(R) −→
SO4(R)/EO4(R).

Let us compute Tσ . It is the matrix of ∧2σ. When σ = V (v,w) something inter-

esting is revealed: the matrix is

(
I4 −

(
vt

wt

) (
w v

))(
I4 −

(
et1
et1

) (
e1 e1

))
. This is

recognizable as the product of two reflections τ(v,w) ◦ τ(e1,e1). (See later for the defi-
nition.)

Is there a similar ‘larger sizes’ analogue? The observations above are replicated
below with the Suslin matrix substituting for the alternating matrix V (v,w).
Remark: When we did calculations with 6 × 6 alternating matrices of Pfaffian one
we found that the corresponding linear transformations were not orthogonal, and so
the theory is dissimilar. It seems worthwhile to investigate what is happening here.

The Suslin Matrix Sr(v,w)

We now describe the Suslin matrices in more detail.
The construction of the Suslin matrix Sr (v,w) is possible once we have two rows

v,w. These matrices will be invertible if their dot product v · wt = 1. (The rows are
then automatically unimodular rows.) Suslin’s inductive definition: Let

v = (a0, a1, . . . , ar ) = (a0, v1),

with v1 = (a1, . . . , ar ),

w = (b0, b1, . . . , br ) = (b0, w1),

with w1 = (b1, . . . , br ). Set S0(v,w) = a0, and set

Sr (v,w) =
(

a0 I2r−1 Sr−1(v1, w1)

−Sr−1(w1, v1)
t b0 I2r−1

)
.

Suslin noted that Sr (v,w)Sr (w, v)t = (v · wt )I2r = Sr (w, v)t Sr (v,w), and
det Sr (v,w) = (v · wt ),2

r−1
for r ≥ 1.

The positions of ai and bi in Sr (v,w) are as follows: For 1 ≤ i ≤ r − 1,

1. The positions of a0 in Sr (v,w) is given by (k, k), 1 ≤ k ≤ 2,r−1 and the positions
of b0 in Sr (v,w) is given by (k, k), 2r−1 + 1 ≤ k ≤ 2.r

2. The positions of ar in Sr (v,w) is given by (2k − 1, 2r − 2k + 2), 1 ≤ k ≤ 2,r−1

and the positions of br in Sr (v,w) is given by (2k, 2r − 2k + 1), 1 ≤ k ≤ 2.r−1
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3. The positions of +ai in Sr (v,w) is given by

(22k2r−1−i + j, (2 + (2i−1 − k − 1)22)2r−1−i + j),

where 0 ≤ k ≤ 2i−1 − 1, 1 ≤ j ≤ 2.r−1−i

4. The positions of −ai in Sr (v,w) is given by

((3 + 22k)2r−1−i + j, (1 + (2i−1 − k − 1)22)2r−1−i + j),

where 0 ≤ k ≤ 2i−1 − 1, 1 ≤ j ≤ 2.r−1−i

5. The positions of +bi in Sr (v,w) is given by

((1 + (2i−1 − k − 1)22)2r−1−i + j, (3 + 22k)2r−1−i + j),

where 0 ≤ k ≤ 2i−1 − 1, 1 ≤ j ≤ 2.r−1−i

6. The positions of −bi in Sr (v,w) is given by

(2 + (2i−1 − k − 1)22)2r−1−i + j, 22k2r−1−i + j),

where 0 ≤ k ≤ 2i−1 − 1, 1 ≤ j ≤ 2.r−1−i

The Suslin Forms Jr

To understand the nature of the shape of the Suslin matrices we recall Suslin’s
sequence of forms Jr ∈ M2r (R) given by the recurrence formulae

Jr =

⎧⎪⎨
⎪⎩
1 for r = 0

Jr−1 ⊥ −Jr−1, for r even ,

Jr−1� − Jr−1, for r odd.

(The English translation wrongly says Jr = Jr−1 ⊥ Jr−1 when r is even.)

(Here α ⊥ β =
(

α 0
0 β

)
, while α�β =

(
0 α
β 0

)
.)

Howdid Suslin think of these forms?Whatwill the formbe if the ‘Suslinmatrix’ is
constructed by a slightly different basis; say by the usual lexicographic ordering of the
basis to describe themap⊕iodd ∧i Rr → ⊕ieven ∧i Rr in the earlier construction.We
give a possible approach: Observe that Jr = ∏r+1

i=1 Sr (ei , ei ). The reader can verify
this by an easy induction on r . (Or we refer to [46] where it is proved.)

It is easy to see that det Jr = 1, for all r , and that J t
r = J−1

r = (−1)
r(r+1)

2 Jr . More-
over, Jr is antisymmetric if r = 4k + 1 and r = 4k + 2, whereas Jr is symmetric for
r = 4k and r = 4k + 3.

We know from Suslin that he was unaware of M. Krusemeyer’s explanations
in [34, 35] for the Swan–Towber completion of (a2, b, c). The explanations of
M. Krusemeyer seem to be adequate only in the case of alternating forms. (Are
we wrong in saying this?)
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Suslin recognized the need to analyze the shapes of the Suslin matrices Sr (v,w).
He realized that the shapes satisfied similar properties according to the length (r + 1)
of the row.

In [56, Lemma 5.3], it is noted that the following formulae are valid

for r =4k : (Sr (v,w)Jr )
t = Sr (v,w)Jr ;

for r =4k + 1 : Sr (v,w)Jr Sr (v,w)t = (v · wt )Jr ;
for r =4k + 2 : (Sr (v,w)Jr )

t = −Sr (v,w)Jr ;
for r =4k + 3 : Sr (v,w)Jr Sr (v,w)t = (v · wt )Jr .

We call these the Suslin identities. These identities are the core of the underlying
four physical configuration spaces in which unimodular rows live.

These identities may be easily verified by induction on r . Alternatively, one
can also observe it after noting that for r ≥ 1, and 2 ≤ i ≤ r + 1, Sr (ei , ei )−1 =
Sr (ei , ei )t = −Sr (ei , ei ), Sr (ei , ei )2 = −I2r , and det Sr (ei , ei ) = 1, and the follow-
ing lemma:

Lemma 2 Let v = (a0, a1, . . . , ar ),w = (b0, b1, . . . , br ) ∈ M1r+1(R), r ≥ 1. Then
for 2 ≤ i ≤ r + 1,

Sr (ei , ei )Sr (v,w)Sr (ei , ei )
−1 = Sr (v

′, w′),

where
v′ = (b0,−a1, . . . ,−ai−2, bi−1,−ai , . . . ,−ar ), and
w′ = (a0,−b1, . . . ,−bi−2, ai−1,−bi , . . . ,−br ).

Thus, one has

Jr Sr (v,w)J−1
r =

{
Sr (v,w)t if r even
Sr (w, v) if r odd.

The Suslin identities show that unimodular rows of length r + 1 will have proper-
ties depending on [r ]modulo 4.We have already seen an instance of a property which
depends on the parity of r when discussing the isomorphism of a projective module
corresponding to a row and its dual projective module. Is there such an example of
a property for unimodular rows which depends on the [r ] modulo 4?

When searching for an algorithm to create a βr (v,w) from Sr (v,w) one should
also keep the following question in mind. One knows that there is a βr (v,w) ∈
Sr (v,w)E2r (R). When r is odd, is there a βr (v,w) ∈ Sr (v,w)GE2r (R), where
GE = ESpwhen r = 4k + 1, andGE = EO when r = 4k + 3? (The “right” ESp,
EO is part of the query.)

The Fundamental Property and the Key Lemma

We give a simple proof of the Fundamental property of Suslin matrices, which first
appeared in [27].
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Lemma 3 Let R be a ring with 1. Let S be a subset of R satisfying

1. a ∈ S implies −a ∈ S.
2. a, b ∈ S implies a + b ∈ S.
3. a ∈ S implies a2 ∈ S.

Then a, b ∈ S implies ab + ba ∈ S, 2abc ∈ S.

Proof ab + ba = {(a + b)2 − a2} − b2 ∈ S. Hence,

{a(ab + ba) + (ab + ba)a} − (a2b + ba2) = 2aba ∈ S.

Wenowstate and prove the important Fundamental property satisfied by the Suslin
matrices.

Corollary 4 (Fundamental property)Let Sr (s, t), Sr (v,w) be Suslinmatrices. Then

Sr (s, t)Sr (v,w)Sr (s, t) = Sr (v
′, w′)

Sr (t, s)Sr (w, v)Sr (t, s) = Sr (w
′, v′),

for some v′, w′ ∈ M1,r+1(R), which depend linearly on v, w and quadratically on s,
t . Consequently, v′ · w

′t = (s · t t )2(v · wt ).

Proof Take R =M2r (R), and let S be the subset of all Suslin matrices above. Take
a = Sr (s, t), b = Sr (v,w). Then 2aba ∈ S. A generic argument will enable us to
assume that 2 is a non-zero-divisor, and allow us to conclude that aba ∈ S.

The last two assertions will need the more specific argument given in [29, Lemma
2.5].

Remark 5 L. Avramov has independently observed a similar argument to prove the
Fundamental property of Suslin matrices.

The Key Lemma

Recall that we were led to the above Fundamental property in [27, Corollary 3.3]
by the Key Lemma via the methods of commutative algebra. We next recall the
Key Lemma which is actually equivalent to the Fundamental Property. (We refer the
reader to the thesis of Selby Jose [26, Chap.4, Lemma 4.3.16] where this equivalence
has been detailed).

TheCohn transformswere first sighted in thework of L.N.Vaserstein in [54]when
he considered the action of an elementary matrix on a 4 × 4 invertible alternating
matrix as described earlier. His analysis led us to the key lemma below
Notation. For a matrix α ∈ Mk(R), we define αtop as the matrix whose entries are
the same as that of α above the diagonal, and on the diagonal, and is zero below the
diagonal. Similarly, we define α.bot
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For simplicity we may write αt for α,top αb for α,bot and αt for α transpose.
Moreover, we use αtb for αtop or α.bot

Lemma 6 (Key Lemma) Let v, w ∈ M1,r+1(R). Then, for r ≥ 2, 2 ≤ i ≤ r + 1,
λ ∈ R,

Sr (vEi1(−λ), wE1i (λ)) = Sr (e1, e1E1i (λ))top Sr (v,w)Sr (e1, e1E1i (λ)),bot

Sr (vE1i (λ), wEi1(−λ)) = Sr (e1E1i (λ), e1)
bot Sr (v,w)Sr (e1E1i (λ), e1),

top

Sr (vC0i−1(−λ), w) = Sr (e1E1i (λ), e1)
top Sr (v,w)Sr (e1E1i (λ), e1),

bot

Sr (v,wC0i−1(−λ)) = Sr (e1, e1E1i (λ))bot Sr (v,w)Sr (e1, e1E1i (λ)).top

In view of its own importance we wish to record the useful observation which led
us to the proof of the Key Lemma given in [27, Lemma 3.1]:

Lemma 7 Let v, w, s, t ∈ Rr+1 and let v = (a0, a1, . . . , ar ), w = (b0, b1, . . . , br ).
Then

Sr (v,w) + Sr (w, v)t = {a0 + b0}I2r .
Sr (s, t)Sr (w, v)t + Sr (v,w)Sr (t, s)

t = {〈s, w〉 + 〈v, t〉}I2r .
Sr (w, v)t Sr (s, t) + Sr (t, s)

t Sr (v,w) = {〈s, w〉 + 〈v, t〉}I2r .

Proof This is the usual bilinear consequence of the quadratic relation

Sr (v + s, w + t)Sr (w + t, v + s)t = 〈v + s, w + t〉I2r
= {〈v,w〉 + 〈v, t〉 + 〈s, w〉 + 〈s, t〉}I2r.

The relations above reminds one of the relations in a Clifford algebra.

Commutator Calculus

Finally, we record a few interesting relations we got in [27, Lemma 3.6] by use of the
Key Lemma: This is the Yoga of commutators in the elementary unimodular vector
group. As is known, a proper handle of this, can lead one to understand the quotient
group of the Suslin unimodular vector group by its elementary unimodular vector
group, better. In fact, it is eventually shown that this is a solvable group, using the
methods of A. Bak in [6]. (See below for the definitions, and indications of a proof.)

Lemma 8 Let 2 ≤ i �= j ≤ r + 1, and let λ = −2xy. If

α = [Sr (e1E1i (x), e1), Sr (e1E1 j (y), e1)],
α∗ = [Sr (e1E1 j (−y), e1), Sr (e1E1i (−x), e1)]
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then α∗ = α−1, and Sr (vCi−1 j−1(λ), w) = αSr (v,w)α−1;

β = [Sr (e1, e1E1i (x)), Sr (e1, e1E1 j (y))],
β∗ = [Sr (e1E1 j (−y), e1), Sr (e1, e1E1i (−x))],

then β∗ = β−1, and Sr (v,wCi−1 j−1(λ)) = βSr (v,w)β−1;

γ = [Sr (e1E1 j (x), e1), Sr (e1, e1E1i (y))],
γ∗ = [Sr (e1, e1E1i (−y)), Sr (e1E1 j (−x), e1)],

then γ∗ = γ−1, and Sr (vEi j (λ), wE ji (−λ)) = γSr (v,w)γ.−1

The Suslin Vector Space

It is easy to see that the set

S = {Sr (v,w)|v,w ∈ M1r+1(R)}

is a free R-module or rank 2(r + 1). For a basis one can take se0, . . ., ser+1, se∗
0,

. . ., se∗
r+1, where sei = Sr (ei , 0), se∗

i = Sr (0, ei ), for 0 ≤ i ≤ r . We shall call this
the Suslin space.

The Suslin Matrix Groups

Definition: The Special Unimodular Vector group SUmr (R) is the subgroup of
SL2r (R) generated by the Suslin matrices Sr (v,w) w.r.t. the pair (v,w), with v ∈
Umr+1(R), for some w with 〈v,w〉 = v · wt = 1.

Remark 9 One can analogous to the linear case, define the Elementary Unimodular
vector subgroup EUmr (R) of SUmr (R) generated by the Suslin matrices Sr (v,w),
with v = e1ε, for some ε ∈ Er+1(R), and with v · wt = 1.

Proposition 10 (Center of SUmr (R) [29, Corollary 3.5]) Let R be a commutative
ring. The center Z(SUmr (R)) of the Special Unimodular vector group SUmr (R)

consists of scalar matrices u I2r . Moreover,

Z(SUmr (R)) =
{

{uI2r : u ∈ R, u2 = 1}, if r odd

{uI2r : u ∈ R, u4 = 1}, if r even.

Hence Z(SUmr (R)) ⊆ EUmr (R).

Commutator Calculus (contd.)

There is yet another set of generators for EUmr (R), viz. Sr (e1E1i (x), e1),
Sr (e1, e1E1i (y), and Sr (ei , ei Ei1(a)), Sr (ei Ei1(b), ei ), for 2 ≤ i ≤ r + 1,
x, y, a, b ∈ R. This was shown in [27], via the Key Lemmas 6 and 13.
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We record the commutator formulae in EUmr (R)tb next: We use the convenient
notation that for r ≥ 1, 1 ≤ i ≤ r + 1, λ ∈ R,

E(e1)(λ) = I2r = E(e∗
1)(λ)

E(ei )(λ) = Sr (e1E1i (λ), e1); i > 1

E(e∗
i )(λ) = Sr (e1, e1E1i (λ)); i > 1

(If we wish to stress the size we will write Er (ei )(λ), Er (e∗
i )(λ)).1

Proposition 11 For r ≥ 2, λ,μ ∈ R, ci = ei or e∗
i , d j = e j or e∗

j , we have, for
2 ≤ i < j ≤ r + 1,

[Er (ci )(λ)t , Er (d j )(μ)b]
= [Er−1(ci−1)(λ)t , Er−1(d j−1)(μ)b] ⊥ [Er−1(ci−1)(λ)t , Er−1(d j−1)(μ)b]
= α ⊥ · · · ⊥ α︸ ︷︷ ︸

2i−2 times

,

where

α =
{ {Er−i+1(d j−i+1)(λμ)top ⊥ Er−i+1(d j−i+1)(−λμ)bot } if ci = ei ,

{Er−i+1(d j−i+1)(λμ)bot ⊥ Er−i+1(d j−i+1)(−λμ)top} if ci = e∗
i .

We next calculate the triple commutators

Lemma 12 For r ≥ 2, 2 ≤ i �= j ≤ r + 1, λ,μ, ν ∈ R,

(i)
[[E(ei )(λ)top, E(e j )(μ)bot ], E(e∗

i )(ν)tb
] = E(e j )(λμν),tb

(ii)
[[E(e∗

i )(λ)top, E(e j )(μ)bot ], E(ei )(ν)tb
] = E(e j )(λμν),tb

(iii)
[
[E(ei )(λ)top, E(e∗

j )(μ)bot ], E(e∗
i )(ν)tb

]
= E(e∗

j )(λμν),tb

(iv)
[
[E(e∗

i )(λ)top, E(e∗
j )(μ)bot ], E(ei )(ν)tb

]
= E(e∗

j )(λμν).tb

TheKey Lemmamakes us consider the subgroup EUmr (R)tb of E2r (R) generated
by elements of the type Sr (e1E1i (x), e1)tb, Sr (e1, e1E1i (x))tb. In view of the Key
Lemma it is clear that EUmr (R) ⊂ EUmr (R)tb.

Via the triple commutator laws, one gets the following relations, which prove the
fact that EUmr (R) = EUmr (R)tb.

1The definition of E(e1)(λ) was erroneously defined as λI2r−1 ⊥ λ−1 I2r−1 in [27].
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Lemma 13 ([29, Lemma 4.9]
For r ≥ 2, 2 ≤ i �= j ≤ r + 1, and λ ∈ R.

Sr (e1E1i (λ), e1)
top = Sr (e1E1 j (λ), e1)Sr (e1 − λe j + ei , e1)Sr (e1E1i (−1), e1)

Sr ((1 − λ)e1 + λe j + ei , e1 + e j )Sr (e1 − ei , e1 − e j )

Sr ((1 + λ)e1 − λe j , e1 + e j )Sr (e1, e1E1 j (−1)),

Sr (e1E1i (λ), e1)
bot = Sr (e1, e1E1 j (−1))Sr ((1 + λ)e1 − λe j , e1 + e j )

Sr (e1 − ei , e1 − e j )Sr ((1 − λ)e1 + λe j + ei , e1 + e j )

Sr (e1E1i (−1), e1)Sr (e1 − λe j + ei , e1)Sr (e1E1 j (λ), e1)

Sr (e1, e1E1i (λ))top = Sr (e1E1 j (−1), e1)Sr (e1 + e j , (1 + λ)e1 − λe j )

Sr (e1 − e j , e1 − ei )Sr (e1 + e j , (1 − λ)e1 + λe j + ei )

Sr (e1, e1E1i (−1))Sr (e1, e1 − λe j + ei )Sr (e1, e1E1 j (λ)),

Sr (e1, e1E1i (λ))bot = Sr (e1, e1E1 j (λ))Sr (e1, e1 − λe j + ei )Sr (e1, e1E1i (−1))

Sr (e1 + e j , (1 − λ)e1 + λe j + ei )Sr (e1 − e j , e1 − ei )

Sr (e1 + e j , (1 + λ)e1 − λe j )Sr (e1E1 j (−1), e1)

(Note that the alternate relations are got by reversing the order).

The first step in computing the center Z(SUmr (R)) is to show that it consists of
scalars. We give a different proof than in [27] of the fact that Z(SUmr (R) consists
of scalar matrices. We use the fact here that EUmr (R)tb = EUmr (R), for r > 1.

Lemma 14 Let A ∈ M2s (M2t (R)), t ≥ 1, s + t = r be a diagonal block
matrix, where the alternating diagonal blocks are the same. If A commutes with
Er (es+1)(1)top and Er (e∗

s+1)(1),
top then A ∈ M2s+1(M2t−1(R)) is a diagonal block

matrix whose alternating diagonal block entries are same.

Proof Let

(
a11 a12
a21 a22

)
,

(
a33 a34
a43 a44

)
∈ M2t−1(M2(R)) be the two, perhaps different,

diagonal blocks of A. Compare the (1, 2s)th, (1, 2s − 1)th, and (2, 2s − 1)th block
entries of AEr (es+1)(1)top and Er (es+1)(1)top A we get a21 = 0, a34 = 0, and a11 =
a33 respectively. Compare the (1, 2s)th, (2, 2s)th, and (2, 2s − 1)th block entries of
AEr (e∗

s+1)(1)
top and Er (e∗

s+1)(1)
top Aweget a12 = 0, a22 = a44, and a43 = 0 respec-

tively. Hence A ∈ M2s+1(M2t−1(R)) and is a diagonal matrix with alternating entries
equal.

Lemma 15 Let A ∈ M2r (R) be a diagonal matrix with equal alternating diagonal
entries. If A commutes with Er (er+1)(1),top then A is a scalar matrix.

Proof Let a11 and a22 be the two different diagonal entries of the matrix A. Compare
the (1, 2r )th entry of AEr (er+1)(1)top and Er (er+1)(1)top A, we get a11 = a22. Hence
A is a scalar matrix.

Proposition 16 (Center of SUmr (R)) Let A ∈ M2r (R). If A commutes with every
element of SUmr (R), then A is a scalar matrix.
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Proof Since SUm2(R) = SL2(R), the result is clear for r = 1. So let r ≥ 2. Let us
write A = (ai j )1≤i, j≤4 in block form. By comparing entries we observe that

(1) Er (e∗
2)(1)

top A = AEr (e∗
2)(1)

top implies a12 = a32 = a41 = a42 = a43 = 0,
a22 = a44,

(2) Er (e2)(1)top A = AEr (e2)(1)top implies a21 = a31 = a34 = 0, a11 = a33,
(3) Er (e∗

2)(1)
bot A = AEr (e∗

2)(1)
bot implies a13 = a14 = a23 = 0, and

(4) Er (e2)(1)bot A = AEr (e2)(1)bot implies a24 = 0.

Hence A ∈ M22(M2r−2(R)) is a diagonal block matrix with alternating diagonal
blocks same. Apply Lemma 14 r − 2 times and conclude that A is a diagonal matrix
with alternating entries same. Now apply Lemma 15 to get the desired result.

Corollary 17 An element in M2r (R) which commutes with E(c)(1),top for c = ei
or e∗

i , 3 ≤ i ≤ r + 1, and E(d)(1),tb d = e2 or e∗
2 , is a scalar matrix.

Proof Obvious from the proof of Proposition 16.

An Involution on SUmr(R), r Even

The case when r is even; where the involution can be defined.
Let α = ∏n

i=1Si be a product of Suslin matries Si = Sr (vi , wi ), and let α∗ denote∏1
i=n Si . If r is even, then α �→ α∗ is a well defined anti-involution of SUmr (R):

By Suslin’s identities,
Sr (v,w) = Jr Sr (v,w)t J−1

r .

Hence, α∗ = Jrαt J−1
r , and we are done. From this, it follows that Z(SUmr (R)) =

{uI2r |u2 = 1}, when r is even.
Wenowdiscuss the casewhen r is odd;wherewe showed that there is an ambiguity

to define the involution.
In [29, Corollary 3.2] we show that if I2r = Sr (v1, w1) . . . Sr (vk, wk), for some

〈vi , wi 〉 = 1, for 1 ≤ i ≤ k, then Sr (vk, wk) . . . Sr (v1, w1) = uI2r , for some unit u
with u2 = 1.

Moreover, in [29, Sect. 5] we show that given a unit u with u2 = 1, we can find
Sr (vi , wi ), with 〈vi , wi 〉 = 1, 1 ≤ i ≤ k, for some k, such that

I2r = Sr (v1, w1) . . . Sr (vk, wk)

uI2r = Sr (vk, wk) . . . Sr (v1, w1).

Thus, α∗ is defined upto a unit factor when r is odd. This fact is useful to compute
Z(SUmr (R)) when r is odd.

Suslin Matrices, Orthogonal Transformations

The Fundamental property of Suslin matrices enables one to define an action of the
group SUmr (R) on the Suslin space. One associates a linear transformation Tg of
the Suslin space with a Suslin matrix g, via
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Tg(x, y) = (x ′, y′),

where gSr (x, y)g∗ = Sr (x ′, y′). Moreover, if g is a product of Suslin matrices
Sr (vi , wi ), with vi · wt

i = 1, for all i , then Tg ∈ O2(r+1)(R), i.e.

〈Tg(v,w), Tg(s, t)〉 = 〈(v,w), (s, t)〉 = v · wt + s · t t .

Translating the Fundamental Identities

Theorem 18 [29, Corollary 4.2] The above action induces a canonical homomor-
phism ϕ : SUmr (R) → SO2(r+1)(R), with

ϕ(Sr (v,w)) = TSr (v,w) = τ(v,w) ◦ τ(e1e1),

where τ(v,w) is the standard reflection with respect to the vector (v,w) ∈ R2(r+1)

given by the formula

τ(v,w)(s, t) = 〈v,w〉(s, t) − (〈v, t〉 + 〈s, w〉)(v,w).

Thematrix of the linear transformationwas also calculated in [26,Chap.5, Lemma
5.2.1].

Lemma 19 Let R be a commutative ring with identity. Let v,w ∈ Umr+1(R), then
the matrix of the linear transformation TSr (v,w) with respect to the (ordered) basis
{Sr (e1, 0), Sr (e2, 0), . . . , Sr (er+1, 0), Sr (0, e1), Sr (0, e2), . . . , Sr (0, er+1)} is(

I − (v,w)t (w, v)
) (

I − (e1, e1)
t (e1, e1)

)
.

In particular, for v = e1ε, w = e1εt
−1 for some ε ∈ SLr+1(R), the matrix of TSr (v,w)

is the commutator
[
εt ⊥ ε−1,

(
I − (e1, e1)t (e1, e1)

)]
.

Elementary Orthogonal Matrices and Reflections

Let π denote the permutation (1 r + 1) . . . (r 2r) corresponding to the form Ir�Ir .
The elementary orthogonal matrices over R is defined as

oei j (z) = I2r + zei j − zeπ( j)π(i), if i �= π( j) and i < j,

where 1 ≤ i �= j ≤ 2r , and z ∈ R.
The elementaryorthogonal group EO2r (R) is a subgroupof SO2r (R)generated

by the matrices oei j (z), where 1 ≤ i �= π(i) �= j ≤ 2r , and z ∈ R.
We showed in [27] that every elementary orthogonal transformation can bewritten

as a product of reflections. In fact, the standard generators of EUmr (R)tb map onto
the standard generators of EO2(r+1)(R), when r is even. Now apply:

Proposition 20 Let λ ∈ R. For r ≥ 2, 2 ≤ i �= j ≤ r + 1, and j �= π(i), one has,
w.r.t. the splitting given in Lemma 13,
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oe1i (λ) = τ(e1−e j ,e1) ◦ τ(−(1−λ)e1+e j ,−e1+λe j ) ◦ τ(e1−e j ,e1−ei )

◦τ(−(1+λ)e1+e j ,−e1−λe j+ei ) ◦ τ(e1,e1−ei ) ◦ τ(−e1,−e1+λe j+ei )

◦τ(e1,e1−λe j ) ◦ τ(e1,e1) = TSr (e1,e1E1i (−λ),top

oei1(λ) = τ(e1,e1−e j ) ◦ τ(−e1−λe j ,−(1+λ)e1+e j ) ◦ τ(e1−ei ,e1−e j )

◦τ(−e1+λe j+ei ,(λ−1)e1+e j ) ◦ τ(e1−ei ,e1) ◦ τ(−e1−λe j+ei ,−e1)

◦τ(e1+λe j ,e1) ◦ τ(e1,e1) = TSr (e1E1i (λ),e1),bot

oeπ(1)i (λ) = τ(e1,e1−λe j ) ◦ τ(−e1,−e1+λe j+ei ) ◦ τ(e1,e1−ei )

◦τ(−(1+λ)e1+e j ,−e1−λe j+ei ) ◦ τ(e1−e j ,e1−ei )

◦τ((λ−1)e1+e j ,−e1+λe j ) ◦ τ(e1−e j ,e1) ◦ τ(e1,e1) = TSr (e1,e1E1i (−λ)),bot

oeiπ(1)(λ) = τ(e1+λe j ,e1) ◦ τ(−e1−λe j+ei ,−e1) ◦ τ(e1−ei ,e1)

◦τ(−e1+λe j+ei ,(λ−1)e1+e j ) ◦ τ(e1−ei ,e1−e j ) ◦ τ(−e1−λe j ,−(1+λ)e1+e j )

◦τ(e1,e1−ej) ◦ τ(e1,e1) = TSr (e1E1i (λ),e1).top

We refer the reader to the Appendix where we show how the mathematical soft-
ware MuPAD helps in the computation of composition of reflections.

Kernel of ϕ : SUmr(R) −→ SO2(r+1)(R)

We compute the kernel of the map ϕ, and show that it consists of scalars uI2r , with
u2 = 1. This follows from:

Lemma 21 Let R be a commutative ring in which 2 is invertible. Let α ∈ SUmr (R).
Suppose that αSr (v,w)α∗ = Sr (v,w), for all Sr (v,w) ∈ EUmr (R). Then α∗ cen-
tralizes EUmr (R). Consequently, α is a scalar u I2r , for some unit u ∈ R, and
α ∈ Z(SUmr (R)).

Note that in the above statement we have replaced SUmr (R) by EUmr (R) in [29,
Lemma 4.7]. This is possible due to the Corollary 17.

The above lemma is really the key to verifying formulas relating to the action of
an element of SUmr (R) on a Suslin matrix Sr (v,w).

Computational Techniques in SUmr(R)

We illustrate different computational techniques which help to prove the relations in
the group EUmr (R), etc. Each method has its own merit. Here we collate five such
methods.

(1) Direct Computational Method: In this method we directly evaluate both sides
of the relation using the properties of Suslin matrices as in Lemma 6, and show
that they are equal.

(2) Circle Type Method: In this method we arrange the matrix block entries in a
particular way. The arrangement helps us to do the matrix multiplication easily;
as well as gives an inductive framework. We now define this particular type of
arrangement in the following definition.
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Definition 22 Let R be a commutative ring with 1. For α, β ∈ M2(Mn(R)), r ≥ 1,

say α =
(

α11 α12

α21 α22

)
, β =

(
β11 β12

β21 β22

)
, where each αi j ,βi j ∈ Mn(R), 1 ≤ i, j ≤ 2.

We denote by α � β (read as ‘α circles β’) the matrix

⎛
⎜⎜⎝

α11 0 0 α12

0 β11 β12 0
0 β21 β22 0

α21 0 0 α22

⎞
⎟⎟⎠ ∈ M4(Mn(R)).

Definition 23 A matrix α ∈ M2r (R) is said to be circled type if there eixsts β, γ ∈
Mr (R) such that α = β � γ.

(Suslin Matrices of Circled Type)

Let R be a commutative ring with 1 and let v = (a0, a1, . . . , ar ), w = (b0,
b1, . . . , br ) ∈ M1r+1(R). The Suslin matrix Sr (v,w) is of circled type if and only if
a1 = 0 = b1.

In this case, one observes that

Sr (v,w) = Sr−1(v1, w1) � Sr−1(v
�
1 , w�

1 ),

wherev1 = (a0, a2, . . . , ar ), w1 = (b0, b2, . . . , br ),v
�
1 = (a0,−b2, a3, . . . , ar ), and

w�
1 = (b0,−a2, b3, . . . , br ).

(3) Action Method: Suppose we expect some relation LHS = RHS. In this method
we first show that the action of LHS on Sr (v,w) and the action of RHS
on Sr (v,w) are same. Using this equality, one can show via Lemma 20 that
LHS·RHS−1 ∈ Z(SUmr (R)) and then by some argument (generic argument),
one can show that both LHS and RHS are equal.

(4) Method of Reflection: This is a refinement of the previous method. Again see
the action on Sr (v,w) as above. However, do show the equality compute via the
homomorphism in Theorem 16, ϕ : SUmr (R) → SO2(r+1)(R) whose image is
a composition of two reflections. So instead of multiplying matrices, one plays
with pairs of rows (v,w) of unit length. Finally to check equality, use the fact
that ϕ : EUmr (R) → EO2(r+1)(R) is surjective and ker ϕ ⊂ Z(SUmr (R)).

(5) OrthogonalMatrixMethod: In thismethod,we evaluate the image of both LHS
and RHS under ϕ in the matrix form and do the computation in EO2(r+1)(R)

and show that both the images are the same. Using the surjectivity of ϕ, one can
come back to EUmr (R) and using some argument as in the previous method
one can say that both sides are equal.

Quillen–Suslin Theory for EUmr(R[X])
The image of ϕ contains all even products of reflections, and hence, in particular, all
elementary orthogonal matrices.
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Thus, all questions concerning the group EUmr (R) can be reduced to the corre-
sponding questions regarding elementary orthogonal matrices. For example, one has
a Quillen–Suslin theory for the elementary orthogonal groups EO2n(R[X ]) due to
results of Suslin–Kopeiko in [57]—both the Local Global Principle and the Monic
Inversion Principle of Quillen–Suslin hold for the Elementary Unimodular vector
group EUmr (R[X ]). From the Local Global Principle, or otherwise, one can con-
clude that EUmr (R[X ]) is a normal subgroup of SUmr (R[X ]), for r > 1.
SUmr (R)/EUmr (R) ↪→ SO2(r+1)(R)/EO2(r+1)(R)

In this subsection, we recall the main work of Jose–Rao in [28] where they show how
the Fundamental property led to showing that the quotient of the Special Unimodular
vector group by its Elementary unimodular vector group sits inside the orthogonal
quotient; viz. it was shown in [29, Theorem 4.14] that the induced map ϕ on the quo-
tients is an injection, whence SUmr (R)/EUmr (R) is a subgroup of the orthogonal
quotient SO2(r+1)(R)/EO2(r+1)(R).

This is clear from Proposition 20 which shows that ϕ maps EUmr (R) →
EO2(r+1)(R) given by ϕ(Sr (v,w)) = TSr (v,w) is surjective. Moreover, one has the
kernel of the map ϕ : SUmr (R) → SO2(r+1)(R) is contained in Z(SUmr (R)).

R. Hazrat and N. Vavilov, using ideas of A. Bak in [6], have shown in [24] that the
orthogonal quotient group is nilpotent. Hence, the unimodular vector group quotient
SUmr (R)/EUmr (R) is a nilpotent group, for r > 1.

Injective Stability for the K1 Orthogonal Functor

We used results in [48, Sect. 4] in [50, Corollary 2.7] to show that the injective
stability for the orthogonal K1O functor cannot fall, in general for an affine algebra.
We recapitulate that result here. Thus the Suslin matrices have been found useful in
the context of injective stability bounds of the orthogonal K1O functors.

Before that we recall yet another lemma from [29].

Lemma 24 Let Sr (v,w), Sr (v′, w′), r > 1, 〈v,w〉 = 〈v′, w′〉 = 1, be Suslin matri-
ces. If Sr (v,w) ∈ Sr (v′, w′)EUmr (R), then

(i) if r is even χ2(v)
E∼ χ2(v

′),
(ii) if r is odd χ4(v)

E∼ χ4(v
′).

Lemma 25 Let A be a an affine algebra of dimension d over a perfect field k, of
characteristic �= 2, and with c.d.2(k) ≤ 1. Assume that mA = A for some m > 0.
If v ∈ Umd+1(A) then there is a row of the form (vm

1 , . . . , vd+1) in the elementary
orbit of v.

Theorem 26 ([50, Theorem 2]) Let A be a an affine algebra of dimension d over
an algebraically clsoed field, or a nonsingular one over a perfect C1-field. Assume
2A = A. If the natural map

ρO : SO2(d+1)(A)

EO2(d+1)(A)
↔ SO2(d+2)(A)

EO2(d+2)(A)
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is an isomorphism, then every unimodular (d + 1)-row over A can be completed to
an elementary matrix. However, Umd+1(A) = e1Ed+1(A) does not hold in general.

Proof Let d be odd. Let v ∈ Umd+1(A). Choose any w with v · wt = 1. By Lemma
19 the matrix of the linear transformation TSd (v,w) is a commutator, hence stably
elementary orthogonal. The hypothesis enables us to conclude that it is elemen-
tary orthogonal. By Lemma 24, Sd(v,w) ∈ EUmd(A). Moreover, by Lemma 24,
χ4(v) = 1.

By Lemma 25 as 2A = A, every row v ∈ Umd+1(A) is a χ4(v
′), for some v′ ∈

Umd+1(A). The result follows.
A similar argument can be given when d is even. Using the corresponding results

of [29].

Corollary 27 There exist affine algebras A of dimension d ≥ 2 over a perfect C1-
field k for which the injective stability estimate for K1O(A) is not less than 2(d + 2).

Proof. We recall the argument in [50] for completeness. If not, then by previous
theorem, e1Ed+1(A) = Umd+1(A), for all such A. Thiswould imply by [58, Lemmas
8.5 and 8.9] that stable rank of A ≤ stable rank of k[X0, . . . , Xd ] ≤ d + 1. By [58,
Corollary 8.6], MSd(A, (a)) = 0. But this contradicts the examples in [58, Sect. 6],
where Suslin shows that there are affine k-algebras A, and principal ideals (a), with
MSd(A, (a)) �= 0.

Theorem 28 Let A be a local ring of dimension d, with 2A = A. If the natural
map SO2(d+1)(A[X ])/EO2(d+1)(A[X ]) −→ K1O(A) is an isomorphism, then every
unimodular (d + 1)-row over A[X ] can be completed to an elementary matrix.

Proof: Arguing as above one can deduce, via the divisibility results in [42], that
Umd+1(R[X ]) = e1Ed+1(A[X ]). This contradicts the result in [48].
Corollary 29 There exists an affine algebras A of dimension 3, and a maximal ideal
m of A, for which the injective stability estimate for K1O(Am[X ]) is not 8.
Proof We revisit the proof in [50]. In [48, Sect. 4], it is shown that if A = k[X,Y, Z ]/
(Z7 − X2 − Y 3), where k = C or a sufficiently large field, thenUm3(A[T, T−1][X ],
(X)) �= e1E3(A[T, T−1][X ]). Note that A is regular except at the maximal ideal
m = (X,Y, Z). Hence, by Suslin’s version of the Local Global Principle in [55],
and T. Vorst’s theorem in [75], it follows that there is a maximal idealM containing
m[T, T−1] such that e1E3(A[T, T−1]M[X ] �= Um3(A[T, T−1]M[X ]). Now apply
Theorem 28.
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Appendix: Reflections via MuPAD

We define the reflection function τ(x,y)(z, w) via MuPAD for r = 4, where x, y, z, w
are vectors of length 5 as follows: In all the commands given below, we suppress the
output by putting colon (:) at the end of each input statement.

To define the function τ(x,y)(z, w), we need to define the vectors x, y, z, w. The
vectors x, y, z, w are defined as

• x := matrix([[x0,x1,x2,x3,x4]]):
• y := matrix([[y0,y1,y2,y3,y4]]):
• z := matrix([[z0,z1,z2,z3,z4]]):
• w := matrix([[b0,b1,b2,b3,b4]]):
• assume(Type::Real):
• f:=(x,y,z,w) -> linalg::scalarProduct(x,y) * matrix
([z,w])
-(linalg::scalarProduct(x,w) + linalg::scalarProduct
(y,z))
* matrix([x,y]):

The above statement defines the function

f (x, y, z, w) = 〈x, y〉(z, w) − (〈x, w〉 + 〈y, z〉)(x, y).

Thus f (x, y, z, w) will give the value of τ(x,y)(z, w).
As an illustration, we give the computation we did in the proof of Proposition 20

for i = 5, j = 3. The computation uses the following vectors:

• v := matrix([[a0,a1,a2,a3,a4]]):
• w := matrix([[b0,b1,b2,b3,b4]]):
• e1 := matrix([[1,0,0,0,0]]):
• ei := matrix([[0,0,0,0,1]]):
• ej := matrix([[0,0,1,0,0]]):

In the following input statements, we use L for λ. We first evaluate τ(e1−e j ,e1) ◦
τ(−(1−λ)e1+e j ,−e1+λe j ) ◦ τ(e1−e j ,e1−ei ) ◦ τ(−(1+λ)e1+e j ,−e1−λe j+ei ) ◦ τ(e1,e1−ei ) ◦
τ(−e1,−e1+λe j+ei ) ◦ τ(e1,e1−λe j ) ◦ τ(e1,e1) at (v,w).

• AA := simplify(f(e1,e1,v,w))

Output:
v1 = (−b0, a1, a2, a3, a4) and
w1 = (−a0, b1, b2, b3, b4)

• AB := simplify(f(e1,e1-L*ej,AA[1],AA[2]))
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Output:

v2 = (a0 + LPa2, a1, a2, a3, a4) and
w2 = (b0 + LPa2, b1, b2 − L2Pa2 − LPa0 − LPb0, b3, b4)

• AC := simplify(f(-e1,-e1+L*ej+ei,AB[1],AB[2]))

Output:

v3 = (a4 − b0, a1, a2, a3, a4) and
w3 = (−a0 + a4, b1, b2 − LPa4, b3, a0 − a4 + b0 + b4 + LPa2)

• AD := simplify(f(e1,e1-ei,AC[1],AC[2]))

Output:
v4 = (a0, a1, a2, a3, a4) and
w4 = (b0, b1, b2 − LPa4, b3, b4 + LPa2)

• AE := simplify(f(-(1+L)*e1+ej,-e1-L*ej+ei,AD[1],
AD[2]))

Output:

v5 = (a4−b0 + b2−L2Pa2−L2Pa4−L2Pb0 − LPa0 − LPa2 − 2PLPb0 + LPb2,
a1, a0 + a2 − a4 + b0 − b2 + L .a2 + L .a4 + L .b0, a3, a4) and

w5 = (−a0 + a4 + b2 − LPa2 − LPa4 − LPb0, b1,
b2 − L2Pa2 − L2Pa4 − L2Pb0 − LPa0 − LPb0 + LPb2, b3,
a0 − a4 + b0 − b2 + b4 + 2.L .a2 + L .a4 + L .b0)

• AF := simplify(f(e1-ej,e1-ei,AE[1],AE[2]))

Output:

v6 = (a0 − L2Pa2 − L2Pa4 − L2Pb0 − LPa0 + LPa2 + LPa4 + LPb2, a1,
a2 − LPa2 − LPb0, a3, a4) and

w6 = (b0 + LPa2 + LPb0, b1,
b2 − L2Pa2 − L2Pa4 − L2Pb0 − LPa0 − LPb0 + LPb2, b3, b4 − LPb0)

• AG := simplify(f(-(1-L)*e1+ej,-e1+L*ej,AF[1],AF[2]))

Output:

v7 = (−b0 + b2, a1, a0 + a2 + b0 − b2 + L .a4, a3, a4) and
w7 = (−a0 + b2 − L .a4, b1, b2, b3, b4 − L .b0)
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• AH := simplify(f(e1-ej,e1,AG[1],AG[2]))

Output:
v8 = (a0 + LPa4, a1, a2, a3, a4) and
w8 = (b0, b1, b2, b3, b4 − LPb0)

Note that this value is same as oe15(λ)

(
vt

wt

)
, where

oe15(λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 λ 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 −λ 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

References

1. Apte, H., Chattopadhyay, P., Rao, R.A.: A local global theorem for extended ideals. J. Ramanu-
jan Math. Soc. 27(1), 1–20 (2012)

2. Asok, A., Fasel, J.: An explicit KO-degree map and applications. arXiv:1403.4588
3. Asok, A., Fasel, J.: Euler Class Groups and Motivic Stable Cohomotopy, Preprint. http://arxiv.

org/pdf/1601.05723v1.pdf
4. Asok, A., Fasel, J.: Algebraic vector bundles on spheres. J. Topol. 7(3), 894–926 (2014)
5. Asok, A., Fasel, J.: Splitting vector bundles outside the stable range and A

1-homotopy sheaves
of punctured affine spaces. J. Am. Math. Soc. 28(4), 1031–1062 (2015)

6. Bak, A.: Nonabelian K -Theory: The Nilpotent Class of K1 and General Stability. K -Theory
4(4), 363–397 (1991)

7. Bass, H.: Some problems in “classical” algebraic K -theory, Algebraic K -theory, II: “Classi-
cal” algebraic K -theory and connections with arithmetic. Proceedings of Conference, Battelle
Memorial Institute, Seattle, Washington, 1972. Lecture Notes in Mathematics, vol. 342, pp.
3–73. Springer, Berlin (1973)

8. Bass, H., Milnor, J., Serre, J.-P.: Solution of the congruence subgroup problem for SLn (n ≥ 2).
Publ. Math. IHES 33, 59–137 (1967)

9. Basu, R., Rao, R.A.: Injective stability for K1 of classical modules. J. Algebra 323(4), 867–877
(2010)

10. Basu, R., Chattopadhyay, P., Rao, R.A.: Some remarks on symplectic injective stability. Proc.
Am. Math. Soc. 139(7), 2317–2325 (2011)
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Variations on the Grothendieck–Serre
Formula for Hilbert Functions
and Their Applications

Shreedevi K. Masuti, Parangama Sarkar and J.K. Verma

Abstract In this expository paper,we present proofs ofGrothendieck–Serre formula
for multi-graded algebras and Rees algebras for admissible multi-graded filtrations.
As applications, we derive formulas of Sally for postulation number of admissible
filtrations and Hilbert coefficients. We also discuss a partial solution of Itoh’s con-
jecture by Kummini and Masuti. We present an alternate proof of Huneke–Ooishi
Theorem and a generalisation for multi-graded filtrations.

Keywords Hilbert polynomial · Admissible filtration · Normal Hilbert polyno-
mial · Joint reduction · Local cohomology · Rees algebra ·Multi-graded filtration ·
Grothendieck–Serre formula

1 Introduction

The objective of this expository paper is to collect together several fundamental
results about Hilbert coefficients of admissible filtrations of ideals which can be
proved using various avatars of the Grothendieck–Serre formula for the difference of
the Hilbert function and Hilbert polynomial of a finite graded module of a standard
gradedNoetherian ring. The proofs presented here provide a unifiedway of approach-
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ing these results. Some of these results are not known in the multi-graded case. We
hope that the unified approach presented here could lead to suitable multi-graded
analogues of these results.

We begin by recalling the Grothendieck–Serre formula. For the sake of simplicity,
we assume that the graded rings considered in this paper are standard andNoetherian.

Let R =
∞⊕
n=0

Rn be a standard graded Noetherian ring where R0 is an Artinian local

ring. Let M = ⊕
n∈Z

Mn be a finite graded R-module of dimension d. The Hilbert

function of M is the function H(M, n) = λR0(Mn) for all n ∈ Z. Here λ denotes the
length function. Serre showed that there exists an integerm so that H(M, n) is given
by a polynomial P(M, x) ∈ Q[x] of degree d − 1 such that H(M, n) = P(M, n)

for all n > m. The smallest such m is called the postulation number of M. Let R+
denote the homogeneous ideal of R generated by elements of positive degree and
[Hi

R+(M)]n denote the nth graded component of the i th local cohomology module
Hi

R+(M) of M with respect to the ideal R+. We put λR0([Hi
R+(M)]n) = hiR+(M)n.

Theorem 1.1 (Grothendieck–Serre) For all n ∈ Z, we have

H(M, n) − P(M, n) =
d∑

i=0

(−1)i hiR+(M)n.

The GSF was proved in the fundamental paper [37] of J.-P. Serre. We quote from
[6]: “In this paper, Serre introduced the theory of coherent sheaves over algebraic
varieties over an algebraically closed field and a cohomology theory of such varieties
with coefficients in coherent sheaves. He did speak of algebraic coherent sheaves,
as at the first time he managed to introduce these theories with purely algebraic
tools, using consequently the Zariski topology instead of the complex topology and
homologicalmethods instead of tools frommultivariate complex analysis. Since then,
the cohomology theory introduced in Serre’s paper is often called Serre cohomology
or sheaf cohomology.

One of the achievement of Serre’s paper is the Grothendieck–Serre Formula,
which is given there in terms of sheaf cohomology and showed in this way that sheaf
cohomology gives a functorial understanding of the so called postulation problem
of algebraic geometry, the problem which classically consisted in understanding the
difference between the Hilbert function and the Hilbert polynomial of the coordinate
ring of a projective variety.”

The Grothendieck–Serre Formula (GSF) is valid for nonstandard graded rings
also if the Hilbert polynomial P(M, x) is replaced by the Hilbert quasi-polynomial
[4, Theorem 4.4.3]. The GSF has been generalised in several directions. For some
of the applications, we need it in the context of Z

s-graded modules over standard
N

s-graded rings. In order to state the GSF for Z
s-graded module, first we set up

notation and recall some definitions. Let (R,m) be a Noetherian local ring and
I1, . . . , Is be m-primary ideals of R. We put e = (1, . . . , 1), 0 = (0, . . . , 0) ∈ Z

s

and for all i = 1, . . . , s, ei = (0, . . . , 1, . . . , 0) ∈ Z
s where 1 occurs at i th posi-
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tion. For n = (n1, . . . , ns) ∈ Z
s, we write I n = I n11 · · · I nss and n+ = (n+

1 , . . . , n+
s )

where n+
i = max{0, ni } for all i = 1, . . . , s. For α = (α1, . . . ,αs) ∈ N

s, we put
|α| = α1 + · · · + αs . We define m = (m1, . . . ,ms) ≥ n = (n1, . . . , ns) if mi ≥ ni
for all i = 1, . . . , s. By the phrase “for all large n” we mean n ∈ N

s and ni � 0 for
all i = 1, . . . , s. For an N

s (or a Z
s)-graded ring T , the ideal generated by elements

of degree e is denoted by T++.

Definition 1.2 Aset of idealsF = {F(n)}n∈Zs is called aZ
s-graded I = (I1, . . . , Is)-

filtration if for all m, n ∈ Z
s, (i) I n ⊆ F(n), (ii) F(n)F(m) ⊆ F(n + m) and (iii)

if m ≥ n, F(m) ⊆ F(n).

Let R = ⊕
n∈Ns

Rn be a standard Noetherian N
s-graded ring defined over a local

ring (R0,m) and R++ = ⊕
n≥e

Rn. Let Proj(R) denote the set of all homogeneous

prime ideals P in R such that R++ � P. For a finitely generated module M , set
Supp++(M) = {P ∈ Proj(R) | MP �= 0}. Note that Supp++(M) = V++(Ann(M))

[7, Lemma 2.2.5], [15].

Definition 1.3 The relevant dimension of M is

rel. dim(M) =
{
s − 1 if Supp++(M) = ∅
max{dim (R/P) | P ∈ Supp++(M)} if Supp++(M) �= ∅.

By [15,Lemma1.1], dim Supp++(M) = rel. dim(M) − s.M.Herrmann,E.Hyry,
J. Ribbe and Z. Tang [15, Theorem 4.1] proved that if R = ⊕

n∈Ns

Rn is a stan-

dard Noetherian N
s-graded ring defined over an Artinian local ring (R0,m) and

M = ⊕
n∈Zs

Mn is a finitely generated Z
s-graded R-module then there exists a poly-

nomial, called the Hilbert polynomial of M , PM(x1, x2, . . . , xs) ∈ Q[x1, . . . , xs] of
total degree dim Supp++(M) satisfying PM(n) = λ(Mn) for all large n. Moreover
all monomials of highest degree in this polynomial have nonnegative coefficients.

The next two results are due to G. Colomé-Nin [7, Propositions 2.4.2 and 2.4.3]
for nonstandard multi-graded rings. In Sect. 2, we present her proofs to prove the
same results for standard multigraded rings for the sake of simplicity. These results
were proved in the bigraded case by A.V. Jayanthan and J.K. Verma [19].

Proposition 1.4 Let R = ⊕
n∈Ns

Rn be a standard Noetherian N
s -graded ring defined

over a local ring (R0,m) and M = ⊕
n∈Zs

Mn a finitely generatedZ
s -graded R-module.

Then

(1) For all i ≥ 0 and n ∈ Z
s , [Hi

R++(M)]n is finitely generated R0-module.

(2) For all large n and i ≥ 0, [Hi
R++(M)]n = 0.
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Theorem 1.5 (Grothendieck–Serre formula forZs-gradedmodules)Let R= ⊕
n∈Ns

Rn

be a standard NoetherianN
s -graded ring defined over an Artinian local ring (R0,m)

and M = ⊕
n∈Zs

Mn a finitely generated Z
s -graded R-module. Let HM(n) = λ(Mn)

and PM(x1, . . . , xs) be the Hilbert polynomial of M. Then for all n ∈ Z
s,

HM(n) − PM(n) =
∑
j≥0

(−1) j h j
R++(M)n.

The above formof theGSF leads to another version of it which gives the difference
between the Hilbert polynomial and the function of Z

s-graded filtrations of ideals in
terms of local cohomology modules of various forms of Rees rings and associated
graded rings of ideals. To define these, let t1, t2, . . . , ts be indeterminates and tn =
t1n1 · · · tsns . We put

R(F)=
⊕
n∈Ns

F(n)tn the Rees ring ofF ,

R′(F)=
⊕
n∈Zs

F(n)tn the extended Rees ring ofF,

G(F)=
⊕
n∈Ns

F(n)

F(n + e)
the associated multigraded ring ofF with respect toF(e),

Gi (F)=
⊕
n∈Ns

F(n)

F(n + ei )
the associated graded ring ofF with respect toF(ei ).

For F = {I n}n∈Zs , we set R(F) = R(I ) and R′(F) = R′(I ), G(F) = G(I ) and
Gi (F) = Gi (I ) for all i = 1, . . . , s.

Definition 1.6 A Z
s-graded I -filtration F = {F(n)}n∈Zs of ideals in R is called an

I -admissible filtration if F(n) = F(n+) and R′(F) is a finite R′(I )-module. For
s = 1, if a filtration F is I -admissible for some m-primary ideal I then it is also
I1-admissible.

Primary examples of I -admissible filtrations are {I n}n∈Zs in a Noetherian local
ring and {I n}n∈Zs in an analytically unramified local ring. Recall that for an ideal I
in R, the integral closure of I is the ideal

I := {x ∈ R | xn + a1x
n−1 + · · · + an−1x + an = 0 for some n ∈ N

and ai ∈ I i for i = 1, 2 . . . , n}.

We now set up the notation for a variety of Hilbert polynomials associated to
filtrations of ideals. Let I be an m-primary ideal of a Noetherian local ring (R,m)

of dimension d. For a Z-graded I -admissible filtration I = {In}n∈Z, Marley [23]
proved existence of a polynomial PI(x) ∈ Q[x] of degree d, written in the form,
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PI(n) = e0(I)

(
n + d − 1

d

)
− e1(I)

(
n + d − 2

d − 1

)
+ · · · + (−1)ded(I)

such that PI(n) = HI(n) for all large n, where HI(n) = λ(R/In) is the Hilbert
function of the filtration I. The coefficients ei (I) for i = 0, 1, . . . , d are integers,
called the Hilbert coefficients of I. The coefficient e0(I) is called the multiplic-
ity of I. P. Samuel [36] showed existence of this polynomial for the I -adic filtra-
tion {I n}n∈Z. Many results about Hilbert polynomials for admissible filtrations were
proved in [9, 33].

For m-primary ideals I1, . . . , Is, B. Teissier [38] proved that for all n sufficiently
large, the Hilbert function HI (n) = λ

(
R/I n

)
coincides with a polynomial

PI (n) =
∑

α=(α1,...,αs )∈Ns

|α|≤d

(−1)d−|α|eα(I )

(
n1 + α1 − 1

α1

)
· · ·

(
ns + αs − 1

αs

)

of degree d, called the Hilbert polynomial of I . Here we assume that s ≥ 2 in order
to write PI (n) in the above form. This was proved by P.B. Bhattacharya for s = 2 in
[1]. Here eα(I ) are integers which are called the Hilbert coefficients of I . D. Rees
[31] showed that eα(I ) > 0 for |α| = d. These are called the mixed multiplicities
of I .

For an I -admissible filtration F = {F(n)}n∈Zs in a Noetherian local ring (R,m)

of dimension d, Rees [31] showed the existence of a polynomial

PF (n) =
∑

α=(α1,...,αs )∈Ns

|α|≤d

(−1)d−|α|eα(F)

(
n1 + α1 − 1

α1

)
· · ·

(
ns + αs − 1

αs

)

of degree d which coincides with the Hilbert function HF (n) = λ
(
R/F(n)

)
for

all large n [31]. This polynomial is called the Hilbert polynomial of F . Rees [31,
Theorem 2.4] proved that eα(F) = eα(I ) for all α ∈ N

s such that |α| = d.

In Sect. 2, we prove the following version of the GSF for the extended Rees
algebras. It was proved for I -adic filtration and for nonnegative integers by Johnston–
Verma [20] and for Z-graded admissible filtration of ideals by C. Blancafort for all
integers [2].

Theorem 1.7 ([25, Theorem 4.3]) Let (R,m) be a Noetherian local ring of dimen-
sion d and I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs be an I -
admissible filtration of ideals in R. Then

(1) hiR++(R′(F))n < ∞ for all i ≥ 0 and n ∈ Z
s .

(2) PF (n) − HF (n) = ∑
i≥0

(−1)i hiR++(R′(F))n for all n ∈ Z
s .

In Sect. 3, we derive explicit formulas in terms of the Ratliff–Rush closure fil-
tration of a multi-graded filtration of ideals for the graded components of the local
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cohomology modules of certain Rees rings and associated graded rings. For an ideal
I in a Noetherian ring R, L.J. Ratliff and D. Rush [30] introduced the ideal

Ĩ =
⋃
k≥1

(I k+1 : I k),

called the Ratliff–Rush closure of I. If I has a regular element then the ideal Ĩ
has some nice properties such as for all large n, ( Ĩ )n = I n, Ĩ n = I n etc. If I is an
m-primary regular ideal then Ĩ is the largest ideal with respect to inclusion having
the same Hilbert polynomial as that of I. Blancafort [2] introduced Ratliff–Rush
closure filtration of an N-graded good filtration. Let (R,m) be a Noetherian local
ring and I1, . . . , Is bem-primary ideals of R.LetF = {F(n)}n∈Zs be an I -admissible
filtration of ideals in R. We need the concept of the Ratliff–Rush closure of F in
order to find formulas for certain local cohomology modules.

Definition 1.8 The Ratliff–Rush closure filtration of F = {F(n)}n∈Zs is the fil-
tration of ideals F̆ = {F̆(n)}n∈Zs given by

(1) F̆(n) = ⋃
k≥1

(F(n + ke) : F(e)k) for all n ∈ N
s,

(2) F̆(n) = F̆(n+) for all n ∈ Z
s .

The next three results to be proved in Sect. 3 are needed to prove several results
about Hilbert coefficients in Sect. 5.

Proposition 1.9 ([25, Proposition 3.5]) Let (R,m) be a Cohen–Macaulay local ring
of dimension two with infinite residue field and I1, . . . , Is bem-primary ideals in R.

LetF = {F(n)}n∈Zs be an I -admissible filtration of ideals in R. Then for all n ∈ N
s,

[H 1
R(F)++(R(F))]n ∼= F̆(n)

F(n)
.

Proposition 1.10 ([2, Theorem 3.5]) Let (R,m) be a Cohen–Macaulay local ring of
dimension two with infinite residue field, I anm-primary ideal of R andF = {In}n∈Z
be an I -admissible filtration of ideals in R. Then

[H 1
R(F)+(R′(F))]n =

{
Ĭn/In if n ≥ 0
0 if n < 0.

Theorem 1.11 ([25, Theorem 3.3]) Let (R,m) be a Noetherian local ring of dimen-
sion d ≥ 1 with infinite residue field and I1, . . . , Is be m-primary ideals in R such
that grade(I1 · · · Is) ≥ 1. LetF = {F(n)}n∈Zs be an I -admissible filtration of ideals
in R. Then for all n ∈ N

s and i = 1, . . . , s,

[H 0
Gi (F)++(Gi (F))]n = F̆(n + ei ) ∩ F(n)

F(n + ei )
.
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In Sect. 4, we present several applications of the GSF for Rees algebra and asso-
ciated graded ring of an ideal. The first application due to J.D. Sally, who pioneered
these techniques for the study of Hilbert–Samuel coefficients, shows the connection
of the postulation number with reduction number. Let (R,m) be a Noetherian local
ring, I be anm-primary ideal andF = {In}n∈Z be an admissible I -filtration of ideals
in R.

Definition 1.12 A reduction of an I -admissible filtration F = {In}n∈Z is an ideal
J ⊆ I1 such that JIn = In+1 for all large n.A minimal reduction ofF is a reduction
of F minimal with respect to inclusion. For a minimal reduction J of F , we set

rJ (F) = min{m : J In = In+1 for n ≥ m} and
r(F) = min{rJ (I) : J is a minimal reduction of F}.

For F = {I n}n∈Z, we set rJ (F) = rJ (I ) and r(F) = r(I ).

Definition 1.13 An integer n ∈ Z is called the postulation number of F , denoted
by n(F), if PF (m) = HF (m) for all m > n and PF (n) �= HF (n). It is denoted by
n(F).

The next result was proved by J.D. Sally [35] for the m-adic filtration. Her proof
remains valid for any admissible filtration.

Theorem 1.14 Let (R,m) be a Cohen–Macaulay local ring of dimension d ≥ 1
with infinite residue field, I an m-primary ideal and F = {In} be an I -admissible
filtration of ideals in R. Let HR(n) = λ (In/In+1) and PR(X) ∈ Q[X ] such that
PR(n) = HR(n) for all large n. Suppose grade G(F)+ ≥ d − 1. Then for a minimal
reduction J = (x1, . . . , xd) of F , HR(rJ (F) − d) �= PR(rJ (F) − d) and HR(n) =
PR(n) for all n ≥ rJ (F) − d + 1.

The following result is due to Marley [23, Corollary 3.8]. We give another proof
which follows from the above theorem.

Theorem 1.15 ([23, Corollary 3.8]) Let (R,m) be a Cohen–Macaulay local ring of
dimension d ≥ 1 with infinite residue field, I an m-primary ideal and F = {In} be
an I -admissible filtration of ideals in R. Let gradeG(F)+ ≥ d − 1. Then r(F) =
n(F) + d.

In Sect. 5, we discuss several results about nonnegativity of Hilbert coefficients of
multi-graded filtrations of ideals as easy consequences of theGSF for such filtrations.
We prove the following result which implies earlier results of Northcott, Narita, and
Marley.

Theorem 1.16 ([25, Theorem 5.6]) Let (R,m) be a Cohen–Macaulay local ring of
dimension d ≥ 1 and I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs be
an I -admissible filtration of ideals in R. Then
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(1) eα(F) ≥ 0 where α = (α1, . . . ,αs) ∈ N
s, |α| ≥ d − 1.

(2) eα(F) ≥ 0 where α = (α1, . . . ,αs) ∈ N
s, |α| = d − 2 and d ≥ 2.

Wealso discuss the results of S. Itoh about nonnegativity and vanishing of the third
coefficient of the normalHilbert polynomial of the filtration {I n}n∈Z in an analytically
unramified Cohen–Macaulay local ring. We prove an analogue of a theorem due
to Sally for admissible filtrations in two-dimensional Cohen–Macaulay local rings
which gives explicit formulas for all the coefficients of their Hilbert polynomial.
Here again we show that these formulas follow in a natural way from the variant of
GSF for Rees algebra of the filtration.

Proposition 1.17 Let (R,m) be a two-dimensional Cohen–Macaulay local ring, I
be anym-primary ideal of R and F = {In}n∈Z an admissible I -filtration of ideals in
R. Then

(1) λ
(
H 2

R(F)+(R(F)0
) = e2(F),

(2) λ
(
H 2

R(F)+(R(F))1
) = e0(F) − e1(F) + e2(F) − λ

(
R

Ĭ1

)
,

(3) λ
(
H 2

R(F)+(R(F))−1
) = e1(F) + e2(F).

C. Huneke [14] and A. Ooishi [28] independently proved that if (R,m) is a
Cohen–Macaulay local ring of dimension d ≥ 1 and I is an m-primary ideal then
e0(I ) − e1(I ) = λ(R/I ) if and only if r(I ) ≤ 1. Huckaba and Marley [13] proved
this result for Z-graded admissible filtrations. In Sect. 6, we present a proof, due
to Blancafort, for Z-graded admissible filtrations of Huneke–Ooishi Theorem. The
original proofs due to Huneke and Ooishi did not employ local cohomology and
relied on use of superficial sequences. Our purpose in presenting the alternative
proof using the GSF for Rees algebras is to motivate the proof of an analogue of the
Huneke–Ooishi Theorem for multi-graded filtrations of ideals.

Theorem 1.18 ([3, Theorem 4.3.6]) Let (R,m) be a Cohen–Macaulay local ring
with infinite residue field of dimension d ≥ 1, I1 anm-primary ideal andF = {In}n∈Z
be an I1-admissible filtration of ideals in R. Then the following are equivalent:

(1) e0(F) − e1(F) = λ (R/I1) ,

(2) r(F) ≤ 1.

In this case, e2(F) = · · · = ed(F) = 0,G(F) is Cohen–Macaulay, n(F) ≤ 0, r(F)

is independent of the reduction chosen and F = {I n1 }.
Using the GSF for multi-graded Rees algebras we prove the following analogue

of the Huneke–Ooishi Theorem for multi-graded admissible filtrations.

Theorem 1.19 ([25, Theorem 5.5]) Let (R,m) be a Cohen–Macaulay local ring of
dimension d ≥ 1 and I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs be
an I -admissible filtration of ideals in R. Then for all i = 1, . . . , s,
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(1) e(d−1)ei (F) ≥ e1(F (i)),

(2) e(Ii ) − e(d−1)ei (F) ≤ λ(R/F(ei )),
(3) e(Ii ) − e(d−1)ei (F) = λ(R/F(ei )) if and only if r(F (i)) ≤ 1 and e(d−1)ei (F) =
e1(F (i)), where F (i) = {F(nei )}n∈Z is an Ii -admissible filtration.

The vanishing of the constant term of the Hilbert polynomial of a filtration gives
insight into the filtration as well as the local ring. For any m-primary ideal I in
an analytically unramified local ring (R,m) of dimension d, the normal Hilbert
function of I is defined to be the function H(I, n) = λ(R/I n). Rees showed that
for large n, it is given by the normal Hilbert polynomial

P(I, x) = e0(I )

(
x + d − 1

d

)
− e1(I )

(
x + d − 2

d − 1

)
+ · · · + (−1)ded(I ).

The integers e0(I ), e1(I ), . . . , ed(I ) are called the normal Hilbert coefficients of
I. Rees defined a 2-dimensional normal analytically unramified local ring (R,m)

to be pseudo-rational if e2(I ) = 0 for all m-primary ideals. It can be shown that
two-dimensional local rings having a rational singularity are pseudo-rational. It is
natural to characterise e2(I ) = 0 in terms of computable data. This was considered
by Huneke [14] in which he proved.

Theorem 1.20 ([14, Theorem 4.5]) Let (R,m) be a two-dimensional analytically
unramifiedCohen–Macaulay local ring. Let I be anm-primary ideal. Then e2(I ) = 0
if and only if I n = (x, y)I n−1 for n ≥ 2 and for any minimal reduction (x, y) of I.

A similar result was proved by Itoh [18] about vanishing of e2(I ). Using the GSF
for multi-graded filtrations, we prove the following theorem which characterises the
vanishing of the constant term of theHilbert polynomial of amulti-graded admissible
filtration and derive results of Itoh and Huneke as consequences.

Theorem 1.21 ([25, Theorem 5.7]) Let (R,m) be a Cohen–Macaulay local ring
of dimension two and I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs be
an I -admissible filtration of ideals in R. Then e0(F) = 0 implies e(Ii ) − eei (F) =
λ

(
R

F̆(ei )

)
for all i = 1, . . . , s. Suppose F̆ is I -admissible filtration, then the converse

is also true.

2 Variations on the Grothendieck–Serre Formula

The main aim of this section is to prove the Grothendieck–Serre formula (Theorem
2.3) and its variations. In [7, Propositions 2.4.2 and 2.4.3], Colomé-Nin proved the
Grothendieck–Serre formula for nonstandardmulti-graded rings. For the sake of sim-
plicity, we present her proof for standard multi-graded rings. As a consequence we
prove [25, Theorem 4.3] (Theorem 2.5) which relates the difference of Hilbert poly-
nomial and Hilbert function of an I -admissible filtration to the Euler characteristic
of the extended multi-Rees algebra.
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We recall the following Lemma from [7] which is needed to prove Theorem 2.3.

Lemma 2.1 ([7, Lemma 2.2.8]) Let R = ⊕
n∈Ns

Rn be a standard Noetherian N
s -

graded ring defined over a local ring (R0,m) and M = ⊕
n∈Zs

Mn a finitely gen-

erated Z
s -graded R-module. Let x ∈ Rn where n ≥ e and x /∈ ⋃

P∈Ass(M)

P. Then

rel. dim(M/xM) = rel. dim(M) − 1.

Proposition 2.2 Let R = ⊕
n∈Ns

Rn be a standard Noetherian N
s -graded ring defined

over a local ring (R0,m) and M = ⊕
n∈Zs

Mn a finitely generatedZ
s -graded R-module.

Then

(1) For all i ≥ 0 and n ∈ Z
s , [Hi

R++(M)]n is finitely generated R0-module.

(2) For all large n and i ≥ 0, [Hi
R++(M)]n = 0.

Proof Note that R++ is finitely generated. We prove both (1) and (2) together by
induction on i. Suppose i = 0. Note that H 0

R++(M) ⊆ M and hence H 0
R++(M) is

finitely generated R-module. Let {γ1, . . . , γq} be a generating set of H 0
R++(M) as

an R-module and deg(γ j ) = p( j) = (p( j1), . . . , p( js)) for all j = 1, . . . , q. Let
αi = max{|p( j i)| : j = 1, . . . , q} for all i = 1, . . . , s and α = (α1, . . . ,αs). Since
H 0

R++(M) is R++-torsion, there exists an integer t ≥ 1 such that Rt++H 0
R++(M) = 0.

Then for all n ≥ α + te,

[H 0
R++(M)]n = Rn−p(1)γ1 + · · · + Rn−p(q)γq ⊆ Rt

++H
0
R++(M) = 0.

Fix n ∈ Z
s . Since R is a standard Noetherian N

s-graded ring defined over R0, there
exist elements ai1, . . . , aiki ∈ Rei for all i = 1, . . . , s such that each nonzero ele-
ment of [H 0

R++(M)]n can be written as sum of monomials
∏

1≤i≤s
ati1i1 · · · atikiiki

γ j of

degree n with coefficients from R0 where j = 1, . . . , q, ti1, . . . , tiki ≥ 0. Since
0 ≤ ti1, . . . , tiki ≤ ni − p( j i), the number of monomial generators are finite. Hence
[H 0

R++(M)]n is finitely generated R0-module.

Now assume i > 0. Let M ′ denote M/H 0
R++(M). Consider the short exact

sequence of R-modules

0 −→ H 0
R++(M) −→ M −→ M ′ −→ 0

which gives long exact sequence of local cohomology modules

· · · −→ Hi
R++(H 0

R++(M)) −→ Hi
R++(M) −→ Hi

R++(M ′) −→ · · · .

Since H 0
R++(M) is R++-torsion, Hi

R++(H 0
R++(M)) = 0 for all i ≥ 1. Thus
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Hi
R++(M) � Hi

R++(M ′) for all i ≥ 1. (2.2.1)

By [7, Lemma 2.4.1], there exists an element x ∈ Rp for some p ≥ e such that
x /∈ P for all P ∈ Ass(M ′) = Ass(M)\V (R++).Fix i ≥ 1.Consider the short exact
sequence of R-modules

0 −→ M ′(−p)
.x−→ M ′ −→ M ′/xM ′ −→ 0

which gives long exact sequence of local cohomologymoduleswhose r th component
is

· · · −→
[
Hi−1

R++

(
M ′/xM ′)]

r
−→ [

Hi
R++(M ′)

]
r−p

.x−→ [
Hi

R++(M ′)
]
r

−→ [
Hi

R++

(
M ′/xM ′)]

r
−→ · · · .

By inductive hypothesis
[
Hi−1

R++

(
M ′/xM ′)]

m
= 0 for all large m, say, for all m ≥ k

for some k ∈ N
s . Then for all n ≥ k, we have the exact sequence

0 −→ [
Hi

R++(M ′)
]
n−p

.x−→ [
Hi

R++(M ′)
]
n
.

Since Hi
R++(M ′) is R++-torsion and x ∈ R++, we have

[
Hi

R++(M ′)
]
m

= 0 for all

m ≥ k − p. Hence we prove part (2).
Fix i > 0 and n ∈ Z

s . By [7, Lemma 2.4.1], there exists an element y ∈ R++
such that y /∈ P for all P ∈ Ass(M ′) = Ass(M)\V (R++) and we can assume
degree(y) = m such that [Hi

R++(M ′)]r = 0 for all r ≥ n + m. Consider the short
exact sequence of R-modules

0 −→ M ′(−m)
.y−→ M ′ −→ M ′/yM ′ −→ 0

which gives long exact sequence of cohomology modules whose (m + n)th
component is

· · · −→
[
Hi−1

R++

(
M ′/yM ′)]

m+n
−→ [

Hi
R++(M ′)

]
n

.y−→ [
Hi

R++(M ′)
]
m+n

−→ · · · .

Since [Hi
R++(M ′)]m+n = 0 and by induction hypothesis

[
Hi−1

R++

(
M ′/yM ′)]

m+n
is

finitely generated R0-module, from the above exact sequence, we get [Hi
R++(M ′)]n

is finitely generated R0-module. Hence by Eq. (2.2.1), we get the required result. �
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Theorem 2.3 (Grothendieck–Serre formula for multi-graded modules) Let R =⊕
n∈Ns

Rn be a standard NoetherianN
s -graded ring defined over an Artinian local ring

(R0,m) and M = ⊕
n∈Zs

Mn a finitely generated Z
s -graded R-module. Let HM(n) =

λ(Mn) and PM(x1, . . . , xs) be the Hilbert polynomial of M. Then for all n ∈ Z
s,

HM(n) − PM(n) =
∑
j≥0

(−1) j h j
R++(M)n.

Proof For alln∈ Z
s,wedefineχM (n)= ∑

j≥0
(−1) j h j

R++(M)n and fM(n) = HM(n) −
PM(n). We use induction on rel. dim(M). Suppose rel. dim(M) = s − 1. Then
Supp++(M) = V++(Ann(M)) = ∅. Therefore there exists an integer k ≥ 1 such
that Rk++M = 0. Hence H 0

R++(M) = M and Hi
R++(M) = 0 for all i ≥ 1. Since

PM(X1, . . . , Xs) has degree−1,we have PM(n) = 0 for all n ∈ Z
s . Thus we get the

required equality.
Assume that rel. dim(M) ≥ s. Let M ′ denote M/H 0

R++(M). Consider the short
exact sequence of R-modules

0 −→ H 0
R++(M) −→ M −→ M ′ −→ 0

which gives long exact sequence of local cohomology modules

· · · −→ Hi
R++(H 0

R++(M)) −→ Hi
R++(M) −→ Hi

R++(M ′) −→ · · · .

Note that H 0
R++(M) is R++-torsion. Hence for all i ≥ 1, Hi

R++(H 0
R++(M)) = 0 and

Hi
R++(M) � Hi

R++(M ′). (2.3.1)

SinceHM(n) = HM ′(n) + h0R++(M)n andhencebyProposition2.2part (2), PM (n) =
PM ′(n). Thus

HM(n)− PM(n)= HM ′(n)+ h0R++(M)n − PM ′(n)= HM ′(n)− PM ′(n)+ h0R++(M)n.

Therefore by the Eq. (2.3.1), it is enough to prove the result for M ′. By [7, Lemma
2.4.1], there exists an element x ∈ Rp for some p ≥ e such that x /∈ P for all P ∈
Ass(M ′) = Ass(M)\V (R++). Consider the short exact sequence of R-modules

0 −→ M ′(−p)
.x−→ M ′ −→ M ′/xM ′ −→ 0

which gives long exact sequence of cohomology modules whose r th component is
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· · · −→
[
Hi−1

R++

(
M ′/xM ′)]

r
−→ [

Hi
R++(M ′)

]
r−p

.x−→ [
Hi

R++(M ′)
]
r

−→ [
Hi

R++

(
M ′/xM ′)]

r
−→ · · · .

Thus for all n ∈ Z
s, HM ′/xM ′(n) = HM ′(n) − HM ′(n − p). Hence PM ′/xM ′(n) =

PM ′(n) − PM ′(n − p). By Lemma 2.1, rel. dim(M ′/xM ′) < rel. dim(M ′). There-
fore for all n ∈ Z

s,

fM ′(n) − fM ′(n − p) = fM ′/xM ′(n) = χM ′/xM ′(n) = χM ′(n) − χM ′(n − p).

Hence fM ′(n) − χM ′(n) = fM ′(n − p) − χM ′(n − p).Since for all largen, fM ′(n) −
χM ′(n) = 0, we get the required result. �

Proposition 2.4 Let S′ be a Z
s -graded ring and S = ⊕

n∈Ns S′
n. Then Hi

S++(S′) ∼=
Hi

S++(S) for all i > 1 and we have the exact sequence

0 −→ H 0
S++(S) −→ H 0

S++(S′) −→ S′

S
−→ H 1

S++(S) −→ H 1
S++(S′) −→ 0.

Proof Consider the short exact sequence of S-modules

0 −→ S −→ S′ −→ S′

S
−→ 0.

This gives the long exact sequence of S-modules

· · · −→ Hi
S++(S) −→ Hi

S++(S′) −→ Hi
S++

(
S′

S

)
−→ · · · .

Since S′
S is S++-torsion, H 0

S++

(
S′
S

)
= S′

S and Hi
S++

(
S′
S

)
= 0 for all i > 0. Hence the

result follows. �

The GSF for multi-graded Rees algebras proved below generalises the theorems
[19, Theorem 5.1], [24, Theorem 1] and [2, Theorem 4.1].

Theorem 2.5 ([25, Theorem 4.3]) Let (R,m) be a Noetherian local ring of dimen-
sion d and I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs be an I -
admissible filtration of ideals in R. Then

(1) hiR++(R′(F))n < ∞ for all i ≥ 0 and n ∈ Z
s .

(2) PF (n) − HF (n) = ∑
i≥0

(−1)i hiR++(R′(F))n for all n ∈ Z
s .
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Proof (1) Denote
R′(F)

R′(F)(ei )
by G ′

i (F). By the change of ring principle,

H j
Gi (I )++

(G ′
i (F)) ∼= H j

R++(G ′
i (F)) for all i = 1, . . . , s and j ≥ 0. For a fixed i , con-

sider the short exact sequence of R(I )-modules

0 −→ R′(F)(ei ) −→ R′(F) −→ G ′
i (F) −→ 0. (2.5.1)

This induces the long exact sequence of R-modules

0 −→ [H0
R++ (R′(F))]n+ei −→ [H0

R++ (R′(F))]n −→ [H0
R++ (G ′

i (F))]n −→ [H1
R++ (R′(F))]n+ei −→ · · · .

By Propositions 2.2 and 2.4, [H j
R++(R′(F))]n = 0 for all large n and j ≥ 0. Since(

G ′
i (F)

Gi (F)

)
n

= 0 for all n ∈ N
s or ni < 0, by Propositions 2.2 and 2.4, [H j

R++(G ′
i (F))]n

is finitely generated (Gi (I ))0-module for all n ∈ N
s or ni < 0 and j ≥ 0. Since

(Gi (I ))0 is Artinian, [H j
R++(G ′

i (F))]n has finite length for all n ∈ N
s or ni < 0 and

j ≥ 0. Hence using decreasing induction on n, we get that h j
R++(R′(F))n < ∞ for

all j ≥ 0 and n ∈ Z
s .

(2) Let χM(n) = ∑
i≥0

(−1)i hiR++(M)n where M is an R(I )-module. Then from the

short exact sequence (2.5.1), Theorem 2.3 and Proposition 2.4, for each i = 1, . . . , s
and n ∈ N

s or ni < 0,

χR′(F)(n + ei ) − χR′(F)(n) = −χG ′
i (F)(n)

= −χGi (F)(n)

= PGi (F)(n) − HGi (F)(n)

= (PF (n + ei ) − PF (n)) − (HF (n + ei ) − HF (n)).

Let h(n) = χR′(F)(n) − (PF (n) − HF (n)). Then h(n + ei ) = h(n) for all n ∈ N
s

or ni < 0 and i = 1, . . . , s. Since h(n) = 0 for all large n, h(n) = 0 forall n ∈ Z
s .

�

3 Formulas for Local Cohomology Modules

In this section, we derive formulas for the graded components of the local coho-
mology modules of certain Rees rings and associated graded rings in terms of the
Ratliff–Rush closure filtration of a multi-graded filtration of ideals. These gener-
alise [2, Proposition 2.5 and Theorem 3.5]. We use these formulas to derive various
properties of the Hilbert coefficients in further sections.

In the following proposition we derive a formula for Hd
G(F)+(G(F))n.
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Proposition 3.1 Let (R,m) be a Cohen–Macaulay local ring of dimension d ≥ 1,
I an m-primary ideal and F = {In} be an I -admissible filtration of ideals in R. Let
(x1, . . . , xd) be a minimal reduction ofF . Put xk = (xk1 , . . . , x

k
d ) for all k ≥ 1. Then

for all n ∈ Z,

Hd
G(F)+(G(F))n = lim−→

k

Idk+n

xk I(d−1)k+n + Idk+n+1
.

Proof Let x∗
i = xi + I2 be the image of xi inG(F).Since

√
G(F)+ =√

(x∗
1 , . . . , x

∗
d ),

by [5, Theorem 5.2.9], Hd
G(F)+(G(F))= lim−→

k

Hd((x∗
1 )

k, . . . , (x∗
d )

k,G(F)) where

Hd((x∗
1 )

k, . . . , (x∗
d )

k,G(F)) is the dth cohomology of the Koszul complex of G(F)

with respect to the elements (x∗
1 )

k, . . . , (x∗
d )

k . Thus we get the required result. �

Proposition 3.2 Let (R,m) be a Cohen–Macaulay local ring of dimension d ≥ 1,
I an m-primary ideal and F = {In} be an I -admissible filtration of ideals in R. Let
(x1, . . . , xd) be a minimal reduction ofF . Put xk = (xk1 , . . . , x

k
d ) for all k ≥ 1. Then

for all n ∈ Z,

Hd
R(F)+(R(F))n = lim−→

k

Idk+n

xk I(d−1)k+n
.

Proof Since
√R(F)+ =√

(x1t, . . . , xd t),wehaveHd
R(F)+(R(F))= lim−→

k

Hd((x1t)
k,

. . . , (xd t)
k,R(F)) by [5, Theorem 5.2.9] where Hd((x1t)k, . . . , (xd t)k,R(F)) is

the dth cohomology of the Koszul complex of R(F) with respect to the elements
(x1t)k, . . . , (xd t)k . Thus we get the required result. �

Lemma 3.3 ([Rees’ Lemma] [31, Lemma 1.2] [25, Lemma 2.2]) Let (R,m, k) be
a Noetherian local ring of dimension d with infinite residue field k and I1, . . . , Is be
m-primary ideals of R. Let F = {F(n)}n∈Zs be an I -admissible filtration of ideals
in R and S be a finite set of prime ideals of R not containing I1 · · · Is . Then for each
i = 1, . . . , s, there exists an element xi ∈ Ii not contained in any of the prime ideals
of S and an integer ri such that for all n ≥ ri ei ,

F(n) ∩ (xi ) = xiF(n − ei ).

Theorem 3.4 ([31, Theorem 1.3] [25, Theorem 2.3]) Let (R,m) be a Noetherian
local ring of dimension d with infinite residue field and I1, . . . , Is be m-primary
ideals of R. Let F = {F(n)}n∈Zs be an I -admissible filtration of ideals in R.

Then there exist a set of elements {xi j ∈ Ii : j = 1, . . . , d; i = 1, . . . , s} such that
(y1, . . . , yd)F(n) = F(n + e) for all large n where y j = x1 j · · · xs j ∈ I1 · · · Is for
all j = 1, . . . , d. Moreover, if the ring is Cohen–Macaulay local then there exist
elements xi1 ∈ Ii and integers ri for all i = 1, . . . , s such that for all n ≥ ri ei ,
F(n) ∩ (xi1) = xi1F(n − ei ) and y1 = x11 · · · xs1.
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Proposition 3.5 ([25, Proposition 3.5]) Let (R,m) be a Cohen–Macaulay local ring
of dimension two with infinite residue field and I1, . . . , Is bem-primary ideals in R.

LetF = {F(n)}n∈Zs be an I -admissible filtration of ideals in R. Then for all n ∈ N
s,

[H 1
R(F)++(R(F))]n ∼= F̆(n)

F(n)
.

Proof By Lemma 3.3 and Theorem 3.4, there exists a regular sequence {y1, y2} such
that (y1, y2)F(n) = F(n + e) for all large n. For all k ≥ 1, consider the following
complex of R(F)-modules

Fk. : 0 −→ R(F)
αk−→ R(F)(ke)2

βk−→ R(F)(2ke) −→ 0,

where αk(1) = (y1k tke, y2k tke) and βk(u, v) = y2k tkeu − y1k tkev. Since radical of
the ideal (y1t e, y2t e)R(F) is same as radical of the ideal R(F)++, by [5, Theorem
5.2.9],

[H 1
R(F)++(R(F))]n ∼= lim−→

k

(ker βk)n

(im αk)n
.

Suppose (u, v) ∈ (ker βk)n for any n ∈ N
s . Then y2ku − y1kv = 0. Since {y1, y2}

is a regular sequence, u = y1k p for some p ∈ R. Thus v = y2k p. Hence (u, v) =
(y1k p, y2k p). This implies for all n ∈ N

s, (u, v) ∈ (ker βk)n if and only if (u, v) =
(y1k p, y2k p) for some p ∈ (F(n + ke) : (y1k, y2k)). For k � 0, by [25, Proposition
3.1], F̆(n) = (F(n + ke) : (y1k, y2k)) for all n ∈ N

s . Hence for all n ∈ N
s and k �

0, (ker βk)n ∼= F̆(n). Also for all n ∈ N
s,

(im αk)n = {(y1k ptke, y2k ptke) : p ∈ R(F)n} ∼= F(n).

Hence [H 1
R(F)++(R(F))]n ∼= F̆(n)

F(n)
for all n ∈ N

s . �

Proposition 3.6 Let (R,m) be a Cohen–Macaulay local ring of dimension two
with infinite residue field, I anm-primary ideal andF = {In}n∈Z be an I -admissible
filtration of ideals in R. Then

[H 1
R(F)+(R(F))]n =

{
Ĭn/In if n ≥ 0
R if n < 0.

Proof By Proposition 3.5, we get [H 1
R(F)+(R(F))]n = Ĭn/In for all n ≥ 0. Let J

be minimal reduction of F generated by superficial sequence y1, y2. For all k ≥ 1,
consider the following complex of R(F)-modules
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Fk. : 0 −→ R(F)
αk−→ R(F)(k)2

βk−→ R(F)(2k) −→ 0,

where αk(1) = (y1k tk, y2k tk) and βk(u, v) = y2k tku − y1k tkv. Since radical of the
ideal (y1t, y2t)R(F) is same as radical of the idealR(F)+, by [5, Theorem 5.2.9],

[H 1
R(F)+(R(F))]n ∼= lim−→

k

(ker βk)n

(im αk)n
.

Now for n < 0, R(F)n = 0. Hence (im αk)n = 0.
Suppose (u, v) ∈ (ker βk)n for any n < 0. Then y2ku − y1kv = 0. Since {y1, y2}

is a regular sequence, u = y1k p for some p ∈ R. Thus v = y2k p. Hence (u, v) =
(y1k p, y2k p). This implies for all n < 0, (u, v) ∈ (ker βk)n if and only if (u, v) =
(y1k p, y2k p) for some p ∈ (F(n + k) : (y1k, y2k)) = R. �

Proposition 3.7 ([2, Theorem 3.5]) Let (R,m) be a Cohen–Macaulay local ring of
dimension two with infinite residue field, I an m-primary ideal and F = {In}n∈Z be
an I -admissible filtration of ideals in R. Then

[H 1
R(F)+(R′(F))]n =

{
Ĭn/In if n ≥ 0
0 if n < 0.

Proof Since [H 1
R(F)++(R′(F))]n = [H 1

R(F)++(R(F))]n for all n ∈ N by Proposition

2.4, using Proposition 3.6, we get [H 1
R(F)++(R′(F))]n = Ĭn/In .

Let J be minimal reduction ofF generated by superficial sequence y1, y2. For all
k ≥ 1, consider the following complex of R(F)-modules

Fk. : 0 −→ R′(F)
αk−→ R′(F)(k)2

βk−→ R′(F)(2k) −→ 0,

where αk(1) = (y1k tk, y2k tk) and βk(u, v) = y2k tku − y1k tkv. Since radical of the
ideal (y1t, y2t)R(F) is same as radical of the idealR(F)+, by [5, Theorem 5.2.9],

[H 1
R(F)+(R′(F))]n ∼= lim−→

k

(ker βk)n

(im αk)n
.

for all n ∈ Z\N,

(im αk)n = {(y1k ptke, y2k ptke) : p ∈ R′(F)n = R} ∼= R.

Thus [H 1
R(F)+(R′(F))]n = 0 for all n ∈ Z\N. �

Lemma 3.8 ([25, Lemma 2.11]) Let I1, . . . , Is bem-primary ideals in a Noetherian
local ring (R,m) of dimension d ≥ 1 such that grade(I1 · · · Is) ≥ 1. Let F =
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{F(n)}n∈Zs be an I -admissible filtration of ideals in R. Denote R(I )++ as R++.

Then
λR[Hd

R++(R′(F))]n ≤ λR[Hd
R++(R′(F))]n−ei

for all n ∈ Z
s and i = 1, . . . , s.

Proof By Lemma 3.3 and Theorem 3.4, there exists an ideal J = (y1, . . . , yd) ⊆
I1 · · · Is such that y1 = x11 · · · xs1 is a nonzerodivisor, xi1 ∈ Ii forall i = 1, . . . , s and
JF(n) = F(n + e) for all large n. Hence

√R(I )++ = √
(y1t, . . . , yd t). Consider

the short exact sequence of R(I )-modules,

0 −→ R′(F)(−ei )
xi1ti−→ R′(F) −→ R′(F)

xi1tiR′(F)
−→ 0.

This gives a long exact sequence of n-graded components of local cohomology
modules,

· · · −→ [Hd
R(I )++ (R′(F))]n−ei −→ [Hd

R(I )++ (R′(F))]n −→
[
Hd
R(I )++

( R′(F)

xi1tiR′(F)

)]
n

−→ 0.

Let T = R(I )
xi1tiR(I ) .Now R′(F)

xi1 tiR′(F)
is aT -module and

√(
R(I )

xi1tiR(I )

)
++

=√
(y2t, · · · , yd t)T .

Hence Hd
R(I )++

(
R′(F)

xi1tiR′(F)

)
= 0 which implies the required result. �

Theorem 3.9 ([25, Theorem 3.3]) Let (R,m) be a Noetherian local ring of dimen-
sion d ≥ 1 with infinite residue field and I1, . . . , Is be m-primary ideals in R such
that grade(I1 · · · Is) ≥ 1. LetF = {F(n)}n∈Zs be an I - admissible filtration of ideals
in R. Then for all n ∈ N

s and i = 1, . . . , s,

[H 0
Gi (F)++(Gi (F))]n = F̆(n + ei ) ∩ F(n)

F(n + ei )
.

Proof Let x ∈ F(n) and x∗ = x + F(n + ei ) ∈ [H 0
Gi (F)++(Gi (F))]n. Then

x∗Gi (F)k++ = 0 for some k ≥ 1. Therefore xF(e)k ⊆ F(n + ke + ei ). Hence x ∈
F̆(n + ei ).

Conversely, suppose x∗ ∈ F̆(n + ei ) ∩ F(n)/F(n + ei ). We show that there
exists m � 0 such that x∗Gi (F)m++ = 0. Since Gi (F)m++ ⊆

⊕
p≥me

F(p)/F(p + ei ),

it is enough to show that x∗(F(p)/F(p + ei )) = 0 for all large p. By [25, Propo-

sition 3.1], there exists m ∈ N
s with m ≥ e such that F̆(r) = F(r) for all r ≥ m.

Thus for all r ≥ m,

xF(r) ⊆ F̆(n + ei )F(r) ⊆ F̆(n + r + ei ) = F(n + r + ei ).
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Therefore (x + F(n + ei ))Gi (F)m++ = 0 for somem ≥ 1.Hence (x + F(n + ei )) ∈
[H 0

Gi (F)++(Gi (F))]n. �

4 The Postulation Number and the Reduction Number

In [35, Proposition 3] Sally gave a nice relation between the postulation number
and the reduction number of the filtration {mn}n∈N. In [23, Corollary 3.8] Marley
generalised this relation for any I -admissible filtration. In this section, we derive
these results using theGrothendieck–Serre formula.We recall fewpreliminary results
about superficial sequenceswhich are useful to apply induction in the study ofHilbert
coefficients.

Let (R,m) be a Noetherian local ring, I be an m-primary ideal and F = {In}n∈Z
be an I -admissible filtration of ideals in R.

Definition 4.1 Anelement x ∈ It\It+1 is called superficial element forF of degree
t if there exists an integer c ≥ 0 such that (In+t : x) ∩ Ic = In for all n ≥ c.

If the residue field of R is infinite, then there exists a superficial element of degree
1 [32, Proposition 2.3]. If grade (I1) ≥ 1 and x ∈ I1 is superficial for F , Huckaba
and Marley [13], showed that x is nonzerodivisor in R and (In+1 : x) = In for all
large n. If dimension of R is d ≥ 1, x ∈ I1\I2 is superficial element for F and x is a
nonzerodivisor on R then by [23, Lemma A.2.1], ei (F) = ei (F ′) for all 0 ≤ i < d
where R′ = R/(x) and F ′ = {In R′}n∈Z. The following lemma is due to Blancafort
[3, Lemma 3.1.6]. This lemma was first proved by Huckaba [11, Lemma 1.1] for
I -adic filtration.

Lemma 4.2 Let (R,m) be a Cohen–Macaulay local ring of dimension d ≥ 1, I
an m-primary ideal and F = {In}n∈Z be an I -admissible filtration of ideals in R.

Suppose J is a minimal reduction of F and there exists an x ∈ J\I2 such that x∗ =
x + I2 is a nonzerodivisor in G(F). Let R′ = R/(x). Then r(F) = r(F ′) where
F ′ = {In R′}n∈Z.

Proof Wedenote r(F) and r(F ′) by r and s respectively. It is clear that s ≤ r.Weuse
the notation “ ′ ” to denote the image in R′. Let n ≥ s and a ∈ In+1. Then a′ ∈ J ′ I ′

n.

Hence a = p + xq for some p ∈ J In and q ∈ R.Therefore xq ∈ In+1 which implies
q ∈ (In+1 : x). Since x∗ is a nonzerodivisor in G(F), we have (In+1 : x) = In for
all n ∈ Z. Hence we get the required result. �

Definition 4.3 If x = x1, . . . , xr ∈ I1, we say x is a superficial sequence for F if
for all 0 ≤ i < r, xi+1 is superficial for F/(x1, . . . , xi ).
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Suppose (R,m) is Cohen–Macaulay local ring of dimension d, I1 is anm-primary
ideal andF = {In} is an I1-admissible filtration of ideals in R. Suppose x1, . . . , xr ∈
I1 and 1 ≤ r ≤ d, then x1, . . . , xr is a superficial sequence for F if and only if
x1, . . . , xr is R-regular sequence and there exists an integer n0 ≥ 0 such that for all
1 ≤ i ≤ r,

(x1, . . . , xi ) ∩ In = (x1, . . . , xi )In−1 for all n ≥ n0.

This result was first proved by Valabrega and Valla [39, Corollary 2.7] for I -adic
filtration and then by Huckaba and Marley [13] for Z-graded admissible filtrations.
Marley [23, Proposition A.2.4] showed that if residue the field is infinite then any
minimal reduction of F can be generated by a superficial sequence for F . The
following lemma is due to Huckaba and Marley [13, Lemma 2.1].

Lemma 4.4 ([13, Lemma 2.1]) Let (R,m) be a Noetherian local ring of dimen-
sion d ≥ 1, I an m-primary ideal and F = {In} be an I -admissible filtration of
ideals in R. Let x1, . . . , xk be a superficial sequence for F . If gradeG(F)+ ≥ k
then x∗

1 , . . . , x
∗
k is a regular sequence in G(F) and hence G(F)/(x∗

1 , . . . , x
∗
k ) �

G(F/(x1, . . . , xk)) where x∗
i is image of xi in G(F).

Proof By induction it is enough to prove for k = 1. Let (In+1 : x1) ∩ Ic = In for all
n ≥ c. Let x∗ ∈ (0 : x∗

1 ) ∩ G(F)n for some n ∈ N. We show that x∗(G(F)+)c+1 =
0. Let 0 �= z∗ ∈ G(F)c+1

+ ∩ G(F)p. Now x∗z∗ ∈ G(F)n+p and x1xz ∈ In+p+2.

Therefore xz ∈ (In+p+2 : x1) ∩ Ic = In+p+1. Thus x∗z∗ = 0 in G(F). Hence x∗ ∈
(0 :G(F) (G(F)+)c+1) = 0. �

The next theoremwas proved for them-adic by Sally [35, Proposition 3].We have
adapted her proof for any admissible filtration.

Theorem 4.5 Let (R,m) be a Cohen–Macaulay local ring of dimension d ≥ 1 with
infinite residue field, I anm-primary ideal andF = {In} be an I -admissible filtration
of ideals in R. Let HR(n) = λ (In/In+1) and PR(X) ∈ Q[X ] such that PR(n) =
HR(n) for all large n. Suppose gradeG(F)+ ≥ d − 1. Then for a minimal reduction
J = (x1, . . . , xd) of F , HR(rJ (F) − d) �= PR(rJ (F) − d) and HR(n) = PR(n) for
all n ≥ rJ (F) − d + 1.

Proof We denote rJ (F) by r. We use induction on d. Let d = 1. Without loss of
generality we assume x1 is superficial. Then

H 0
G(F)+(G(F))n = {z∗ ∈ In/In+1 | z Il ∈ In+l+1 for all large l}.

For n ≥ r − 1, zxl1 ∈ In+l+1 = xl1 In+1 implies z ∈ In+1. Thus for all n ≥ r − 1,
H 0

G(F)+(G(F))n = 0.
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Nowwe prove that H 1
G(F)+(G(F))r−1 �= 0 and H 1

G(F)+(G(F))n = 0 for all n ≥ r.
For each n, consider the following map

Ik+n

xk1 In + Ik+n+1

φk−→ Ik+n+1

xk+1
1 In + Ik+n+2

where φk(z) = x1z.

For all large k, Ik+n+1 = x1 Ik+n. Hence for all large k, φk is surjective. Now suppose
φk(z) = 0 for some z ∈ Ik+n/xk1 In + Ik+n+1. Then x1z ∈ xk+1

1 In + Ik+n+2. There-
fore x1z = xk+1

1 a + b for somea ∈ In andb ∈ Ik+n+2.Thusb ∈ (x1) ∩ Ik+n+2.Since
x1 is superficial, for all large k, b ∈ x1 Ik+n+1 and hence z ∈ xk1 In + In+k+1. Thus for
all large k, φk is injective. Therefore by Proposition 3.1, for all large k,

H 1
G(F)+(G(F))n � Ik+n

xk1 In + Ik+n+1
.

Thus for all n ≥ r and for all large k, Ik+n = xk1 In ⊆ xk1 In + Ik+n+1. Hence
H 1

G(F)+(G(F))n = 0 for all n ≥ r.
Suppose H 1

G(F)+(G(F))r−1 = 0. Then for all large k,

Ik+r−1 = xk1 Ir−1 + Ik+r ⊆ xk1 Ir−1.

Let a ∈ Ik+r−2. Then x1a ∈ Ik+r−1 ⊆ xk1 Ir−1 implies a ∈ xk−1
1 Ir−1. Thus Ik+r−2 =

xk−1
1 Ir−1. Using this procedure repeatedly, we get Ir = x1 Ir−1 which is a contradic-
tion. Thus H 1

G(F)+(G(F))r−1 �= 0. Therefore by Theorem 2.3, we get the required
result.

Suppose d ≥ 2. Without loss of generality we assume x1, . . . , xd is superficial
sequence for F . Since gradeG(F)+ ≥ d − 1, by Lemma 4.4, we have x∗

1 is a
nonzerodivisor of G(F). By [3, Proposition 3.1.3] G(F)/(x∗

1 ) � G(F/(x1)). For
all n ∈ Z, consider the following exact sequence

0 −→ In−1

In

x∗
1−→ In

In+1
−→ In

x1 In−1 + In+1
� In + (x1)

In+1 + (x1)
−→ 0. (4.5.1)

Then for all n ∈ Z,

HR/(x1)(n) = HR(n) − HR(n − 1) and hence PR/(x1)(n) = PR(n) − PR(n − 1).

Since dim R/(x1) = d − 1 and gradeG(F/(x1))+ ≥ d − 2, by induction and
Lemma 4.2, we have

HR/(x1)(r − d + 1) �= PR/(x1)(r − d + 1) and HR/(x1)(n) = PR/(x1)(n) for all n ≥ r − d + 2.
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Since there exists an integer m, such that for all n ≥ m, PR(n) = HR(n), we have

PR(n − 1) − HR(n − 1) = PR(n) − HR(n) = · · ·
= PR(n + m) − HR(n + m) = 0 for all n ≥ r − d + 2.

Therefore

0 �= PR/(x1)(r − d + 1) − HR/(x1)(r − d + 1)

= [PR(r − d + 1) − HR(r − d + 1)] − [PR(r − d) − HR(r − d)]
= PR(r − d) − HR(r − d).

�
The following result is due to Marley [23, Corollary 3.8]. Here we give another

proof which follows from Theorem 4.5.

Theorem 4.6 ([23, Corollary 3.8]) Let (R,m) be a Cohen–Macaulay local ring of
dimension d ≥ 1 with infinite residue field, I an m-primary ideal and F = {In} be
an I -admissible filtration of ideals in R. Let gradeG(F)+ ≥ d − 1. Then rJ (F) =
n(F) + d for any minimal reduction J of F . In particular, r(F) = n(F) + d.

Proof Let HR(n) = λ (In/In+1) for all n and PR(X) ∈ Q[X ] such that PR(n) =
HR(n) for all large n. Let d = 1 and J be any minimal reduction of F . Denote
rJ (F) by r. Then degree of the polynomial PR(X) is zero. Hence PR(X) = a where
a is a nonzero constant. By Theorem 4.5, for all n ≥ r, PR(n) = HR(n). Therefore
for all n ≥ r, we have

λ

(
R

In

)
= (n − r)a + λ

(
R

Ir

)
= na +

(
λ

(
R

Ir

)
− ra

)
.

Hence PF (n) = HF (n) for all n ≥ r. Suppose PF (r − 1) = HF (r − 1). Then

−a + λ

(
R

Ir

)
= λ

(
R

Ir−1

)
.

This implies PR(r − 1) = HR(r − 1)which contradicts Theorem 4.5. Thus rJ (F) −
1 = n(F) for any minimal reduction J of F . Hence we get the result for d = 1.

Suppose d ≥ 2 and J = (x1, . . . , xd) is a minimal reduction of F consisting of
superficial elements. Denote rJ (F) by r. For all n ∈ Z, we get

HR(n) = HF (n + 1) − HF (n) and hence PR(n) = PF (n + 1) − PF (n).

Since there exists an integerm, such that for all n ≥ m, PF (n) = HF (n),byTheorem
4.5, we have
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PF (n) − HF (n) = PF (n + 1) − HF (n + 1)

= · · ·
= PF (n + m) − HF (n + m) = 0 for all n ≥ r − d + 1.

Again using Theorem 4.5, we get

0 �= PR(r − d) − HR(r − d)

= [PF (r − d + 1) − HF (r − d + 1)] − [PF (r − d) − HF (r − d)]
= PF (r − d) − HF (r − d).

Thus rJ (F) − d = n(F) for any minimal reduction J of F . Hence r(F) =
n(F) + d. �

5 Nonnegativity and Vanishing of Hilbert Coefficients

In this section, we apply Grothendieck–Serre formula to derive various properties
of the Hilbert coefficients. We derive a result of Northcott, Narita, Marley, and Itoh.
We also derive a formula for the components of local cohomology modules of Rees
algebras in terms of the Hilbert coefficients (Proposition 5.11) which generalises [35,
Proposition 5] and [20, Proposition 3.3].

The following theorem is a generalisation of a result due to Northcott
[27, Theorem 1].

Theorem 5.1 (Northcott’s inequality) Let (R,m) be a d ≥ 1-dimensional Cohen–
Macaulay local ring, I an m-primary ideal and F = {In}n∈Z be an I -admissible
filtration of ideals in R. Then

e1(F) ≥ e0(F) − λ

(
R

I1

)
≥ 0.

Proof We use induction on d.Let d = 1. Since R is Cohen–Macaulay, putting n = 1
in the Difference Formula (Theorem 2.5) for Rees algebra of F , we have

e0(F) − e1(F) − λ

(
R

I1

)
= PF (1) − HF (1)

= λR[H 0
R(F)+(R′(F))]1 − λR[H 1

R(F)+(R′(F))]1
= −λR[H 1

R(F)+(R′(F))]1 ≤ 0.

Thus we get the first inequality. Suppose d ≥ 2 and the result is true for rings with
dimension upto d − 1. Without loss of generalitywe may assume that the residue
field of R is infinite. Let x ∈ I1 be a superficial element forF . Then e0(F) = e0(F ′)
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and e1(F) = e1(F ′) where “′” denotes the image in R′ = R/(x). Since λ(R′/I ′
1) =

λ(R/I1), by induction hypothesis we get the first inequality.
For any minimal reduction J of F , J is minimal reduction I1 by [31, Lemma

1.5]. Hence, we get the second inequality. �

Theorem 5.2 ([25, Theorem 5.6]) Let (R,m) be a Cohen–Macaulay local ring of
dimension d ≥ 1 and I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs be
an I -admissible filtration. Then

(1) eα(F) ≥ 0 where α = (α1, . . . ,αs) ∈ N
s, |α| ≥ d − 1.

(2) eα(F) ≥ 0 where α = (α1, . . . ,αs) ∈ N
s, |α| = d − 2 and d ≥ 2.

Proof (1)For |α| = d, the result follows from [31,Theorem2.4]. Suppose |α| = d −
1. We use induction on d. Let d = 1. Then putting n = 0 in the Difference Formula
(Theorem 2.5), we get e0(F) = λR[H 1

R++(R′(F))]0 ≥ 0. Let d ≥ 2 and assume the
result for rings of dimension d − 1.Then there exists i such thatαi ≥ 1.Without loss
of generality assume α1 ≥ 1. By Lemma 3.3, there exists a nonzerodivisor x ∈ I1
such that (x) ∩ F(n) = xF(n − e1) for all n ∈ N

s such that n1 � 0.Let R′ = R/(x)
andF ′ = {F(n)R′}n∈Zs . For all large n, consider the following short exact sequence

0 −→ (F(n) : (x))

F(n − e1)
−→ R

F(n − e1)
.x−→ R

F(n)
−→ R

(x,F(n))
−→ 0.

Since forall large n, (F(n) : (x)) = F(n − e1), we get PF ′(n) = PF (n) − PF (n −
e1). Hence (−1)d−1−|(α−e1)|b(α−e1)(F ′) = (−1)d−|α|eα(F) where

PF ′(n) =
∑

γ=(γ1,...,γs )∈Ns

|γ|≤d−1

(−1)d−1−|γ|bγ(F ′)
(
n1 + γ1 − 1

γ1

)
· · ·

(
ns + γs − 1

γs

)
.

Since |(α − e1)| = d − 2 = (d − 1) − 1, by induction b(α−e1)(F ′) ≥ 0. Hence for
|α| = d − 1, eα(F) ≥ 0.

(2) We prove the result using induction on d. For d = 2 the result follows from
the Difference Formula (Theorem 2.5) for n = 0 and Proposition 3.5. The rest is
same as for the case |α| = d − 1. �

As a consequence of this we get the following results which is proved by Marley
[23, Propositions 3.19 and 3.23]. The next one is a generalisation of a result due to
M. Narita [26, Theorem 1]. Here we give different proof.

Proposition 5.3 Let (R,m) be a d-dimensional (d ≥ 2) Cohen–Macaulay local
ring, I an m-primary ideal and F = {I n}n∈Z an admissible I -filtration. Then
e2(F) ≥ 0.
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Proof Comparing the expressions of coefficients of Hilbert polynomials for s = 1
and s ≥ 2, by Theorem 5.2, we get the required result. �

It is natural to ask whether ei (F) are nonnegative for i ≥ 3 in a Cohen–Macaulay
local ring. Narita [26, Theorem 2] and Marley [22, Example 2] gave an example of
an ideal in a Cohen–Macaulay local ring with e3(I ) < 0.

Example 5.4 [26, Theorem 2] Let � be a formal power series k[[X1, X2, X3, X4]]
over afield k andQ = �/�X3

4.ThenQ is aCohen–Macaulay local ringof dimension
3. Let x1, x2, x3, x4 be the images of X1, X2, X3, X4 in Q and I = Qx1 + Qx22 +
Qx23 + Qx2x4 + Qx3x4. Then

e3(I ) = −λQ′
(

((I Q′)2 : (x2Q′)2)
I Q′

)
= −λQ′

(
I Q′ + (x4Q′)2

I Q′

)
< 0 where Q′ = Q/(x1).

Example 5.5 [22, Example 2] Let I = (X3,Y 3, Z3, X2Y, XY 2,Y Z2, XY Z) in the
regular local ring R = k[X,Y, Z ](X,Y,Z). Then for all n ≥ 1,

PI (n) = 27

(
n + 2

3

)
− 18

(
n + 1

2

)
+ 4n + 1.

Hence e3(I ) = −1 < 0.

However, for F = {I n}n∈Z, Itoh proved that e3(F) is nonnegative in an analyti-
cally unramified Cohen–Macaulay local ring [17, Theorem 3]. In order to prove this,
he used an analogue of Theorem 2.3 (see [17, p.114]). In [12, Corollary 3.9], authors
gave an alternative proof of this result. We prove this result using the GSF. For this
purpose, we recall some results of Itoh about vanishing of graded components of
local cohomology modules. See also [10, Theorem 1.2].

Theorem 5.6 ([16, Theorem 2] [17, Proposition 13]) Let (R,m) be an analytically
unramifiedCohen–Macaulay local ring of dimension d ≥ 2.LetM = (t−1,R(F)+)

be the maximal homogeneous ideal of R′(F). Then the following statements hold
true for the filtration F = {I n}n∈Z :
(1) H 0

M(R′(F)) = H 1
M(R′(F)) = 0;

(2) H 2
M(R′(F) j = 0 for j ≤ 0;

(3) Hi
M(R′(F)) = Hi

R(F)+(R′(F)) for i = 0, 1, . . . , d − 1.

Theorem 5.7 ([17, Theorem 3]) Let (R,m) be an analytically unramified Cohen–
Macaulay local ring of dimension d ≥ 3 and I be an m-primary ideal in R. Then
e3(I ) ≥ 0.
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Proof ForF = {I n}n∈Z,we setR′(I ) := R′(F).We use induction on d. Let d = 3.
Then, by the Difference Formula (Theorem 2.5) for Rees algebras and Theorem 5.6,
we have

e3(I ) = h3R′
(I )+

R′(I )0 ≥ 0.

Let d > 3. We may assume that the residue field of R is infinite. Let J ⊆ I be a
reduction of I. Since I n = J n for all n, ei (I ) = ei (J ) for all i = 1, . . . , d. Therefore
it suffices to show that e3(J ) ≥ 0. By [17, Theorem 1 and Corollary 8], there exists a
system of generators x1, . . . , xd of J such that, if we put T = (T1, . . . , Td), R(T ) =
R[T ]m[T ] and C = R(T )/(

∑d
i=1 xi Ti ), then C is an analytically unramified Cohen–

Macaulay local ringof dimensiond − 1and e3(J ) = e3(JC).Hence, using induction
hypothesis the result follows. �

Itoh [17, p.116] proposed the following conjecture on the vanishing of e3(I ) which
is still open.

Conjecture 5.8 (Itoh’sConjecture) Let (R,m) be an analytically unramifiedGoren-
stein local ring of dimension d ≥ 3. Then e3(I ) = 0 if and only if I n+2 = I n I 2 for
every n ≥ 0.

Itoh proved the “if” part of the Conjecture 5.8 in [16, Proposition 10]. He also
proved the “only if” part of the Conjecture 5.8 for I = m [17, Theorem 3(2)]. By [17,
Corollary 8 and Proposition 17], it suffices to prove the Conjecture 5.8 for d = 3.
Let d = 3 and e3(I ) = 0 for an m-primary ideal in a Cohen–Macaulay ring R. By
[16, Proposition 3] and [17, Corollary 16 and (4.1)], I n+2 = I n I 2 for every n ≥ 0 if
and only ifR′

(I ) is Cohen–Macaulay.
It is not known whether the Itoh’s conjecture is true for I = m in a Cohen–

Macaulay local ring R (which need not be Gorenstein). Recently, in [8, Theorem
3.6], the authors proved that the Conjecture 5.8 holds true for I = m in a Cohen–
Macaulay local ring of type at most two. T.T. Phuong [29], showed that if R is
an analytically unramified Cohen–Macaulay local ring of dimension d ≥ 2 then
the equality e1(I ) = e0(I ) − λ(R/I ) + 1 leads to the vanishing of e3(I ). In [21],
authors generalised the result of [8]. They also obtained following result for an
arbitrary m-primary ideal I in an analytically unramified Cohen–Macaulay local
ring of dimension 3.

Theorem 5.9 ([21, Theorem 1.1]) Let (R,m) be an analytically unramified Cohen–
Macaulay local ring of dimension 3. Let M = (t−1,R′ +) and R′ = ⊕

n∈Z
I ntn. Sup-

pose that ē3(I ) = 0. Then

(1) H 3
M(R′

) = 0,
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(2) Suppose either that R is equicharacteristic or that I = m, and that I has a
reduction generated by x, y, z. If R′ is not Cohen–Macaulay, then e2(I ) −
λ

(
I 2

(x, y, z)I

)
≥ 3.

As a consequence they generalised [8, Theorem 3.6].

Corollary 5.10 ([21, Corollary 1.2]) Let (R,m) be an analytically unramified
Cohen–Macaulay local ring of dimension 3.

(1) Suppose e3(I ) = 0. Then there is an inclusion H 3
R′ +

(R′
)−1 ⊆ (0 :H3

m(R) I ).

(2) Suppose e3(m) = 0. Then ē2(m) ≤ type(R).

(3) R′
(m) is Cohen–Macaulay if ē2(m) ≤ lengthR(I 2/mI ) + 2 for any ideal I such

that I = m, e3(m) = 0 and I has a minimal reduction.

Proof (1): By Theorem 5.9, H 3
M(R′

) = 0. Hence, by [17, Proposition 13(3)], we
get an exact sequence

0 −→ H 3
R′ +

(R′
)−1 −→ H 3

m(R) −→ H 4
M(R′

)−1 −→ 0.

Thus H 3
R′ +

(R′
)−1 ⊆ H 3

m(R). By the Difference Formula (Theorem 2.5) and Theo-

rem 5.6, we get
h3R′ +

(R′
)0 = ē3(I ) = 0. (5.10.1)

Now consider the exact sequence

0 −→ R′
(1) −→ R′ −→ G =

⊕
n≥0

I n

I n+1
−→ 0

which gives the long exact sequence

· · · −→ Hi

R′ +
(R′

)n+1 −→ Hi

R′ +
(R′

)n −→ Hi
G+

(G)n −→ · · · .

Using (5.10.1), we get an isomorphism H 3
R′ +

(R′
)−1 � H 3

G+
(G)−1. This implies that

H 3
R′ +

(R′
)−1 is an R/I -module. Therefore H 3

R′ +
(R′

)−1 ⊆ (0 :H3
m(R) I ).

(2) Taking I = m, by the Difference Formula (Theorem 2.5) and Theorem 5.6,
we get ē2(I ) = h3R′ +

(R′
)−1. Hence by (1) we get the result.

(3) Follows from Theorem5.9(2). �

The next result was first proved by Sally [35, Proposition 5] for the filtration
{mn}n∈Z and then by Johnston and Verma [20, Proposition 3.3] for the filtration
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{I n}n∈Z where I is an m-primary ideal of R. Here we prove the result for Z-graded
admissible filtrations.

Proposition 5.11 Let (R,m) be a two-dimensional Cohen–Macaulay local ring, I
be anym-primary ideal of R and F = {In}n∈Z an I -admissible filtration of ideals in
R. Then

(1) λ
(
H 2

R(F)+(R(F)0
) = e2(F),

(2) λ
(
H 2

R(F)+(R(F))1
) = e0(F) − e1(F) + e2(F) − λ

(
R

Ĭ1

)
,

(3) λ
(
H 2

R(F)+(R(F))−1
) = e1(F) + e2(F).

Proof We have

PF (n) − HF (n) =
∑
i≥0

(−1)i hiR(F)+(R′(F))n for all n ∈ Z. (5.11.1)

(1) Putting n = 0 in (5.11.1) and using Propositions 2.4 and 3.7, we get the required
result.

(2) Putting n = 1 in (5.11.1) and using Propositions 2.4 and 3.7, we get the required
result.

(3) Consider the short exact sequence ofR(F)-modules

0 −→ R(F)+ −→ R(F) −→ R ∼= R(F)/R(F)+ −→ 0

which induces a long exact sequence of local cohomology modules whose nth com-
ponent is

· · · −→ Hi
R(F)+ (R(F)+)n −→ Hi

R(F)+ (R(F))n −→ Hi
R(F)+ (R)n −→ · · · for all i ≥ 0.

Since R isR(F)+-torsion,H 0
R(F)+(R) = R andHi

R(F)+(R) = 0 for all i ≥ 1.Hence
Hi

R(F)+(R(F)+) ∼= Hi
R(F)+(R(F)) for all i ≥ 2 and we have the exact sequence

0 → H 0
R(F)+(R(F)+)n → H 0

R(F)+(R(F))n → R

→ H 1
R(F)+(R(F)+)n → H 1

R(F)+(R(F))n → 0. (5.11.2)

The short exact sequence of R(F)-modules

0 −→ R(F)+(1) −→ R(F) −→ G(F) −→ 0

induces the exact sequence

0 −→ H0
R(F)+ (G(F))−1 → H1

R(F)+ (R(F)+)0 → H1
R(F)+ (R(F))−1 → H1

R(F)+ (G(F))−1

→ H2
R(F)+ (R(F))0 → H2

R(F)+ (R(F))−1 → H2
R(F)+ (G(F))−1 → 0.

(5.11.3)
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Now H 0
R(F)+(G(F)) ⊆ G(F) are nonzero only in nonnegative degrees. Thus

H 1
R(F)+(R(F))−1

∼= R and H 1
R(F)+(R(F))0 = 0 byProposition 3.6. Therefore from

the exact sequence (5.11.2), we get the exact sequence

0 → R → H 1
R(F)+(R(F)+)0 → H 1

R(F)+(R(F))0 = 0.

Let f denote the map from H 1
R(F)+(R(F))−1 to H 0

R(F)+(G(F))−1 in the exact
sequence (5.11.3). First we prove that f is zero map. From the exact sequence
(5.11.3), we get the exact sequence

0 −→ R
g−→ R

f−→ H 1
R(F)+(G(F))−1.

Since R/g(R) is contained in H 1
R(F)+(G(F))−1 and by Proposition 2.2,

H 1
R(F)+(G(F))−1 is of finite length, we have λR (R/g(R)) is finite. Since g(R)

is principal ideal in R, we get R = g(R). Therefore f is the zero map. Hence we get
the exact sequence

0 → H1
R(F)+ (G(F))−1 → H2

R(F)+ (R(F))0 → H2
R(F)+ (R(F))−1 → H2

R(F)+ (G(F))−1 → 0.

Therefore by Theorem 2.3, we get

[HF (0) − HF (−1)] − [PF (0) − PF (−1)] = −λ
(
H1
R(F)+ (G(F))−1

)
+ λ

(
H2
R(F)+ (G(F))−1

)
= −λ

(
H2
R(F)+ (R(F))0

)
+ λ

(
H2
R(F)+ (R(F))−1

)
.

Thus by part (1) of the Proposition, we get

λ
(
H 2

R(F)+(R(F))−1
) = e2(F) − e2(F) + e1(F) + e2(F) = e1(F) + e2(F).

�

6 Huneke–Ooishi Theorem and a Multi-graded Version

In this section we give an application of the GSF to derive a result of Huneke [14] and
Ooishi [28] which states that if (R,m) is a Cohen–Macaulay local ring of dimension
d ≥ 1 and I is anm-primary ideal then e0(I ) − e1(I ) = λ(R/I ) if and only if r(I ) ≤
1. A similar result for admissible filtrations was proved in [3, Theorem 4.3.6] and
[13, Corollary 4.9]. In [25, Theorem 5.5], authors gave a partial generalisation of this
result for an I -admissible filtration. First we prove few preliminary results needed.

Lemma 6.1 (Sally machine) [34, Corollary 2.4] [13, Lemma 2.2] Let (R,m) be
a Noetherian local ring, I1 an m-primary ideal in R and F = {In}n∈Z be an I1-
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admissible filtration of ideals in R. Let x1, . . . , xr be a superficial sequence for F .

If gradeG(F/(x1, . . . , xr ))+ ≥ 1 then gradeG(F)+ ≥ r + 1.

Proof Weuse induction on r.Let r = 1 and y ∈ It such that image of y inG(F/(x1))t
is a nonzerodivisor. Then (In+t j : y j ) ⊆ (In, x1) for all n, j. Since x1 is a superficial
element forF , there exists integer c ≥ 0, such that (In+ j : x j

1 ) ∩ Ic = In for all j ≥ 1
and n ≥ c. Consider an integer p > c/t. For arbitrary n and j ≥ 1, we prove that

y p(In+ j : x j
1 ) ⊆ (In+ j+tp : x j

1 ) ∩ Ic = In+tp.

Let a ∈ (In+ j : x j
1 ). Then ay px j

1 ∈ In+ j+tp. Since pt > c, ay p ∈ (In+ j+tp : x j
1 ) ∩

Ic = In+tp. Therefore

(In+ j : x j
1 ) ⊆ (In+tp : y p) ⊆ (In, x1).

Thus (In+ j : x j
1 ) = In + x1(In+ j : x j+1

1 ) for all n and j ≥ 1. Iterating this formula
n times, we get

(In+ j : x j
1 ) = In + x1 In−1 + x21 In−2 + · · · + xn1 (In+ j : x j+n

1 ) = In.

Hence x∗
1 = x1 + I2 is a nonzerodivisor of G(F). Since G(F)/(x∗

1 ) � G(F/(x1)),
gradeG(F)+ ≥ 2.

Now assume r ≥ 2. Then by r = 1 case, we have gradeG(F/(x1, . . . , xr−1))+ ≥
2 > 1. By induction on r , we have gradeG(F)+ ≥ r and since x1, . . . , xr is a super-
ficial sequence for F , by Lemma 4.4, we obtain x∗

1 , . . . , x
∗
r is a regular sequence of

G(F). Since G(F)/(x∗
1 , . . . , x

∗
r ) � G(F/(x1, . . . , xr )), gradeG(F)+ ≥ r + 1.

�
The next lemma is due to Marley [23, Lemma 3.14].

Lemma 6.2 Let (R,m) be a Cohen–Macaulay local ring of dimension d ≥ 1, I
an m-primary ideal and F = {In}n∈Z be an I -admissible filtration of ideals in R.

Suppose x ∈ I1\I2 such that x∗ = x + I2 is a nonzerodivisor in G(F). Let R′ =
R/(x). Then n(F) = n(F ′) − 1 where F ′ = {In R′}n∈Z.

Proof We use the notation “′” to denote the image in R′. For all n, consider the
following short exact sequence of R-modules

0 −→ (In : x)/In −→ R/In
.x−→ R/In −→ R′/I ′

n −→ 0.

Therefore HF ′(n) = λ(R′/I ′
n) = λ((In : x)/In). Since x∗ is a nonzerodivisor in

G(F),we have (In+1 : x) = In for all n.Hence HF ′(n) = λ(In−1/In) = λ(R/In) −
λ(R/In−1) = HF (n) − HF (n − 1) for all n which implies PF ′(n) = PF (n) −
PF (n − 1) for all n. Thus HF ′(n) = PF ′(n) for all n ≥ n(F) + 2. Since
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PF ′(n(F) + 1) − HF ′(n(F) + 1) = [PF (n(F) + 1) − HF (n(F) + 1)]
−[PF (n(F)) − HF (n(F))]

= −[PF (n(F)) − HF (n(F))] �= 0,

we get the required result. �

The next theorem is due to Blancafort [3] which is a generalisation of a result
of Huneke [14] and Ooishi [28] proved independently. We make use of reduction
number and postulation number of admissible filtration of ideals to simplify her
proof.

Theorem 6.3 ([3, Theorem4.3.6])Let (R,m) be aCohen–Macaulay local ringwith
infinite residue field of dimension d ≥ 1, I1 anm-primary ideal and F = {In}n∈Z be
an I1-admissible filtration of ideals in R. Then the following are equivalent:

(1) e0(F) − e1(F) = λ (R/I1) ,

(2) r(F) ≤ 1.

In this case, e2(F) = · · · = ed(F) = 0,G(F) is Cohen–Macaulay, n(F) ≤ 0, r(F)

is independent of the reduction chosen and F = {I n1 }.
Proof (1) ⇒ (2) We use induction on d. Let d = 1. For all n ∈ Z, we have

PF (n) − HF (n) = −h1R(F)+(R′(F))n.

By putting n = 1 in this formula, we get e0(F) − e1(F) − λ (R/I1) =
−h1R(F)+(R′(F))1 = 0.Therefore byLemma3.8, for all n ≥ 1, h1R(F)+R′(F)n = 0.
Consider the short exact sequence of R(F)-modules,

0 −→ R′(F)(1)
t−1−→ R′(F) −→ G(F) −→ 0.

This induces a long exact sequence,

0 −→ [H 0
R(F)+(G(F))]n −→ [H 1

R(F)+(R′(F))]n+1 −→ · · · .

Thus for all n ∈ N, [H 0
R(F)+(G(F))]n = 0. Hence G(F) is Cohen–Macaulay. Let

J = (x) be a minimal reduction of F . Without loss of generality x is superficial. For
each n, consider the following map

Ik+n

xk In

φk−→ Ik+n+1

xk+1 In
where φk(z) = xz.

For all large k, Ik+n+1 = x Ik+n . Hence for all large k, φk is surjective. Now suppose
φk(z) = 0 for some z ∈ Ik+n/xk In. Then xz ∈ xk+1 In. Therefore xz = xk+1a where



154 S.K. Masuti et al.

a ∈ In, hence z ∈ xk In . Thus for all large k, φk is injective. Therefore by Proposition
3.2, for all large k,

H 1
R(F)+(R(F))n � Ik+n

xk In
.

By Lemma 3.8 and Proposition 2.4, H 1
R(F)+(R(F))n = 0 for all n ≥ 1. Then for all

large k and n ≥ 1,
Ik+n = xk In.

Let a ∈ Ik+n−1. Then xa ∈ Ik+n ⊆ xk In implies a ∈ xk−1 In. Thus Ik+n−1 = xk−1 In.
Using this procedure repeatedly we get In+1 = x In . Thus r(F) ≤ 1.

Let d ≥ 2 and x ∈ I1 be a superficial element for F . Let R′ = R/(x), F ′ =
{In R′}n∈Z and G ′ = G(F ′). Since ei (F) = ei (F ′) for all i < d, we have

e0(F ′) − e1(F ′) = e0(F) − e1(F) = λ

(
R

I1

)
= λ

(
R′

I1R′

)
.

Hence by induction hypothesis, G ′ is Cohen–Macaulay. Therefore by Sally machine
(Lemma 6.1),G(F) is Cohen–Macaulay. This implies that for anyminimal reduction
J of F , rJ (F) = n(F) + d by Theorem 4.6. Thus rJ (F) is independent of the
minimal reduction J of I.Let J be aminimal reduction ofF generated by superficial
sequence x1, . . . , xd . Let R = R/(x1, . . . , xd−1) and F = {In R}n∈Z. Since G(F) is
Cohen–Macaulay and x1, . . . , xd is superficial, using Theorem 4.6 and Lemmas 4.4,
4.2 and 6.2, for d − 1 times, by induction hypothesis we get

r(F) = n(F) + d = n(F) + 1 = r(F) ≤ 1.

(2) ⇒ (1) Let J be a minimal reduction of F such that r(F) = rJ (F) and J
is generated by superficial sequence x1, . . . , xd . Let R′ = R/(x1, . . . , xd−1) and
F ′ = {In R′}n∈Z. Then xd In R′ = In+1R′ for all n ≥ 1. Since x ′

d is nonzerodivisor,
(In+1R′ : x ′

d) = In R′ for all n ≥ 1. Therefore (x ′
d)

∗ (the image of x ′
d in G(F ′))

is nonzerodivisor in G(F ′). Hence G(F ′) is Cohen–Macaulay. Thus by Lemma
6.1, G(F) is Cohen–Macaulay. Therefore by Theorem 4.6, n(F) = r(F) − d ≤ 0.
Hence PF (n) = HF (n) for all n > 0. By putting n = 1 for d = 1 case we obtain
e0(F) − e1(F) = λ(R/I1).

Now we prove that if r(F) ≤ 1 then e2(F) = · · · = ed(F) = 0. Without loss of
generality assume d ≥ 2.The condition r(F) ≤ 1 impliesG(F) is Cohen–Macaulay
and n(F) = r(F) − d < 0. Let d = 2. Therefore e2(F) = PF (0) − HF (0) = 0.
Now assume d ≥ 3 and the result is true upto dimension d − 1. Let J be minimal
reduction of F generated by superficial sequence x1, . . . , xd . Let R′ = R/(x1, . . . ,
xd−1) andF ′ = {In R′}n∈Z. Then ei (F) = ei (F ′) = 0 for all 0 ≤ i < d. Since G(F)

is Cohen–Macaulay and n(F) = r(F) − d < 0, we get (−1)ded(F) = PF (0) −
HF (0) = 0. Therefore e0(F) − e1(F) − λ (R/I1) = PF (1) − HF (1) = 0.
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Let J be a minimal reduction of F such that r(F) = rJ (F) and r(F) ≤ 1. Then
I2 = J I1 ⊆ I 21 ⊆ I2.Suppose Ir = I r1 for all 1 ≤ r ≤ n.Then In+1 = J In ⊆ I1 I n1 ⊆
I n+1
1 ⊆ In+1. Thus F is {I n1 }n∈Z. �

Theorem 6.4 ([25, Theorem 5.5]) Let (R,m) be a Cohen–Macaulay local ring of
dimension d ≥ 1 and I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs be
an I -admissible filtration of ideals in R. Then for all i = 1, . . . , s,

(1) e(d−1)ei (F) ≥ e1(F (i)),

(2) e(Ii ) − e(d−1)ei (F) ≤ λ(R/F(ei )),
(3) e(Ii ) − e(d−1)ei (F) = λ(R/F(ei )) if and only if r(F (i)) ≤ 1 and e(d−1)ei (F) =
e1(F (i)), where F (i) = {F(nei )}n∈Z is an Ii -admissible filtration.

Proof (1) We apply induction on d. Let d = 1. Then by Theorem 2.5,

PF (rei ) − λ(R/F(rei )) = −λR[H 1
R++(R′(F))](rei ) for all r ≥ 0.

SinceF (i) is Ii -admissible,wehave e(F (i)) = e(Ii ).Henceusing PF (i) (r) = e(Ii )r −
e1(F (i)), we get

PF (i) (r) − λ(R/F(rei )) + [e1(F (i)) − e0(F)] = −λR[H 1
R++(R′(F))](rei ) ≤ 0.

Taking r � 0, we get e0(F) ≥ e1(F (i)). Let d ≥ 2. Without loss of generalitywe
may assume that the residue field of R is infinite. By Lemma 3.3, there exists a
nonzerodivisor xi ∈ Ii such that

(xi ) ∩ F(n) = xiF(n − ei ) for n ∈ N
s where ni � 0.

Let R′ = R/(xi ) and F ′ = {F(n)R′} and F ′(i) = {F(nei )R′}. For all n ∈ N
s such

that ni � 0, consider the following exact sequence

0 −→ (F(n) : (xi ))

F(n − ei )
−→ R

F(n − ei )
.xi−→ R

F(n)
−→ R

(xi ,F(n))
−→ 0.

Since for all n ∈ N
s where ni � 0, (F(n) : (xi )) = F(n − ei ), we get HF ′(n) =

HF (n) − HF (n − ei ) and hence PF (n) − PF (n − ei ) = PF ′(n). Therefore
e(d−2)ei (F ′) = e(d−1)ei (F) and e1(F ′(i)) = e1(F (i)). Therefore by induction, the
result follows.
(2) Using part (1), for all i = 1, . . . , s, we have

e(Ii ) − e(d−1)ei (F) ≤ e(Ii ) − e1(F (i)) ≤ λ(R/F(ei ))

where the last inequality follows from Theorem 5.1.
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(3) Let e(Ii ) − e(d−1)ei (F) = λ(R/F(ei )). Then by part (1),

λ(R/F(ei )) = e(Ii ) − e(d−1)ei (F) ≤ e(Ii ) − e1(F (i)) ≤ λ(R/F(ei )),

where the last inequality follows by Theorem 5.1. Hence e(d−1)ei (F) = e1(F (i)) and
e(Ii ) − e1(F (i)) = λ(R/F(ei )). Therefore, by Theorem 6.3, r(F (i)) ≤ 1.

Conversely, suppose r(F (i)) ≤ 1 and e(d−1)ei (F) = e1(F (i)). Again, by Theorem
6.3, e(Ii ) − e1(F (i)) = λ(R/F(ei )). Hence e(Ii ) − e(d−1)ei (F) = λ(R/F(ei )). �

Theorem 6.5 ([25, Theorem 5.7]) Let (R,m) be a Cohen–Macaulay local ring of
dimension two and I1, . . . , Is be m-primary ideals of R. Let F = {F(n)}n∈Zs be
an I -admissible filtration of ideals in R. Then e0(F) = 0 implies e(Ii ) − eei (F) =
λ

(
R

F̆(ei )

)
for all i = 1, . . . , s. Suppose F̆ is I -admissible filtration, then the converse

is also true.

Proof Let e0(F) = 0.ByProposition 3.5, [H 1
R++(R′(F))]0 = 0.Hence byTheorem

2.5,
λR[H 2

R++(R′(F))]0 = e0(F) = 0.

By Lemma 3.8, λR[H 2
R++(R′(F))]ei = 0 for all i = 1, . . . , s. Then using Theorem

2.5 and Proposition 3.5, PF (ei ) − HF (ei ) = −λ
(
F̆(ei )
F(ei )

)
for all i = 1, . . . , s.Hence

e(Ii ) − eei (F) = λ
(

R
F̆(ei )

)
for all i = 1, . . . , s.

Suppose F̆ is I -admissible filtration and e(Ii ) − eei (F) = λ
(

R
F̆(ei )

)
for all i =

1, . . . , s. Then by [25, Proposition 3.1] and Theorem 3.9, for all n ≥ 0 and i =
1, . . . , s,

[H 0
Gi (F̆)++

(Gi (F̆))]n =
˘̆F(n + ei ) ∩ F̆(n)

F̆(n + ei )
= 0.

Since the Hilbert polynomial of F̆ is same as the Hilbert polynomial of F , by [25,
Theorem 5.3],

PF̆ (n) = HF̆ (n) for all n ≥ 0. (6.5.1)

Thus taking n = 0 in the Eq. (6.5.1), we get e0(F) = e0(F̆) = 0. �

As a consequence of the above theoremwe get a theorem of Huneke [14, Theorem
4.5] for integral closure filtrations. We also obtain a result by Itoh [18, Corollary 5]
following from the above theorem.

Corollary 6.6 ([18, Corollary 5], [25, Corollary 5.8]) Let (R,m) be a Cohen–
Macaulay local ring of dimension two and I be m-primary ideal of R. Let Q be
any minimal reduction of I. Then the following are equivalent.
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(1) e1(I ) − e0(I ) + λ
(

R
Ĭ

)
= 0.

(2) Ĭ 2 = QĬ .

(2′)
︸︸
I 2 = QĬ .

(3)
︸ ︸
I n+1 = Qn Ĭ for all n ≥ 1.

(4) e2(I ) = 0.

Proof We prove (4) ⇒ (3) ⇒ (2′) ⇒ (2) ⇒ (1) ⇒ (4).

(4) ⇒ (3) : Let F = {
︸︸
I n}n∈Z. Since e2(F) = e2(I ) = 0, by Theorem 6.5 and The-

orem 6.3, the result follows.
(3) ⇒ (2′) : Put n = 1 in (3).
(2′) ⇒ (2) Consider the filtration F = {I n}n∈Z. Then by [3, Proposition 3.2.3], for

all n ≥ 0,
︸︸
I n = ⋃

k≥1
(I nk+n : I nk). It suffices to show that Ĭ 2 ⊆

︸︸
I 2 .Let x, y ∈ Ĭ .Then

for some large k, x I k ⊆ I k+1 and y I k ⊆ I k+1. Hence xy I 2k ⊆ I 2k+2. This implies

that Ĭ 2 ⊆
︸︸
I 2 .

(2) ⇒ (1) : Follows from [14, Theorem 2.1].
(1) ⇒ (4) :LetF = {I n}n∈Z. Since F̆ is an I -admissible filtration, the result follows
by Theorem 6.5. �
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de Rham Cohomology of Local Cohomology
Modules

Tony J. Puthenpurakal

Abstract Let K be a field of characteristic zero and let On be the ring
K [[X1, . . . , Xn]]. Let Dn = On[∂1, . . . , ∂n] be the ring of K -linear differential
operators on On . Let M be a holonomic Dn-module. In this paper we prove
Hi (∂, M) = 0 for i < n − dim M . Here dim M = dimension of support of M as
an On-module. Also let R = K [X1, . . . , Xn] and let I be an ideal in R and let
An(K ) = K < X1, . . . , Xn, ∂1, . . . , ∂n > be the nth Weyl algebra over K . By a
result due to Lyubeznik the local cohomologymodules Hi

I (R) are holonomic An(K )-
modules for each i ≥ 0. In this article we also compute the de Rham cohomology
modules H∗(∂1, . . . , ∂n; H∗

I (R)) for certain classes of ideals.

Keywords Local cohomology · Associated primes · D-modules · Koszul homol-
ogy · de Rham cohomology
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1 Introduction

Let K be a field of characteristic zero and let R = K [X1, . . . , Xn]. The ring of
K -linear differential operators over R is the nth Weyl algebra An(K ) = K <

X1, . . . , Xn, ∂1, . . . , ∂n >. Let N be a left An(K ) module. Now ∂ = ∂1, . . . , ∂n

are pairwise commuting K -linear maps. So we can consider the de Rham complex
K (∂; N ). Notice that the de Rham cohomology modules H∗(∂; N ) are in general
only K -vector spaces. By a result due toBernstein deRham cohomologymodules are
finite dimensional if N is holonomic; see [1, Chap. 1, Theorem 6.1]. Note that in [1]
holonomic An(K ) modules are denoted as Bn(K ), the Bernstein class of left An(K )

modules. The main idea is that if N is holonomic An(K )-module then the kernel and
cokernel of ∂n action on N are holonomic An−1(K )-modules. The finiteness of the
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deRhamcohomology follows by a routine verification.Although I amunable to find a
reference it is known that if M is holonomic then Hi (∂, M) = 0 for i < n − dim M ;
here dim M = dimension of support of M as an R-module. However the previously
known proofs use sophisticated techniques like derived categories. In this paper we
give an elementary proof of this result.

Now consider the case when On be the ring K [[X1, . . . , Xn]]. Let
Dn = On[∂1, . . . , ∂n] be the ring of K -linear differential operators onOn . Let M be
a holonomic Dn-module. In this case, the analogue of Bernstein result is due to van
den Essen. If M is a holonomic left Dn-module, its de Rham cohomology spaces
are again finite-dimensional over K , just as in the polynomial case; in contrast to
this case, however, it is not true in general that the cokernel of ∂n acting on M is a
holonomicDn−1-module, which makes the proof much more difficult. The kernel of
∂n is again holonomic, and the cokernel is holonomic whenever M satisfies a certain
generic condition called xn-regularity. It turns out that if M is holonomic, we can
always make a linear change of coordinates (which does not affect de Rham coho-
mology) after which M becomes xn-regular. The same routine induction argument
used by Bernstein is then sufficient to prove finiteness of the de Rham cohomology
in the formal power series case as well. For a good exposition of this result see [7].
We may ask whether the result on vanishing of de-Rham cohomology holds in this
case too. Our main result is:

Theorem 1 Let On be the ring K [[X1, . . . , Xn]] and let Dn = On[∂1, . . . , ∂n] be
the ring of K -linear differential operators onOn. Let M be a holonomicDn-module.
Then Hi (∂, M) = 0 for i < n − dim M.

Our motivation was not to prove Theorem1 but rather to give an elementary proof
in the case for polynomial rings. It turn’s out that surprisingly our proof in polynomial
case can be easily generalized to the formal power series case.

Our next motivation was to compute de Rham cohomology for an important class
of holonomic modules (for commutative algebraist’s) which we now describe: Let I
be an ideal in R = K [X1, . . . , Xn]. For i ≥ 0 let Hi

I (R) be the i th-local cohomology
module of R with respect to I . By a result due to Lyubeznik, see [4], the local coho-
mology modules Hi

I (R) are holonomic An(K )-modules for each i ≥ 0. In particular
H∗(∂; H∗

I (R)) are finite dimensional K -vector spaces. Analogous results hold in the
formal power series rings. In this paper we compute for a few classes of ideals only
in the polynomial case. We are not able to do it in the formal power series case.

Throughout let K ⊆ L where L is an algebraically closed field. Let An(L) be the
affine n-space over L . If I is an ideal in R then

V (I )L = {a ∈ An(L) | f (a) = 0; for all f ∈ I };

denotes the variety of I in An(L). By Hilbert’s Nullstellensatz V (I )L is always
non-empty. We say that an ideal I in R is zero-dimensional if �(R/I ) is finite and
non-zero (here �(−) denotes length). This is equivalent to saying that V (I )L is a
finite non-empty set. If S is a finite set then let �S denote the number of elements in
S. Our second result is
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Theorem 2 Let I ⊂ R be a zero-dimensional ideal. Then Hi (∂; Hn
I (R)) = 0 for

i < n and
dimK Hn(∂; Hn

I (R)) = �V (I )L

For homogeneous ideals it is best to consider their vanishing set in a projective
case. Throughout let Pn−1(L) be the projective n − 1 space over L . We assume
n ≥ 2. Let I be a homogeneous ideal in R. Let

V ∗(I )L = {a ∈ Pn−1(L) | f (a) = 0; for all f ∈ I };

denote the variety of I in Pn−1(L). Note that V ∗(I )L is a non-empty finite set if and
only if ht(I ) = n − 1. We prove

Theorem 3 Let I ⊂ R be a height n − 1 homogeneous ideal. Then

dimK Hn(∂; Hn−1
I (R)) = �V ∗(I )L − 1,

dimK Hn−1(∂; Hn−1
I (R)) = �V ∗(I )L ,

Hi (∂; Hn−1
I (R)) = 0 for i ≤ n − 2.

LetM be a holonomic An(K )-module.By a result of Lyubeznik the set of associate
primes of M as a R-module is finite. Note that the set AssR(M) has a natural partial
order given by inclusion. We say P is a maximal isolated associate prime of M if P
is a maximal ideal of R and also a minimal prime of M . We set mIsoR(M) to be the
set of all maximal isolated associate primes of M . We show

Theorem 4 Let M be a holonomic An(K )-module. Then

dimK Hn(∂; M) ≥ �mIsoR(M).

Wegive an application of Theorem4. Let I be an unmixed ideal of height≤ n − 2.
By Grothendieck vanishing theorem and the Hartshorne–Lichtenbaum vanishing
theorem it follows that Hn−1

I (R) is supported only at maximal ideals of R. By
Theorem4 we get

�AssR Hn−1
I (R) ≤ dimK Hn

(
∂; Hn−1

I (R)
)
.

We now describe in brief the contents of the paper. In Sect. 2 we discuss a few
preliminary results that we need. In Sect. 3 wemake a few computations. This is used
in Sect. 4 to prove Theorem2. In Sect. 5 we make some additional computations and
use it in Sect. 6 to prove Theorem3. We prove Theorem4 in Sect. 7. In Sect. 8 we
prove the analogue of Theorem1 in the polynomial ring case. Finally in Sect. 9 we
prove Theorem1.
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2 Preliminaries

In this section we discuss a few preliminary results that we need.

Remark 2.1 Although all the results are stated for de Rham cohomology of a An(K )-
module M , we will actually work with de Rham homology. Note that Hi (∂, M) =
Hn−i (∂, M) for any An(K )-module. Let S = K [∂1, . . . , ∂n]. Consider it as a subring
of An(K ). Then note that Hi (∂, M) is the i th Koszul homology module of M with
respect to ∂.

2.2 Let M be a holonomic An(K )-module. Then for i = 0, 1 the de Rham homology
modules Hi (∂n, M) are holonomic An−1(K )-modules, see [1, 1.6.2].

The following result is well-known.

Lemma 2.3 Let∂ = ∂r , ∂r+1, . . . , ∂n and∂′ = ∂r+1, . . . , ∂n. Let M bea left An(K )-
module. For each i ≥ 0 there exist an exact sequence

0 → H0(∂r ; Hi (∂
′; M)) → Hi (∂; M) → H1(∂r ; Hi−1(∂

′; M)) → 0.

2.4 (linear change of variables) We consider a linear change of variables. Let
U1, . . . ,Un be new variables defined by

Ui = di1X1 + · · · + din Xn + ci for i = 1, . . . , n

where di j , c1, . . . , cn ∈ K are arbitrary and D = [di j ] is an invertible matrix. We say
that the change of variables is homogeneous if ci = 0 for all i .

Let F = [ fi j ] = (D−1)tr . Using the chain rule it can be easily shown that

∂

∂Ui
= fi1

∂

∂X1
+ · · · + fin

∂

∂Xn
for i = 1, . . . , n.

In particular we have that for any An(K ) module M an isomorphism of Koszul
homologies

Hi

(
∂

∂U1
, . . . ,

∂

∂Un
; M

)
∼= Hi

(
∂

∂X1
, . . . ,

∂

∂Xn
; M

)

for all i ≥ 0.

2.5 Let I, J be two ideals in R with J ⊃ I and let M be a R-module. The inclusion
�J (−) ⊂ �I (−) induces, for each i , an R-module homomorphism

θiJ,I (M) : Hi
J (M) → Hi

I (M).

If L ⊃ J then we can easily see that

θiJ,I (M) ◦ θiL ,J (M) = θiL ,I (M). (†)
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Lemma 2.6 (with hypotheses as above) If M is a An(K )-module then the natural
map θiJ,I (M) is An(K )-linear.

Proof Let I = (a1, . . . , as).Using (†)wemayassume that J = I + (b). LetC(a; M)

be the Čech-complex onM with respect to a. LetC(a, b; M) be the Čech-complex on
M with respect to a, b. Note that we have a natural short exact sequence of complexes
of R-modules

0 → C(a; M)b[−1] → C(a, b; M) → C(a; M) → 0.

Since M is an An(K )-module it is easily seen that the above map is a map of com-
plexes of An(K )-modules. It follows that the map Hi (C(a, b; M)) → Hi (C(a; M))

is An(K )-linear. It is easy to see that this map is θiJ,I (M). �

2.7 Let a, b be ideals in R and let M be an An(K )-module. Consider the
Mayer–Vietoris sequence is a sequence of R-modules

→ Hi
a+b(M)

ρia,b(M)−−−−→ Hi
a(M) ⊕ Hi

b(M)
πi
a,b(M)−−−−→ Hi

a∩b(M)
δi−→ Hi+1

a+b(M) → ..

Then for all i ≥ 0 the maps ρia,b(M) and πi
a,b(M) are An(K )-linear.

To see this first note that since M is a An(K )-module all the above local coho-
mology modules are An(K )-modules. Further note that, (see [3, 15.1]),

ρia,b(M)(z) = (
θia+b,a(z), θ

i
a+b,b(z)

)
,

πi
a,b(M)(x, y) = θia,a∩b(x) − θib,a∩b(y).

Using Lemma2.6 it follows that ρia,b(M) and πi
a,b(M) are An(K )-linear maps.

Remark 2.8 In fact δi is also An(K )-linear for all i ≥ 0; [6]. However we will not
use this fact in this paper.

2.9 Let I1, . . . , In be proper ideals in R. Assume that they are pairwise co-maximal
i.e., Ii + I j = R for i �= j . Set J = I1 · I2 . . . In . Then for any R-module M we have
an isomorphism of An(K )-modules

Hi
J (M) ∼=

n⊕
j=1

Hi
I j (M) for all i ≥ 0.

To prove this result note that I1 and I2 . . . In are co-maximal. So it suffices to prove
the result for n = 2. In this case we use the Mayer–Vietoris sequence of local coho-
mology, see 2.7, to get an isomorphism of R-modules

πi
I1,I2(R) : Hi

I1(R) ⊕ Hi
I2(R) → Hi

I1∩I2(R).

By 2.7 we also get that πi
I1,I2

(R) is An(K )-linear.
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3 Some Computations

The goal of this section is to compute the Koszul homologies H∗(∂1, . . . , ∂n; N )

when N = R and when N = E the injective hull of R/(X1, . . . , Xn) = K . It is
well-known that

E =
⊕

r1,...,rn≥0

K
1

X1X2 . . . XnX
r1
1 Xr2

2 . . . Xrn
n

.

Note that E has the obvious structure as a An(K )-module with

Xi · 1

X1 . . . XnX
r1
1 . . . Xrn

n
=

{
1

X1...Xn X
r1
1 ...X

ri−1
i ...Xrn

n
if ri ≥ 1,

0 otherwise.

and

∂i · 1

X1 . . . XnX
r1
1 . . . Xrn

n
= −ri − 1

X1 . . . XnX
r1
1 . . . Xri+1

i . . . Xrn
n

It is convenient to introduce the following notation. For i = 1, . . . , n let Ri =
K [X1, . . . , Xi ], mi = (X1, . . . , Xi ) and let Ei be the injective hull of Ri/mi = K
as a Ri -module. Set R0 = E0 = K . We prove

Lemma 3.1 H0(∂n; En) ∼= En−1 and H1(∂n; En) = 0 as An−1(K )-modules.

Proof Since En is holonomic An(K ) module it follows that Hi (∂n; En) (for i =
0, 1) are holonomic An−1(K )-modules [1, Chap. 1, Theorem 6.2]. We first prove
H1(∂n; En) = 0. Let t ∈ En with ∂n(t) = 0. Let

t =
∑

r1,...,rn≥0

tr
1

X1 . . . XnX
r1
1 . . . Xrn

n
with atmost finitely many tr ∈ Knon-zero.

Notice that

∂n(t) =
∑

r1,...,rn≥0

tr
−rn − 1

X1 . . . Xn−1XnX
r1
1 . . . Xrn−1

n−1X
rn+1
n

.

Comparing coefficients we get that if ∂n(t) = 0 then t = 0.
For computing H0(∂n; En) we first note that as K -vector spaces

En = X
⊕

Y ;
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where

X =
⊕

r1,...,rn−1≥0,rn=0

K
1

X1X2 . . . XnX
r1
1 Xr2

2 . . . Xrn−1
n−1

Y =
⊕

r1,...,rn−1≥0,rn≥1

K
1

X1X2 . . . XnX
r1
1 Xr2

2 . . . Xrn
n

.

For rn ≥ 1 note that

∂n

(
1

X1X2 . . . XnX
r1
1 Xr2

2 . . . Xrn−1
n

)
= −rn

X1X2 . . . XnX
r1
1 Xr2

2 . . . Xrn
n

.

It follows that En/∂n En = X . Furthermore notice that X ∼= En−1 as An−1(K )-
modules. Thus we get H0(∂n; En) ∼= En−1. �

We now show that

Lemma 3.2 For c = 1, 2, . . . , n we have,

Hi (∂c, ∂c+1, . . . , ∂n; En) =
{
0 for i > 0

Ec−1 for i = 0

Proof We prove the result by induction on t = n − c. For t = 0 it is just the
Lemma3.1. Let t ≥ 1 and assume the result for t − 1. Let ∂ = ∂c, ∂c+1, . . . , ∂n

and ∂′ = ∂c+1, . . . , ∂n . For each i ≥ 0 there exist an exact sequence

0 → H0(∂c; Hi (∂
′; En)) → Hi (∂; En) → H1(∂c; Hi−1(∂

′; En)) → 0.

By induction hypothesis Hi (∂
′; En) = 0 for i ≥ 1. Thus for i ≥ 2 we have

Hi (∂; En) = 0. Also note that by induction hypothesis H0(∂
′; En) = Ec. So we

have
H1(∂; En) = H1(∂c; Ec) = 0 by Lemma 3.1.

Finally again by Lemma3.1 we have

H0(∂; En) = H0(∂c; Ec) = Ec−1.

�
As a corollary to the above result we have

Theorem 3.3 Let ∂ = ∂1, . . . , ∂n. Then Hi (∂; En) = 0 for i > 0 and H0(∂;
En) = K. �

We now compute the de Rham homology H∗(∂; R). We first prove

Lemma 3.4 H0(∂n; Rn) = 0 and H1(∂n; Rn) = Rn−1
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Proof This is just calculus. �
The proof of the following result is similar to the proof of Lemma3.2.

Lemma 3.5 For c = 1, 2, . . . , n we have,

Hi (∂c, ∂c+1, . . . , ∂n; Rn) =
{
0 for i = 0, 1, . . . , n − c

Rc−1 for i = n − c + 1

�
As a corollary to the above result we have

Theorem 3.6 Let ∂ = ∂1, . . . , ∂n. Then Hi (∂; Rn) = 0 for i < n and Hn(∂;
Rn) = K. �

We will need the following computation in part 2 of this paper.

Lemma 3.7 Let f be a non-constant squarefree polynomial in R = K [X1, . . . , Xn].
Let ∂ = ∂1, . . . , ∂n. Then Hn(∂; R f ) = K. Furthermore Hn

(
∂; H 1

( f )(R)
)

= 0 and

Hi
(
∂; H 1

( f )(R)
) ∼= Hi (∂; R f ) for i < n.

Proof Note that

Hn(∂; R f ) = {v ∈ R f | ∂iv = 0 for all i = 1, . . . , n}.

Clearly if v ∈ R f is a constant then ∂iv = 0 for all i = 1, . . . , n. By a linear change
in variables we may assume that f = Xs

n + lower terms in Xn . Note that by 2.4 the
de Rham homology does not change.

Suppose if possible there exists a non-constant v = a/ f r ∈ Hn(∂; R f ) where f
does not divide a if r ≥ 1. Note that if r = 0 then v ∈ Hn(∂; R) = K . So v is a
constant. So assume r ≥ 1. Since ∂n(v) = 0 we get f ∂n(a) = ra∂n( f ).

Since f is squarefree we have f = f1 . . . fm where fi are distinct irreducible
polynomials. As f is monic in Xn we have that fi is monic in Xn for each i .

Since f ∂n(a) = ra∂n( f ) we have that fi divides a∂n( f ) for each i . Note that if
fi divides ∂n( f ) then fi divides f1 . . . fi−1∂n( fi ) · fi+1 . . . fm . Therefore fi divides
∂n( fi ) which is easily seen to be a contradiction since fi is monic in Xn . Thus fi
divides a for each i = 1, . . . ,m. Therefore f divides a, which is a contradiction.
Thus Hn(∂; R f ) only consists of constants.

We have an exact sequence

0 → R → R f → H 1
I (R) → 0.

Notice Hn(∂, R) = Hn(∂; R f ) = K and Hn−1(∂, R) = 0 (see Theorem3.6 and
Lemma3.7). So we get Hn(∂, H 1

I (R)) = 0. Also as Hi (∂, R) = 0 for i < n we get

Hi
(
∂; H 1

( f )(R)
) ∼= Hi (∂; R f ) for i < n. �
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4 Proof of Theorem2

In this section we prove Theorem2. Throughout K ⊆ L where L is an algebraically
closed field. We first prove:

Lemma 4.1 Let m = (X1 − a1, . . . , Xn − an), where a1, . . . , an ∈ K, be a maxi-
mal ideal in R = K [X1, . . . , Xn]. Let ∂ = ∂1, . . . , ∂n. Then Hi (∂; Hn

m(R)) = 0 for
i > 0 and H0(∂; Hn

m(R)) = K.

Proof Let Ui = Xi − ai for i = 1, . . . , n. Then by 2.4

Hi

(
∂

∂U1
, . . . ,

∂

∂Un
; Hn

m(R)

)
∼= Hi

(
∂

∂X1
, . . . ,

∂

∂Xn
; Hn

m(R)

)

for all i ≥ 0. Thus we may assume a1 = a2 = · · · = an = 0. Finally note that
Hn

m(R) = E the injective hull of R/m = K . So our result follows from Theorem3.3.
�

We now give a proof of Theorem2.
Proof of Theorem2 Notice

An(L) = An(K ) ⊗K L

and S = L[X1, . . . , Xn] = R ⊗K L .

So An(L) and S are faithfully flat extensions of An(K ) and R respectively. It follows
that

Hi
(
∂; Hn

I S(S)
) ∼= Hi

(
∂; Hn

I (R)
) ⊗K L for all i ≥ 0.

Thus we may as well assume that K = L is algebraically closed. Since I is zero-
dimensional we have √

I = m1 ∩ m2 ∩ · · · ∩ mr ,

wherem1, . . . ,mr are distinct maximal ideals and r = �V (I )L , the number of points
in V (I )L . By 2.9 we have an isomorphism of An(K )-modules

H j
I (R) ∼=

r⊕
i=0

H j
mi

(R) for all j ≥ 0.

In particular we have that

Hj
(
∂; Hn

I (R)
) =

r⊕
i=0

Hj
(
∂; Hn

mi
(R)

)
.

Since K is algebraically closed each maximal ideal m in R is of the form (X1 −
a1, . . . , Xn − an). The result follows from Lemma4.1. �
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5 Some Computations-II

Let R = K [X1, . . . , Xn] and let P = (X1, . . . , Xn−1). The goal of this section is to
compute Hi (∂; Hn−1

P (R)) for all i ≥ 0.
As before it is convenient to introduce the following notation. For i = 1, . . . , n let

Ri = K [X1, . . . , Xi ],mi = (X1, . . . , Xi ) and let Ei be the injective hull of Ri/mi =
K as a Ri -module.

Notice that Rn−1 ⊆ Rn is a faithfully flat extension. So

Rn ⊗Rn−1 H
i
mn−1

(Rn−1) ∼= Hi
mn−1Rn

(Rn) for all i ≥ 0.

Thus
Hn−1

mn−1Rn
(Rn) = En−1[Xn] =

⊕
j≥0

En−1X
j
n .

We first prove the following:

Lemma 5.1 H1(∂n; En−1[Xn]) = En−1 and H0(∂n; En−1[Xn]) = 0.

Proof Let v ∈ En−1[Xn] j . So

v = c

X1 . . . Xn−1X
r1
1 . . . Xrn−1

n−1

· X j
n

for some c ∈ K and r1, . . . , rn−1 ≥ 0. Notice that

∂n(v) =
{

cj
X1...Xn−1X

r1
1 ...X

rn−1
n−1

· X j−1
n if j ≥ 1,

0 if j = 0.

It follows that H1(∂n; En−1[Xn]) = En−1.
Let v ∈ En−1[Xn] j be a homogeneous element. So

v = c

X1 . . . Xn−1X
r1
1 . . . Xrn−1

n−1

· X j
n

for some c ∈ K and r1, . . . , rn−1 ≥ 0. Let

u = c

j + 1
· 1

X1 . . . Xn−1X
r1
1 . . . Xrn−1

n−1

· X j+1
n .

Notice that ∂n(u) = v. Thus it follows that H0(∂n; En−1[Xn]) = 0. �

Next we prove

Lemma 5.2 For c = 1, 2, . . . , n we have,
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Hi (∂c, ∂c+1, . . . , ∂n; En−1[Xn]) =
{
0 for i �= 1

Ec−1 for i = 1.

Proof We prove the result by induction on t = n − c. For t = 0 it is just the
Lemma5.1. Let t ≥ 1 and assume the result for t − 1. Let ∂ = ∂c, ∂c+1, . . . , ∂n
and ∂′ = ∂c+1, . . . , ∂n . For each i ≥ 0 we have an exact sequence

0 → H0(∂c; Hi (∂
′; En−1[Xn ])) → Hi (∂; En−1[Xn ]) → H1(∂c; Hi−1(∂

′; En−1[Xn ])) → 0.

So Hi (∂; En−1[Xn]) = 0 for i ≥ 3 and for i = 0. Notice that

H2(∂; En−1[Xn]) = H1(∂c; H1(∂
′; En−1[Xn]))

= H1(∂c; Ec); (by induction hypothesis).

= 0; by Lemma 3.1.

Similarly we have

H1(∂; En−1[Xn]) = H0(∂c; H1(∂
′; En−1[Xn]))

= H0(∂c; Ec); (by induction hypothesis).

= Ec−1; by Lemma 3.1.

�

As a corollary we obtain

Theorem 5.3 Let R = K [X1, . . . , Xn] and let P = (X1, . . . , Xn−1). Let ∂ = ∂1,

. . . , ∂n. Then

Hi (∂; Hn−1
P (R)) =

{
0 for i �= 1

K for i = 1.

6 Proof of Theorem3

In this section we prove Theorem3. Throughout K ⊆ L where L is an algebraically
closed field. We first prove:

Lemma 6.1 Let Q = (X1 − a1Xn, . . . , Xn−1 − an−1Xn), where a1, . . . , an−1 ∈ K,
be a homogeneous prime ideal in R = K [X1, . . . , Xn]. Let ∂ = ∂1, . . . , ∂n. Then
Hi (∂; Hn−1

Q (R)) = 0 for i �= 1 and H1(∂; Hn−1
Q (R)) = K.

Proof Let Ui = Xi − ai Xn for i = 1, . . . , n − 1 and let Un = Xn . Then by 2.4

Hi

(
∂

∂U1
, . . . ,

∂

∂Un
; Hn

m(R)

)
∼= Hi

(
∂

∂X1
, . . . ,

∂

∂Xn
; Hn

m(R)

)
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for all i ≥ 0. Thus we may assume a1 = a2 = · · · = an−1 = 0. The result follows
from Theorem5.3. �

We now give
Proof of Theorem3 As shown in the proof of Theorem2 we may assume that K = L
is algebraically closed. We take Xn = 0 to be the hyperplane at infinity. After a
homogeneous linear change of variables we may assume that there are no zero’s of
V (I ) in the hyperplane Xn = 0; see 2.4. Thus

√
I = Q1 ∩ Q2 ∩ · · · ∩ Qr

where r = �V (I ) and Qi = (X1 − ai1Xn, . . . , Xn−1 − ai,n−1Xn) for i = 1, . . . , r .
We first note that Hn

I (R) = 0. This can be easily proved by induction on r and
using the Mayer–Vietoris sequence.

We prove the result by induction on r . For r = 1 the result follows from
Lemma6.1. So assume r ≥ 2 and that the result holds for r − 1. Set J = Q1 ∩
· · · ∩ Qr−1. Then

√
I = J ∩ Qr . Notice that

√
Qr + J = m = (X1, . . . , Xn). By

Mayer–Vietoris sequence and the fact that Hn
Qr

(R) = Hn
J (R) = 0 we get an exact

sequence of R-modules

0 → Hn−1
J (R)

⊕
Hn−1

Qr
(R)

α−→ Hn−1
I (R) → Hn

m(R) → 0.

By 2.7 α is An(K ) linear. SetC = coker α. So we have an exact sequence of An(K )-
modules

0 → Hn−1
J (R)

⊕
Hn−1

Qr
(R)

α−→ Hn−1
I (R) → C → 0.

Claim: C ∼= Hn
m(R) as An(K )-modules.

First suppose the claim is true. Then note that the result follows from induction
hypothesis and Lemma’s4.1, 6.1.

It remains to prove the claim. Note that C ∼= Hn
m(R) as R-modules. In particular

socR(C) = HomR(R/m,C) ∼= HomR(R/m, Hn
m(R)) ∼= K .

Let e be a non-zero element of socR(C). Consider the map

φ : An(K ) → C

d �→ de.

Clearly φ is An(K )-linear. Since φ(An(K )m) = 0 we get an An(K )-linear map

φ : An(K )

An(K )m
→ C.

Note that An(K )/An(K )m ∼= Hn
m(R) as An(K )-modules.
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To prove that φ is an isomorphism, note that φ is R-linear. Since φ induces an
isomorphism on socles we get that φ is injective. As Hn

m(R) is an injective R-module
and φ is injective R-linear map we have that C ∼= imageφ ⊕ coker φ as R-modules.
Set N = coker φ. Note that socR(N ) = 0. Also note that as R-moduleC is supported
only at m. So N is supported only at m. Since socR(N ) = 0 we get that N = 0. So
φ is surjective. Thus φ is an An(K )-linear isomorphism of An(K )-modules. �

7 Proof of Theorem4

In this section we prove Theorem4.
Let A be a Noetherian ring, I an ideal in A and let M be an A-module, not

necessarily finitely generated. Set

�I (M) = {m ∈ M | I sm = 0 for some s ≥ 0}.

The following result is well-known. For lack of a suitable reference we give sketch
of a proof here. When M is finitely generated, for a proof of the following result see
[2, Proposition 3.13].

Lemma 7.1 (with hypotheses as above)

AssA
M

�I (M)
= {P ∈ AssA M | P � I }

Proof (sketch) Note that if P ∈ AssA �I (M) then P ⊇ I . It follows that if P ∈
AssA M and P � I then P ∈ AssA M/�I (M).

It can be easily verified that if P ∈ AssA M/�I (M) then P � I . Also note that
if P � I then �I (M)P = 0. Thus

MP
∼=

(
M

�I (M)

)
P

if P � I.

The result follows. �

We now give
Proof of Theorem4 First consider the case when K is algebraically closed. Set

AssA(M) = mIsoR(M) �
(

s⋃
i=1

V (Pi ) ∩ AssA(M)

)
.

Here P1, . . . , Ps are minimal primes of M which are not maximal ideals.
Set I = P1P2 . . . Ps . Note that �I (M) is a An(K )-submodule of M . Set N =

M/�I (M). By Lemma7.1 we get that



172 T.J. Puthenpurakal

AssR N = {P ∈ AssR M | P � I }
= mIso(M).

Let mIso(M) = {m1, . . . ,mr }. Set J = m1m2 . . .mr . Since m1, . . . ,mr are comax-
imal we get by 2.9 that as An(K )-modules

�J (N ) = �m1(N ) ⊕ · · · ⊕ �mr (N ).

Set E = N/�J (N ). By Lemma7.1 we get that AssR E = ∅. So E = 0. Thus

N = �m1(N ) ⊕ · · · ⊕ �mr (N ).

Note that
�mi (N ) = ER(R/mi )

si = Hn
mi

(R)si for some si ≥ 1.

Since K is algebraically closed we have that for each i = 1, . . . , r the maximal ideal
mi = (X1 − ai1, . . . , Xn − ain) for some ai j ∈ K . It follows from Lemma4.1 that

Hi (∂; N ) = 0 for i ≥ 1

dimK H0(∂; N ) =
r∑

i=1

si .

The exact sequence 0 → �I (M) → M → N → 0 yields an exact sequence of de
Rham homologies

0 → H0(∂;�I (M)) → H0(∂; M) → H0(∂; N ) → 0;

since H1(∂; N ) = 0. The result follows. So we have proved the result when K is
algebraically closed.

Now consider the case when K is not algebraically closed. Let L = K the
algebraic closure of K . Note that S = L[X1, . . . , Xn] = R ⊗K L and An(L) =
An(K ) ⊗K L . Further notice that M ⊗K L is a holonomic An(L)-module. Also note
that M ⊗R S = M ⊗K L .

Claim-1: �mIsoS(M ⊗R S) ≥ �mIsoR(M).
We assume the claim for the moment. Note that H0(∂, M) ⊗K L = H0(∂, M ⊗K

L). So

dimK H0(∂, M) = dimL H0(∂, M ⊗K L) ≥ �mIsoS(M ⊗R S) ≥ �mIsoR(M).

The result follows.
It remains to prove Claim-1. By Theorem 23.2(ii) of [5] we have



de Rham Cohomology of Local Cohomology Modules 173

AssS(M ⊗R S) =
⋃

P∈AssR(M)

AssS

(
S

PS

)
. (†)

Suppose m is an isolated maximal prime of M . Notice S/mS has finite length. It
follows that √

mS = m1 ∩ m2 ∩ · · · ∩ mr ;

for some maximal ideals m1,m2, . . . ,mr of S.
Claim-2: m1,m2, . . . ,mr ∈ mIsoS(M ⊗R S).
Note that Claim-2 implies Claim-1. It remains to prove Claim-2.
Suppose if possible some mi /∈ mIsoS(M ⊗R S). Then there exist Q � mi and

Q ∈ AssS(M ⊗R S). Note that Q is not a maximal ideal in S. By (†) we have that

Q ∈ AssS

(
S

PS

)
for some P ∈ AssR(M).

Notice that as Q is not a maximal ideal in S we have that P is not a maximal ideal
in R. Also note that by Theorem 23.2(i) of [5] we have

P = Q ∩ R ⊆ mi ∩ R = m.

Thus m is not an isolated maximal prime of M , a contradiction. �
An application of Theorem4 is the following result:

Corollary 7.3 Let I be an unmixed ideal of height ≤ n − 2 in R. Then

�AssR Hn−1
I (R) ≤ dimK H0

(
∂, Hn−1

I (R)
)
.

Proof We first show that M = Hn−1
I (R) is supported only at maximal ideals of R.

As M is I -torsion it follows that any P ∈ Supp(M) contains I .
We first show that if ht P ≤ n − 2 then P /∈ Supp(M). Note MP = Hn−1

I RP
(RP) =

0 byGrothendieck vanishing theorem as dim RP = ht P ≤ n − 2. So P /∈ Supp(M).
Next we prove that if htP = n − 1 then P /∈ Supp(M). Let R̂P be the completion

of RP with respect to its maximal ideal. As I is unmixed we have dim RP/IP > 0.
So I R̂P is not P R̂P -primary. Therefore

MP ⊗RP R̂P = Hn−1
I R̂P

(R̂P) = 0,

byHartshorne–LichtenbaumVanishing theorem.As R̂P is a faithfully flat RP algebra
we have MP = 0.

Thus M is supported at only maximal ideals of R. It follows that AssA(M) =
mIsoR(M). The result now follows from Theorem4. �
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8 Elementary Proof of an Analogue of Theorem1
in the Polynomial Ring Case

In this section we give an elementary proof of the following result:

Theorem 8.1 Let K be a field of characteristic zero and let R = K [X1, . . . , Xn].
Let An(K ) be the nth Weyl algebra. Let M be a holonomic An(K )-module. Then
Hi (∂, M) = 0 for i < n − dim M.

Set Rn−1 = K [X1, . . . , Xn−1].
We begin by the following result on vanishing (and non-vanishing) of de Rham

homology of a simple An(K )-module. If M is a simple An(K )-module then it is
well-known that AssR(M) is a set with one element.

Theorem 8.2 Let M be a simple An(K )-module and assume AssR(M) = {P}. Set
Q = P ∩ Rn−1. Then

H0(∂n; M) = 0 =⇒ P = QR,

H1(∂n; M) �= 0 =⇒ P = QR.

To prove the above theorem we need a criterion for an ideal I to be equal to
(I ∩ Rn−1)R. This is provided by the following:

Lemma 8.3 Let I be an ideal in R. Set J = I ∩ Rn−1. Then the following are equiv-
alent:

(1) ∂n(I ) ⊆ I .
(2) I = J R.
(3) Let ξ ∈ I . Let ξ = ∑m

j=0 c j X
j
n where c j ∈ Rn−1 for j = 0, . . . ,m. Then c j ∈ I

for each j .

Proof We first prove (1) =⇒ (3). Let ξ ∈ I . Let ξ = ∑m
j=0 c j X

j
n where c j ∈ Rn−1

for j = 0, . . . ,m. Notice ∂m
n (ξ) = m!cm . So cm ∈ I . Thus ξ − cm Xm

n ∈ I . Iterating
we obtain that c j ∈ I for all j .

Notice that (3) =⇒ (1) is trivial. We now show (3) =⇒ (2). Let ξ ∈ I . Let
ξ = ∑m

j=0 c j X
j
n where c j ∈ Rn−1 for j = 0, . . . ,m. By hypothesis c j ∈ I for each

j . Notice c j ∈ I ∩ Rn−1 = J . Thus I ⊆ J R. The assertion J R ⊆ I is trivial. So
I = J R.

Finally we prove that (2) =⇒ (3). If b ∈ J and r ∈ R then notice that if
br = ∑m

j=0 c j X
j
n where c j ∈ Rn−1 for j = 0, . . . ,m then each c j ∈ J . As I = J R

each ξ ∈ I is a finite sum b1r1 + · · · + bsrs where bi ∈ J and ri ∈ R. The assertion
follows. �

The following corollary is useful.

Corollary 8.4 Let P be a prime ideal in R and let I be an ideal in R with
√
I = P.

If ∂n(I ) ⊆ I then P = (P ∩ Rn−1)R.
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Proof Set Q = P ∩ Rn−1. Let ξ ∈ P . Let ξ = ∑m
j=0 c j X

j
n where c j ∈ Rn−1 for j =

0, . . . ,m. Notice ξs ∈ I for some s ≥ 1. Also ξs = csm X
sm
n + .. lower terms in Xn .

By Lemma8.3 we get that csm ∈ I . It follows that cm ∈ P . Thus ξ − cm Xm
n ∈ P .

Iterating we obtain that c j ∈ P for all j . So by Lemma8.3 we get that P = QR.
�

We now give
Proof of Theorem8.2 First suppose H0(∂n, M) = 0. Let a ∈ M with P = (0 : a).
Say ∂nb = a. Set I = (0 : b).

We first claim that I ⊆ P . Let ξ ∈ I 2. Notice ∂nξ = ξ∂n + ∂n(ξ). Also note that
∂n(ξ) ∈ I . So we have that ∂nξb = ξa + ∂n(ξ)b. Thus ξa = 0. So ξ ∈ P . Thus I 2 ⊆
P . As P is a prime ideal we get that I ⊆ P .

Next we claim that ∂n(I ) ⊆ I . Let ξ ∈ I . We have ∂nξb = ξa + ∂n(ξ)b. So
∂n(ξ)b = 0. Thus ∂n(ξ) ∈ I .

Since M is simple we have that M = An(K )a. So b = da for some d ∈ An(K ).
It can be easily verified that there exists s ≥ 1 with Psd ⊆ An(K )P . It follows that
Ps ⊆ I . Thus

√
I = P . The result follows from Corollary8.4.

Next suppose H1(∂n; M) �= 0. Say a ∈ ker ∂n is non-zero. Set J = (0 : a). Let
ξ ∈ J . Notice ∂nξa = ξ∂na + ∂n(ξ)a. Thus ∂n(ξ)a = 0. Thus ∂n(J ) ⊆ J .

By hypothesis M is simple and AssR(M) = {P}. Now �P(M) is a non-zero
An(K )-submodule of M . As M is simple we have that M = �P(M). Thus Psa = 0
for some s ≥ 1. Thus Ps ⊆ J . Also note that for any R-module E the maximal
elements in the set {(0 : e) | e �= 0} are associate primes of E . Thus J = (0 : a) ⊆ P .
Therefore

√
J = P . The result follows from Corollary8.4. �

Remark 8.5 Let P be a prime ideal in R. Set Q = P ∩ Rn−1. Then it can be easily
seen that

htR P − 1 ≤ htRn−1 Q ≤ htR P.

Furthermore htRn−1 Q = htR P if and only if P = QR.

Remark 8.6 LetM be a holonomic An(K )-module. AssumeM is I -torsion. Set J =
I ∩ Rn−1. Then for i = 0, 1 the Koszul homology modules Hi (∂n, M) are J -torsion
holonomic An−1(K )-modules. For holonomicity see 2.2. Also note the sequence

0 → H1(∂n, M) → M
∂n−→ M → H0(∂n, M) → 0

is an exact sequence of An−1(K )-modules. It follows that Hi (∂n, M) are J -torsion
for i = 0, 1.

8.7 Let M be a R-module, not-necessarily finitely generated. By dim M we mean
dimension of support of M . We set dim 0 = −∞. It can be easily seen that the
following are equivalent:

(1) dim M ≤ n − i .
(2) MP = 0 for all primes P with ht P < i .
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8.8 Let M be a holonomic An(K )-module. Let c = �An(K )(M). So we have a com-
position series

0 = V0 � V1 � V2 � · · · � Vc = M.

For i = 1, . . . , c,Ci = Vi/Vi−1 are simple holonomic An(K )-modules.LetAssCi =
{Pi }. Set di = ht Pi and let d = mini {di }. Then

dim M = n − d.

To see this let d j = d. Set P = Pj . Then (C j )P �= 0. So (Vj )P �= 0. So MP �= 0.
Thus dim M ≥ n − d. If Q ∈ Spec(R) with ht Q < d then note that Pi � Q for all
i . Therefore (Ci )Q = 0 for all i . It follows that MQ = 0. Therefore dim M ≤ n − d
by 8.7. Thus dim M = n − d.

To prove Theorem8.1 by induction we need the following:

Lemma 8.9 Let
0 = V0 � V1 � V2 � · · · � Vc = M.

be a composition series of a holonomic-module M. For i = 1, . . . , c set Ci =
Vi/Vi−1. Then

(1) dim H0(∂n; M) ≤ max
i

{dim H0(∂n;Ci )} ≤ dim M.

(2) dim H1(∂n; M) ≤ max
i

{dim H1(∂n;Ci )} ≤ dim M − 1.

Proof For i = 1, . . . , c we have an exact sequence

0 → H1(∂n; Vi−1) → H1(∂n; Vi ) → H1(∂n;Ci )

→ H0(∂n; Vi−1) → H0(∂n; Vi ) → H0(∂n;Ci ) → 0.

Let AssCi = {Pi } and di = ht Pi . Set Qi = Pi ∩ Rn−1.
(1)Weprove the first inequality. Suppose if possible H0(∂n;Ci ) = 0 for all i . Then

by the above exact sequence we get H0(∂n; Vi ) = 0 for all i . So H0(∂n, M) = 0.
Therefore the first inequality holds in this case.

Now suppose H0(∂n;Ci ) �= 0 for some i . Set

max
i

{dim H0(∂n;Ci )} = n − 1 − c for some c ≥ 0.

If c = 0 then we have nothing to prove. Now suppose c > 0. Let P be a prime in R
with ht P < c. Then H0(∂n;Ci )P = 0 for all i . By the above exact sequence we get
H0(∂n; Vi )P = 0 for all i . So H0(∂n, M)P = 0. Thus by 8.7we get dim H0(∂n, M) ≤
n − 1 − c.

We now prove that dim H0(∂n,Ci ) ≤ dim M for all i . Set Ni = H0(∂n,Ci ). We
have nothing to prove if Ni = 0. So assume Ni �= 0. By 8.6, Ni is Qi -torsion. By
8.5 we have ht Qi ≥ di − 1. If Q is a prime ideal in Rn−1 with ht Q < di − 1 then
Q � Qi . So (Ni )Q = 0. By 8.7
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dim Ni ≤ n − 1 − (di − 1) = n − di ≤ dim M.

Here the last inequality follows from 8.8.
(2) The proof of the first inequality is same as that in (1). Set Wi = H1(∂n,Ci ).

We prove dimWi ≤ dim M − 1 for all i .
If dim M = 0 then note that di = n for all i . So Pi is a maximal ideal in R. It

follows that Pi �= Qi R. So by Theorem8.2 we get Wi = 0.
Now assume dim M ≥ 1. If Wi = 0 then we have nothing to prove. So assume

Wi �= 0. Then by Theorem8.2 we have Pi = Qi R. So by 8.5 ht Qi = ht Pi = di . By
8.6 Wi is Qi -torsion. If Q is a prime ideal in Rn−1 with ht Q < di then Q � Qi . So
(Wi )Q = 0. By 8.7

dimWi ≤ n − 1 − di ≤ dim M − 1.

Here the last inequality follows from 8.8. �
We now give

Proof of Theorem8.1We prove by induction on n that Hi (∂, M) = 0 for i > dim M .
We first consider the case when n = 1. We have nothing to prove when dim M = 1.
If dim M = 0 then M is only supported at maximal ideals. Let

0 = V0 � V1 � V2 � · · · � Vc = M.

be a composition series of M . For i = 1, . . . , c set Ci = Vi/Vi−1. Let Pi = AssCi .
Then Pi is a maximal ideal of R. By 8.2 we have H1(∂1,Ci ) = 0 for all i . So
H1(∂1, M) = 0.

Now assume n ≥ 2. Let M = H0(∂n, M) and M0 = H1(∂n, M). Set
∂′ = ∂1, . . . , ∂n−1. Then we have an exact sequence

· · · → Hj+1(∂
′; M) → Hj−1(∂

′; M0) → Hj (∂; M) → Hj (∂
′; M) → · · ·

By Lemma8.9 we have dim M ≤ dim M and dim M0 ≤ dim M − 1. So for j >

dim M we have, by induction hypothesis, Hj (∂
′; M) = 0 and Hj−1(∂

′; M0) = 0. So
Hj (∂; M) = 0. �

9 Proof of Theorem1

In this section we prove Theorem1. The proof of Theorem1 follows in the same
pattern as in proof of Theorem8.1. Only Lemmas7.2, 8.3, 7.8 and Remark 7.4 need
an explanation.

Remark 9.1 Let M be a holonomic Dn-module. Then H1(∂n; M) is a holonomic
Dn−1-module; see [8]. However H0(∂n; M) need not be a holonomic Dn−1-module;
see [9]. Nevertheless there exists a change of variables such that Hi (∂n; M) are
holonomic Dn−1-modules for i = 0, 1; see [10].
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Iteratively it follows that there exists a change of variables such that Hi (∂
′; M) is

finite dimensional K -vector spaces for i ≥ 0. Note that Hi (∂; M) ∼= Hi (∂
′; M) for

all i ≥ 0 it follows that Hi (∂; M) are finite dimensional K -vector spaces.

We first generalize Lemma8.3.

Lemma 9.2 Let I be an ideal in On. Set J = I ∩ On−1. Then the following are
equivalent:

(1) ∂n(I ) ⊆ I .
(2) I = JOn.
(3) Let ξ ∈ I . Let ξ = ∑∞

j=0 c j X
j
n where c j ∈ On−1 for j ≥ 0. Then c j ∈ I for

each j .

Proof (1) =⇒ (3) : Let ξ = ∑∞
j=r c j X

j
n ∈ I with c j ∈ On−1 for j ≥ r . Put vr = ξ

and c(r)
j = c j for j ≥ r . Put

vr+1 = vr − 1

(r + 1)! X
r+1
n ∂r+1

n (vr ) = cr X
r
n +

∑
j≥r+2

c(r+1)
j X j

n .

Here c(r+1)
j ∈ On−1 for j ≥ r + 2. By hypothesis vr+1 ∈ I .

Now suppose vr , vr+1, . . . , vr+s ∈ I have been constructed where

vr+s = cr X
r
n +

∑
j≥r+s+1

c(r+s)
j X j

n .

Put

vr+s+1 = vr+s − 1

(r + s + 1)! X
r+s+1
n ∂r+s+1

n (vr+s) = cr X
r
n +

∑
j≥r+s+2

c(r+s+1)
j X j

n .

Here c(r+s+1)
j ∈ On−1 for j ≥ r + s + 2. By hypothesis vr+s+1 ∈ I .

Since vr+s ∈ I we have that cr Xr
n ∈ I + mr+s+1 for all s ≥ 1. By Krull’s inter-

section theorem we have ∩s≥1(I + mr+s+1) = I . So cr Xr
n ∈ I . Therefore

cr = 1

r !∂
r
n(cr X

r
n) ∈ I

Now notice that ξ − cr Xr
n = ∑∞

j=r+1 c j X
j
n ∈ I . Iteratively one can prove that

c j ∈ I for all i ≥ r .
The assertion (3) =⇒ (1) is trivial. We now show (3) =⇒ (2). Let ξ =∑∞
j=r c j X

j
n ∈ I with c j ∈ On−1 for j ≥ r . Then by hypothesis c j ∈ I for j ≥ r . Set

S = On−1[Xn]. So ξm = ∑m
j=r c j X

j
n ∈ J S for all m ≥ r . Let̂denote completion

with respect to Xn-adic topology. Note ξ = limm ξm ∈ Ĵ S = J Ŝ = JOn . It follows
that I ⊆ JOn . The assertion JOn ⊆ I is trivial. So I = JOn .
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The proof of (2) =⇒ (3) is similar to the analogous assertion in Lemma8.3.
�

We now generalize Lemma7.4.

Corollary 9.3 Let P be a prime ideal in R and let I be an ideal in R with
√
I = P.

If ∂n(I ) ⊆ I then P = (P ∩ Rn−1)R.

Proof Set Q = P ∩ On−1. Let ξ ∈ P . Let ξ = ∑∞
j=r c j X

j
n where c j ∈ On−1 for

j ≥ r . Notice ξs ∈ I for some s ≥ 1. Also ξs = csr X
sr
n + .. higher terms in Xn . By

Lemma9.2 we get that csr ∈ I . It follows that cr ∈ P . Thus ξ − cr Xr
n ∈ P . Iterating

we obtain that c j ∈ P for all j ≥ r . So by Lemma9.2 we get that P = QR. �

Remark 9.4 Theorem8.1 generalizes to the case of Dn-modules. The proof is the
same.

Remark 9.5 We now generalize Remark 7.4. Let P be a prime ideal in On . Set
Q = P ∩ On−1. It is elementary that

htOn−1 Q ≤ htOn P with equality if and only if P = QOn.

However the assertion ht Q ≥ ht P − 1 requires a proof. I thank J.K. Verma for pro-
viding this proof. Note that ht Q = ht QOn . Set A = On−1/Q and B = On/QOn =
A[[Xn]]. Set n = P/QOn . Let S be the non-zero elements of A. Then n ∩ S = ∅.
So ht n = ht nS−1B. Let L = quotient field of A. Then S−1B = L[[Xn]]. It follows
that ht n ≤ 1. Therefore ht P − ht Q ≤ 1. The result follows.

For stating our generalization of Lemma 7.8 we need the following result:

Proposition 9.6 Let 0 → N → M → L → 0 be a short exact sequence of holo-
nomic Dn-modules. The following are equivalent:

(1) Hi (∂n; M) are holonomic Dn−1-module for i = 0, 1.
(2) Hi (∂n; N ), Hi (∂n; M) are holonomic Dn−1-modules for i = 0, 1.

Proof Let E be a holonomic Dn-module. Then H1(∂n; E) is a holonomic Dn−1-
module; see [8]. Note that we have an exact sequence of Dn−1-modules

H1(∂; L) → H0(∂; N ) → H0(∂; M) → H0(∂; L) → 0.

(2) =⇒ (1) :By the above exact sequence H0(∂; M) is a holonomicDn−1-module.
We now prove (1) =⇒ (2). Note that H1(∂; L) is holonomic Dn−1-module.

By the above exact sequence H0(∂; N ) is a holonomic Dn−1-module. Furthermore
H0(∂; L) is a subquotient of H0(∂; M) and so it is holonomic. �
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The correct statement which generalizes Lemma 7.8 is the following:

Lemma 9.7 Let
0 = V0 � V1 � V2 � · · · � Vc = M.

be a composition series of a holonomic-module M. For i = 1, . . . , c set Ci =
Vi/Vi−1. Let C = ⊕c

i=1 Ci . Suppose we have a change of variables with Hi (∂n;C)

holonomic Dn−1 module for i = 0, 1. Then

(1) Hi (∂n;C j ) are holonomic Dn−1 module for i = 0, 1 and j = 1, . . . , c.
(2) Hi (∂n; M) are holonomic Dn−1-module for i = 0, 1.
(3) dim H0(∂n; M) ≤ max

i
{dim H0(∂n;Ci )} ≤ dim M.

(4) dim H1(∂n; M) ≤ max
i

{dim H1(∂n;Ci )} ≤ dim M − 1.

Proof The assertions (1) and (2) follow from Proposition9.6. The proof of assertions
(3) and (4) is similar to that of (1) and (2) in Lemma 7.8. �

We now give
Proof of Theorem1 Let

0 = V0 � V1 � V2 � · · · � Vc = M.

be a composition series of a holonomic-module M . For i = 1, . . . , c set Ci =
Vi/Vi−1. Let C = ⊕c

i=1 Ci . Choose a change of variables with Hi (∂n;C) holo-
nomic Dn−1 module for i = 0, 1. Then by Lemma9.7 we have that Hi (∂n;C j ) are
holonomic Dn−1 module for i = 0, 1 and j = 1, . . . , c. Furthermore Hi (∂n; M) are
holonomic Dn−1-module for i = 0, 1.

After this choice of variables the proof of Theorem1 is now identical to proof of
Theorem8.1. �
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Central Quotient Versus Commutator
Subgroup of Groups

Manoj K. Yadav

Abstract In 1904, Issai Schur proved the following result. If G is an arbitrary
group such that G/Z(G) is finite, where Z(G) denotes the center of the group
G, then the commutator subgroup of G is finite. A partial converse of this result
was proved by B.H. Neumann in 1951. He proved that if G is a finitely generated
group with finite commutator subgroup, then G/Z(G) is finite. In this short note,
we exhibit few arguments of Neumann, which provide further generalizations of
converse of the above mentioned result of Schur. We classify all finite groups G such
that |G/Z(G)| = |γ2(G)|d , where d denotes the number of elements in a minimal
generating set for G/Z(G). Some problems and questions are posed in the sequel.

Keywords Commutator subgroup · Schur’s theorem · Class-preserving
automorphism

Classifications Primary 20F24 · 20E45

1 Introduction

In 1951, Neumann [18, Theorem 5.3] proved the following result: If the index of
Z(G) in G is finite, then γ2(G) is finite, where Z(G) and γ2(G) denote the center
and the commutator subgroup of G respectively. He mentioned [19, End of page
237] that this result can be obtained from an implicit idea of Schur [23], and his
proof also used Schur’s basic idea. However there is no mention of this fact in [18]
in which Schur’s paper is also cited. In this note, this result will be termed as ‘the
Schur’s theorem’. Neumann also provided a partial converse of the Schur’s theorem
[18, Corollary 5.41] as follows: If G is finitely generated by k elements and γ2(G)

is finite, then G/Z(G) is finite, and bounded by |G/Z(G)| ≤ |γ2(G)|k .
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Our first motivation of writing this note is to exhibit an idea of Neumann [18, page
179] which proves much more than what is said above on converse of the Schur’s
theorem. We quote the text here (with a minor modification in the notations):

“Let G be generated by g1, g2, . . . , gk . Then

Z(G) = ∩κ=k
κ=1CG(gκ);

for, an element of G lies in the center if and only if it (is permutable) commutes
with all the generators of G. If G is an FC-group (group whose all conjugacy
classes are of finite length), then |G : CG(gκ)| is finite for 1 ≤ κ ≤ k, and Z(G), as
intersection of a finite set of subgroups of finite index, also has finite index. The index
of the intersection of two subgroups does not exceed the product of the indices of the
subgroups: hence in this case one obtains an upper bound for the index of the center,
namely

|G : Z(G)| ≤ �κ=k
κ=1|G : CG(gκ)|.”

Just a soft staring at the quoted text for a moment or two suggests the following.
The conclusion does not require the group G to be FC-group. It only requires the
finiteness of the conjugacy classes of the generating elements. If a generator of the
groupG is contained in Z(G), one really does not need to count it. Thus the argument
works perfectly well even if G is generated by infinite number of elements, all but
finite of them lie in the center of G. Thus the following result holds true.

Theorem A. Let G be an arbitrary group such that G/Z(G) is finitely generated by
x1 Z(G), x2 Z(G), . . . , xt Z(G) and the conjugacy class of xi in G is of finite length
for 1 ≤ i ≤ t . Then G/Z(G) is finite. Moreover |G/Z(G)| ≤ �t

i=1|xGi | and γ2(G)

is finite, where xGi denotes the conjugacy class of xi in G.
Neumann’s result [18, Corollary 5.41] was reproduced byHilton [12, Theorem 1].

It seems that Hilton was not aware of Neumann’s result. This lead two more publi-
cations [21] and [24] dedicated to proving special cases of Theorem A.

Converse of the Schur’s theorem is not true in general as shown by infinite
extraspecial p-groups, where p is an odd prime. It is interesting to know that exam-
ple of such a 2-group also exists, which is mentioned on page 238 (second para of
Sect. 3) of [19]. It is a central product of infinite copies of quaternion groups of order
8 amalgamated at the center of order 2.

Our second motivation of writing this note is to provide a modification of an
innocent looking result of Neumann [20, Lemma 2], which allows us to say little
more on converse of the Schur’s theorem. A modified version of this lemma is the
following.

Lemma 1.1 Let G be an arbitrary group having a normal abelian subgroup A
such that the index of CG(A) in G is finite and G/A is finitely generated by
g1A, g2A, . . . , gr A, where |gG

i | < ∞ for 1 ≤ i ≤ r . Then G/Z(G) is finite.

This lemma helps proving the first three statements of the following result.



Central Quotient Versus Commutator Subgroup of Groups 185

Theorem B. For an arbitrary group G, G/Z(G) is finite if any one of the following
holds true:

(i) Z2(G)/Z(Z2(G)) is finitely generated and γ2(G) is finite.
(ii) G/Z(Z2(G)) is finitely generated and G/(Z2(G)γ2(G)) is finite.
(iii) γ2(G) is finite and Z2(G) ≤ γ2(G).
(iv) γ2(G) is finite and G/Z(G) is purely non-abelian.

Our final motivation is to provide a classification of all groups G upto isoclinism
(see Sect. 3 for the definition) such that |G/Z(G)| = |γ2(G)|d is finite, where d
denotes the number of elements in a minimal generating set for G/Z(G), discuss
example in various situations and pose some problems. We conclude this section
with fixing some notations. For an arbitrary group G, by Z(G), Z2(G) and γ2(G)we
denote the center, the second center and the commutator subgroup of G respectively.
For x ∈ G, [x,G] denotes the set {[x, g] | g ∈ G}. Notice that |[x,G]| = |xG |, where
xG denotes the conjugacy class of x in G. If [x,G] ⊆ Z(G), then [x,G] becomes a
subgroup of G. For a subgroup H of G, CG(H) denotes the centralizer of H in G
and for an element x ∈ G, CG(x) denotes the centralizer of x in G.

2 Proofs

We start with the proof of Lemma 1.1, which is essentially same as the one given by
Neumann.

Proof of Lemma 1.1. LetG/A be generated by g1A, g2A, . . . , gr A for some gi ∈ G,
where 1 ≤ i ≤ r < ∞. Let X := {g1, g2, . . . , gr } and A be generated by a setY . Then
G = 〈X ∪ Y 〉 and Z(G) = CG(X) ∩ CG(Y ). Notice that CG(A) = CG(Y ). Since
CG(A) is of finite index, CG(Y ) is also of finite index in G. Also, since |gG

i | < ∞
for 1 ≤ i ≤ r , CG(X) is of finite index in G. Hence the index of Z(G) in G is finite
and the proof is complete. �

Proof of Theorem A can be made quite precise by using Lemma 1.1.

Proof of Theorem A. Taking A = Z(G) in Lemma 1.1, it follows that G/Z(G) is
finite. Moreover,

|G/Z(G)| = |G/ ∩t
i=1 CG(xi )| ≤ �t

i=1|G : CG(xi )| = �t
i=1|[xi ,G]| = �t

i=1|xGi |.

That γ2(G) is finite now follows from the Schur’s theorem. �
For the proof of Theorem B we need the following result of Hall [9] and the

subsequent proposition.

Theorem 2.1 If G is an arbitrary group such that γ2(G) is finite, then G/Z2(G) is
finite.
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Explicit bounds on the order of G/Z2(G) were first given by Macdonald [14,
Theorem 6.2] and later on improved by Podoski and Szegedy [22] by showing that
if |γ2(G)/(γ2(G) ∩ Z(G))| = n, then |G/Z2(G)| ≤ nc log2n with c = 2.

Proposition 2.1 Let G be an arbitrary group such that γ2(G) is finite and G/Z(G)

is infinite. Then G/Z(G) has an infinite abelian group as a direct factor.

Proof Since γ2(G) is finite, by Theorem 2.1 G/Z2(G) is finite. Thus Z2(G)/Z(G)

is infinite. Again using the finiteness of γ2(G), it follows that the exponent of
Z2(G)/Z(G) is finite. Hence by [6, Theorem 17.2] Z2(G)/Z(G) is a direct sum
of cyclic groups. Let G/Z2(G) be generated by x1 Z2(G), . . . , xr Z2(G) and H :=
〈x1, . . . , xr 〉. Then it follows that modulo Z(G), H ∩ Z2(G) is finite. Thus we can
write

Z2(G)/Z(G) = 〈y1 Z(G)〉 × · · · × 〈ys Z(G)〉 × 〈ys+1 Z(G)〉 × · · · ,

such that (H ∩ Z2(G))Z(G)/Z(G) ≤ 〈y1 Z(G)〉 × · · · × 〈ys Z(G)〉. It now follows
that the infinite abelian group 〈ys+1 Z(G)〉 × · · · is a direct factor of G/Z(G), and
the proof is complete. �

We are now ready to prove Theorem B.

Proof of Theorem B. Since γ2(G) is finite, it follows from Theorem 2.1 that
G/Z2(G) is finite. Now using the fact that Z2(G)/Z(Z2(G)) is finitely generated,
it follows that G/Z(Z2(G)) is finitely generated. Take Z(Z2(G)) = A. Then notice
that A is a normal abelian subgroup of G such that the index of CG(A) in G is finite,
since Z2(G) ≤ CG(A). Hence by Lemma 1.1, G/Z(G) is finite, which proves (i).

Again takeZ(Z2(G)) = A andnotice thatZ2(G)γ2(G) ≤ CG(A). (ii) nowdirectly
follows from Lemma 1.1. If Z2(G) ≤ γ2(G), then Z2(G) is abelian. Thus (iii) fol-
lows from (i). Finally, (iv) follows from Proposition 2.1. This completes the proof
of the theorem. �

We conclude this section with an extension of Theorem A in terms of conjugacy
class-preserving automorphisms of given group G. An automorphism α of an arbi-
trary group G is called (conjugacy) class-preserving if α(g) ∈ gG for all g ∈ G. We
denote the group of all class-preserving automorphisms ofG byAutc(G). Notice that
Inn(G), the group of all inner automorphisms ofG, is a normal subgroup of Autc(G)

and Autc(G) acts trivially on the center of G. A detailed survey on class-preserving
automorphisms of finite p-groups can be found in [25].

Let G be the group as in the statement of Theorem A. Then G is generated by
x1, x2, . . . , xt along with Z(G). Since Autc(G) acts trivially on the center of G, it
follows that

|Autc(G)| ≤ �t
i=1|xGi | (2.1)

as there are only |xGi | choices for the image of each xi under any class-preserving
automorphism. Since |xGi | is finite for each xi , 1 ≤ i ≤ t , it follows that |Autc(G)| ≤
�t

i=1|xGi | is finite.
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We have proved the following result of which Theorem A is a corollary, because
|G/Z(G)| = | Inn(G)| ≤ |Autc(G)|.
Theorem 2.2 Let G be an arbitrary group such that G/Z(G) is finitely generated
by x1 Z(G), x2 Z(G), . . . , xt Z(G) and the conjugacy class of xi in G is of finite
length for 1 ≤ i ≤ t . Then Autc(G) is finite. Moreover |Autc(G)| ≤ �t

i=1|xGi | and
γ2(G) is finite.

Proof of TheoremA is also reproduced using I A-automorphisms (automorphisms
of a group that induce identity on the abelianization) in [7, Theorem 2.3]. Proof goes
on the same way as in the case of class-preserving automorphisms.

3 Groups with Maximal Central Quotient

We start with the following concept due to Hall [8]. For a group X , the commutator
map aX : X/Z(X) × X/Z(X) → γ2(X) given by aX (x1 Z(X), x2 Z(X)) = [x1, x2]
is well defined. Two groups K and H are said to be isoclinic if there exists an isomor-
phismφ of the factor group K̄ = K/Z(K ) onto H̄ = H/Z(H), and an isomorphism
θ of the subgroup γ2(K ) onto γ2(H) such that the following diagram is commutative

K̄ × K̄
aG−−−−→ γ2(K )

φ×φ

⏐⏐� ⏐⏐�θ

H̄ × H̄
aH−−−−→ γ2(H).

The resulting pair (φ, θ) is called an isoclinism of K onto H . Notice that isoclinism
is an equivalence relation among groups.

The followingproposition (also seeMacdonald’s result [14,Lemma2.1]) is impor-
tant for the rest of this section.

Proposition 3.1 Let G be a group such that G/Z(G) is finite. Then there exists a
finite group H isoclinic to the group G such that Z(H) ≤ γ2(H). Moreover if G is
a p-group, then H is also a p-group.

Proof Let G be the given group. Then by Schur’s theorem γ2(G) is finite. Now it
follows from a result of Hall [8] that there exists a group H which is isoclinic to G
and Z(H) ≤ γ2(H). Since |γ2(G)| = |γ2(H)| is finite, Z(H) is finite. Hence, by the
definition of isoclinism, H is finite. Now suppose that G is a p-group, then it follows
that, H/Z(H) as well as γ2(H) are p-groups. Since Z(H) ≤ γ2(H), this implies
that H is a p-group. �

For an arbitrary group G with finite G/Z(G), we have

|G/Z(G)| ≤ |γ2(G)|d , (3.1)
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where d = d(G/Z(G)). For simplicity we say that a group G has Property A if
G/Z(G) is finite and equality holds in (3.1) for G. We are now going to classify,
upto isoclinism, all groups G having Property A.

Let G be an arbitrary group having Property A. Then by Proposition 3.1 there
exists a finite group H isoclinic to G and, by the definition of isoclinism, H has
Property A. Thus for classifying all groups G, upto isoclinism, having Property A,
it is sufficient to classify all finite group with this property.

Let us first consider non-nilpotent finite groups. For such groups we prove the
following result in [5]

Theorem 3.1 There is no non-nilpotent group G having Property A.

So we only need to consider finite nilpotent groups. Since a finite nilpotent group
is a direct product of its’ Sylow p-subgroups, it is sufficient to classify finite p-groups
admitting Property A. Obviously, all abelian groups admit Property A. Perhaps the
simplest examples of non-abelian groups having Property A are finite extraspecial
p-groups. The class of 2-generated finite capable nilpotent groups with cyclic com-
mutator subgroup also admits Property A. A group G is said to be capable if there
exists a group H such that G ∼= H/Z(H). Isaacs [13, Theorem 2] proved: Let G be
finite and capable, and suppose that γ2(G) is cyclic and that all elements of order
4 in γ2(G) are central in G. Then |G/Z(G)| ≤ |γ2(G)|2, and equality holds if G is
nilpotent. So, if G is a group as in the preceding statement and G is also 2-generated
nilpotent, then G admits Property A. A complete classification of 2-generated finite
capable p-groups of class 2 is given in [15].

Motivated by finite extraspecial p-groups, a more general class of groups G
admitting Property A can be constructed as follows. For any positive integer m,
let G1,G2, . . . ,Gm be 2-generated finite p-groups such that γ2(Gi ) = Z(Gi ) ∼= X
(say) is cyclic of order q for 1 ≤ i ≤ m, where q is some power of p. Consider the
central product

Y = G1 ∗X G2 ∗X · · · ∗X Gm (3.2)

of G1,G2, . . . ,Gm amalgamated at X (isomorphic to cyclic commutator subgroups
γ2(Gi ), 1 ≤ i ≤ m). Then |Y | = q2m+1 and |Y/Z(Y )| = q2m = |γ2(Y )|d(Y ), where
d(Y ) = 2m is the number of elements in any minimal generating set for Y . Thus Y
has Property A. Notice that in all of the above examples, the commutator subgroup
is cyclic. Infinite groups having Property A can be easily obtained by taking a direct
product of an infinite abelian group with any finite group having Property A.

We now proceed to showing that any finite p-group G of class 2 having Property
A is isoclinic to a group Y defined in (3.2).

Let x ∈ Z2(G) for a group G. Then, notice that [x,G] is a central subgroup of G.
We have the following simple but useful result.

Lemma 3.1 Let G be an arbitrary group such thatZ2(G)/Z(G) is finitely generated
by x1 Z(G), x2 Z(G), . . . , xt Z(G) such that exp([xi ,G]) is finite for 1 ≤ i ≤ t . Then
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|Z2(G)/Z(G)| =
t∏

i=1

exp([xi ,G]).

Proof By the given hypothesis exp([xi ,G]) is finite for all i such that 1 ≤ i ≤ t .
Suppose that exp([xi ,G]) = ni . Since [xi ,G] ⊆ Z(G), it follows that [xnii ,G] =
[xi ,G]ni = 1. Thus xnii ∈ Z(G) and no smaller power of xi than ni can lie in Z(G),
which implies that the order of xi Z(G) is ni . Since Z2(G)/Z(G) is abelian, we have
|Z2(G)/Z(G)| = ∏t

i=1 exp([xi ,G]). �

Let�(X) denote the Frattini subgroup of a group X . The following result provides
some structural information of p-groups of class 2 admitting Property A.

Proposition 3.2 Let H be a finite p-group of class 2 having Property A andZ(H) =
γ2(H). Then

(i) γ2(H) is cyclic;
(ii) H/Z(H) is homocyclic;
(iii) [x, H ] = γ2(H) for all x ∈ H − �(H);
(iv) H is minimally generated by even number of elements.

Proof Let H be the group given in the statement, which is minimally generated
by d elements x1, x2 . . . , xd (say). Since Z(H) = γ2(H), it follows that H/Z(H)

is minimally generated by x1 Z(H), x2 Z(H), . . . , xd Z(H). Thus by the identity
|H/Z(H)| = |γ2(H)|d , it follows that order of xi Z(H) is equal to |γ2(H)| for
all 1 ≤ i ≤ d. Since the exponent of H/Z(H) is equal to the exponent of γ2(H),
we have that γ2(H) is cyclic and H/Z(H) is homocyclic. Now by Lemma 3.1,
|γ2(H)|d = |H/Z(H)| = ∏t

i=1 exp([xi , H ]). Since [xi , H ] ⊆ γ2(H), this implies
that [xi , H ] = γ2(H) for each i such that 1 ≤ i ≤ d. Let x be an arbitrary element
in H − �(H). Then the set {x} can always be extended to a minimal generating set
of H . Thus it follows that [x, H ] = γ2(H) for all x ∈ H − �(H). This proves first
three assertions.

For the proof of (iv), we consider the group H̄ = H/�(γ2(H)). Notice that both
H as well as H̄ are minimally generated by d elements. Since [x, H ] = γ2(H)

for all x ∈ H − �(H), it follows that for no x ∈ H − �(H), x̄ ∈ Z(H̄), where
x̄ = x�(γ2(H)) ∈ H̄ . Thus it follows that Z(H̄) ≤ �(H̄). Also, since γ2(H) is
cyclic, γ2(H̄) is cyclic of order p. Thus it follows that H̄ is isoclinic to a finite
extraspecial p-group, and therefore it is minimally generated by even number of
elements. Hence H is also minimally generated by even number of elements. This
completes the proof of the proposition. �

Using the definition of isoclinism, we have

Corollary 3.1 Let G be a finite p-group of class 2 admitting Property A. Then γ2(G)

is cyclic and G/Z(G) is homocyclic.

We need the following important result.
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Theorem 3.2 ([3], Theorem 2.1) Let G be a finite p-group of nilpotency class 2with
cyclic center. Then G is a central product either of two generator subgroups with
cyclic center or two generator subgroups with cyclic center and a cyclic subgroup.

Theorem 3.3 Let G be a finite p-group of class 2 having Property A. Then G is
isoclinic to the group Y , defined in (3.2), for suitable positive integers m and n.

Proof Let G be a group as in the statement. Then by Proposition 3.1 there exists a
finite p-group H isoclinic to G such that Z(H) = γ2(H). Obviously H also satisfies
|H/Z(H)| = |γ2(H)|d , where d denotes the number of elements in any minimal
generating set of G/Z(G). Then by Proposition 3.2, γ2(H) = Z(H) is cyclic of
order q = pn (say) for some positive integer n, and H/Z(H) is homocyclic of
exponent q and is of order q2m for some positive integer m. Since Z(H) = γ2(H)

is cyclic, it follows from Theorem 3.2 that H is a central product of 2-generated
groups H1, H2, . . . , Hm . It is easy to see that γ2(Hi ) = Z(Hi ) for 1 ≤ i ≤ m and
|γ2(H)| = q. This completes the proof of the theorem. �

We would like to remark that Theorem 3.3 is also obtained in [26, Theorem 11.2]
as a consequence on study of class-preserving automorphisms of finite p-group. But
we have presented a direct proof here.

Now we classify finite p-groups of impotency class larger than 2. Consider the
metacyclic groups

K :=
〈
x, y | x pr+t = 1, y pr = x pr+s

, [x, y] = x pt
〉
, (3.3)

where 1 ≤ t < r and 0 ≤ s ≤ t (t ≥ 2 if p = 2) are nonnegative integers. Notice
that the nilpotency class of K is at least 3. Since K is generated by 2 elements,
it follows from (2.1) that |Autc(K )| ≤ |γ2(K )|2 = p2r . It is not so difficult to
see that | Inn(K )| = |K/Z(K )| = p2r . Since Inn(K ) ≤ Autc(K ), it follows that
|Autc(K )| = | Inn(K )| = |γ2(K )|2 = |γ2(K )|d(K ) (That Autc(G) = Inn(G), is, in
fact, true for all finite metacylic p-groups). Thus K admits Property A. Furthermore,
if H is any 2-generator group isoclinic to K , then it follows that H admits Property
A. For a finite p-group having Property A, there always exists a p-group H isoclinic
G such that |H/Z(H)| = |γ2(H)|d , where d = d(H). The following theorem now
classifies, upto isoclinism, all finite p-groups G of nilpotency class larger than 2
having Property A.

Theorem 3.4 (Theorem 11.3, [26]) Let G be a finite p-group of nilpotency class at
least 3. Then the following holds true.

(i) If |G/Z(G)| = |γ2(G)|d , where d = d(G), then d(G) = 2;
(ii) If |γ2(G)/γ3(G)| > 2, then |G/Z(G)| = |γ2(G)|d if and only if G is a 2-

generator group with cyclic commutator subgroup. Furthermore, G is isoclinic
to the group K defined in (3.3) for suitable parameters;

(iii) If |γ2(G)/γ3(G)| = 2, then |G/Z(G)| = |γ2(G)|d if and only if G is a 2-
generator 2-group of nilpotency class 3 with elementary abelian γ2(G) of
order 4.
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It is clear that the groups G occurring in Theorem 3.4(iii) are isoclinic to certain
groups of order 32. Using Magma (or GAP), one can easily show that such groups
of order 32 are SmallGroup(32,k) for k = 6, 7, 8 in the small group library.

We conclude this section with providing some different type of bounds on the
central quotient of a given group. If |γ2(G)Z(G)/Z(G)| = n is finite for a group
G, then it follows from [22, Theorem 1] that |G/Z2(G)| ≤ n2 log2n . Using this and
Lemma 3.1 we can also provide an upper bound on the size of G/Z(G) in terms of
n, the rank of Z2(G)/Z(G) and exponents of certain sets of commutators (here these
sets are really subgroups ofG) of coset representatives of generators of Z2(G)/Z(G)

with the elements of G. This is given in the following theorem.

Theorem 3.5 Let G be an arbitrary group. Let |γ2(G)Z(G)/Z(G)| = n is finite
and Z2(G)/Z(G) is finitely generated by x1 Z(G), x2 Z(G), . . . , xt Z(G) such that
exp([xi ,G]) is finite for 1 ≤ i ≤ t . Then

|G/Z(G)| ≤ n2 log2n
∏t

i=1
exp([xi ,G]).

4 Problems and Examples

Theorem B provides some conditions on a group G under which G/Z(G) becomes
finite. It is interesting to solve

Problem 1. Let G be an arbitrary group. Provide a set C of optimal conditions on G
such that G/Z(G) is finite if and only if all conditions in C hold true.

As we know that there is no finite non-nilpotent group G admitting Property A.
Since Inn(G) ≤ Autc(G), it is interesting to consider

Problem 2. Classify all non-nilpotent finite groups G such that |Autc(G)| =
|γ2(G)|d , where d = d(G).

A much stronger result than Theorem 3.1 is known in the case when the Frattini
subgroup of G is trivial. This is given in the following theorem of Herzog, Kaplan
and Lev [10, Theorem A] (the same result is also proved independently by Halasi
and Podoski in [11, Theorem 1.1]).

Theorem 4.1 Let G be any non-abelian group with trivial Frattini subgroup. Then
|G/Z(G)| < |γ2(G)|2.

The following result with the assertion similar to the preceding theorem is due to
Isaacs [13].

Theorem 4.2 If G is a capable finite group with cyclic γ2(G) and all elements of
order 4 in γ2(G) are central in G, then |G : Z(G)| ≤ |γ2(G)|2. Moreover, equality
holds if G is nilpotent.
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So, there do exist nilpotent groups with comparatively small central quotient. A
natural problem is the following.

Problem 3. Classify all finite p-groups G such that |G : Z(G)| ≤ |γ2(G)|2.
Let G be a finite nilpotent group of class 2 minimally generated by d elements.

Then it follows from Lemma 3.1 that |G/Z(G)| ≤ ∏d
i=1exp([xi ,G]), which in turn

implies
|G/Z(G)| ≤ |exp(γ2(G))|d . (4.1)

Problem 4. Classify all finite p-groups G of nilpotency class 2 for which equality
holds in (4.1).

Nowwe discuss some examples of infinite groups with finite central quotient. The
most obvious example is the infinite cyclic group. Other obvious examples are the
groups G = H × Z , where H is any finite group and Z is the infinite cyclic group.
Nonobvious examples include finitely generated FC-groups, in which conjugacy
class sizes are bounded, and certain Cernikov groups. We provide explicit examples
in each case. Let Fn be the free group on n symbols and p be a prime integer. Then
the factor group Fn/(γ2(Fn)

pγ3(Fn)) is the required group of the first type, where
γ2(Fn)

p = 〈u p | u ∈ γ2(Fn)〉. Now let H = Z(p∞) × A be the direct product of
quasi-cyclic (Prüfer) group Z(p∞) and the cyclic group A = 〈a〉 of order p, where
p is a prime integer. Now consider the group G = H � B, the semidirect product
of H and the cyclic group B = 〈b〉 of order p with the action by xb = x for all
x ∈ Z(p∞) and ab = ac, where c is the unique element of order p in Z(p∞). This
group is suggested by V. Romankov and Rahul D. Kitture through ResearchGate,
and is a Cernikov group.

The following problem was suggested by R. Baer in [1].

Problem 5. Let A and Q be two groups. Obtain necessary and sufficient conditions
on A and Q so that there exists a group G with A ∼= (G) and Q ∼= G/Z(G).

This problem was solved by Baer himself for an arbitrary abelian group A and
finitely generated abelian group G. Moskalenko [16] solved this problem for an
arbitrary abelian group A and a periodic abelian group G. He [17] also solved this
problem for arbitrary abelian group A and a non-periodic abelian group G such that
the rank of G/t (G) is 1, where t (G) denotes the tortion subgroup of G. If this
rank is more than 1, then he solved the problem when A is a torsion abelian group.
For a given group Q, the existence of a group G such that Q ∼= G/Z(G) has been
studied extensively under the theme ‘Capable groups’. However, to the best of our
knowledge, Problem 5 has been poorly studied in full generality. Let us restate a
special case of this problem in a little different setup. A pair of groups (A, Q), where
A is an arbitrary abelian group and Q is an arbitrary group, is said to be a capable
pair if there exists a group G such that A ∼= Z(G) and Q ∼= G/Z(G). So, in our
situation, the following problem is very interesting.

Problem 6. Classify capable pairs (A, Q), where A is an infinite abelian group and
Q is a finite group.
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Finally let us get back to the situation when G is a group with finite γ2(G) but
infinite G/Z(G). The well-known examples of such type are infinite extraspecial
p-groups. Other class of examples can be obtained by taking a central product (amal-
gamated at their centers) of infinitely many copies of a 2-generated finite p-group
of class 2 such that γ2(H) = Z(H) is cyclic of order q, where q is some power of
p. Notice that both of these classes consist of groups of nilpotency class 2. Now if
we take G = X × H , where X is an arbitrary group with finite γ2(X) and H is with
finite γ2(H) and infinite H/Z(H), then γ2(G) is finite but G/Z(G) is infinite. So
we can construct nilpotent groups of arbitrary class and even non-nilpotent group
with infinite central quotient and finite commutator subgroup.

A non-nilpotent group G is said to be purely non-nilpotent if it does not have any
nontrivial nilpotent subgroup as a direct factor. With the help of Rahul D. Kitture,
we have also been able to construct purely non-nilpotent groups G such that γ2(G)

is finite but G/Z(G) is infinite. Let H be an infinite extraspecial p-group. Then we
can always find a fieldFq , where q is some power of a prime, containing all pth roots
of unity. Now let K be the special linear group sl(p,Fq), which is a non-nilpotent
group having a central subgroup of order p. Now consider the group G which is a
central product of H and K amalgamated at Z(H). Then G is a purely non-nilpotent
group with the required conditions. It will be interesting to see more examples of this
type which do not occur as a central product of such infinite groups of nilpotency
class 2 with non-nilpotent groups.

By Proposition 2.1 we know that for an arbitrary group G with finite γ2(G) but
infinite G/Z(G), the group G/Z(G) has an infinite abelian group as a direct factor.
Further structural information is highly welcome.

Problem 7. Provide structural information of the group G such that γ2(G) is finite
but G/Z(G) is infinite?
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Robinson–Schensted Correspondence
for the Walled Brauer Algebras
and the Walled Signed Brauer Algebras

A. Tamilselvi, A. Vidhya and B. Kethesan

Abstract In this paper, we develop a Robinson–Schensted algorithm for the walled
Brauer algebras which gives the bijection between the walled Brauer diagram d and
the pairs of standard tri-tableaux of shape λ = (λ1,λ2,λ3) with λ1 = (2 f ),λ2 �
r − f andλ3 � s − f, for 0 ≤ f ≤ min(r, s).As a biproduct, we define aRobinson–
Schensted correspondence for the walled signed Brauer algebras which gives the
correspondence between the walled signed Brauer diagram d and the pairs of stan-
dard signed-tri-tableauxof shapeλ = (λ1,λ2,λ3)withλ1 = (22 f ),λ2 �b r − f and
λ3 �b s − f, for 0 ≤ f ≤ min(r, s).Wealso derive theKnuth relations and the deter-
minantal formula for the walled Brauer and the walled signed Brauer algebras by
using the Robinson–Schensted correspondence.

Keywords Robinson–Schensted correspondence · Walled signed Brauer algebra

Mathematics Subject Classifications 05E10 · 20C30

1 Introduction

In order to characterise invariants of classical groups acting on tensor powers of the
vector representations, Brauer [2] introduced a new class of algebras called Brauer
algebras. The Brauer algebras used graphs to represent its basis. Hence it can be
considered as a class of diagram algebras, that are finite dimensional algebras whose
basis consists of diagrams. These basis have interesting combinatorial properties to
be studied in their own right.
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Parvathi and Kamaraj [8] introduced a new class of algebras called signed Brauer
algebras S(x)f which are a generalization of Brauer algebras. Parvathi and Selvaraj
[9] studied signed Brauer algebras as a class of centraliser algebras, which are the
direct product of orthogonal groups over the field of real numbers R.

The walled Brauer algebras (also known as the rational Brauer algebras) Br,s(δ)
are the subalgebras of the Brauer algebras Br+s(δ) which arise from a Schur–Weyl
duality between Br,s(δ) and GLδ(C) from the actions on the mixed tensor prod-
uct V⊗r

⊗
(V ∗)⊗s of the natural representation (and its dual) for GLδ(C). This

algebra was studied by Turaev, Koike, Benkart et al., Brundan et al., Cox et al.,
[1, 3, 4, 7, 18].

Kethesan [6] introduced a new class of algebras called walled signed Brauer
algebras Dr,s which are subalgebras of signed Brauer algebras Dr+s introduced by
[8]. He observed that the number of walled Brauer diagrams is the dimension of the
regular representation of walled signed Brauer algebras.

Let G be the group of linear transformations on a n-dimensional vector space V .
Suppose thatG acts diagonally on the k-fold tensor space V⊗k . Then the k-fold tensor
space V⊗k decomposes into irreducible representation of G as centraliser algebras
EndG

(
V⊗k

)
. This work was successfully extended to other centraliser algebras,

namelyBrauer algebras EndO(n)
(
V⊗k

)
whereO(n) is the orthogonal groupof degree

n, Partition algebras EndSn
(
V⊗k

)
and so on.

A study on complete set of irreducible representations of these algebras have
been done by many. For Brauer algebras the irreducible representations have been
studied by Brown, Wenzl, etc. The dimension of the regular representation of
the walled Brauer algebras is indexed by partition of shape λ = (λ1,λ2,λ3) with
λ1 = (2 f ),λ2 � r − f and λ3 � s − f, for 0 ≤ f ≤ min(r, s). In a similar way,
the dimension of the regular representation of the walled signed Brauer algebras is
indexed by partition of shape λ = (λ1,λ2,λ3) with λ1 = (22 f ),λ2 �b r − f and
λ3 �b s − f, for 0 ≤ f ≤ min(r, s).

Using Young diagrams and Young tableaux introduced by Alfred Young in 1900,
Robinson gave a bijective correspondence between permutations and pairs of stan-
dard Young tableaux of the same shape in an attempt to prove the Littlewood–
Richardson rule in [14]. Later in 1961 [16], Schensted gave the simplest description
of the correspondence, whose main objective was counting permutations with given
lengths of their longest increasing and decreasing subsequences. By using a combi-
nation of Robinson–Schensted–Knuth insertion and jeu-de taquin, in [5] the authors
provide a bijection between sequences {i1, i2, . . . , ik}, 1 ≤ i j ≤ n and pairs (Pλ, Qλ)

consisting of a standard Young tableau Pλ and a column strict tableau Qλ of shape
λ, thus providing a combinatorial proof of the identity nk = ∑

λ�k
|λ|≤n

f λdλ where f λ is

the number of standard Young tableaux of shape λ and dλ is the number of column
strict tableau of shape λ.

Thismotivated us to study theRobinson–Schensted correspondence for thewalled
Brauer algebras and signed walled Brauer algebras.
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The Robinson–Schensted correspondence for signed Brauer algebras, G-Brauer
algebra and G-vertex colored Partition algebra were studied already by Parvathi and
Tamilselvi [11–13].

We construct an explicit bijection between the set ofwalledBrauer diagrams d and
the pairs of standard λ-tri-tableaux of shape λ = (λ1,λ2,λ3) with λ1 = (2 f ),λ2 �
r − f and λ3 � s − f, for 0 ≤ f ≤ min(r, s). We also derive the Knuth relations
and the determinantal formula for the walled Brauer algebras by using the Robinson–
Schensted correspondence for the standard tri-tableau of shape λ = (λ1,λ2,λ3)with
λ1 = (2 f ),λ2 � r − f and λ3 � s − f, for 0 ≤ f ≤ min(r, s).

We construct an explicit bijection between the set of walled signed Brauer dia-
grams d and the pairs of standard λ-tri-tableaux of shape λ = (λ1,λ2,λ3) with
λ1 = (22 f ),λ2 �b r − f and λ3 �b s − f, for 0 ≤ f ≤ min(r, s). We also derive
the Knuth relations and the determinantal formula for the walled signed Brauer
algebras by using the Robinson–Schensted correspondence for the standard tri-
tableau of shape λ = (λ1,λ2,λ3) with λ1 = (22 f ),λ2 �b r − f and λ3 �b s − f,
for 0 ≤ f ≤ min(r, s).

2 Preliminaries

2.1 Basic Definitions and Results

We state the basic definitions and some known results which will be used in this
paper.

Definition 2.1 ([15]) A sequence of non-negative integers λ = (λ1,λ2, . . . ,λl) is
called a partition of n, which is denoted by λ � n, if

1. λi ≥ λi+1, for every i ≥ 1

2.
l∑

i=1
λi = n

The λi are called the parts of λ.

Definition 2.2 ([15]) Let λ = (λ1,λ2, . . . ,λl) � n. The Young diagram of λ is an
array of n dots having l left justified rows with row i containing λi dots for 1 ≤ i ≤ l.

Example

λ :=
∗ ∗ · · · ∗ λ1 nodes
∗ ∗ · · ∗ λ2 nodes
...
...

...

∗ ∗ · · · ∗ λl nodes

Definition 2.3 Suppose λ � n. AYoung tableau of shape λ, is an array t obtained by
replacing the stars of theYoung diagramofλwith the numbers 1, 2, . . . , n bijectively.
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Definition 2.4 A tableau t is standard if the entries in the tableau t is increasing
along the rows and columns.

Proposition 2.5 ([15]) Ifλ = (λ1, . . . ,λl) � n then f λ = n!
∣∣∣ 1
(λi−i+ j)!

∣∣∣
l×l

where f λ

is the number of standard tableaux of shape λ.

Definition 2.6 Abipartitionλofn, denotedbyλ �b n, is an orderedpair of partitions(
λ(1),λ(2)

)
where λ(1) � r and λ(2) � s such that r + s = n, r, s ≥ 0.

Proposition 2.7 ([10]) If λ = (λ(1),λ(2)) �b n then

f λ = n!
∣∣∣∣∣ 1

(λ(1)
i − i + j)!

∣∣∣∣∣
l×l

∣∣∣∣∣ 1

(λ(2)
i − i + j)!

∣∣∣∣∣
n−l×n−l

where |λ(1)| = l and |λ(2)| = n − l, f λ is the number of standard bitableau of
shape λ.

Definition 2.8 ([15]) A rim hook is a connected skew shape containing no 2 × 2
square.

Definition 2.9 ([17]) A generalised permutation is a two-line array of integers

x =
(
i1 i2 . . . in
x1 x2 . . . xn

)

whose column are in lexicographic order, with the top entry taking precedence and
xl �= xm, ∀ l,m. The set of all generalised permutations denoted by GP(n)

Proposition 2.10 ([17]) If x ∈ GP(n) then P(x−1) = Q(x) and Q(x−1) = P(x)
where P(x), P(x−1), Q(x), Q(x−1) be the standard tableaux of shape λ � n.

Definition 2.11 ([17]) The generalised permutations x and y differ by a Knuth

relation of first kind, denoted by x
1∼ y if

x = x1 . . . xi−1xi xi+1 . . . xn and

y = x1 . . . xi−1xi+1xi . . . xn

such that xi < xi−1 < xi+1.

They differ by a Knuth relation of second kind, denoted by x
2∼ y if

x = x1 . . . xi xi+1xi−1 . . . xn and

y = x1 . . . xi+1xi xi−1 . . . xn

such that xi < xi−1 < xi+1.
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The two permutations are Knuth equivalent, denoted by x
K∼ y if there is a

sequence of permutations such that

x = z1
i∼ z2

j∼ · · · l∼ zk = y where i, j, . . . , l ∈ {1, 2}.

Proposition 2.12 ([17]) If x, y ∈ GP(n) then x
K∼ y ⇐⇒ P(x) = P(y) where

P(x), P(y) are the standard tableaux of shape λ, λ � n.

Definition 2.13 ([17]) The generalised permutations x and y differ by a dual Knuth

relation of first kind, denoted by x
1∗∼ y if

x = x1 . . . xi . . . xi−1 . . . xi+1 . . . xn and

y = x1 . . . xi+1 . . . xi−1 . . . xi . . . xn

such that xi < xi−1 < xi+1.

They differ by a dual Knuth relation of second kind, denoted by x
2∗∼ y if

x = x1 . . . xi−1 . . . xi+1 . . . xi . . . xn and

y = x1 . . . xi . . . xi+1 . . . xi−1 . . . xn

such that xi < xi−1 < xi+1.

The two permutations are dual Knuth equivalent, denoted by x
K ∗∼ y if there is a

sequence of permutations such that

x = z1
i∗∼ z2

j∗∼ · · · l∗∼ zk = y where i, j, . . . , l ∈ {1, 2}.

Lemma 2.14 ([17]) If x, y ∈ GP(n) then x
K∼ y ⇐⇒ x−1 K ∗∼ y−1.

Proposition 2.15 ([17]) If x, y ∈ GP(n) then x
K ∗∼ y ⇐⇒ Q(x) = Q(y) where

Q(x), Q(y) are the standard tableaux of shape λ, λ � n.

Definition 2.16 ([17]) A generalised signed permutation is a two-line array of inte-
gers

x =
(

i1 i2 . . . in
εx1x1 εx2x2 . . . εxn xn

)

where εxi ∈ {±1}, ∀i whose column are in lexicographic order, with the top entry
taking precedence and xl �= xm, ∀ l,m.The set of all generalised signed permutations
denoted by GSP(n)

Proposition 2.17 ([11]) If x ∈ GSP(n) then P(x−1) = Q(x) and Q(x−1) = P(x)
where P(x), P(x−1), Q(x), Q(x−1) be the standard bi-tableaux of shape λ =
(λ1,λ2) where λ1 � k and λ2 � n − k, k ≥ 0.
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Definition 2.18 ([17]) The generalised signed permutations x and y differ by a

Knuth relation of first kind, denoted by x
1̃∼ y if

x = εx1x1 . . . εxi−1xi−1εxi xiεxi+1xi+1 . . . εxn xn and

y = εx1x1 . . . εxi−1xi−1εxi+1xi+1εxi xi . . . εxn xn

such that xi < xi−1 < xi+1 and εxi−1 = εxi = εxi+1 .

They differ by a Knuth relation of second kind, denoted by x
2̃∼ y if

x = εx1x1 . . . εxi xiεxi+1xi+1εxi−1xi−1 . . . εxn xn and

y = εx1x1 . . . εxi+1xi+1εxi xiεxi−1xi−1 . . . εxn xn

such that xi < xi−1 < xi+1 and εxi−1 = εxi = εxi+1 .

They differ by a Knuth relation of third kind, denoted by x
3̃∼ y if

x = εx1x1 . . . εxi xiεxi+1xi+1 . . . εxn xn and

y = εx1x1 . . . εxi+1xi+1εxi xi . . . εxn xn

such that εxi = −εxi+1 .

The two permutations are Knuth equivalent, denoted by x
K̃∼ y if there is a

sequence of permutations such that

x = z1
i∼ z2

j∼ · · · l∼ zk = y where i, j, . . . , l ∈ {̃1, 2̃, 3̃}.

Proposition 2.19 ([11]) If x, y ∈ GSP(n) then x
K̃∼ y ⇐⇒ P(x) = P(y) where

P(x), P(y) are the standard bi-tableaux of shape λ = (λ1,λ2) where λ1 � k and
λ2 � n − k, k ≥ 0.

Definition 2.20 ([17]) The generalised signed permutations x and y differ by a dual

Knuth relation of first kind, denoted by x
1̃∗∼ y if

x = εx1x1 . . . εxi xi . . . εxi−1xi−1 . . . εxi+1xi+1 . . . εxn xn and

y = εx1x1 . . . εxi+1xi+1 . . . εxi−1xi−1 . . . εxi xi . . . εxn xn

such that xi < xi−1 < xi+1 and εxi−1 = εxi = εxi+1 .

They differ by a dual Knuth relation of second kind, denoted by x
2̃∗∼ y if

x = εx1x1 . . . εxi−1xi−1 . . . εxi+1xi+1 . . . εxi xi . . . εxn xn and

y = εx1x1 . . . εxi xi . . . εxi+1xi+1 . . . εxi−1xi−1 . . . εxn xn

such that xi < xi−1 < xi+1 and εxi−1 = εxi = εxi+1 .
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They differ by a dual Knuth relation of third kind, denoted by x
3̃∗∼ y if

x = εx1x1 . . . εxi xi . . . εxi+1xi+1 . . . εxn xn and

y = εx1x1 . . . εxi xi+1 . . . εxi+1xi . . . εxn xn

such that εxi = −εxi+1 .

The two permutations are dual Knuth equivalent, denoted by x
K̃ ∗∼ y if there is a

sequence of permutations such that

x = z1
i∗∼ z2

j∗∼ · · · l∗∼ zk = y where i, j, . . . , l ∈ {̃1, 2̃, 3̃}.

Lemma 2.21 If x, y ∈ GSP(n) then x
K̃∼ y ⇐⇒ x−1 K̃ ∗∼ y−1.

Proposition 2.22 ([11]) If x, y ∈ GSP(n) then x
K̃ ∗∼ y ⇐⇒ Q(x) = Q(y) where

Q(x), Q(y) are the standard bi-tableaux of shape λ = (λ1,λ2) where λ1 � k and
λ2 � n − k, k ≥ 0.

2.2 Walled Brauer Algebras

Definition 2.23 ([3, 4]) A walled Brauer diagram is a diagram on 2(r + s) vertices
with r + s edges, vertices being arranged in two rows each row consisting of r + s
vertices. Partition the basis diagram of vertices with a wall separating the first r
vertices in the upper and lower row from the remaining vertices. Then the walled
Brauer algebras Br,s is the subalgebra with basis of those Brauer diagrams such that
each vertexmust be connected to exactly one other vertex by an edge; edges can cross
transversally, no triple intersections.We partition the diagramwith a wall. Horizontal
edges must cross the wall, i.e., the edges with one vertex in the left side of the wall
and other vertex in the right side of the wall in the same row. Whereas, the vertical
edges should be either in the left side of the wall or in the right side of the wall whose
vertices are in different row.

Example The diagram in B4,3 is

...........................
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Note that B0,n(δ) ∼= Bn,0(δ) ∼= kSn , the group algebras of the symmetric group Sn
on n letters. Clearly, the walled Brauer algebras Br,s(δ) is a subalgebra of the Brauer
algebras Br+s(δ).

Multiplication on Walled Brauer Algebras

Let Br,s denote the set of walled Brauer diagrams on 2(r + s) vertices. Let d1, d2 ∈
Br,s . The multiplication of two diagrams is defined as follows:

1. Place d1 above d2.
2. join the i th lower vertex of d1 with i th upper vertex of d2
3. Let d3 be the resulting graph obtain without loops. Then d1d2 = δr d3, where r is

the number of loops, and δ is an indeterminate.

Example The diagram in d1d2 is

.........................

d1 =

...........................

d2 =

.........................................

.........

.........

.........

.........

.........

.........

.........
d1d2 =
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.........................

= δ

The irreducible representations of the walled Brauer algebras Br,s(δ) are indexed
by tri-partition λ = (λ1,λ2,λ3) with λ1 = (2 f ), λ2 � r − f and λ3 � s − f, for
0 ≤ f ≤ min(r, s).

2.3 Walled Signed Brauer Algebras

Definition 2.24 ([6]) A walled signed Brauer diagram is a diagram on 2(r + s)
vertices with r + s signed edges, the vertices being arranged in two rows each row
consisting of r + s vertices. Partition the basis diagram of vertices with a wall sep-
arating the first r vertices in the upper and lower row from the remaining vertices.
Then the walled signed Brauer algebras Dr,s is the subalgebra with basis of those
of the signed Brauer diagrams such that each vertex must be connected to exactly
one other vertex by a signed edge; signed edges can cross transversally, no triple
intersections. We partition the diagram with a wall. Signed horizontal edges must
cross the wall, i.e., the signed edges with one vertex in the left side of the wall and
other vertex in the right side of the wall in the same row.Whereas, the signed vertical
edge should be either in the left side of the wall or in the right side of the wall whose
vertices are in different row.

Example The diagram in D4,3 is

......................

Note that D0,n(δ) ∼= Dn,0(δ) ∼= k S̃n , the group algebras of the hyperoctahedral group
of type of Bn on n letters. Clearly, the walled signed Brauer algebras Dr,s(δ) is a
subalgebra of the signed Brauer algebras Dr+s(δ) and also the generalization of
walled Brauer algebras.
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Multiplication on Walled Signed Brauer Algebras

Let a, b ∈ Dr,s . Let a, b be the underlying walled Brauer graphs, ab = δdc, the only
thing we have to do is to assign a direction for every edge. An edge α in the product
ab will be labeled as a + or a − sign according as the number of negative edges
involved from a and b to make α is even or odd.

A loop β is said to be a positive or a negative loop in ab according as the number
of negative edges involved in the loop β is even or odd. Then ab = δ2d1+d2c, where
d1 is the number of positive loops, d2 is the number of negative loops and c is the
walled signed Brauer diagram obtained by multiplication of a and b.

Example The diagram in ab is

.........................

a =

...........................

b =

.........................................

.........

.........

.........

.........

.........

.........

.........ab =

.........................

= δ
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The irreducible representations of the walled signed Brauer algebras Dr,s(δ) are
indexed by signed tri-partition of shape λ = (λ1,λ2,λ3) with λ1 = (22 f ),λ2 �b

r − f and λ3 �b s − f, for 0 ≤ f ≤ min(r, s).

3 The Robinson–Schensted Correspondence
for the Walled Brauer Algebras

3.1 The Robinson–Schensted Correspondence

In this section, we define a Robinson–Schensted algorithm for the walled Brauer
algebras which gives the correspondence between the walled Brauer diagram d and
the pairs of standard tri-tableaux of shape λ = (λ1,λ2,λ3) with λ1 = (2 f ),λ2 �
r − f and λ3 � s − f, for 0 ≤ f ≤ min(r, s).

Definition 3.1 A tripartition ν of n will be an ordered triple of partitions (ν1, ν2, ν3)
where ν1 = (2 f ), ν2 � r − f and ν3 � s − f, for 0 ≤ f ≤ min(r, s), for r + s = n.

Definition 3.2 A standard block is defined as the block consisting of two nodes
d(1), d(2) adjacent to each other such that d(1) < d(2). i.e. d(1) d(2) . We call d(1) as
the first node of the block and d(2) as the second node of the block.

Definition 3.3 Ablock tableau of shape 2 f is a tableau consisting of standard blocks
one below the other.

Definition 3.4 A column standard block tableau of shape 2 f is a block tableau of
shape 2 f if the first nodes of each block are increasing read from top to bottom.

Definition 3.5 A tri-tableau is a triple (t1, t2, t3) where t1, t2, t3 are any tableau.

Definition 3.6 A standard tri-tableau (t1, t2, t3) is a tri-tableau (t1, t2, t3) where t1 is
a column standard block tableau and t2, t3 are standard tableaux.

Definition 3.7 Given a walled Brauer diagram d ∈ Br,s,wemay associate a quadru-
ple [d1, d2, w1, w2] such that

d1 = { (i, d1(i))| the edge joining the vertices i and d1(i) in the first row}
= {(i1, d1(i1)), (i2, d1(i2)), . . . , (i f , d1(i f ))}

d2 = { ( j, d2( j))| the edge joining the vertices j and d2( j) in the second

row }
= {(i1, d2(i1)), (i2, d2(i2)), . . . , (i f , d2(i f ))}

w1 = { (k, w1(k))| the edge joining the vertex k left to the wall in the first

row and the vertex w1(k) left to the wall in the second row}
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= {(i1, w1(i1)), . . . , (ir , w1(ir− f ))}
w2 = { (l, w2(l))| the edge joining the vertex l right to the wall in the first

row and the vertex w2(l) right to the wall in the second row}
= {(i1, w2(i1)), . . . , (is, w2(is− f ))}

such that i1 < i2 < . . . < ir− f and j1 < j2 < . . . < js− f where f is the number of
horizontal edges in a row of d, r − f is the number of vertical edges left to the wall
of d and s − f is the number of vertical edges right to the wall of d.

Theorem 3.8 The map

d
R−S←→
Br,s

[(P1(d), P2(d), P3(d)), (Q1(d), Q2(d), Q3(d))]

provides a bijection between the set of walled Brauer diagrams d and the pairs of
standard λ-tri-tableaux of shape λ = (λ1,λ2,λ3) with λ1 = (2 f ),λ2 � r − f and
λ3 � s − f, for 0 ≤ f ≤ min(r, s).

Proof We first descibe the map that given a diagram d ∈ Br,s, produces a pair of

tri-tableaux. ′′d R−S←→
Br,s

[(P1(d), P2(d), P3(d)), (Q1(d), Q2(d), Q3(d))]′′
We construct a sequence of tableaux

∅ = P0
1 , P

1
1 , . . . , P

f
1

∅ = Q0
1, Q

1
1, . . . , Q

f
1

∅ = P0
2 , P

1
2 , . . . , P

r− f
2

∅ = Q0
2, Q

1
2, . . . , Q

r− f
2

∅ = P0
3 , P

1
3 , . . . , P

s− f
3

∅ = Q0
3, Q

1
3, . . . , Q

s− f
3

where f is the number of horizontal edges of d, r − f is the number of vertical edges
left to the wall of d and s − f is the number of vertical edges right to the wall of d.
The edges joining the vertices (x1, x2) are inserted into P1(d), P2(d), P3(d), Q1(d)
and placed in Q2(d), Q3(d) so that shPi

1 =shQi
1, for all i, shP

j
1 =shQ j

1, for all j
and shPk

2 =shQk
2, for all k.

Beginwith the tableau P0
1 = P0

2 = P0
3 = Q0

1 = Q0
2 = Q0

3 = ∅.Then, recursively
define the standard tableau by the following:

If (l ′,m ′) ∈ d2 then Pk
1 = insertion of (l,m) in Pk−1

1 .

If (l,m) ∈ d1 then Qk
1 = insertion of (l,m) in Qk−1

1 .

If (l,m ′) ∈ w1 then Pk
2 = insertion of m in Pk−1

2 and place l in Qk−1
2 where the

insertion terminates in Pk−1
2 when m is inserted.
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If (l,m ′) ∈ w2 then Pk
3 = insertion of m in Pk−1

3 and place l in Qk−1
3 where the

insertion terminates in Pk−1
3 when m is inserted.

The operations of insertion and placement will now be described.
First, we give the insertion on P1(d). Let (ik, d2(ik)) ∈ d2 and ik, d2(ik) be the

elements not in P1(d). To insert ik, d2(ik) into P1(d), we proceed as follows. Place
the block containing ik, d2(ik) below the block containing ik−1, d2(ik−1). Insertion
on Q1(d) is the same as in P1(d).

Now we give the insertion on P2(d). Let (ik, w1(ik)) ∈ w1 and w1(ik) be the
element not in P2(d). To insert w1(ik) into P2(d), we proceed as follows.

RS1 Set R := the first row of P2(d).
RS2 While w1(ik) is less than some element of row R, do

RSa Let y be the smallest element of R greater than w1(ik) and replace y by
w1(ik) in R.

RSb Set w1(ik) := y and R := the next row down.

RS3 Now w1(ik) is greater than every element of R, so place w1(ik) at the end of
the row R and stop.

The placement of ik in Q2(d) is even easier than insertion. Suppose that Q2(d) is a
partial tableau of shape μ and if ik is greater than every element of Q2(d), then place
ik in Q2(d) along the cell where the insertion in P2(d) terminates.

Let (ik, w2(ik)) ∈ w2. The insertion of w2(ik) in P3(d) and placement of ik in
Q3(d) are the same as in P2(d) and Q3(d), respectively.

Hence d
R−S−→
Br,s

[(P1(d), P2(d), P3(d)), (Q1(d), Q2(d), Q3(d))].
To prove ′′[(P1(d), P2(d), P3(d)), (Q1(d), Q2(d), Q3(d))] R−S←−

Br,s

d ′′. We merely

reverse the preceding algorithm step by step. We begin by defining

(
P f
1 , P

r− f
2 , Ps− f

3

)
= (P1(d), P2(d), P3(d))(

Q f
1 , Q

r− f
2 , Qs− f

3

)
= (Q1(d), Q2(d), Q3(d))

where f is the number of horizontal edges of d, r − f is the number of vertical
edges left to the wall of d and s − f is the number of vertical edges right to the wall
of d.

To recover all the elements of w1 using the following rules.
Assuming that Pk

2 , Q
k
2 has been constructed, we will find w1(ik) (the kth element

of w1) and Pk−1
2 , Qk−1

2 .We write the (i, j) entry of Pk
2 as Pi, j

2 .

Find the cell (i, j) containing ik in Qk
2. Since this is the largest element in Qk

2,

Pi, j
2 must have been the last element to be displaced in the construction of Pk

2 . We
can now use the following procedure to delete Pi, j

2 from P2(d). For convenience, we
assume the existence of an empty zeroth row above the first row of Pk

2 .
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SR1 Set x := Pi, j
2 and erase Pi, j

2 .

Set R := the (i − 1) row of Pk
2 .

SR2 While R is not the zeroth row of Pk
2 , do

SRa Let y be the largest element of R smaller than x and replace y by x in R.
SRb Set x := y and R := the next row down up.

SR3 Now x has been removed from the first row, so set w1(ik) := x .

It is easy to see that Pk−1
2 is Pk

2 after the deletion process just described is complete
and Qk−1

2 is Qk
2 with k erased. Continuing in this way, we eventually recover all the

elements of w1 in reverse order. We can recover all the elements of w2 as in w1.

We are yet to find the elements in d1, d2.
We may recover the elements of d2 such that the pair (xk, d2(xk)) is the block in

the cells ((2k, 1), (2k, 2)) of P1(d), for every k.
Similarly, we may recover the elements of d1 such that the pair (xk, d1(xk)) is the

element in the cells ((2k, 1), (2k, 2)) of Q1(d), for every k.
Thus we recover the quadruple [d1, d2, w1, w2] from the pair of tri-tableaux

[(P1(d), P2(d), P3(d)), (Q1(d), Q2(d), Q3(d))].
Hence [(P1(d), P2(d), P3(d)), (Q1(d), Q2(d), Q3(d))] R−S←−

Br,s

d which completes

the proof. �

...........................

d =

Example Let

d1 = {(1, 5), (3, 6)}
d2 = {(2′, 6′), (4′, 5′)}
w1 = {(2, 3′), (4, 1′)}
w2 = {(7, 7′)}
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P0
1 = ∅ P1

1 = 2 6 P2
1 = 2 6

4 5

Q0
1 = ∅ Q1

1 = 1 5 Q2
1 = 1 5

3 6

P0
2 = ∅ P1

2 = 3 P2
2 = 1

3

Q0
2 = ∅ Q1

2 = 2 Q2
2 = 2

4

P0
3 = ∅ P1

3 = 7

Q0
3 = ∅ Q1

3 = 7

Thus

d
R−S←→
Br,s

[(
2 6
4 5

,
1
3
, 7

)
,

(
1 5
3 6

,
2
4
, 7

)]

Definition 3.9 The flip of any walled Brauer diagram d is the diagram of d reflected
over its horizontal axis, which is denoted by flip(d).

Proposition 3.10 Let d ∈ Br,s . If

d
R−S−→
Br,s

[(P1(d), P2(d), P3(d)), (Q1(d), Q2(d), Q3(d))].

Then flip(d)
R−S−→
Br,s

[(Q1(d), Q2(d), Q3(d)), (P1(d), P2(d), P3(d))] where P1(d),

Q1(d) are the column standard block tableaux and P2(d), P3(d), Q2(d), Q3(d) are
the standard tableaux constructed by the above insertion.

Proof Suppose d ∈ Br,s, then we can recover the triple [d1, d2, w1, w2] by the Def-
inition 3.7. By the definition flip (d) has the triple [d2, d1, w−1

1 , w−1
2 ]. Hence the

proof follows by Proposition 2.10. �
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3.2 The Knuth relations

In this section, we derive the Knuth relations for the walled Brauer algebras by using
the Robinson-Schensted correspondence for the standardλ-tri-tableaux of shapeλ =
(λ1,λ2,λ3) with λ1 = (2 f ),λ2 � r − f and λ3 � s − f, for 0 ≤ f ≤ min(r, s).

Definition 3.11 Let d, d ′ ∈ Br,s . Then d and d ′ are Knuth equivalent, denoted by

d
KBr,s∼ d ′ if the following condition holds.

1. d2 = d ′
2.

2. w1
K∼ w′

1 where w1, w
′
1 ∈ GP(a), a is the number of vertical edges left to the

wall of both d and d ′.
3. w2

K∼ w′
2 where w2, w

′
2 ∈ GP(b), b is the number of vertical edges right to the

wall of both d and d ′.

Proposition 3.12 Let d, d ′ ∈ Br,s . Then

d
KBr,s∼ d ′ ⇐⇒ (P1(d), P2(d), P3(d)) = (P1(d

′), P2(d ′), P3(d ′))

where P1(d), P1(d ′) are the column standard block tableaux of shape λ1 = (2 f ),
P2(d), P2(d ′) are the standard tableaux of shape λ2, λ2 � r − f , P3(d), P3(d ′) are
the standard tableaux of shape λ3, λ3 � s − f and 0 ≤ f ≤ min(r, s).

Proof The proof follows from the Definition 3.11 and by the Proposition 2.19 �

Definition 3.13 Let d, d ′ ∈ Br,s . Then d and d ′ are dual Knuth equivalent, denoted

by d
K ∗

Br,s∼ d ′ if the following condition holds.

1. d1 = d ′
1.

2. w1
K ∗∼ w′

1 where w1, w
′
1 ∈ GP(a), a is the number of vertical edges left to the

wall of both d and d ′.
3. w2

K ∗∼ w′
2 where w2, w

′
2 ∈ GP(b), b is the number of vertical edges right to the

wall of both d and d ′.

Proposition 3.14 Let d, d ′ ∈ Br,s . Then

d
K ∗

Br,s∼ d ′ ⇐⇒ (Q1(d), Q2(d), Q3(d)) = (Q1(d
′), Q2(d

′), Q3(d
′))

where Q1(d), Q1(d ′) are the column standard block tableaux of shape λ1 = (2 f ),
Q2(d), Q2(d ′) are the standard tableaux of shape λ, λ � r − f , Q3(d), Q3(d ′) are
the standard tableaux of shape μ, μ � s − f and 0 ≤ f ≤ min(r, s).
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Proof The proof follows from the Definition 3.13 and by the Proposition 2.22 �

3.3 The Determinantal Formula

In this section,we constructed the determinantal formula,which gives the dimensions
of the irreducible representations of walled Brauer algebras.

Set
1

r ! = 0 if r < 0.

Lemma 3.15

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

1!
1

2!
1

3!
1

4! . . .
1

( f − 1)!
1

f !
1

0!
1

1!
1

2!
1

3! . . .
1

( f − 2)!
1

( f − 1)!
0

1

0!
1

1!
1

2! . . .
1

( f − 3)!
1

( f − 2)!
0 0

1

0!
1

1! . . .
1

( f − 4)!
1

( f − 3)!
...

...
...

...
...

...
...

0 0 0 0 . . .
1

0!
1

1!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1

f ! , where f is a positive

integer.

Proof Let A f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1!
1

2!
1

3!
1

4! . . .
1

( f − 1)!
1

f !
1

0!
1

1!
1

2!
1

3! . . .
1

( f − 2)!
1

( f − 1)!
0

1

0!
1

1!
1

2! . . .
1

( f − 3)!
1

( f − 2)!
0 0

1

0!
1

1! . . .
1

( f − 4)!
1

( f − 3)!
...

...
...

...
...

...
...

0 0 0 0 . . .
1

0!
1

1!

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We prove the lemma by induction.

From the definition of A f , it is clear that |A1| = 1

1! and |A2| = 1

2! .
Assume the lemma is true for f − 1. That is, |A f −1| = 1

( f − 1)! .

To prove |A f | = 1

f ! .
Consider
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|A f | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

1!
1

2!
1

3!
1

4! . . .
1

( f − 1)!
1

f !
1

0!
1

1!
1

2!
1

3! . . .
1

( f − 2)!
1

( f − 1)!
0

1

0!
1

1!
1

2! . . .
1

( f − 3)!
1

( f − 2)!
0 0

1

0!
1

1! . . .
1

( f − 4)!
1

( f − 3)!
...

...
...

...
...

...
...

0 0 0 0 . . .
1

0!
1

1!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1

1! |A f −1| − 1

0!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

2!
1

3!
1

4! . . .
1

( f − 1)!
1

f !
1

0!
1

1!
1

2! . . .
1

( f − 3)!
1

( f − 2)!
0

1

0!
1

1! . . .
1

( f − 4)!
1

( f − 3)!
...

...
...

...
...

...

0 0 0 . . .
1

0!
1

1!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1

1! |A f −1| − 1

2! |A f −2| + 1

0!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

3!
1

4! . . .
1

( f − 1)!
1

f !
1

0!
1

1! . . .
1

( f − 4)!
1

( f − 3)!
...

...
...

...
...

0 0 . . .
1

0!
1

1!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1

1! |A f −1| − 1

2! |A f −2| + 1

3! |A f −3| − · · · + (−1) f −1 1

0!

∣∣∣∣∣∣∣
1

( f − 1)!
1

f !
0

1

1!

∣∣∣∣∣∣∣
= 1

1! |A f −1| − 1

2! |A f −2| + 1

3! |A f −3| − · · · + (−1) f −1 1

( f − 1)! · 1!
+ (−1) f

1

( f )! · 0!
= 1

1! · ( f − 1)! − 1

2! · ( f − 2)! + 1

3! · ( f − 3)! − · · · + (−1) f −1 1

( f − 1)! · 1!
+ (−1) f

1

( f )! · 0! (by induction)

= 1

f !
(
f C1 − f C2 + f C3 − · · · + (−1) f−1 f C f −1 + (−1) f f C f

)

= 1

f ! .

Hence the proof. �
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Theorem 3.16 (Determinantal Formula) If ρ = (λ,μ, ν) with λ = (2 f ), μ � r −
f, ν � s − f for fixed r ≥ 0, s ≥ 0 where 0 ≤ f ≤ min(r, s) then

hρ = r !s!
∣∣∣∣ 1

(λi − i + j − 1)!
∣∣∣∣
f × f

∣∣∣∣ 1

(μi − i + j)!
∣∣∣∣
r− f ×r− f∣∣∣∣ 1

(νi − i + j)!
∣∣∣∣
s− f ×s− f

where hρ is the number of standard tri-tableaux of shape ρ.

Proof Number of ways of choosing f horizontal edges such that each edge contains
one vertex from left wall of d and another from the right wall of d is f ! · rC f · sC f .
i.e. the number of column standard block tableau of shape 2 f is

f ! · rC f · sC f = r !s!
f !(r − f )!(s − f )! . (1)

By Proposition 2.5, the number of standard tableaux of shape μ � r − f , is

(r − f )!
∣∣∣∣ 1

(μi − i + j)!
∣∣∣∣
r− f ×r− f

. (2)

By Proposition 2.5, the number of standard tableaux of shape ν � s − f , is

(s − f )!
∣∣∣∣ 1

(μi − i + j)!
∣∣∣∣
s− f ×s− f

. (3)

It suffices to prove
1

f ! =
∣∣∣∣ 1

(λi − i + j − 1)!
∣∣∣∣
f × f

.

Consider

∣∣∣∣ 1

(λi − i + j − 1)!
∣∣∣∣
f × f

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

1!
1

2!
1

3!
1

4! . . .
1

( f − 1)!
1

f !
1

0!
1

1!
1

2!
1

3! . . .
1

( f − 2)!
1

( f − 1)!
0

1

0!
1

1!
1

2! . . .
1

( f − 3)!
1

( f − 2)!
0 0

1

0!
1

1! . . .
1

( f − 4)!
1

( f − 3)!
...

...
...

...
...

...
...

0 0 0 0 . . .
1

0!
1

1!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1

f ! by Lemma 3.15. (4)
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Substitute 4 in 1 we get

f ! · rC f · sC f = r !s!
(r − f )!(s − f )!

∣∣∣∣ 1

(λi − i + j − 1)!
∣∣∣∣
f × f

(5)

By Eqs. 2, 3 and 5, we get the number of standard tri-tableaux of shape ρ, is

hρ = r !s!
∣∣∣∣ 1

(λi − i + j − 1)!
∣∣∣∣
f × f

∣∣∣∣ 1

(μi − i + j)!
∣∣∣∣
r− f ×r− f∣∣∣∣ 1

(νi − i + j)!
∣∣∣∣
s− f ×s− f

.

Hence the proof. �

4 The Robinson–Schensted Correspondence for the Walled
Signed Brauer Algebras

4.1 The Robinson–Schensted Correspondence

In this section,wedefine aRobinson–Schensted correspondence for thewalled signed
Brauer algebras which gives the correspondence between the walled signed Brauer
diagram d and the pairs of standard signed-tri-tableaux of shape λ = (λ1,λ2,λ3)

with λ1 = (22 f ),λ2 �b r − f and λ3 �b s − f, for 0 ≤ f ≤ min(r, s).

Definition 4.1 Each 2 × 1 and 1 × 2 rectangular boxes consisting of two nodes is
called as a 2-domino.

Definition 4.2 A 2-domino in which all the nodes are filled with the same number
from the set {1, 2, . . . , n} is defined as a 2-tablet.

Definition 4.3 A signed tripartition ν of n will be an ordered triple of partitions
(ν1, ν2, ν3)where ν1 = (22 f ), ν2 �b r − f and ν3 �b s − f, for 0 ≤ f ≤ min(r, s),
r + s = n.

Definition 4.4 A standard horizontal block is defined as the block consisting of two

horizontal 2-tablets d(1), d(2) one above the other such that d(1) < d(2), i.e.,
d(1) d(1)

d(2) d(2) .

We call d(1) as the first 2-tablet of the horizontal block and d(2) as the second 2-tablet
of the horizontal block. We call horizontal block as positive block.

Definition 4.5 A standard vertical block is defined as the block consisting of two

vertical 2-tablets d(1), d(2) adjacent to each other such that d(1) < d(2). i.e.
d(1) d(2)

d(1) d(2) .
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We call d(1) as the first 2-tablet of the vertical block and d(2) as the second 2-tablet
of the vertical block. We call vertical block as negative block.

Definition 4.6 A block domino tableau of shape 22 f is a tableau consisting either
of the standard horizontal block or standard vertical block.

Definition 4.7 A column standard block domino tableau of shape 22 f is a block
domino tableau of shape 22 f if the first tablets of each block are increasing read from
top to bottom.

Definition 4.8 A standard signed tri-tableau (t1, t2, t3) is a tri-tableau (t1, t2, t3)
where t1 is a column standard block domino tableau and t2, t3 are standard bitableaux.

Definition 4.9 Given a walled signed Brauer diagram d ∈ Dr,s, we may associate
a quadruple [d1, d2, w1, w2] such that

d1 = { (i, d1(i), c(d1(i)))| the edge joining the vertices i and d1(i) in the first

row with sign c(d1(i))}
= {(i1, d1(i1), c(d1(i1))), (i2, d1(i2), c(d1(i2))), . . . , (i f , d1(i f ), c(d1(i f )))}

d2 = { ( j, d2( j), c(d2( j)))| the edge joining the vertices j and d2( j) in the

second row with sign c(d2( j))}
= {(i1, d2(i1), c(d2(i1))), (i2, d2(i2), c(d2(i2))), . . . , (i f , d2(i f ), c(d2(i f )))}

w1 = { (k, w1(k), c(w1(k)))| the edge joining the vertex k left to the wall in

the first row and the vertex w1(k) left to the wall in the second row

with sign c(w1(k))}
= {(i1, w1(i1), c(w1(i1))), . . . , (ir− f , w1(ir− f ), c(w1(ir− f )))}

w2 = { (l, w2(l), c(w2(l)))| the edge joining the vertex l right to the wall in

the first row and the vertex w2(l) right to the wall in the second row

with sign c(w2(l))}
= {(i1, w2(i1), c(w2(i1))), . . . , (is− f , w2(is− f ), c(w2(is− f )))}

such that i1 < i2 < · · · < im for any m > 1, where f is the number of signed hori-
zontal edges in a row of d, r − f is the number of signed vertical edges left to the
wall of d and s − f is the number of signed vertical edges right to the wall of d.

Theorem 4.10 The map

d
R−S←→
Dr,s

[(P1(d), P2(d), P3(d)) , (Q1(d), Q2(d), Q3(d))]

where Pi (d) =
(
P (1)
i (d), P (2)

i (d)
)
and Qi (d) =

(
Q(1)

i (d), Q(2)
i (d)

)
, for i = 2, 3

provides a bijection between the set of walled signed Brauer diagrams d and the
pairs of standard λ-signed-tri-tableaux of shape λ = (λ1,λ2,λ3) with λ1 = (22 f ),
λ2 �b r − f and λ3 �b s − f, for 0 ≤ f ≤ min(r, s).
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Proof We first describe the map that, given a diagram d ∈ Dr,s, produces a pair of
signed-tri-tableaux.

′′d R−S←→
Dr,s

[(P1(d), P2(d), P3(d)) , (Q1(d), Q2(d), Q3(d))]

where Pi (d) =
(
P (1)
i (d), P (2)

i (d)
)
and Qi (d) =

(
Q(1)

i (d), Q(2)
i (d)

)
, for i = 2, 3.′′

We construct a sequence of tableaux

∅ = P0
1 , P

1
1 , . . . , P

f
1

∅ = Q0
1, Q

1
1, . . . , Q

f
1

∅ =
(
P (1)
2 , P (2)

2

)0
,
(
P (1)
2 , P (2)

2

)1
, . . . ,

(
P (1)
2 , P (2)

2

)r− f

∅ =
(
Q(1)

2 , Q(2)
2

)0
,
(
Q(1)

2 , Q(2)
2

)1
, . . . ,

(
Q(1)

2 , Q(2)
2

)r− f

∅ =
(
P (1)
3 , P (2)

3

)0
,
(
P (1)
3 , P (2)

3

)1
, . . . ,

(
P (1)
3 , P (2)

3

)s− f

∅ =
(
Q(1)

3 , Q(2)
3

)0
,
(
Q(1)

3 , Q(2)
3

)1
, . . . ,

(
Q(1)

3 , Q(2)
3

)s− f

where f is the number of signed horizontal edges of d, r − f is the number of signed
vertical edges left to the wall of d and s − f is the number of signed vertical edges
right to the wall of d. The edges joining the vertices (x1, x2) with sign c are inserted
into P1(d), P2(d), P3(d), Q1(d) and placed in Q2(d), Q3(d) so that shPi

1 =shQi
1,

for all i, shP j
1 =shQ j

1, for all j and shPk
2 =shQk

2, for all k.
Begin with the tableau P0

1 = P0
2 = P0

3 = Q0
1 = Q0

2 = Q0
3 = ∅. Then recursively

define the standard tableau by the following.
If (l ′,m ′, c) ∈ d2 then Pk

1 = insertion of (l,m, c) in Pk−1
1 .

If (l,m, c) ∈ d1 then Qk
1 = insertion of (l,m, c) in Qk−1

1 .

If (l,m ′, c) ∈ w1 then Pk
2 = insertion of m with sign c in Pk−1

2 and place l in
Qk−1

2 where the insertion terminates in Pk−1
2 when m is inserted.

If (l,m ′, c) ∈ w2 then Pk
3 = insertion of m with sign c in Pk−1

3 and place l in
Qk−1

3 where the insertion terminates in Pk−1
3 when m is inserted.

The operations of insertion and placement will now be described.
First we give the insertion on P1(d). Let (ik, d2(ik), c(d2(ik))) ∈ d2 and ik, d2(ik)

be the elements not in P1(d). To insert ik, d2(ik) with sign c(d2(ik)) into P1(d), we
proceed as follows.

If c(d2(ik)) = 1 then the positive block i.e.
ik ik

d2(ik) d2(ik)
is to be inserted into

P1(d) along the cells (i, j), (i, j + 1), (i + 1, j), (i + 1, j + 1).

If c(d2(ik)) = −1 then the negative block i.e. βx = ik d2(ik)
ik d2(ik)

is to be inserted into

P1(d) along the cells (i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1).
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Now place the block containing ik, d2(ik) below the block containing ik−1,

d2(ik−1). Insertion on Q1(d) is the same as in P1(d).
Now we give the insertion on P2(d). The insertion is just as in Robinson–

Schensted correspondence for the symmetric group, we give it here for the sake
of completion. Let (ik, w1(ik), c(w1(ik))) ∈ w1 and w1(ik) be the element not in
P2(d). To insert w1(ik) with sign c(w1(ik)) into P2(d), we proceed as follows.

If c(w1(ik)) = 1, then insert w1(ik) in P (1)
2 (d).

If c(w1(ik)) = −1, then insert w1(ik) in P (2)
2 (d).

RS1 Set R := the first row of P (i)
2 (d).

RS2 While w1(ik) is less than some element of row R, do

RSa Let y be the smallest element of R greater than w1(ik) and replace y by
w1(ik) in R.

RSb Set w1(ik) := y and R := the next row down.

RS3 Now w1(ik) is greater than every element of R, so place w1(ik) at the end of
the row R and stop.

The placement of ik in Q(i)
2 (d) is even easier than insertion. Suppose that Q(i)

2 (d) is
a partial tableau of shape μ and if ik is greater than every element of Q(i)

2 (d), then
place ik in Q(i)

2 (d) along the cell where the insertion in P (i)
2 (d) terminates.

Let (ik, w2(ik), c(w2(ik))) ∈ w2. The insertion of w2(ik) with sign c(w2(ik)) in
P3(d) and placement of ik in Q3(d) are the same as in P2(d) and Q3(d), respectively.

Hence
d

R−S−→
Dr,s

[(P1(d), P2(d), P3(d)), (Q1(d), Q2(d), Q3(d))]

where Pi (d) =
(
P (1)
i (d), P (2)

i (d)
)
and Qi (d) =

(
Q(1)

i (d), Q(2)
i (d)

)
, for i = 2, 3.

To prove

′′[(P1(d), P2(d), P3(d)), (Q1(d), Q2(d), Q3(d))] R−S←−
Dr,s

d

where Pi (d) =
(
P (1)
i (d), P (2)

i (d)
)
and Qi (d) =

(
Q(1)

i (d), Q(2)
i (d)

)
, for i = 2, 3′′.

We merely reverse the preceding algorithm step by step. We begin by defining

(
P f
1 , P

r− f
2 , Ps− f

3

)
= (P1(d), P2(d), P3(d))(

Q f
1 , Q

r− f
2 , Qs− f

3

)
= (Q1(d), Q2(d), Q3(d))

where f is the number of signed horizontal edges of d, r − f is the number of signed
vertical edges left to the wall of d and s − f is the number of signed vertical edges
right to the wall of d.
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To recover all the elements of w1 using the following rules. Recovering the ele-
ments is just as in reverse Robinson–Schensted correspondence for the symmetric
group, we give it here for the sake of completion.

Assuming that Pk
2 , Q

k
2 has been constructed, we will find w1(ik) (the kth element

of w1) and Pk−1
2 , Qk−1

2 .We write the (i, j) entry of Pk
2 as Pi, j

2 .

Find the cell (i, j) containing ik in
(
Ql

2

)k
. Since this is the largest element in(

Ql
2

)k
,
(
Pl
2

)i, j
must have been the last element to be displaced in the construction of(

Pl
2

)k
.We can now use the following procedure to delete

(
Pl
2

)i, j
from

(
Pl
2

)
(d). For

convenience, we assume the existence of an empty zeroth row above the first row of(
Pl
2

)k
.

SR1 Set x := Pi, j
2 and erase Pi, j

2 .

Set R := the (i − 1) row of Pk
2 .

SR2 While R is not the zeroth row of Pk
2 , do

SRa Let y be the largest element of R smaller than x and replace y by x in R.
SRb Set x := y and R := the next row down up.

SR3 Now x has been removed from the first row, so set w1(ik) := x .

It is easy to see that Pk−1
2 is Pk

2 after the deletion process just described is complete
and Qk−1

2 is Qk
2 with k erased. Continuing in this way, we eventually recover all the

elements of w1 in reverse order. We can recover all the elements of w2 as in w1.

We are yet to find the elements in d1, d2.
We may recover the elements of d2 such that the pair (xk, d2(xk), c(d2(xk))) is

the block in the cells ((2k − 1, 1), (2k − 1, 2), (2k, 1), (2k, 2)) of P1(d), for every
k and the c(d2(xk)) = 1 (c(d2(xk)) = −1) if the block is positive block (negative
block).

Similarly, we may recover the elements of d1 such that the pair (xk, d1(xk),
c(d1(xk))) is the element in the cells ((2k − 1, 1), (2k − 1, 2), (2k, 1), (2k, 2)) of
Q1(d), for every k and the c(d1(xk)) = 1 (c(d1(xk)) = −1) if the block is positive
block (negative block).

Thus we recover the quadruple [d1, d2, w1, w2] from the pair of tri-tableaux
[(P1(d), P2(d), P3(d)), (Q1(d), Q2(d), Q3(d))].

Hence [(P1(d), P2(d), P3(d)), (Q1(d), Q2(d), Q3(d))] R−S←−
Dr,s

d which completes

the proof. �

Example Let

d =
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Then

d1 = {(1, 5,−1), (3, 6, 1)}
d2 = {(2′, 6′,−1), (4′, 5′, 1)}
w1 = {(2, 3′,−1), (4, 1′, 1)}
w2 = {(7, 7′,−1)}

P0
1 = ∅ P1

1 = 2 6
2 6

P2
1 =

2 6
2 6
4 4
5 5

Q0
1 = ∅ Q1

1 = 1 5
1 5

Q2
1 =

1 5
1 5
3 3
6 6

P0
2 = (∅,∅) P1

2 = (∅, 3
)

P2
2 = (

1 , 3
)

Q0
2 = (∅,∅) Q1

2 = (∅, 2
)

Q2
2 = (

4 , 2
)

P0
3 = (∅,∅) P1

3 = (∅, 7
)

Q0
3 = (∅,∅) Q1

3 = (∅, 7
)

Thus d
R−S←→
Dr,s

(P, Q) where

P =

⎛
⎜⎜⎝

2 6
2 6
4 4
5 5

,
(
1 , 3

)
,

(∅, 7
)
⎞
⎟⎟⎠

Q =

⎛
⎜⎜⎝

1 5
1 5
3 3
6 6

,
(
4 , 2

)
,

(∅, 7
)
⎞
⎟⎟⎠

Definition 4.11 The flip of any walled signed Brauer diagram d is the diagram of d
reflected over its horizontal axis, which is denoted by flip(d).
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Proposition 4.12 Let d ∈ Dr,s . If

d
R−S−→
Dr,s

[(P1(d), P2(d), P3(d)), (Q1(d), Q2(d), Q3(d))].

Then flip(d)
R−S−→
Dr,s

[(Q1(d), Q2(d), Q3(d)), (P1(d), P2(d), P3(d))] where P1(d),

Q1(d) are the column standard block domino tableaux and P2(d), P3(d), Q2(d),
Q3(d) are the standard bitableaux constructed by the above insertion.

Proof Suppose d ∈ Dr,s, then we can recover the quadruple [d1, d2, w1, w2] by the
Definition 4.9. By the Definition 4.11, flip(d) has the quadruple [d2, d1, w−1

1 , w−1
2 ].

Hence the proof follows by Proposition 2.17. �

4.2 The Knuth relations

In this section, we derive the Knuth relations for the walled signed Brauer algebras by
using theRobinson-Schensted correspondence for the standardλ-signed-tri-tableaux
of shape λ = (λ1,λ2,λ3) with λ1 = (22 f ),λ2 �b r − f and λ3 �b s − f, for 0 ≤
f ≤ min(r, s).

Definition 4.13 Let d, d ′ ∈ Dr,s . Then d and d ′ are Knuth equivalent, denoted by

d
KDr,s∼ d ′ if the following condition holds.

1. d2 = d ′
2.

2. w1
K∼ w′

1 where w1, w
′
1 ∈ GSP(a), a is the number of signed vertical edges left

to the wall of both d and d ′.
3. w2

K∼ w′
2 wherew2, w

′
2 ∈ GSP(b), b is the number of signed vertical edges right

to the wall of both d and d ′.

Proposition 4.14 Let d, d ′ ∈ Dr,s . Then

d
KDr,s∼ d ′ ⇐⇒ (P1(d), P2(d), P3(d)) = (P1(d

′), P2(d ′), P3(d ′))

where P1(d), P1(d ′) are the column standard block domino tableaux of shape
λ1 = (22 f ), P2(d), P2(d ′) are the standard bitableaux of shape λ2, λ2 �b r − f ,
P3(d), P3(d ′) are the standard bitableaux of shape λ3, λ3 �b s − f and 0 ≤ f ≤
min(r, s).

Proof The proof follows from the Definition 4.13 and by the Proposition 2.19 �

Definition 4.15 Let d, d ′ ∈ Dr,s . Then d and d ′ are dual Knuth equivalent, denoted

by d
K ∗

Dr,s∼ d ′ if the following condition holds.
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1. d1 = d ′
1.

2. w1
K ∗∼ w′

1 where w1, w
′
1 ∈ GSP(a), a is the number of signed vertical edges left

to the wall of both d and d ′.
3. w2

K ∗∼ w′
2 wherew2, w

′
2 ∈ GSP(b), b is the number of signed vertical edges right

to the wall of both d and d ′.

Proposition 4.16 Let d, d ′ ∈ Dr,s . Then

d
K ∗

Dr,s∼ d ′ ⇐⇒ (Q1(d), Q2(d), Q3(d)) = (Q1(d
′), Q2(d

′), Q3(d
′))

where Q1(d), Q1(d ′) are the column standard block domino tableaux of shape
λ1 = (22 f ), Q2(d), Q2(d ′) are the standard bitableaux of shape λ2, λ2 �b r − f ,
Q3(d), Q3(d ′) are the standard bitableaux of shape λ3, λ3 �b s − f and 0 ≤ f ≤
min(r, s).

Proof The proof follows from the Definition 4.15 and by the Proposition 2.22. �

4.3 The Determinantal Formula

In this section,we constructed the determinantal formula,which gives the dimensions
of the irreducible representations of walled signed Brauer algebras.

Set
1

r ! = 0 if r < 0.

Theorem 4.17 (Determinantal Formula) If ρ = (λ,μ, ν)with λ = (22 f ), μ �b r −
f, ν �b s − f for fixed r ≥ 0, s ≥ 0 where 0 ≤ f ≤ min(r, s) then

hρ = 2 f r !s!
∣∣∣∣ 1

(λi − i + j − 1)!
∣∣∣∣
f × f

∣∣∣∣ 1

(μ(1)
i − i + j)!

∣∣∣∣
l×l∣∣∣∣ 1

(μ(2)
i − i + j)!

∣∣∣∣
r− f −l×r− f −l

∣∣∣∣ 1

(ν(1)
i − i + j)!

∣∣∣∣
m×m∣∣∣∣ 1

(ν(2)
i − i + j)!

∣∣∣∣
s− f −m×s− f −m

where hρ is the number of standard signed tri-tableaux of shape ρ.

Proof Number of ways of choosing f signed horizontal edges such that each edge
contains one vertex from left wall of d and another from the right wall of d is
2 f f ! · rC f · sC f . i.e. the number of column standard block domino tableau of shape
22 f is

2 f f ! · rC f · sC f = 2 f r !s!
f !(r − f )!(s − f )! . (6)
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By Proposition 2.7, the number of standard bitableaux of shape μ �b r − f , is

(r − f )!
∣∣∣∣ 1

(μ(1)
i − i + j)!

∣∣∣∣
l×l

∣∣∣∣ 1

(μ(2)
i − i + j)!

∣∣∣∣
r− f −l×r− f −l

(7)

where |μ(1)| = l and |μ(2)| = r − f − l.
By Proposition 2.7, the number of standard bitableaux of shape ν �b s − f , is

(s − f )!
∣∣∣∣ 1

(ν(1)
i − i + j)!

∣∣∣∣
m×m

∣∣∣∣ 1

(ν(2)
i − i + j)!

∣∣∣∣
s− f −m×s− f −m

(8)

where |ν(1)| = m and |ν(2)| = s − f − m.

It suffices to prove
1

f ! =
∣∣∣∣ 1

(λi − i + j − 1)!
∣∣∣∣
f × f

.

Consider

∣∣∣∣ 1

(λi − i + j − 1)!
∣∣∣∣
f × f

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

1!
1

2!
1

3!
1

4! . . .
1

( f − 1)!
1

f !
1

0!
1

1!
1

2!
1

3! . . .
1

( f − 2)!
1

( f − 1)!
0

1

0!
1

1!
1

2! . . .
1

( f − 3)!
1

( f − 2)!
0 0

1

0!
1

1! . . .
1

( f − 4)!
1

( f − 3)!
...

...
...

...
...

...
...

0 0 0 0 . . .
1

0!
1

1!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1

f ! by Lemma 3.15. (9)

Substitute Eq.9 in 6 we get

2 f f ! · rC f · sC f = 2 f r !s!
(r − f )!(s − f )!

∣∣∣∣ 1

(λi − i + j − 1)!
∣∣∣∣
f × f

(10)

By Eqs. 7, 8, and 10, we get the number of standard tri-tableaux of shape ρ, is

hρ = 2 f r !s!
∣∣∣∣ 1

(λi − i + j − 1)!
∣∣∣∣
f × f

∣∣∣∣ 1

(μ(1)
i − i + j)!

∣∣∣∣
l×l∣∣∣∣ 1

(μ(2)
i − i + j)!

∣∣∣∣
r− f −l×r− f −l

∣∣∣∣ 1

(ν(1)
i − i + j)!

∣∣∣∣
m×m∣∣∣∣ 1

(ν(2)
i − i + j)!

∣∣∣∣
s− f −m×s− f −m



Robinson–Schensted Correspondence for the Walled … 223

where |μ(1)| = l, |μ(2)| = r − f − l, |ν(1)| = m and |ν(2)| = s − f − m. Hence the
proof. �
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M.K. Sen and S. Chattopadhyay

Abstract The concept of �-semigroup is a generalization of semigroup. Let S and
� be two nonempty sets. S is called �-semigroup if there exists a mapping S × � ×
S −→ S, written as (a,α, b) −→ aαb, satisfying the identity (aαb)βc = aα(bβc)
for all a, b, c ∈ S and α,β ∈ �. This article is a survey of some works published by
different authors on �-semigroups.
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�-semigroup · Right(left) inverse semigroup · Right(left) inverse �-semigroup ·
�-group · Semidirect product · E-inversive �-semigroup
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1 Introduction

In 1964, N. Nobusawa published a paper [24] entitled “On a generalisation of ring
theory.” In that paper [24] Nobusawa introduced a new type of algebraic system
which is known as �-ring. The class of �-rings contains not only all rings but also
Hestenes ternary rings [17]. Many fundamental results of ring theory were extended
to�-rings. There is a large literature dealing with�-rings, some of them are in [1–4].
Following this in 1981, M. K. Sen [29] first introduced the notion of �-semigroup
as follows:

Let S and� be two nonempty sets. S is called�-semigroup if there exist mappings
S × � × S −→ S, written as (a,α, b) −→ aαb, and � × S × � −→ �, written as
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(α, a,β) −→ αaβ, satisfying the identities aα(bβc) = a(αbβ)c = (aαb)βc for all
a, b, c ∈ S and α,β ∈ �.

In 1986, M. K. Sen and N. K. Saha [35] weakened the defining conditions of
�-semigroup and redefined �-semigroup as follows:

Definition 1.1 Let S = {a, b, c, . . . } and � = {α,β, γ, . . . } be two nonempty sets.
S is called a �-semigroup if there exists a mapping S × � × S −→ S, written as
(a,α, b) −→ aαb ∈ S satisfying (aαb)βc = aα(bβc), for all a, b, c ∈ S and for
all α,β ∈ �.

Let S be an arbitrary semigroup. Let 1 be a symbol not representing any element of
S. Let us extend the binary operation defined on S to S ∪ {1} by defining 11 = 1 and
1a = a1 = a for all a ∈ S. It can be shown that S ∪ {1} is a semigroup with identity
element 1. Let � = {1}. If we take ab = a1b, it can be shown that the semigroup
S is a �-semigroup where � = {1}. Thus a semigroup can be considered to be a
�-semigroup.

Let S be a �-semigroup and α be a fixed element of �. Define a.b = aαb for all
a, b ∈ S. It can be shown that (S, .) is a semigroup and denote this semigroup by Sα.

In [35] Sen and Saha proved that in a �-semigroup S if Sα is a group for some
α ∈ �, then Sα is a group for all α ∈ �.

Definition 1.2 A �-semigroup S is called �-group if Sα is a group for some (hence
for all) α ∈ �.

Dutta and Adhikari described in [12] that operator semigroups to be a very effec-
tive tool in studying �-semigroups. In the paper [27] Sardar,Gupta, and Shum estab-
lished that there is a close connection between the Morita equivalence of monoids
and �-semigroups. Idempotent elements play an important role in semigroup theory.
The notion of idempotent element in a �-semigroup was defined in [35] as follows.

Definition 1.3 Let S be a �-semigroup and α ∈ �. Then e ∈ S is said to be an
α-idempotent if eαe = e. The set of all α-idempotents is denoted by Eα. We denote⋃
α∈�

Eα by E(S). The elements of E(S) are called idempotent elements of S. If

S = E(S) then S is called an idempotent �-semigroup [40].

Many classical notions and results of the theory of semigroups have been extended
and generalized to �-semigroups. Now we have many papers on �-semigroup cov-
ering diverse aspects of this topic. So there is enough material to be surveyed,
rather it is not possible to cover arbitrarily many directions. In this survey, we cover
only some examples of �-semigroups, and results on Regular �-semigroups, Right
and left-orthodox � semigroups, Green’s relations in �-semigroups, �-semigroup
T (A, B), Congruences on �-semigroups, Semidirect Product of a Monoid and a �-
Semigroup, Semidirect Product of a Semigroup and a �-Semigroup and E-inversive
�-semigroups.
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2 Examples

Example 2.1 [35] Let A be a nonempty set and S be the set of all mappings from
A to A. Then S is a semigroup with respect to the usual composition of mappings,
which is known as full transformation semigroup on A. But this result does not
happen if S to be the set of all mappings from a nonempty set A to another nonempty
set B. Now, if � is the set of all mappings from B to A and aαb, αaβ denote the
usual product ofmappings,where a, b ∈ S andα,β ∈ � then aαb ∈ S andαaβ ∈ �.
Moreover, (aαb)βc = a(αbβ)c = aα(bβc) for all a, b, c ∈ S and for all α,β ∈ �.

Example 2.2 [35] Let S be the set of all m × n matrices and � be the set of all
n × m matrices over a field. Then for Am,n, Bm,n ∈ S, the usual matrix multiplica-
tion Am,n Bm,n cannot be defined, i.e., S is not a semigroup under the usual matrix
multiplication when m �= n. But for all Am,n, Bm,n,Cm,n ∈ S and Pn,m, Qn,m ∈ �,
Am,n Pn,m Bm,n is defined and an element of S. Also we notice that (Am,n Pn,m Bm,n)

Qn,mCm,n = Am,n Pn,m(Bm,nQn,mCm,n). Hence S is a �-semigroup.

Example 2.3 [6] Let A = {1, 2, 3} and B = {4, 5}. S denotes the set of all map-
pings from A to B. Here members of S will be described by the images of
the elements 1, 2, 3. For example, the map 1 → 4, 2 → 5, 3 → 4 will be writ-
ten as (4, 5, 4). A map from B to A will be described in the same fashion.

For example (1, 2) denotes 4 → 1, 5 → 2. Now S =
{
(4, 4, 4), (4, 4, 5), (4, 5, 4),

(4, 5, 5), (5, 5, 5), (5, 4, 5), (5, 4, 4), (5, 5, 4)
}
and let � = {(1, 1), (1, 2), (2, 3),

(3, 1)}. Let f, g ∈ S and α ∈ �. We define f αg by ( f αg)(a) = f α
(
g(a)

)
for all

a ∈ A. So f αg is a mapping from A to B and hence f αg ∈ S and we can show that
( f αg)βh = f α(gβh) for all f, g, h ∈ S and α,β ∈ �. So S is a �-semigroup

In the Example2.3 we see that � does not contain all the mappings from B to A.

3 Regular �-Semigroup

The notion of regularity of a �-semigroup was introduced in [35] by Sen and Saha.

Definition 3.1 [35] Let S be a �-semigroup. An element a ∈ S is said to be regular
in the �-semigroup S if a ∈ a�S�a where a�S�a = {aαbβa : b ∈ S,α,β ∈ �}.
S is said to be regular if every element of S is regular.

Example 3.2 [35] Let M be the set of all 3 × 2 matrices and � be the set of all
2 × 3 matrices over the field of rational numbers. Then M is a �-semigroup[see

Example2.2]. Let A ∈ M where A =
⎛
⎝a b
c d
e f

⎞
⎠. Then, the B ∈ � is taken according

to the following cases such that(ABA)BA = ABA = A.
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Case (1): When the submatrix

(
a b
c d

)
is nonsingular. Then ad − bc �= 0 and e, f

may be both zero or one of them is zero or both of them is nonzero. Then B =( d
ad−bc

−b
ad−bc 0

−c
ad−bc

a
ad−bc 0

)
∈ � and ABA = A.

Case (2) and Case (3) are considered by taking a f − be �= 0, c f − de �= 0,

respectively and the corresponding B is taken as

(
f

a f −be 0 −b
a f −be−e

a f −be 0 −a
a f −be

)
and(

0 f
c f −de

−d
c f −de

0 −e
c f −de

c
c f −de

)
, respectively, such that ABA = A.

Case (4): When the submatrices are singular then either ad − bc = 0 and c f −
de = 0 or ad − bc = 0 and a f − de = 0. If all the elements of A are zero then
the case is trivial. Next consider at least one of the elements of A is nonzero say
ai j �= 0, i = 1, 2, 3, j = 1, 2. Then the element b ji of B can be taken as (ai j )−1 and
other elements of B are zero and then ABA = A. Thus A is regular and hence M is
regular.

Example 3.3 Let S be the set of all positive integers of the form 4n + 1 and � be the
set of all positive integers of the form 4n + 3. If aαb is a + α + b for all a, b ∈ S
and α ∈ � then S is a �-semigroup. Since for the element 2 ∈ S, there do not exist
any a ∈ S and α,β ∈ � such that 2 + α + a + β + 2 = 2, 2 is not a regular element
in S. Hence S is not a regular � -semigroup.

Let S be a �-semigroup and α be a fixed element of �. It is evident that for a
�-semigroup S, if Sα is a regular semigroup for some α ∈ � then S is a regular
�-semigroup but

(i) Sα may not be a regular semigroup for some α ∈ � yet S may be a regular
�-semigroup.

Example 3.4 Let S = {(a, 0) : a ∈ R} ∪ {(0, b) : b ∈ R} where R denotes the field
of real numbers. Let � = {(0, 5), (0, 1), (3, 0), (1, 0)}. Defining S × � × S → S
by (a, b)(α,β)(c, d) = (aαc, bβd) for all (a, b), (c, d) ∈ S and (α,β) ∈ �, we can
show that S is a �-semigroup. Sα is not a regular semigroup for any α ∈ �. Let
(a, 0) ∈ S. If a = 0, then (a, 0) is regular. Suppose a �= 0, then (a, 0)(3, 0)( 1

3a , 0)
(1, 0)(a, 0) = (a, 0). Similarly, we can show that (0, b) is also regular for all b ∈ R.
Hence S is a regular �-semigroup.

(i i) In a �-semigroup S, if Sα is a regular semigroup for some α ∈ � then there
may exist a β ∈ � such that Sβ is not a regular semigroup.

Example 3.5 Let S = {(a, b) : a, b ∈ R, the field of real numbers} and � = {(9, 7),
(0, 3)}. Defining (a, b)(α,β)(c, d) by (a, b)(α,β)(c, d) = (aαc, bβd) for (a, b),
(c, d) ∈ S and (α,β) ∈ � we find that S is a�-semigroup. In this�-semigroup S(0,3)

cannot be a regular semigroup but S(9,7) is a regular semigroup.
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In a regular semigroup S an element b ∈ S is said to be an inverse of an element
a of S if a = aba and b = bab. This was generalized by Sen and Saha in [35].

Definition 3.6 Let a ∈ S and α,β ∈ �. An element b ∈ S is called (α,β)- inverse
of a if a = aαbβa and b = bβaαb. In this case we write b ∈ V β

α (a).

In the paper [21], Braja described some interesting characterizations of regular �-
semigroups. Also in [42], Xhilari andBraja studied completely regular�-semigroups
by quasi-ideals and established a necessary and sufficient condition that an element
be completely regular.

4 Green’s Relations in �-Semigroups

Green’s relations play a fundamental role in semigroup theory and it is natural to
consider them in the context of �-semigroup. These notions were discussed in [26]
by N.K.Saha, in [13] by T. K. Dutta and T. K. Chatterjee and in [39] by A. Seth.

Definition 4.1 [26] Let S be a �-semigroup. For a, b ∈ S, The binary relations
L,R,H,D and J are given by
aLb if S�a ∪ {a} = S�b ∪ {b};
aRb if a�S ∪ {a} = b�S ∪ {b};
aHb if aLb and aRb;
aDb if aLc and cRb for some c ∈ S;
aJ b if a�S ∪ S�a ∪ S�a�S ∪ {a} = b�S ∪ S�b ∪ S�b�S ∪ {b}.
Theorem 4.2 Let S be a regular �-semigroup. Then

(i) aLb if and only if there exist α,β, δ ∈ �, and a′ ∈ V β
α (a), b′ ∈ V δ

α (b) such that
a′βa = b′δb.

(ii) aRb if and only if there exist α,β, δ ∈ �, and a′ ∈ V β
α (a), b′ ∈ V β

γ (b) such
that aαa′ = bγb′.

(iii) aHb if and only if there exist γ, δ ∈ �, and a′ ∈ V δ
γ (a), b′ ∈ V δ

γ (b) such that
aγa′ = bγb′ and a′δa = b′δb.

In semigroups, D-class of the Green’s relation has some interesting property. If
one element of a D-class is regular then every element of that D-class is regular.
Here, we state the extended result to �-semigroups.

Theorem 4.3 [26] Let S be a �-semigroup and a ∈ S. Let Da denote the D-class
of S containing a. If a is regular, then every element of Da is regular.

Let us refer some papers [7], [8], [10], [11], [13], [18], [19], [22] and [26] in which
authors studied Green’s relations in � semigroups.
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5 �-Semigroup T(A, B)

Let A and B be two nonempty sets, S = T (A, B) be the set of all mappings from
the set A to the set B and � = T (B, A) be the set of all mappings from B to A. S
becomes a �-semigroup with respect to usual mapping product f αg for all f, g ∈ S
and α ∈ �.

In [36] Seth studied the Green’s equivalences in T (A, B) and described a method
for systematic computation of regular D-classes of a �-subsemigroup of T (A, B).
Some of important definitions and results from[38] are given below.

Let f ∈ T (A, B). Then the kernel of f which is defined by Ker f = {(a, b) ∈
A × A : f (a) = f (b)} is an equivalence relation on A and so there is a bijection
from A/Ker f to Im f . He defined common cardinal number of A/Ker f and Im f
as rank of f and denoted it by rank f .

Theorem 5.1 Given f, g ∈ T (A, B), Im f ⊆ Img(Kerg ⊆ Ker f ) if and only if
there exist h ∈ T (A, B),α ∈ T (B, A) such that f = hαg( f = gαh). Moreover,
rank f ≤ rankg if and only if there exist h, j ∈ T (A, B),α,β ∈ T (B, A) such that
f = jαgβh.

Definition 5.2 Let A and B be two finite sets. S ⊆ T (A, B) and � ⊆ T (B, A) be
such that S�S ⊆ S. Minimal rank of S is defined as min{rank f : f ∈ S}
Theorem 5.3 Let A, B be two finite sets. Let S ⊆ T (A, B) and � ⊆ T (B, A) be
such that S�S ⊆ S. Let r be theminimal rank of S. Theminimal ideal I of S coincides
with the set of all f ∈ S such that rank f = r . For f ∈ I , the minimal left (right)
ideal containing f consists of all g ∈ S such that Im f = Img(Ker f = Kerg).

Theorem 5.4 Two elements of T (A, B) are D-equivalent if and only if they have
same rank.

Theorem 5.5 For two nonempty sets A and B and � = T (B, A), let R = {r : r is a
cardinal number≤ min(| A |, | B |)}. Then (i) There is a one-to-one correspondence
between the set of all D -classes of T (A, B) and the set R such that the D-class Dr

corresponding to r ∈ R consists of all elements of T (A, B) of rank r .
(ii) Let r ∈ R. Then there is a one-to-one correspondence between the set of all

L-classes contained in Dr and the set of all subsets B ′ of B of cardinal r such that the
L- class corresponding to B ′ consists of all elements of T (A, B) having range B ′.

(iii) Let r ∈ R. Then there is a one -to-one correspondence between the set of all
R-classes contained in Dr and the set of all equivalence relation π on A for which
| A/π |= r such thatR-class corresponding to π consists of all elements of T (A, B)

having kernel π.
(iv) Let r ∈ R. Then there is a one-to-one correspondence between the set of all

H-classes contained in Dr and the set of all pairs (π, B ′) where π is an equivalence
relation on A and B ′ is a subset of B and | A/π |=| B ′ |= r such that H-class
corresponding to (π, B ′) consists of all elements of T (A, B) having Kernel π and
range B ′.
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Theorem 5.6 T (A, B) is a regular �-semigroup.

In the paper [16] Heidari and Amooshai associated left and right transformation
semigroups to a �-semigroup and established relationships between the ideals of a
�-semigroup and ideals of its left and right transformation semigroups.

6 Congruences on �-Semigroups

The notion of congruence on a �-semigroup was introduced by Dutta and Chatterjee
in [13].

Definition 6.1 Let S be a �-semigroup. An equivalence relation ρ on S is said to
be a right (left) congruence on S if (a, b) ∈ ρ implies (aαc, bαc) ∈ ρ, (resp. (cαa,

cαb) ∈ ρ) for all a, b, c ∈ S and for allα ∈ �. An equivalence relation ρ on S, which
is both left and right congruence is called a congruence relation on S.

Let S be a �-semigroup and ρ be a congruence relation on S. Let S/ρ be the set
of all equivalence classes of S. If aρ, bρ be any two elements of S/ρ and α ∈ � then,
we define (aρ)α(bρ) = (aαb)ρ. It can be shown that S/ρ is a �-semigroup.

In [14] Dutta and Chattopadhyay studied Rees congruence on a � -semigroup.

Definition 6.2 [37] Let S be a�-semigroup.A congruence ρ on S is called a�-group
congruence if S/ρ is a �-group.

In [37] Seth defined a kernel normal system of a �-group and proved that the
kernel of a congruence on a �-group is a kernel normal system. Again it was shown
that a kernel normal system of a �-group determines a congruence.

Definition 6.3 [37] The setA = {Aα : α ∈ T ⊆ �} is defined to be a kernel normal
system of a � -group S if and only if for all α,β ∈ T , the following hold : (i) Each
Aα is a normal subgroup of the group Sα. (i i) Aα ∩ Aβ = φ if α �= β. (i i i) Each
γ-idempotent in S(γ ∈ �) is contained in some element of A. (iv) aαb−1

α ∈ Aα

implies aαb−1
β ∈ Aβ for all α,β ∈ �.

Theorem 6.4 Let S be a �-group and ρ be a congruence on S. Then the kernel of ρ
is a kernel normal system of S.

Theorem 6.5 Let A = {Aα : α ∈ T ⊆ �} be a kernel normal system of a �-group
S. Then ρA = {(a, b) ∈ S × S : aαb−1

α ∈ Aα for someα ∈ T } is a congruence on S.
In [38] Seth investigated least �-group congruences on a regular �-semigroup.
A family {Kα : α ∈ �} of subsets of S is said to be normal family if the following

conditions hold.

(i) Eα ⊆ Kα for α ∈ �,
(ii) a ∈ Kα and b ∈ Kβ ⇒ aαb ∈ Kβ, aβb ∈ Kα,
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(iii) a′ ∈ V β
α (a) and c ∈ Kγ ⇒ aαcγa′, aγcαa′ ∈ Kβ .

LetN =
⋃
i∈�

Ki be the collection of all normal families of subsets of S where Ki =

{Kiα : α ∈ �}. LetUα =
⋂
i∈�

Kiα andU = {Uα : α ∈ �}. ThenU is a normal family

of subsets of S. Moreover U is the least member inN if we define a partial order in
N by Ki ≤ K j .

Let K = {Kα : α ∈ �} be a normal family of subsets of S. The family KW =
{(KW )γ : γ ∈ �}where (KW )γ = {x ∈ S : eαx ∈ Kγ for someα ∈ � and e ∈ Kα}
is called the closure of K . K is said to be closed if K = KW . Let N denote the set
of all closed families in N . We now state the following theorems from [38].

Theorem 6.6 The mapping K → ρK = {(a, b) ∈ S × S : aγb′ ∈ Kδ for some b′ ∈
V δ

γ (b)} is a one-to-one order preserving mapping of N onto the set of �-group
congruences on S.

Theorem 6.7 The least �-group congruence σ on a � -semigroup S is given by
σ = ρU and Kerσ = UW.

7 Some Classes of Regular �-Semigroups

It is known that the notion of inverse semigroup is the most natural generalization
of the notion of groups. This notion was generalized in the theory of �-semigroup.
In 1987, Seth and Saha [25] introduced inverse �-semigroup.

Definition 7.1 [25] A regular �-semigroup S is called an inverse �-semigroup if
|V β

α (a)| = 1 for all a ∈ S and for all α,β ∈ �, whenever V β
α (a) �= ∅. That is every

element a ∈ S has a unique (α,β) -inverse whenever (α,β)-inverse of a exists.

The following theorem gives a useful necessary and sufficient condition for a
regular �-semigroup to be an inverse �-semigroup.

Theorem 7.2 [25] Let S be a �-semigroup. S is an inverse �-semigroup if and only
if (i) S is regular and (i i) if e and f be any twoα-idempotents of S then eα f = f αe,
where α ∈ �.

There are several results proved by Seth and Saha which are given below.

Theorem 7.3 [25] Let S be an inverse �-semigroup. The minimum �-group con-
gruence on S is given by σ = {(a, b) ∈ S × S : eαa = f βb for some α-idempotent
e and for some β-idempotent f of S }.
Definition 7.4 Let S be a�-semigroup.A congruence ρ on S is said to be idempotent
separating if for any two α-idempotents e and f of S, (e, f ) ∈ ρ implies e = f .
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Theorem 7.5 [25] Let S be an inverse�-semigroup. Define a relationμ on S byμ =
{(a, b) ∈ S × S : there exist γ, δ ∈ �, a′ ∈ V δ

γ (a), b′ ∈ V δ
γ (b), satisfying aαeγa′ =

bαeγb′ for every α-idempotent e ∈ S, where α is any element of �}. Then, μ is the
maximum-idempotent separating congruence on S.

In 2001, Chattopadhyay [5] defined right inverse �-semigroup and studied it. The
main results are given below.

Definition 7.6 A regular �-semigroup S is called a right(resp. left) inverse �-
semigroup if for any α-idempotent e and and β-idempotent f , eα f βe = f βe(resp.
eβ f αe = eβ f ).

Theorem 7.7 The following conditions on a regular �-semigroup S are equivalent:

(i) e�S
⋂

f �S = eα f �S(= f βe�S) for any α-idempotent e and β-idempotent
f ;

(ii) S is a right inverse �-semigroup;

(iii) if a is an element of S and a′ ∈ V
β1
α (a), a′′ ∈ V

β2
α (a) then a′β1a = a′′β2a;

(iv) for any α-idempotent e of S, the elements of the set Fβ(e) = {x ∈ S : x ∈
V β

α (e)} are (A) β -idempotents and satisfy (B) xβy = y for all x, y ∈ Fβ(e);
(v) for any x ∈ S, e ∈ Eα, β ∈ � and x ′ ∈ V β

α (x), if x ∈ S�e then x ′ ∈ e�S;
(vi) for any two α-idempotents e and f , S�e = S� f implies e = f .

Theorem 7.8 Let S be a right inverse �-semigroup. Then the binary relation δ on
S defined by δ = {(a, b) ∈ S × S : (xαa, xαb) ∈ μ for all x ∈ S and for all α ∈ �}
is the maximum-idempotent separating congruence on S where

μ = {(a, b) ∈ S × S: there exist γ, δ ∈ �, a′ ∈ V δ
γ (a) and b′ ∈ V δ

γ (b) satisfying
a′δeαa = b′δeαb for any α-idempotent e of S}.

Orthodox semigroups were first studied by Hall [15] and Yamada in [43] and [44].
A regular semigroup is said to be an orthodox semigroup if the set of all idempotents
of the semigroup forms a subsemigroup. In 1990, Sen and Saha [30] generalized this
notion in �-semigroups.

Definition 7.9 A regular �-semigroup S is called an orthodox � -semigroup if for
an α-idempotent e and a β-idempotent f of S, eα f and f αe are β-idempotents in S.

Example 7.10 [30] Let Q∗ denote the set of all nonzero rational numbers. Let �

be the set of all positive integers. Let a ∈ Q∗, α ∈ � and b ∈ Q∗. Define aαb by
|a|αb. For this operation Q∗ is a �-semigroup. Let p

q ∈ Q∗. Now, | pq |q| 1p |1 p
q = p

q .

Hence this is a regular �-semigroup. Here 1
q (q ∈ �) is a q-idempotent. These are

the only idempotents of Q∗. Now | 1q |q 1
p is a p-idempotent. Hence Q∗ is an orthodox

�-semigroup.

It is clear that any inverse�-semigroup is an orthodox� -semigroup. Some results
of orthodox �-semigroup studied by Sen and Saha [30] are given below,
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Theorem 7.11 A regular �-semigroup S is an orthodox �-semigroup if and only
if for any α-idempotent e, each of the elements V β

α (e) and V α
β (e) are β-idempotent

where V β
α (e) �= φ and V α

β (e) �= φ

Theorem 7.12 A regular �-semigroup S is an orthodox �-semigroup if and only
if for a, b ∈ S, α1 ,α2 ,β1 ,β2 ∈ �, a′ ∈ V

α2

α1
(a) and b′ ∈ V

β2

β1
(b), we have b′β2a

′ ∈
V

α2

β1
(aα1b) and b′α1a

′ ∈ V
α2

β1
(aβ2b).

Theorem 7.13 A regular �-semigroup S is an orthodox �-semigroup if and only if
for anyα-idempotent e and any γ-idempotent f with V β

α (e)
⋂

V β
γ ( f ) �= φ, V β

α (e) =
V β

γ ( f ).

Theorem 7.14 A regular �-semigroup S is an orthodox �-semigroup if and only if
for a, b ∈ S, V β

α (a) ∩ V β
α (b) �= ∅ for some α,β ∈ � implies that V δ

γ (a) = V δ
γ (b)

for all γ, δ ∈ �.

Theorem 7.15 Let S be a �-semigroup. Define a relation μ on S by μ = {(a, b) ∈
S × S : there exist γ, δ ∈ �, a′ ∈ V δ

γ (a), b′ ∈ V δ
γ (b) satisfying aαeγa′ = bαeγb′

and a′δeαa = b′δeαb for every α-idempotent e ∈ S}. Then μ is the maximum-
idempotent separating congruence on S.

Theorem 7.16 Let S be an orthodox�-semigroup. Then minimum�-group congru-
ence on S is given by σ = {(a, b) ∈ S × S : eαa = bβ f for some α-idempotent e
and for some β -idempotent f of S.}
Theorem 7.17 Let S be anorthodox�-semigroup. Then the relationρon S is defined
by ρ = {(a, b) ∈ S × S : V β

α (a) = V β
α (b), for all α,β ∈ �.} is the minimum inverse

�-semigroup congruence on S.

Later in 2005, Chattopadhyay [6] introduced right orthodox � semigroups as
follows.

Definition 7.18 A regular �-semigroup S is called a right(resp. left) orthodox �-
semigroup if for any α-idempotent e and β -idempotent f of S, eα f (resp. f αe) is
a β -idempotent.

Clearly every orthodox �-semigroup is a right orthodox � -semigroup as well as
left orthodox �-semigroup. An important result of right orthodox �-semigroups is
given below.

Theorem 7.19 In a regular �-semigroup S, the following are equivalent:

(i) S is a right orthodox �-semigroup;
(ii) for any α-idempotent e and β-idempotent f , V δ

β (eα f ) = V δ
α ( f βe) for all

δ ∈ �;
(iii) for any α-idempotent e and β-idempotent f , if eR f then V δ

α (e) = V δ
β ( f ) for

all δ ∈ �.
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In [40] Sheng, Zhao, Zhang introduced band �-semigroup. In this paper the band
�-semigroups and its general structure were discussed. It was determined that a
band �-semigroup is a semilattice of rectangular band �-semigroups. Then, a gen-
eral structure theorem for band �-semigroups was discussed, which generalises the
structure theorem for bands due to Petrich.

8 Semidirect Product of a Semigroup and a �-Semigroup

In the paper [33] semidirect product of a monoid and a �-semigroup and in [32],
semidirect product of a semigroup and a �-semigroup were introduced by Sen and
Chattopadhyay. The authors determined the necessary and sufficient conditions for
the semidirect product to be right orthodox, to be left inverse and to be right inverse
�-semigroup respectively in both the cases. The definition of semidirect product was
introduced as follows.

Definition 8.1 [33] Let S be a monoid and T be a �-semigroup. Let End(T ) denote
the set of all endomorphisms on T , i.e., the set of all mappings f : T → T satis-
fying f (aαb) = f (a)α f (b) for all a, b ∈ T ,α ∈ �. Clearly End(T ) is a semigroup.
Let� : S � End(T )be agiven1-preserving antimorphism, i.e.,�(sr) = �(r)�(s)
for all r, s ∈ S and �(1) is the identity mapping from T to T . If s ∈ S and t ∈ T ,
write t s for (�(s))(t) and T s = {t s : t ∈ T }. Let S ×� T = {(s, t) : s ∈ S, t ∈ T }.
Define (s1 , t1)α(s2 , t2) = (s1s2 , t

s2

1
αt2) for all (si , ti ) ∈ S ×� T , I = 1, 2 andα ∈ �.

Then S ×� T is a �-semigroup. This �-semigroup S ×� T is called the semidirect
product of the monoid S and the �-semigroup T .

Theorem 8.2 [33]Let S beamonoidand T bea�-semigroup. Let� : S � End(T )

be a given 1-preserving antimorphism. Then the semidirect product S ×� T is a
right(resp. left) orthodox �-semigroup if and only if

(i) S is an orthodox semigroup and T is a right(resp. left) orthodox �-semigroup,
(ii) for every e ∈ E(S) and every t ∈ T, t ∈ t e�T and
(iii) if t e is an α-idempotent, then tge is an α -idempotent for every g ∈ E(S), where

e ∈ E(S), t ∈ T .

Theorem 8.3 [33] Let S be a monoid, T be a �-semigroup and � : S � End(T )

be a given 1-preserving antimorphism. Then the semidirect product S ×� T is a right
inverse �-semigroup if and only if

(i) S is a right inverse semigroup and T is a right inverse � -semigroup and
(ii) for every e ∈ E(S) and every t ∈ T, t ∈ t e�T .

Theorem 8.4 [33] Let S be a monoid, T be a �-semigroup and � : S � End(T )

be a given 1-preserving antimorphism. Then the semidirect product S ×� T is a left
inverse �-semigroup if and only if



236 M.K. Sen and S. Chattopadhyay

(i) S is a left inverse semigroup and T is a left inverse � -semigroup and
(ii) for every e ∈ E(S) and every t ∈ T, t = t e.

In [32] the authors studied the semidirect product of a semigroup and a �-
semigroup. Authors took S as a semigroup and T as a �-semigroup. � : S �

End(T ) be a given antimorphism. They defined the semidirect product of S and
T in same fashion of previous definition. If S ×� T is a regular �-semigroup and if
S has no identity element then T may not be regular. So the absence of the identity
element in S may be the reason of the failure of the results described above. In this
paper they studied the the results in case of absence of the identity element in S.

Theorem 8.5 [32] Let S be a semigroup and T be a �-semigroup. Let � : S �

End(T ) be a given antimorphism. Then the semidirect product S ×� T is a
right(resp. left) orthodox �-semigroup if and only if

(i) S is an orthodox semigroup and T e is a right(resp. left) orthodox �-semigroup
for every e ∈ E(S),

(ii) for every e ∈ E(S) and every t ∈ T, t ∈ t e�T and
(iii) for every α-idempotent te, tge is an α -idempotent, where e, g ∈ E(S), t ∈ T .

Theorem 8.6 [32] Let S be a semigroup, T be a�-semigroup and� : S � End(T )

be a given antimorphism. Then the semidirect product S ×� T is a right inverse �-
semigroup if and only if

(i) S is a right inverse semigroup and T e is a right inverse �-semigroup for every
e ∈ E(S) and

(i) for every e ∈ E(S) and every t ∈ T, t ∈ t e�T .

Theorem 8.7 [32] Let S be a semigroup, T be a�-semigroup and� : S � End(T )

be a given antimorphism. Then the semidirect product S ×� T is a left inverse �-
semigroup if and only if

(i) S is a left inverse semigroup and T e is a left inverse �-semigroup for every
e ∈ E(S) and

(ii) for every e ∈ E(S) and every t ∈ T, t = t e.

In [32] Sen and Chattaopadhyay also introduced the notion of Wreath product of
a semigroup and a �-semigroup and investigated some interesting properties of this
product.

9 E-Inversive �-Semigroups

Generalizing the regular �-semigroup in [34] Sen and Chattaopadhyay introduced
the notion E-inversive �-semigroup. The main results are given below.
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Definition 9.1 Let S be a �-semigroup. An element a ∈ S is called E-inversive if
there exist x ∈ S,α,β ∈ � such that aαx ∈ Eβ . S is called E-inversive�-semigroup
if every a ∈ S is E-inversive.

Definition 9.2 Let S be a�-semigroup with zero. A nonzero element a ∈ S is called
E∗-inversive if there exist x ∈ S,α,β ∈ � such that 0 �= aαx ∈ Eβ . S is called E∗-
inversive �-semigroup if every nonzero element a ∈ S is E∗-inversive.

Definition 9.3 For a �-semigroup S, a ∈ S and α,β ∈ � the set W β
α (a) is defined

by W β
α (a) = {x ∈ S : xβaαx = x}.

Theorem 9.4 An element a of a�-semigroup S is E-inversive if and only if W β
α (a) �=

∅ for some α,β ∈ �.

Theorem 9.5 In an E-inversive �-semigroup S, Eμ �= ∅ for all μ ∈ �.

Theorem 9.6 In a �-semigroup S, the following conditions are equivalent:
(i) for two E-inversive elements a, b ∈ S, aαb is an E-inversive element for some
α ∈ �;
(i i) for e, f ∈ E(S), eα1 f is an E-inversive element of S for some α1 ∈ �.

Theorem 9.7 Let S be an E-inversive �-semigroup. If for every a ∈ S and α ∈ �

there exists only one x ∈ S such that aαx ∈ Eα then S is a �-group.

Theorem 9.8 Let S ×� T be a semidirect product of a semigroup S and a �-
semigroup T . Then S ×� T is E-inversive if and only if for all s ∈ S, t ∈ T
there exists s ′ ∈ W (s) such that t s

′s is an E-inversive element of the �-semigroup
T s ′s = {t s ′s : t ∈ T }. If S is an E-inversive semigroup and T is an E-inversive �-
semigroup, then every semidirect product of S and T is an E-inversive �-semigroup.

In the paper [28] Sattayaporn characterized some properties of E-inversive �-
semigroup. Moveover, the author also introduced a �-group congruence on any
E-inversive �-semigroup.
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Comparability Axioms in Orthomodular
Lattices and Rings with Involution

N.K. Thakare, B.N. Waphare and Avinash Patil

Abstract In this article, a Schröder–Bernstein type theorem is proved for
orthomodular lattices. Various comparability axioms available in Baer ∗-rings are
introduced in orthomodular lattices. Some applications to complete orthomodular
lattices are given. The related classical results in Baer ∗-rings are generalized to
∗-rings.

Keywords Orthomodular lattice · Psuedocomplemented lattice · Relatively semi-
orthocomplemented lattice · Parallelogram law
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1 Introduction

We assume that the reader is familiar with basics of lattice theory. A bounded lattice
is an algebra (L , (∧,∨, 0, 1)) where (L ,∧,∨) is a lattice with 0 and 1. Two elements
a and b of a lattice L are said to form a modular pair, denoted by (a, b)M , when
(c ∨ a) ∧ b = c ∨ (a ∧ b) holds for all c ≤ b. An element z of a lattice L with 0
and 1 is called a central element when there exist two lattices L1 and L2 and an
isomorphism between L and the direct product of L1, L2 such that z corresponds
to the element [11, 02] ∈ L1 × L2. The set of all central elements of L is called the
center of L and it is denoted by Z(L). An orthocomplementation on a bounded lattice
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is a unary operation satisfying a ∨ a⊥ = 1, a ∧ a⊥ = 0, a ≤ b implies b⊥ ≤ a⊥,
(a⊥)⊥ = a. An easy consequence of this are DeMorgan laws (a ∨ b)⊥ = a⊥ ∧ b⊥,
(a ∧ b)⊥ = a⊥ ∨ b⊥.

An ortholattice is an algebra (L , (∧,∨,⊥ , 0, 1)) where (L , (∧,∨, 0, 1)) is a
bounded lattice and ⊥ is an orthocomplementation on it. An orthomodular lat-
tice (abbreviated: OML) is an ortholattice satisfying the orthomodular law: ‘If
a ≤ b, then a ∨ (a⊥ ∧ b) = b’. This law can be again replaced by the equation
‘a ∨ (a⊥ ∧ (a ∨ b)) = a ∨ b’, see Kalmbach [4] and Stern [11]. Two elements a
and b of an OML are said to be strong perspective if they have a common comple-
ment in [0, a ∨ b]. The relative center property holds in an OML L , if the center of
any interval [0, a] of L is the set {a ∧ c | c ∈ Z(L)}.

In the second section, we consider a relatively semi-orthocomplemented lattice L
with0 and1and an equivalence relationon L satisfying someconditions.ASchröder–
Bernstein type theorem is proved for OMLs. Similar results were proved in [7, 9].
Here we release the assumptions namely, orthogonal additivity and completeness in
OMLs.

We introduce comparability axioms and finiteness in OMLs. In Baer ∗-rings,
several comparability axioms such as parallelogram law, generalized comparability,
partial comparability, finiteness, etc., are well studied. Baer ∗-rings are rings with
involution in which right annihilator of any subset is generated by a projection.
Berberian [1], Kaplansky [5] carry out detailed investigation of comparability axioms
in Baer ∗-rings. There are several deep and interesting open problems mentioned
in Kaplansky [5], Berberian [1], Thakare [16] some of which our group succeed in
solving; seeThakare andBaliga [13],Waphare [17]. In [14–16] Thakare andWaphare
gave nice interplay among these axioms in Baer ∗-rings.

In the third and fourth sections, Psuedocomplementedness is used to obtain some
important results involving comparability axioms in OML. In the final section, we
provide applications of the results to comparability axioms in general ∗-rings and
to OML to have relative center property by considering the strong perspectivity of
elements in OMLs.

2 Schröder–Bernstein Type Theorem for OML

In this section, let L be a relatively semi-orthocomplemented lattice with 0 and 1; Z
be its center and ∼ be an equivalence relation satisfying the following axiom:

“If a ∼ b, then there is a lattice isomorphism φ of (a] onto (b] such that φ(x) ∼ x
for every x ∈ (a] and that x ⊥ y ⇔ φ(x) ⊥ φ(y), for x, y ∈ (a]". Here (a] is the
principal ideal in L generated by a ∈ L .

Let {ai }i∈I and {bi }i∈I be orthogonal families of the elements of L indexed by
the same indexing set I , let a = sup ai , b = sup bi and suppose that ai ∼ bi , for all
i ∈ I . Then the obvious question is
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Does it follow that a ∼ b?

If the answer to this question is always affirmative, we say that equivalence ∼ is
additive in L (or completely additive). If it is affirmative whenever | I |≤ ℵ, we say
that ∼ is ℵ-additive; if it is affirmative whenever a ⊥ b, we say that equivalence ∼
is orthogonally additive. The term orthogonally ℵ-additive is self-explanatory. If I
is finite, then we say that equivalence ∼ is finitely additive.

For a, b ∈ L we say that a is dominated by b andwrite a � b if there exists b1 ≤ b
such that a ∼ b1 ≤ b. The property a � b, b � a implies a ∼ b is studied by several
mathematicians in different situations. Murray and von Neumann [10] studied the
property in rings of operators. Maeda [7] proved that the above property holds in
a completely additive, relatively semi-orthocomplemented complete lattice. Maeda
[9], himself released the condition of complete additivity and proved the above prop-
erty in a finitely additive and orthogonally additive relatively semi-complemented
complete lattice. Here we succeed to release some of these conditions in OMLs.
In the first step, we release the condition of orthogonal additivity to ℵ0 orthogonal
additivity, and completeness to σ -completeness. Here by σ -completeness of lattice
we mean a lattice in which every countable subset has supremum as well as infimum.

Here is our stipulated Schröder–Bernstein type theorem for OML.

Theorem 2.1 Let L be a complete OML with finitely additive equivalence relation
∼. Then a � b, b � a implies a ∼ b.

Proof Let a′ ≤ a, b′ ≤ b such that a ∼ b′ ≤ b and b ∼ a′ ≤ a. Assume that φ :
(a] → (b] andψ : (b] → (a] are corresponding isomorphisms. The plan of the proof
is to construct an order preserving mapping φ0 : (b] → (b] to which the fixed point
theorem is applied. The mapping φ0 is taken to be the composite of four mappings
φ1, φ2, φ3 and φ4 defined as follows.

Define φ1 : (b] → (a] by the mapping g → ψ(g). It is clear that φ1 is an order
preserving mapping. Define φ2 : (a] → (a] by φ2(g) = a ∧ g⊥; Thus φ2 is order
reversing. Similarly define φ3 : (a] → (b] by φ3(g) = φ(g) and φ4 : (b] → (b] by
φ4(g) = b ∧ g⊥. Finally define φ0 to be the composite φ0 = φ4 ◦ φ3 ◦ φ2 ◦ φ1. Thus
φ0 is order preserving, explicitly, φ0(g) = b ∧ (φ(a ∧ (ψ(g))⊥)⊥. Since (b] is com-
plete, the fixed point theorem yields an element g0 ≤ b such that φ0(g0) = g0. That
is b ∧ (φ(a ∧ (ψ(g0))

⊥))⊥ = g0 implies b⊥ ∨ φ(a ∧ (ψ(g0))
⊥) = g⊥

0 gives b ∧
(b⊥ ∨ φ(a ∧ (ψ(g0))

⊥)) = b ∧ g⊥
0 . Since (b⊥, b)M and φ(a ∧ (ψ(g0))

⊥) ≤ b, we
have b ∧ g⊥

0 = φ(a ∧ (ψ(g0))
⊥). Since a ∧ (ψ(g0))

⊥ ∼ φ(a ∧ (ψ(g0))
⊥) = b ∧

g⊥
0 , g0 ∼ ψ(g0) and g0 ⊥ b ∧ g⊥

0 , ψ(g0) ⊥ a ∧ ψ(g0)
⊥, we have ψ(g0) ∨

((ψ(g0))
⊥ ∧ a) ∼ (b ∧ g⊥

0 ) ∨ g0. By orthomodularity we get a ∼ b. �

As a corollary of this theorem we provide lattice theoretic proof of the Schröder–
Bernstein theorem of set theory.

Corollary 2.2 Let X and Y be two sets such that X is numerically equivalent to a
subset of Y and Y is numerically equivalent to a subset of X. Then X is numerically
equivalent to Y .
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We proceed further to release some more conditions by proving some required
lemmas.

Lemma 2.3 Let L be an OML with finitely additive, orthogonally ℵ-additive equiv-
alence relation. Suppose that supremum of every orthogonal family with cardinality
≤ ℵ exists.

Let {ai }i∈I be an orthogonal family of mutually equivalent elements with |I | ≤ ℵ,
and let J ⊂ I with |J | = |I |. Define a = sup {ai | i ∈ I }, b = sup {ai | i ∈ J }. Then
a ∼ b.

Proof Write J = J ′ ∪ J ′′, where J ′ ∩ J ′′ = ∅ and |J ′| = |J ′′| = |J |(= |I |). Define
b′ = sup {ai | i ∈ J ′},b′′ = sup {ai | i ∈ J ′′},g = sup {ai | i ∈ J ′′ ∪ (I − J )}. Since
ai ’s are orthogonal, we have b′ ⊥ g. As J ′ ∪ (J ′′ ∪ (I − J )) = I , we get that a =
b′ ∨ g by associativity of suprema. Similarly b = b′ ∨ b′′. Since J ′ and J ′′ ∪ (I − J )

have the same cardinality and since b′ ⊥ g, we have b′ ∼ g by the hypothesis. Sim-
ilarly b′′ ∼ b′. Also we have J ′ ∩ J ′′ = ∅ therefore b′ ⊥ b′′. By the assumed finite
additivity, b′ ∨ b′′ ∼ g ∨ b′. Thus a ∼ b as required. �

Lemma 2.4 Let L be an OML in which every orthogonal sequence has supremum.
Then every decreasing sequence {en}∞n=1 has the infimum.Explicitly, inf en = e1 ∧ g⊥
where g = sup {en ∧ e⊥

n+1 | n = 1, 2, . . .}.
Proof Clearly the family {en ∧ e⊥

n+1 | n = 1, 2, . . .} is orthogonal and e1 ∧ g⊥ ≤ e1.
By associativity of supremum we have, g = (e1 ∧ e⊥

2 ) ∨ g0, where g0 = sup {e2 ∧
e⊥
3 , . . .}. Therefore g⊥ = (e1 ∧ e⊥

2 )⊥ ∧ g⊥
0 = (e⊥

1 ∨ e2) ∧ g⊥
0 implies e1 ∧ g⊥ =

[e1 ∧ (e⊥
1 ∨ e2)] ∧ g⊥

0 . Since e2 ≤ e1 and (e⊥
1 , e1)M , we have e1 ∧ g⊥ = e2 ∧ g⊥

0 ≤
e2. Similarly, e1 ∧ g⊥ ≤ e3, e4 and so on.

Now, let h be an element in L such that h ≤ en for n = 1, 2, . . .. Consider
h ∨ (en ∧ e⊥

n+1)
⊥ = h ∨ (e⊥

n ∨ en+1) = e⊥
n ∨ en+1 = (en ∧ e⊥

n+1)
⊥. Thus h ≤ (en ∧

e⊥
n+1)

⊥, for n = 1, 2, . . . implies h⊥ ≥ en ∧ e⊥
n+1, for n = 1, 2, . . . implies h⊥ ≥ g

implies g⊥ ≥ h gives g⊥ ∧ e1 ≥ e1 ∧ h = h. Hence e1 ∧ g⊥ = inf en �

Now we prove the stipulated result.

Theorem 2.5 Let L be an OML with finitely additive, orthogonally ℵ0-additive
equivalence relation ∼. Also assume that supremum of every orthogonal sequence
exists. Then e � f, f � e implies e ∼ f .

Proof Assuming e ∼ f ′ ≤ f , f ∼ e′ ≤ e and φ◦, φ1 are corresponding orthoiso-
morphisms, it is to be shown that e ∼ f .

Put φ1( f ′) = e′′. Then we have the following situation: e′′ ≤ e′ ≤ e and e′′ =
φ1( f ′) ∼ f ′ ∼ e. If we prove that e′ ∼ e, then f ∼ e′ ∼ e, which is required to
prove. Therefore it is sufficient to prove e′ ∼ e. Let φ = φ1 ◦ φ◦. Since φ is an order
preserving bijection of (e] onto (e′′], we may define a sequence e0, e2, e4, . . . as e0 =
e, e2 = φ(e0) = φ(e) = φ1( f ′) = e′′, e4 = φ(e2), . . . In general e2n = φ(e2(n−1)).
Define another sequence e1, e3, e5, . . . by the same technique, starting with e′;
put e1 = e′, e3 = φ(e1), e5 = φ(e3), . . . .e2n+1 = φ(e2n−1), (n = 1, 2, . . .). Observe
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that e0 ≥ e1 ≥ e2 ≥ . . .. We now look at the “gaps” in the decreasing sequence
e0 ≥ e1 ≥ e2 ≥ . . ., i.e., the set {e0 ∧ e⊥

1 , e1 ∧ e⊥
2 , e2 ∧ e⊥

3 , . . .}. It is easy to prove
that the above sequence is orthogonal and

en ∧ e⊥
n+1 ∼ en+2 ∧ e⊥

n+3 (2.1)

By Lemma 2.4, we define e∞ = inf {en | n = 0, 1, 2, . . .}. Obviously any truncation
of the sequence en has the same infimum, in particular, e∞ = inf {en | n = 1, 2, . . .}.

Consider the following two sequences of orthogonal elements,

e∞, e0 ∧ e⊥
1 , e1 ∧ e⊥

2 , e2 ∧ e⊥
3 , . . . (2.2)

e∞, e1 ∧ e⊥
2 , e2 ∧ e⊥

3 , e3 ∧ e⊥
4 , . . . (2.3)

(the second sequence merely omits the second term of the first sequence).
Let k = sup {e0 ∧ e⊥

1 , e1 ∧ e⊥
2 , e2 ∧ e⊥

3 , . . .}. By Lemma 2.4, we have e∞ = e0 ∧
k⊥. Therefore k ∨ e∞ = k ∨ (e0 ∧ k⊥) = e0. Thus by the associativity of suprema
the sup(2.2)= e∞ ∨ k = e0. Similarly, sup(2.3)= e1 = e′. Now we define
g = sup {e0 ∧ e⊥

1 , e2 ∧ e⊥
3 , e4 ∧ e⊥

5 , . . .}, g′ = sup {e2 ∧ e⊥
3 , e4 ∧ e⊥

5 , . . .}, h =
e∞ ∨ sup {e1 ∧ e⊥

2 , e3 ∧ e⊥
4 , e5 ∧ e⊥

6 , . . .}. Again by associativity of suprema, g ∨ h,
coincides with the sup(2.2), thus e = g ∨ h. Similarly, g′ ∨ h is the sup(2.3) and
e′ = g′ ∨ h. It follows from the equivalence (2.1), the definitions of g and g′, and
Lemma 2.3 that g ∼ g′. Observe that g ⊥ h, g′ ⊥ h. Therefore we have e ∼ e′. �

3 Parallelogram Law and Comparability Axioms in OML

There are several comparability axioms available in Baer ∗-rings. The set of projec-
tions of a Baer ∗-ring forms an orthomodular lattice under the partial order, ‘e ≤ f
if and only if e = e f = f e’. In this section we extend the concepts of generalized
comparability, partial comparability to OMLs.

Also S. Maeda [7–9] developed a dimension theory on relatively semi-
orthocomplemented complete lattices. We also succeed here to release the condition
of completeness upto some extent. We start with necessary definitions and axioms
on relatively semi-orthocomplemented lattice. Hereafter in this section, let L be a
relatively semi-orthocomplemented lattice with 0 and 1; Z be its center and ∼ be an
equivalence relation as stated in previous section.

Definition 3.1 (a) The set Z0 = {z ∈ Z | a � z implies a ≤ z} is called the relative
center with respect to the given equivalence relation.

(b) Relative central cover of an element a ∈ L (notation e(a)) is an element z ∈ Z0

such that a ≤ z and whenever a ≤ z0, z0 ∈ Z0, we have z ≤ z0. It is clear that
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if L is a complete lattice then relative central cover, i.e.,, e(a) exists for every
element a ∈ L and a ∼ b implies e(a) = e(b).

Following result is obvious; also see Maeda [8, Lemma 2.1].

Lemma 3.2 The relative center Z0 of L has the following properties:

(i) Z0 is a Boolean sublattice of L.
(ii) If a ∼ b and z ∈ Z0, then z ∧ a ∼ z ∧ b.

We introduce the concept of generalized comparability and very orthogonality in
relatively semi-orthocomplemented lattices with 0 and 1.

Definition 3.3 Elements e, f in L are said to be generalized comparable if there
exists h ∈ Z0 such that h ∧ e � h ∧ f and h′ ∧ f � h′ ∧ e, where h′ is complement
of h. We say that L has generalized comparability (briefly, L has GC) if every pair
of elements is generalized comparable.

Definition 3.4 Elements e, f in L are said to be very orthogonal if there exists
h ∈ Z0 such that e ≤ h and f ≤ h′.

Observe that the definitions of generalized comparability and orthogonality are
symmetric.

Lemma 3.5 Following statements are equivalent in a lattice inwhich relative central
cover of elements involved exists.

(i) a, b are very orthogonal.
(ii) e(a) ∧ e(b) = 0.

Proof (i) =⇒ (i i): Let h ∈ Z0 such that a ≤ h and b ≤ h′. By definition of relative
central cover we get that e(a) ≤ h and e(b) ≤ h′. Therefore e(a) ∧ e(b) ≤ h ∧ h′ =
0, thus e(a) ∧ e(b) = 0.
(i i) =⇒ (i): Let e(a) ∧ e(b) = 0. Put h = e(a). It is immediate that a ≤ h and
h ∧ e(b) = 0. Thus a ≤ h and e(b) ≤ h′. That is, a ≤ h and b ≤ e(b) ≤ h′ as
required. �

We give here a nice characterization of generalized comparability for relatively
semi-orthocomplemented lattice L .

Theorem 3.6 Let the equivalence relation be finitely additive in L. Then the follow-
ing statements are equivalent.

(a) e, f are generalized comparable.
(b) There exists orthogonal decompositions e = e1 ∨ e2, f = f1 ∨ f2 with e1 ∼ f1

and e2, f2 are very orthogonal.
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Proof (a) =⇒ (b): Let h ∈ Z0 such that h ∧ e ∼ f 11 ≤ h ∧ f and h′ ∧ f ∼ e21 ≤
h′ ∧ e. Put e11 = h ∧ e and f 21 = h′ ∧ f ; we have e11 ∼ f 11 and f 21 ∼ e21. As (e11)

⊥ =
h′ ∨ e⊥ ≥ h′ ≥ h′ ∧ e ≥ e21, we have e11 ⊥ e21. Similarly f 11 ⊥ f 21 . Let e1 = e11 ∨
e21, f1 = f 11 ∨ f 21 .Byfinite additivityweget that e1 ∼ f1.Clearly e1 ≤ e and f1 ≤ f .
Let e2 be the relative orthocomplement of e1 in e and f2 be the relative orthocomple-
ment of f1 in f . Thus e = e1 ∨ e2 and f = f1 ∨ f2 and e1 ∼ f1. It is sufficient to
show that e2, f2 are very orthogonal. Since h ∧ e2 = h ∧ e ∧ e2 = e11 ∧ e2 ≤ e1 ∧
e2 = 0 and h′ ∧ f2 = h′ ∧ f ∧ f2 = f 21 ∧ f2 ≤ f1 ∧ f2 = 0, we have h ∧ e2 = 0
and h′ ∧ f2 = 0, i.e.,, e2 ≤ h′ and f2 ≤ h. Thus e2 and f2 are very orthogonal.
(b) =⇒ (a) Let there be the required orthogonal decomposition, say e = e1 ∨
e2, f = f1 ∨ f2 such that e1 ∼ f1 and e2, f2 are very orthogonal. Suppose h ∈ Z0,
with the property that e2 ≤ h and f2 ≤ h′. Using Lemma 3.2 we get that h′ ∧ e =
h′ ∧ e1 ∼ h′ ∧ f1 ≤ h′ ∧ f and h ∧ f = h ∧ f1 ∼ h′ ∧ e1 ≤ h ∧ e. Hence e, f are
generalized comparable. �

We introduce the concept of partial comparability and give its connection with
generalized comparability in lattices under consideration.

Definition 3.7 Elements e, f in L are said to be partially comparable if there exists
nonzero elements e0, f0 such that e0 ≤ e, f0 ≤ f and e0 ∼ f0. We say that L has
partial comparability (briefly L has PC) if every pair e, f in L is either partially
comparable or very orthogonal.

Proposition 3.8 Let the equivalence relation be finitely additive in L. Then GC is
stronger than PC.

Proof Assuming e, f are not partially comparable, it is to be shown that e, f are
very orthogonal. By Theorem 3.6, we have orthogonal decompositions e = e1 ∨
e2, f = f1 ∨ f2, e1 ∼ f1 and e2, f2 are very orthogonal. By the assumption we have
e1 = f1 = 0. Hence e = e2, f = f2 are very orthogonal. �

Berberian [1, p. 83] raises the question “ If a Baer ∗-ring has PC , does it follow
that it has GC?”

It is proved by Maeda [8, Lemma 4.1] that with the orthogonal additivity, PC
implies orthogonal GC (i.e., GC for orthogonal pairs). It is also proved by Maeda
[7, p. 222] with complete additivity, PC implies GC . We give here the statement
and its proof as we are using rather different language and different methods.

Theorem 3.9 Let L be a complete lattice and equivalence relation be completely
additive. Then L has PC if and only if L has GC.

Proof It is clear that if e, f are very orthogonal then they are generalized comparable.
Assuming e, f are not very orthogonal, let {ei }i∈I , { fi }i∈I be a maximal pair of
orthogonal families of nonzero elements such that ei ≤ e, fi ≤ f and ei ∼ fi ,∀i ∈
I . (an application of PC starts the Zorn’s Lemma argument). Set e′ = sup ei , f ′ =
sup fi . Let e′′, f ′′ be relative complements of e′, f ′ in e, f respectively. On one
hand e′ ∼ f ′, by complete additivity. On the other hand e′′, f ′′ are very orthogonal
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(if not, an application of PC would contradict the maximality). Thus in view of
Theorem 3.6 the orthogonal decompositions e = e′ ∨ e′′, f = f ′ ∨ f ′′ shows that
e, f are generalized comparable. �

The parallelogram law P is defined in OMLs as follows; see Kalmbach [4].

Definition 3.10 An OML, L is said to satisfy the parallelogram law P if for any
pair e, f in L , we have e ∧ (e⊥ ∨ f ) ∼ f ∧ ( f ⊥ ∨ e).

We see a simple application of parallelogram law.

Proposition 3.11 Let L be an OML satisfying the parallelogram law P. Then for
any pair e, f in L there exist orthogonal decompositions e = e1 ∨ e2, f = f1 ∨ f2
with e1 ∼ f1, e2 ⊥ f and f2 ⊥ e.

Proof Let e1 = e ∧ (e⊥ ∨ f ), f1 = f ∧ ( f ⊥ ∨ e). Then by parallelogram law P we
have e1 ∼ f1. Set e2 = e ∧ e⊥

1 , f2 = f ∧ f ⊥
1 . Clearly e = e1 ∨ e2, f = f1 ∨ f2. It

remains to prove that e2 ⊥ f and f2 ⊥ e. Since e⊥
2 = e⊥ ∨ e1 = e⊥ ∨ (e ∧ (e⊥ ∨

f )) = e⊥ ∨ f . Thus f ≤ e⊥ ∨ f = e⊥
2 . Therefore e2 ⊥ f . Similarly e ⊥ f2. �

With the help of parallelogram law, we reduce the condition of complete additivity
in Theorem 3.9 to orthogonal additivity.

Theorem 3.12 Let L be an orthomodular complete lattice satisfying the parallel-
ogram law P and with an orthogonally additive equivalence relation. Then L has
PC if and only if L has GC.

Proof First observe that if e, f are orthogonal then e, f are generalized comparable;
see Maeda [8, Lemma 4.1]. Let e, f be any pair in L . Since L satisfies parallelogram
law P , we have the orthogonal decompositions e = e′ ∨ e′′, f = f ′ ∨ f ′′ with e′ ∼
f ′, e′′ ⊥ f and f ′′ ⊥ e. It is clear that e′′ ⊥ f ′′ and hence they are generalized
comparable. Therefore by Theorem 3.6 we have e′′ = e1 ∨ e2, f ′′ = f1 ∨ f2 with
e1 ∼ f1 and e2, f2 are very orthogonal. Thus we have e = e′ ∨ e1 ∨ e2, f = f ′ ∨
f1 ∨ f2. By finite additivity we get that e′ ∨ e1 ∼ f ′ ∨ f1. Also observe that e2 ⊥
(e′ ∨ e1) and f2 ⊥ ( f ′ ∨ f1). Again by applying Theorem 3.6, we have e, f are
generalized comparable. �

We prove here a nice result as a combined effect of GC and P .

Theorem 3.13 Let L be an OML with GC, P and finitely additive equivalence
relation. Then for any pair e, f in L there exists an element h ∈ Z0 such that h ∧ e �
h ∧ f and h′ ∧ e⊥ � h′ ∧ f ⊥.

Proof Applying GC to the pair e ∧ f ⊥ and e⊥ ∧ f , we get an element h ∈ Z0 such
that

h ∧ (e ∧ f ⊥) � h ∧ (e⊥ ∧ f ) (3.1)
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and
h′ ∧ (e⊥ ∧ f ) � h′ ∧ (e ∧ f ⊥) (3.2)

It follows from P that e ∧ (e⊥ ∨ f ) ∼ f ∧ ( f ⊥ ∨ e) and e⊥ ∧ (e ∨ f ⊥) ∼ f ⊥ ∧
(e⊥ ∨ f ). Therefore by Lemma 3.2, we have

h ∧ e ∧ (e⊥ ∨ f ) ∼ h ∧ f ∧ ( f ⊥ ∨ e) (3.3)

and
h′ ∧ e⊥ ∧ (e ∨ f ⊥) ∼ h′ ∧ f ⊥ ∧ (e⊥ ∨ f ) (3.4)

Consider the conditions (3.1) and (3.3). It is clear that h ∧ (e ∧ f ⊥) ⊥ (h ∧ e) ∧
(e⊥ ∨ f ) and h ∧ (e⊥ ∧ f ) ⊥ (h ∧ f ) ∧ (e ∨ f ⊥).

We get by finite additivity that [h ∧ (e ∧ f ⊥)] ∨ [(h ∧ e) ∧ (e⊥ ∨ f )] � [h ∧
(e⊥ ∧ f )] ∨ [(h ∧ f ) ∧ (e ∨ f ⊥)].

Thereforeh ∧ {(e ∧ f ⊥) ∨ [e ∧ (e⊥ ∨ f )]} � h ∧ {(e⊥ ∧ f ) ∨ [ f ∧ (e ∨ f ⊥)]}.
Since (e ∧ f ⊥)⊥ = e⊥ ∨ f and (e⊥ ∧ f )⊥ = e ∨ f ⊥, we get by Maeda and

Maeda [6, Theorem 29.13, p. 132] that h ∧ e � h ∧ f . Similarly, by conditions
(3.2) and (3.4), we get that h′ ∧ e⊥ � h′ ∧ f ⊥. �

We close the section by adding one more result in the process.

Theorem 3.14 Let L be a lattice in which every element has a relative central cover
and having PC. Suppose {ei }i∈I is a family in L with the following property:

For every nonzero element h ∈ Z0 the set of indices {i ∈ I | h ∧ ei �= 0} is infi-
nite. Given any positive integer n there exists n−indices i1, i2, . . . , in and nonzero
elements gk ≤ eik (k = 1, 2, . . . , n) such that g1 ∼ g2 ∼ · · · ∼ gn.

Proof The proof is by induction on n. The case n = 1 is trivial as the set {i | 1 ∧
ei �= 0} is infinite, and any of its member will serve as i , with g1 = ei1 .

Assume inductively that all is well with n − 1, and consider n. By assumption,
there exist distinct indices i1, i2, . . . , in−1 and nonzero elements f1, f2, . . . , fn−1

such that f j ≤ ei j ( j = 1, 2, . . . , n − 1) such that f1 ∼ f2 ∼ · · · ∼ fn−1. Since the
relative central cover e( f1) �= 0, it is clear by the hypothesis that there exists
an index in , distinct from i1, i2, . . . , in−1 such that e( f1) ∧ ein �= 0. Then e( f1) ∧
e(ein ) �= 0. Thus f1 and ein are very orthogonal. Citing PC there exist nonzero
elements g1, gn such that g1 ≤ f1, gn ≤ ein and g1 ∼ gn . For j = 2, . . . , n − 1 the
equivalence f1 ∼ f j transforms g1 into g j ≤ f j with g1 ∼ g j , thus gn ∼ g1 ∼ g j

( j = 2, . . . , n − 1). �

4 Finiteness in OMLs

In this section, we consider L as an OML with an equivalence relation as in previous
section. We start with the definition of finite element and related aspects.



250 N.K. Thakare et al.

Definition 4.1 An element e in L is said to be finite if e ∼ f ≤ e implies e = f .
An OML, L is said to be finite if every element in L is finite, it is said to be infinite
if it is not finite. L is said to be properly infinite if 0 is the only finite element in Z0.

Following result is easy and proved by Maeda [9, p.219].

Lemma 4.2 Let L be a lattice with finitely additive equivalence relation. Then f �
e, e is finite together imply that f is finite.

We hasten to add a basic result about infinite lattices.

Proposition 4.3 Let L be an orthomodular σ -complete lattice with finite additivity
and orthogonal ℵ0-additivity. Then L is infinite if and only if there exists a sequence
{ fn} of orthogonal, mutually equivalent nonzero elements.

Proof By hypothesis, there exists an element e �= 1 such that e ∼ 1 and φ : L → (e]
be an orthoisomorphism. In particular φ is an order preserving bijection. Define
e1 = 1 and inductively en+1 = φ(en), for n = 1, 2, . . . In particular e2 = φ(1) = e.
Since e1 ≥ e2 and e1 �= e2, an applicationofφ to the inequality e1 ≥ e2 yields e2 ≥ e3,
e2 �= e3. Continuing inductively, we see that the sequence {en} is strictly decreasing.
Defining, fn = en ∧ e⊥

n+1 (n = 1, 2, . . .).Wehave an orthogonal sequence of nonzero
elements; moreover, φ( fn) = φ(en) ∧ φ(en+1)

⊥ = en+1 ∧ e⊥
n+2 = fn+1 shows that

fn ∼ fn+1.
Conversely, suppose that { fn} is an orthogonal sequence of nonzero elements

such that f1 ∼ f2 ∼ · · · Byhypothesis, wemay define e = sup { fn | n ≥ 1} and f =
sup { fn | n ≥ 2}. Then f1 ⊥ f and e = f1 ∨ f . We have e ∼ f , by
Lemma 2.3, where f ≤ e and e ∧ f ⊥ = ( f1 ∨ f ) ∧ f ⊥ = f1 �= 0. It follows that
L is not finite. �

It is useful to have terminology to describe orthogonal families such as those
occurring in the above proposition.

Definition 4.4 (a) An orthogonal family of nonzero elements {ei } is called a parti-
tion with terms ei , if e = sup {ei } exists, it is called a partition of e.

(b) Two equipotent partitions {ei }i∈I , { fi }i∈I are equivalent if ei ∼ fi , for all i ∈ I .
(c) A partition {ei } is homogeneous if its terms are mutually equivalent.
(d) A homogeneous partition {ei } is called maximal if it cannot be enlarged; that is,

there does not exist an element e such that e ∼ ei and e ⊥ ei , for all i .

Remark 1 If e ∼ f and {ei } is a partition of e, then there exists a partition { fi } of f
that is equivalent to {ei }. If in addition {ei } is homogeneous then so is { fi }.
Remark 2 Every homogeneous partition can be enlarged to amaximal one (a routine
application of Zorn’s Lemma).

We proceed further to obtain a homogeneous partition of 1 in a properly infinite
lattice L , in the presence of orthogonal GC . In this direction we take a first step by
proving the following result.
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Proposition 4.5 Let L be a complete lattice with orthogonal GC, finitely additive
equivalence relation and having infinitely many terms, then there exists a nonzero
element h ∈ Z0 and a homogeneous partition { fi } of h that is equivalent to h ∧ ei .

Proof Fix an index i0; for simplicity, write i0 = 1. Set e = sup ei . Since e⊥ and e1
are orthogonal, by hypothesis there exists an element h ∈ Z0 such that

h ∧ e⊥ � h ∧ e1 and h′ ∧ e1 � h′ ∧ e⊥ (4.1)

Necessarily h is not orthogonal to e1; for h ⊥ e1 implies e1 = h′ ∧ e1 � h′ ∧ e⊥ ≤
e⊥, contrary to the maximality of {ei }. Since {h ∧ ei } is a homogeneous partition
of h ∧ e, it will suffice by Remark 1 above, to show that h ∧ e ∼ h. In view of
Theorem 2.1, it is sufficient to prove that h � h ∧ e. Let f = sup {ei | i �= 1}; thus
e = f ∨ e1 and f ⊥ e1. Since the family {ei } is infinite, we have e ∼ f , therefore

h ∧ e ∼ h ∧ f (4.2)

From (4.1) and (4.2), we have (h ∧ e) ∨ (h ∧ e⊥) � (h ∧ f ) ∨ (h ∧ e1) implies h �
h ∧ ( f ∨ e1) = h ∧ e. �

Here, we obtain a sequence which is a homogeneous partition of 1 in a properly
infinite lattice with orthogonal GC .

Proposition 4.6 If L is a properly infinite complete lattice with orthogonal GC and
orthogonally additive equivalence relation, then there exists a sequence en, that is a
homogeneous partition of 1.

Proof By Proposition 4.3 there exists a homogeneous partition with infinitely many
terms, which we can suppose to be maximal. Invoking Proposition 4.5, there exists
a nonzero element h ∈ Z0 (the relative center of L) that possesses a homogeneous
partition { fi }i∈I with infinitely many terms. Since ℵ0|I | = |I |, the index set I can
be written as the union of a disjoint sequence of equipotent sets In , I = I1 ∪ I2 ∪
I3 ∪ · · ·

Defining fn = sup { fi | i ∈ In} (n = 1, 2, . . .) we have fm ∼ fn , for all m, n by
orthogonal additivity and sup fn = h. Summarizing, there exists a nonzero element
h ∈ Z0 and a sequence { fn} that is a homogeneous partition of h.

Let {hα}α∈� be a maximal family of orthogonal, nonzero elements in Z0 such that
for each α ∈ �, there exists a sequence {eαn } that is a homogeneous partition of hα .
Defining en = sup {eαn | α ∈ �} (n = 1, 2, . . .)

We have em ∼ en for all m, n and sup en = sup hα . It will suffice to show that
sup hα = 1. Assume to the contrary that sup hα �= 1, i.e.,, (sup hα)⊥ �= 0. Then
(sup hα)⊥ is infinite (because L is properly infinite); by the first part of the proof,
it contains a nonzero element h ∈ Z0 and a sequence { fn} that is a homogeneous
partition of h. This contradicts the maximality of the family {hα}α∈�. �

In the conclusion of above proposition, the en’s are mutually equivalent, this can
be achieved by making them equivalent to 1.
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Theorem 4.7 Let L be a properly infinite complete lattice with orthogonal GC and
orthogonally additive equivalence relation. Then

(1) There exists an orthogonal sequence of elements fn such that sup fn = 1 and
fn ∼ 1, ∀n.

(2) For each positive integer m, there exists orthogonal elements g1, g2, . . . , gm such
that g1 ∨ g2 ∨ · · · ∨ gm = 1 and gi ∼ 1, ∀i .

Proof By Proposition 4.6, there exists a sequence en that is homogeneous partition
of 1.

(1) Write the index set I = {1, 2, . . .} as the union of disjoint sequences of infinite
subsets, I = I1 ∪ I2 ∪ · · · ∪ In ∪ · · · and define fn = sup {ei | i ∈ In}. The fn’s
are mutually orthogonal, sup fn = 1 and fn ∼ 1.

(2) The proof is similar, based on a partition of I into infinite subsets I1, I2, . . . ,
Im . �

We also prove the following interesting result.

Theorem 4.8 Let L be a finite lattice with GC and finitely additive equivalence
relation. Then e ∼ f implies e⊥ ∼ f ⊥.

Proof Apply GC to the pair e⊥, f ⊥; we have an element h ∈ Z0 such that

h ∧ e⊥ ∼ f1 ≤ h ∧ f ⊥ (4.3)

h′ ∧ f ⊥ ∼ e1 ≤ h′ ∧ e⊥ (4.4)

Since h ∧ e ∼ h ∧ f , join with (4.3) yields h = (h ∧ e) ∨ (h ∧ e⊥) ∼ (h ∧ f ) ∨
f1 ≤ h.
Therefore by finiteness we have (h ∧ f ) ∨ f1 = h implies [(h ∧ f ) ∨ f1] ∧

f ⊥ = h ∧ f ⊥ implies f1 ∨ [(h ∧ f ) ∧ f ⊥] = h ∧ f ⊥ gives f1 = h ∧ f ⊥. Thus
(4.3) becomes h ∧ e⊥ ∼ h ∧ f ⊥. Similarly (4.4) becomes h′ ∧ e⊥ ∼ h′ ∧ f ⊥.
Adding these equivalences we have e⊥ ∼ f ⊥. �

As applications of pseudocomplementedness we prove two important results. In
the first result, we prove that supremum of very orthogonal family of finite elements
is finite and in the second result we prove that the finite elements form a lattice.

Theorem 4.9 Let L be a pseudocomplemented complete lattice. If {ei }i∈I is a very
orthogonal family of finite elements and if e0 = sup ei , then e0 is also finite.

Proof Write hi = e(ei ), h = sup hi . First, we prove that hi ∧ e0 = ei , for every
i . Set x = hi ∧ e0 ∧ e⊥

i for fixed i , implies x ∧ ei = 0. Also x ∧ e j = hi ∧ e0 ∧
e⊥
i ∧ e j ∧ h j = (hi ∧ h j ) ∧ e0 ∧ e⊥

i ∧ e j = 0; by assumed very orthogonality. Thus
x ∧ e0 = 0; as L is pseudocomplemented. This gives us x = 0 implies x ∨ ei = ei
implies ei ∨ (hi ∧ e0 ∧ e⊥

i ) = ei implies hi ∧ e0 = ei ; since L is orthomodular.
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Now suppose ei ’s are finite and e0 ∼ f ≤ e0. We have to prove that e0 =
f . Since hi ∧ e0 ∼ hi ∧ f ≤ hi ∧ e0 we have ei ∼ hi ∧ f ≤ ei implies hi ∧ f =
ei ,∀i , implies hi ∧ f = hi ∧ e0,∀i gives hi ∧ f ∧ f ⊥ = hi ∧ e0 ∧ f ⊥ implies hi ∧
e0 ∧ f ⊥ = 0,∀i ∈ I , then h ∧ e0 ∧ f ⊥ = 0, since L is pseudocomplemented. As
e0 ≤ h we get that e0 ∧ f ⊥ = 0. Now the orthomodularity together with f ≤ e0
yields that e0 = f ∨ (e0 ∧ f ⊥) = f as required. �

Before proving the next result, it should be mentioned here that Maeda [8, p.387]
has proved the same result but under the assumption of completeness and orthog-
onal additivity. Here we succeed to release the condition of completeness up to
σ -completeness and orthogonal additivity upto ℵ0-orthogonal additivity with the
help of pseudocomplementedness.

Theorem 4.10 Let L be a σ -complete pseudocomplemented lattice with GC, P,
finitely and orthogonally ℵ0-additive equivalence relation. If e, f are finite elements
then e ∨ f is also finite.

Proof Note that the lattice (e ∨ f ] also satisfies all the axioms of the theorem except
P in which e, f are finite elements, dropping down to it, we can suppose that
e ∨ f = 1. Citing P we have, e⊥ = (e ∨ f ) ∧ e⊥ ∼ f ∧ (e ∧ f )⊥ ≤ f . Thus e⊥ �
f . Since f is finite so is e⊥. Thus 1 = e ∨ e⊥ is the sum of orthogonal finite elements.
Changing the notation we can suppose that e ⊥ f and e ∨ f = 1.

Assume to the contrary that L is not finite and let {gn} be a sequence of orthogonal
equivalent, nonzero elements. Define g = sup {gn | n = 1, 2, . . .}, g′ = sup {gn | n
is odd }, g′′ = sup {gn | n is even }. Then g′ ⊥ g′′, g = g′ ∨ g′′ and g′ ∼ g ∼ g′′.
Applying GC to the pair g′ ∧ e, g′′ ∧ f there exists an element h ∈ Z0 such that

(i) h ∧ (g′ ∧ e) � h ∧ (g′′ ∧ f )
(ii) h′ ∧ (g′′ ∧ f ) � h′ ∧ (g′ ∧ e)

Citing parallelogram law P we have

(iii) h ∧ [g′ ∧ (g′ ∧ e)⊥] ∼ h ∧ [(g′ ∨ e) ∧ e⊥].
The left-hand sides if (i) and (i i i) are obviously orthogonal; prior to gluing them
we check that right-hand sides are orthogonal too. Since g′′ ∧ f ⊥ g′ also g′′ ∧
f ⊥ e, hence g′′ ∧ f ⊥ g′ ∨ e. Combining (i) and (i i i) we have h ∧ g′ = [h ∧
(g′ ∧ e)] ∨ [h ∧ g′ ∧ (g′ ∧ e)⊥] � [h ∧ (g′′ ∧ f )] ∨ [h ∧ (g′ ∨ e) ∧ e⊥]. Since
g′′ ∧ f ≤ f and (g′ ∨ e) ∧ e⊥ ≤ e⊥ = f , we have h ∧ g′ � f . Further by h ∧
g ∼ h ∧ g′, we have (∗) h ∧ g � f . Again citing P ,

(iv) h′ ∧ [g′′ ∧ (g′′ ∧ f )⊥] ∼ h′ ∧ [(g′′ ∨ f ) ∧ f ⊥], by similar arguments (i i) and
(iv) gives, (∗∗) h′ ∧ g � e.
From (∗) and (∗∗) we see that h ∧ g, h′ ∧ g are finite. But h ∧ g is the supre-
mum of the sequence {h ∧ gn} of orthogonal, equivalent elements. It follows By
Lemma 2.3 that h ∧ gn = 0, ∀n. Thus h ∧ g = 0, as L is pseudocomplemented
Similarly h′ ∧ g = 0. Thus g = 0, a contradiction. �

We provide an example of a lattice which is incomplete but satisfies all the axioms
of Theorem 4.10.
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Example 4.11 Let L = {X | X ⊆ R, and X is either countable or complement of
a countable set}. It is clear that L is a lattice under inclusion. In fact it is a ring
of sets. Put orthocomplementation ⊥ as A⊥ = Ac, a set theoretic complement. Let
numerical equivalence relation be the equivalence relation ∼.

It follows that L is not a complete lattice but it satisfies all the axioms of Theorem
4.10. Hence the set of all finite elements in L forms a sublattice. It is interesting to
note that an element of L is finite if and only if it is a finite subset of R.

5 Applications

Let A be a ∗-ring in which the set of all projections Ã forms a bounded lattices. Then
it is easy to see that the lattice Ã is orthocomplemented with orthocomplementation
defined by e → e⊥ = 1 − e. In fact it is an orthomodular lattice.

Lemma 5.1 Let A be a ∗-rings with 1 in which Ã forms a lattice. Then Ã is an
orthomodular lattice.

Proof Let e ≤ f . Therefore (1 − e) f = f − e f = f (1 − e), i.e.,, 1 − e and f are
commuting projections, hence (1 − e) ∧ f = (1 − e) f . Also e and (1 − e) f are
orthogonal projections. Thus e ∨ [(1 − e) ∧ f ] = e + (1 − e) f = e + f − e f =
e + f − e = f . It follows by Maeda and Maeda [6, Theorem 29.13, p.132] that
Ã is an orthomodular lattice. �

Let A be a ∗-ring and x ∈ A. We say that x possesses a central cover if there exists
a smallest central projection h such that hx = x . If such a projection h exists, then it
is unique, it is called the central cover of x , denoted by h = c(x). A projection e is
said to be dominated by the projection f , denoted by e � f , if e ∼ g ≤ f , for some
projection g in A. Two projections e and f are said to be generalized comparable
if there exists a central projection h such that he � h f and (1 − h) f � (1 − h)e. A
∗-ring is said to satisfy the generalized comparability(GC) if any two projections are
generalized comparable. Two projections e and f are said to be partially comparable
if there exist nonzero projections e0, f0 in R such that e0 ≤ e, f0 ≤ f and e0 ∼ f0. If
for any pair of projections in A, eA f �= 0 implies e and f are partially comparable,
then A is said to satisfypartial comparability(PC).More about comparability axioms
on set of projection can be found in Berberian [1].

Before proving the next result we mention here the restrictions on a ∗-ring A.

(#) Ã forms a complete lattice.
(##) The relative center Z0 with respect to the equivalence relation∼ in Ã coincides

with the set of all central projections in A. (It follows that for f ∈Ã, c( f ), e( f )
exists and c( f ) = e( f )).

Theorem 5.2 Let A be a ∗-ring in which equivalence is completely additive and A
satisfies conditions (#) and (##) mentioned above. Then A has PC implies that A
has GC.
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Proof First, we prove that Ã has PC . Let c(e) ∧ c( f ) �= 0 implies eA f �= 0. Since A
has PC , we have nonzero sub-projections e0 ≤ e, f0 ≤ f such that e0 ∼ f0. HenceÃ
has PC . Now observe that all condition of Theorem 3.12 are satisfied, hence we have
GC inÃ.We prove that A hasGC . Let e, f ∈Ã; sinceÃ hasGC , we have an element
h ∈ Z0 such that h ∧ e � h ∧ f and h′ ∧ f � h′ ∧ e. By assumption, we have a
central projection h such that he = h∧ � h ∧ f = h f and (1 − h) f � (1 − h)e. �

We provide an example of a ∗-ring which is not a Baer ∗-ring but satisfies all the
axioms of Theorem 5.2.

Example 5.3 Consider the ring A = Z4 = {0, 1, 2, 3} with identity mapping as an
involution. Then Ã={0, 1}= the set of projections in A. It is clear that A satisfies all
the conditions of Theorem 5.2; but it is not a Baer ∗-ring.
Now, we see another open problem raised by Berberian [1, p. 110].
Open Problem: If A is a Baer ∗-ring with GC and e, f are finite projections in A,
is e ∨ f finite?

Let us see the most general partial answer provided by Berberian [1, p.102].

Theorem 5.4 Let A be a Rickart ∗-ring with GC, satisfying the parallelogram law
P, such that every sequence of orthogonal projections in A has a supremum. If e, f
are finite projections in A, then e ∨ f is also finite.

We prove the above theorem by dropping the condition that the underlying ∗-ring be
a Rickart ∗-ring.
Theorem 5.5 Let A be a ∗-ring with GC, P and in which the set of projections
forms a pseudocomplemented, σ -complete lattice. If A satisfies the above condition
(##) and moreover ∼ is orthogonally ℵ0-additive, then e, f ∈Ã are finite imply that
e ∨ f is finite.

Proof Observe that Ã satisfies all the conditions of Theorem 4.10. Hence e ∨ f is
finite. �

We provide an example of a ∗-ring which satisfies all the axioms of Theorem 5.4
but it is not a Rickart ∗-ring.
Example 5.6 Consider the ring of sets L as in Example 4.11. It is a ring with inter-
section as the multiplication and symmetric difference as the addition. Therefore L
is a ∗-ring with identity involution. Put A = Z4 ⊕ L . As Z4 is not a Rickart ∗ring,
therefore A is not a Rickart ∗-ring; but A clearly satisfies all the axioms of Theorem
5.5. In this ∗-ring we see that e ∨ f in finite whenever e and f are finite.

For the remaining part of the section∼ denotes the relation “strong perspectivity,”
which is reflexive and symmetric relation. Chevalier defines [2, Definition 3.1]:

Definition 5.7 AnOML, L is said to satisfy the axiomof comparability (abbreviated
A.C.), if x, y ∈ L , there exists a central element h such that: x ∧ h � y ∧ h and
y ∧ h⊥ � x ∧ h⊥, for all x, y ∈ L .
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Observe that, the axiom A.C. defined by Chevalier is the modified GC by taking
h ∈ Z(L) instead of taking in Z0 and an analog of Theorem 3.6 is also proved [2,
Proposition 2].

In this section, we will use GC with modification, i.e.,, taking h ∈ Z(L) in
Definition 3.3. Observe that the definitions of GC , PC and Theorem 3.6 are valid if
we use strong perspectivity (as transitivity of ∼ is not required). The advantage of
considering ∼ as strong perspectivity is that every OML satisfies the parallelogram
law P (as φa(b) = a ∧ (a⊥ ∨ b) is strongly perspective to φb(a)).

Recall [8, Definition 3.1], two elements a and b of a lattice L are said to be
unrelated if a1 ≤ a, b1 ≤ b and a1 ∼ b1 together imply a1 = b1 = 0. Using this, we
have the following result.

Theorem 5.8 Every OML with relative center property has PC under strong
perspectivity.

Proof It is enough to show that two unrelated elements are very orthogonal. Let
a and b be unrelated. Then by parallelogram law, a ∧ (a⊥ ∨ b) ∼ b ∧ (b⊥ ∨ a).
As a and b are unrelated, we have a ∧ (a⊥ ∨ b) = 0 and b ∧ (b⊥ ∨ a) = 0. Now
a ∧ (a⊥ ∨ b) = 0 gives a⊥ ∨ b ≤ a⊥ implies b ≤ a⊥. Similarly b ∧ (b⊥ ∨ a) = 0
gives a ≤ b⊥. Now by [4, Lemma 9, p.108], there exists a central element h ∈ L
such that a ≤ h and b ≤ h⊥, i.e.,, a and b are very orthogonal. Hence L has PC . �

Corollary 5.9 Let L be a complete OML with finitely additive strong perspectivity.
Then L has relative center property if and only if it has PC under strong perspectivity.

Proof If L has relative center property then by Theorem 5.8, L has PC . Conversely
if L has PC then by Theorem 3.9 L has GC and by [3, Proposition 7], L has relative
center property. �
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Structure Theory of Regular Semigroups
Using Categories

A.R. Rajan

Abstract Structure theory of regular semigroups has been using theory of categories
to a great extent. Structure theory of regular semigroups developed by K.S.S. Nam-
booripad using inductive groupoids, structure of combinatorial regular semigroups
developed by A.R. Rajan and several other structure theories have made extensive
use of categories. The theory of cross connections developed by K.S.S. Namboori-
pad has provided an abstract description of the category of left ideals of a regular
semigroup which he called normal category. The first appearance of categories in
structure theory can be traced to Schein’s structure theory of inverse semigroups
which uses groupoids as a basic object where groupoids are categories in which
all morphisms are isomorphisms. Schein described the category of isomorphisms
between order ideals of the set of idempotents of an inverse semigroup and called
them inductive groupoids. Some instances of appearance of categories in structure
theory of certain classes of regular semigroups are presented here.

Keywords Ordered groupoid · Reflective subcategory · Normal category

1 Introduction

Structure theory of semigroups and especially that of regular semigroups uses theory
of categories to a great extent. Structure theory of regular semigroups developed
by K.S.S. Nambooripad [5] using inductive groupoids, structure of combinatorial
regular semigroups given by A.R. Rajan [7]) etc. makes extensive use of categories.
A more detailed use of categories can be found in the structure theory for regular
semigroups developed by K.S.S. Nambooripad using cross connections. The first
appearance of categories in structure theory can be traced to Schein’s structure the-
ory of inverse semigroups [10], which use groupoids as a basic object which is a
specialised category. Another recent reference to the use of categories in structure
theory is Lawson [3].
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2 Categories

A category C is usually defined as a structure consisting of two components, a class
vC called the class of objects of the category C and a classM(C) called the class of
morphisms. A category is said to be a small category if the class of objects is a set.We
give here a description for small categories which can be realised as a generalization
of the concept of semigroup.

In the following, we consider a small category as the set of all morphims of the
category and describe the vertex set as the set of all identity morphisms so that vC
can be considered as a subset of C. Further the domain and the codomain of the
morphisms are realised as given by two mappings d and r from C to vC.

Definition 2.1 A small category is a 5-tuple (C, vC, d, r, ◦) where C is a set, vC is a
subset of C, d, r : C → vC are surjective mappings and ◦ is a partial binary operation
on C such that the following conditions hold:

1. For a ∈ vC, d(a) = a = r(a)

2. The domain of the partial binary operation ◦ is

{( f, g) ∈ C × C : r( f ) = d(g)}

For a, b ∈ C we write

C(a, b) = { f ∈ C : d( f ) = a and r( f ) = b}

and is called the set of morphisms from a to b.
3. If f ∈ C(a, b) and g ∈ C(b, c) then f ◦ g ∈ C(a, c)
4. ◦ is associative in the sense that

f ◦ (g ◦ h) = ( f ◦ g) ◦ h

whenever both sides are defined.
5. If f ∈ C(a, b) then a ◦ f = f = f ◦ b
6. For a, b, a′, b′ ∈ vC, C(a, b) ∩ C(a′, b′) = ∅ if a �= a′ or b �= b′.

Remark 2.2 By this description small categories can be considered as sets with
partial binary operation which is associative and admits unique left and right identity
for each element. In particular groups and union of groups are small categories.

We consider several instances of category theoretic descriptions of the structure
of semigroups. For a regular semigroup S one of the much used categories associated
with it is the groupoid G(S) defined as follows. A groupoid is a category in which
every morphism is invertible.

G(S) = {(x, x ′) : x ′ is an inverse of x}
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with product defined by

(x, x ′)(y, y′) =
{

(xy, y′x ′) if x ′x = yy′

undefined otherwise

It may be observed that for (x, x ′) ∈ G(S) the left identity of (x, x ′) is (xx ′, xx ′)
and the right identity is (x ′x, x ′x). For each idempotent e of S we may identify
(e, e) ∈ G(S) with e and consider E(S) as the vertex set of G(S).

Groupoids which arise as G(S) of a regular semigroup S have been characterised
by Nambooripad [5] and such groupoids are called inductive groupoids. This is
a generalisation of the concept of inductive groupoid introduced by Schein [10]
for describing inverse semigroups. Schein’s inductive groupoids are the inductive
groupoids G(S) arising from inverse semigroups. In the case when S is an inverse
semigroup the groupoidG(S) can be completely described in terms of the associated
partial order relation. Such groupoids called ordered groupoids are defined as follows:

Definition 2.3 AgroupoidG with a partial order≤ defined on it is called an ordered
groupoid if the following are satisfied:

(OG1) If u ≤ x, v ≤ y in G and if the products uv, xy exist in G then uv ≤ xy
(OG2) If u ≤ x then u−1 ≤ x−1

(OG3) If x ∈ G and if e ≤ xx−1 with e ∈ vG then there exists a unique e ∗ x ∈ G
such that

e ∗ x ≤ x and (e ∗ x)(e ∗ x)−1 = e.

e ∗ x is called the restriction of x to e.

A special class of ordered groupoids called inductive groupoids are defined below.

Definition 2.4 An ordered groupoid (G,≤) is said to be an inductive groupoid if
the set vG of identities of G form a semilattice under the induced partial order of G.

The following theorem characterises ordered groupoids arising from inverse semi-
groups as inductive groupoids.

Theorem 2.5 A groupoid G is isomorphic to the inductive groupoid G(S) of an
inverse semigroup S if and only if there is a partial order on G making it an ordered
groupoid such that the partially ordered subset of identities is a semilattice.

There is a class of groupoids associated with a regular semigroup which arises
in the structure theory called the class of Rees groupoids. These are subgroupoids
G(D) of G(S) determined by the Green’s D-classes. For a D-class D of S

G(D) = {(x, x ′) ∈ G(S) : x ∈ D}.



262 A.R. Rajan

A Rees groupoid may be regarded as the inductive groupoid G(S)∗ of non zero
elements of a completely 0-simple semigroup S.

It can be seen that an inductive groupoid G as described by Nambooripad [5] is
a Rees groupoid if and only if it is connected in the sense that for each pair e, f
of identities in G there exists x ∈ G such that e is left identity of x and f is right
identity of x .

3 Combinatorial Semigroups

There are special classes of semigroups where the induced groupoids have simple
descriptions.One example is the class of combinatorial regular semigroups.A regular
semigroup S is said to be combinatorial if all its maximal subgroups are trivial [7].
The Rees groupoids arising from these semigroups are called combinatorial Rees
groupoids.

Theorem 3.1 A groupoid G is a combinatorial Rees groupoid if and only if for each
pair e, f of identities of G there exists a unique x ∈ G such that e is left identity of
x and f is right identity of x .

IfG is a groupoid satisfying the condition abovewith set of identities E .Then S =
E × E ∪ {0} becomes a combinatorial completely 0-simple semigroup by defining
product by

(e, f )(g, h) =
{

(e, g) if f = g

0 otherwise

and (e, f )0 = 0(e, f ) = 0. Further in this case G(S) is isomorphic to G and so G
is a combinatorial Rees groupoid.

Structure theorem for combinatorial locally inverse semigroups (A.R. Rajan [8])
gives purely category theoretic description of the structure of these semigroups.

A locally inverse semigroup is a regular semigroup S such that eSe is an inverse
subsemigroup of S for every idempotent e of S. These semigroups are also known
as pseudo inverse semigroups. The set of idempotents of these semigroups are char-
acterised as pseudo semilattices or local semilattices.

A pseudo semilattice can be regarded as a set E with a binary operation ∧ satis-
fying certain axioms which are weaker than those for a semilattice.

The following theorem given in [8] describes pseudo semilattices. The following
terminology is used here. For a category C and a ∈ vC the star of a is the full
subcategory of C with vertex set

vStar(a) = {b ∈ vC : there is a morphism x : b → a in C}.
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A functor F : C → D is said to be a star isomorphism if

F | Star(a) : Star(a) → Star(F(a))

is an isomorphism.
A preorderP is a categoryP in which for all a, b ∈ vP themorphism setP(a, b)

contains at most one element.
P is said to be strict preorder if

P(a, b) ∪ P(b, a)

contains at most one element.
In this case vP becomes a partially ordered set by defining partial order as follows.

a ≤ b if P(a, b) is nonempty.

In this case we say P is a partial order.
Another category concept that is used here is that of adjoints. Adjoint relation

between two categories provides a pair of functors giving an equivalence of the
categories. A special case is adjoint for inclusion functor.

A subcategoryD of a category C is said to be a reflective subcategory of C, if the
inclusion functor from D to C has a left adjoint.

Theorem 3.2 Let I and � be strict preorders and � be a reflective subcategory of
the preorder I × �. Let F : I × � → � be the left adjoint of the inclusion. Define
product ∧ on � by

(i, λ) ∧ ( j, μ) = F( j, λ).

Then (�,∧) is a pseudo semilattice if and only if the projections p1 and p2 from �

to I and � respectively are star bijections.

This theorem can be extended to provide a characterization of combinatorial
locally inverse semigroups.

4 Normal Categories

Another category used in structure theory is the category of principal left or right
ideals. These categories arise in the theory of cross connections developed by
Nambooripad [6] and Grillet [1]. Grillet used the partially ordered sets of L-classes
andR-classes, where L andR are the Green’s equivalences relating to left and right
ideals of the semigroup. He associated certain mappings called normal mappings
with these partially ordered sets in his cross connection theory. This theory could
provide the structure for fundamental regular semigroups. The general case was
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provided by Nambooripad using the category of principal left ideals and principal
right ideals. These categories are abstractly described as normal categories.

The normal category L(S) of principal left ideals of a regular semigroup S is
described as follows:

vL(S) = {Se : e ∈ E(S)}

and for Se, S f ∈ vL(S), a morphism from Se to S f is a right translation

ρ(e, u, f ) : Se → S f which maps x ∈ Se to xu ∈ S f

for u ∈ eS f.
When S is a combinatorial regular semigroup the principal left[right] ideals can

be represented by order ideals of the partially ordered sets S/L and S/R.Morphisms
of L(S) in this case can be replaced by restrictions of normal mappings to the prin-
cipal order ideals of S/L. The normality properties of Grillet and Nambooripad also
coincide in this case.

Characterisation of normal categories associated with various special classes of
semigroups can be carried out. For example in the case of inverse semigroups, the
normal category has been characterised by the uniqueness on normal factorizations
of morphisms (A.R. Rajan [9]).
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Biorder Ideals and Regular Rings

P.G. Romeo and R. Akhila

Abstract In [4] (Structure of regular semigroups, 1979) K.S.S. Nambooripad in-
troduced biordered sets as a partial algebra (E,ωr ,ωl) where ωr and ωl are two
quasiorders on the set E satisfying biorder axioms; to study the structure of a regular
semigroup. John von Neumann (Continuous Geometry, 1960 in [5]) described the
complemented modular lattice of principle ideals of a regular ring. In this paper, we
introduced the biorder ideals of a regular ring and showed that these ideals form a
complemented modular lattice.

Keywords Biordered set · Sandwitch set
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In many algebraic systems like semigroups, rings, algebras, the idempotent elements
are important structural objects and can be used effectively in analyzing the struc-
ture of the algebraic system under consideration. The concept of biordered set was
originally introduced by Nambooripad [1972, 1979] to describe the structure of the
set of idempotents of a semigroup. He identified a partial binary operation on the set
of idempotents E(S) of a semigroup S arising from the binary operation in S. The
resulting structure on E(S) involving two quasiorders is abstracted as a biordered
set. In this paper, we propose to extend biordered set approach to rings to study the
structure of regular rings.

1 Preliminaries

First, we recall some basic definitions regarding semigroups, biordered sets, and
rings needed in the sequel. A set S in which for every pair of elements a, b ∈ S there
is an element a · b ∈ S which is called the product of a by b is called a groupoid.
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A groupoid S is a semigroup if the binary operation on S is associative. An element
a ∈ S is called regular if there exists an element a′ ∈ S such that aa′a = a, if every
element of S is regular then S is a regular semigroup. An element e ∈ S such that
e · e = e is called an idempotent and the set of all idempotents in S will be denoted
by E(S).

1.1 Biordered Sets

By a partial algebra E , we mean a set together with a partial binary operation on
E . Then (e, f ) ∈ DE if and only if the product e f exists in the partial algebra E . If
E is a partial algebra, we shall often denote the underlying set by E itself; and the
domain of the partial binary operation on E will then be denoted by DE . Also, for
brevity, we write e f = g, to mean (e, f ) ∈ DE and e f = g. The dual of a statement
T about a partial algebra E is the statement T ∗ obtained by replacing all products
e f by its left–right dual f e. When DE is symmetric, T ∗ is meaningful whenever T
is. On E we define

ωr = {(e, f ) : f e = e} ωl = {(e, f ) : e f = e}

andR = ωr ∩ (ωr )−1, L = ωl ∩ (ωl)−1, and ω = ωr ∩ ωl . We will refer ωr and ωl

as the right and the left quasiorder of E .

Definition 1 Let E be a partial algebra. Then E is a biordered set if the following
axioms and their duals hold

(1) ωr and ωl are quasi orders on E and

DE = (ωr ∪ ωl) ∪ (ωr ∪ ωl)−1

(2) f ∈ ωr (e) ⇒ fR f eωe
(3) gωl f and f, g ∈ ωr (e) ⇒ geωl f e.
(4) gωr f ωr e ⇒ g f = (ge) f
(5) gωl f and f, g ∈ ωr (e) ⇒ ( f g)e = ( f e)(ge).

We shall often write E =< E,ωl ,ωr > to mean that E is a biordered set with
quasiorders ωl, ωr . The relation ω defined is a partial order and

ω ∩ (ω)−1 ⊂ ωr ∩ (ωl)−1 = 1E .

Definition 2 LetM(e, f ) denote the quasiordered set (ωl(e) ∩ ωr ( f ),<)where<

is defined by g < h ⇔ egωr eh, and g f ωl h f. Then the set

S(e, f ) = {h ∈ M(e, f ) : g < h for all g ∈ M(e, f )}
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is called the sandwich set of e and f .

(1) f, g ∈ ωr (e) ⇒ S( f, g)e = S( f e, ge)

The biordered set E is said to be regular if S(e, f ) 
= ∅ ∀e, f ∈ E . The following
theorem shows that if S is a regular semigroup, then E(S) is a regular biordered set.

Theorem 1 ([4], Theorem 1.1) Let S be a semigroup such that E(S) 
= φ.

(1) The partial algebra E(S) is a biordered set.
(2) For e, f ∈ E(S) define

S1(e, f ) = {h ∈ M(e, f ) : eh f = e f }

Then S1(e, f ) ⊂ S(e, f ).
(3) If e, f ∈ E(S) then e f is a regular element of S if and only if S1(e, f ) =

S(e, f ) 
= φ.

(4) If S is regular, then E(S) is a regular biordered set.

Remark 1 For e ∈ E, ωr (e)
[
ωl(e)

]
are principal right [left] ideals and ω(e) is a

principal two sided ideal and are called biorder ideals generated by e.

1.2 Lattices

A lattice is a partially ordered set in which each pair of elements has a least upper
bound and a greatest lower bound. If a and b are elements of a lattice, we denote
their greatest lower bound (meet) and least upper bound (join) by a ∧ b and a ∨ b,
respectively. It is easy to see that a ∨ b and a ∧ b are unique. The notations a ∧ b
and a ∨ b are analogous to the notations for the intersection and union of two sets.
However someproperties of union and intersection of sets do not carry over to lattices,
for instance, the distributive laws are false in some lattices. But many of the well-
known lattices posses the modularity property which is a weak form of distributive
property.

Definition 3 A lattice is called modular (or a Dedekind lattice) if

(a ∨ b) ∧ c = a ∨ (b ∧ c) for all a ≤ c.

A lattice is bounded if it has both a maximum element and a minimum element,
we use the symbols 0 and 1 to denote the minimum element and maximum element
of a lattice. A bounded lattice L is said to be complemented if for each element a
of L , there exists at least one element b such that a ∨ b = 1 and a ∧ b = 0. The
element b is referred to as a complement of a. It is quite possible for an element of
a complemented lattice to have many different complements. An element x is called
a complement of a in b if a ∨ x = b and a ∧ x = 0.
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Definition 4 Two elements a and b of a lattice L are said to be perspective (in
symbols a ∼ b) if there exists x in L such that a ∨ x = b ∨ x, a ∧ x = b ∧ x = 0
Such an element x is called an axis of perspective.

1.3 Principal Ideals of Regular Ring

A ring is a set R together with two binary operations ‘+’, ‘·’ with the following
properties.

(1) The set (R,+) is an abelian group.
(2) The set (R, ·) is a semigroup.
(3) The operation · is distributive over +.

A ring (R,+, ·) is regular if for every a ∈ R there exists an element a′ such that
aa′a = a, i.e., the ring is regular if the multiplicative semigroup is a regular semi-
group.

Definition 5 A subset a of a ring R is called right ideal in case

x + y ∈ a, xz ∈ a

for each x, y ∈ a and z ∈ R.

Similarly, we a can define the left ideal and a is called an ideal if it is both a right
and a left ideal. The set of all right (left) ideals of R is denoted by RR(LR). The
intersection of any class of right(left) ideals is again a right (left) ideal and also for
any a ⊂ R there is a unique least extension ar , (al) which is a right (left) ideal.

Proposition 1 If R ⊂ RR is any class of right ideals, there exists both a smallest
right ideal (least upper bound of R) containing every element of R and a greatest
right ideal (greatest lower bound of R) contained in every element of R. Thus RR
is a continuous lattice with ⊂ and the operations thus defined. The zero element of
RR is (0)r = 0 and the unit element is (1)r = R.

Definition 6 A principal right [left] ideal is one of the from (a)r [(a)l ]. The class of
all principal right [left] ideals will be denoted by R̄R [L̄R].

In [5] John von Neumann describes the structure of principal ideals of a regular
ring. Here we recall some of those results.

Lemma 1 Let R be a ring, e ∈ R, then

• e is idempotent if and only if (1 − e) is idempotent.
• 〈e〉r if the set of all x such that x = ex is a principal right ideal.
• 〈e〉r and 〈1 − e〉r are mutual inverses.
• If 〈e〉r = 〈 f 〉r and If 〈1 − e〉r = 〈1 − f 〉r where e and f are idempotents, then
e = f .
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Theorem 2 Two right ideals a and b are inverses if and only if there exists an
idempotent e such that a = 〈e〉r and b = 〈1 − e〉r .
Proof Let a and b be inverse right ideals, then there exists elements x, ywith x + y =
1, x ∈ a, y ∈ b. If z ∈ a then xz + yz = x . Since z, xz ∈ a, yz ∈ a. But yz ∈ b, hence
yz = 0.Thus z = xz ∈ (x)r for every z ∈ a anda ⊂ (x)r . Bust x ∈ a, hencea = (x)r .
Similarly b = (y)r = (1 − x)r , since x + y = 1. Finally, since z = xz for every z ∈ a
this holds for z = x and x is idempotent. �

Theorem 3 The following statements are equivalent

(1) Every principal right ideal 〈a〉r has an inverse right ideal.
(2) For every a there exists an idempotent e such that 〈a〉r = 〈e〉r .
(3) For every a there exists an idempotent x such that axa = a.
(4) For every a there exists an idempotent f such that 〈a〉l = 〈 f 〉l .
(5) Every principal ideal 〈a〉l has an inverse left ideal.
Definition 7 A ringR is said to be regular ifR possesses anyone of the equivalent
properties of the above Theorem.

Theorem 4 The set R̄R is a complemented modular lattice partially ordered by ⊂,
the meet being ∩ and join ∪, its zero is (0)r and its unit is (1)r .

2 Biorder Ideals of Regular Rings

Analogous to von Neumann’s construction of the principal ideals of a regular ring,
we proceed to describe the structure of the biorder ideals of regular rings.

Proposition 2 Let e and f be idempotents in a regular ring R. Then the following
are equivalent:

(1) e f = 0
(2) eωl(1 − f )
(3) f ωr (1 − e)

Proof Suppose e f = 0. Then

e(1 − f ) = e − e f = e.

Conversely, eωl(1 − f ) then e(1 − f ) = e − e f = e and hence e f = 0. Proof (3)
is similar. �

Proposition 3 Let e and f be idempotents in a regular ring R. Then the following
holds.

(1) eωl f if and only if (1 − f )ωr (1 − e)
(2) eωr f if and only if (1 − f )ωl(1 − e)
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Proof Let eωl f . Then,

(1 − e)(1 − f ) = 1 − e − f + e f = 1 − e − f + e = 1 − f

Conversely, suppose (1 − e)(1 − f ) = (1 − f ), then

1 − e − f + e f = 1 − f

hence eωl f . Proof (2) is similar. �

Corollary 1 Let e and f be idempotents in the ring R. Then the following old.

(1) ωl(e) = ωl( f ) if and only if ωr (1 − e) = ωr (1 − f )
(2) ωr (e) = ωr ( f ) if and only if ωl(1 − e) = ωl(1 − f )

Proposition 4 Let e and f be idempotents in the ring R, if ωr (e) = ωr ( f ),ωr (1 −
e) = ωr (1 − f ), where e, f are idempotents, then e = f

Proof Since ωr (e) = ωr ( f ), e f = f . Therefore, (1 − e) f = 0. Since ωr (1 − e) =
ωr (1 − f ), by replacing e and f by (1 − e) and (1 − f ) respectively, we get e(1 −
f ) = 0. That is, e f = e and so e = f . �

Lemma 2 Let e, f, g ∈ ER with e f = f e = 0. Then e + f is an idempotent and
the following hold.

(1) eω(e + f ) and f ω(e + f )
(2) If eωlg and f ωlg, then (e + f )ωlg
(3) If eωrg and f ωrg, then (e + f )ωrg

Proof Given e, f ∈ ER with e f = f e = 0, then

(e + f )2 = e2 + e f + f e + f 2 = e + f.

(1) e(e + f ) = e2 + e f = e + e f = e, and (e + f )e = e2 + f e = e + f e = e.
Thus eω(e + f ). Similarly, we can prove f ω(e + f ).

(2) Given eωlg and f ωlg. Therefore, (e + f )g = eg + f g = e + f , i.e., (e +
f )ωlg. Proof (3) is similar. �

Lemma 3 Let ωr (e) ∪ ωr ( f ) = ωr (e + f ′′) where f ′′R f ′ and f ′ = (1 − e) f .

Proof Define

ωr (e) ∪ ωr ( f ) = {eg + f h : g, h ∈ ER; gh = hg = 0}
= {eg = e f h + (1 − e) f h : g, h ∈ ER; gh = hg = 0}
= {e(g + f h) + (1 − e) f h : g, h ∈ ER; gh = hg = 0}

Let f ′ = (1 − e) f . Then f ′ ∈ S( f, 1 − e) so that f ′ ∈ ER, f f ′ = f ′ and
(1 − e) f ′ = f ′. So e f ′ = 0 and ωr (e) ∪ ωr ( f ) = ωr (e) ∪ ωr ( f ′). Define
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f ′′ = f ′(1 − e)., then f ′ f ′′ = f ′ f ′(1 − e) = f ′(1 − e) = f ′′ and f ′′ f ′ = f ′(1 −
e) f ′ = f ′ f ′ = f ′. Further f ′′ is an idempotent, ωr ( f ′) = ωr ( f ′′) and ωr (e) ∪
ωr ( f ) = ωr (e) ∪ ωr ( f ′′). Now, e f ′′ = e f ′(1 − e) = 0 and f ′′e = f ′(1 − e)e = 0
so, by Lemma above (e + f ′′) is an idempotent.

Next we proceed to prove that ωr (e) ∪ ωr ( f ) = ωr (e + f ′′). For, consider e +
f ′′, then

e + f ′′ = e2 + ( f ′′)2 = e · e + f ′′ · f ′′ ∈ ωr (e) ∪ ωr ( f ′′) where e f ′′ = 0.

So, ωr (e + f ′′) ⊆ ωr (e) ∪ ωr ( f ′′) and eωr (e + f ′′) and f ′′ωr (e + f ′′). That is

ωr (e) ⊆ ωr (e + f ′′) and ωr ( f ′′) ⊆ ωr (e + f ′′)

thus ωr (e) ∪ ωr ( f ′′) ⊆ ωr (e + f ′′), hence ωr (e) ∪ ωr ( f ) = ωr (e + f ′′). �

Denote by �R the class of all principal ωr−ideals and by �L the class of all
principal ωl-ideals. In the light of the above lemma we have the following theorem:

Theorem 5 �R is closed with respect to the operation ∪ defined in �R.

Next we introduce the notion of annihilators in principal ωr and ωl-ideals.

Definition 8 For every ωr -ideal we define

(ωr (e))L = {
y : yz = 0 for every z ∈ ωr (e)

}
and for every ωl -ideal,

(ωl(e))R = {
y : zy = 0 for every z ∈ ωl(e)

}
then (ωr (e))L is a left ideal and (ωl(e))R is a right ideal.

Proposition 5 For e ∈ ER, (ωl(e))R is a principal ωr -ideal and (ωr (e))L is a prin-
cipal ωl -ideal. In fact, (ωl(e))R = ωr (1 − e) and (ωr (e))L = ωl(1 − e).

Proof

ωr (e) = {g : e.g. = g}
= {g : (1 − e)g = 0}
= {g : u(1 − e) = 0; for every u ∈ ER}
= {

g : for every h ∈ ωl(e), hg = 0
}

where h = u(1 − e). Since h(1 − e) = u(1 − e)(1 − e) = u(1 − e) = h we have
h ∈ ωl(1 − e). Thus ωr (e) = (ωl(1 − e))R . �

Lemma 4 Let e, f ∈ ER and ωr (e) and ωr ( f ) are ideals generated by e and f ,
then
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(1) ωr (e) ⊂ ωr ( f ) ⇒ (ωr (e))L ⊃ (ωr ( f ))L

(2) ωr (e) = (ωr (e))LR and (ωr (e))L = (ωr (e))LRL

Proof (1) Let g ∈ (ωr ( f ))L , then gh = 0 for every h ∈ ωr ( f ). If ωr (e) ⊂ ωr ( f )
then for h ∈ ωr (e), gh = 0 for every h ∈ ωr (e). Thus g ∈ (ωr (e))L and so

(ωr ( f ))L ⊂ (ωr (e))L .

(2) Let g ∈ ωr (e). Consider h ∈ (ωr (e))L , for z ∈ ωr (e), hz = 0. Hence hg = 0 so
g ∈ (ωr (e))LR and ωr (e) ⊂ (ωr (e)LR . Now by (1) we have

ωr (e) ⊆ (ωr (e))LR; (ωr (e))L ⊇ (ωr (e))LRL

Replace ωr (e) by (ωr (e))L we get (ωr (e))L ⊆ (ωr (e))LR . Hence (ωr (e))L =
(ωr (e))LRL . But ωr (e) = (ωl(1 − e))RLR = (ωl(1 − e))R = ωr (e), thus ωr (e) =
(ωr (e))L . �

In the following proposition, we establish the relation between �L and �R by
using the relation between principal ω-ideals and annihilators.

Proposition 6 Let R be a regular ring and ER the set of idempotents on R. Let
�L and �R denote the lattice of principal ωl -ideals and principal ωr -ideals of ER.
Define φ and ψ on �L and �R by

φ(ωl(e)) = (ωl(e))R and ψ(ωr (e)) = (ωr (e))L

then φ and ψ are mutually inverse anti-isomorphisms.

Proof Let I ∈ �L . Therefore, there exists an idempotent, e such that I = ωl(e) and

φ(I ) = φ(ωl(e)) = (ωl(e))R = ωr (1 − e)

Thus φmaps�L to�R . Also φ reverses the order, for let I, J ∈ �L with I ⊆ J , then
there exists idempotents e, f ∈ ER such that ωl(e) ⊆ ωl( f ). But if ωl(e) ⊆ ωl( f )
then (ωl( f )R ⊆ (ωl(e))R and φ(J ) ⊆ φ(I ). Similarly ψ is an order reserving map
from �R to �L . Moreover for I ∈ �L and I = ωl(e) then

(ψφ(I )) = ψ(φ(ωl(e))) = ψ(ωr (1 − e)) = (ωr (1 − e))L = ωl (1 − (1 − e)) = ωl(e) = I.

For I in �R, (φψ)(I ) = I. Hence φ and ψ are mutually inverse anti-isomorphisms
between �L and �R . �

Lemma 5 Let ωr (e) and ωr ( f ) be principal right ω ideals generated by e and f .
Then (ωr (e) ∪ ωr ( f ))L = (ωr (e))L ∩ (ωr ( f ))L .
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Proof

(ωr (e))L ∩ (ωr ( f ))L = {
g : gh = 0 ∀ h ∈ ωr (e) and g : gh = 0 ∀ h ∈ ωr ( f )

}
= {

g : gh = 0 ∀ h ∈ ωr (e) ∪ ωr ( f )
}

= {
g : gh = 0 ∀ h ∈ (ωr (e) ∪ ωr ( f )

}
Hence (ωr (e))L ∩ (ωr ( f ))L = (ωr (e) ∪ ωr ( f ))L . �

Lemma 6 For two principal ωr -ideals, ωr (e) and ωr ( f ) their intersection is also a
principal ωr -ideal.

Proof By the above Lemma

ωr (e) ∩ ωr ( f ) = (ωr (e))LR ∩ (ωr ( f ))LR

= ((ωr (e))L ∪ (ωr ( f ))L)R

But (ωr (e))L and (ωr ( f ))L are principal ωl-ideals, and so (ωr (e))L ∪ (ωr ( f ))L is
also a principal ωl-ideal. Hence ωr (e) ∩ ωr ( f ) is a principal ωr -ideal. �

For any idempotent e ∈ ER , (1 − e) ∈ ER and ωr (e) ∪ ωr (1 − e) = ωr (e + 1 −
e) = ωr (1) = ER and ωr (e) ∩ ωr (1 − e) = {0}. Thus ωr (e) and ωr (1 − e) are com-
plements of each other in the lattice of principal right ω-ideals of ER . Similarly,
ωl(e) and ωl(1 − e) are complements of each other in the lattice of all principal left
ω-ideals of ER .

Thus we have the following theorem:

Theorem 6 Let R be a ring then the set of all principal ωl -ideals �L and the set of
all principal ωr -ideals �R of ER are complemented modular lattices ordered by the
relation⊂, the meet being ∩ and the join ∪; its zero is 0, and its unit is ωl(1)[ωr (1)].
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Products of Generalized Semiderivations
of Prime Near Rings

Asma Ali and Farhat Ali

Abstract Let N be a near ring. An additive mapping F : N −→ N is said to be
a generalized semiderivation on N if there exists a semiderivation d : N −→ N
associated with a function g : N −→ N such that F(xy) = F(x)y + g(x)d(y) =
d(x)g(y) + xF(y) and F(g(x)) = g(F(x)) for all x, y ∈ N . The purpose of the
present paper is to prove some theorems in the setting of semigroup ideal of a
3-prime near ring admitting a pair of suitably-constrained generalized semideriva-
tions, thereby extending some known results on derivations and generalized deriva-
tions. We show that if N is 2-torsion free and F1 and F2 are generalized semideriva-
tions such that F1F2 = 0, then F1 = 0 or F2 = 0; we prove other theorems asserting
triviality of F1 or F2; and we also prove some commutativity theorems.
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1 Introduction

Throughout the paper, N denotes a zero-symmetric left near ring with multiplicative
centre Z ; and for any pair of elements x, y ∈ N , [x, y] denotes the commutator
xy − yx . A near ring N is called zero-symmetric if 0x = 0, for all x ∈ N (recall
that left distributivity yields that x0 = 0). The near ring N is said to be 3-prime
if xNy = {0} for x, y ∈ N implies that x = 0 or y = 0. A near ring N is called
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called a semigroup right (resp. semigroup left) ideal if UN ⊆ U (resp. NU ⊆ U );
and if U is both a semigroup right ideal and a semigroup left ideal, it is called
a semigroup ideal. An additive mapping f : N −→ N is said to be a right (resp.
left) generalized derivationwith associated derivation D if f (xy) = f (x)y + xD(y)
(resp. f (xy) = D(x)y + x f (y)), for all x, y ∈ N , and f is said to be a generalized
derivationwith associated derivation D on N if it is both a right generalized derivation
and a left generalized derivation on N with associated derivation D. Motivated by a
definition given by Bergen [5] for rings, we define an additive mapping d : N −→ N
is said to be a semiderivation on a near ring N if there exists a function g : N −→ N
such that (i) d(xy) = d(x)g(y) + xd(y) = d(x)y + g(x)d(y) and (i i) d(g(x)) =
g(d(x)), for all x, y ∈ N . In case g is the identity map on N , d is of course just
a derivation on N , so the notion of semiderivation generalizes that of derivation.
But the generalization is not trivial for example take N = N1 ⊕ N2, where N1 is a
zero symmetric near ring and N2 is a ring. Then the map d : N −→ N defined by
d((x, y)) = (0, y) is a semiderivation associated with function g : N −→ N such
that g(x, y) = (x, 0). However d is not a derivation on N . An additive mapping F :
N → N is said to be a generalized semiderivation of N if there exists a semiderivation
d : N −→ N associated with a map g : N −→ N such that (i) F(xy) = F(x)y +
g(x)d(y) = d(x)g(y) + xF(y) and (i i) F(g(x)) = g(F(x)) for all x, y ∈ N . All
semiderivations are generalized semiderivations. If g is the identity map on N , then
all generalized semiderivations are merely generalized derivations, again the notion
of generalized semiderivation generalizes that of generalized derivation. Moreover,
the generalization is not trivial as the following example shows:

Example 1.1 Let S be a 2-torsion free left near ring and let

N =
⎧⎨
⎩

⎛
⎝0 x y
0 0 0
0 0 z

⎞
⎠ | x, y, z ∈ S

⎫⎬
⎭ .

Define maps F, d, g : N → N by

F

⎛
⎝0 x y
0 0 0
0 0 z

⎞
⎠ =

⎛
⎝ 0 xy 0
0 0 0
0 0 0

⎞
⎠ ; d

⎛
⎝0 x y
0 0 0
0 0 z

⎞
⎠ =

⎛
⎝ 0 0 y
0 0 0
0 0 z

⎞
⎠

and

g

⎛
⎝ 0 x y
0 0 0
0 0 z

⎞
⎠ =

⎛
⎝0 x 0
0 0 0
0 0 0

⎞
⎠ .

It can be verified that N is a left near ring and F is a generalized semiderivation
with associated semiderivation d and a map g associated with d. However F is not
a generalized derivation on N .
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2 Preliminary Results

We begin with several lemmas, most of which have been proved elsewhere.

Lemma 2.1 ([2, Lemmas 1.2 and 1.3]) Let N be a 3-prime near ring.

(i) If z ∈ Z\{0}, then z is not a zero divisor.
(ii) If Z\{0} and x is an element of N for which xz ∈ Z, then x ∈ Z.
(iii) If x is an element of N which centralizes some nonzero semigroup right ideal,

then x ∈ Z.
(iv) If Z\{0} contains an element z for which z + z ∈ Z, then (N ,+) is abelian.

Lemma 2.2 ([2, Lemmas 1.3 and 1.4]) Let N be a 3-prime near ring and U be a
nonzero semigroup ideal of N .

(i) If x ∈ N and xU = {0}, or Ux = {0}, then x = 0.
(ii) If x, y ∈ N and xUy = {0}, then x = 0 or y = 0.

Lemma 2.3 ([2, Lemma 1.5]) If N is a 3-prime near ring and Z contains a nonzero
semigroup left ideal or a nonzero semigroup right ideal, then N is a commutative
ring.

Lemma 2.4 ([4, Lemma 2.4]) Let N be an arbitrary near ring. Let S and T be non
empty subsets of N such that st = −ts for all s ∈ S and t ∈ T . If a, b ∈ S and c is
an element of T for which −c ∈ T , then (ab)c = c(ab).

Lemma 2.5 Let N be a 3-prime near ring and U be a nonzero semigroup ideal of
N . If N admits a nonzero semiderivation d of N associated with a map g, then d �= 0
on U.

Proof Let d(u) = 0, for all u ∈ U . Replacing u by xu, we get d(xu) = 0, for
all x ∈ N and u ∈ U . Thus d(x)g(u) + xd(u) = 0, for all x ∈ N and u ∈ U , i.e.,
d(x)g(u) = 0. The result follows by Lemma 2.2(i).

Lemma 2.6 Let N be a 3-prime near ring admitting a nonzero semiderivation d
with a map g such that g(xy) = g(x)g(y) for all x, y ∈ N. Then N satisfies the
following partial distributive law:

(d(x)y + g(x)d(y))z = d(x)yz + g(x)d(y)z for all x, y, z ∈ N .

Proof Let x, y, z ∈ N , by defining d we have

d(xyz) = d(xy)z + g(xy)d(z)

= (d(x)y + g(x)d(y))z + g(x)g(y)d(z). (2.1)
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On the other hand,

d(xyz) = d(x)yz + g(x)d(yz)

= d(x)yz + g(x)(d(y)z + g(y)d(z))

= d(x)yz + g(x)d(y)z + g(x)g(y)d(z). (2.2)

Combining (2.1) and (2.2), we obtain

(d(x)y + g(x)d(y))z + g(x)g(y)d(z)

= d(x)yz + g(x)d(y)z + g(x)g(y)d(z) for all x, y, z ∈ N .

(d(x)y + g(x)d(y))z = d(x)yz + g(x)d(y)z for all x, y, z ∈ N .

Lemma 2.7 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N . If d is a nonzero semiderivation of N associated with a
map g such that g(uv) = g(u)g(v), for all u, v ∈ U. If a ∈ N and ad(U ) = {0}
(or d(U )a = {0}), then a = 0.

Proof Let ad(u) = 0, for all u ∈ U . Replacing u by uv, a(d(u)g(v) + ud(v)) = 0,
for all u, v ∈ U . Thus ad(u)g(v) + aud(v) = 0, for all u, v ∈ U or aud(v) = 0, for
all u, v ∈ U . Choosing v such that d(v) �= 0 and applying Lemma 2.2(ii), we get
a = 0.

Lemma 2.8 Let N be a 2-torsion free 3-prime near ring and U be a nonzero semi-
group ideal of N . Suppose that d is a semiderivation on N associated with a map g
such that g(U ) = U. If d2(U ) = {0}, then d = 0.

Proof Supposed2(U ) = {0}. Then foru, v ∈ U exploit the definitionofd in different
ways to obtain

0 = d2(uv) = d(d(uv)) = d(d(u)v + g(u)d(v)) for all u, v ∈ U,

= d2(u)v + g(d(u))d(v) + d(g(u))d(v) + g(u)d2(v),

= d(g(u))d(v) + d(g(u))d(v).

Note that g(d(u)) = d(g(u)) and g(U ) = U , we get

2d(u)d(v) = 0 for all u, v ∈ U.

Since N is a 2-torsion free, we get

d(u)d(v) = 0 for all u, v ∈ U.
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Replacing v by wv in the above relation, we get

d(u)d(wv) = 0 for all u, v, w ∈ U.

d(u)(d(w)v + g(w)d(v)) = 0 for all u, v, w ∈ U.

d(u)d(w)v + d(u)g(w)d(v) = 0 for all u, v, w ∈ U.

This implies that
d(u)g(w)d(v) = 0 for all u, v, w ∈ U.

d(u)wd(v) = 0 for all u, v, w ∈ U.

d(U )Ud(U ) = {0}.

Thus we obtain that d = 0 on U by Lemma 2.2(ii).

Lemma 2.9 Let N be a 3-prime near ring and U be a nonzero semigroup ideal of
N . Suppose d is a nonzero semiderivation of N associated with a map g such that
g(uv) = g(u)g(v), for all u, v ∈ U. If d(U ) ⊆ Z, then N is a commutative ring.

Proof We begin by showing that (N ,+) is abelian, which by Lemma 2.1(iv) is
accomplished by producing z ∈ Z\{0} such that z + z ∈ Z . Let a be an element of
U such that d(a) �= 0. Then for all x ∈ N , ax ∈ U and ax + ax = a(x + x) ∈ U ,
so that d(ax) ∈ Z and d(ax) + d(ax) ∈ Z ; hence we need only show that there
exists x ∈ N such that d(ax) �= 0. Suppose this is not the case, so that d((ax)a) =
0 = d(ax)g(a) + axd(a) = axd(a) for all x ∈ N . Since d(a) is not zero divisor by
Lemma 2.1(i), we get aN = {0}, so that a = 0—a contradiction. Therefore (N ,+)

is abelian as required.
We are given that [d(u), x] = 0 for all u ∈ U and x ∈ N . Replacing u by uv,

we get [d(uv), x] = 0, which yields [d(u)v + g(u)d(v), x] = 0 for all u, v ∈ U and
x ∈ N . Since (N ,+) is abelian and d(U ) ⊆ Z , we have

d(u)[v, x] + d(v)[x, g(u)] = 0 for all u, v ∈ U and x ∈ N . (2.3)

Replacing x by g(u), we obtain d(u)[v, g(u)] = 0 for all u, v ∈ U ; and choosing
u ∈ U such that d(u) �= 0 and applying Lemma 2.1(iii), we get g(u) ∈ Z . It then
follows from (2.3) that d(u)[v, x] = 0 for all v ∈ U and x ∈ N ; therefore U ⊆ Z
and Lemma 2.3 completes the proof.

Lemma 2.10 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N . Suppose that d is a nonzero semiderivation of N associ-
ated with a map g such that g(U ) = U and g(uv) = g(u)g(v) for all u, v ∈ U. If
[d(U ), d(U )] = {0}, then N is a commutative ring.
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Proof By hypothesis [d(U ), d(U )] = {0}. Thus d(u)d(vd(w)) = d(vd(w))d(u),
for all u, v, w ∈ U , i.e., d(u)(d(v)g(d(w)) + vd2(w)) = (d(v)g(d(w)) + vd2(w))

d(u), for all u, v, w ∈ U . Then by Lemma 2.6, we get d(u)d(v)g(d(w)) + d(u)
vd2(w) = d(v)g(d(w))d(u) + vd2(w)d(u). This implies that d(u)d(v)d(g(w)) +
d(u)vd2(w) = d(v)d(g(w))d(u) + vd2(w)d(u) i.e., d(u)d(v)d(w) + d(u)vd2

(w) = d(v)d(w)d(u) + vd2(w)d(u) for all u, v, w ∈ U and since [d(U ), d(U )] =
{0}, we obtain

d(u)vd2(w) = vd2(w)d(u) for all u, v, w ∈ U. (2.4)

Replace v by xv, to get

d(u)xvd2(w) = xvd2(w)d(u) for all u, v, w ∈ U and x ∈ N .

Using (2.4), the above relation yields that d(u)xvd2(w) = xd(u)vd2(w), for all
u, v, w ∈ U and x ∈ N , i.e., [d(u), x]vd2(w) = 0, for all u, v, w ∈ U and x ∈ N by
Lemma2.6. Thus [d(u), x]Ud2(w) = 0, for all u, w ∈ U and x ∈ N . Since d2(U ) �=
0 by Lemma 2.8, Lemma 2.2(ii) gives d(U ) ⊆ Z , and the result follows by Lemma
2.9.

Lemma 2.11 Let N be a 3-prime near ring and U be a nonzero semigroup ideal of
N . If F is a nonzero generalized semiderivation of N with associated semiderivation
d and a map g associated with d such that g(U ) = U, then F �= 0 on U.

Proof Let F(u) = 0 for all u ∈ U . Replacing u by ux , we get F(ux) = 0 for all
u ∈ U and x ∈ N . Thus

F(u)x + g(u)d(x) = 0 = Ud(x) for all x ∈ N

and it follows by Lemma 2.2(i) that d = 0. Therefore, we have

F(xu) = F(x)u = 0 for all u ∈ U for all x ∈ N

and another appeal to Lemma 2.2(i) gives F = 0, which is a contradiction.

Lemma 2.12 Let N be a 3-prime near ring admitting a generalized semiderivation
F associated with a semiderivation d. If g is an onto map associated with d such that
g(xy) = g(x)g(y) for all x, y ∈ N, then N satisfies the following partial distributive
laws:

(i) (F(x)y + g(x)d(y))z = F(x)yz + g(x)d(y)z for all x, y, z ∈ N .

(ii) (d(x)g(y) + xF(y))z = d(x)g(y)z + xF(y)z for all x, y, z ∈ N .

Proof (i) Let x, y, z ∈ N ,

F(xyz) = F(xy)z + g(xy)d(z)

= (F(x)y + g(x)d(y))z + g(x)g(y)d(z).
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On the other hand,

F(xyz) = F(x)yz + g(x)d(yz)

= F(x)yz + g(x)(d(y)z + g(y)d(z))

= F(x)yz + g(x)d(y)z + g(x)g(y)d(z).

Combining both expressions of F(xyz), we obtain

(F(x)y + g(x)d(y))z = F(x)yz + g(x)d(y)z for all x, y, z ∈ N .

(ii) For all x, y, z ∈ N we have F((xy)z) = F(xy)z + g(xy)d(z) = (d(x)g(y) +
xF(y))z + g(x)g(y)d(z) and F(x(yz)) = d(x)g(yz) + xF(yz) = d(x)g(y)
g(z) + x(F(y)z + g(y)d(z)) = d(x)g(y)z + xF(y)z + g(x)g(y)d(z). Comparing
the two expression, we get the required result.

Lemma 2.13 Let N be a 3-prime near ring and U be a nonzero semigroup ideal
of N . Suppose that F is a nonzero generalized semiderivation of N with associated
semiderivation d and a map g associated with d such that g(U ) = U and g(uv) =
g(u)g(v) for all u, v ∈ U. If a ∈ N and aF(U ) = 0 (or F(U )a = 0), then a = 0.

Proof Suppose that aF(U ) = {0}. Then for u, v ∈ U

aF(uv) = aF(u)v + ag(u)d(v) = aud(v) = 0 for all u, v ∈ U and a ∈ N .

So by Lemma 2.2(ii), a = 0 or d(U ) = {0}. If d(U ) = {0}, then

ad(u)g(v) + auF(v) = 0 = auF(v) for all u, v ∈ U ;

and since F(U ) �= {0} by Lemma 2.11, a = 0.

Lemma 2.14 Let N be a 3-prime near ring admitting a generalized semiderivation
F associated with a semiderivation d and an additive map g associated with d. Then
N satisfies the following laws:

(i) d(x)y + g(x)d(y) = g(x)d(y) + d(x)y for all x, y ∈ N .

(ii) d(x)g(y) + xd(y) = xd(y) + d(x)g(y) for all x, y ∈ N .

(iii) F(x)y + g(x)d(y) = g(x)d(y) + F(x)y for all x, y ∈ N .

(iv) d(x)g(y) + xF(y) = xF(y) + d(x)g(y) for all x, y ∈ N .

Proof (i) d(x(y + y)) = d(x)(y + y) + g(x)d(y + y) = d(x)y + d(x)y + g(x)
d(y) + g(x)d(y), and d(xy + xy) = d(xy) + d(xy) = d(x)y + g(x)d(y) + d(x)
y + g(x)d(y). Comparing these two equations, we get the desired result.
(ii) Again, calculate d((x + x)y) and d(xy + xy) and compare.
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(iii) F(x(y + y)) = F(x)(y + y) + g(x)d(y + y) = F(x)y + F(x)y + g(x)
d(y) + g(x)d(y), and F(xy + xy) = F(x)y + g(x)d(y) + F(x)y + g(x)d(y).
Comparing these two equations, we get the desired result.
(iv) Again, calculate F((x + x)y) and F(xy + xy) and compare.

Lemma 2.15 Let N be a 3-prime near ring and U be a nonzero semigroup ideal
of N . Suppose that N admits nonzero semiderivations d1, d2 associated with a map
g such that g(uv) = g(u)g(v) for all u, v ∈ U. If d1(x)d2(y) + d2(y)d1(x) ∈ Z for
all x, y ∈ U and at least one of d1(U ) ∩ Z and d2(U ) ∩ Z is nonzero, then N is a
commutative ring.

Proof Assume that d1(U ) ∩ Z �= {0}. Let x ∈ U such that d1(x) ∈ Z\{0}, and
y ∈ U . Thend1(x)d2(y) + d2(y)d1(x) = d1(x)(2d2(y)) = d1(x)(d2(2y)) ∈ Z . There-
fore, d2(2U ) ⊆ Z . Since 2U is nonzero semigroup left ideal, our conclusion follows
by Lemma 2.9, then N is commutative ring.

Lemma 2.16 Let N be a 2-torsion free 3-prime near ring. If U is a nonzero semi-
group ideal of N , then 2U �= {0} and d(2U ) �= {0} for any nonzero semiderivation
d associated with a map g such that g(U ) = U.

Proof Let x ∈ N with x + x �= 0.Then for everyu ∈ U ,u(x + x) = ux + ux ∈ 2U ;
and by Lemma 2.2(i), we get {0} �= U (x + x) ⊆ 2U . Since 2U is a semigroup left
ideal, it follows by Lemma 2.5 that d(2U ) �= {0}.
Lemma 2.17 Let N be a 3-prime near ring. If F is a generalized semiderivation
with associated semiderivation d and amap g associated with d such that g(U ) = U,
then F(Z) ⊆ Z.

Proof Let z ∈ Z and x ∈ N . Then F(zx) = F(xz); that is F(z)x + g(z)d(x) =
d(x)g(z) + xF(z).ApplyingLemma2.14(iii),wegetg(z)d(x) + F(z)x = d(x)g(z)
+ xF(z); zd(x) + F(z)x = d(x)z + xF(z). It follows that F(z)x = xF(z) for all
x ∈ N , so F(Z) ⊆ Z .

Lemma 2.18 Let N be a 3-prime near ring and U be a nonzero semigroup ideal
of N . Suppose that N admits a semiderivation d associated with a map g such that
g(U ) = U and g(uv) = g(u)g(v) for all u, v ∈ U. If d2(U ) �= {0} and a ∈ N such
that [a, d(U )] = {0}, then a ∈ Z.

Proof Let C(a) = {x ∈ N |ax = xa}. Note that d(U ) ⊆ C(a). Thus, if y ∈ C(a)
and u ∈ U , both d(yu) and d(u) are in C(a); hence (d(y)g(u) + yd(u))a =
a(d(y)g(u) + yd(u)) and d(y)g(u)a + yd(u)a = ad(y)g(u) + ayd(u); d(y)ua +
yd(u)a = ad(y)u + ayd(u). Since yd(u) ∈ C(a), we conclude that d(y)ua = ad
(y)u. Thus

d(C(a))U ⊆ C(a). (2.5)

Choosing z ∈ U such that d2(z) �= 0, and let y = d(z). Then y ∈ C(a); and
by (2.5), d(y)u ∈ C(a) and d(y)uv ∈ C(a) for all u, v ∈ U . Thus, 0 = [a, d(y)
uv] = ad(y)uv − d(y)uva = d(y)uav − d(y)uva = d(y)u(av − va). Thus d(y)
U (av − va) = 0 for all v ∈ U ; and by Lemma 2.2(ii), a centralizes U .
By Lemma 2.1(iii), a ∈ Z .
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Lemma 2.19 Let N be a 3-prime near ring and F be a generalized semiderivation
of N with associated nonzero semiderivation d and a map g associated with d
such that g(U ) = U and g(uv) = g(u)g(v) for all u, v ∈ U. If d(F(N )) = {0}, then
d2(x)d(y) + d(x)d2(y) = 0 for all x, y ∈ N and F(d(N )) = {0}.
Proof Assume that d(F(x)) = 0 for all x ∈ N . It follows that d(F(xy)) =
d(F(x)y) + d(g(x)d(y)) = d(F(x)y) + d(xd(y)) = 0 for all x, y ∈ N , that is,

d(F(x))g(y) + F(x)d(y) + d(x)g(d(y)) + xd2(y) = 0 for all x, y ∈ N .

This implies that
F(x)d(y) + d(x)d(g(y)) + xd2(y) = 0.

F(x)d(y) + d(x)d(y) + xd2(y) = 0 for all x, y ∈ N . (2.6)

Applying d again, we get

F(x)d2(y) + d2(x)d(y) + d(x)d2(y) + d(x)d2(y) + xd3(y) = 0 for all x, y ∈ N .

(2.7)
Taking d(y) instead of y in (2.6) gives F(x)d2(y) + d(x)d2(y) + xd3(y) = 0, hence
(2.7) yields

d2(x)d(y) + d(x)d2(y) = 0 for all x, y ∈ N . (2.8)

Now, substitute d(x) for x in (2.6), to obtain F(d(x))d(y) + d2(x)d(y) + d(x)d2

(y) = 0; and use (2.8) to conclude that F(d(x))d(y) = 0 for all x, y ∈ N . Thus, by
Lemma 2.7, F(d(x)) = 0 for all x ∈ N .

Lemma 2.20 Let N be a 2-torsion free 3-prime near ring and F be a nonzero gener-
alized semiderivation of N with associated semiderivation d and a map g associated
with d such that g(U ) = U; g(uv) = g(u)g(v) for all u, v ∈ U and F(V ) ⊆ U for
some nonzero semigroup ideal V contained in U. If a ∈ N and [a, F(U )] = {0},
then a ∈ Z.

Proof If d = 0, then for all x ∈ U and y ∈ N , aF(x)y = F(x)ya; hence F(U )

[a, y] = {0} and a ∈ Z by Lemma 2.13. Therefore, we may assume d �= 0. Let
C(a) denotes the centralizer of a, and let y ∈ C(a) for all u ∈ U , F(yu) ∈ C(a)
-i.e. (d(y)g(u) + yF(u))a = a(d(y)g(u) + yF(u)) and by Lemma 2.12(ii) d(y)
g(u)a + yF(u)a = ad(y)g(u) + ayF(u);d(y)ua + yF(u)a = ad(y)u + ayF(u).
Now yF(u)a = ayF(u), and it follows that d(y)u ∈ C(a); therefore d(C(a))U is a
semigroup right ideal which centralizes a, and if d(C(a))U �= {0}. Lemma 2.1(iii)
yields a ∈ Z . Assume now that d(C(a))U = {0}, in which case d(C(a)) = {0} and
hence d(F(U )) = {0}. It follows that for all x ∈ N and v ∈ V , d(F(xF(v))) =
0 = d(F(x)F(v) + g(x)d(F(v))) = d(F(x)F(v)) = d(F(x))g(F(v)) + F(x)d
(F(v)) = d(F(x))F(v), so that d(F(N ))F(V ) = {0} and by Lemma 2.13,
d(F(N )) = {0}. By Lemma 2.19
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d2(x)d(y) + d(x)d2(y) = 0 for all x, y ∈ N and F(d(N )) = {0}. (2.9)

As in the proof of Theorem 4.1 of [3], we calculate F(d(x)d(y)) in twoways, obtain-
ing F(d(x)d(y)) = F(d(x))d(y) + g(d(x))d2(y) = d(g(x))d2(y) = d(x)d2(y)
and F(d(x)d(y)) = d2(x)g(d(y)) + d(x)F(d(y)) = d2(x)d(g(y)) = d2(x)d(y).
Comparing the two results, we get d(x)d2(y) = d2(x)d(y) for all x, y ∈ N , which
together with (2.9) gives d2(x)d(y) = 0 for all x, y ∈ N and hence d2 = 0. But by
Lemma 2.8, this contradicts our assumption that d �= 0; thus d(C(a))U �= {0} and
our proof is complete.

3 Some Results Involving Two Generalized Semiderivations

The theorems that we prove in this section extend the results proved in [4].

Theorem 3.1 Let N be a 3-prime near ring and U be a nonzero semigroup ideal of
N . Suppose that N admits a nonzero generalized semiderivation F with associated
semiderivation d and a map g associated with d such that g(U ) = U and g(uv) =
g(u)g(v) for all u, v ∈ U. If F(U ) ⊆ Z, then (N ,+) is abelian. Moreover, if N is
2-torsion free, then N is a commutative ring.

Proof We begin by showing that (N ,+) is abelian, which by Lemma 2.1(iv) is
accomplished by producing z ∈ Z\{0} such that z + z ∈ Z . Let a be an element of
U such that F(a) �= 0. Then for all x ∈ N , ax ∈ U and ax + ax = a(x + x) ∈ U ,
so that F(ax) ∈ Z and F(ax) + F(ax) ∈ Z ; hence we need only to show that
there exists x ∈ N such that F(ax) �= 0. Suppose that this is not the case, so that
F((ax)a) = 0 = F(ax)a + g(ax)d(a) = g(a)g(x)d(a) = axd(a) for all x ∈ N .
By Lemma 2.2(ii) either a = 0 or d(a) = 0.

If d(a) = 0, then F(xa) = F(x)a + g(x)d(a); that is, F(xa) = F(x)a ∈ Z ,
for all x ∈ N . Thus, [F(u)a, y] = 0 for all y ∈ N and u ∈ U . This implies that
F(u)[a, y] = 0 for all u ∈ U and y ∈ N and Lemma 2.1(i) gives a ∈ Z . Thus,
0 = F(ax) = F(xa) = F(x)a for all x ∈ N . Replacing x by u ∈ U , we have
F(U )a = 0, and by Lemmas 2.1(i) and 2.11, we get a = 0. Thus we have a contra-
diction.

To complete the proof, we show that if N is 2-torsion free, then N is commutative.
Consider first case d = 0. This implies that F(ux) = F(u)x ∈ Z for all u ∈ U

and x ∈ N . By Lemma 2.11, we have u ∈ U such that F(u) ∈ Z\{0}, so N is com-
mutative by Lemma 2.1(ii).

Now consider the case d �= 0. Let c ∈ Z\{0}. This implies that x ∈ U , F(xc) =
F(x)c + g(x)d(c) = F(x)c + xd(c) ∈ Z . Thus (F(x)c + xd(c))y = y(F(x)c +
xd(c)) for all x, y ∈ U and c ∈ Z . Therefore, byLemma2.12(i), F(x)cy + xd(c)y =
yF(x)c + yxd(c) for all x, y ∈ U and c ∈ Z . Since d(c) ∈ Z and F(x) ∈ Z , we
obtain d(c)[x, y] = 0 for all x, y ∈ U and c ∈ Z . Let d(Z) �= {0}. Choosing c such
that d(c) �= 0 and noting that d(c) is not a zero divisor, we have [x, y] = 0 for all
x, y ∈ U . By Lemma 2.1(iii), U ⊆ Z ; hence N is commutative by Lemma 2.3.
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The remaining case is d �= 0 and d(Z) = {0}. Supposewe can show thatU ∩ Z �=
{0}. Taking z ∈ (U ∩ Z)\{0} and x ∈ N , we have F(xz) = F(x)z ∈ Z ; therefore
F(N ) ⊆ Z by Lemma 2.1(ii). Let F(x) ∈ Z for all x ∈ N .

Since d(Z) = 0, for all x, y ∈ N . We have

0 = d(F(xy)).

0 = d(F(x)y + g(x)d(y)).

0 = F(x)d(y) + g(x)d2(y) + d(g(x))g(d(y)) for all x, y ∈ Z .

Hence F(xd(y)) = −d(g(x))g(d(y)) ∈ Z for all x, y ∈ N . By hypothesis, we have
d(x)d(y) ∈ Z for all x, y ∈ N . This implies that

d(x)(d(x)d(y) − d(y)d(x)) = 0 for all x, y ∈ N .

Left multiplying by d(y), we arrive at

d(y)d(x)N (d(x)d(y) − d(y)d(x)) = {0} for all x, y ∈ N .

Since N is a 3-prime near ring, we get

[d(x), d(y)] = 0 for all x, y ∈ N .

Using Lemma 2.10, N is a commutative ring.
Assume that U ∩ Z = {0}. For each u ∈ U , F(u2) = F(u)u + g(u)d(u) =

F(u)u + ud(u) = u(F(u) + d(u)) ∈ U ∩ Z . So F(u2) = 0, thus for all u ∈ U
and x ∈ N , F(u2x) = F(u2)x + g(u2)d(x) = u2d(x) ∈ U ∩ Z . So u2d(x) = 0 and
Lemma 2.7, u2 = 0. Since F(xu) = F(x)u + g(x)d(u) = F(x)u + xd(u) ∈ Z for
all u ∈ U and x ∈ N . We have (F(x)u + xd(u))u = u(F(x)u + xd(u)) and right
multipling by u gives uxd(u)u = 0. Consequently, d(u)uNd(u)u = {0}. So that
d(u)u = 0 for all u ∈ U ,so F(u)u = 0 for all u ∈ U . But by Lemma 2.11, there
exist u0 ∈ U for which F(u0) �= 0; and F(u0) ∈ Z , we get u0 = 0, contradiction.
Therefore, U ∩ Z �= {0} as required.
Theorem 3.2 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N . Let F1 and F2 be generalized semiderivations on N with
associated semiderivations d1 and d2 respectively with at least one of d1, d2 not zero
and a map g associated with d1 and d2 such that g(uv) = g(u)g(v) for all u, v ∈ U
and g(U ) = U. If F1(x)d2(y) + F2(x)d1(y) = 0 for all x, y ∈ U, then F1 = 0 or
F2 = 0.

Proof By hypothesis

F1(x)d2(y) + F2(x)d1(y) = 0 for all x, y ∈ U. (3.1)
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Replacing x by uv in (3.1), we get

(d1(u)g(v) + uF1(v))d2(y) + (d2(u)g(v) + uF2(v))d1(y) = 0 for all u, v, y ∈ U.

Using Lemmas 2.12(ii) and 2.14(iv), we conclude that

(d1(u)g(v) + uF1(v))d2(y) + (uF2(v) + d2(u)g(v))d1(y) = 0.

d1(u)g(v)d2(y) + uF1(v)d2(y) + uF2(v)d1(y) + d2(u)g(v)d1(y) = 0.

d1(u)vd2(y) + u(F1(v)d2(y) + F2(v)d1(y)) + d2(u)vd1(y) = 0 for all u, v, y ∈ U.

Since middle summand is 0 by (3.1), we conclude that

d1(u)vd2(y) + d2(u)vd1(y) = 0 for all u, v, y ∈ U. (3.2)

Substituting yt for y in (3.2), we get

d1(u)vd2(yt) + d2(u)vd1(yt) = 0 for all u, v, y, t ∈ U.

d1(u)v(d2(y)g(t) + yd2(t)) + d2(u)v(d1(y)g(t) + yd1(t)) = 0.

Using Lemma 2.14(ii), we have

d1(u)v(d2(y)g(t) + yd2(t)) + d2(u)v(yd1(t) + d1(y)g(t)) = 0.

This implies that

d1(u)vd2(y)t + (d1(u)vyd2(t) + d2(u)vyd1(t)) + d2(u)vd1(y)t = 0.

Again the middle summand is 0, so

d1(u)vd2(y)t + d2(u)vd1(y)t = 0 for all u, v, y, t ∈ U. (3.3)

Replacing t by td1(w) in (3.3), where w ∈ U , we have

d1(u)v(d2(y)td1(w)) + d2(u)(vd1(y)t)d1(w) = 0 for all u, v, y, t, w ∈ U.

Using (3.2), we get

d1(u)v(−d1(y)td2(w)) − d1(u)vd1(y)td2(w) = 0.

This implies that

2d1(u)vd1(y)td2(w) = 0 for all u, v, y, t, w ∈ U.
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Since N is 2-torsion free, we get

d1(u)vd1(y)td2(w) = 0 for all u, v, y, t, w ∈ U.

Thusd1(U )Ud1(U )Ud2(U ) = {0}; andbyLemmas2.2(ii) and2.5, oneofd1, d2 must
be 0.Assumingwithout loss thatd1 = 0, inwhich cased2 �= 0,we get F1(U )d2(U ) =
{0}, so by Lemmas 2.7 and 2.11, we have F1 = 0.

Theorem 3.3 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N . Let F1 and F2 be generalized semiderivations on N with
associated semiderivations d1 and d2 respectively and a map g associated with d1
and d2 such that g(uv) = g(u)g(v) for all u, v ∈ U and g(U ) = U. If d1 and d2 are
not both zero and F1F2 acts on U as a generalized semiderivation with associated
semiderivation d1d2 and a map g associated with d1d2, then F1 = 0 or F2 = 0.

Proof By the hypothesis, we have

F1F2(xy) = F1F2(x)y + g(x)d1d2(y) for all x, y ∈ U.

F1F2(xy) = F1F2(x)y + xd1d2(y) for all x, y ∈ U. (3.4)

We also have

F1F2(xy) = F1(F2(xy)) = F1(F2(x)y + g(x)d2(y))

= F1(F2(x)y) + F1(g(x)d2(y))

= F1(F2(x)y) + F1(xd2(y)).

i.e.

F1F2(xy) = F1F2(x)y + g(F2(x))d1(y) + F1(x)d2(y) + g(x)d1d2(y)

= F1F2(x)y + F2(g(x))d1(y) + F1(x)d2(y) + g(x)d1d2(y)

= F1F2(x)y + F2(x)d1(y) + F1(x)d2(y) + xd1d2(y) for all x, y ∈ U. (3.5)

Comparing (3.4) and (3.5), we get

F2(x)d1(y) + F1(x)d2(y) = 0 for all x, y ∈ U.

Hence application of Theorem 3.2 yields that F1 = 0 or F2 = 0.

Theorem 3.4 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N . Let F1 and F2 be generalized semiderivations on N with
associated semiderivations d1 and d2 respectively and amap g associatedwith d1 and
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d2 such that g(uv) = g(u)g(v) for all u, v ∈ U and g(U ) = U. If F1F2(U ) = {0},
then F1 = 0 or F2 = 0.

Proof By the hypothesis
F1F2(U ) = {0}.

F1F2(xy) = F1(F2(xy)) = 0 = F1(F2(x)y + g(x)d2(y))

= F1(F2(x)y) + F1(xd2(y))

= F1F2(x)y + g(F2(x))d1(y) + F1(x)d2(y) + g(x)d1d2(y)

= F2(g(x))d1(y) + F1(x)d2(y) + xd1d2(y) for all x, y ∈ U.

This implies that

F2(x)d1(y) + xd1d2(y) + F1(x)d2(y) = 0 for all x, y ∈ U. (3.6)

Replacing x by zx in (3.6), we have

F2(zx)d1(y) + zxd1d2(y) + F1(zx)d2(y) = 0 for all x, y, z ∈ U.

(d2(z)g(x) + zF2(x))d1(y) + zxd1d2(y) + (d1(z)g(x) + zF1(x))d2(y) = 0.

(d2(z)g(x) + zF2(x))d1(y) + zxd1d2(y) + (zF1(x) + d1(z)g(x))d2(y) = 0.

d2(z)g(x)d1(y) + zF2(x)d1(y) + zxd1d2(y) + zF1(x)d2(y) + d1(z)g(x)d2(y) = 0.

d2(z)xd1(y) + z(F2(x)d1(y) + xd1d2(y) + F1(x)d2(y)) + d1(z)xd2(y) = 0.

Since the middle summand is 0 by (3.6), we have

d2(z)xd1(y) + d1(z)xd2(y) = 0 for all x, y, z ∈ U.

But this is just (3.2) of Theorem 3.2, so we argue as in the proof of Theorem 3.2 that
d1 = 0 or d2 = 0. It now follows from (3.6) that

F2(x)d1(y) + F1(x)d2(y) = 0 for all x, y ∈ U.

If one of d1, d2 is nonzero, then F1 or F2 is 0 by Theorem 3.2, so we assume that
d1 = d2 = 0. Then F1F2(xy) = 0 = F1(F2(x)y) = F2(x)F1(y) for all x, y ∈ U , so
that F2(U )F1(U ) = {0}. Applying Lemma 2.13, we conclude that F1 = 0 or F2 = 0.

We now consider a somewhat different condition that elements of F1(U ) and
F2(U ) anti-commute.
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Theorem 3.5 Let N be a 2-torsion free 3-prime near ring with nonzero semigroup
ideal U; and let F1 and F2 be generalized semiderivations on N with associated
semiderivations d1 and d2 respectively such that F1(U 2) ⊆ U and F2(U 2) ⊆ U and
a map g associated with d1 and d2 such that g(uv) = g(u)g(v) for all u, v ∈ U and
g(U ) = U. If

F1(x)F2(y) + F2(y)F1(x) = 0 for all x, y ∈ U, (3.7)

then F1 = 0 or F2 = 0.

Proof Assume that F1 �= 0 and F2 �= 0. Note that ifw ∈ F2(U 2),−w ∈ F2(U ); and
apply Lemma 2.4 to get (uv)w = w(uv) for all u, v ∈ F1(U ) and w ∈ F2(U 2). It
follows by Lemma 2.20 that F1(U )F1(U ) ⊆ Z , and it is easy to see that

F1(x)F1(y)(F1(x)F1(y) − F1(y)F1(x)) = 0 for all x, y ∈ U.

This implies that

F1(y)F1(x)(F1(x)F1(y) − F1(y)F1(x)) = 0 for all x, y ∈ U.

Since F1(x)F1(y) and F1(y)F1(x) are central, Lemma 2.1(i) shows that either both
are zero or one can be cancelled to yield

F1(x)F1(y) = F1(y)F1(x).

Thus [F1(U ), F1(U )] = {0} and by Lemma 2.20, F1(U ) ⊆ Z , hence N is a commu-
tative ring by Theorem 3.1. This fact together with (3.7) gives F1(U )F2(U ) = {0}.
Contradicting our assumption that F1 �= 0 �= F2. Therefore F1 = 0 or F2 = 0 as
required.

IfU is closed under addition, then F(U 2) ⊆ U for any generalized semiderivation
F ; hence we have

Corollary 3.6 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N which is closed under addition. If F1 and F2 are generalized
semiderivations on N with associated semiderivations d1 and d2 respectively and a
map g associated with d1 and d2 such that g(uv) = g(u)g(v) for all u, v ∈ U and
g(U ) = U. if

F1(x)F2(y) + F2(y)F1(x) = 0 for all x, y ∈ U,

then F1 = 0 or F2 = 0.
We now replace the hypothesis that F1(U ) ⊆ U and F2(U ) ⊆ U in Theorem 3.5

by some commutativity hypothesis.

Theorem 3.7 Let N be a 2-torsion free 3-prime near ring with nonzero semigroup
ideal U; and let F1 and F2 be generalized semiderivations on N with associated
semiderivations d1 and d2 respectively and a map g associated with d1 and d2 such
that g(U ) = U and g(uv) = g(u)g(v) for all u, v ∈ U. If
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F1(x)F2(y) + F2(y)F1(x) = 0 for all x, y ∈ U,

then F1 = 0 or F2 = 0 and one of the following is satisfied: (a) d1(Z) �= {0} and
d2(Z) �= {0}; (b) U ∩ Z �= {0}.
Proof (a) Let z1 ∈ Z such that d1(z1) �= 0. Then for all x, y ∈ U , we have

F1(z1x)F2(y) + F2(y)F1(z1x) = 0.

(d1(z1)g(x) + z1F1(x))F2(y) + F2(y)(F1(x)z1 + g(x)d1(z1)) = 0.

d1(z1)g(x)F2(y) + z1F1(x)F2(y) + F2(y)F1(x)z1 + F2(y)g(x)d1(z1) = 0.

d1(z1)xF2(y) + z1(F1(x)F2(y) + F2(y)F1(x)) + F2(y)xd1(z1) = 0.

It follows that

d1(z1)xF2(y) + F2(y)xd1(z1) = 0 for all x, y ∈ U.

Choosing z2 ∈ Z such that d2(z2) �= 0 and using a similar argument, we now get

xy + yx = 0 for all x, y ∈ U ;

and applying Lemma 2.4 with S = U and T = U 2 shows thatU 2 centralizesU 2, so
that U 2 ⊆ Z by Lemma 2.1(iii) and hence N is commutative ring by Lemma 2.3. It
now follows that F1(x)F2(y) = F2(y)F1(x) = −F2(y)F1(x) for all x, y ∈ U . Hence
F1(U )F2(U ) = {0}. Therefore F1 = 0 or F2 = 0.
(b) We assume that F1 �= 0 and F2 �= 0. Let z0 ∈ (U ∩ Z)\{0}. By Lemma 2.17,
F1(z0) ∈ Z ; hence if F1(z0) �= 0 the condition

F1(z0)F2(x) + F2(x)F1(z0) = 0 for all x ∈ U

gives 2F2(x) = 0 = F2(x) for all x ∈ U , so that F1 = 0 by Lemma 2.11. There-
fore, F1(z0) = 0 and similarly F2(z0) = 0. Now z20 ∈ (U ∩ Z)\{0} also, so F1(z20) =
0 = F2(z20); and since F1(z20) = F1(z0)z0 + g(z0)d1(z0) = z0d1(z0) and F2(z20) =
F2(z0)z0 + g(z0)d2(z0) = z0d2(z0). we have d1(z0) = d2(z0) = 0. Observing that
F1(z0x) = F1(z0)x + g(z0)d1(x) = F1(z0)x + z0d1(x) and F1(xz0) = F1(x)z0 +
g(x)d1(z0) = F1(x)z0 + xd1(z0) for all x ∈ N , we see that F1(x) = d1(x) for all
x ∈ N , So that F1 is a semiderivation; and similarly F2 is a semiderivation. We can
now derive a contradiction as in the proof of Theorem 3.5, with Lemmas 2.8 and
2.18 used instead of Lemma 2.20.
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4 Some Commutativity Conditions

The skew-commutativity hypothesis of Theorems 3.4 and 3.5 suggests investigating
conditions of the form F1(x)F2(y) + F2(y)F1(x) ∈ Z or xF(y) + F(y)x ∈ Z .

Theorem 4.1 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N which is closed under addition.
(i) Suppose N has nonzero generalized semiderivations F1, F2 with associated semi-
derivations d1 and d2 respectively and a map g associated with d1 and d2 such that
g(U ) = U and g(uv) = g(u)g(v) for all u, v ∈ U. If F1(x)F2(y) + F2(y)F1(x) ∈
Z, for all x, y ∈ U and at least one of F1(U ) ∩ Z and F2(U ) ∩ Z is nonzero, then
N is a commutative ring.
(ii) If N admits a nonzero generalized semiderivation F with associated semideriva-
tion d and a map g associated with d such that g(U ) = U and g(uv) = g(u)g(v)
for all u, v ∈ U and U ∩ Z �= {0} and xF(y) + F(y)x ∈ Z, for all x, y ∈ U, then
N is commutative ring.

Proof (i) Assume that F1(U ) ∩ Z �= {0}. Let x ∈ U such that F1(x) ∈ Z\{0}.
Then F1(x)F2(y) + F2(y)F1(x) = 2F1(x)F2(y) = F1(x)F2(2y) ∈ Z for all y ∈ U .
Since F1(x) ∈ Z\{0}, Lemma 2.1(ii) gives F2(2y) ∈ Z for all y ∈ U -i.e. F2(2U ) ⊆
Z . Since 0 ∈ Z , we get F2(2U ) = {0} -i.e. 2F2(U ) = {0}. But N is 2-torsion free, we
get F2(U ) = {0} would contradict our hypothesis that F2 �= 0; hence F2(2U ) �= {0}
and we may choose y ∈ U such that F2(2y) ∈ Z\{0}. Since 2U ⊆ U , this shows
that F2(2y) and 2F2(2y) = F2(4y) are in F2(U ) ∩ Z\{0}, so that for all x ∈ U ,
F1(x)(2F2(2y)) ∈ Z and hence F1(x) ∈ Z . Thus, F1(U ) ⊆ Z and by Theorem 3.1,
N is a commutative ring.
(ii) Essentially the sameargument yieldsU ⊆ Z , and the result followsbyLemma2.3.

Theorem 4.2 Let N be a 2-torsion free 3-prime near ring and U be a nonzero
semigroup ideal of N which is closed under addition. Suppose N admits nonzero
generalized semiderivations F1 and F2 with associated semiderivations d1 and
d2 respectively and a map g associated with d1 and d2 such that g(U ) = U and
g(uv) = g(u)g(v) for all u, v ∈ U. Suppose that F1(x)F2(y) + F2(y)F1(x) ∈ Z,
for all x, y ∈ U and F1(U ) ⊆ U; F2(U ) ⊆ U. If F1(N ) ∩ Z �= {0} or F2(N ) ∩ Z �=
{0}, then N is a commutative ring.

Proof By Corollary 3.6, we cannot have F1(x)F2(y) + F2(y)F1(x) = 0 for all
x, y ∈ U , hence there exist x0, y0 ∈ U such that u0 = F1(x0)F2(y0) + F2(y0)
F1(x0) ∈ (Z\{0}) ∩U . Since F1(Z) and F2(Z) are central by Lemma 2.17, if
F1(u0) �= 0 or F2(u0) �= 0 we have F1(U ) ∩ Z �= {0} or F2(U ) ∩ Z �= {0} and our
conclusion follows by Theorem 4.1(i).

Assume, therefore, that F1(u0) = F2(u0) = 0. For all x, y ∈ U , F1(u0x)F2

(u0y) + F2(u0y)F1(u0x) = u20(d1(x)d2(y) + d2(y)d1(x)) ∈ Z , henced1(x)d2(y) +
d2(y)d1(x) ∈ Z ; and if d1(u0) �= 0 or d2(u0) �= 0 our desired conclusion follows
by Lemma 2.15. Therefore we may assume d1(u0) = d2(u0) = 0. For all x, y ∈
N , F1(xu0)F2(yu0) + F2(yu0)F1(xu0) ∈ Z , so u20(F1(x)F2(y) + F2(y)F1(x)) ∈ Z
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and F1(x)F2(y) + F2(y)F1(x) ∈ Z . Since F1(N ) ∩ Z �= {0} or F2(N ) ∩ Z �= {0},
our result follows by Theorem 4.1(i).
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n-Strongly Gorenstein Projective
and Injective Complexes

C. Selvaraj and R. Saravanan

Abstract In this paper, we introduce and study the notions of n-strongly
Gorenstein projective and injective complexes, which are generalizations of n-
strongly Gorenstein projective and injective modules, respectively. Further, we char-
acterize the so-called notions and prove that the Gorenstein projective (resp., injec-
tive) complexes are direct summands of n-strongly Gorenstein projective (resp.,
injective) complexes. Also, we discuss the relationships between n-strongly Goren-
stein injective and n-strongly Gorenstein flat complexes, and for any two positive
integers n and m, we exhibit the relationships between n-strongly Gorenstein pro-
jective (resp., injective) and m-strongly Gorenstein projective (resp., injective) com-
plexes.

Keywords n-SG-projective complex · n-SG-injective complex · n-SG-flat
complex
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1 Introduction

Throughout this paper, let R be an associative ring with identity andC be the abelian
category of complexes of R-modules. Unless stated otherwise, a complex and an
R-module will be understood to be a complex of left R-modules and a left R-module
respectively.

Bennis and Mahdou [2] introduced the notions of strongly Gorenstein projec-
tive, injective and flat modules which are further studied and characterized by Liu
[8]. Later, Bennis and Mahdou [3] generalized the notion of strongly Gorenstein
projective modules to n-strongly Gorenstein projective modules and [11] Zhao stud-
ied the homological behaviors of n-strongly Gorenstein projective, injective and flat
modules. Zhang et al. [10] studied the notions of strongly Gorenstein projective
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and injective complexes. Motivated by the above works in this article, we introduce
and study the notions of n-strongly Gorenstein projective and injective complexes,
which are generalizations of n-strongly Gorenstein projective and injective modules,
respectively. In [2, Theorem 2.7], it is proved that a module is Gorenstein projective
if and only if it is a direct summand of a strongly Gorenstein projective module.
Using [9, Theorem 2.3], we prove the following.

Theorem Let G be a complex. Then the following holds:

(1) G is Gorenstein projective if and only if it is a direct summand of an n-SG-
projective complex.

(2) G isGorenstein injective if and only if it is a direct summand of an n-SG-injective
complex.

In [9, Theorem 3.1], the relationship between Gorenstein flat and Gorenstein
injective complexes is given. In connection to [9, Theorems 3.1 and 3.3] and [7,
Proposition 4.7], we have the following result.

Theorem Let R be a left artinian ring and let the injective envelope of every simple
left R-module be finitely generated. Then the following hold:

(1) If a complex G of left R-modules is n-SG-injective, then G+ is an n-SG-flat
complex of right R-modules.

(2) If a complex G of right R-modules is n-SG-flat, then G+ is an n-SG-injective
complex of left R-modules.

In Sect. 2, we recall some known definitions and terminologies which will be
needed in the sequel.

In Sect. 3, we introduce and study the notions of n-strongly Gorenstein projec-
tive and injective complexes.We show that a complex is Gorenstein projective (resp.,
injective) if and only if it is a direct summand of an n-SG-projective (resp., injective)
complex and prove that the modules in an n-SG-projective (resp., injective) com-
plex are precisely the n-SG-projective (resp., injective) modules. Further, over a left
artinian ring R, we discuss the relationships between n-SG-injective and n-SG-flat
complexes.

In the last section, we study the relationships between n-SG-projective (resp.,
injective) and m-SG-projective (resp., injective) complexes for any two positive
integers n and m.

2 Preliminaries

In this section, we first recall some known definitions and terminologies which we
need in the sequel.
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In this paper, a complex

· · · → C−1 δ−1→ C0 δ0→ C1 δ1→ · · ·

will be denoted by C or (C, δ). We will use subscripts to distinguish complexes. So
if {Ci }i∈I is a family of complexes, Ci will be

· · · → C−1
i

δ−1
i→ C0

i

δ0i→ C1
i

δ1i→ · · · .

Given an R-module M , we will denote by M the complex

· · · 0 → 0 → M
id→ M → 0 → 0 · · ·

with M in the 1st and 0th degrees. Similarly, we denote by M the complex with M in
the 0th degree and 0 in the other places. Note that an R-module M is injective (resp.,
projective) if and only if the complex M is injective (resp., projective).

Given a complex C and an integer m, C[m] denotes the complex such that
C[m]n = Cm+n and whose boundary operators are (−1)mδm+n . The nth cycle of
a complex C is defined as Kerδn and is denoted by ZnC . The nth boundary of C is
defined as Imδn−1 and is denoted by BnC .

Let C be a complex of left R-modules (resp., of right R-modules) and let D be
a complex of left R-modules. We denote by Hom(C, D) (respectively, C ⊗ D) the
usual homomorphism complex (resp., tensor product) of the complexes C and D.
The nth degree term of the complex Hom(C, D) is given by

Hom(C, D)n =
∏
t∈Z

Hom(Ct , Dn+t )

and whose boundary operators are

(δn f )m = δn+m
D f m − (−1)n f m+1δmC .

The nth degree term of C ⊗ D is given by

(C ⊗ D)n =
⊕
t∈Z

(Ct ⊗R Dn−t )

and
δ(x ⊗ y) = δtC(x) ⊗ y + (−1)t x ⊗ δn−t

D (y),

for x ∈ Ct and y ∈ Dn−t .

For a complex C of left R-modules, we have a functor − ⊗ C : CR → CZ,
where CR denotes the category of right R-modules. The functor − ⊗ C : CR → CZ

being right exact, we can construct the left derived functors which we denote by
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Tori (−,C). Given two complexes C and D of C , we use Exti (C, D) for i ≥ 0 to
denote the groups we obtain from the right derived functors of Hom and we use C+
to denote the complex Hom(C, Q/Z).

Recall that a complex C is projective (respectively, injective) if C is exact and
ZnC is a projective (respectively, an injective) R-module for each i ∈ Z. A complex
C is flat if C is exact and ZnC is flat R-module for each i ∈ Z. Equivalently, a com-
plex C is projective (respectively, injective) if and only if Hom(C,−) (respectively,
Hom (−,C)) is exact. Also a complex C is flat if and only if − ⊗ C is exact. For
unexplained terminologies and notations we refer to [1, 4–6].

Definition 2.1 ([10]) A complex G is called strongly Gorenstein projective (for
short SG-projective) if there exists an exact sequence of complexes

P : · · · → P
δ→ P

δ→ P
δ→ · · ·

such that (i) P is a projective complex;
(ii) Ker δ0 ∼= G;
(iii) Hom(P, Q) is exact for any projective complex Q.

Similarly, the SG-injective complexes are defined.

Definition 2.2 ([7]) A complex G of right R-modules is called strongly Gorenstein
flat (for short SG-flat) if there exists an exact sequence of complexes of right R-
modules

F : · · · → F
δ→ F

δ→ F
δ→ · · ·

such that (i) F is flat;
(ii) Ker δ0 ∼= G;
(iii) F ⊗ I is exact for any injective complex I .

Definition 2.3 ([7]) Let n be a positive integer. A complex G of right R-modules is
said to be an n-SG-flat if there exists an exact sequence of complexes

0 → G
δn+1→ Fn

δn→ Fn−1 → · · · → F1
δ1→ G → 0

with Fi projective for any 1 ≤ i ≤ n, such that − ⊗ I leaves the sequence exact
whenever I is an injective complex.

Next, we present the characterizations of n-SG-flat complexes in order to use it
further.

Proposition 2.4 ([7]) Let R be a right coherent ring and G be any complex of right
R-modules. Then the following are equivalent;

(1) G is n-SG-flat;
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(2) There exists an exact sequence of complexes of right R-modules

0 → G
δn+1→ Fn

δn→ Fn−1 → · · · → F1
δ1→ G → 0

with Fi flat for any 1 ≤ i ≤ n, such that
n+1⊕
i=2

Im δi is SG-flat;

(3) There exists an exact sequence of complexes of right R-modules

0 → G
δn+1→ Fn

δn→ Fn−1 → · · · → F1
δ1→ G → 0

with Fi flat for any 1 ≤ i ≤ n, such that
n+1⊕
i=2

Im δi is Gorenstein flat.

3 n-Strongly Gorenstein Projective
and Injective Complexes

In this section, we introduce and study the n-SG-projective and injective complexes
which are generalizations of SG-projective and injective modules, respectively. Also
we extend the results in [3, 11] on n-strongly Gorenstein projective and injective
modules to that of complexes.

Definition 3.1 Let n be a positive integer. A complex G is said to be an n-strongly
Gorenstein projective (for short n-SG-projective) if there exists an exact sequence
of complexes

0 → G
δn+1→ Pn

δn→ Pn−1 → · · · → P1
δ1→ G → 0

with Pi projective for any 1 ≤ i ≤ n, such that Hom(−, Q) leaves the sequence exact
whenever Q is a projective complex.

Definition 3.2 Let n be a positive integer. A complex G is said to be an n-strongly
Gorenstein injective (for short n-SG-injective) if there exists an exact sequence of
complexes

0 → G
αn+1→ In

αn→ In−1 → · · · → I1
α1→ G → 0

with Ii injective for any 1 ≤ i ≤ n, such that Hom(E,−) leaves the sequence exact
whenever E is an injective complex.

Note that 1-SG-projective (resp., injective) complexes are just SG-projective
(resp., injective) complexes. It is also clear that for any i with 2 ≤ i ≤ n + 1, the
complex Im δi (resp., Im αi ) in the above exact sequence is n-SG-projective (resp.,
injective). The following proposition shows that the class of all n-SG-projective
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(resp., injective) complexes is between the class of all SG-projective (resp., injective)
complexes and the class of all Gorenstein projective (resp., injective) complexes.

Proposition 3.3 Let n be a positive integer. Then:

(1) Every SG-projective (resp., injective) complex is an n-SG-projective (resp.,
injective) complex.

(2) Every n-SG-projective (resp., injective) complex is a Gorenstein projective
(resp., injective) complex.

Proof Since the SG-injective complex is the dual notion of SG-projective, we prove
the results for SG-projective case.

(1) Let G be an SG-projective complex. There exists an exact sequence of com-
plexes

0 → G
f→ P

g→ G → 0,

where P is a projective complex, such that Hom(−, Q) leaves the sequence exact
whenever Q is a projective complex. Then we get an exact sequence of complexes
of the form

X : 0 → G
f→ P

f g→ P
f g→ · · · → P

g→ G → 0

such that Hom(X, Q) is exact for any projective complex Q. Therefore G is an
n-SG-projective complex.

(2) Let G be an n-SG-projective complex. There exists an exact sequence of
complexes

Y : 0 → G
δn+1→ Pn

δn→ Pn−1 → · · · → P1
δ1→ G → 0

with Pi projective for any 1 ≤ i ≤ n, such that Hom(−, Q) leaves the sequence exact
whenever Q is a projective complex. Thus, we get the following exact sequence of
complexes

Y ′ : · · · → P1
δn+1δ1→ Pn

δn→ Pn−1 → · · · → P1
δn+1δ1→ Pn

δn→ · · · .

such that Im(δn+1δ1) ∼= G. Let Q be any projective complex. Then the exactness of
Hom(Y ′, Q) follows from the exactness of Hom(Y, Q) and hence G is a Gorenstein
projective complex. �

Proposition 3.4 Let {Gi }I be any family of complexes. Then
(1) If Gi is n-SG-projective for every i ∈ I , then

⊕
I
Gi is an n-SG-projective

complex.
(2) If Gi is n-SG-injective for every i ∈ I , then

∏
I
Gi is an n-SG-injective complex.
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Proof (1) For each i in I there exists an exact sequence of complexes

Xi : 0 → Gi → Pin → Pin−1 → · · · → Pi1 → Gi → 0

with Pi j projective for 1 ≤ j ≤ n, such that Hom(Xi , Q) is exact for any projective
complex Q. Since the direct sum of projective complexes is projective, we obtain
the following exact sequence of complexes

⊕
i∈I

Xi : 0 →
⊕
i∈I

Gi →
⊕
i∈I

Pin → · · · →
⊕
i∈I

Pi1 →
⊕
i∈I

Gi → 0

with
⊕
i∈I

Pi j projective for 1 ≤ j ≤ n. Let Q be any projective complex. Then

Hom(
⊕

Xi , Q) ∼= ∏
Hom(Xi , Q) is exact, and hence

⊕
Gi is an n-SG-projective

complex.
(2) The proof is similar to (1). �

In [2, Theorem 2.7], it is proved that a module is Gorenstein projective if and
only if it is a direct summand of a strongly Gorenstein projective module. Using [9,
Theorem 2.3] and Proposition 3.3, we have the following.

Theorem 3.5 Let G be a complex. Then the following hold:

(1) G is Gorenstein projective if and only if it is a direct summand of an n-SG-
projective complex.

(2) G isGorenstein injective if and only if it is a direct summand of an n-SG-injective
complex.

Proof (1) Let G be a Gorenstein projective complex. Then it is a direct summand of
an SG-projective complex by [10, Theorem 1]. Hence G is a direct summand of an
n-SG-projective complex by Proposition 3.3. Conversely, letG be a direct summand
of an n-SG-projective complex C . Then C is Gorenstein projective by Proposition
3.3 (2). Since the class of all Gorenstein projective complexes is closed under direct
summands by [9, Theorem 2.3], it follows that G is Gorenstein projective.

(2) The proof is similar to (1). �

In [11,Theorem3.9], Zhao andHuanghavegiven somecharacterizations ofn-SG-
projective modules. Now, we have the similar characterization for n-SG-projective
complexes in the following.

Proposition 3.6 Let G be any complex. Then the following are equivalent;

(1) G is n-SG-projective;
(2) There exists an exact sequence of complexes

0 → G
δn+1→ Pn

δn→ Pn−1 → · · · → P1
δ1→ G → 0

with Pi projective for any 1 ≤ i ≤ n, such that
n+1⊕
i=2

Im δi is SG-projective;
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(3) There exists an exact sequence of complexes

0 → G
δn+1→ Pn

δn→ Pn−1 → · · · → P1
δ1→ G → 0

with Fi projective for any 1 ≤ i ≤ n, such that
n+1⊕
i=2

Im δi is Gorenstein projective.

Proof (1) ⇒ (2). Let G be an SG-projective complex. Then there exists an exact
sequence of complexes

0 → G
δn+1→ Pn

δn→ Pn−1 → · · · → P1
δ1→ G → 0

with Pi projective for any 1 ≤ i ≤ n, such that Hom(−, Q) leaves the sequence exact
whenever Q is a projective complex. Now for each i with 2 ≤ i ≤ n + 1, we have
an exact sequence of complexes

0 → Im δi
αi→ Pi−1

δi−1→ · · · → P1
δn+1δ1−→ Pn

δn→ · · · → Pi
δi→ Im δi → 0.

By adding these exact sequences, we obtain the following exact sequence

0 →
n+1⊕
i=2

Im δi
α→

n⊕
i=1

Pi
δ→ · · · → Pn ⊕ P0 ⊕ · · · ⊕ Pn−1 → · · ·

where α = diag{α1, α2, ..., αn} and δ = diag {δn+1δ1, δ2, ..., δn}. Hence it is clear that
Im δ ∼=

n+1⊕
i=2

δi and Ext1(
n+1⊕
i=2

Im δi , Q) ∼=
n+1∏
i=2

Ext1( Im δi , Q) = 0 for any projective

complex Q. Therefore
n+1⊕
i=2

Im δi is SG-flat.

(2) ⇒ (3) It follows from the Proposition 3.3.
(3) ⇒ (1) It is obvious. �

Similarly, we can characterize the n-SG-injective complexes.
In [9, Theorem3.1], the relationship betweenGorenstein flat andGorenstein injec-

tive complexes is given. In connection to [9, Theorems 3.1 and 3.3] and Proposition
2.4, we have the following.

Theorem 3.7 Let R be a left artinian ring and let the injective envelope of every
simple left R-module be finitely generated. Then the following hold:

(1) If a complex G of left R-modules is n-SG-injective, then G+ is an n-SG-flat
complex of right R-modules.

(2) If a complex G of right R-modules is n-SG-flat, then G+ is an n-SG-injective
complex of left R-modules.
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Proof (1) Let G be an n-SG-injective complex. Then using the characterization of
n-SG-injective complexes similar to Proposition 3.6, we get an exact sequence of
complexes

I : 0 → G
δn+1→ In

δn→ In−1 → · · · → I1
δ1→ G → 0

where I j is an injective complex for 1 ≤ j ≤ n and
n+1⊕
j=2

Im δ j is Gorenstein injective.

Thus we have the following exact sequence of right R-modules

I+ : 0 → G+ δ+
1−→ I+

1

δ+
2−→ I+

2 → · · · → I+
n

δ+
n+1−→ G+ → 0

where I+
j is a flat complex for 1 ≤ j ≤ n. SinceG is Gorenstein injective by Proposi-

tion 3.3,wehave that Im δ+
1

∼= G+ isGorensteinflat by [9, Theorem3.5]. Since
n+1⊕
j=2

Im

δ j is Gorenstein injective, we get that Im δ j is Gorenstein injective for 2 ≤ j ≤ n + 1
by [9, Theorem 2.10]. Thus for every j with 1 ≤ j ≤ n, Im δ+

j is Gorenstein flat by

[9, Theorem 3.5]. Hence
n⊕
j=1

Im δ+
j is Gorenstein flat since Gorenstein flat complexes

are closed under direct sums. Therefore G+ is n-SG-flat by Proposition 2.4.
(2) Let G be an n-SG-flat complex. Then by Proposition 2.4, we get an exact

sequence of complexes of right R-modules

F : 0 → G
δn+1→ Fn

δn→ Fn−1 → · · · → F1
δ1→ G → 0

where Fj is a flat complex for 1 ≤ j ≤ n and
n+1⊕
j=2

Im δ j is Gorenstein flat. Thus we

have the following exact sequence of complexes of R-modules

F+ : 0 → G+ δ+
1−→ F+

1

δ+
2−→ F+

2 → · · · → F+
n

δ+
n+1−→ G+ → 0

where F+
j is an injective complex for 1 ≤ j ≤ n. Since G is Gorenstein flat by [7,

Proposition 4.2], we have that Im δ+
1

∼= G+ is Gorenstein injective by [9, Theorem

3.1]. Since
n+1⊕
j=2

Im δ j is Gorenstein flat, we get that Im δ j is Gorenstein flat for

2 ≤ j ≤ n + 1 by [9, Theorem 3.3]. Thus for every j with 1 ≤ j ≤ n, Im δ+
j is

Gorenstein injective by [9, Theorem 3.1]. Hence
n⊕
j=1

Im δ+
j is Gorenstein injective

since Gorenstein injective complexes are closed under finite direct sums. Therefore
G+ is n-SG-injective by Proposition 3.3. �

Corollary 3.8 Let R be a left artinian ring and let the injective envelope of every
simple left R-module be finitely generated. Then the following hold:
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(1) If a complex G of R-modules is n-SG-injective, then G++ is an n-SG-injective
complex.

(2) If a complex G of right R-modules is n-SG-flat, then G++ is an n-SG-flat
complex.

Proof The proof follows from Theorem 3.7. �

The following result shows the relationship between n-SG-projective complexes
and n-SG-projective modules.

Proposition 3.9 Let G be a complex. If G is n-SG-projective, then Gi is an n-SG-
projective R-module for all i ∈ Z.

Proof Suppose G is an n-SG-projective complex. By Proposition 3.6, there exists
an exact sequence of complexes

0 → G
δn+1→ Pn

δn→ Pn−1 → · · · → P1
δ1→ G → 0

where Pj is a projective complex for 1 ≤ j ≤ n and
n+1⊕
j=2

Im δ j isGorenstein projective.

Then for each i ∈ Z, we get an exact sequence of modules

0 → Gi δin+1−→ Pi
n

δin−→ Pi
n−1 → · · · → Pi

1

δi1−→ Gi → 0

such that Pi
j is a projective R-module for 1 ≤ j ≤ n. Since

n+1⊕
j=2

Im δ j is a Gorenstein

projective complex if andonly if Im δ j is aGorenstein projective complex for 2 ≤ j ≤
n + 1 by [9, Theorem 2.3]. Then by [9, Theorem 2.2], we have Im δ j is a Gorenstein
projective complex if and only if Im δij is a Gorenstein projective R-module for every

i ∈ Z and 2 ≤ j ≤ n + 1. Thus we get that
n+1⊕
j=2

Im δij is a Gorenstein projective R-

module since the class of all Gorenstein projective modules is closed under direct
sums. Therefore the result follows from [11, Theorem 3.9]. �

Corollary 3.10 Let M be an R-module. Then M is n-SG-projective if and only if
the complex M is n-SG-projective.

Proof SupposeM is an n-SG-projectivemodule. Then there exists an exact sequence
of R-modules

X : 0 → M → Pn → Pn−1 → · · · → P1 → M → 0,

where Pi is a projective R-module for 1 ≤ i ≤ n, such that HomR(−, Q) leaves the
sequence exact for any projective module Q. Thus, we get an exact sequence of
complexes
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X : 0 → M → Pn → Pn−1 → · · · → P1 → M → 0

with Pi a projective complex for 1 ≤ i ≤ n. Now let Q′ be any projective complex.
Then it is a direct product of complexes of the form P[n] for some projective module
P and n ∈ Z. Then

Hom(X , Q′) ∼= Hom(X ,
∏
n∈Z

P[n])

∼=
∏
n∈Z

Hom(X , P[n])

is exact for all n ∈ Z and hence M is n-SG-projective. The converse follows from
Proposition 3.9.

The following example describes that there are 2-SG-projective complexes which
are not necessarily 1-SG-projective.

Example 3.11

(1) Let R be a local ring and consider the ring S = R[X,Y ]/(XY ). Let [X ] and
[Y ] be the residue classes in S of X and Y respectively. Then by [3, Example
2.6], we observe that the R-modules [X ] and [Y ] are 2-SG-projective but are
not 1-SG-projective. Then by Corollary 3.10, the complexes [X ] and [Y ] are
2-SG-projective but are not SG-projective.

(2) In general, n-SG-projective complexes need not be m-SG-projective whenever
n � m. Based on the assumptions in [11, Example 3.2], we observe that the
modules Si (1 ≤ i ≤ n) are n-strongly Gorenstein projective but are not m-
strongly Gorenstein projective. Then by the Corollary 3.10, we see that the
complexes Si are n-SG-projective but are notm-SG-projective whenever n � m.

4 n-SG-Projective and m-SG-Projective Complexes

In this section, we study the relationships between n-SG-projective (resp., injective)
andm-SG-projective (resp., injective) complexes for any two positive integers n and
m.

Lemma 4.1 Let m, n and r be any positive integers such that m = rn. Then the
class of all m-SG-projective (resp., injective) complexes contains the class of all
n-SG-projective (resp., injective) complexes.

Proof Let G be an n SG-projective complex. Then there exists an exact sequence
of complexes

X : 0 → G
αn+1→ In

αn→ In−1 → · · · → I1
α1→ G → 0
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with I j injective for any 1 ≤ j ≤ n, such that
n+1⊕
j=2

Im α j is a Gorenstein projective

complex. So Im δ j is Gorenstein projective for every 1 ≤ j ≤ n by [9, Theorem 2.3].
Using the exact sequence X for r times, we have the following exact sequence

Y : 0 → G
αn+1→ In

αn→ In−1 → · · · → I1
δ→ In → · · · I1 α1→ G → 0

with I j injective for any 1 ≤ j ≤ n and δ = αn+1α1. Then
n+1⊕
j=2

Im α j is Gorenstein

projective since Im α j and G are Gorenstein projective. �
For any positive integer n, we use n-SG-Proj(C ) (resp., n-SG-Inj(C )) to denote

the subcategory of RC consisting of n-SG-projective (resp., injective) complexes of
left R-modules. The following results extend [11, Proposition 3.4 (2) and Theorem
3.5] to that of complexes.

Proposition 4.2 Let n and m be positive integers. Then the following hold:

(1) If n|m, then n-SG-Proj(C )
⋂

m-SG-Proj(C ) = n-SG-Proj(C ).
(2) If n � m and m = kn + j , where k is a positive integer and 0 < j < n, then

n-SG-Proj(C )
⋂

m-SG-Proj(C ) ⊆ j -SG-Proj(C ).

Proof (1) It follows from Lemma 4.1.
(2) By Lemma 4.1, we have that m-SG-Proj(C )

⋂
n-SG-Proj(C ) ⊆ m-SG-

Proj(C )
⋂

kn-SG-Proj(C ). Suppose that a complex G is in m-SG-Proj(C )
⋂

kn-SG-Proj(C ). Then there exists an exact sequence of complexes

P : 0 → G → Pm → · · · → P2 → P1 → 0

with Pi projective for any 1 ≤ i ≤ m. Put Li = Ker(Pi → Pi−1) for any 2 ≤ i ≤ m.
Since G is kn-SG-projective, we see that G and Lkn are projectively equivalent, i.e.,
there exist projective complexes P and Q in C such that G ⊕ P ∼= Q ⊕ Lkn .

Now consider the following pullback diagram:

0

��

0

��
Q

��

Q

��
0 �� Lkn+1 �� X

��

�� G ⊕ P ��

��

0

0 �� Lkn+1 �� Pkn

��

�� Lkn

��

�� 0

0 0.
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Then X is a projective complex. Next, consider the following pullback diagram

0

��

0

��
0 �� Lkn+1 �� Y

��

�� G

��

�� 0

0 �� Lkn+1 �� X

��

�� G ⊕ P ��

��

0

P

��

P

��
0 0.

Hence Y is also projective. Combining the exact sequence P and the first row in the
above diagram, we get the following exact sequence of complexes

0 → G → Pm → · · · → Pkn+1 → Y → G → 0

such that Hom(−, Q′) leaves the sequence exact for any projective complex Q′.
Thus G is j-SG-projective and hence n-SG-Proj(C )

⋂
m-SG-Proj(C ) ⊆ j-SG-

Proj(C ). �

Dually, we have the following result for n-SG-injective complexes.

Proposition 4.3 Let n and m be positive integers. Then the following hold:

(1) If n|m, then n-SG-Inj(C )
⋂

m-SG-Inj(C ) = n-SG-Inj(C ).
(2) If n � m and m = kn + j , where k is a positive integer and 0 < j < n, then

n-SG-Inj(C )
⋂

m-SG-Inj(C ) ⊆ j -SG-Inj(C ).

For any two positive integers m and n, we use (m, n) (resp., [m, n]) to denote the
greatest common divisor (resp., least common multiple) of m and n.

Proposition 4.4 For any two positive integers m and n, we have the following:

(1) m-SG-Proj(C )
⋂

n-SG-Proj(C ) = (m, n)-SG-Proj(C ).
(2) m-SG-Proj(C )

⋂
(m + 1)-SG-Proj(C ) = 1-SG-Proj(C ).

Proof (1) If n|m, then the result follows from Proposition 4.3 (1). Now suppose
n � m and m = k0n + j0, where k0 is a positive integer and 0 < j0 < n. By Propo-
sition 4.3 (2), we have that m-SG-Proj(C )

⋂
n-SG-Proj(C ) ⊆ j0-SG-Proj(C ).

If j0 � n and n = k1 j0 + j1, with 0 < j1 < j0, then by Proposition 4.3 (2) again,
we have that m-SG-Proj(C )

⋂
n-SG-Proj(C ) ⊆ n-SG-Proj(C )

⋂
j0-SG-Proj(C )

⊆ j1-SG-Proj(C ). Continuing the process, after finite steps, there exists a posi-
tive integer t such that jt = kt+2 jt+1 and jt+1 = (m, n). Thus m-SG-Proj(C )

⋂
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n-SG-Proj(C ) ⊆ jt -SG-Proj(C )
⋂

jt+1-SG-Proj(C ) = jt+1-SG-Proj(C )=(m, n)-
SG-Proj(C ). Then the result follows from the fact that (m, n)-SG-Proj(C ) ⊆ m-
SG-Proj(C )

⋂
n-SG-Proj(C ).

(2) It follows from (1). �

Corollary 4.5 For any two positive integers m and n, we have the following: m-
SG-Proj(C )

⋃
n-SG-Proj(C ) ⊆ [m, n]-SG-Proj(C ).

Proof It is clear from the fact that every n-SG-projective complex is m-SG-
projective whenever n|m. �

For the case of n-SG-injective complexes, we have the following.

Proposition 4.6 For any two positive integers m and n, we have the following:

(1) m-SG-Inj(C )
⋂

n-SG-Inj(C ) = (m, n)-SG-Inj(C ).
(2) m-SG-Inj(C )

⋂
(m + 1)-SG-Inj(C ) = 1-SG-Inj(C ).

Proof The proof is similar to Proposition 4.4. �

Corollary 4.7 For any two positive integers m and n, we have the following:
m-SG-Inj(C )

⋃
n-SG-Inj(C ) ⊆ [m, n]-SG-Inj(C ).

Proof It is clear from the fact that every n-SG-injective complex is m-SG-injective
whenever n|m. �
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Generalized Derivations with Nilpotent
Values on Multilinear Polynomials
in Prime Rings

Basudeb Dhara

Abstract Let R be a prime ring with Utumi quotient ring U and extended
centroid C , F a nonzero generalized derivation of R, I a nonzero right ideal of
R, f (r1, . . . , rn) a multilinear polynomial over C and s ≥ 1, t ≥ 1 be fixed integers.
If (F( f (r1, . . . , rn))s − f (r1, . . . , rn)s)t = 0 for all r1, . . . , rn ∈ I , then one of the
following holds:

(1) IC = eRC for some idempotent e ∈ soc(RC) and f (x1, . . . , xn) is central-
valued on eRCe;

(2) there exist a, b ∈ U such that F(x) = ax + xb for all x ∈ R and (a − α)I =
(0), (b − β)I = (0) for some α,β ∈ C with (α + β)s = 1.

Keywords Prime ring · Derivation · Generalized derivation · Extended centroid ·
Utumi quotient ring

Mathematics Subject Classification 2010 16W25 · 16N60

1 Introduction

Let R be an associative prime ring with center Z(R). Throughout this paper, U will
denote the Utumi quotient ring of R and C = Z(U ), the center ofU , which is called
extended centroid of R. For x, y ∈ R, the symbol [x, y] stands for the commutator
xy − yx and x ◦ y stands for anti-commutator xy + yx .

An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y)
holds for all x, y ∈ R. The concept of derivation is extended to generalized deriva-
tion. The generalized derivation means an additive mapping F : R → R such that
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F(xy) = F(x)y + xd(y) for all x, , y ∈ R, where d is a derivation of R. For some
fixed a, b ∈ R, the maps F(x) = ax + xb for all x ∈ R, is an example of gener-
alized derivation. This kind of generalized derivations are called inner generalized
derivations.

Daif and Bell [7] proved that if R is a semiprime ring with a nonzero ideal I
such that d([x, y]) = ±[x, y] for all x, y ∈ I , then I is central ideal. In particular, if
I = R, then R is commutative.

Recently, Quadri et al. [24] generalized this result replacing derivation d with a
generalized derivation in a prime ring R. More precisely, they proved the following:

Let R be a prime ring and I a nonzero ideal of R. If R admits a generalized
derivation F associatedwith a nonzero derivation d such that any one of the following
holds: (i) F([x, y]) = [x, y] for all x, y ∈ I ; (ii) F([x, y]) = −[x, y] for all x, y ∈
I ; (iii) F(x ◦ y) = (x ◦ y) for all x, y ∈ I ; (iv) F(x ◦ y) = −(x ◦ y) for all x, y ∈ I ;
then R is commutative.

In [9], I studied all these cases of [24] in semiprime ring.
On the other hand, Ashraf et al. [3] proved that the prime ring R must be com-

mutative, if F(xy) ± xy ∈ Z for all x, y ∈ I , where F is a generalized derivation
of R associated with a nonzero derivation d and I is a nonzero two-sided ideal of
R. Recently, in [11], these results were generalized for multiplicative (generalized)-
derivations in semiprime rings.

In [2], Argac and Inceboz studied the situation d(x ◦ y)n = x ◦ y for all x, y
in some nonzero ideal of prime ring R. In [8], De Filippis and Huang studied the
situation (F([x, y]))n = [x, y] for all x, y ∈ I , where I is a nonzero ideal in a prime
ring R, F a generalized derivation of R and n ≥ 1 fixed integer. Then in [1], Ali et
al. investigated the situation when a prime ring R satisfies (F(x ◦ y))m = (x ◦ y)n

for all x, y in some suitable subsets of R, where F is a generalized derivation of R
associated with a derivation d. More precisely, they proved the following:

Let R be a prime ring, I a nonzero right ideal of R and F a generalized derivation
of R. If (F(x ◦ y))n = (x ◦ y)n for all x, y ∈ I , where n ≥ 1 is fixed integer, then
one of the following holds: (1) [I, I ]I = (0); (2) there exists a ∈ U and α ∈ C such
that F(x) = ax for all x ∈ R, with (a − α)I = (0) and αn = 1. (see [1, Theorem
2])

It is natural to investigate above situation for multilinear polynomials in prime
rings. Recently in [10] Dhara et al. have proved the following:

Let R be a prime ring, I be a nonzero right ideal of R and f (r1, . . . , rn) a
nonzero multilinear polynomial over C . Suppose that d is a derivation of R such that
(d( f (x1, . . . , xn))m − f (x1, . . . , xn))p = 0 for all x1, . . . , xn ∈ I andm ≥ 1, n ≥ 1
are fixed integers, then IC = eRC for some idempotent element e ∈ Soc(RC) and
f (x1, . . . , xn) is a polynomial identity for eRCe.
It is natural to consider the more general situation when (F( f (x1, . . . , xn))m −

f (x1, . . . , xn)m)p = 0 for all x1, . . . , xn ∈ I , where F is a generalized derivation of
R, I is a nonzero right ideal of R and f (x1, . . . , xn) is a multilinear polynomial on
R over C . In the present paper our main objective is to investigate this situation.



Generalized Derivations with Nilpotent … 309

Let R be a prime ring and U be the Utumi quotient ring of R and C = Z(U ), the
center of U . Note that U is also a prime ring with C a field. Let f (x1, . . . , xn) be a
multilinear polynomial over C . We can write it as

f (x1, . . . , xn) = x1x2 . . . xn + ∑
I �=σ∈Sn

ασxσ(1) . . . xσ(n),

where Sn is the permutation group over n elements and any ασ ∈ C . We denote
by f d(x1, . . . , xn) the polynomial obtained from f (x1, . . . , xn) by replacing each
coefficient ασ with d(ασ.1). In this way we have

d( f (x1, . . . , xn)) = f d(x1, . . . , xn) + ∑
i

f (x1, . . . , d(xi ), . . . , xn).

Now we include some facts which will be used to prove our theorems.
Fact 1. It is well known that any derivation of R can be uniquely extended to a

derivation of U (see [18, Lemma 2]).
Fact 2. Let ρ be a nonzero right ideal of R. Then ρ, ρC , ρU satisfy the same

generalized polynomial identities with coefficients in U (see [5]).
Fact 3. Let ρ be a nonzero right ideal of R. Then ρ, ρR and ρU satisfy the same

differential identities with coefficients in U (see [18, Theorem 2]).
Fact 4. Let ρ be a nonzero right ideal of R. If ρ satisfies a nontrivial polynomial

identity, then RC is a primitive ring with soc(RC) �= 0 and ρC = eRC for some
idempotent e = e2 ∈ soc(RC) (see [19, Proposition])

Fact 5. Let R be a dense ring of linear transformations of a vector space V over
a division ring D and a ∈ R. If for any v ∈ V , av and v are linearly D-dependent,
then there exists a β ∈ D such that av = vβ for all v ∈ V .

Proof For any v ∈ V , av = vαv for some αv ∈ D. Now we prove that αv is inde-
pendent of the choice of v ∈ V . Let u be a fixed vector of V . Then au = uα. Let
v be any vector of V . Then av = vαv , where αv ∈ D. If u and v are linearly D-
dependent, then u = vβ, for β ∈ D. In this case, we see that uα = au = avβ =
(vαv)β = (vβ)αv = uαv , implying α = αv .

Now if u and v are linearly D-independent, then we have (u + v)αu+v =
a(u + v) = au + av = uα + vαv , which implies u(αu+v − α) + v(αu+v − αv) =
0. Since u and v are linearly D-independent, we have αu+v − α = 0 = αu+v − αv

and so α = αv . Thus av = vα for all v ∈ V , where α ∈ D independent of the choice
of v ∈ V .

Fact 6. Let I be a nonzero right ideal of R and a ∈ U . If for every x ∈ I , ax and
x are linearly C-dependent, then there exists α ∈ C such that (a − α)I = (0).

The proof of Fact 6 is similar to that of Fact 5, so we omit it here.

Remark 1 Now we mention a result of Lee in [20] which will be used to prove
our main theorem. In [20], Lee extended the definition of generalized derivation
as follows: generalized derivation means an additive mapping g : ρ → U such that
g(xy) = g(x)y + xδ(y) for all x, y ∈ ρ, where ρ is a dense right ideal of R and δ
ia a derivation from ρ into U . The author proved that every generalized derivation
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of R can be uniquely extended to generalized derivation of U and has the form
g(x) = ax + δ(x) for all x ∈ U , wherea ∈ U and δ is a derivation ofU [20, Theorem
3]. For more details about generalized derivations we refer to [14, 20, 21].

2 Main Results

First we study the case when F is inner generalized derivation of R, that is, for some
a, b ∈ U , F(x) = ax + xb for all x ∈ R.

Lemma 2.1 Let R = Mk(C), k ≥ 2, be the set of all k × k matrices over a field C
and f (x1, . . . , xn) be a noncentral multilinear polynomial over C. If for some a, b ∈
R, ((a f (x1, . . . , xn) + f (x1, . . . , xn)b)s − f (x1, . . . , xn)s)t = 0 for all x1, . . . , xn ∈
R, then a, b ∈ C.Ik with (a + b)s = Ik .

Proof Let a = (ai j )k×k , b = (bi j )k×k . Since f (x1, . . . , xn) is not central valued on
R, by [22, Lemma 2, Proof of Lemma 3] there exists a sequence of matrices r =
(r1, . . . , rn) in R such that f (r1, . . . , rn) = γei j with 0 �= γ ∈ C and i �= j . Since
the set f (R) = { f (x1, . . . , xn), xi ∈ R} is invariant under the action of all inner
automorphisms of R, for all i �= j there exists a sequence ofmatrices r = (r1, . . . , rn)
such that f (r) = γei j . Thus

((a f (x1, . . . , xn) + f (x1, . . . , xn)b)
s − f (x1, . . . , xn)

s)t = 0

gives 0 = ((aγei j + γei j b)s − (γei j )s)t i.e., 0 = ((aei j + ei j b)s − (ei j )s)t . Left
multiplying by ei j yields astji = 0 and right multiplying by ei j yields bstji = 0. Thus,
we have a ji = 0 and b ji = 0 for any i �= j , that is, a and b are diagonal matrices.

Now for any C-automorphism θ of R, we have

((aθ f (x1, . . . , xn) + f (x1, . . . , xn)b
θ)s − f (x1, . . . , xn)

s)t = 0

for all x1, . . . , xn ∈ R. Then by above argument aθ and bθ must be diagonal. Write,

a =
k∑

i=0
aii eii and b =

k∑
i=0

bii eii ; then for p �= q, we have

(1 + eqp)a(1 − eqp) =
m∑
i=0

aii eii + (app − aqq)eqp

diagonal and

(1 + eqp)b(1 − eqp) =
m∑
i=0

bii eii + (bpp − bqq)eqp

diagonal, implying app = aqq , bpp = bqq and so a, b ∈ C.Ik .
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Then our assumption

((a f (x1, . . . , xn) + f (x1, . . . , xn)b)
s − f (x1, . . . , xn)

s)t = 0

for all x1, . . . , xn ∈ R, reduces to ((a + b)s − Ik)t f (x1, . . . , xn)st = 0. This implies
either ((a + b)s − Ik)t = 0 or f (x1, . . . , xn)st = 0 for all x1, . . . , xn ∈ R. But by
[22, Corollary 5], f (x1, . . . , xn)st = 0 for all x1, . . . , xn ∈ R, implies that f (x1, . . . ,
xn) = 0 for all x1, . . . , xn ∈ R, a contradiction. Hence ((a + b)s − Ik)t = 0. Since
(a + b)s − Ik ∈ C.Ik , we conclude that (a + b)s − Ik = 0

Hence, the lemma is proved. �

Proposition 2.2 Let R be a prime ring with Utumi quotient ring U and extended
centroid C, and f (r1, . . . , rn) be a multilinear polynomial over C which is not
central valued on R. If for some a, b ∈ U, ((a f (r) + f (r)b)s − f (r)s)t = 0 for
all r = (r1, . . . , rn) ∈ Rn, where s ≥ 1, t ≥ 1 are fixed integers, then a, b ∈ C with
(a + b)s − 1 = 0.

Proof Since R and U satisfy same generalized polynomial identity (see [5]), U
satisfies

h(x1, . . . , xn)

= ((a f (x1, . . . , xn) + f (x1, . . . , xn)b)
s − f (x1, . . . , xn)

s)t = 0.

Suppose that h(x1, . . . , xn) is a trivial GPI for U . Let T = U ∗C C{x1, . . . , xn},
the free product of U and C{x1, . . . , xn}, the free C-algebra in noncommuting inde-
terminates x1, . . . , xn . Then,

((a f (x1, . . . , xn) + f (x1, . . . , xn)b)
s − f (x1, . . . , xn)

s)t

is zero element in T . If a /∈ C , then a and 1 are linearly independent over C . Then
expanding the above identity, it will imply

(a f (x1, . . . , xn))
s((a f (x1, . . . , xn) + f (x1, . . . , xn)b)

s − f (x1, . . . , xn)
s)t−1 = 0

in T . Again, since a and 1 are linearly independent over C , this implies that

(a f (x1, . . . , xn))
2s((a f (x1, . . . , xn) + f (x1, . . . , xn)b)

s − f (x1, . . . , xn)
s)t−2 = 0

and so (a f (x1, . . . , xn))ts = 0, implying a = 0, a contradiction. Hence, a ∈ C . Then
our generalized polynomial identity (GPI) reduces to (( f (x1, . . . , xn)(a + b))s −
f (x1, . . . , xn)s)t = 0 in T . If a + b /∈ C , then a + b and 1 are linearly independent
over C . Then by same argument as above, ( f (x1, . . . , xn)(a + b))st = 0, which is a
nontrivial generalized polynomial identity for R, a contradiction. Thus, a + b ∈ C
and hence b ∈ C . Then our GPI becomes {(a + b)s − 1}t f (x1, . . . , xn)st = 0, which
is a trivial GPI for R, implying (a + b)s − 1 = 0.
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Next suppose that h(x1, . . . , xn) is a nontrivial GPI for R and so forU . In case C
is infinite, we have h(x1, . . . , xn) = 0 for all x1, . . . , xn ∈ U ⊗C C , where C is the
algebraic closure of C . Since both U and U ⊗C C are prime and centrally closed
[12, Theorems 2.5 and 3.5], we may replace R by U or U ⊗C C according to C
finite or infinite. Then R is centrally closed over C and h(x1, . . . , xn) = 0 for all
x1, . . . , xn ∈ R. ByMartindale’s theorem [23], R is then a primitive ringwith nonzero
socle soc(R) and withC as its associated division ring. Then, by Jacobson’s theorem
[15, p. 75], R is isomorphic to a dense ring of linear transformations of a vector space
V over C . Assume first that V is finite dimensional over C , that is, dimCV = m. By
density of R, we have R ∼= Mm(C). Since f (r1, . . . , rn) is not central valued on R,
R must be noncommutative and so m ≥ 2. In this case, by Lemma 2.1, we obtain
our required conclusion.

Now, if V is infinite dimensional over C , then as in lemma 2 in [25], the set f (R)
is dense on R and so from

((a f (r1, . . . , rn) + f (r1, . . . , rn)b)
s − f (r1, . . . , rn)

s)t = 0

for all r1, . . . , rn ∈ R, we have

((ar + rb)s − r s)t = 0

for all r ∈ R. Letv andbv be linearlyC-independent for somev ∈ V . Thenbydensity
there exists r ∈ R such that rv = 0, rbv = v. Therefore, we have 0 = ((ar + rb)s −
r s)tv = v, a contradiction. Hence, v and bv are linearly C-dependent for all v ∈ V .
By Fact 5, we can write bv = vα for all v ∈ V and α ∈ C fixed.

Now let r ∈ R, v ∈ V . Since bv = vα,

[b, r ]v = (br)v − (rb)v = b(rv) − r(bv) = (rv)α − r(vα) = 0.

Thus [b, r ]v = 0 for all v ∈ V i.e., [b, r ]V = 0. Since [b, r ] acts faithfully as a
linear transformation on the vector space V , [b, r ] = 0 for all r ∈ R. Therefore,
b ∈ C . Then we obtain

(((a + b)r)s − r s)t = 0

for all r ∈ R. Let v and (a + b)v be linearly C-independent for some v ∈ V . By
density,wemay choose r ∈ R such that rv = v, r(a + b)v = 0. Thenwe have (((a +
b)r)s − r s)tv = 0. But we see that for s = 1, ((a + b)r − r)tv = (−1)tv if t ≥ 2
and (a + b)v − v if t = 1. On the other hand for s ≥ 2, (((a + b)r)s − r s)tv =
(−1)tv. In any case we have a contradiction. Hence, v and (a + b)v are linearly
C-dependent for all v ∈ V , which implies as before that a + b ∈ C and so a ∈ C .
Therefore, {(a + b)s − 1}t r st = 0 for all r ∈ R. Since V is infinite dimensional over
C , (a + b)s − 1 = 0. �
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Proposition 2.3 Let R be a prime ring with Utumi quotient ring U and extended
centroid C, I a nonzero right ideal of R and f (r1, . . . , rn) a multilinear poly-
nomial over C. If for some a, b ∈ U, ((a f (r) + f (r)b)s − f (r)s)t = 0 for all
r = (r1, . . . , rn) ∈ I n, then one of the following holds:

(1) IC = eRC for some idempotent e ∈ soc(RC) and f (x1, . . . , xn) is central-
valued on eRCe;

(2) there exist α,β ∈ C such that (a − α)I = (0) and (b − β)I = (0) with (α +
β)s = 1.

Proof Let u ∈ I . Then R satisfies the GPI

((a f (ux1, . . . , uxn) + f (ux1, . . . , uxn)b)
s − f (ux1, . . . , uxn)

s)t = 0. (1)

Now we consider following two cases:
Case-I: R does not satisfy any nontrivial GPI
Then (1) is a trivial GPI for R, that is,

((a f (ux1, . . . , uxn) + f (ux1, . . . , uxn)b)
s − f (ux1, . . . , uxn)

s)t (2)

is zero element in R ∗C C{x1, . . . , xn}. Suppose first that there exists u ∈ I such that
{bu, u} is linearly C-independent. Then b /∈ C , and hence above GPI implies that

((a f (ux1, . . . , uxn) + f (ux1, . . . , uxn)b)
s − f (ux1, . . . , uxn)

s )t−1( f (ux1, . . . , uxn)b)
s = 0.

Now since {bu, u} is linearlyC-independent, we see expanding the above expression
that ( f (ux1, . . . , uxn)b)st appears nontrivially, a contradiction. Hence bu and u are
linearly C-dependent for all u ∈ I . Then by Fact 6, there exists β ∈ C such that
(b − β)I = (0). Next suppose that there exists u ∈ I such that {au, u} is linearly
C-independent. Then from (2), we obtain that

(a f (ux1, . . . , uxn))
s((a f (ux1, . . . , uxn) + f (ux1, . . . , uxn)b)

s − f (ux1, . . . , uxn)
s)t−1 = 0.

Expanding the above expression we find that the term {a f (ux1, . . . , uxn)}st appears
nontrivially, a contradiction. Hence we conclude that au and u are linearly C-
dependent for all u ∈ I . By Fact 6, there exists α ∈ C such that (a − α)I = (0).

Then (1) reduces to

(( f (ux1, . . . , uxn)(α + b))s − f (ux1, . . . , uxn)
s)t = 0. (3)

Rightmultiplying by f (ux1, . . . , uxn) and then using (b − β)I = (0), it follows that

((α + β)s − 1)t f (ux1, . . . , uxn)
st+1) = 0. (4)

Since this is trivial GPI for R, (α + β)s − 1 = 0.
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Case-II: R satisfies a nontrivial GPI
Now assume first that [ f (I ), I ]I = (0), that is [ f (x1, . . . , xn), xn+1]xn+2 = 0

for all x1, x2, . . . , xn+2 ∈ I . Then by Fact 4, IC = eRC for some idempotent
e ∈ soc(RC). Since [ f (I ), I ]I = (0), we have [ f (I R), I R]I R = (0) and hence
[ f (IU ), IU ]IU = (0) by [5, Theorem 2]. In particular, [ f (IC), IC]IC = (0),
or equivalently, [ f (eRC), eRC]eRC = (0). Then [ f (eRCe), eRCe] = (0), that is,
f (x1, . . . , xn) is central-valued on eRCe and hence conclusion (1) is obtained.
So, we assume that [ f (I ), I ]I �= (0), that is, [ f (x1, . . . , xn), xn+1]xn+2 is not

an identity for I . In this case R is a prime GPI-ring and so is U (see [5]).
Since U is centrally closed over C , it follows from [23] that U is a primi-
tive ring with H = Soc(U ) �= (0). Then [ f (I H), I H ]I H �= (0). For otherwise,
[ f (IU ), IU ]IU = (0) by [5], a contradiction. Choose u1, . . . , un+2 ∈ I H such
that [ f (u1, . . . , un), un+1]un+2 �= 0. Let u ∈ I H . Since H is a regular ring, there
exists e2 = e ∈ H such that eH = uH + u1H + · · · + un+2H . Then e ∈ I H and
u = eu, ui = eui for i = 1, . . . , n + 2. Thus, we have (0) �= [ f (eH), eH ]eH =
[ f (eHe), eHe]H i.e., f (r1, . . . , rn) is not central-valued in eHe.

By our assumption and by [5], we may also assume that

((a f (x1, . . . , xn) + f (x1, . . . , xn)b)
s − f (x1, . . . , xn)

s)t = 0

is an identity for IU . In particular,

((a f (x1, . . . , xn) + f (x1, . . . , xn)b)
s − f (x1, . . . , xn)

s)t = 0

is an identity for I H and so for eH . It follows that, for all r1, . . . , rn ∈ H ,

((a f (er1, . . . , ern) + f (er1, . . . , ern)b)
s − f (er1, . . . , ern)

s)t = 0. (5)

We may write

f (x1, . . . , xn) =
∑
i

ti (x1, . . . , xi−1, xi+1, . . . , xn)xi ,

where ti is a suitable multilinear polynomial in n − 1 variables and xi never appears
in any monomials of ti . Since f (eHe) �= (0), there exists some ti which does not
vanish in eHe.Without loss of generality, we assume that tn(eHe) �= (0). Let r ∈ H .
Then replacing rn with r(1 − e) in (5), we have

0 = ((atn(er1, . . . , ern−1)er(1 − e) + tn(er1, . . . , ern−1)er(1 − e)b)s

− (tn(er1, . . . , ern−1)er(1 − e))s)t . (6)

Left multiplying by (1 − e), we obtain (1 − e)(atn(er1, . . . , ern−1)er(1 − e))st =
0, that is, {(1 − e)atn(er1, . . . , ern−1)er}st+1 = 0 for all r ∈ H . By [13], (1 −
e)atn(er1e, . . . , ern−1e) = 0 for all r1, . . . , rn−1 ∈ H . Since eHe is a simpleArtinian
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ring and tn(eHe) �= (0) is invariant under the action of all inner automorphisms of
eHe, by [6, Lemma 2], (1 − e)ae = 0. Now again right multiplying by e in (6),
we obtain (tn(er1, . . . , ern−1)er(1 − e)b)st e = 0 that is, {(1 − e)btn(er1, . . . , ern−1)

er)st+1 = 0 for all r ∈ H , implying (1 − e)btn(er1e, . . . , ern−1e) = 0 for all r1, . . . ,
rn−1 ∈ H . By above argument we conclude that (1 − e)be = 0.

In particular, from (5), we can write that H satisfies

e{(a f (er1e, . . . , erne) + f (er1e, . . . , erne)b)
s

− f (er1e, . . . , erne)
s}t e = 0 (7)

and so using the facts (1 − e)ae = 0 and (1 − e)be = 0, we have, prime ring eHe
satisfies

((eae f (r1, . . . , rn) + f (r1, . . . , rn)ebe)
s − f (r1, . . . , rn)

s)t = 0. (8)

By Proposition 2.2, since f (r1, . . . , rn) is not central-valued in eHe, we conclude
eae, ebe ∈ Ce with (eae + ebe)s − e = 0. Therefore, ae = eae ∈ Ce and be =
ebe ∈ Ce. Thus au = aeu = eaeu ∈ Cu and hence au, u are linearly C-dependent
for each u ∈ I . So (a − α)I = (0) for some α ∈ C . Similarly, (b − β)I = (0) for
some β ∈ C .

Thus our hypothesis ((a f (x1, . . . , xn) + f (x1, . . . , xn)b)s − f (x1, . . . , xn)s)t =
0 for all x1, . . . , xn ∈ I , implies by right multiplying f (x1, . . . , xn) that {(α + β)s −
1}t f (x1, . . . , xn)st = 0 for all x1, . . . , xn ∈ I . ByLemma2 in [4], either f (I )I = (0)
or (α + β)s − 1 = 0. If f (I )I = (0), then by Fact 4, conclusion (1) is obtained. If
(α + β)s − 1 = 0, then conclusions (2) is obtained. �

We are now ready to prove our main theorem.

Theorem 2.4 Let R be a prime ring with Utumi quotient ring U and extended
centroid C, F a nonzero generalized derivation of R, I a nonzero right ideal of R,
f (r1, . . . , rn) a multilinear polynomial over C and s ≥ 1, t ≥ 1 be fixed integers.
If (F( f (r1, . . . , rn))s − f (r1, . . . , rn)s)t = 0 for all r1, . . . , rn ∈ I , then one of the
following holds:

(1) IC = eRC for some idempotent e ∈ soc(RC) and f (x1, . . . , xn) is central-
valued on eRCe;

(2) there exist a, b ∈ U such that F(x) = ax + xb for all x ∈ R and (a − α)I =
(0), (b − β)I = (0) for some α,β ∈ C with (α + β)s = 1.

Proof If F is a inner generalized derivation of R, then result follows by Proposition
2.3. Assume that F is not U -inner. Then by Remark1, we may assume that for
all x ∈ U , F(x) = ax + d(x), where a ∈ U and d is a derivation of U . By our
assumption, I satisfies (F( f (x1, . . . , xn))s − f (x1, . . . , xn)s)t = 0. Since I and IU
satisfy the same generalized polynomial identities (see [5]) as well as the same
differential identities (see [18]), we may assume for u1, . . . , un ∈ I that U satisfies
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{(a f (u1x1, . . . , unxn) + d( f (u1x1, . . . , unxn)))s − f (u1x1, . . . , unxn)s}t = 0.

Since F is not inner, d can not be inner derivation of U . Then from above we have{{
a f (u1x1, . . . , unxn) + f d(u1x1, . . . , unxn)

+
∑
j

f (u1x1, . . . , d(u j )x j + u jd(x j ), . . . , unxn)

}s

− f (u1x1, . . . , unxn)
s

}t

= 0. (9)

By Kharchenko’s theorem [16], we have that U satisfies

{{
a f (u1x1, . . . , unxn) + f d(u1x1, . . . , unxn)

+
∑
j

f (u1x1, . . . , d(u j )x j + u j y j , . . . , unxn)

}s

− f (u1x1, . . . , unxn)
s

}t

= 0. (10)

In particular, putting x1 = 0, U satisfies

0 = f (u1y1, . . . , unxn)st . (11)

Since I and IU satisfy the same polynomial identities, we have that I satisfies
f (x1, . . . , xn)st = 0. By [6, Main Theorem], f (I )I = (0) and hence conclusion (1)
is obtained by using Fact 4. Hence the theorem is proved. �

It is well known that if R is a prime ring and L is a non-central Lie ideal of R, then
there exists a nonzero two-sided ideal I of R such that 0 �= [I, R] ⊆ L , unless char
(R) = 2 and R satisfies the standard identity s4. Thus from above theorem following
corollary is straightforward.

Corollary 2.5 Let R be a prime ring with Utumi quotient ring U and extended
centroid C, F a nonzero generalized derivation of R, L a noncentral Lie ideal of R
and n ≥ 1, s ≥ 1 be fixed integers. If (F(u)s − us)n = 0 for all u ∈ L, then one of
the following holds:

(1) char (R) = 2 and R satisfies s4, standard identity of four variables.
(2) there exists λ ∈ C such that F(x) = λx for all x ∈ R with λs = 1.

Now we prove our next corollary.

Corollary 2.6 Let R be a prime ring with Utumi quotient ring U and extended
centroid C, F a nonzero generalized derivation of R, I a nonzero right ideal of
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R and f (r1, . . . , rn) be a multilinear polynomial over C. If (F( f (r1, . . . , rn))2 −
f (r1, . . . , rn)2)t = 0 for all r1, . . . , rn ∈ I , for some t ≥ 1, then one of the following
holds:

(1) IC = eRC for some idempotent e ∈ soc(RC) and f (x1, . . . , xn) is central-
valued on eRCe;

(2) there exists a ∈ U such that F(x) = xa for all x ∈ I with (a ∓ 1)I = (0).

Proof By Theorem 2.4, we have only to consider the case when F(x) = ax + xb for
all x ∈ R and (a − α)I = (0), (b − β)I = (0) for someα,β ∈ C with (α + β)2 = 1
that is α + β = ±1. Then F(x) = ax + xb = αx + xb = x(α + b) for all x ∈ I
with (0) = (b − β)I = (b + α ∓ 1)I . Hence we obtain our conclusion (2). �

Corollary 2.7 Let R be a prime ring with extended centroid C, F a nonzero
generalized derivation of R, f (r1, . . . , rn) a noncentral multilinear polynomial
over C and t ≥ 1 fixed integer. If (F( f (r1, . . . , rn))2 − f (r1, . . . , rn)2)t = 0 for all
r1, . . . , rn ∈ R, then F(x) = ±x for all x ∈ R.

Corollary 2.8 Let R be a prime ring with extended centroid C, d a derivation of R,
f (r1, . . . , rn) a noncentral multilinear polynomial over C and t ≥ 1 fixed integer. If
(d( f (r1, . . . , rn))2 − f (r1, . . . , rn)2)t = 0 for all r1, . . . , rn ∈ R, then d = 0.

Corollary 2.9 Let R be a prime ring with extended centroid C, I a nonzero ideal
of R, F a generalized derivation of R and m ≥ 1, n ≥ 1. If (F(xy)n − (xy)n)m = 0
for all x, y ∈ I , then one of the following holds:

(1) R is commutative;
(2) there exists λ ∈ C such that F(x) = λx for all x ∈ R with λn = 1.

Proof If F = 0, then (xy)nm = 0 for all x, y ∈ I . Since I and R satisfies the same
polynomial identities, R satisfies (xy)nm = 0. Then by [17, Lemma 1], R ⊆ Mk(E),
matrix ringof all k × kmatrices over afield E , k ≥ 1andMk(E) satisfies (xy)nm = 0.
But by choosing x = y = e11, we have that 0 = (xy)nm = e11, a contradiction for
k ≥ 2. Thus k = 1 that is, R is commutative.

If F �= 0, then by Theorem 2.4, we have either (i) xy ∈ C for all x, y ∈ R or
(ii) there exists λ ∈ C such that F(x) = λx for all x ∈ R with λn = 1. If xy ∈ C
for all x, y ∈ R, then [xy, z] = 0 for all x, y, z ∈ R. Replacing y with yu, we have
0 = [xyu, z] = xy[u, z] + [xy, z]u = xy[u, z] for all x, y, z, u ∈ R. This implies
[u, z] = 0 for all u, z ∈ R, that is R is commutative. Thus the conclusions are
obtained. �

Corollary 2.10 Let R be a prime ring with extended centroid C, I a nonzero ideal of
R, F a generalized derivation of R andm ≥ 1, n ≥ 1. If (F([x, y])n − ([x, y])n)m =
0 for all x, y ∈ I , then one of the following holds:

(1) R is commutative;
(2) there exists λ ∈ C such that F(x) = λx for all x ∈ R with λn = 1.
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Proof If F = 0, then [x, y]nm = 0 for all x, y ∈ I . Since I and R satisfies the same
polynomial identities, R satisfies [x, y]nm = 0. Then by [17, Lemma 1], R ⊆ Mk(E),
matrix ring of all k × k matrices over a field E , k ≥ 1 andMk(E) satisfies [x, y]nm =
0. But by choosing x = e12, y = e21, we have that [x, y]nm = e11 + (−1)nme22 �= 0.
Thus for k ≥ 2, we have a contradiction. Hence k = 1 and then R is commutative.

If F �= 0, then byTheorem2.4, we have either (i) [x, y] ∈ C for all x, y ∈ R or (ii)
there exists λ ∈ C such that F(x) = λx for all x ∈ R with λn = 1. If [x, y] ∈ C for
all x, y ∈ R, then [[x, y], z] = 0 for all x, y, z ∈ R. Then again by same argument as
before, R ⊆ Mk(E) and Mk(E) satisfies [[x, y], z] = 0, where E is a field. But for
k ≥ 2, 0 = [[x, y], z] = [[e11, e12], e22] = e12, a contradiction. Hence k = 1, that is,
R is commutative. Thus the conclusions are obtained. �

Similarly, we can prove the following:

Corollary 2.11 Let R be a prime ring with extended centroid C, I a nonzero ideal of
R, F a generalized derivation of R and m ≥ 1, n ≥ 1. If (F(x ◦ y)n − (x ◦ y)n)m =
0 for all x, y ∈ I , then one of the following holds:

(1) R is commutative;
(2) there exists λ ∈ C such that F(x) = λx for all x ∈ R with λn = 1.

Corollary 2.12 Let R be a prime ring with extended centroid C, I a nonzero ideal
of R, d a derivation of R and m ≥ 1, n ≥ 1. If (d(x ◦ y)n + (x ◦ y)n)m = 0 for all
x, y ∈ I or (d([x, y])n − [x, y]n)m = 0 for all x, y ∈ I , then R is commutative.
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Properties of Semi-Projective Modules
and their Endomorphism Rings

Manoj Kumar Patel

Abstract In this paper, we have studied the properties of semi-projective module
and its endomorphism rings related with Hopfian, co-Hopfian, and directly finite
modules. We have provide an example of module which are semi-projective but not
quasi-projective.We also prove that for semi-projective moduleM with dimM < ∞
or CodimM < ∞, Mn is Hopfian for every integer n ≥ 1. Apart from this we have
studied the properties of pseudo-semi-injectivemodule and observed that for pseudo-
semi-injective module, co-Hopficity weakly co-Hopficity and directly finiteness are
equivalent. Finally proved that for pseudo-semi-injective module M, N be fully
invariant M-cyclic submodule of M with N is essential in M , then N is weakly
co-Hopfian if and only if M is weakly co-Hopfian.

Keywords Semi-projective · Pseudo-semi-injective · Hopfian · Co-Hopfian
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1 Introduction

The notion of quasi-principally projective module was introduced by Wisbauer
[14] under the terminology of semi-projective modules. Tansee and Wongwai [11]
introduced the idea of M-principally projective module and defined a module M
quasi-principally projective if it is M-principally projective. They also established
several properties of the endomorphism ring of such modules and proved that
quasi-principally projective modules are equivalent to semi-projective module. In
this paper, we have established some properties of endomorphism ring of quasi-
principally projective module in terms of Hopfian modules and proved that a quasi-
principally projective module M is Hopfian if and only if M/N is Hopfian, where N
is fully invariant small submodule of M.
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2 Preliminaries

Throughout this paper, by a ring R we always mean an associative ring with identity
and everyR-moduleM is an unitary rightR-module. LetM be anR-module; amodule
N is called M-generated, if there is an epimorphism M (I ) −→ N for some index set
I. If I is finite then N is called finitely M-generated. In particular, a submodule N of
M is called an M-cyclic submodule of M if N = s(M) for some s ∈ EndMR or if
there exist an epimorphism from M to N , equivalently it is isomorphic to M/L for
some submodule L ofM . A submodule K of anR-moduleM is said to be small inM ,
written K � M , if for every submodule L ⊆ M with K + L = M implies L = M .
A nonzero R-module M is called hollow if every proper submodule of it is small in
M . A submodule N of M is called fully invariant submodule of M , if f (N ) ⊆ N for
any f ∈ S = EndMR . A module M is called indecomposable, if M �= 0 and cannot
be written as a direct sum of nonzero submodules.

Consider the following conditions for an R-module M :
(D1): For every submodule A of M there is a decomposition M = M1

⊕
M2 such

that M1 ⊆ A and A ∩ M2 � M .
(D2): If A ⊆ M such that M/A is isomorphic to a summand of M , then A is a
summand of M .
(D3): If M1 and M2 are summands of M with M1 + M2 = M , then M1 ∩ M2 is a
summand of M .

An R-module M is called a lifting module if M satisfies (D1),M is called discrete
module if it satisfies (D1) and (D2) and quasi-discrete if it satisfies (D1) and (D3).

We will freely make use of the standard notations, terminologies, and results of
[1, 3, 14].

3 M-Principally Projective Module

Let M be a right R-module. A right R-module N is called M-principally projective

if every R-homomorphism f from N to an M-cyclic submodule s(M) of M can be
lifted to an R-homomorphism g from N toM , such that the above diagram is commu-
tative, i.e., s · g = f . A right R-module M is called quasi-principally projective (or
semi-projective) if it is M-principally projective. Some examples of semi-projective
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modules are Z4, Z6 over Z (set of integers). Clearly, every projective module and
quasi-projective module are semi-projective. But converse need not be true:

1. The Z-module Q is semi-projective but not quasi-projective.
2. Let R be any integral domain with quotient field F �= R. Then M = F ⊕ R is

semi-projective (but in general not quasi-projective).
3. For any prime p in Z, the Prufer p-group Z(p∞) is not semi-projective.

Now, we provide an example of semi-projective module which is not
M-principally projective module.

Example 3.1 Let M1 = Z/pZ and M2 = Z/p2Z for any prime p ∈ Z be modules
over Z. Then we can easily check that both M1 and M2 are semi-projective modules.
However M1 is not M2-principally projective.

Proposition 3.2 If M is quasi-projective module and K is fully invariant submodule
of M then M/K is semi-projective module.

Proof The Proof is straightforward and hence we omit it.

An R-module M is called Hopfian (resp. co-Hopfian), if every surjective (resp.
injective) R-homomorphism f : M −→ M is an automorphism. For example, every
Noetherian R-modules are Hopfian and every Artinian R-modules are
co-Hopfian. A module M is called directly finite, if M is not isomorphic to a proper
summand of itself.

Lemma 3.3 (Proposition 3.25, Mohamed and Muller (1990)[6]) An R-module M
is directly finite if and only if f · g = 1 implies g · f = 1 for any f, g ∈ EndMR.

In the following propositions, we relate semi-projective module with Hopfian,
co-Hopfian and directly finite modules.

Proposition 3.4 Let M be semi-projective co-Hopfian, then it is Hopfian.

Proof Let f be surjective endomorphism on M and IM : M −→ M be an identity
map on M . By semi-projectivity of M there exists an R-homomorphism g : M −→
M such that f · g = IM , implies that g is monomorphism. Since M is co-Hopfian,
then it follows that f = g−1 is an automorphism on M . Therefore M is Hopfian.

Proposition 3.5 For the semi-projective modules M, the following statements are
equivalent:
(i) M is Hopfian;
(i i) M is co-Hopfian;
(i i i) M is directly finite.

Proof Proof is trivial.

Proposition 3.6 Let M be semi-projective and N is fully invariant small submodule
of M. Then M is Hopfian if and only if M/N is Hopfian.
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Proof Assume that M/N is Hopfian. Let f : M −→ M be any epimorphism, then
semi-projectivity ofM implies that there exist an homomorpshim g : M −→ M such
that f · g = IM . Hence M ∼= M ⊕ (ker f ) hence K = (ker f ) is direct summand of
M . Since N is fully invariant implies f (N ) ⊆ N , now we have induced a map f

′ :
M/N −→ M/N which is clearly an epimorphism, the Hopficity of M/N implies
that f

′ : M/N −→ M/N is an isomorphism. Now by ( f
′
.π)(K ) = (π · f )(K ) = 0,

where π : M −→ M/N be natural epimorphism, we see that π(K ) = 0, it means
K ⊆ N , but K ⊆ N � M implies that K � M . Since M is semi-projective there
exist a splitting for f , i.e., K = ker f is direct summand of M . Therefore K =
ker f = 0, implies that M is Hopfian.

Conversely, assume that M is Hopfian and N � M if f : M/N −→ M/N is an
epimorphism. We have f · π : M −→ M/N , where π is natural epimorphism from
M −→ M/N . Then by semi-projectivity of M , there exists g ∈ EndMR , such that
π · g = f · π implies that g is an epimorphism by 19.2, Wisbauer (1991) [14] as π
is a small epimorphism. Since M is Hopfian then g is an isomorphism.

Assume ker f �= 0, then there exists x ∈ M such that f (x + N ) = N implies
f.π(x) = π.g(x) = g(x) + N = N gives that g(x) ∈ N ⇒ x ∈ g−1(N ) ⊆ N . It fol-
lows that ker f = N , therefore M/N is Hopfian.

Corollary 3.7 Let M be finitely generated semi-projective module. Then M is Hop-
fian if and only if M/J (M) is Hopfian.

Proof We know that J (M) is fully invariant submodule of M . If M is finitely gen-
erated then we have J (M) � M . Thus by the above proposition proof is obvious.

Corollary 3.8 Let M be semi-projective, N and L are submodules of M such that
N + L = M and N ∩ L � M. Then M/N and M/L are Hopfian.

Proof We have M/(N ∩ L) = N/(N ∩ L) ⊕ L/(N ∩ L), by above Proposition
3.6, M/(N ∩ L) is Hopfian, hence so its direct summand, as N/(N ∩ L) ∼= (N +
L)/L = M/L , similarly L/(N ∩ L) ∼= (N + L)/N = M/N is Hopfian.

The next proposition is the generalization of Pandeya et.al. (Proposition 3.8) [7],
whose proof is straightforward and hence we omit it.

Proposition 3.9 Let M be finitely generated semi-projective hollow module then M
is directly finite if and only if each homomorphic image is directly finite.

For any module M , we denote the Goldie dimension of M by dimM and the dual
Goldie dimension of M by CodimM .

Proposition 3.10 Let M be semi-projective modules with dimM < ∞ or
CodimM < ∞. Then Mn is Hopfian for every integer n ≥ 1.

Proof We can easily seen that Mn satisfies the hypothesis of the statement, since
dimMn = n(dimM),CodimMn = n(CodimM), and M is semi-projective mod-
ule implies that Mn is semi-projective. Hence it remains to prove that M is Hop-
fian. Let f : M −→ M be any epimorphism, then semi-projectivity of M implies
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that there exist an homomorpshim g : M −→ M such that f · g = IM . Hence
M ∼= M ⊕ (ker f ). This yields dimM = dimM + dim(ker f ) and CodimM =
CodimM + Codim(ker f ). If dimM < ∞ then first of these equations will imply
that dim(ker f ) = 0, hence ker f = 0 that is f is an automorphism. If CodimM <

∞, then second of these equations will imply thatCodim(ker f ) = 0, hence ker f =
0 that is f is an automorphism. Thus in both cases, we get our assumed surjective
endomorphism is an automorphism that is M is Hopfian implies that Mn is Hopfian.

Corollary 3.11 Let M be semi-projective modules with CodimM < ∞. Then for
any fully invariant submodule K of M and any integer n ≥ 1, the module (M/K )n

is Hopfian.

Proof Immediate consequence of Propositions 3.2 and 3.10.

Corollary 3.12 Let R be a ring with dimRR < ∞. Then Mn(R) is directly finite for
every integer n ≥ 1.

Proof Since RR is projective, assume that dimRR < ∞ then by Proposition 3.9, we
see that Rn is Hopfian for all integer n ≥ 1. Then it is proved by the observation that
M is Hopfian then EndMR is directly finite.

Lemma 3.13 Let N be a submodule of a semi-projective module M. Then N is a
summand if M/N is isomorphic to a summand of M.

Proof The Proof is straightforward and hence we omit it.

Therefore, we say that a semi-projective module satisfies (D2) condition. In gen-
eral, we have the following implication:

Projective ⇒ Quasi-projective ⇒ semi-projective � Discrete.

Corollary 3.14 Let M be semi-projective module, then the following statements are
equivalent:
(1)M is discrete;
(2)M is quasi-discrete;
(3)M is lifting.

Proof (1) ⇒ (2) ⇒ (3) are clear from definitions and (3) ⇒ (1) immediate from
Lemma 3.13.

Corollary 3.15 An indecomposable semi-projective module M is discrete if and
only if M is hollow.

Proof The Proof is straightforward and hence we omit it.
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4 Pseudo-Semi-Injective Modules

Let M be a right R-module. M is called semi-injective if for anyM-cyclic submodule
N of M , monomorphism g : N −→ M and corresponding to any homomorphism
f : N −→ M there exists a map h ∈ EndMR , such that h · g = f , i.e., diagram is
commutative.

We wish to consider the situation where the map h in this definition is required to
be a monomorphism. For this to happen, a map f must be a monomorphism. This
leads to the following definition.

A right R-module M is called pseudo-M-principally injective (or pseudo-semi-
injective) if for anyM-cyclic submodule N ofM andR-monomorphism f, g : N −→
M there exists a monomorphism h ∈ EndMR , such that h · g = f .

It is easy to show that ifM is pseudo-semi-injectivemodule, then everymonomor-
phism in EndMR is an automorphism, that is every pseudo-semi-injective module
is co-Hopfian.

It is clear that every semi-injective module is pseudo-semi-injective, however,
converse need not be true. In the following Proposition, we impose the uniformness
on pseudo-semi-injective module that is desirable to make it semi-injective modules.

Proposition 4.1 Every uniform pseudo-semi-injective module is semi-injective.

Proof Let M be uniform pseudo-semi-injective module and N be M-cyclic sub-
module of M , let f : N −→ M be any homomorphism implies that ker f ⊆ N . If
ker f = N case is trivial. If ker f = 0, then f is a monomorphism which extend to
a homomorphism h from M to M . If ker f �= 0, since N is uniform then it can be
easily checked that g = IN − f : N −→ M is injective map that is kerg = 0, where
IN : N −→ M be the inclusion map. By definition of pseudo-semi-injectivity of M ,
there exists an extension h of g from M to M such that g = IN − f = h · i implies
that f = (1 − h) · i , which gives that (1 − h) is an extension of f to M . Thus, we
conclude that M is semi-injective module.

Corollary 4.2 Every semi-simple pseudo-semi-injective module is semi-injective.

Proposition 4.3 Let M be a pseudo-semi-injective module and f : M −→ M be a
monomorphism. Then f (M) is a direct summand of M.

Proof The proof is straightforward and hence we omit it.

Proposition 4.4 Let N be indecomposable pseudoM-principally injective modules,
then every element f ∈ EndNR is invertible if and only if ker f = 0.

Proof The invertible in EndNR is just the R-isomorphism from N to N . Thus it
is clear that, if f is an invertible elements of EndNR then ker f = 0. Conversely
suppose that ker f = 0 then f is a monomorphism and f (N ) is injective and so
pseudo M-principally injective module. Then f (N ) is a direct summand of every
extensionof itself, thus f (N ) is a direct summandof N , and f (N ) �= 0 so f (N ) = N ,
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since N is indecomposable. Therefore f is a surjective homomorphism and so f is
an invertible element of EndNR .

A R-module M is called weakly co-Hopfian if any injective endomorphism f of M
is essential, i.e., f (M) ⊆e M . The set of Integer Z is weakly co-Hopfian but not
co-Hopfian.

Proposition 4.5 Let M be pseudo-semi-injective module, then the following state-
ments are equivalent:
(i)M is co-Hopfian;
(i i)M is weakly co-Hopfian;
(i i i)M is directly finite.

Proof (1) ⇒ (2) ⇒ (3) are trivial. For (3) ⇒ (1) Assume that f : M −→ M be
an injective endomorphism, then f (M) ∼= M and so f (M) is pseudo-M-principally
injective. Thus, f (M) is direct summand of M that is there exist a submodule K of
M such that f (M) ⊕ K = M . Hence, M ⊕ K ∼= M ⇒ K = 0 since M is directly
finite. Therefore, f (M) = M implies that f is surjective and hence M is co-Hopfian.

Corollary 4.6 If M is indecomposable pseudo-semi-injective module, then it is co-
Hopfian.

Proposition 4.7 Let M be pseudo-semi-injective and nonsingular module. Then M
Hopfian if and only if M co-Hopfian.

Proof Let M is co-Hopfian and f : M −→ M be surjective endomorphism of M .
Then M/ker f is nonsingular, and so ker f is essentially closed in M . since M
is pseudo-semi-injective modules, then ker f is also pseudo-semi-injective. Thus,
M ∼= M ⊕ ker f . As M is co-Hopfian, it is directly finite module by Proposition 4.5,
so the above isomorphism implies that ker f = 0, i.e., f is an automorphism. ThusM
is Hopfian. Conversely, It is well known that every Hopfian and co-Hopfian modules
is directly finite so prove is done in the light of Proposition 4.5.

Proposition 4.8 Let M be pseudo-semi-injective module and N be fully invariant
M-cyclic submodule of M with N is essential in M. Then N is weakly co-Hopfian if
and only if M is weakly co-Hopfian.

Proof A sume that N is weakly co-Hopfian. Let f : M −→ M be an injective
endomorphism then by Proposition 2.3, f (M) is direct summand of M . Since N
is fully invariant f (N ) ⊆ N . Thus f |N : N −→ N is an injective homomophism,
the weakly co-Hopficity of N implies that f (N ) ⊆e N , since N ⊆e M we deduce
that f (N ) ⊆e M and we have f (N ) ⊆ f (M) ⊆ M , thus f (M) ⊆e M therefore M
is weakly co-Hopfian.

Conversely, let f : N −→ N be an injective endomorphism and i : N −→ M be
an inclusionmap. SinceM is pseudo-semi-injectivemodule, there exists amonomor-
phism h : M −→ M such that i · f = h · i . SinceM is weakly co-Hopfian by Propo-
sition 4.5, M is co-Hopfian, so h is an isomorphism. N is fully invariant M-cyclic
submodule of M so it is pseudo-semi-injective and h(N ) ⊆ N ⇒ h−1(N ) ⊆ N so
h(N ) = N . But f = h|N hence f : N −→ N is surjective, so N is co-Hopfian then
by Proposition 4.5, proof is complete.
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Labeling of Sets Under the Actions of
−→
Sn

and
−→
An

Ram Parkash Sharma, Rajni Parmar and V.S. Kapil

Abstract We prove that distinguishing number D−→
Sn

(X) can be at most n + 1 + [ n6 ]
for n ≤ 36 andfind the complete sets of distinguishing numbers D−→

S2
(X) and D−→

A2
(X).

The distinguishing numbers of the actions of
−→
S3 and

−→
A3 are also discussed.

Keywords Distinguishing number ·Distinguishing group actions · Labeling of sets
and graphs

1 Introduction

The wreath product
−→
Sn is defined as

Definition 1.1 Let Z
n

2 = { f | f : {1, 2, . . . , n} −→ Z2}. Define
−→
Sn = Z2 � Sn = {( f, π) | f : {1, 2, . . . , n} −→ Z2, π ∈ Sn},

where Sn is the symmetric group on n symbols.
−→
Sn is a group under the composition

defined by
( f, π)( f ′, π ′) = ( f ′ fπ ′−1 , ππ ′),

where ( f f ′)(i) = f (i) + f ′(i), i ∈ {1, 2, . . . , n} and fπ ′−1 = f ◦ π ′, for π ′ ∈ Sn
and f ∈ Z

n

2. This group of type Bn is called the wreath product of Z2 by Sn .

The group
−→
Sn has a presentation with generators S = {s1, s2, . . . , sn}, satisfying

(1) s2i = 1, for every i ≥ 1

(2)
(
si s j

)2 = 1 if |i − j | 	= 1
(3) (si si+1)

3 = 1 for every i ≥ 2, and
(4) (s1s2)4 = 1.

This group
−→
Sn is isomorphic to the group of signed Brauer diagrams having no

horizontal edges. For more detail about Brauer and signed Brauer algebras one can
refer to [4, 5, 7–9, 11].
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Since the subgroup of
−→
Sn that is generated by si , i = 2, 3, . . . , n is isomorphic

to Sn, this subgroup of
−→
Sn is identified with Sn by taking each si , i ≥ 2 to the basic

transposition (i − 1, i).
The group

−→
Sn becomes a subgroup of S2n as observed in [3]

Definition 1.2 For any integer n ≥ 2, the group
−→
Sn can be identified to be the sub-

group of S2n as follows:

−→
Sn = {θ ∈ S2n|θ(i) + θ(−i) = 0, for all i, 1 ≤ i ≤ n}.

Here, the set {1, 2, 3, . . . , n, n + 1, . . . , 2n} is identified by {1, 2, . . . , n,−1,
−2, . . . − n}. In this paper, we use the former notation. In [6], the authors found
the elements of

−→
Sn which correspond to even permutations in S2n . The set of such

elements form a normal subgroup of
−→
Sn of order 2n−1n! denoted by−→

An . We are inter-
ested to find the distinguishing numbers of the actions of these groups on various
sets.

A labeling of the vertices of a graph Ĝ, φ : V (Ĝ) −→ {1, 2, 3, . . . , r} is said to be
r -distinguishing provided no automorphism of the graph preserves all of the vertex
labels. That is, for every nontrivial σ ∈ Aut(Ĝ) there exists x in V = V (Ĝ) such that
φ(x) 	= φ(σ(x)). The distinguishing number of a graph Ĝ, denoted by D(Ĝ), is the
minimum r such that Ĝ has an r -distinguishing labeling. That is,

D(Ĝ) = min{r |Ĝ has a labeling that is r-distinguishing (See [1, 2]).

The main algebraic difference between distinguishing groups and distinguishing
graphs is: many groups do not act faithfully (i.e., stabilizer is nontrivial) while the
automorphism group of a graph always has trivial stabilizer. Distinguishing labeling
of graphs can naturally be extended in the same way to a group action of a group G
on a set X , if G acts faithfully on X (StG(X) = e); that is, the labeling φ of X is
said to be r -distinguishing with respect to a faithful action of G if for every g 	= e ∈
G, there is an element x ∈ X such that φ(x) 	= φ(g(x)). In case, StG(X) 	= e, then
φ(x) 	= φ(g(x)) for every g that does not belongs to StG(X).

The distinguishing number of a group G on a set X is defined by

DG(X) = min{r : there exists an r -distinguishing labeling of X}.

It is proved in [10] that DSn (X), for any set on which Sn acts, is at most n.

We started this paper with the aim of finding an upper bound for the distinguishing
numbers D−→

Sn
(X) for

−→
Sn actions similar to that of Sn having DSn (X) at most n. We

could answer this question for n ≤ 36. We establish that D−→
Sn

(X) can be at most
n + 1 + [ n6 ] for n ≤ 36. Once we know the utmost value of D−→

Sn
(X) for n ≤ 36, it

is a natural question of finding the complete set of the numbers D−→
Sn

(X) for n = 2
or 3. We find a complete set of distinguishing numbers D−→

S2
(X), that is, D−→

S2
(X) is

either 1, 2, or 3 for any set X with
−→
S2 action on it. Regarding D−→

S3
(X), we searched
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for different sets with action of
−→
S3 on them, but D−→

S3
(X) turns out to be 3. Still it

remains unsolved.
Whether D−→

S3
(X) = 4 for some X with action of

−→
S3 on it?

Similarly for
−→
A3 actions, We get D−→

A3
(X) = 1, 2 and 3.

2 Alternating Subgroup
−→
An of

−→
Sn

In order to find out the elements of
−→
An, the authors of [6] fixed a notation as

i∗ =
{

i + n, o < i ≤ n
i − n, n < i ≤ 2n

Using this notation, Definition 1.2 can be rewritten as follows:

Definition 2.1 We have
−→
Sn = {θ ∈ S2n| if θ(i) = k, then θ(i∗) = k∗}.

Example 2.2 The eight elements of
−→
S2 identified in S4 according to the above

definition are as follows:{(
1 2 3 4
1 2 3 4

)
,
(
1 2 3 4
1 4 3 2

)
,
(
1 2 3 4
3 2 1 4

)
,
(
1 2 3 4
3 4 1 2

)
,(

1 2 3 4
2 1 4 3

)
,
(
1 2 3 4
2 3 4 1

)
,
(
1 2 3 4
4 1 2 3

)
,
(
1 2 3 4
4 3 2 1

) }
.

After rearranging, these elements can be written as

−→
S2 = {e, (13), (24), (12)(34), (13)(24), (14)(23), (1234), (1432)}.

The alternating subgroup
−→
A2 consists of the even permutations of

−→
S2 in S4, and

hence −→
A2 = {e, (12)(34), (13)(24), (14)(23)}.

We also need the elements of
−→
S3 and

−→
A3 to be used in the subsequent results.

Example 2.3 The elements of
−→
S3 and

−→
A3 are as follows:

−→
S3 = {e, (14), (25), (36), (14)(25), (14)(36), (25)(36), (12)(45), (15)(24), (26)(35), (23)(56), (13)(46), (16)(34),

(14)(25)(36), (15)(24)(36), (14)(26)(35), (14)(23)(56), (25)(13)(46), (25)(16)(34), (36)(12)(54),
(126)(345), (153)(264), (132)(465), (135)(246), (162)(354), (165)(243), (123)(564), (234)(156),
(14)(2356), (14)(2653), (25)(1346), (25)(1643), (36)(1245), (36)(1542), (1245), (1542), (2356), (2653),
(1346), (1643), (156423), (132465), (123456), (165432), (126453), (135462), (153426), (162435)},
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and

−→
A3 = {e, (14)(25), (14)(36), (25)(36), (12)(45), (15)(24), (26)(35), (23)(56), (13)(46), (16)(34), (126)(345),

(153)(264), (132)(465), (135)(246), (162)(354), (165)(243), (123)(564), (234)(156), (14)(2356),
(14)(2653), (25)(1346), (25)(1643), (36)(1245), (36)(1542)}.

3 Labeling of Sets Under the Actions of
−→
Sn and

−→
An

This section contains the main results of this paper, that is, an upper bound for distin-
guishing numbers D−→

Sn
(X) is found for n ≤ 36 and the complete sets of distinguishing

numbers D−→
S2

(X) and D−→
A2

(X) are also found.
We need

Proposition 3.1 2nn! < (n + 2 + [ n6 ])! for n ≥ 0.Further, for 1 < n < 36, the inte-
ger (n + 2 + [ n6 ]) is the smallest positive integer satisfying 2nn! < (n + 2 + [ n6 ])!.
Proof We prove the inequality

2nn! <
(
n + 2 +

[n
6

])
! (1)

for n = 6m + r,m ≥ 4, 0 ≤ r ≤ 5 as this can be easily verified for m = 0, 1, 2, 3.
We have

26m+r (6m + r)! < (7m + r + 2)!

iff

26m+r (6m + r)! < (6m + r + 1) (6m + r + 2) . . . (7m + r + 2) (6m + r)!

iff
26m+r < (6m + r + 1) (6m + r + 2) . . . (7m + r + 2) . (2)

We have

(6m + r + 1) (6m + r + 2) . . . (7m + r + 2) > (6m + r + 1)m+2 . (3)

Note that the number of terms in RHS of (3) is m + 2. So, to prove (2) it suffices
to show that

(6m + r + 1)m+2 > 26m+r . (4)

Since log x is continuous and increases for x > 0, therefore log x > log y iff x > y.
So (4) holds iff
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(m + 2) log (6m + r + 1) > (6m + r) log 2. (5)

To prove (5) we show that the function

f (m) = (m + 2) log (6m + r + 1) − (6m + r) log 2 (6)

is positive for m ≥ 4 and r = 0, 1, . . . , 5.
We show that f (m) increases for m ≥ 4. We have from (6)

f
′
(m) = 6

m + 2

6m + r + 1
+ log (6m + r + 1) − 6 log 2. (7)

At m = 2 and r = 0, 1, 2, 3, 4, 5, we have f
′
(m) = 24

17 + log 17 − 6 log 2 = 8.
609 5 × 10−2 > 0. So, to show that f

′
(m) is positive we have to show that f

′
(m)

increases for m ≥ 2. From (7), we have

f
′′
(m) = 6

(6m + 2r + −10)

(6m + r + 1)2
≥ 0 for m ≥ 2.

Hence the proof of (1) is complete.

In order to prove that (n + 2 + [ n6 ]) is the smallest positive integer satisfying the
inequality (1) for 1 < n < 36, it suffices to show that 2nn! ≮ (n + 1 + [ n6 ])!, for
these values. Clearly g(n) = (n + 1 + [ n6 ])! is a continuous and strictly increasing
function for n > 1 and g(2) = 3! = 6 < 222! = 8. Note that

g(35) = 41! = 3. 345 3 × 1049 < 23535! = 3. 550 4 × 1050,

but
g(36) = 43! = 6. 041 5 × 1052 ≮ 23636! = 2. 556 3 × 1052.

Hence the result.

Theorem 3.2 (i) For the group
−→
Sn , 1 < n < 36, the distinguishing number D−→

Sn
(X)

is at most n + 1 + [ n6 ].
(ii) The distinguishing number D−→

A3
(X) is at most 4.

Proof (i) By [10, Corollary 2.1], for any finite group G, the distinguishing number
DG(X) is at most m, where m is the largest positive integer such that |G| ≥ m!.
Since for 1 < n < 36, the number (n + 1 + [ n6 ]) is the largest positive integer
such that |−→Sn | = 2nn! ≥ (n + 1 + [ n6 ])!, therefore, the distinguishing number

D−→
Sn

(X) is at most n + 1 + [ n6 ] for 1 < n < 36, where X is any set on which
−→
Sn

acts.
(ii) The largest value of D−→

A3
(X) is 4, because |−→A3| = 4!.
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By the above theorem, if
−→
S2 acts on a set X then D−→

S2
(X) is at most 3. In the

following theorem,wefind the complete set of distinguishing numbers for
−→
S2 actions.

For the element of
−→
S2 , one can see Example 2.2.

Theorem 3.3 If
−→
S2 acts on X, then the distinguishing number D−→

S2
(X) is either 1, 2

or 3.

Proof The trivial
−→
S2 action on a one element set has distinguishing number 1. If

−→
S2

acts on itself by translation, its distinguishing number is 2 by [10, Proposition 2.2].
If

−→
S2 act on X = {1, 2, 3, 4}, then we show that the distinguishing number D−→

S2
(X)

= 3. For, define a labeling φ : X −→ {1, 2, 3} by φ(1) = 1, φ(2) = 2. If we take
φ(3) = 1, then (13) ∈ −→

S2 preserves the labeling. So we take φ(3) = 2. If we take
φ(4) = 1, then σ = (14)(23) ∈ −→

S2 preserves the labeling. But φ(4) 	= 2 as in that
case (24) ∈ −→

S2 preserves the labeling. Hence, there is only one choice left, that is,
φ(4) = 3. Therefore, for

−→
S2 action on the set {1, 2, 3, 4}, we need minimum 3 labels

to distinguish its action. Hence D−→
S2

(X) = 3.

Theorem 3.4 Let
−→
A2 act on a set X = {1, 2, 3, 4}. Then D−→

A2
(X) = 2.

Proof Obviously D−→
A2

(X) > 1. Let φ(1) = 1. Since (13)(24) ∈ −→
A2, φ(3) 	= 1 or

φ(2) 	= φ(4). So we label 3 as φ(3) = 2 and φ(4) = 2 = φ(2). Clearly, any σε
−→
A2

does not preserve the labeling. Hence for n = 2, we need minimum 2 labels to
distinguish the set {1, 2, 3, 4} by −→

A2, so D−→
A2

(X) = 2.

Finally, in this section, we find the distinguishing number of
−→
A3 action on the set

X = {1, 2, 3, . . . , 6}.
Theorem 3.5 Let X = {1, 2, 3, . . . , 6} and −→

A3 act on X by permuting the numbers.
Then D−→

A3
(X) = 3.

Proof (i) The element (14)(25) ∈ −→
A3 forces φ(1) 	= φ(4), but here we can have

φ(2) = φ(5),
(i i) (25)(36) ∈ −→

A3 forces φ(2) = φ(5), because ifφ(2) 	= φ(5), then it contradicts
(i). So we can take φ(3) 	= φ(6).

(i i i) (14)(36) ∈ −→
A3 forces φ(3) 	= φ(6) and φ(1) 	= φ(4), because if φ(3) =

φ(6),then it contradicts (i i) and if φ(1) = φ(4), then it contradicts (i).
(iv) (12)(45) ∈ −→

A3 forces φ(1) 	= φ(2), but here we can have
(v) φ(4) = φ(5),
The element (15)(24) ∈ −→

A3 forces φ(1) 	= φ(5), suppose we take φ(1) = φ(5),
then using (i) we have φ(2) = φ(1), a contradiction to (iv). We can take φ(2) =
φ(4).

(vi) (26)(53) ∈ −→
A3 forces φ(3) 	= φ(5) and we can have φ(2) = φ(6).
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(vi i) (23)(56) ∈ −→
A 3 forces φ(2) 	= φ(3). Suppose we take φ(2) = φ(3), then

using (i)we have φ(3) = φ(5), a contradiction (vi). Therefore, we also have
(vi i i) φ(5) = φ(6).

(i x) (13)(46) ∈ −→
A3 forces φ(4) = φ(6) because if φ(4) 	= φ(6), then using (vi i i)

we have φ(4) 	= φ(5) which contradicts (v). So we can take
(x) φ(1) 	= φ(3).

(xi) (16)(34) ∈ −→
A3 forces φ(1) 	= φ(6) because if φ(1) = φ(6), then using (vi)

wehaveφ(2) = φ(1)which is a contradiction to (iv). Ifwe takeφ(3) = φ(4),
then by (i x) we get φ(3) = φ(6) which is a contradiction to (i i). Therefore,

(xii) φ(3) 	= φ(4).

The labeling φ : X → {1, 2, 3} defined by φ(1) = 1, φ(3) = 2. φ(2) = φ(4) =
φ(5) = φ(6) = 3 satisfies all the conditions given above, and hence distinguishes the
action of

−→
A3 on X . Moreover, the conditions (i),(x) and (xii) give that φ(1) 	= φ(4)

	= φ(3). So the action of
−→
A3 on X is not 2-distinguishable, hence D−→

A3
(X) = 3.

4 The Sets with D−→
S3
(X) = 3

In this section, we examine the distinguishing numbers of
−→
S3 actions on various sets.

But in all the cases D−→
S3

(X) = 3. By [10, Proposition 2.1], D−→
S3

(X) = 1 when
−→
S3

acts trivially on one element set and By [10, Proposition 2.1], D−→
S3

(X) = 2 when
−→
S3

acts on itself by translation. By Theorem 3.2.(i), the distinguishing number D−→
S3

(X)

is at most n + 1 + [ n6 ] = 4. Hence the question finding a set X with group action of−→
S3 on it such that D−→

S3
(X) = 4 still remains unsolved.

First, we examine the distinguishing numbers of conjugacy action of
−→
S3 on the

conjugacy classes of the various elements of
−→
S3 when it acts by conjugation on itself.

Theorem 4.1 Let
−→
S3 act on X = C(14)(2356) = {(14)(2356), (14)(2653),

(36)(1245), (36)(1542), (25)(1346), (25)(1643)}. Then D−→
S3

(X) = 3.

Proof It is easy to see that St−→S3 (X) = {e, (14)(25)(36)}. Therefore, any labeling φ

of X distinguishes the action of
−→
S3 on X , if there exist σ ∈ X for every τ that does

not belongs to St−→
S3

(X) such that φ(σ) 	= φ(τ(σ )). We calculated the stabilizers of
all the elements belonging to X and found that the order of stabilizer of every element
belonging to X is 8. So we take

St(14)(2356) = {e, (14), (14)(25)(36), (25)(36), (2356), (2653),
(14)(2356), (14)(2653)} = St(14)(2653).

If we label φ(14)(2356) = 1, then there are 40 elements of
−→
S3 which do not

preserve the labeling provided the remaining elements of X are not labeled by
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1. Take X1 = X\{(14)(2356), (14)(2653)} and G1 = St(14)(2356), then X1 is G1-
invariant. For, let τ ∈ X1 and σ ∈ G1. If στσ−1 = (14)(2356) or (14)(2653), then
στσ−1 = σ(14)(2356)σ−1 or σ(14)(2653)σ−1, which gives that τ =(14)(2356) or
(14)(2653), which is a contradiction. Hence X1 is G1-invariant and G1 acts on X1.

Now the problem of labeling is reduced to the labeling of the set X1 by G1 with the
numbers > 1. When G1 acts on X1, we have

St(36)(1245) = St(36)(1542) = St(25)(1346) = St(25)(1643) = {e, (14)(25)(36)}.

Therefore, if we label any element of X1 by 2 and the remaining elements of
X1 by 3, then this labeling is 3-distinguishable by

−→
S3 action. Obviously, this is

the minimum number to have the action of
−→
S3 on X distinguishable. Thus, we

defineφ : X −→ {1, 2, 3} byφ((14)(2356)) = 1, φ((36)(1245)) = 2 andφ(σ) = 3
for the remaining elements of X.

Theorem 4.2 Let
−→
S3 act on

X = C(1245) = {(1245), (1542), (2356), (2653), (1346), (1643)}.

Then D−→
S3

(X) = 3.

Proof Here also the order of stabilizer of each σ ∈ X is 8. So we take
St(1245) = {e, (36), (14)(25)(36), (36)(1245), (36)(1542), (1245), (1542),

(14)(25)}
and X1 = X\{(1245), (1542)}. As in the above theorem, X1 is G1-invariant.

When G1 acts on X1, we have

St(2356) = St(2653) = St(1346) = St(1643) = {e, (14)(25)(36)}.

Therefore as in the above theorem, D−→
S3

(X) = 3.

Theorem 4.3 Let
−→
S3 act on X = C(14) ∪ C(14)(25) = {(14), (25), (36), (14)(25),

(14)(36), (14)(25)}. Then D−→
S3

(X) = 3.

Proof It is easy to see that

St−→
S3

(X) = {e, (14), (25), (36), (14)(25)(36), (14)(25), (14)(36), (25)(36)}.

Therefore any labeling φ of X distinguishes the action of
−→
S3 on X , if there exist

σ ∈ X for every τ that does not belongs to St−→S3 (X) such that φ(σ) 	= φ(τ(σ )). We
calculated the stabilizers of all the elements belonging to X and found that the order
of stabilizer of every element belonging to X is 16 because X is the union of two
conjugacy classes each having three elements. So we take
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St(14)(36) = {e, (14), (25), (36), (14)(25), (25)(36), (14)(36), (13)(46), (16)(34),
(14)(25)(36), (1346), (1643), (25)(1346), (25)(1643), (25)(16)(34), (25)(13)(46)}.

If we label φ((14)(36)) = 1, then there are 32 elements of
−→
S3 which do not

preserve the labeling provided the remaining elements of X are not labeled by 1.
Take X1 = X\{(14)(36)} and G1 = St(14)(36), then X1 is G1-invariant and G1 acts
on X1. Now the problem of labeling is reduced to the labeling of the set X1 by G1

with the numbers > 1. When G1 acts on X1, we have

St(14)(25) = St(25)(36) = St(14) = St(25) = St(36) =
{e, (14), (25), (36), (14)(25)(36), (14)(25), (14)(36), (25)(36)}.

The elements of the above stabilizers preserve any labeling as they are in St−→S3 (X).

Therefore, if we label any element of X1 by 2 and the remaining elements of
X1 by 3, then this labeling is 3-distinguishable by

−→
S3 action. Obviously, this is

the minimum number to have the action of
−→
S3 on X distinguishable. Thus, we

define φ : X −→ {1, 2, 3} by φ((14)(36)) = 1, φ((25)) = 2 and φ(σ) = 3 for the
remaining elements of X.

Theorem 4.4 Let X be the set of conjugacy class {(123456), (165432), (135462),
(126453), (132465), (156423), (162435),
(153426)} of the permutation (123456) and

−→
S3 act on X by conjugation. Then

D−→
S3

(X) = 3.

Proof Here, we have 4 pairs of elements, each pair consisting of σ and its inverse
σ−1:
{(123456),(165432)},
{(135462),(126453)},
{(132465),(156423)},
{(162435),(153426)}.
Further, St−→

S3
(X) = {e, (14)(25)(36)}. First, we show that X is not 2-

distinguishable. Suppose φ gives both elements of two different pairs the same
label, that is φ(156423) = φ(132465), φ(162435) = φ(153426), φ(123456) =
φ(135462) and φ(165432) = φ(126453).Then the action of (12)(45) on X pre-
serves each component, exchanging each of these pairs while fixing the first two
components, so φ does not distinguish X. That is, (12)(45) preserve the labeling as

(12)(45)(123456)(12)(45) = (135462)
(12)(45)(165432)(12)(45) = (126453)
(12)(45)(135462)(12)(45) = (123456)
(12)(45)(126453)(12)(45) = (165432)
(12)(45)(156423)(12)(45) = (132465)
(12)(45)(162453)(12)(45) = (153426)
(12)(45)(132465)(12)(45) = (156423)
(12)(45)(153426)(12)(45) = (162435).
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Suppose φ gives both elements of two pairs the same label, say without loss
of generality that φ(132465) = φ(156423) and φ(162435) = φ(153426). Then the
action of (15)(24)(36) exchanges the vertices of (132465), (156423) and (162435),
(153426) among themselves that is preserving the two components and exchanging
the other two components. That is,

(15)(24)(36)(123456)(15)(24)(36) = (135426)
(15)(24)(36)(165432)(15)(24)(36) = (126453)
(15)(24)(36)(135462)(15)(24)(36) = (123456)
(15)(24)(36)(126453)(15)(24)(36) = (165432)
(15)(24)(36)(156423)(15)(24)(36) = (132465)
(15)(24)(36)(132465)(15)(24)(36) = (156423)
(15)(24)(36)(162435)(15)(24)(36) = (153426)
(15)(24)(36)(153426)(15)(24)(36) = (162435).

Thus (15)(24)(36) preserves the labeling.
So, φ doesnot distinguish X . Suppose, that φ gives different label to the two

elements of three components, that is φ(135462) = φ(132465) = φ(162435) and
φ(126453) = φ(156423) = φ(153426). Then the action of (153)(264) cyclically
permutes the three components and preserving the first component, i.e.,

(153)(264)(123456)(135)(246) = (123456)
(153)(264)(165432)(135)(246) = (165432)
(153)(264)(135462)(135)(246) = (162435)
(153)(264)(126453)(135)(246) = (153426)
(153)(264)(156423)(135)(246) = (126453)
(153)(264)(132465)(135)(246) = (135462)
(153)(264)(162435)(135)(246) = (132465)
(153)(264)(153426)(135)(246) = (156423).

That is, (153)(264) preserves the labeling, so φ does not distinguish X.

Suppose thatφ(123456) = φ(126453),φ(135462) = φ(165432) andφ(132465)
= φ(162435), φ(156423) = φ(153426). Then the action of (14)(25) preserves the
labeling as

(14)(25)(123456)(14)(25) = (126453)
(14)(25)(165432)(14)(25) = (135462)
(14)(25)(132465)(14)(25) = (162435)
(14)(25)(156423)(14)(25) = (153426)
(14)(25)(135462)(14)(25) = (165432)
(14)(25)(126453)(14)(25) = (123456)
(14)(25)(162435)(14)(25) = (132465)
(14)(25)(153426)(14)(25) = (156423).
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Hence, X is not 2-distinguishable under
−→
S3 action. Define labeling φ : X −→

{1, 2, 3} by φ(165432) = φ(132465) = φ(153426) = 1, φ(123456) = φ(126453)
= φ(162435) = 2 and φ(135462) = φ(156423) = 3. Then this labeling is 3-
distinguishable by

−→
S3 action on X.

Theorem 4.5 If
−→
S3 acts on X = {1, 2, 3, 4, 5, 6}, then the distinguishing numbers

D−→
S3

(X) is 3.

Proof Define a labeling φ on X by φ(1) = 1, then φ(4) 	= 1 because if we take
φ(4) = 1, then (14) ∈ −→

S3 preserves the labeling. We also observe that

(i) (25) ∈ −→
S3 forces φ(2) 	= φ(5),

(i i) (36) ∈ −→
S3 forces φ(3) 	= φ(6),

(i i i) (12)(45) ∈ −→
S3 forces φ(1) 	= φ(2), but here we can have

(iv) φ(4) = φ(5),

The element (15)(24) ∈ −→
S3 forces φ(1) 	= φ(5) or φ(2) 	= φ(4).

Suppose we take φ(1) = φ(5), then from (i i i) we have φ(4) = φ(1), a contra-
diction as observed above. Suppose we take φ(2) = φ(4), then from (i i i) we have
φ(4) = φ(5) which give φ(2) = φ(5), a contradiction to (i). Therefore, we have

(v) φ(1) 	= φ(5) and φ(2) 	= φ(4).
(vi) (26)(53) ∈ −→

S3 forces φ(3) 	= φ(5) and we can have φ(2) = φ(6).
(vi i) (23)(56) ∈ −→

S3 forces φ(2) 	= φ(3). Suppose we take φ(5) = φ(6), then from
(vi) we have φ(2) = φ(6) which give φ(2) = φ(5), a contradiction (i).
Therefore, we also have

(vi i i) φ(5) 	= φ(6).
(i x) (13)(46) ∈ −→

S3 forces φ(4) 	= φ(6) because if φ(4) = φ(6), then using (vi)
we have φ(4) = φ(2) which contradicts (v). So we can take

(x) φ(1) = φ(3).
(xi) (16)(34) ∈−→

S3 forcesφ(1) 	= φ(6) because ifφ(1) = φ(6), then using (x)we
have φ(3) = φ(6) which is a contradiction to (i i). If we take φ(3) = φ(4),
then by (x) we get φ(1) = φ(4), which is a contradiction as observed in the
beginning. Therefore,

(xii) φ(3) 	= φ(4).

The labeling φ : X → {1, 2, 3} defined by φ(1) = φ(3) = 1. φ(2) = φ(6) = 2
and φ(4) = φ(5) = 3 satisfies all the conditions given above and hence distin-
guish the action of

−→
S3 on X . As the action of

−→
S3 on X is not 2-distinguishable,

D−→
S3

(X) = 3.

Theorem 4.6 Let
−→
S3 act on set X = {{1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6},

{1, 2, 4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6}}, then the distinguishing number D−→
S3

(X)

is 3.
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Proof The element (14) ∈ −→
S3 forces

(i) φ({2, 3, 4, 5, 6}) 	= φ({1, 2, 3, 5, 6})
(i i) (25) ∈ −→

S3 forces φ({1, 2, 3, 4, 6}) 	= φ({1, 3, 4, 5, 6})
(i i i) (36) ∈ −→

S3 forces φ({1, 2, 4, 5, 6}) 	= φ({1, 2, 3, 4, 5})
(iv) (12)(45) ∈ −→

S3 forces φ({1, 3, 4, 5, 6}) 	= φ({2, 3, 4, 5, 6}), but here we can
have

(v) φ({1, 2, 3, 4, 6}) = φ({1, 2, 3, 5, 6}).
The element (15)(24) ∈ −→

S3 forces φ({1, 3, 4, 5, 6}) 	= φ({1, 2, 3, 5, 6}) or
φ({1, 2, 3, 4, 6}) 	= φ({2, 3, 4, 5, 6}).

Suppose we take φ({1, 3, 4, 5, 6}) = φ({1, 2, 3, 5, 6}), then from (v) we have
φ({1, 2, 3, 4, 6}) = φ({1, 3, 4, 5, 6}), a contradiction to (i i). Suppose we take
φ({1, 2, 3, 4, 6}) = φ({2, 3, 4, 5, 6}), then from (v) we have φ({2, 3, 4, 5, 6}) =
φ({1, 2, 3, 5, 6}) which is a contradiction to (i). Therefore, we have

(vi) φ({1, 3, 4, 5, 6}) 	= φ({1, 2, 3, 5, 6}) and φ({1, 2, 3, 4, 6}) 	= φ({2, 3, 4,
5, 6}).

(vi i) (26)(35) ∈ −→
S3 forces φ({1, 2, 4, 5, 6}) 	= φ({1, 2, 3, 4, 6}) and we can have

φ({1, 3, 4, 5, 6}) = φ({1, 2, 3, 4, 5}).
(vi i i) (23)(56) ∈ −→

S3 forces φ({1, 3, 4, 5, 6}) 	= φ({1, 2, 4, 5, 6}). Suppose we take
φ({1, 2, 3, 4, 6}) = φ({1, 2, 3, 4, 5}), then from (vi i) we have φ({1, 2, 3,
4, 6})
= φ({1, 3, 4, 5, 6}) which is a contradiction (i i). Therefore, we also have

(i x) φ({1, 2, 3, 4, 6}) 	= φ({1, 2, 3, 4, 5}).
(i x) (13)(46) ∈ −→

S3 forces φ({1, 2, 3, 5, 6}) 	= φ({1, 2, 3, 4, 5}) because if
φ({1, 2, 3, 5, 6}) = φ({1, 2, 3, 4, 5}), then using (vi) we have φ({1, 2, 3,
5, 6}) = φ({1, 3, 4, 5, 6}) which contradicts (vi). So we can take

(x) φ({2, 3, 4, 5, 6}) = φ({1, 2, 4, 5, 6}).
(xi) (16)(34) ∈ −→

S3 forces φ({2, 3, 4, 5, 6}) 	= φ({1, 2, 3, 4, 5}) because if
φ({2, 3, 4, 5, 6}) = φ({1, 2, 3, 4, 5}, then using (x) we have φ({1, 2, 4,
5, 6}) = φ({1, 2, 3, 4, 5})which is a contradiction to (i i i). If we takeφ({1, 2,
4, 5, 6}) = φ({1, 2, 3, 5, 6}), then by (x)we get φ({2, 3, 4, 5, 6}) = φ({1, 2,
3, 5, 6}) which is a contradiction to (i). Therefore,

(xii) φ({1, 2, 4, 5, 6}) 	= φ({1, 2, 3, 5, 6}).
The labeling φ defined by φ({1, 2, 3, 4, 6}) = φ({1, 2, 3, 5, 6}) = 1, φ({1, 3,

4, 5, 6}) = φ({1, 2, 3, 4, 5}) = 2 and φ({2, 3, 4, 5, 6}) = φ({1, 2, 4, 5, 6}) = 3 dis-
tinguishes the action of

−→
S3 on X. As the action of

−→
S3 on X is not 2-distinguishable,

D−→
S3

(X) = 3.
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5 Distinguishing
−→
A3 Actions on Graphs

In this section, we find the distinguishing number D(Ĝ) of a graph on which an
action of

−→
A3 consists of graph automorphisms. The conjugacy class C(14)(2356)

will be used to compute the distinguishing number of
−→
A3 actions on a graph Ĝ with

vertices belonging to C(14)(2356).

Theorem 5.1 Let Ĝ be a graph whose vertex set is the conjugacy class of the per-
mutation (14)(2356), that is,

V = {(14)(2356), (14)(2653), (25)(1346), (25)(1643), (36)(1245), (36)(1542)}

and whose edge set consists of (v, v
′
) such that permutation v is the inverse of v

′
.

Let
−→
A3 act on V by conjugation. Then D(Ĝ) = 3.

Proof The graph X given below shows a labeling ϕ indicated by the numbers 1, 2
and 3 with the vertices.

(14)(2356) (25)(1346) (36)(1245)⊙
2

⊙
3

⊙
1

| | |⊙
1

⊙
2

⊙
3

(14)(2653) (25)(1643) (36)(1542)

Let
−→
A3 act on V by conjugation. This faithful action of

−→
A3 on V consists of graph

automorphisms since conjugation preserves inverses. The figure given above shows
a 3-distinguishing labeling of Ĝ under the conjugation action of

−→
A3.

It remains to show that no 2-labeling distinguishes Ĝ. Suppose φ gives both
vertices of a component the same label for two different components, i.e., say
φ(25)(1346) = φ(25)(1643) and φ(14)(2356) = φ(14)(2653). Then we check
whether the actionof (14)(25)on Ĝ distinguishes the labeling?The actionof (14)(25)
on V is given as

(14)(25)(36)(1245)(14)(25) = (36)(1245),
(14)(25)(36)(1542)(14)(25) = (36)(1542),
(14)(25)(14)(2356)(14)(25) = (14)(2653),
(14)(25)(14)(2653)(14)(25) = (14)(2356),
(14)(25)(25)(1643)(14)(25) = (25)(1346),
(14)(25)(25)(1346)(14)(25) = (25)(1643).

Thus, the action of (14)(25) on Ĝ preserves each component, exchanging each
of these pairs while fixing the first component, so φ does not distinguish Ĝ.

Suppose both vertices of one component share the same label, say φ(36)(1245) =
φ(36)(1542).
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Then we check whether the actions of (12)(45) and (15)(24) on Ĝ distinguish
the labeling? The action of (12)(45) on V is given as

(12)(45)(36)(1245)(12)(45) = (36)(1542),
(12)(45)(36)(1542)(12)(45) = (36)(1245),
(12)(45)(14)(2356)(12)(45) = (25)(1346),
(12)(45)(14)(2653)(12)(45) = (25)(1643),
(12)(45)(25)(1346)(12)(45) = (14)(2356),
(12)(45)(25)(1643)(12)(45) = (14)(2653).

And the action of (15)(24) on X is given as

(15)(24)(36)(1245)(15)(24) = (36)(1542),
(15)(24)(36)(1542)(15)(24) = (36)(1245),
(15)(24)(14)(2356)(15)(24) = (25)(1643),
(15)(24)(14)(2653)(15)(24) = (25)(1346),
(15)(24)(25)(1346)(15)(24) = (14)(2653),
(15)(24)(25)(1643)(15)(24) = (14)(2356).

Thus, actionof (12)(54) and (15)(24) exchanges thevertices (36)(1245), (36)(1542)
and switching the other two components in the two possible ways. Thus, φ can not
distinguish the graph.

Let φ(14)(2653) = φ(25)(1346) = φ(36)(1245) and φ(14)(2356) = φ(25)
(1643) = φ(36)(1542).

Then (126)(345) cyclically permutes the three components

i.e., (126)(345)(14)(2356)(162)(354) = (36)(1542),
(126)(345)(36)(1542)(162)(354) = (25)(1643),
(126)(345)(25)(1643)(162)(354) = (14)(2356).

And
(126)(345)(14)(2653)(162)(354) = (36)(1245),
(126)(345)(36)(1245)(162)(354) = (25)(1346),
(126)(345)(25)(1346)(162)(354) = (14)(2653).

So, φ preserves the labeling. Therefore X is not 2-distinguishable and 3-
distinguishing.
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Zero-Divisor Graphs of Laurent Polynomials
and Laurent Power Series

Anil Khairnar and B.N. Waphare

Abstract In this paper, we examine the preservation of diameter and girth of the
zero-divisor graph under extension to Laurent polynomial and Laurent power series
rings.

Keywords Zero-divisor graphs · Laurent polynomials · Laurent power series
2010 Mathematics Subject Classication Primary 05C99 · Secondary 13B99

1 Introduction

The concept of the zero-divisor graph of a commutative ring was first introduced
by Beck [3], and later redefined in [1] by Anderson and Livingston. We adopt the
approach used by D.F. Anderson and Livingston [1], which consider only nonzero
zero-divisors as vertices of the graph.

It is an interesting question to consider the preservation of graph theoretic prop-
erties under various ring theoretic extensions. Work on polynomial and power series
extensions is done by M. Axtell, J. Coykendall, J. Stickles [2]. In this paper, we
examine the preservation of the diameter of the zero-divisor graph under extensions
to Laurent polynomial and Laurent power series rings. Also, we consider the effects
of the same extensions on the girth of the graph.

We use Z(R) to denote the set of zero-divisors of R; we use Z∗(R) to denote the
set of nonzero zero-divisors of R. By the zero-divisor graph of R, denoted �(R), we
mean the graph whose vertices are the nonzero zero-divisors of R, and for distinct
r, s ∈ Z∗(R), there is an edge connecting r and s if and only if rs = 0. For two
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distinct vertices a and b in a graph �, the distance between a and b, denoted d(a, b),
is the length of the shortest path connecting a and b, if such a path exists; otherwise,
d(a, b) = ∞. The diameter of a graph � is diam(�) = sup{d(a, b) | a and b are
distinct vertices of �}. We will use the notation diam(�(R)) to denote the diameter
of the graph �(R). The girth of a graph �, denoted g(�), is the length of the shortest
cycle in �, provided � contains a cycle; otherwise, g(�) = ∞. A graph is said to
be connected if there exists a path between any two distinct vertices, and a graph is
complete if it is connected with diameter one. A graph G is said to be k-connected
(or k-vertex connected) if there does not exist a set of k − 1 vertices of G whose
removal disconnects the graph. Therefore a connected graph is 1-connected. A ring
is said to be reduced if it does not have any nonzero nilpotent elements.

Throughout this paper, R denotes a commutative ring with identity, R[x] denotes
a polynomial ring, R[x, x−1] denotes a Laurent polynomial ring, R[[x]] denotes a
power series ring, R[[x, x−1]] denotes a Laurent power series ring, N is the set of
natural numbers and W is the set of nonnegative integers.

2 Diameter of �(R), �(R[x, x−1]) and �(R[[x, x−1]])

Note that �(Z6) is connected but not 2-connected and �(Z3 × Z3) is 2-connected
but not 3-connected. In this section we prove that �(R[x]) is n-connected for any
n ∈ N.

First, we recall the following result now known as McCoy’s Theorem; see [4].

Theorem 2.1 ([4, Theorem 2]) Let R be a commutative ring. If g(x) is a zero-divisor
in R[x], then there exists a nonzero element c ∈ R such that g(x)c = 0.

Theorem 2.2 Let R be a commutative ring. Then �(R[x]) is n-connected for any
n ∈ N.

Proof Letg1, g2, . . . , gn ∈ Z∗(R[x]) forn ∈ N and f1, f2 ∈ Z∗(R[x])\{g1, g2, . . . ,
gn}. By Theorem 2.1, there exist nonzero r1, r2 ∈ R such that f1r1 = f2r2 = 0.
Let m = max{deg(g1), deg(g2), . . . , deg(gn)}. If r1r2 = 0 then f1 − r1xm+1 −
r2xm+1 − f2 is a path in �(R[x]) not containing any vertex from {g1, g2, . . . , gn}.
If r1r2 �= 0 then f1 − r1r2xm+1 − f2 is a path in �(R[x]) not containing any vertex
from {g1, g2, . . . , gn}. Hence �(R[x] is n-connected for any n ∈ N. �

Recall the following result due to D.F. Anderson and Livingston [1].

Theorem 2.3 ([1, Theorem 2.3]) Let R be a commutative ring, not necessarily with
identity, with Z∗(R) �= ∅. Then �(R) is connected and diam(�(R)) ≤ 3.

Now, we prove the result which shows that; diam(�(R[x, x−1])) = diam
(�(R[x])).
Theorem 2.4 Let R be a commutative ring. Then diam(�(R[x, x−1])) = diam
(�(R[x])) and diam(�(R[[x, x−1]])) = diam(�(R[[x]])).
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Proof Let f1(x), f2(x) ∈ Z∗(R[x, x−1]). Let g1(x), g2(x) ∈ Z∗(R[x]) be such that
f1(x) = x−t1g1(x) and f2(x) = x−t2g2(x) for some t1, t2 ∈ W. If diam(�(R[x])) =
1, then g1(x)g2(x) = 0. Therefore f1(x) f2(x) = 0. This yields diam
(�(R[x, x−1])) = 1.

Suppose diam(�(R[x])) = 2. If f1(x) f2(x) = 0 then we are through. Sup-
pose f1(x) f2(x) �= 0. Then g1(x)g2(x) �= 0. Since diam(�(R[x])) = 2, there exists
g3(x) ∈ Z∗(R[x]) such that g1(x) − g2(x) − g3(x) is a path in �(R[x]). So g3(x) ∈
Z∗(R[x, x−1]) be such that f1(x) − g2(x) − f2(x) is a path in �(R[x, x−1]). There-
fore diam(�(R[x, x−1])) = 2.

Similarly we can prove that if diam(�(R[x])) = 3 then diam(�(R[x, x−1])) =
3. Thus by using Theorem 2.3, we get diam(�(R[x, x−1])) = diam(�(R[x])). Sim-
ilarly we can prove diam(�(R[[x, x−1]])) = diam(�(R[[x]])). �

Observe that �(R) is a subgraph of �(R[x, x−1]), which is a subgraph of
�(R[[x, x−1]]). Since Z∗(R) ⊆ Z∗(R[x]) ⊆ Z∗([x, x−1]) ⊆ Z∗([[x, x−1]]),
we have diam(�(R)) ≤ diam(�(R[x])) ≤ diam(�(R[x, x−1])) ≤ diam(�(R[[x,
x−1]])).
Example 2.5 There exists a ring R such that �(R) is complete but �(R[x, x−1])
is not complete and hence �(R[[x, x−1]]) is not complete. Let R = Z2 × Z2 then
�(R) is complete. However, �(R[x, x−1]) is not complete. Since for a = (1, 0) +
(1, 0)x , b = (1, 0) + (1, 0)x2 ∈ Z∗(R[x, x−1]), ab �= 0. Therefore �(R[x, x−1]) is
not complete.

The following theorem follows from the results of Axtell et al. [2] and Theo-
rem 2.4.

Theorem 2.6 Let R be a commutative ring.

(1) If R �= Z2 × Z2 then �(R[[x, x−1]]) is complete if and only if �(R[x, x−1]) is
complete if and only if �(R) is complete.

(2) If diam(�(R)) = 2 and Z(R) = P1 ∪ P2 is the union of precisely two maximal
primes in Z(R), then diam(�(R[x, x−1])) = 2.

(3) If R is a Noetherian ring, Z(R) = P is a prime ideal and diam(�(R)) = 2,
then diam(�(R[x, x−1])) = 2.

(4) If R is a Noetherian ring and diam(�(R)) = 2, then diam(�(R[[x, x−1]])) =
2.

(5) If for some n ∈ N with n > 2, (Z(R))n = 0, then diam(�(R[[x, x−1]])) =
diam(�(R[x, x−1])) = diam(�(R)) = 2.

Does there exists a ring R with diam(�(R)) = 2 but either diam(�(R[x])) = 3
or diam(�(R[[x]])) = 3? In [2], Axtell et al. have given an example of a commu-
tative ring R with identity, such that diam(�(R)) = 2 and diam(�(R[[x]])) = 3.
The following is an example of a commutative ring R without identity, such that
diam(�(R)) = 2 and diam(�(R[[x]])) = 3. Our example is simple than example
given by Axtell et al. [2]. In [6] Rege and Chhawchharia introduced Armendariz
rings. First we recall the definition introduced by Zhang [5].
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Definition 2.7 A ring R is said to be Strong Armendariz (also called an Armendariz
ring of power series type), if

f (x) =
∑

ai x
i , g(x) =

∑
b j x

j ∈ R[[x]]

satisfy f (x)g(x) = 0, then aib j = 0, ∀ i, j .

Example 2.8 Let R = {X ⊆ N | |X | < ∞}. Consider a ring (R,+, .) where, A +
B = (A − B) ∪ (B − A) and A.B = A ∩ B. Observe that diam(�(R)) = 2.

Let f (x) = A0 + A1x + A2x2 + · · · , g(x) = B0 + B1x + B2x2 + · · · with
A0 = {1}, An = {2n}, B0 = {1}, Bn = {2n + 1}, for all n = 1, 2, 3 · · · . Since f (x).
{3} = ∅ and g(x).{2} = ∅, therefore f (x), g(x) ∈ Z∗(R[[x]]). Note that f (x).
g(x) = {1} �= ∅. Assume that there exists h(x) ∈ Z∗(R[[x]]) such that f (x).h(x) =
φ = g(x).h(x). As R is a reduced ring, it is a strong Armendariz ring. This
yields Ai .C j = ∅ = Bi .C j for all i and j . Consequently C j = ∅ for all j . That
is h(x) = ∅, a contradiction. Thus diam(�(R[[x, x]])) ≥ 3. Thus by Theorem
2.3, we get diam(�(R[[x]])) = 3. Inview of of Theorem 2.4, it is clear that
diam(�(R[[x, x−1]])) = 3.

3 Girth of �(R[x, x−1]) and �(R[[x, x−1]])

For a non-constant polynomial f ∈ R[x, x−1] does there exists a cycle containing
vertex f and at least one vertex of �(R)? We answer this question in sequel. First,
we recall the following theorem due to Zhang [5].

Theorem 3.1 ([5, Corollary 3.3]) Let R be a commutative ring. If g(x) is a zero-
divisor in R[x, x−1], then there exists a nonzero element c ∈ R such that g(x)c = 0.

Theorem 3.2 Let R be a commutative ring not necessarily with identity. If f ∈
Z∗(R[x, x−1]) is a non-constant polynomial, then there exists a cycle of length 3 or
4 in �(R[x, x−1]) with f as one vertex and some a ∈ Z∗(R) as another.

Proof Let f ∈ Z∗(R[x, x−1]) be a non-constant polynomial. By Theorem 3.1, there
existsa ∈ Z∗(R) such thata f = 0.Hence there exists a non-constant polynomialg ∈
Z∗(R[x, x−1]) different than f such that f g = 0 (we can take g(x) = ax1+deg( f )).
By Theorem 3.1, there exists b ∈ Z∗(R) such that bg = 0.
Case(1): ab = 0 and b f �= 0, then a − f − g − b − a is a required cycle.
Case(2): ab = 0 and b f = 0, a − f − b − a is a required cycle.
Case(3): ab �= 0 and b f = 0, then b − f − g − b is a required cycle.
Case(4): ab �= 0 and b f �= 0. Let f = c−mx−m + · · · + c0 + · · · + cnxn . There
exists some j such that bc j �= 0. Thus, a − f − g − bc j − a is a required cycle.
Thus in any case there exists a cycle of length 3 or 4 in �(R[x, x−1]) with f as one
vertex and some a ∈ Z∗(R) as another.
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In [2] Axtell et al. have given an example of a ring R such that g(�(R)) �=
g(�(R[x])) and they also proved the following result.

Theorem 3.3 ([2, Theorem 7]) Let R be a commutative ring, not necessarily with
identity. Then g(�(R)) ≥ g(�(R[x])) = g(�(R[[x]])). In addition, if R is reduced
and �(R) contains a cycle, then g(�(R)) = g(�(R[x])) = g(�(R[[x]])).
Theorem 3.4 Let R be a commutative ring, not necessarily with identity. Then
g(�(R[x])) = g(�(R[x, x−1])) = g(�(R[[x]])) = g(�(R[[x, x−1]])).
Proof Since Z∗(R) ⊆ Z∗(R[x]) ⊆ Z∗([x, x−1]), we have g(�(R)) ≥ g(�

(R[x])) ≥ g(�([x, x−1])). Hence it is sufficient to prove, g(�(R[x])) ≤ g(�([x,
x−1])), wheng(�([x, x−1])) is finite, say k. Let f1 − f2 − · · · − fk − f1 be a k-cycle
in �(R[x, x−1]). Let t be the least power of x occurs in f1, f2, . . . , fk . This gives a
k-cycle, f1xt − f2xt − · · · − fk x t − f1xt in�(R[x]). Therefore g(�(R[x])) ≤ k =
g(�(R[x, x−1])). Thus g(�(R[x])) = g(�(R[x, x−1])).

On the similar lines, we can prove that g(�(R[[x]])) = g(�(R[[x, x−1]])). Thus
by using Theorem 3.3, we get g(�(R[x])) = g(�(R[x, x−1])) = g(�(R[[x]])) =
g(�(R[[x, x−1]])). �

Theorem 3.5 Let R be a commutative ring, not necessarily with identity. Then
g(�(R)) ≥ g(�(R[x, x−1])) = g(�(R[[x, x−1]])). In addition, if R is reduced and
�(R) contains a cycle, then g(�(R)) = g(�(R[x, x−1])) = g(�(R[[x, x−1]])).
Proof Follows from Theorems 3.3 and 3.4. �
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Abstract Let R be a prime ring and F,G : R → R be two generalized derivations
of R such that F2 + G is n-commuting or n-skew-commuting on a nonzero square
closed Lie ideal U of R. In the present paper we prove under certain conditions that
U ⊆ Z(R).
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1 Introduction

Throughout the paper R will denote an associative prime ring with center Z(R)

and extended centroid C , RC the central closure of R. A ring R is said to be
prime if aRb = {0} implies either a = 0 or b = 0. A ring R is said to be n-torsion
free if nx = 0 for x ∈ R implies that x = 0. We shall write for any pair of ele-
ments x, y ∈ R the commutator [x, y] = xy − yx , and skew-commutator x ◦ y =
xy + yx . We will frequently use the basic commutator and skew-commutator identi-
ties: (i) [xy, z] = x[y, z] + [x, z]y and [x, yz] = y[x, z] + [x, y]z for all x, y, z ∈ R
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and (ii) x ◦ yz = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z and xy ◦ z = x(y ◦ z) −
[x, z]y = (x ◦ z)y + x[y, z], for all x, y, z ∈ R. An additive mapping d : R → R is
said to be a derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. An addi-
tive mapping F : R → R is said to be a right generalized derivation with asso-
ciated derivation d on R if F(xy) = F(x)y + xd(y) holds for all x, y ∈ R and
F is said to be a left generalized derivation with associated derivation d on R if
F(xy) = d(x)y + xF(y) holds for all x, y ∈ R. F is said to be a generalized deriva-
tion with associated derivation d on R if F is both a right and a left generalized
derivation with associated derivation d on R. ( Note that this definition differs from
the one given by Hvala in [5], his generalized derivations are our right generalized
derivations.) Every derivation is a generalized derivation. An additive subgroupU of
R is said to be a Lie ideal of R, if [u, r ] ∈ U for all u ∈ U and r ∈ R. The Lie ideal
U of R is said to be square closed if u2 ∈ U for all u ∈ U . Deng and Bell [2] defined
n-centralizing and n-commuting mappings, the concept more general than central-
izing and commuting mappings. Let n ≥ 1 be a fixed integer and S be a nonempty
subset of R. A mapping f : R → R is said to be n-centralizing (resp. n-commuting)
on S, if [ f (x), xn] ∈ Z(R) (resp. [ f (x), xn] = 0) for all x ∈ S. Analogously a map-
ping f : R → R is said to be n-skew-centralizing (resp. n-skew-commuting) on S,
if f (x)xn + xn f (x) ∈ Z(R) (resp. f (x)xn + xn f (x) = 0) for all x ∈ S.

In [7], Park et al. proved that if d, g are two derivations in a Banach algebra A
such that αd2 + g is n-commuting on A, then both d and g map A into rad(A), the
Jacobson radical of A.More recently in [4], Fosner andVukmanproved the following:
If R is a 2-torsion free semiprime ring and f : R → R is an additive mapping which
is 2-commuting, then f is commuting. As an application of this result, authors
showed that if d, g are two derivations such that d2 + g is 2-commuting then d and
g map R into its center. In the present paper we study the situations when F2 + G is
n-commuting or n-skew-commuting on a nonzero square closed Lie ideal U of R,
where F ,G are two generalized derivations of R with associated nonzero derivations
d and g respectively and then we show under certain conditions that U ⊆ Z(R).

2 Preliminaries

Let U be a Lie ideal of R such that x2 ∈ U for all x ∈ U . Then for all x, y ∈ U , we
have xy + yx = (x + y)2 − x2 − y2 ∈ U . Again by the definition of Lie ideal, we
have xy − yx ∈ U . Combining these two we get 2xy ∈ U for all x, y ∈ U .

We begin with several Lemmas, most of which have been proved elsewhere.

Lemma 2.1 ([1, Lemma 2]) Let R be a 2-torsion free prime ring. If U � Z(R) is a
Lie ideal of R, then CR(U ) = Z(R).

Lemma 2.2 ([1, Lemma 3]) Let R be a 2-torsion free prime ring. If U is a Lie ideal
of R, then CR([U,U ]) = CR(U ).
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Lemma 2.3 ([1, Lemma 4]) Let R be a 2-torsion free prime ring. If U � Z(R) is a
Lie ideal of R and aUb = (0), then a = 0 or b = 0.

Lemma 2.4 ([1, Lemma 5]) Let R be a 2-torsion free prime ring andU be a nonzero
Lie ideal of R. If d is a nonzero derivation of R such that d(U ) = (0), thenU ⊆ Z(R).

Lemma 2.5 ([6, Theorem 5]) Let R be a 2-torsion free prime ring and U a nonzero
Lie ideal of R. If d is a nonzero derivation of R such that [u, d(u)] ∈ Z(R) for all
u ∈ U, then U ⊆ Z(R).

Lemma 2.6 ([2, Lemma1])Let n be a fixed positive integer, R be n!-torsion free ring
and φ be an additive map on R. For i = 1, 2, . . . , n, let Pi (X,Y ) be a generalized
polynomial homogeneous of degree i in the noncommuting indeterminates X and Y .
Suppose that a ∈ R, and (a) is the additive subgroup generated by a. If

Pn(x, φ(x)) + Pn−1(x, φ(x)) + · · · + P1(x, φ(x)) ∈ Z(R) for all x ∈ (a),

then Pi (a, φ(a)) ∈ Z(R) for i = 1, 2, . . . , n.

Lemma 2.7 ([8, Theorem 6]) Let R be a prime ring and U be a nonzero Lie ideal
of R such that U � Z(R). Let d be a nonzero derivation of R and a ∈ R such that
a[d(xn), xn]k = 0 for all x ∈ U, where k and n are fixed positive integers. Then
a = 0 except when dimC RC = 4, C the extended centroid of R.

Lemma 2.8 ([3, Lemma 2.5]) Let R be a 2-torsion free prime ring and U be a
nonzeroLie ideal of R. If d is a nonzeroderivationof R and V = {u ∈ U | d(u) ∈ U },
then V is also a nonzero Lie ideal of R. Moreover, if U � Z(R), then V � Z(R).

Lemma 2.9 Let R be a 2-torsion free prime ring and U be a nonzero square closed
Lie ideal of R. If d is a nonzero derivation of R such that d(x)x + xd(x) = 0
for all x ∈ U, then U ⊆ Z(R).

Proof On contrary, we assume that U � Z(R). By hypothesis

d(x)x + xd(x) = 0 for all x ∈ U. (1)

Linearization of (1) yields that

d(x)y + d(y)x + xd(y) + yd(x) = 0 for all x, y ∈ U. (2)

Substituting 2yx for y in (2) and using 2-torsion freeness of R, we get

d(x)yx + d(y)x2 + yd(x)x + xd(y)x + xyd(x) + yxd(x) = 0 for all x, y ∈ U.

(3)
Using (1), we get

d(x)yx + d(y)x2 + xd(y)x + xyd(x) = 0 for all x, y ∈ U. (4)
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Right multiplying (2) by x and then subtracting from (4), we get

yd(x)x − xyd(x) = 0 for all x, y ∈ U. (5)

Replacing y by 2zy in (5) and then using 2-torsion freeness of R, we find that

zyd(x)x − xzyd(x) = 0 for all x, y, z ∈ U. (6)

Left multiplying (5) by z and then subtracting from (6), we obtain

[z, x]yd(x) = 0 for all x, y, z ∈ U. (7)

By Lemma 2.3, we obtain either [z, x] = 0 or d(x) = 0. Now {x ∈ U | [U, x] =
0} and {x ∈ U | d(x) = 0} form additive subgroups of U such that their union is
U . Since a group can not be union of its two proper subgroups, we conclude that
either [U,U ] = (0) or d(U ) = (0). By Lemma 2.1, [U,U ] = (0) gives U ⊆ Z(R),
a contradiction. By Lemma 2.4, d(U ) = (0), leads U ⊆ Z(R), a contradiction.

3 Main Results

Theorem 3.1 Let n ≥ 1 be a fixed integer. Let R be a prime ring, U a nonzero
square closed Lie ideal of R and F,G : R → R two generalized derivations of R
with associated nonzero derivations d and g of R respectively. (1) If R is 2-torsion
free and F2 + G is commuting on U, then U ⊆ Z(R). (2) If n ≥ 2, R is n!-torsion
free and F2 + G is n-commuting onU, thenU ⊆ Z(R), except when dimC RC = 4.

Proof Assume that U � Z(R). By hypothesis, we have

[�(x), xn] = 0 for all x ∈ U, (8)

where � = F2 + G. Consider an integer k with 1 ≤ k ≤ n. Replacing x by x + ky
in (8), we obtain

kP1(x, y) + k2P2(x, y) + k3P3(x, y) + · · · + kn Pn(x, y) = 0 for all x, y ∈ U,

(9)
where Pi (x, y) denotes the sum of those terms in which y appears as a term in the
product i times. By Lemma 2.6, we have

P1(x, y) = [�(y), xn ] + [�(x), xn−1y] + [�(x), xn−2yx] + · · · + [�(x), yxn−1] = 0 (10)

for all x, y ∈ U. Replacing y by 2xy in (10), we get
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2[x�(y) + 2d(x)F(y) + H(x)y, xn] + 2x[�(x), xn−1y] + 2[�(x), x]xn−1y
+ 2x[�(x), xn−2yx] + 2[�(x), x]xn−2yx + · · · + 2x[�(x), yxn−1]

+ 2[�(x), x]yxn−1 = 0 for all x, y ∈ U,

(11)

where H(x) = (d2 + g)(x). Using 2-torsion freeness of R, it gives

x[�(y), xn] + [2d(x)F(y), xn] + H(x)[y, xn] + [H(x), xn]y + x[�(x), xn−1y]
+ [�(x), x]xn−1y + x[�(x), xn−2yx] + [�(x), x]xn−2yx + · · · + x[�(x), yxn−1]

+ [�(x), x]yxn−1 = 0 for all x, y ∈ U. (12)

Left multiplying (10) by x , we get

x[�(y), xn] + x[�(x), xn−1y] + x[�(x), xn−2yx] + · · · + x[�(x), yxn−1] = 0
(13)

for all x, y ∈ U .
Subtracting (12) from (13), we obtain

[2d(x)F(y), xn] + H(x)[y, xn] + [H(x), xn]y + [�(x), x]xn−1y

+[�(x), x]xn−2yx + · · · + [�(x), x]yxn−1 = 0 for all x, y ∈ U. (14)

Substituting 2yx for y in (14), we have

2[2d(x)F(y), xn]x + 2[2d(x)yd(x), xn] + 2H(x)[y, xn]x + 2[H(x), xn]yx
+ 2[�(x), x]xn−1yx + 2[�(x), x]xn−2yx2 + · · · + 2[�(x), x]yxn−1x

= 0 for all x, y ∈ U. (15)

Since R is 2-torsion free, it gives

[2d(x)F(y), xn]x + [2d(x)yd(x), xn] + H(x)[y, xn]x + [H(x), xn]yx
+[�(x), x]xn−1yx + [�(x), x]xn−2yx2 + · · · + [�(x), x]yxn−1x

= 0 for all x, y ∈ U.

(16)

Right multiplying (14) by x , we get

[2d(x)F(y), xn]x + H(x)[y, xn]x + [H(x), xn]yx + [�(x), x]xn−1yx

+[�(x), x]xn−2yx2 + · · · + [�(x), x]yxn−1x = 0 for all x, y ∈ U. (17)

Subtracting (16) from (17), we obtain

2[d(x)yd(x), xn] = 0 for all x, y ∈ U. (18)
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Since R is 2-torsion free, it gives

d(x)yd(x)xn − xnd(x)yd(x) = 0 for all x, y ∈ U. (19)

Set V = {x ∈ U | d(x) ∈ U }. Then by Lemma 2.8, V is a noncentral nonzero Lie
ideal of R. Since V ⊆ U , it follows from (19) that

d(x)yd(x)xn − xnd(x)yd(x) = 0 for all y ∈ U, for all x ∈ V . (20)

Replacing y by 2yz in (20) and using 2-torsion freeness of R, we get

d(x)yzd(x)xn − xnd(x)yzd(x) = 0 for all y, z ∈ U, for all x ∈ V . (21)

For x ∈ V , replace z by 2d(x)z in (21), and then get

2d(x)yd(x)zd(x)xn − 2xnd(x)yd(x)zd(x) = 0.

Since R is 2-torsion free, using (20), we get

d(x)yxnd(x)zd(x) − d(x)yd(x)xnzd(x) = 0 for all y, z ∈ U, for all x ∈ V,

(22)

which gives

d(x)y[d(x), xn]zd(x) = 0 for all y, z ∈ U, for all x ∈ V . (23)

By Lemma 2.3, for each x ∈ V , either d(x) = 0 or [d(x), xn] = 0. Both of these two
conditions together implies that

[d(x), xn] = 0 for all x ∈ V . (24)

Taking n = 1 in (24)we have [d(x), x] = 0 for all x ∈ V . In this case, if R is 2-torsion
free, Lemma 2.5 yields that V ⊆ Z(R), a contradiction.

Let n ≥ 2. In this case [d(x), xn] = 0 for all x ∈ V , implies that [d(xn), xn] = 0
for all x ∈ V . Then by Lemma 2.7, since V is noncentral Lie ideal of R, we have
that dimC RC = 4. Thus the theorem is proved.

Theorem 3.2 Let n ≥ 1 be a fixed integer. Let R be a prime ring, U a nonzero
square closed Lie ideal of R and F,G : R → R two generalized derivations of R
with associated nonzero derivations d and g of R respectively. (1) If R is 2-torsion
free and F2 + G is skew-commuting on U, then U ⊆ Z(R). (2) If n ≥ 2, R is n!-
torsion free and F2 + G is n-skew-commuting on U, then U ⊆ Z(R), except when
dimC RC = 4.

Proof Assume that U � Z(R). By hypothesis, we have
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�(x) ◦ xn = 0 for all x ∈ U, (25)

where � = F2 + G. Consider an integer k with 1 ≤ k ≤ n. Replacing x by x + ky
in (25), we obtain

kP1(x, y) + k2P2(x, y) + k3P3(x, y) + · · · + kn Pn(x, y) = 0 for all x, y ∈ U,

(26)
where Pi (x, y) denotes the sum of those terms in which y appears as a term in the
product i times. By Lemma 2.6, we have

P1(x, y) = (�(y) ◦ xn) + (�(x) ◦ xn−1y) + (�(x) ◦ xn−2yx) + · · ·
+(�(x) ◦ yxn−1) = 0 for all x, y ∈ U. (27)

Replacing y by 2xy in (27), we get

2((x�(y) + 2d(x)F(y) + H(x)y) ◦ xn) + 2x(�(x) ◦ xn−1y) + 2[�(x), x]xn−1y
+2x(�(x) ◦ xn−2yx) + 2[�(x), x]xn−2yx + · · · + 2x(�(x) ◦ yxn−1)

+2[�(x), x]yxn−1 = 0 for all x, y ∈ U,

(28)

where H(x) = (d2 + g)(x). Since R is 2-torsion free, it gives

x(�(y) ◦ xn) + (2d(x)F(y) ◦ xn) + (H(x) ◦ xn)y + H(x)[y, xn]
+x(�(x) ◦ xn−1y) + [�(x), x]xn−1y + x(�(x) ◦ xn−2yx) + [�(x), x]xn−2yx

+ · · · + x(�(x) ◦ yxn−1) + [�(x), x]yxn−1 = 0 for all x, y ∈ U.

(29)

Left multiplying (27) by x , we get

x(�(y) ◦ xn) + x(�(x) ◦ xn−1y) + x(�(x) ◦ xn−2yx)
+ · · · + x(�(x) ◦ yxn−1) = 0 for all x, y ∈ U.

(30)

Subtracting (30) from (29), we obtain

(2d(x)F(y) ◦ xn) + (H(x) ◦ xn)y + H(x)[y, xn] + [�(x), x]xn−1y

+[�(x), x]xn−2yx + · · · + [�(x), x]yxn−1 = 0 for all x, y ∈ U. (31)

Substituting 2yx in place of y in (31), we find that

2((2d(x)F(y))x ◦ xn) + 2(2d(x)yd(x) ◦ xn) + 2(H(x) ◦ xn)yx
+2H(x)[y, xn]x + 2[�(x), x]xn−1yx + 2[�(x), x]xn−2yx2

+ · · · + 2[�(x), x]yxn−1x = 0 for all x, y ∈ U.

(32)

Using 2-torsion freeness of R, we have

(2d(x)F(y)) ◦ xn)x + (2d(x)yd(x) ◦ xn) + (H(x) ◦ xn)yx + H(x)[y, xn]x
+[�(x), x]xn−1yx + [�(x), x]xn−2yx2 + · · · + [�(x), x]yxn−1x

= 0 for all x, y ∈ U.

(33)
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Right multiplying (31) by x , we obtain

(2d(x)F(y) ◦ xn)x + (H(x) ◦ xn)yx + H(x)[y, xn]x + [�(x), x]xn−1yx

+[�(x), x]xn−2yx2 + · · · + [�(x), x]yxn−1x = 0 for all x, y ∈ U. (34)

Subtracting (34) from (33), we get

(2d(x)yd(x) ◦ xn) = 0 for all x, y ∈ U. (35)

Since R is 2-torsion free, it gives

d(x)yd(x)xn + xnd(x)yd(x) = 0 for all x, y ∈ U. (36)

Set V = {x ∈ U | d(x) ∈ U }. Then by Lemma 2.8, V is a noncentral nonzero Lie
ideal of R. Since V ⊆ U , it follows from (36) that

d(x)yd(x)xn + xnd(x)yd(x) = 0 for all y ∈ U, for all x ∈ V . (37)

Replacing y by 2yz in (37) and using 2-torsion freeness of R, we get

d(x)yzd(x)xn + xnd(x)yzd(x) = 0 for all y, z ∈ U, for all x ∈ V . (38)

Replacing z by 2d(x)z in (38) and using 2-torsion freeness of R, we have

d(x)yd(x)zd(x)xn + xnd(x)yd(x)zd(x) = 0 for all y, z ∈ U, for all x ∈ V . (39)

Using (37), we get

− d(x)yxnd(x)zd(x) − d(x)yd(x)xnzd(x) = 0 (40)

which is

d(x)y(d(x) ◦ xn)zd(x) = 0 for all y, z ∈ U, for all x ∈ V . (41)

By Lemma 2.3, we have for each x ∈ V , either d(x) = 0 or (d(x) ◦ xn) = 0. Since
d(x) = 0 yields (d(x) ◦ xn) = 0, we conclude that in any case

(d(x) ◦ xn) = 0 for all x ∈ V . (42)

If n = 1 in (42), and R is 2-torsion free, then we have (d(x) ◦ x) = 0 for all x ∈ V
which implies V ⊆ Z(R) by Lemma 2.9, a contradiction.

If n ≥ 2, then (d(x) ◦ xn) = 0 yields [d(x), x2n] = 0 for all x ∈ V and hence
[d(x2n), x2n] = 0 for all x ∈ V . Then by Lemma 2.7, since V is noncentral Lie ideal
of R, we conclude that dimC RC = 4, as desired.
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Theorem 3.3 Let n be a fixed positive integer. Let R be a (n + 1)!-torsion free prime
ring, U a nonzero square closed Lie ideal of R and F,G : R → R two generalized
derivations of R with associated nonzero derivations d and g of R respectively. If
F2 + G is n-centralizing on U, then U ⊆ Z(R), except when dimC RC = 4.

Proof Let x ∈ U and take t = [�(x), xn], where � = F2 + G. Then t ∈ Z(R). By
our hypothesis, we have

[�(x), xn] ∈ Z(R) for all x ∈ U. (43)

Consider an integer k with 1 ≤ k ≤ n. Replacing x by x + ky in (43), we obtain

kP1(x, y) + k2P2(x, y) + k3P3(x, y) + · · · + kn Pn(x, y) ∈ Z(R) for all x, y ∈ U,

(44)
where Pi (x, y) denotes the sum of those terms in which y appears as a term in the
product i times. By Lemma 2.6, we have

P1(x, y) = [�(y), xn] + [�(x), xn−1y + xn−2yx + · · · + yxn−1] ∈ Z(R) (45)

for all x, y ∈ U. Since x, x2 ∈ U , we have 2x .x2 = 2x3 ∈ U , 2(2x3).x = 22x4 ∈ U
and so 2n−1xn+1 ∈ U . Substituting 2n−1xn+1 for y in (45), we obtain

2n−1[�(xn+1), xn] + 2n−1[�(x), x2n + x2n + · · · + x2n] ∈ Z(R). (46)

Since R is 2-torsion free, it can be written as

[�(x)xn + 2F(x)d(xn) + xH(xn), xn] + n[�(x), x2n] ∈ Z(R), (47)

where H = d2 + g. Since [�(x)xn, xn] = [�(x), xn]xn = t xn and [�(x), x2n] =
xn[�(x), xn] + [�(x), xn]xn = 2t xn , we have from above relation that

(2n + 1)t xn + [2F(x)d(xn), xn] + x[H(xn), xn] ∈ Z(R)

for all x ∈ U . Now, we suppose

z = (2n + 1)t xn + [2F(x)d(xn), xn] + x[H(xn), xn] ∈ Z(R). (48)

This implies that

n∑
i=0

xni zxn(n−i) =
n∑

i=0
xni ((2n + 1)t xn)xn(n−i) +

n∑
i=0

xni [2F(x)d(xn), xn]xn(n−i)

+
n∑

i=0
xni (x[H(xn), xn])xn(n−i).

(49)
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Since z, t ∈ Z(R), it reduces to

(n + 1)zxn
2 = (n + 1)(2n + 1)t xn(n+1) + [2F(x)d(xn), xn(n+1)]

+x[H(xn), xn(n+1)]. (50)

Since 2n−1xn+1 ∈ U , replacing x by 2n−1xn+1 in our assumption, we get 2n
2−1

[�(xn+1), xn(n+1)] ∈ Z(R). Since R is 2-torsion free, this implies

[�(xn+1), xn(n+1)] = [�(x)xn + 2F(x)d(xn) + xH(xn), xn
2+n]

= [�(x), xn
2+n]xn + [2F(x)d(xn), xn

2+n]
+x[H(xn), xn

2+n] ∈ Z(R). (51)

We notice that

[�(x), xn
2+n] =

n∑
i=0

xni [�(x), xn]xn(n−i)

=
n∑

i=0

xni t xn(n−i)

= (n + 1)xn
2
t. (52)

Applying (50)–(52) yields that

2n(n + 1)xn
2+nt − (n + 1)zxn

2 ∈ Z(R). (53)

Since R is (n + 1)-torsion free, we have

2nxn
2+nt − zxn

2 ∈ Z(R). (54)

Now commuting xkn with �(x) successively, we get

[�(x), xkn] =
k−1∑
i=0

xni [�(x), xn]xn(k−1−i) =
k−1∑
i=0

xni t xn(k−1−i) = ktx (k−1)n

and

[�(x), [�(x), xkn]] = kt[�(x), x (k−1)n] = k(k − 1)t2x (k−2)n = k!
(k − 2)! t

2x (k−2)n .

Thus commuting xkn with �(x) successively m-times, we find that

[�(x), . . . , [�(x), xkn]] = k!
(k − m)! t

mx (k−m)n.
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Using this fact and commuting both sides of (54) successively n-times with �(x)
we have

2n
(n + 1)!

1! tn+1xn − n!ztn = 0. (55)

Again commuting with �(x), we obtain

2n(n + 1)!tn+2 = 0. (56)

Since R is (n + 1)!-torsion free, this expression yields that tn+2 = 0. Since center
of a semiprime ring contains no nonzero nilpotent elements, we have t = 0 that is,
[�(x), xn] = 0 for all x ∈ U and Theorem 3.1 completes the proof.

Theorem 3.4 Let n be a fixed positive integer. Let R be a (2n)!-torsion free prime
ring, U a nonzero square closed Lie ideal of R and F,G : R → R two generalized
derivations of R with associated nonzero derivations d and g of R respectively. If
F2 + G is n-skew-centralizing on U, then U ⊆ Z(R), except when dimC RC = 4.

Proof Let � = F2 + G. By hypothesis, we have

�(x) ◦ xn ∈ Z(R) (57)

for all x ∈ U . This implies

0 = [�(x) ◦ xn, xn]
= [�(x), x2n] (58)

for all x ∈ U . Since R is (2n)!-torsion free, we obtain our conclusion by Theorem
3.1.

The following example illustrates that the above Theorems do not hold for arbi-
trary rings and torsion condition in the hypothesis is not superfluous.

Example Let R =
{(

a b
0 c

)
| a, b, c ∈ Z2

}
andU =

{(
a b
0 a

)
| a, b ∈ Z2

}
.Define

F : R −→ R by F

(
a b
0 c

)
=

(
a 0
0 0

)
.Then F is a generalized derivation with asso-

ciated nonzero derivation d given by d

(
a b
0 c

)
=

(
0 b
0 0

)
satisfying the hypothesis

of Theorems 3.1–3.4 for F = G. But U is not central.
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On Domination in Graphs
from Commutative Rings: A Survey

T. Tamizh Chelvam, T. Asir and K. Selvakumar

Abstract Zero-divisor graphs and total graphs aremost popular graph constructions
from commutative rings. Through these constructions, the interplay between alge-
braic structures and graphs are studied. Indeed, it is worthwhile to relate algebraic
properties of commutative rings to the combinatorial properties of assigned graphs.
The concept of dominating sets and domination parameters is very important in
graph theory due to varied applications. Several authors extensively studied about
domination parameters for zero-divisor graphs and total graphs from commutative
rings. In this survey article, we present results obtained with regard to domination
for zero-divisor graphs and total graphs from commutative rings.

Keywords Zero-divisor graph · Total graph · Domination number · Dominating
sets

Mathematics Subject Classification Primary: 05C75 · 05C25 · Secondary:
13A15 · 13M05

1 Introduction

The study of algebraic structures using the properties of graphs has become an
exciting research topic in the last twenty years. The benefit of studying these graphs
is that one may find some results about the algebraic structures and vice versa. There
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are three major problems in this area such as characterization of the resulting graphs,
characterization of the algebraic structures with isomorphic graphs, and realization
of the connections between the structures and the corresponding graphs. There are so
manyways to construct graphs from commutative rings. Some of them tomention are
zero-divisor graph of a commutative ring [3], Cayley graph of a commutative ring,
total graph of a commutative ring [5], unit graph of a commutative ring, intersection
graph of ideals of rings and comaximal graph of a commutative ring. The domination
properties in zero-divisor graphs are studied in [1, 2, 5, 12, 13, 16, 17, 20, 22, 27],
whereas the domination in total graphs from commutative rings are studied in [3, 4,
6, 7, 21, 23–26, 28]. The goal of this survey article is to enclose many of the main
results on the domination in zero-divisor graph and total graph of commutative rings.

Throughout this paper, R denotes a commutative ring with nonzero identity 1.
Then Z(R) denotes its set of zero-divisors, Nil(R) denotes its ideal of nilpotent
elements, Reg(R) denotes its set of nonzero-divisors (i.e., Reg(R) = R \ Z(R)),
and U (R) denotes its group of units. For A ⊆ R, let A∗ = A \ {0}. We say that R
is reduced if Nil(R) = {0}. Note that an element x ∈ R is said to be nilpotent if
xm = 0 for some m ∈ Z

+. An element x ∈ R is said to be a zero-divisor if there
exists 0 �= y ∈ R such that xy = 0 where 0 is the additive identity. According to
Kaplansky [15], Z(R) = ∪Pi , where each Pi is a prime ideal of R. If a ∈ R, then
{x ∈ R : ax = 0} is called the annihilator of a and it is denoted by ann(a). It is well
known that Z(R) = ∪

0 �=x∈R
ann(x). A commutative ring R is said to be Noetherian if

every ascending sequence of ideals in R is finite. General references for ring theory
are [14, 15].

The definition along with name for zero-divisor graph was first introduced by
Anderson and Livingston [3] in 1999, after modifying the definition of Beck [9]. In
their attempt, Anderson and Livingston investigated certain basic features of �(R).

It may be noted that in the original definition, Beck took all elements of the ring as
vertices of the graph �(R). The modified definition of the zero-divisor graph is given
below:

Definition 1.1 ([3]) Let R be a commutative ring. The zero-divisor graph of R,

denoted by �(R), is the undirected graph with vertex set Z∗(R) and two distinct
vertices x and y are adjacent if xy = 0.

In last twenty years, there are many research articles that have been published
on zero graphs of commutative rings. Moreover, zero-divisor graphs were defined
and studied for noncommutative rings, near rings, semigroups, modules, lattices, and
posets. In variation to the concept of zero-divisor graphs, Anderson and Badawi [5]
introduced and studied the total graph of a commutative ring. The definition of the
total graph of R is given below.

Definition 1.2 ([5]) The total graph of a commutative ring R, denoted by T�(R),

is the undirected graph with all elements of R as vertices and for distinct x, y ∈ R,

the vertices x and y are adjacent if x + y ∈ Z(R). The three (induced) subgraphs
Nil�(R), Z�(R), and Reg�(R) of T�(R) are the induced subgraphs with vertex sets
Nil(R), Z(R) and Reg(R), respectively.
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For a prime p and an integer m ≥ 2, let R = Zpm and λ = |Z(R)| = pm−1. Then

T�(R) =

⎧⎪⎨
⎪⎩
2Kλ if p = 2;
Kλ ∪ Kλ,λ ∪ Kλ,λ ∪ . . . ∪ Kλ,λ︸ ︷︷ ︸

p−1
2 copies

otherwise.

The study of the total graph of a commutative ring and related graph problems
is one of the interesting concepts in both algebra and graph theory. In recent years,
many research articles have been published on total graphs from rings, for which one
can refer the survey by Badawi [8].

For the sake of completeness, we state some definitions and notations used
throughout to keep this article as self contained as possible. Let G = (V, E) be
a simple graph. The open neighborhood of a vertex v in G is the set of vertices of G
which are adjacent with v and it is denoted by N (v). The closed neighborhood of v

is defined by N [v] = N (v) ∪ {v}. For a subset S ⊆ V, the open neighborhood of S
is defined by N (S) = ∪

v∈SN (v) and the closed neighborhood N [S] = N (S) ∪ S. For

basic definitions in graph theory, one may refer [10]. The complement G of G is the
graph whose vertex set is V (G) and such that for a pair u, v of vertices of G, uv is an
edge of G if and only if uv is not an edge of G. The Cartesian product of two graphs
G and H, denoted by G�H, is a graph with vertex set V (G�H) = V (G) × V (H)

and edge set E(G�H) = {((u1, v1), (u2, v2)) : (u1, u2) ∈ E(G) with v1 = v2 (or)
(v1, v2) ∈ E(H) with u1 = u2}.

A nonempty subset S of V is called a dominating set if every vertex in V − S is
adjacent to at least one vertex in S. A subset S of V is called a total dominating set
if every vertex in V is adjacent to some vertex in S. A dominating set S is called
a connected (or clique) dominating set if the subgraph induced by S is connected
(or complete). A dominating set S is called an independent dominating set if no two
vertices of S are adjacent. A dominating set S is called a perfect dominating set if
every vertex in V − S is adjacent to exactly one vertex in S. A dominating set S is
called an efficient dominating set if S is both independent and perfect. A dominating
set S is called a strong (or weak) dominating set if for every vertex u ∈ V − S, there
is a vertex v ∈ S with deg(v) ≥ deg(u) (or deg(v) ≤ deg(u)) and u is adjacent to
v.

The domination number γ of G is defined to be the minimum cardinality of a
dominating set in G and the corresponding dominating set is called as a γ-set of G.

In a similar way, we define the total dominating number γt , connected dominating
number γc, clique dominating number γcl , independent dominating number γi , per-
fect dominating number γp, efficient dominating number γe f f , strong dominating
number γs , and the weak dominating number γw.

A graph G is called excellent if for every vertex v ∈ V (G), there is a γ-set S
containing v. A domatic partition of G is a partition of V (G) into dominating sets
of G. The maximum number of sets in a domatic partition of G is called the domatic
number ofG and the same is denoted by d(G). In a similar way, we define the perfect
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domatic number dp(G), independent domatic number di (G) and the total domatic
number dt (G). A graph G is called domatically full if d(G) = δ(G) + 1, which is
maximum possible order of a domatic partition of V . The bondage number b(G) is
the minimum number of edges whose removal increases the domination number. A
set of vertices S ⊆ V is said to be independent if no two vertices in S are adjacent in
G. The independent number β0(G), is the maximum cardinality of an independent
set inG.A graphG is calledwell-covered if β0(G) = i(G). The disjoint domination
number γγ(G) defined by γγ(G) = min{|S1| + |S2| : S1, S2 are disjoint dominating
sets of G}. Similarly, we can define disjoint independent domination number ii(G)

and γi(G). For results concerning domination parameters, one can refer to Haynes
et al. [11].

2 Domination in Zero-Divisor Graphs of Commutative
Rings

In this section, let us review results concerning domination parameters in the zero-
divisor graph of a commutative ring. The study of dominating set in zero-divisor
graph of a commutative ring has been initiated by Redmond [20]. The following is
the main result in this connection:

Theorem 2.1 ([20, Theorem 5.1]) Let R be a commutative Artinian ring with iden-
tity that is not a domain. If the radius of �(R) is at most 1, then the domination
number of �(R) is 1. If the radius is 2, then the domination number is equal to the
number of factors in the Artinian decomposition of R. (In particular, the domination
number is finite and at least two.)

One immediate consequence of the above theorem is that if the radius of �(R)

is 2, then the domination number is equal to the number of distinct maximal ideals
of R. However, this need not be true if the radius of �(R) is 1. For any field F,

�(Z2 × F) is a star graph, which has radius 1, but Z2 × F has two distinct maximal
ideals. The following corollary shows that a more precise relationship between the
domination number and the number of maximal ideals occurs in the finite case.

Corollary 2.2 ([20, Corollary 5.2]) Let R be a finite commutative ring with identity
that is not a domain. If�(R) is not a star graph, then R has γ(�(R)) distinct maximal
ideals. If �(R) is a star graph, then either R has 2 distinct maximal ideals or R is
isomorphic to one of the five following local rings: Z9,

Z3[x]
(x2) , Z8,

Z2[x]
(x3) , or Z4[x]

(2x,x2−2) .

(In other words, if �(R) is a star graph, then R has γ(�(R)) distinct maximal ideals
if R is local and γ(�(R)) + 1 distinct maximal ideals if R is reduced.)

Corollary 2.3 ([20, Corollary 5.3]) Let R be a finite commutative ring with identity
that is not a domain. If R � Z2 × F for any finite field F, then the domination
number of �(R) equals the number of distinct maximal ideals of R. If R ∼= Z2 × F
for some finite field F, then the domination number is one less than the number of
maximal ideals of R.
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It is of interest to note that these dominating sets were connected, showing that
the connected domination number of �(R) equals the domination number of �(R).

The dominating set in zero-divisor graph has implicitly been studied by Jafari Rad,
Jafari and Mojdeh in [13]. They first determined the domination number for the
zero-divisor graph of the product of two commutative rings with identity.

Proposition 2.4 ([13, Proposition 2.2]) If R is an integral domain, then
γ(�(Z2 × R)) = 1.

A semi-total dominating set in �(R) is a subset S ⊆ Z(R) such that S is a domi-
nating set for�(R) and for any x ∈ S there is a vertex y ∈ S (not necessarily distinct)
such that xy = 0. The semi-total domination number γst (�(R)) of �(R) is the min-
imum cardinality of a semi-total dominating set in �(R). (Note that for all rings R,
γ(�(R)) ≤ γst (�(R)) ≤ 2γ(�(R))). For a commutative ring R with 1, let

a(R) =
{
1 if Z(R) = 0;
γst (�(R)) otherwise.

Theorem 2.5 ([13, Theorem 2.6]) If R1, R2 are commutative rings with 1 and Z2 /∈
{R1, R2}, then γ(�(R1 × R2)) = a(R1) + a(R2).

Corollary 2.6 ([13, Corollaries 2.7, 2.8]) If R1, R2 are commutative rings with 1
and Z2 /∈ {R1, R2}, then γ(�(R1 × R2)) = γt (�(R1 × R2)) = γc(�(R1 × R2)) =
γst (�(R1 × R2)).

Corollary 2.7 ([13, Corollary 2.11]) Let R1, . . . , Rn be local commutative Artinian
rings with identity. If R = R1 × . . . × Rn, where R � F or Z2 × F for a field F,

then γ(�(R)) = n.

The study on properties of dominating sets of zero-divisor graphs was continued
by Mojdeh and Rahimi [17].

Theorem 2.8 ([17, Proposition 8]) Suppose for a fixed integer n ≥ 2, that R =
R1 × . . . × Rn, where Ri is an integral domain for each i = 1, . . . , n. Then

(a) γ(�(R)) = n if n ≥ 3;
(b) γ(�(R)) = 2 if n = 2 and min{|R1|, |R2|} ≥ 3;
(c) γ(�(R)) = 1 if n = 2 and min{|R1|, |R2|} = 2.

Corollary 2.9 ([17, Corollary 9]) For any given positive integer k, there exists a
commutative ring R whose zero-divisor graph has domination number is equal to k.

Theorem 2.10 ([17, Theorem 11]) Let R be a commutative Artinian ring (in partic-
ular, R could be a finite commutative ring). Suppose that R = R1 × . . . × Rn, where
Ri is a local ring for each i = 1, . . . , n. Then:
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(a) γ(�(R)) = n if n ≥ 3;
(b) γ(�(R)) = 2 if n = 2 and min{|R1|, |R2|} ≥ 3 or |R1| = 2 and the maximal

ideal of R2 is nonzero;
(c) γ(�(R)) = 1 if n = 1 and the maximal ideal of R2 is nonzero;
(d) γ(�(R)) = 1 if n = 2, |R1| = Z2 and R2 is a field.

The next corollary states certain necessary and sufficient conditions for γ(�(Zn))

= k, where n = pt11 . . . ptkk for distinct primes p1, . . . , pk .

Corollary 2.11 ([17, Corollary 13]) For any fixed integer k ≥ 1, let n = pt11 . . . ptkk
for distinct primes p1, . . . , pk and positive integers t1, . . . , tk . Then

(a) γ(�(Zn)) = k ≥ 3 if and only if n = pt11 . . . ptkk for distinct primes p1, . . . , pk
and positive integers t1, . . . , tk;

(b) γ(�(Zn)) = 2 if and only if n = pt11 p
t2
2 , where either t1 ≥ 2 or t2 ≥ 2; or t1 =

t2 = 1 and p1, p2 ≥ 3;
(c) γ(�(Zn)) = 1 if and only if n = pt11 where t1 ≥ 2; or n = p1 p2, where either

p1 = 2, p2 ≥ 3 or p1 ≥ 3, p2 = 2.

Theorem 2.12 ([17, Theorem 15])Let R be a finite reduced commutative ringwhich
is not a field. If γ(�(R)) �= 1, then γ(�(R)) is equal to the number of minimal prime
ideals of R. In addition, if R has k ≥ 3 minimal prime ideals, then γ(�(R)) = k.

Further Kiani, Maimani, Nikandish [16], investigated the domination, total dom-
ination, and semi-total domination numbers of a zero-divisor graph of commutative
Noetherian rings.

3 Domination in Zero-Divisor Graph of Generalized
Structures

The graph of zero-divisors for commutative rings has been generalized to the ideal-
based zero-divisor graph and annihilating-ideal graph of commutative rings. Also the
zero-divisor graph has been generalized to commutative semirings and modules over
commutative rings. A generalization of the zero-divisor graph called the ideal-based
zero-divisor graph for commutative rings. In 2001, Redmond [19] introduced the
following definition as a generalization of zero-divisor graphs.

Definition 3.1 ([19]) Let R be a commutative ring with nonzero identity, and let I
be an ideal of R. The ideal-based zero-divisor graph of R, denoted by �I (R), is the
graph whose vertices are the set {x ∈ R \ I : xy ∈ I for some y ∈ R \ I } and two
distinct vertices x and y are adjacent if and only if xy ∈ I .

In the case I = {0}, �0(R) is nothing but the zero-divisor graph �(R). Also,
�I (R) is empty if and only if I is prime. Note that �I (R) = ∅ if and only if R

I is an
integral domain. In this connection, Mojdeh and Rahimi [17] studied the domination



On Domination in Graphs from Commutative Rings: A Survey 369

number of the zero-divisor graph with respect to an ideal. Actually, they explored a
relationship between domination numbers of �I (R) and �( R

I ).

Theorem 3.2 ([17, Theorem 19]) Let R be a commutative ring. Let S be a nonempty
subset of R/I . If S is a dominating set of �I (R), then S + I = {s + I : s ∈ S} is a
dominating set of �( R

I ).

The converse ofTheorem3.2 is not necessarily true. For example, let R = Z6 × Z3

and I = {0} × Z3. Then it is clear that S = {(3, 0) + I } is a dominating set of �( R
I ),

but {(3, 1), (4, 1)} is a dominating set of �I (R) and �I (R) cannot be dominated
by any set of one vertex. Readers are recommended to refer [16], for some more
relations between the domination numbers of �I (R) and �( R

I ).

As mentioned earlier, zero-divisor graphs were defined and studied for noncom-
mutative rings, near rings, semigroups, modules, lattices and posets. Actually Red-
mond [18] extended zero-divisor graph concept to noncommutative rings. The cor-
responding definition is given below:

Definition 3.3 [18] Let R be a noncommutative ring. The zero-divisor graph of a
noncommutative ring is a directed graph with vertex set Z(R)∗, where for distinct
vertices x and y of Z(R)∗ there is a directed edge from x to y if and only if xy = 0
in R.

Let us review some definitions and notation from domination parameters of
directed graph. Let D = (V, A) be a digraph(directed graph) with vertex set V and
arc set A. The indegree and outdegree of a vertex v are, respectively, denoted by
id(v) and od(v). For a subset S of vertices of D, the out-neighborhood N+(S) of
S consists of all those vertices w in D − S such that (v,w) is an arc of D for some
v ∈ S. The in-neighborhood N−(S) consists of all those vertices u ∈ D − S such
that (u, v) is an arc of D for some v ∈ S. For a digraph D = (V, A), a subset S of
V is called an out-dominating set of D if for every v ∈ V − S, there exists u ∈ S
such that (u, v) ∈ A. The out-dominating set of a digraph D is commonly called
as dominating set of D. A subset S of V is called an in-dominating set of D if for
every v ∈ V − S, there exists u ∈ S such that (v, u) ∈ A. A subset S of V is called
a twin dominating set if S is both an out-dominating and an in-dominating set. A
dominating set S of V is called an independent if the sub digraph induced by S has
no arcs. A dominating set S of V is called a total dominating set if the induced sub
digraph < S > has no isolated vertices. A dominating set S of V is called an open
dominating set of D if for every v ∈ V , there exists u ∈ S such that (u, v) ∈ A.

The out-domination number (resp. upper out-domination number) of a digraph D,
denoted by γ+(D) (resp. �+(D)), is the minimum (resp. maximum) cardinality of a
out-dominating set of D. In a similar way, one can define the in-domination number
γ−, the twin domination number γ∗, the independent domination number γi , the open
domination number γo, the total domination number γt , and the weakly connected
domination number γwc.An out-dominating set S in a digraph D with cardinality γ+
is called γ+- set of D. The irredundance number ir(D) and the upper irredundance
number I R(D) are, respectively, the minimum and maximum cardinalities of a
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maximal irredundant set. An irredundant set S in a digraph D with cardinality ir
is called ir - set of D. The out-domatic (resp. in-domatic) number d+(D) (resp.
d−(D)) of a digraph D to be the maximum number of elements in a partition of
V (D) into out-dominating (resp. in-dominating) sets. The total domatic number
dt (D) of a digraph D to be the maximum number of elements in a partition of V (D)

into total dominating sets. A digraph D is domatically full if d+(D) = 1 + δ(D).

The reinforcement number r(D) of a digraph D is the minimum number of extra
arcs whose addition to D results in a graph D′ with γ+(D′) < γ+(D).

Tamizh Chelvam and Selvakumar [22], obtained the values of certain domination
parameters for the directed zero-divisor graph D on M2(Zp), the ring of all 2 × 2
matrices over Zp, where p is a prime number. Some of the results on this work are
given below:

Theorem 3.4 ([22, Theorem 2.1]) Let p be a prime number and D be the directed
zero-divisor graph of M2(Zp). Then ir(D) = I R(D) = p + 1.

Proposition 3.5 ([22, Proposition 2.1]) Let D be the directed zero-divisor graph of
M2(Zp). Then γt (D) = γwc(D) = γo(D) = p + 1.

Theorem 3.6 ([22, Theorem 2.2]) Let D be the directed zero-divisor graph of
M2(Zp). If � is a minimal dominating set of D, then � is independent if and only if
A2 = 0 for all A ∈ �.

Theorem 3.7 ([22, Theorem 2.3]) Let D be the directed zero-divisor graph on
M2(Zp). Then d+(D) = d−(D) = dt (D) = p2 − 1.

Proposition 3.8 ([22, Proposition 3.1]) Let D be the directed zero-divisor graph of
R = M2(Zp). Then γ∗(D) = γp(D) = γe(D) = p + 1.

Corollary 3.9 ([22, Lemma 3.1]) Let D be a directed zero-divisor graph of R =
M2(Zp). The number of efficient dominating sets in D is p − 1.

Theorem 3.10 ([22, Theorem 3.1]) Let D be the directed zero-divisor graph of
R = M2(Zp). If Z(R)∗ = ∪p

i=0Ol(Mi ), then � is a η-set of D if and only if

(a) each element of � belongs to different orbit of Z(R)∗;
(b) S2 �= 0 for all S ∈ �;
(c) � is independent.

Recently Tamizh Chelvam and Selvakumar [27], studied the domination parame-
ters on the directed zero-divisor graph of M2(F), where F is a finite field.

Theorem 3.11 ([27, Theorem 2.2]) Let F be a finite field with |F| = pm where p is
a prime and m ≥ 1 and D = �(M2(F)). Then ir(D) = I R(D) = pm + 1.

Proposition 3.12 ([27, Proposition 2.8]) Let F be a finite field with |F| = pm where
p is a prime and m ≥ 1. Let D = �(M2(F)). Then γt (D) = γwc(D) = γo(D) =
pm + 1.
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Proposition 3.13 ([27, Proposition 2.9]) Let F be a finite field with |F| = pm where
p is a prime and m ≥ 1. Let D = �(M2(F)). If � is an open dominating set of D,
then � contains no nilpotent elements.

Theorem 3.14 ([27, Theorem 3.1]) Let F be a finite field with |F| = pm where p
is a prime and m ≥ 1. Let � is a minimal dominating set of �(M2(F)). Then � is
independent if and only if a2 = 0 for every a ∈ �.

Theorem 3.15 ([27, Theorem 3.2]) Let F be a finite field with |F| = pm where p is
a prime number and m ≥ 1. Let D = �(M2(F)). Then d+(D) = d−(D) = dt (D) =
p2m − 1 and hence D is domatically full.

Theorem 3.16 ([27, Theorem 3.3]) Let F be a finite field with |F| = pm where p is
a prime number and m ≥ 1. Let D = �(M2(F)). Then γ∗(D) = γp(D) = γe(D) =
pm + 1.

Corollary 3.17 ([27, Corollary 3.4]) Let F be a finite field with |F| = pm where p
is a prime number and m ≥ 1. If � is a minimal dominating set of �(M2(F)), then
� is perfect (and so efficient) if and only if a2 = 0 for all a ∈ �.

The domination parameters of zero-divisor graphs of matrix rings over a commu-
tative ring with identity has been discussed in a recent article by Heidar Jafari and
Jafari Rad [12]. Remaining part of the section lists the results from [12].

Theorem 3.18 ([12, Lemma 2.5]) For any commutative ring R, γo(�(Mn(R))) =
γi (�(Mn(R))).

Theorem 3.19 ([12, Lemma 2.6]) If A is an out-dominating set for �(Mn(R)), then
there exists an out-dominating set B for �(Mn(R)) such that |B| ≤ |A| and any
element of B is of rank 1.

Theorem 3.20 ([12, Corollary 2.8]) Let R = Mn(F), where F is a finite field. Then

S = {A = (ai j )n×n : ai j = δ1 j (λ j ), where λ1, . . . ,λn ∈ F and λ j = 1 for some j}
is a γo(�(R))-set.

Theorem 3.21 ([12, Corollary 2.9]) Let F be a finite field with |F| = q. For any n,
γo(Mn(F)) = γi (Mn(F)) = qn−1

q−1 .

Theorem 3.22 ([12, Theorem 3.6]) Let (R,m) be a local commutative ring with
identity and let R/m be finite. Then γo(�(Mn(R))) ≤ γo(�(Mn(

R
m

))).

Theorem 3.23 ([12, Theorem 3.7]) Let (R,m) be a finite local commutative ring
with identity andmbe cyclic as an R-module. Thenγo(�(Mn(R))) = γo(�(Mn(

R
m

))).

Theorem 3.24 ([12, Theorem 3.10]) Let R = R1 × . . . × Rt , where Ri is a com-
mutative ring with identity such that the unique maximal ideal of Ri is principal.
Then

γo(�(Mn(R))) = γo(�(Mn(R1))) + . . . + γo(�(Mn(Rt ))).
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4 Domination in the Total Graph of Zn

As mentioned earlier, Anderson and Badawi [5] introduced the total graph of a
commutative ring. The total graph of a commutative ring R, denoted by T�(R), is
the undirected graph with all elements of R as vertices and for distinct x, y ∈ R, the
vertices x and y are adjacent if x + y ∈ Z(R). In this section, we shall discuss about
domination concepts in the total graph of Zn .

First let us see domination parameters of the total graph of a ring of integer
modulo Zn. In this regard, Tamizh Chelvam and Asir [21] have initiated the study
on domination parameters in T�(Zn). Let p > 2 be prime. Then Z(Zp) = {0} so
that 0 is an isolated vertex and the neighborhood N (x) = {−x} for all 0 �= x ∈ Zp.

Thus γ(T�(Zp)) = p+1
2 . Also note that γ(T�(Z2)) = 2. Due to these facts, hereafter

assume that n is a composite integer and n = pα1
1 pα2

2 . . . pαm
m where pi are distinct

prime numbers for 1 ≤ i ≤ m with p1 < p2 < . . . < pm . First let us the see the
domination number of T�(Zn).

Theorem 4.1 ([21, Theorem 2.3]) Let n be a composite number and p1 be the
smallest prime divisor of n. Then γ(T�(Zn)) = p1.

Corollary 4.2 ([21, Corollary 2.5]) Let n be a composite integer. Then T�(Zn) is
domatically full if and only if n = pk for some prime p and 1 < k ∈ Z

+.

Corollary 4.3 ([21, Corollary 2.6]) For an composite integer n > 1,

i(T�(Zn)) =
{
2 i f n is even
n−pk−1

2 + 1 i f n = pk where p > 2 is prime and k > 1.

Corollary 4.4 ([21, Corollary 2.7]) For any composite integer n, di (T�(Zn)) = n
2

if n is even and di (Reg(T�(Zn))) = 2 if n = pk where p > 2 is prime.

Corollary 4.5 ([21, Corollary 2.8])For any composite integer n > 2, γs(T�(Zn)) =
γw(T�(Zn)) = p1, where p1 is the smallest prime divisor of n.

The following theorem characterizes all γ-sets in T�(Zn).

Theorem 4.6 ([21, Theorem 2.9]) Let n be a composite integer and p1 be the small-
est prime divisor of n. A set S = {x1, x2, . . . , xp1} ⊂ V (T�(Zn)) is a γ-set of T�(Zn)

if and only if xi + lp1 /∈ S for all i = 1, ..., p1 and l ∈ Z
+.

From the above theorem, one can observe that for any integer n, T�(Zn) is an
excellent graph ([21, Corollary 2.10]). The following theorem obtains the total dom-
ination number of T�(Zn).

Theorem 4.7 ([21, Theorem 2.11]) Let n = pα1
1 pα2

2 ...pαm
m be a composite number.

Then
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γt (T�(Zn)) =

⎧⎪⎨
⎪⎩
4 i f n = 2k f or some k wi th 1 < k ∈ Z

+;
p + 1 i f n = pk f or some prime p > 2 and k wi th 1 < k ∈ Z

+;
p1 otherwise.

Next result gives the value of prefect domination number of T�(Zn).

Theorem 4.8 ([21, Theorem 2.13]) Let n �= 2 be an integer. Then

γp(T�(Zn)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p+1
2 i f n = p f or some prime p;

p i f n = pk f or some prime p and an integer k > 1;
2 i f n = 2p f or some prime p > 2;
n otherwise.

Note that, if n = 2p for some prime p > 2, then the sets {i, p − i} for all i ∈ Zn

are the only γp-sets of T�(Zn) and i is adjacent to p − i for all i ∈ Zn. Therefore,
we have the following result:

Corollary 4.9 ([21, Corollary 2.14]) Let n be a composite integer. Then

γe f f (T�(Zn)) =
{

n−pk−1

2 + 1 i f n = pk f or some prime p and k ≥ 1;
does not exists otherwise.

Corollary 4.10 ([21, Corollary 2.15]) Let n be a composite integer. Then

dp(T�(Zn)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
pk−1 i f n = pk f or some prime p and integer k > 1;
p i f n = 2p f or some prime p > 2;
does not exists i f n = p f or some prime p > 2;
1 otherwise.

Next, we see that the connected and clique domination number of T�(Zn) is equal
to the domination number of T�(Zn).

Theorem 4.11 ([21, Theorem 2.16]) Let n ≥ 2 be any integer and not a prime
power and T�(Zn).Then γc(T�(Zn) = γcl(T�(Zn) = p1 where p1 is a smallest prime
divisor of n.

Next, we list certain results concerning domination parameters of the complement
of the total graph on Zn i.e., T�(Zn). If n is prime, then clearly γ(T�(Zn)) = 1.

Theorem 4.12 ([21, Theorem 3.1]) Let n be any composite integer. Then

γ(T�(Zn)) =
{
2 i f n = pk f or some prime p and k > 1;
2 i f n = 2p f or some prime p > 3.
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Corollary 4.13 ([21, Corollary 3.2]) For any positive integer n,

i(T�(Zn)) =
{
pk−1 i f n = pk f or some prime p and k > 1;
2 i f n = 2p f or some prime p > 3.

Corollary 4.14 ([21, Corollary 3.3]) Let n be a composite integer. Then

γc(T�(Zn)) =
{
2 i f n = pk f or some prime p and k > 1;
4 i f n = 2p f or some prime p > 3.

Next theorem shows that, for every composite integer n, there exists a positive
integer � such that γ(T�(Zn)) ≤ � + 1.

Theorem 4.15 ([21, Theorem 3.4]) Let n be a composite integer. If Z(Zn) contains
at most � consecutive integers of Zn for some � ∈ Z

+, then γ(T�(Zn)) ≤ � + 1.

Note that in the above theorem if no consecutive integer exists in Z(Zn), then we
take � = 1. For any integer n, 1 ≤ γ(T�(Zn)) ≤ � + 1. The lower bound is attained
in the case of n = p, where p is a prime number. On the other hand, if n = pk

for some k > 1, then � = 1 and γ(T�(Zn)) = 2. Also if R = Z12, then � = 3 and
γ(T�(R)) = 4. Hence the bounds are sharp ([21, Remark 3.5]).

5 Domination in Total Graph of a Commutative Ring

In this section, we enumerate results on the domination parameters of the total graph
of a commutative ring. Actually these lists exhibit that the domination number of the
total graph of an Artin ring equals the upper bound. In this connection, a conjecture
was posed and the same is given here.

Let I be a maximum annihilator ideal of R. That means, I is a maximal annihila-
tor ideal of R such that | RI | = min{| RA | : A is a maximal annihilator ideal of R}. We
begin with the following theorem, which exhibits a relation between the product of
rings and the product of corresponding total graphs. More specifically, the relation
is concerning the domination number of the total graph of the direct product of two
rings and the domination number of Cartesian product of the total graphs of rings.

Theorem 5.1 ([25, Theorem 2.1]) Let R1 and R2 be two commutative rings with
identity. Then γ(T�(R1 × R2)) ≤ γ(T�(R1)�T�(R2)).

For any integral domain R, the maximum degree �(T�(R)) ≤ 1. If R is a finite
integral domain, then γ(T�(R)) = |R|−k

2 + k, where k = |{a ∈ R : a = −a}|. If R is
infinite, then there exists no positive integer k such that γ(T�(R)) = k. So hereafter,
we assume throughout this section that all rings are commutative which is not an
integral domain. In the following theorem, we obtain lower and upper bounds for the
domination number of the total graph of a commutative ring.
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Lemma 5.2 ([25, Lemma 2.2]) Let R be a commutative ring (not necessarily finite)
with identity, I be a maximum annihilator ideal of R and |R/I | = μ(finite). Then
2 ≤ γ(T�(R)) ≤ μ.

It is also shown that the lower and upper bounds are sharp ([25, Example 2.3]).
If Z(R) is an ideal of R, then the maximal annihilator ideal in R is Z(R) and so

the following are proved:

Lemma 5.3 ([25, Lemma 2.4]) If R is a commutative rings with identity, Z(R) is
an ideal of R and | R

Z(R)
| = μ, then γ(T�(R)) = μ.

Theorem 5.4 ([25, Theorem 2.5]) Let R be an Artin ring, I be a maximum annihi-
lator ideal of R and | RI | = μ. Then γ(T�(R)) = μ.

Since every finite ring is an Artin ring, the following is obtained.

Corollary 5.5 ([25, Corollary 2.6]) Let R is a finite commutative ring, I be a max-
imum annihilator ideal of R and | RI | = μ. Then γ(T�(R)) = μ.

Using [25, Theorem 2.5], the domination number for the total graph of certain
classes of commutative rings is determined and proved that there are families of
infinite graphs whose domination number is finite.

Corollary 5.6 ([25, Corollary 2.7])

(a) If n is a composite integer, then γ(T�(Zn)) = p where p is the smallest prime
divisor of n;

(b) For any n, k ∈ Z
+, γ(T�( Zn [x]

<xk>)) = γ(T�(
Zn [x,y]

<xk ,xy,yk>) = p where p is the small-
est prime divisor of n;

(c) If Ri ’s are finite integral domains, thenγ(T�(R1 × R2 × . . . × Rk)) = min{|R1|,
|R2|, . . . , |Rk |};

(d) If n is a composite positive integer, then γ(T�(Zn × Z × . . . × Z)) = p where
p is the smallest prime divisor of n;

(e) Let n be a composite positive integer, k ∈ Z
+ and F be a field. If R = Zn ×

F × . . . × F or R = Zn [x]
<xk> × Z × . . . × Z, then γ(T�(R)) = p where p is the

smallest prime divisor of n.

Having obtained the domination number of the total graph of some classes of
rings, a conjecture was proposed by Tamizh Chelvam and Asir and the same is given
below:

Conjecture 5.7 ([25, Conjecture 2.8]) Let R be a commutative ring with identity
which is not an Artin ring, Z(R) be not an ideal of R and Ii ’s are maximal annihilator
ideals of R. If | RIi | = f ini te for some i, then γ(T�(R)) = min{| RIi | : Ii is a maximal

annihilator ideal of R},where the minimum is taken over all Ii for which | RIi | is finite.
Next, we list certain properties on the domination parameters of T�(R) under the

assumption that γ(T�(R)) = μ. As mentioned earlier, I is a maximum annihilator
ideal in R, |I | = λ and | RI | = μ.
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Lemma 5.8 ([25, Lemma 3.1]) Let R be a commutative ring. If γ(T�(R)) = μ, then
the set S = {x1, x2, . . . , xμ} ⊂ V (T�(R)) is a γ-set of G where x j /∈ xi + I for all
i, j = 1, . . . ,β and i �= j.

Corollary 5.9 ([25, Corollary 3.2]) Let R be a commutative ring. If γ(T�(R)) = μ,

then

(a) γ
′
(T�(R)) = μ, where γ

′
(G) is the inverse domination number of G;

(b) T�(R) is excellent;
(c) the domatic number d(T�(R)) = λ.

Theorem 5.10 ([25, Theorem 3.3]) For a commutative ring R, if Z(R) is not an
ideal of R, R =< Z(R) >(i.e., R is generated by Z(R)) and γ(T�(R)) = μ, then
γt (T�(R)) = γc(T�(R)) = μ.

Let R be a commutative ring and G = T�(R). If R is not an integral domain, then
G satisfies γ(G − v) = γ(G) for all v ∈ V (G). Using this, the bondage number of
the total graph was obtained.

Theorem 5.11 ([25, Theorem 3.3]) For a finite commutative ring R, if γ(T�(R)) =
μ, then bondage number b(T�(R)) = |Z(R)| − 1.

Now, we see the results regarding domination parameters of T�(R) and T�(R)

when Z(R) is an ideal of R. Let Z(R) be an ideal of R and so I = Z(R), λ = α,

μ = β and γ(T�(R)) = β.

Lemma 5.12 ([25, Lemma 4.2]) Let R be a finite commutative ring such that Z(R)

is an ideal of R. Then γ(T�(R)) = 2.

Let R be a finite commutative ring and G =< Reg(R) >⊆ T�(R). If 2 ∈ Z(R)

and β = | R
Z(R)

| = 2, then G = Kα and so γ(G) = α. All remaining cases of R, we
have γ(G) = 2. Therefore

γ(< Reg(R) >) =
{

α if 2 ∈ Z(R) and β = 2;
2 otherwise.

The following corollary determines the inverse domination number:

Corollary 5.13 ([25, Corollary 4.4]) (i) Let R be a commutative ring except the one
with 2 ∈ Z(R), α > 2, β = 2 and G =< Reg(R) > in T�(R). Then γ

′
(G) = 2.

(ii) For any commutative ring R, γ
′
(T�(R)) = 2.

Theorem 5.14 ([25, Theorem 4.5]) Let R be a commutative ring such that Z(R) is
an ideal of R and G = T�(R). A set S = {x1, x2, . . . , xβ} ⊂ V (G) is a γ-set of G if
and only if x j /∈ xi + Z(R) for all 1 ≤ i, j ≤ β and i �= j.

Corollary 5.15 ([25, Corollary 4.7]) Let R be a finite commutative ring with Z(R)

is an ideal of R. Then
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(a) T�(R) and T�(R) are excellent;

(b) d(T�(R)) = α and d(T�(R)) =
⌊

|R|
2

⌋
;

(c) If G1 = Reg�(R), then

d(G1) =
{
1 i f 2 ∈ Z(R) and β = 2⌊ |Reg(R)|

2

⌋
otherwise;

(d) T�(R) is domatically full.

Theorem 5.16 ([25, Theorem 4.8]) Let R be a finite commutative ring with Z(R)

is an ideal of R and G = T�(R). Then G and G are well covered.

Corollary 5.17 ([25, Corollary 4.9]) If R is a finite commutative ring such that Z(R)

is an ideal of R and |Z(R)| = α, then ω(T�(R)) = α.

Theorem 5.18 ([25, Theorem 4.10]) Let R be a finite commutative ring such that
Z(R) is an ideal of R, |Z(R)| = α, | R

Z(R)
| = β and G = T�(R). Then

(a) γt (G) =
{
2β i f 2 ∈ Z(R)

β + 1 otherwise;
(b) γt (G) = 2;
(c) γc(G) = 2;
(d) γs(G) = γw(G) = β and γs(G) = γw(G) = 2;
(e) γp(G) = β;
(f) γp(G) = 2 if β = 2;
(g) If G1 =< Reg(R) > in T�(R), β = 2 and 2 /∈ Z(R), then γp(G1) = 2.

Finally, we see the double domination parameters of T�(R).

Theorem 5.19 ([25, Theorem 4.11]) Let R be a finite commutative ring with Z(R)

is an ideal of R, |Z(R)| = α, |R/Z(R)| = β and G = T�(R). Then

(a) γγ(G) = 2β;
(b) γi(G) =

{
2β i f 2 ∈ Z(R)

β + (
β−1
2 )α + 1 otherwise;

(c) i i(G) =
{
2β i f 2 ∈ Z(R)

2( β−1
2 )α + 2 otherwise;

(d) t t (G) =

⎧⎪⎨
⎪⎩
4β i f 2 ∈ Z(R) and α ≥ 4

2(β + 1) i f 2 /∈ Z(R)

does not exists otherwise.
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On Iso-Retractable Modules and Rings

A.K. Chaturvedi

Abstract Beaumont studied groups with isomorphic proper subgroups (see
Beaumont: Bull Amer Math Soc 51, 381–387 1945 [1]). In Beaumont et al.: Trans
Amer Math Soc 91(2), 209–219 1959 [2], Beaumont and Pierce consider the prob-
lem of determining all R-modules M over a principal ideal domain R which have
proper isomorphic submodules. Such modules are called I -modules. In Chaturvedi:
Iso-retractable Modules and Rings (to appear) [3], we investigate iso-retractable
modules that is the modules which are isomorphic to their nonzero submodules.
Also, a ring R is said to be iso-retractable if RR is an iso-retractable module. The
class of iso-retractable modules lies in between simple modules and the uniform
modules. In the present paper, our main objective is to investigate general properties
of iso-retractable modules and rings. Finally, we show that being iso-retractable is a
Morita invariant property.
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1 On Iso-Retractable Modules and Rings

All rings are associative with unit element and all modules are unitary right modules.
We refer to [5, 9] for all undefined notions used in the text.

Beaumont studied groups with isomorphic proper subgroups (see [1]). In [2] the
problemof determining all R-modulesM over a principal ideal domain R which have
proper isomorphic submodules is considered. Such modules are called I-modules.
In [3], modules which are isomorphic to their nonzero submodules are said to be
iso-retractable modules. In [8], authors call such modules elastic. Equivalently, an
R-moduleMR is iso-retractable if for every nonzero submodule N ofMR there exists
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an isomorphism ϕ : M → N . Also, a ring R is said to be iso-retractable if RR is an
iso-retractable module.

Iso-retractable modules are concerned mainly with infinite modules which do not
satisfy the descending chain condition. We provide some examples of iso-retractable
modules.

Example 1.1 1. Infinite cyclic modules are iso-retractable because infinite cyclic
modules have isomorphic proper submodules.

2. Division rings and fields are natural examples of iso-retractable rings.

Recall, an R-module M is epi-retractable if every submodule of MR is a homo-
morphic image of M . Some application of epi-retractable modules studied in [6]. By
[4, 6.9.3], an R-module M is called compressible if for every nonzero submodule N
ofM there exists amonomorphism fromM to N . The concept of epi-retractablemod-
ules is dual to the concept of compressible modules. There exist some epi-retractable
modules which are not compressible.

Remark 1.2 The class of iso-retractable modules lies in between compressible and
epi-retractable modules. Therefore we have the following implications:

slightly compressible ⇐ compressible ⇐ iso-retractable ⇒ epi-retractable.

But the reverse implications are not true in all cases. A nonzero semi-simple
module is epi-retractable. But it is not compressible therefore it is not iso-retractable.
We note that every iso-retractable module is a slightly compressible module (see [7])
but the converse need not be true.

Remark 1.3 The class of iso-retractable modules lies in between simple modules
and the uniform modules. Therefore the following implications hold:

simple ⇒ iso-retractable ⇒ uniform ⇒ indecomposable.

Trivially simple modules are iso-retractable but the converse need not be true. For
example, ZZ is iso-retractable but not simple. In the following we observe following
sufficient conditions:

Proposition 1.4 If an iso-retractable module is finite then it must be simple.

Proof It is obvious. �

Proposition 1.5 If MR is a simple module then the following are equivalent:

1. MR is epi-retractable.
2. MR is compressible.
3. MR is iso-retractable.

Proof It is clear. �
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In [3], we investigate iso-retractable modules and provide sufficient conditions
for iso-retractable modules to be simple. Recall that a module M is said to be semi-
coHopfian if any injective endomorphism of M has a direct summand image. M is
regular if every cyclic submodule of M is a direct summand of M . In the following
we state one result of [3] that characterizes simplemodules in terms of iso-retractable
modules.

Theorem 1.6 Let R be a ring. The following are equivalent for an R-module MR.

1. MR is simple,
2. MR is regular and iso-retractable,
3. MR is semi-coHopfian and iso-retractable,
4. MR is continuous and iso-retractable.

Now we discuss some general properties of iso-retractable modules.

Proposition 1.7 The submodule of an iso-retractable module is iso-retractable.

Proof Let N be a submodule of an iso-retractable module M . Then N is isomorphic
to M . Let K be any submodule of N then obviously K is isomorphic to N . Hence
N is also an iso-retractable module. �

Remark 1.8 In general, quotient of an iso-retractable module need not be iso-
retractable. For example, ZZ is iso-retractable but Z/4Z ∼= Z4 is not iso-retractable.

In the following we show that when quotients are iso-retractable:

Proposition 1.9 Let MR be an iso-retractable module. Then for any fully invariant
submodule N of MR, the factor module (M/N )R is iso-retractable.

Proof Let K/N be any submodule of (M/N )R . There is an isomorphism φ : M →
K . Now φ(N ) ⊆ N by our assumption, and so α : M/N → K/N with α(m + N ) =
α(m) + N is an isomorphism. �

Recall that the right R-module M is a duo module provided every submodule of
M is fully invariant. As a consequence of the above result, we have the following:

Corollary 1.10 Let MR be an iso-retractable and duo module. Then the factor mod-
ule (M/N )R is iso-retractable for any submodule N of MR.

Remark 1.11 Direct sum of two iso-retractable modules need not be iso-retractable.
For example, consider Z6 = {0, 2, 4} ⊕ {0, 3}. Z6 as a Z-module is not an iso-
retractable module. But every direct summand of Z6 is simple, therefore they are
iso-retractable.

In the following,weobserve that every iso-retractablemodule is cyclic,Noetherian
and uniform.
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Theorem 1.12 Let R be a ring and MR be an iso-retractable module. Then

1. MR is a cyclic module,
2. MR is Noetherian,
3. MR is a uniform module.

Proof 1. We observe that for all nonzero x ∈ M , M ∼= x R. Since homomorphic
image of a cyclic module is cyclic therefore M is cyclic.

2. Let N be a submodule of MR . Then N ∼= M and for all nonzero x ∈ M , M ∼=
x R. Therefore M ∼= x R ∼= N and every submodule N is cyclic. Hence M is
Noetherian.

3. IfMR is iso-retractable then it isNoetherian by (2).HenceM iswith u.dim < ∞.
Then M has a uniform submodule U (see [5, Proposition 6.4]). But M ∼= U ,
therefore M is uniform.

�

Remark 1.13 Every iso-retractable module is cyclic but the converse need not be
true. For example, if m is not prime then Zm is a cyclic Z -module but not iso-
retractable. Also, an iso-retractable module is uniform but the converse need not
be true. For example, Z4 as a Z-module is uniform but not iso-retractable. Iso-
retractable modules are concerned mainly with infinite modules which do not satisfy
the descending chain condition. But they satisfy ascending chain condition.

Finally, we discuss Morita invariant property.

Theorem 1.14 Being iso-retractable is a Morita invariant property.

Proof It iswell known fact that any category equivalence preservesmono-morphisms
and epi-morphisms. Therefore, it is clear by the observation that a module MR is
iso-retractable if and only if for any N ∈Mod-R there is an isomorphism from MR

to NR . �
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Normal Categories from Completely Simple
Semigroups

P.A. Azeef Muhammed

Abstract In this paper, we characterize the normal categories associated with a
completely simple semigroup S = M [G; I,�; P] and show that the semigroup of
normal cones TL(S) is isomorphic to the semi-direct product G�

� �. We charac-
terize the principal cones in this category and the Green’s relations in TL(S).

Keywords Normal category · Completely simple semigroup · Normal cones ·
Cross-connections
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1 Introduction

A semigroup S is said to be (von-neumann) regular if for every a ∈ S, there exists b
such that aba = a. In the study of the structure theory of regular semigroups, there
are mainly two approaches. The first approach inspired by the work of WD Munn
(cf. [9]) uses the set of idempotents E of the semigroup to construct the semigroup
as a full-subsemigroup of the semigroup of the principal-ideal isomorphisms of E .
The biggest contribution of Kerala to the world of semigroup theory lies at the heart
of this construction wherein KSS Nambooripad (cf. [10]) abstractly characterized
the set of idempotents of a (regular) semigroup as a (regular) biordered set. It was
later proved by D. Easdown (cf. [3]) that infact the idempotents of any arbitrary
semigroup form a biordered set.

The second approach initiated by Hall (cf. [6]) uses the ideal structure of the
regular semigroup to analyze its structure. PA Grillet (cf. [4]) refined Hall’s theory to
abstractly characterize the ideals as regular partially ordered sets and constructing the
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fundamental image of the regular semigroup as a cross-connection semigroup. Again
Nambooripad (cf. [11]) generalized the idea to any arbitrary regular semigroups by
characterizing the ideals as normal categories.

A cross-connection between twonormal categoriesC andD is a local isomorphism
� : D → N ∗C where N ∗C is the normal dual of the category C. A cross-conection
� determines a cross-connection semigroup S̃� and conversely every regular semi-
group is isomorphic to a cross-connection semigroup for a suitable cross-connection.

A completely simple semigroup is a semigroup without zero which has no proper
ideals and contains a primitive idempotent. It is known that S is a regular semigroup
and any completely simple semigroup is isomorphic to the Rees matrix semigroup
M [G; I,�; P]whereG is a group I and� are sets and P = (pλi ) is a� × I matrix
with entries in G. (cf. [13]). Then S = G × I × � with the binary operation

(a, i,λ)(b, j,μ) = (apλ j b, i,μ).

In this paper, we characterize the normal categories involved in the construction
of a completely simple semigroup as a cross-connection semigroup. We show that
the category of principal left ideals of S - L(S) has � as its set of objects and
G as the set of morphisms between any two objects. We observe that it forms a
normal category and we characterize the semigroup of normal cones arising from
this normal category.We show that this semigroup is equal to the semi-direct product
of G�

� �. We characterize the principal cones in this category and show that
the principal cones form a regular subsemigroup of G�

� �. We also show for
γ1 = (γ̄1,λk), γ2 = (γ̄2,λl) ∈ TL(S), γ1L γ2 if and only if λk = λl and γ1Rγ2 if
and only if γ̄1G = γ̄2G.

2 Preliminaries

In the sequel, we assume familiarity with the definitions and elementary concepts of
category theory (cf. [8]). The definitions and results on cross-connections are as in
[11]. For a category C, we denote by vC the set of objects of C.
Definition 2.1 Let C andD be two categories and F : C → D be a functor. We shall
say that a functor F is v-injective if vF is injective. F is said to be v-surjective if vF
is surjective. F is said to be an isomorphism if it is v-injective, v-surjective, full and
faithful.

Definition 2.2 A preorder P is a category such that for any p, p′ ∈ P , the hom-set
P(p, p′) contains atmost one morphism.

In this case, the relation⊆ on the class vP of objects ofP defined by p ⊆ p′ ⇐⇒
P(p, p′) 	= ∅ is a quasi-order. P is said to be a strict preorder if ⊆ is a partial order.

Definition 2.3 Let C be a category and P be a subcategory of C. Then (C,P) is
called a category with subobjects if P is a strict preorder with vP = vC such that
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every f ∈ P is a monomorphism in C and if f, g ∈ P and if f = hg for some h ∈ C,
then h ∈ P . In a category with subobjects, if f : c → d is a morphism in P , then f
is said to be an inclusion. We denote this inclusion by j (c, d).

Definition 2.4 A morphism e : d → c is called a retraction if c ⊆ d and j (c, d)

e = 1c.

Definition 2.5 A normal factorization of a morphism f ∈ C(c, d) is a factorization
of the form f = eu j where e : c → c′ is a retraction, u : c′ → d ′ is an isomorphism
and j = j (d ′, d) for some c′, d ′ ∈ vC with c′ ⊆ c, d ′ ⊆ d.

Definition 2.6 Let d ∈ vC. A map γ : vC → C is called a cone from the base vC to
the vertex d if γ(c) ∈ C(c, d) for all c ∈ vC and whenever c′ ⊆ c then j (c′, c)γ(c) =
γ(c′). The cone γ is said to be normal if there exists c ∈ vC such that γ(c) : c → cγ

is an isomorphism.

Given the cone γ we denote by cγ the the vertex of γ and for each c ∈ vC, the
morphism γ(c) : c → cγ is called the component of γ at c. We define Mγ = {c ∈
C | γ(c) is an isomorphism}.
Definition 2.7 A normal category is a pair (C,P) satisfying the following:

1. (C,P) is a category with subobjects.
2. Any morphism in C has a normal factorization.
3. For each c ∈ vC there is a normal cone σ with vertex c and σ(c) = 1c.

Theorem 1 (cf. [11]) Let (C,P) be a normal category and let TC be the set of all
normal cones in C. Then TC is a regular semigroup with product defined as follows:
For γ,σ ∈ TC

(γ ∗ σ)(a) = γ(a)(σ(cγ))
◦ (1)

where (σ(cγ))
◦ is the epimorphic part of the σ(cγ). Then it can be seen that γ ∗ σ is

a normal cone. TC is called the semigroup of normal cones in C.
Let S be a regular semigroup. The category of principal left ideals of S is described

as follows. Since every principal left ideal in S has at least one idempotent generator,
wemaywrite objects (vertexes) inL(S) as Se for e ∈ E(S).Morphisms ρ : Se → S f
are right translations ρ = ρ(e, s, f ) where s ∈ eS f and ρ maps x �→ xs. Thus

vL(S) = {Se : e ∈ E(S)} and L(S) = {ρ(e, s, f ) : e, f ∈ E(S), s ∈ eS f }.
(2)

Proposition 1 (cf. [11]) Let S be a regular semigroup. Then L(S) is a normal
category. ρ(e, u, f ) = ρ(e′, v, f ′) if and only if eL e′, fL f ′, u ∈ eS f , v ∈ e′S f ′
and v = e′u. Let ρ = ρ(e, u, f ) be a morphism in L(S). For any g ∈ Ru ∩ ω(e) and
h ∈ E(Lu), ρ = ρ(e, g, g)ρ(g, u, h)ρ(h, h, f ) is a normal factorization of ρ.
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Proposition 2 (cf. [11]) Let S be a regular semigroup, a ∈ S and f ∈ E(La). Then
for each e ∈ E(S), let ρa(Se) = ρ(e, ea, f ). Then ρa is a normal cone in L(S) with
vertex Sa. Mρa = {Se : e ∈ E(Ra)}. ρa is an idempotent in TL(S) iff a ∈ E(S). The
mapping a �→ ρa is a homomorphism from S to TL(S). Further if S is a monoid,
then S is isomorphic to TL(S).

3 Normal Categories in a Completely Simple Semigroup

Given a completely simple semigroup S, it is known that S is isomorphic to the
Rees matrix semigroup M [G; I,�; P] where G is a group I and � are sets and
P = (pλi ) is a � × I matrix with entries in G.(cf. [13]). Then S = G × I × � with
the binary operation

(a, i,λ)(b, j,μ) = (apλ j b, i,μ).

It is easy to see that (g1, i1,λ1)L (g2, i2,λ2) if and only if λ1 = λ2 (cf. [7]). Observe
that (g, i,λ) is an idempotent in S if and only if g = p−1

λi . Hence, the set of objects
of vL(S) is equal S(p−1

λi , i,λ) (see Eq.2). Now given an idempotent (p−1
λ1i1

, i1,λ1),

for an arbitrary s = (gs, is,λs) ∈ S, (gs, is,λs)(p
−1
λ1i1

, i1,λ1) = (gs pλs i1 p
−1
λ1i1

, is,λ1).
Now since gs and is in the product are arbitrary we see that principal left ideal
generated by the idempotent will have elements of the form (g, i,λ1) with g and i
arbitrary elements ofG and I , respectively. The ideal will be of the formG × I × λ1.
Hence any principal left ideal will be of the form G × I × λ such that λ ∈ �. So

vL(S) = {G × I × λ : λ ∈ �}.

Henceforth, we will denote the left ideal S(p−1
λi , i,λ) = G × I × λ by λ̄ and the set

vL(S) will be denoted by �̄.
Recall that any morphism from Se = λ̄1 to S f = λ̄2 will be of the form ρ(e, u, f )

where u ∈ eS f (see Eq.2). Without loss of generality, let us assume that e =
(p−1

λ1i1
, i1,λ1) and f = (p−1

λ2i2
, i2,λ2). Then sinceu ∈ eS f , for some s = (gs, is,λs) ∈

S, u will be of the form (p−1
λ1i1

, i1,λ1)(gs, is,λs)(p
−1
λ2i2

, i2,λ2) = (p−1
λ1i1

pλ1isgs pλs i2

p−1
λ2i2

, i1,λ2). Again since gs ∈ G in the product is arbitrary we see that u will be

of the form (gu, i1,λ2) for an arbitrary gu ∈ G. Hence any morphism from λ̄1 to
λ̄2 will be of the form ρ((p−1

λ1i1
, i1,λ1), (gu, i1,λ2), (p

−1
λ2i2

, i2,λ2)) where gu ∈ G.

since for any morphism in L(S), (gu, i1,λ2) ∈ (p−1
λ1i1

, i1,λ1)S(p−1
λ2i2

, i2,λ2) and
s = (gs, is,λs) ∈ S is arbitrary.

For an element x ∈ Se, since a morphism ρ(e, u, f ) maps x �→ xu ∈ S f , a
morphism ρ((p−1

λ1i1
, i1,λ1), (gu, i1,λ2), (p

−1
λ2i2

, i2,λ2)) will map (gx , ix ,λ1) ∈ λ̄1 to

(gx , ix ,λ1)(gu, i1,λ2) = (gx pλ1i1gu, ix ,λ2) ∈ λ̄2. Since gu ∈ G was chosen arbitrar-
ily, pλ1i1gu will be an arbitrary element of the group G. So if g = pλ1i1gu , the mor-
phism maps (gx , ix ,λ1) �→ (gxg, ix ,λ2). Observe that morphism involves only the
right translation of the group element gx to gxg and the rest of the component
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is fixed. Hence, the morphism is essentially gx �→ gxg such that g ∈ G for some
arbitrary g ∈ G. So the set of morphisms from λ̄1 to λ̄2 is

L(S)(λ̄1, λ̄2) = {(gx , is,λ1) �→ (gxg, is,λ2) : g ∈ G}.

Hence, the set of morphisms from λ̄1 to λ̄2 is the set G and each g ∈ G will map
(gx , ix ,λ1) �→ (gxg, ix ,λ2). We will denote this morphism as ρg when there is no
ambiguity regarding the domain and range.

Remark 1 Observe that for everymorphism ρg inL(S) from λ̄1 to λ̄2, since g−1 ∈ G,
there exists a morphism ρg−1 between λ̄2 and λ̄1. Then for any (gx , ix ,λ1) ∈ λ̄1,
(gx , ix ,λ1)ρgρg−1 = (gxg, ix ,λ2)ρg−1 = (gxgg−1, ix ,λ1) = (gx , ix ,λ1).

Also for any (gy, iy,λ2) ∈ λ̄2, (gy, iy,λ2)ρg−1ρg = (gyg
−1, iy,λ1)ρg =

(gyg
−1g, iy,λ2) = (gy, iy,λ2).

So (λ̄1)ρgρg−1 = 1λ̄1
and (λ̄2)ρg−1ρg = 1λ̄2

. Hence ρg
−1 = ρg−1 and every mor-

phism ρg has an inverse ρg−1 . Consequently every morphism will be an isomorphism
and hence L(S) will be a groupoid. So in L(S) there will be no inclusions and the
epimorphic component of every morphism will be the morphism itself.

Now, we characterize the normal cones inL(S). Recall that a cone in C with vertex
d ∈ vC is a map γ : vC → C such that γ(c) ∈ C(c, d) for all c ∈ vC and whenever
c′ ⊆ c then j (c′, c)γ(c) = γ(c′). Since there are no inclusions in L(S), the second
condition is redundant. Since vL(S) is bijective with � and morphisms in L(S) are
just right multiplication by elements of G; a cone with vertex λ̄ is a map γ : �̄ → G
such that γ(λ̄k) ∈ G for all λ̄k ∈ �̄. Hence, a cone γ is a |�|-tuple of elements of
G along with the vertex represented by an element λ ∈ �. Hence any normal cone
γ with vertex λ̄ can be represented by (γ̄,λ) where γ̄ ∈ G�, λ ∈ �. Then λ̄k is
right multiplied by the group element gk , the kth coordinate of γ̄. Also since every
morphism is an isomorphism, every cone in L(S) will be a normal cone.

Now we proceed to look at TL(S), the semigroup of all normal cones in L(S).
Given γ1 = (γ̄1,λk), γ2 = (γ̄2,λl) ∈ TL(S), the multiplication is defined as (see
Eq.1):

γ1 ∗ γ2 = (γ̄1.ḡk,λl) (3)

where gk is the kth coordinate of γ̄2 and ḡk = (gk, gk, ..., gk). Hence TL(S) is iso-
morphic to G� × � with multiplication as defined above. We further observe that
the semigroup obtained here can be realized as a semi-direct product of semigroups.

Definition 3.1 (cf. [5]) Let S and T be semigroups. A (left) action of T on S is a map
S × T → S, (s, t) �→ t s satisfying: (i) t1t2s = t1(t2s) and (ii) t s1s2 = t (s1)t (s2) for
all t, t1, t2 ∈ T and s, s1, s2 ∈ S.

Definition 3.2 (cf. [5]) The semidirect product S � T of S and T, with respect to a
left action of T on S, has as its underlying set S × T with multiplication defined by

(s1, t1)(s2, t2) = (s1
t1s2, t1t2)
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It is well known that S � T is a semigroup. It is trivially verified that the
idempotents in S � T are the pairs (s, t) such that t ∈ E(T ) and s t s = s.

Now we show that the semigroup of normal cones in L(S) is the semigroup of a
semi-direct product of G�

� �.
Firstly, we look at the semigroups G� and �. Since G is a group; G� will form

a group under component-wise multiplication defined as follows. For (g1, g2...g|�|),
(h1, h2...h|�|) ∈ G�

(g1, g2...g|�|)(h1, h2...h|�|) = (g1h1, g2h2, ..., g|�|h|�|)

and hence in particular G� is also a semigroup. The set � (coming from the Rees
matrix semigroup) admits a right zero semigroup structure and hence has an in-built
multiplication given by λkλl = λl for every λk,λl ∈ �. Now we define a left action
of� on G�, φ : G� × � → G� as follows. For (g1, g2, ..., g|�|) ∈ G� and λk ∈ �,

((g1, g2, ..., g|�|),λk)φ = (gk, gk, ..., gk) (4)

Lemma 1 The function φ : G� × � → G� as defined in Eq.4 is a left action of �
on G�.

Proof Clearly the function is well-defined. Now for ḡ = (g1, g2, ..., g|�|) ∈ G�,
(ḡ,λkλl)φ = ((g1, g2, ..., g|�|),λkλl)φ = ((g1, g2, ..., g|�|),λl)φ = (gl , gl , ..., gl).
(since λkλl = λl).

Also ((ḡ,λl)φ,λk)φ = (((g1, g2, ..., g|�|),λl)φ,λk)φ = ((gl, gl , ..., gl),λk)

φ = (gl, gl , ..., gl).

Hence (ḡ,λkλl)φ = ((ḡ,λl)φ,λk)φ for ḡ ∈ G� and λk,λl ∈ �.

Then for ḡ = (g1, g2, ..., g|�|), h̄ = (h1, h2, ..., h|�|) ∈ G�, and λk ∈ �, (ḡh̄,λk)

φ = ((g1, g2...g|�|)(h1, h2...h|�|),λk)φ = ((g1h1, g2h2, ..., g|�|h|�|),λk)φ = (gk
hk, gkhk, ..., gkhk). (ḡ,λk)φ(h̄,λk)φ = ((g1, g2, ..., g|�|),λk)φ((h1, h2, ..., h|�|),
λk)φ = (gk, gk, ..., gk)(hk, hk, ..., hk) = (gkhk, gkhk, ..., gkhk).

Hence (ḡh̄,λk)φ = (ḡ,λk)φ(h̄,λk)φ for ḡ, h̄ ∈ G�, and λk ∈ �.
Thus φ is a left semigroup action of � on G�. �

Proposition 3 TL(S) is the semi-direct product G�
� � with respect to the left

action φ.

Proof The semi-direct product of G�
� �with respect to φ is given by, for (γ̄1,λk),

(γ̄2,λl) ∈ G� × �, the multiplication is defined as (see Definition3.2): (γ̄1,λk) ∗
(γ̄2,λl) = (γ̄1.(γ̄2,λk)φ,λkλl) = (γ̄1.ḡk,λl) where gk is the kth coordinate of γ̄2
and ḡk = (gk, gk, ..., gk). So if we take γ1 = (γ̄1,λk) and γ2 = (γ̄2,λl) then, the
multiplication defined above is exactly the same multiplication defined in Eq.3 and
hence TL(S) is the semi-direct product G�

� � with respect φ. �

The idempotents in TL(S) can be characterized by the following lemma.
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Lemma 2 γ = (γ̄,λk) ∈ TL(S) is an idempotent if and only if gk = e where gk is
the kth coordinate of γ̄ and e is the identity of the group G.

Proof Suppose γ = (γ̄,λk) ∈ TL(S) be an idempotent. Then, (γ̄,λk) ∗ (γ̄,λk) =
(γ̄,λk). .i.e (γ̄.ḡk,λk) = (γ̄,λk). Hence γ̄.ḡk = γ̄. Now since γ̄ ∈ G� was arbitrary;
this is possible only if g.gk = g for every g ∈ G. Hence gk = g−1g = e.

Conversely if gk = e, γ2 = (γ̄,λk) ∗ (γ̄,λk) = (γ̄.ē,λk) = (γ̄,λk) = γ. Hence
γ is an idempotent. �

Observe that the lemma can also be obtained by appealing to the characterization
of idempotents in the semi-direct product of the semigroups. Every morphism in
L(S) being an isomorphism is already a normal factorization. Also since for any
λk ∈ �, γ such that γ(λ̄k) = e gives an idempotent normal cone with vertex λ̄k , we
see that for any vertex λk ∈ �, we have an idempotent normal cone with that vertex.
Hence L(S) explicitly satisfies all the properties to be a normal category. Now we
proceed to characterize the principal cones in TL(S).

Proposition 4 The principal cones in TL(S) forms a regular subsemigroup of
G�

� �.

Proof Given a = (ga, ia,λa), the principal cone ρa (see Proposition2) will be a
normal cone with vertex λ̄a such that each left ideal λ̄k is right multiplied by
(ga, ia,λa). But since the morphisms in L(S) involves right multiplication by the
product of a sandwich element of the matrix and the group element; at each λ̄k ∈ �,
ρa(λ̄k) = pλk iaga (where the sandwich matrix P = (pλi )λ∈�,i∈I ).

Hence ρa can be represented by (pλ1iaga, pλ2iaga, pλ3iaga, ..., pλ|�|iaga;λa) ∈
G�

� �. Observe that ρ̄a ∈ G� is the right translation of the ia-th column of the
sandwich matrix P with group element ga .

Now ρa .ρb = (pλ1iaga, pλ2iaga, pλ3iaga, ..., pλ|�|iaga;λa).(pλ1ibgb, pλ2ibgb, pλ3ib
gb, ..., pλ|�|ibgb;λb) = (pλ1iaga pλa ibgb, pλ2iaga pλa ibgb, pλ3iaga pλa ibgb, ..., pλ|�|ia
ga pλa ibgb;λb). Also a.b = (ga, ia,λa)(gb, ib,λb) = (ga pλa ibgb, ia,λb). So ρab =
(pλ1iaga pλa ibgb, pλ2iaga pλa ibgb, pλ3iaga pλa ibgb, ..., pλ|�|iaga pλa ibgb;λb).

Hence ρa .ρb = ρab and consequently the map a �→ ρa from S → TL(S) is a
homomorphism. So the set of principal cones in L(S) forms a subsemigroup of
TL(S). Since S is regular, the semigroup of principal cones forms a regular sub-
semigroup of G�

� �. �

If S is a regular monoid, then it is known that S is isomorphic to TL(S) (see
Proposition2). But in general, this may not be true. But always there exists a homo-
morphism from S → TL(S) mapping a �→ ρa which may not be one-one or onto.
But in the case of completely simple semigroups, there exists some special cases
where this map is one-one and consequently S can be realized as a subsemigroup of
TL(S).

Theorem 2 S = M [G; I,�; P] is isomorphic to the semigroup of principal cones
in TL(S) if and only if for every g ∈ G and i1 	= i2 ∈ I , there exists λk ∈ � such
that pλk i1 	= pλk i2g.
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Proof As seen above, there exists a semigroup homomorphism from ψ :→ TL(S)

mapping a �→ ρa . Now S can be seen as a subsemigroup of TL(S) if and only if ψ
is one-one.

We claim ψ is one-one only if for every i1 	= i2 ∈ I and every g ∈ G, there exists
λk ∈ � such that pλk i1 	= pλk i2g. Suppose not. i.e, there exists i1 	= i2 ∈ I and a g ∈ G
such that pλk i1 = pλk i2g for every λk ∈ �. Then without loss of generality, assume
g = g2g

−1
1 for some g1, g2 ∈ G. Then pλk i1 = pλk i2g2g

−1
1 for some g1, g2 ∈ G. .i.e

pλk i1g1 = pλk i2g2 for every λk ∈ �. Hence, if a = (g1, i1,λ) and b = (g2, i2,λ);
then since i1 	= i2, a 	= b. Then ρa = (pλ1i1g1, pλ2i1g1, pλ3i1g1, ..., pλ|�|i1g1;λ) and
ρb = .(pλ1i2g2, pλ2i2g2, pλ3i2g2, ..., pλ|�|i2g2;λ). Since pλk i1g1 = pλk i2g2 for every
λk ∈ �, a 	= b but ρa = ρb. Hence ψ is not one-one. Hence S is not isomorphic
to the semigroup of principal cones in TL(S).

Conversely suppose for every i1 	= i2 ∈ I and every g ∈ G, there exists λk ∈ �

such that pλk i1 	= pλk i2g, we need to show ψ is one-one so that S is isomorphic to
the semigroup of principal cones. Suppose if a = (ga, ia,λa) and b = (gb, ib,λb)

and ψ(a) = ψ(b). So ρa = ρb; .i.e, (pλ1iaga, pλ2iaga, pλ3iaga, ..., pλ|�|iaga;λa) =
(pλ1ibgb, pλ2ibgb, pλ3ibgb, ..., pλ|�|ibgb;λb). So clearlyλa = λb. pλk iaga = pλk ibgb for
every λk ∈ �. Now if ga 	= gb, then pλk ia = pλk ibgbg

−1
a and so pλk ia = pλk ibg for

every λk ∈ � (taking g = gbg
−1
a ). But this will contradict our supposition unless

ia = ib. But then pλk ia = pλk iag for every λk ∈ �. Now this is possible only if g = e;
which implies gbg

−1
a = e .i.e, gb = ga ; which is again a contradiction.Hence ga = gb.

Now if ia 	= ib; then, we have pλk iaga = pλk ibgb for every λk ∈ �. Then taking
g = gbg

−1
a ; we have pλk ia = pλk ibg for every λk ∈ �; which is again a contradiction

to our supposition. Hence ia = ib.
So (ga, ia,λa) = (gb, ib,λb) and so a = b. Thus ρa = ρb implies a = b making

ψ one-one. So if for every i1 	= i2 ∈ I and every g ∈ G, there exists λk ∈ � such
that pλk i1 	= pλk i2g, then S is isomorphic to the semigroup of principal cones. Hence
the proof. �

Now we proceed to characterize the Green’s relations in TL(S).

Proposition 5 If γ1 = (γ̄1,λk), γ2 = (γ̄2,λl) ∈ TL(S), then γL γ′ if and only if
λk = λl .

Proof Suppose if λk 	= λl . Then for an arbitrary δ = (δ̄,λm) ∈ TL(S); δγ1 =
(δ̄,λm)

(γ̄1,λk) = (δ̄.ḡm,λk) where gm = γ1(λ̄m). Hence δγ1 ∈ G� × λk . Since δ̄ ∈ G�

is arbitrary, TL(S)γ1 = G� × λk . Similarly TL(S)γ2 = G� × λl . So TL(S)γ1 	=
TL(S)γ2.

Conversely if λk = λl , then G� × λk = G� × λl and so TL(S)γ1 = TL(S)γ2.
Thus γ1L γ2. Hence the proof. �

Now we proceed to get a characterization of Green’sR relation in the semigroup
TL(S). For this end, begin by observing that G� is a group with component-wise
multiplication defined as follows. For (g1, g2...g|�|), (h1, h2...h|�|) ∈ G�

(g1, g2...g|�|)(h1, h2...h|�|) = (g1h1, g2h2, ..., g|�|h|�|)



Normal Categories from Completely Simple Semigroups 395

Then G may be viewed as a subgroup (not necessarily normal) of G� by identifying
g �→ (g, g, ..., g) ∈ G�. Then for some γ̄ = (g1, g2...g|�|) ∈ G� we look at the left
coset γ̄G of G in G� with respect to γ̄. It is defined as

γ̄G = {(g1g, g2g, ..., g|�|g) | g ∈ G}

Observe that these cosets form a partition of G�. Now we show that these left cosets
of G in G� infact gives the characterization of Green’s R relation in TL(S).

Let δ = (δ̄,λm) ∈ TL(S); then γ1δ = (γ̄1,λk)(δ̄,λm) = (γ̄1.ḡk,λm) where gk =
δ(λ̄k). Hence γ1δ ∈ (γ̄1G) × �. Since δ ∈ G� × � is arbitrary, both λm and gk can
be arbitrarily chosen. Hence γ1TL(S) = (γ̄1G) × �. This gives us the following
characterization of the R relation in TL(S).

Proposition 6 For γ1 = (γ̄1,λk), γ2 = (γ̄2,λl) ∈ TL(S), γ1Rγ2 if and only if γ̄1
G = γ̄2G.

Proof Suppose γ̄1G = γ̄2G; then (γ̄1G) × � = (γ̄2G) × � and by the above dis-
cussion γ1TL(S) = γ2TL(S) and hence γ1Rγ2.

Conversely, suppose γ̄1G 	= γ̄2G. i.e., there exists a δ = (δ̄,λm) ∈ TL(S) such
that δ̄ ∈ γ̄1G but δ̄ /∈ γ̄2G. Hence δ ∈ (γ̄1G) × � but δ /∈ (γ̄1G) × �. Hence γ1TL
(S) 	= γ2TL(S). So γ1 and γ2 are not R related.

Hence the proof. �

Observe that the R relation of γ1 = (γ̄1,λk) ∈ TL(S) depends only on γ̄1 and
not on λk and so we will denote the R classes of TL(S) by Rγ̄ such that γ̄ ∈ G�.
We further show that if G is abelian, theR classes of TL(S) infact has an additional
structure of that of a group.

Theorem 3 The R classes of TL(S) form a group if and only if G is abelian.

Proof Recall that G is normal in G� if and only if G is abelian.
Suppose G is abelian, then G is normal in G�. Then define the operation on the

R classes - Rγ̄1 and Rγ̄1 as follows.

Rγ̄1 ∗ Rγ̄2 = Rγ̄1.γ̄2

Since the binary operation γ̄1G ∗ γ̄2G = γ̄1γ̄2G defines a group structure on G�/G;
so does the operation defined above. Hence R(TL(S)) is isomorphic to G�/G as
abelian groups.

Conversely, if G is non-abelian, G is not a normal subgroup of G�, and hence,
the coset multiplication is not well-defined; and hence G�/G fails to be a group. �

Remark 2 It must be noted here that Rγ1 ∗ Rγ2 	= Rγ1.γ2 since the operation γ1.γ2 is
a semi-direct product operation whereas γ̄1.γ̄2 is direct product multiplication.



396 P.A. Azeef Muhammed

4 Conclusion

We have characterized the normal categories associated with a completely
simple semigroup. Now further these categories can be used to construct the cross-
connection semigroups using the appropriate local isomorphisms between the cat-
egories. Different local isomorphisms will give rise to different completely simple
semigroups (cf. [1]). This correspondence can shed more light on the structure of
completely simple semigroups; and may be generalized to give satisfactory structure
theorems in certain classes of regular semigroups like completely regular semigroups,
(inverse) clifford semigroups, etc.
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Ordered Semigroups Characterized in Terms
of Intuitionistic Fuzzy Ideals

Noor Mohammad Khan and Mohammad Aasim Khan

Abstract In the present paper, the notions of (∈,∈ ∨qk)-intuitionistics fuzzy ideal,
(∈,∈ ∨qk)-intuitionistics fuzzy bi-ideal, and (∈,∈ ∨qk)-intuitionistics fuzzy gener-
alized bi-ideal of an ordered semigroup are introduced. Then, we characterize these
various intuitionistic fuzzy ideals. Finally, using the properties of these intuitionistic
fuzzy ideals, we have characterized different classes of ordered semigroups.

Keywords Ordered semigroup ·Regular ordered semigroup · Intra-regular ordered
semigroup · Intuitionistic fuzzy ideals

1 Introduction

Zadeh [26] introduced the notion of a fuzzy subset of a set in 1965. This seminal
paper has opened up new insights and application in a wide range of scientific fields.
Rosenfeld [22] used the notion of a fuzzy subset to put forth cornerstone papers in
several areas of mathematics, among other disciplines. Kuroki initiated the theory
of fuzzy semigroups in his paper [17, 18]. The monograph by Mordeson et al. [19]
deals with the theory of fuzzy semigroups and their use in fuzzy codes, fuzzy finite
state machines, and fuzzy languages. In [12], the concept of a fuzzy bi-ideal of an
ordered semigroup was introduced by Kehayopulu and Tsingelis and developed a
theory of fuzzy generalized sets on ordered semigroups. Murali [20] defined the
concept of belongingness of a fuzzy point to a fuzzy subset under a natural equiva-
lence on a fuzzy subset. The idea of quasi-coincidence of a fuzzy point with a fuzzy
set played a vital role in generating different types of fuzzy subgroups. Using these
ideas, Bhakat and Das [3–5] introduced the concept of (α,β)-fuzzy subgroups by
using the ‘belong to’ (∈) relation and ‘quasi-coincident with’ (q) relation between
a fuzzy point and a fuzzy subgroup and introduced the concept of (∈,∈ ∨q)-fuzzy
subgroup. Davvaz defined (∈,∈ ∨q)-fuzzy subnearrings and ideals of a near ring in
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[8]. Kazanci and Yamak [11] studied (∈,∈ ∨q)-fuzzy bi-ideals of a semigroup. In
[10] Jun et al characterized the ordered semigroups by fuzzy ideals. Kehayopulu in
[12–15] characterized regular, left regular, and right regular ordered semigroups by
means of fuzzy left, right, and quasi ideals respectively. As an important general-
ization of the notion of a fuzzy set, Atanassov [1, 2] introduced the concept of an
intuitionistic fuzzy set. Out of several higher order fuzzy sets, intuitionistic fuzzy
sets have been found to be highly useful to deal with vagueness. Biswas in [6] studies
fuzzy sets and intuitionistic fuzzy sets. Davvaz et al. [7] used this concept to Hv-
modules. They introduced the concept of an intuitionistic fuzzy Hv-submodule of an
Hv-module. Kim and Jun [16], introducing the concept of an intuitionistic fuzzy ideal
of a semigroup, characterized the properties of semigroups. In [9] Hong et al. char-
acterized regular ordered semigroup in terms of intuitionistic fuzzy sets. The theory
of intuitionistic fuzzy sets on ordered semigroups has been recently developed (see
[19, 23, 25]). In the present paper, we define the notions of (∈,∈ ∨qk)-intuitionistics
fuzzy ideal, (∈,∈ ∨qk)-intuitionistics fuzzy bi-ideal, and (∈,∈ ∨qk)-intuitionistics
fuzzy generalized bi-ideal of an ordered semigroup. Then, we characterize these
various intuitionistic fuzzy ideals. Finally, using the properties of these intuitionistic
fuzzy ideals, we characterize regular and intra-regular ordered semigroups.

2 Preliminaries

A partial ordered semigroup (briefly ordered semigroup) is a pair (S, ·) comprising a
semigroup S and a partial order≤(on S) that is compatible with the binary operation,
i.e., for all a1, a2, b1, b2 ∈ S, a1 ≤ b1, a2 ≤ b2 implies a1 · a2 ≤ b1 · b2.

A nonempty subset A of an ordered semigroup S is called a subsemigroup of S if
A2 ⊆ A. For any ordered semigroup S and A ⊆ S, define

(A] = {a ∈ S| a ≤ b for some b ∈ A}.

Anonempty subset A of an ordered semigroup S is called a left (resp. right) ideal of S
if (i) SA ⊆ A (resp. AS ⊆ A) and (ii) for any a ∈ S and b ∈ A, if a ≤ b, then a ∈ A.
If A is both a left and right ideal of S, then A is called an ideal of S. A nonempty subset
A of an ordered semigroup S is called a bi-ideal of S if (i) ∀ a, b ∈ A ⇒ ab ∈A; (ii)
(∀a ∈ S)(∀b ∈ A) a ≤ b ⇒ a ∈ A and (iii) ASA ⊆ A. A nonempty subset A of an
ordered semigroup S is called a generalized bi-ideal of S if (i) ASA ⊆ A and (ii) If
a ∈ S and b ∈ A, a ≤ b implies a ∈ A. An intuitionistic fuzzy set (in short IFS) A
in a nonempty set X , is an object having the form A = (μ, ν), where μ : X → [0, 1]
and ν : X → [0, 1] are functions denoting the degree of membership(namely μ(x))
and the degree of nonmembership (namely ν(x)) for each element x ∈ X respectively
and 0 ≤ μ(x) + ν(x) ≤ 1 for all x ∈ X .

An intuitionistic fuzzy subset A = (μ, ν) in a set X of the form

μ(y) =
{
u ∈ (0, 1] if y = x;
0 if y 	= x .

ν(y) =
{

v ∈ [0, 1) if y = x;
1 if y 	= x .
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is said to be an intuitionistic fuzzy point (or in short IFP)with support x and value u, v

and is denoted by xv
u . For a intuitionistic fuzzy point xv

u and an intuitionistic fuzzy
set A = (μ, ν) in a set X , we extend the meaning given by Pu and Liu [21] to the
symbol xuαA to the symbol xv

uαA, where α ∈ {∈, q,∈ ∨q,∈ ∧q}, by saying that an
intuitionistic fuzzy point xv

u belongs to (resp. quasi-coincident with) a intuitionistic
fuzzy set A,written as xv

u ∈ A (resp. xv
uq A), ifμ(x) ≥ u, ν(x) ≤ v (resp.μ(x) + u >

1, ν(x) + v < 1). Further we define xv
u ∈ ∨q A (resp. xv

u ∈ ∧q A ) to mean that
xv
u ∈ A or xv

uq A (resp. xv
u ∈ A and xv

uq A ), while xv
uαA is defined to mean that

xv
uαA does not hold.
For any two IFSs A = (μ, ν) and B = (μ′, ν ′) of an ordered semigroup S, we say

that A ⊆ B if and only if μ(x) ≤ μ′(x) and ν(x) ≥ ν ′(x) ∀x ∈ S.
For any family {Ai = (μi , νi ), i ∈ �} of IFS in any ordered semigroup S, we

define:

(i)
⋃
i∈�

Ai = {(∨
i∈�

μi ,
∧
i∈�

νi )|i ∈ �} and
(ii)

⋂
i∈�

Ai = {(∧
i∈�

μi ,
∨
i∈�

νi )|i ∈ �};

where for any αi : S → [0, 1], ((
∨
i∈�

αi )(x) = (
∨
i∈�

αi (x)) and ((
∧
i∈�

αi )(x) =
(
∧
i∈�

αi (x)) for all x ∈ S.

Remark When the index set � is finite, we shall be using maximum and minimum
in place of

∨
and

∧
, standing for least upper bound and greatest lower bound

respectively, in the sequel without further mention.

Let (S, .,≤) be an ordered semigroup and I ⊆ S. The intuitionistic characteristic
function (see [23]) χI := {x;μχI , νχI |x ∈ S}, where (μχI , νχI ) is an intuitionistic
fuzzy subset of S defined as:

μχI : S → [0, 1] defined by μχI (x) =
{
1 if x ∈ I ;
0 if x /∈ I.

νχI : S → [0, 1] defined by νχI (x) =
{
0 if x ∈ I ;
1 if x /∈ I.

Let (S, .,≤) be an ordered semigroup and let A = (μ(x), ν(x)) be an IFS of S. Then
A = (μ, ν) is called an intuitionistic fuzzy subsemigroup of S (see [23]) if μ(xy) ≥
min {μ(x),μ(y)} and ν(xy) ≤ max {ν(x), ν(y)} (∀x, y ∈ S).

An IFS A of S is called an intuitionistic fuzzy left (resp. right) ideal (see [24])
if (i) x ≤ y ⇒ μ(x) ≥ μ(y) and ν(x) ≤ ν(y); (ii) μ(xy) ≥ μ(y)(resp. μ(x)) and
ν(xy) ≤ ν(y)(resp. ν(x)) ∀x, y ∈ S.

An IFS A = (μ, ν) of S is called an intuitionistic fuzzy ideal of S (see [23]) if

(i) x ≤ y ⇒ μ(x) ≥ μ(y) and ν(x) ≤ ν(y);
(ii) μ(xy) ≥ min{μ(x),μ(y)} and ν(xy) ≤ max{ν(x), ν(y)} ∀x, y ∈ S.

Let (S, .,≤) be an ordered semigroup and A = (μ, ν) be an intuitionistic fuzzy
subsemigroup of S. Then A = (μ, ν) is called an intuitionistic fuzzy bi-ideal of S if
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(i) x ≤ y ⇒ μ(x) ≥ μ(y) and ν(x) ≤ ν(y) (∀x, y ∈ S);
(ii) μ(xy) ≥ min {μ(x),μ(y)} and ν(xy) ≤ max {ν(x), ν(y)} (∀x, y ∈ S);
(iii) μ(xyz) ≥ min {μ(x),μ(z)} and ν(xyz) ≤ max {ν(x), ν(z)} (∀x, y, z ∈ S).

In whatever follows, we treat any ordered semigroup S itself as an IFS by defining
S(x) = (S, S̃)(x) ≡ [1, 0] for each x ∈ S, where S(x) = 1 and S̃(x) = 0,∀x ∈ S.

3 Characterizations of Various Intuitionistic Fuzzy Ideals

In this section, we characterize various intuitionistic fuzzy ideals of an ordered semi-
group.

Let (S, .,≤) be an ordered semigroup and k denote an arbitrary element of
[0, 1) unless otherwise specified. For an IFP xv

u and IFS A = (μ, ν) of S, where
u ∈ (0, 1] and v ∈ [0, 1), we say that

(i) xv
uqk A if μ(x) + k + u > 1 and ν(x) + k + v < 1;

(ii) xv
u ∈ ∨qk A if xv

u ∈ A or xv
uqk A;

(iii) xv
uαA if xv

uαA does not hold for α ∈ {qk,∈ ∨qk}.
Definition An IFS A of an ordered semigroup S is called an (∈,∈ ∨qk)-intuitionistic
fuzzy subsemigroup of S if xv

u ∈ A and yv1
u1 ∈ A imply that (xy)max{v,v1}

min{u,u1} ∈ ∨qk A, for
all x, y ∈ S and u, u1 ∈ (0, 1] and v, v1 ∈ [0, 1).
Definition An IFS A of an ordered semigroup S is called an (∈,∈ ∨qk)-intuitionistic
fuzzy left (resp. right) ideal of S if for all u ∈ (0, 1] and v ∈ [0, 1) and x, y ∈ S, the
following conditions are satisfied:

(i) x ≤ y ⇒ μ(x) ≥ μ(y) and ν(x) ≤ ν(y);
(ii) x ∈ S, yv

u ∈ A ⇒ (xy)vu ∈ ∨qk A (resp. (yx)vu ∈ ∨qk A).
Further A is called an (∈,∈ ∨qk)-intuitionistic fuzzy ideal if it is both an (∈,∈ ∨qk)-
intuitionistic fuzzy left ideal and (∈,∈ ∨qk)-intuitionistic fuzzy right ideal of S.

Theorem 1 Let A be any intuitionistic fuzzy subset of S. Then A is an (∈,∈ ∨qk)-
intuitionistic fuzzy subsemigroup of S if and only if μ(xy) ≥ min{μ(x),μ(y), 1−k

2 }
and ν(xy) ≤ max{ν(x), ν(y), 1−k

2 } for all x, y ∈ S.

Proof Let A be any IFS of an ordered semigroup S. Suppose to the contrary
that μ(xy) < min{μ(x),μ(y), 1−k

2 } and ν(xy) > max{ν(x), ν(y), 1−k
2 } for some

x, y ∈ S, then there exists u ∈ (0, 1−k
2 ) and v ∈ ( 1−k

2 , 1) such that μ(xy) < u ≤
min{μ(x),μ(y), 1−k

2 } and ν(xy) > v ≥ max{ν(x), ν(y), 1−k
2 }. This implies that xv

u ,
yv
u ∈ A. As A is an (∈,∈ ∨qk)-intuitionistic fuzzy subsemigroup, (xy)vu ∈ ∨qk A.
Since μ(xy) < u and ν(xy) > v. So (xy)vu /∈ A. Therefore (xy)vu∈ ∨qk A. This is a
contradiction. Hence μ(xy) ≥ min{μ(x),μ(y), 1−k

2 } and ν(xy) ≤ max{ν(x), ν(y),
1−k
2 } for all x, y ∈ S.
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Conversely, suppose that x, y ∈ S and u, u1 ∈ (0, 1], v, v1 ∈ [0, 1) be such that
xv
u ∈ A and yv1

u1 ∈ A. Then μ(x) ≥ u, ν(x) ≤ v and μ(y) ≥ u1, ν(y) ≤ v1. Now
μ(xy) ≥ min{μ(x),μ(y), 1−k

2 } ≥ min{u, u1,
1−k
2 } and ν(xy) ≤ max{ν(x), ν(y),

1−k
2 } ≤ max{v, v1,

1−k
2 }.

Case(i): If min{u, u1} ≤ 1−k
2 and max{v, v1} ≥ 1−k

2 . So μ(xy) ≥ min{u, u1} and

ν(xy) ≤ max{v, v1}. Therefore (xy)max{v,v1}
min{u,u1} ∈ ∨qk A.

Case(ii): If min{u, u1} ≥ 1−k
2 , then max{v, v1} ≤ 1−k

2 . Therefore μ(xy) ≥ 1−k
2 and

ν(xy) ≤ 1−k
2 . Now it follows that (xy)max{v,v1}

min{u,u1} ∈ A or μ(xy) + min{u, u1} ≥ 1−k
2 +

min{u, u1} = 1 − k and ν(xy) + max{v, v1} ≤ 1−k
2 + max{v, v1} = 1 − k, i.e.,

(xy)max{v,v1}
min{u,u1}qk A. Therefore (xy)max{v,v1}

min{u,u1} ∈ ∨qk A.
Case(iii): If min{u, u1} ≤ 1−k

2 and max{v, v1} ≤ 1−k
2 . We show that (xy)max{v,v1}

min{u,u1} ∈
∨qk A. The Proof in this case is similar to the proof in above cases.
Case(iv): If min{u, u1} ≥ 1−k

2 and max{v, v1} ≥ 1−k
2 . We show that (xy)max{v,v1}

min{u,u1} ∈
∨qk A. The Proof in this case is similar to the proof in above cases.

Hence A is an (∈,∈ ∨qk)-intuitionistic fuzzy subsemigroup of S.

Theorem 2 Let S be an ordered semigroup. Then an IFS A of S is an (∈,∈ ∨qk)-
intuitionistic fuzzy left ideal of S if and only if A satisfies

(i) x ≤ y ⇒ μ(x) ≥ μ(y), and ν(x) ≤ ν(y);
(ii) μ(xy) ≥ min{μ(y), 1−k

2 } and ν(xy) ≤ max{ν(y), 1−k
2 } for all x, y ∈ S.

Proof Let A be an (∈,∈ ∨qk)-intuitionistic fuzzy left ideal of S. As A is an (∈,∈
∨qk)-intuitionistic fuzzy left ideal, the condition (i) is satisfied.

Next we show that the condition (ii) also holds.

Case(i): If μ(y) ≤ 1−k
2 and ν(y) ≥ 1−k

2 . We show that μ(xy) ≥ μ(y) and ν(xy) ≤
ν(y). Suppose to the contrary that μ(xy) < μ(y) and ν(xy) > ν(y), then there exist
u1 ∈ (0, 1−k

2 ) and v1 ∈ ( 1−k
2 , 1) such that μ(xy) < u1 ≤ μ(y) and ν(xy) > v1 ≥

ν(y). It follows that yv1
u1 ∈ A, but (xy)v1u1 /∈ A and μ(xy) + u1 < 2u1 < 1 − k and

ν(xy) + v1 > 2v1 > 1 − k. Therefore (xy)v1u1qk A. So, (xy)v1u1∈ ∨qk A, a contradic-
tion. Hence μ(xy) ≥ μ(y) and ν(xy) ≤ ν(y).
Case(ii): Now we show that μ(xy) ≥ 1−k

2 and ν(xy) ≤ 1−k
2 . If μ(y) ≥ 1−k

2 and

ν(y) ≤ 1−k
2 . Then x ∈ S and (y)

1−k
2

1−k
2

∈ A. So we have (xy)
1−k
2

1−k
2

∈ ∨qk A. This implies

that (xy)
1−k
2

1−k
2

∈ A or (xy)
1−k
2

1−k
2
qk A. Thereforeμ(xy) ≥ 1−k

2 , ν(xy) ≤ 1−k
2 or μ(xy) +

1−k
2 + k > 1, ν(xy) + 1−k

2 + k < 1. Henceμ(xy) ≥ 1−k
2 , ν(xy) ≤ 1−k

2 ; otherwise
μ(xy) + 1−k

2 + k < 1−k
2 + 1−k

2 + k = 1, ν(xy) + 1−k
2 + k > 1−k

2 + 1−k
2 + k = 1,

a contradiction. Therefore μ(xy) ≥ 1−k
2 and ν(xy) ≤ 1−k

2 .
Case(iii): If μ(y) ≤ 1−k

2 and ν(y) ≤ 1−k
2 . We show that μxy ≥ μ(y) and ν(xy) ≤

1−k
2 . The Proof in this case is similar to the proof in above cases.

Case(iv): If μ(y) ≥ 1−k
2 and ν(y) ≥ 1−k

2 . We show that μxy ≥ 1−k
2 and ν(xy) ≤

ν(y). The Proof in this case is similar to the proof in above cases. Therefore,
μ(xy) ≥ min{μ(x),μ(y), 1−k

2 } and ν(xy) ≤ max{ν(x), ν(y), 1−k
2 } for all x, y ∈ S.
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Conversely, suppose that x ∈ S, yv
u ∈ A. Thenμ(y) ≥ u, ν(y) ≤ v.Nowμ(xy) ≥

min{u, 1−k
2 } and ν(xy) ≤ max{v, 1−k

2 }.
Case(i): If u > 1−k

2 and v < 1−k
2 . So μ(xy) ≥ 1−k

2 and ν(xy) ≤ 1−k
2 . Now μ(y) +

u > 1−k
2 + 1−k

2 = 1 − k and ν(y) + v < 1−k
2 + 1−k

2 = 1 − k. This implies that
(xy)vuqk A. Therefore (xy)vu ∈ ∨qk A
Case(ii): If u ≤ 1−k

2 and v ≥ 1−k
2 . So μ(xy) ≥ u and ν(xy) ≤ v. This implies that

(xy)vu ∈ A. Therefore (xy)vu ∈ ∨qk A
Case(iii): If u ≥ 1−k

2 and v ≥ 1−k
2 . We show that (xy)vu ∈ ∨qk A. The Proof in this

case is similar to the proof in above cases.
Case(iv): If u ≤ 1−k

2 and v ≤ 1−k
2 . We show that (xy)vu ∈ ∨qk A. The Proof in this

case is similar to the proof in above cases.
Hence IFS A is an (∈,∈ ∨qk)-intuitionistic fuzzy left ideal of S.
Dually we have the following:

Theorem 3 Let S be an ordered semigroup and A be an IFS of S. Then A is an
(∈,∈ ∨qk)-intuitionistic fuzzy right ideal of S if and only if A satisfies

(i) x ≤ y ⇒ μ(x) ≥ μ(y), and ν(x) ≤ ν(y);
(ii) μ(xy) ≥ min{μ(x), 1−k

2 } and ν(xy) ≤ max{ν(x), 1−k
2 } for all x, y ∈ S.

Definition An IFS A of S is called an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S,
if it satisfies the following conditions,

(i) x ≤ y ⇒ μ(x) ≥ μ(y) and ν(x) ≤ ν(y);
(ii) xv1

u1 ∈ A and yv2
u2 ∈ A ⇒ (xy)max{v1,v2}

min{u1,u2} ∈ ∨qk A;
(iii) xv1

u1 ∈ A and zv2
u2 ∈ A ⇒ (xyz)max{v1,v2}

min{u1,u2} ∈ ∨qk A.
For all u1, u2 ∈ (0, 1] and v1, v2 ∈ [0, 1) and x, y, z ∈ S.

Clearly every (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S is an (∈,∈ ∨qk)-
intuitionistic fuzzy subsemigroup of S.

Theorem 4 Let S be an ordered semigroup. Then an IFS A = (μ, ν) of S is an
(∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S if and only if A satisfies

(i) x ≤ y ⇒ μ(x) ≥ μ(y) and ν(x) ≤ ν(y);
(ii) μ(xy) ≥ min{μ(x),μ(y), 1−k

2 } and ν(xy) ≤ max{ν(x), ν(y), 1−k
2 };

(iii) μ(xyz) ≥ min{μ(x),μ(z), 1−k
2 } and ν(xyz) ≤ max{ν(x), ν(z), 1−k

2 } for all
x, y, z ∈ S.

Proof Suppose A be an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S. Then, by defi-
nition and Theorem1, conditions (i) and (ii) are satisfied. Now, we show that condi-
tion (iii) also holds. Suppose to the contrary that, μ(xyz) < min{μ(x),μ(z), 1−k

2 }
and ν(xyz) > max{ν(x), ν(z), 1−k

2 } for some x, y, z ∈ S, then ∃ u1 ∈ (0, 1−k
2 )

and v1 ∈ ( 1−k
2 , 1) such that μ(xyz) < u1 ≤ min{μ(x),μ(z), 1−k

2 } and ν(xyz) >

v1 ≥ max{ν(x), ν(z), 1−k
2 }. From this, we have xv1

u1 ∈ A and zv1
u1 ∈ A. As A is an

(∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal, (xyz)v1u1 ∈ ∨qk A. Since μ(xyz) < u1 and
ν(xyz) > v1. So, (xyz)v1u1∈ ∨qk A, a contradiction. Henceμ(xyz) ≥ min{μ(x),μ(z),
1−k
2 } and ν(xyz) ≤ max{ν(x), ν(z), 1−k

2 } for all x, y, z ∈ S.
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Conversely suppose that conditions (i), (ii) and (iii) are satisfied by A. Let x, y ∈ S
and u1, u2 ∈ (0, 1] and v1, v2 ∈ [0, 1) such that xv1

u1 ∈ A and yv2
u2 ∈ A. Then μ(x) ≥

u1, ν(x) ≤ v1 and μ(y) ≥ u2, ν(y) ≤ v2. Now μ(xy) ≥ min{μ(x),μ(y), 1−k
2 } ≥

min{u1, u2, 1−k
2 } and ν(xy) ≤ max{ν(x), ν(y), 1−k

2 } ≤ max{v1, v2, 1−k
2 }.

Case(i): If min{u1, u2} > 1−k
2 andmax{v1, v2} < 1−k

2 . Soμ(xy) ≥ 1−k
2 and ν(xy) ≤

1−k
2 which implies that μ(xy) + min{u1, u2} + k > 1 and ν(xy) + max{v1, v2} +

k < 1, i.e., (xy)max{v1,v2}
min{u1,u2}qk A. Therefore (xy)max{v1,v2}

min{u1,u2} ∈ ∨qk A.
Case(ii): If min{u1, u2} ≤ 1−k

2 and max{v1, v2} ≥ 1−k
2 , then μ(xy) ≥ min{u1, u2}

and ν(xy) ≤ max{v1, v2}, thus (xy)max{v1,v2}
min{u1,u2} ∈ A. Therefore (xy)max{v1,v2}

min{u1,u2} ∈ ∨qk A.
Case(iii): Ifmin{u1, u2} > 1−k

2 andmax{v1, v2} > 1−k
2 .We show that (xy)max{v1,v2}

min{u1,u2} ∈
∨qk A. The Proof in this case is similar to the proof in above cases.
Case(iv): Ifmin{u1, u2} < 1−k

2 andmax{v1, v2} < 1−k
2 .We show that (xy)max{v1,v2}

min{u1,u2} ∈
∨qk A. The Proof in this case is similar to the proof in above cases.

Similarly, wemay show that (xyz)max{v1,v2}
min{u1,u2} ∈ ∨qk A for all x, y, z ∈ S. Hence IFS

A = (μ, ν) is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S.
Now, we show, by an example, that in general union of (∈,∈ ∨qk)-intuitionistic

fuzzy bi-ideals need not be (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal.

Example Let S := {a, b, c, d} be an ordered semigroup with respect to the order
relation a ≤ d and the operation ‘. ’ defined in the following cayley table

. a b c d
a a a a a
b a a d a
c a a a a
d a a a a

Let A = (μ, ν) and B = (μ′, ν ′) be two IFS’s of S such that μ(a) = 0.35, μ(b) =
0.20, μ(c) = 0.25, μ(d) = 0.20, μ′(a) = 0.40, μ′(b) = 0.30, μ′(c) = 0.20,
μ′(d) = 0.10 and ν(a) = 0.20, ν(b) = 0.30, ν(c) = 0.40, ν(d) = 0.40, ν ′(a) =
0.30, ν ′(b) = 0.50, ν ′(c) = 0.20, ν ′(d) = 0.40.Then IFS’s A and B both are (∈,∈
∨qk)-intuitionistic fuzzy bi-ideals of S. (μ ∪ μ′)(bc) = (μ ∪ μ′)(d) = max{μ(d),

μ′(d)} = min{0.20, 0.10} = .20, but min{(μ ∪ μ′)(b), (μ ∪ μ′)(c), 1−k
2 } =

min{0.30, 0.25, 1−k
2 } = 0.25, i.e., A ∪ B is not an (∈,∈ ∨qk)-intuitionistic fuzzy

subsemigroup of S for any k ∈ [0, 1). Therefore A ∪ B is not an (∈,∈ ∨qk)-
intuitionistic fuzzy bi-ideal of S. In the next Theorem, we show, under some condi-
tions, that

⋃
i∈�

Ai of a family of (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideals is again an

(∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal with the help of the following Lemma.

Lemma 1 Let {Ai |i ∈ �}, where Ai = (μi , νi ) for each i ∈ �, be a family of
(∈,∈ ∨qk)-intuitionistic fuzzy bi-ideals of S such that Ai ⊆ A j or A j ⊆ Ai for all
i, j ∈ �. Then

∨
i∈�

{min{μi (x),μi (y),
1−k
2 }} = min{∨

i∈�

μi (x),
∨
i∈�

μi (y),
1−k
2 } and∧

i∈�

{max{νi (x), νi (y), 1−k
2 }} = max{∧

i∈�

νi (x),
∧
i∈�

νi (y),
1−k
2 }.
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Proof It is obvious that
∨
i∈�

{min{μi (x),μi (y),
1−k
2 }} ≤ min{∨

i∈�

μi (x),
∨
i∈�

μ j (i),

1−k
2 } and ∧

i∈�

{max{νi (x), νi (y), 1−k
2 }} ≥ max{∧

i∈�

νi (x),
∧
i∈�

νi (y),
1−k
2 }.

Suppose that
∨
i∈�

{min{μi (x),μi (y),
1−k
2 }} 	= min{∨

i∈�

μi (x),
∨
i∈�

μi (y),
1−k
2 } and∧

i∈�

{max{νi (x), νi (y), 1−k
2 }} 	= max{∧

i∈�

νi (x),
∧
i∈�

νi (y),
1−k
2 }.

Then ∃ u, v such that
∨
i∈�

{min{μi (x),μi (y),
1−k
2 }} < u < min{∨

i∈�

μi (x),
∨
i∈�

μi (y),
1−k
2 } and ∧

i∈�

{max{νi (x), νi (y), 1−k
2 }} > v > max{∧

i∈�

νi (x),
∧
i∈�

νi (y),
1−k
2 }.

Since Ai ⊆ A j or A j ⊆ Ai for all i, j ∈ �, we have μi ≤ μ j and νi ≤ ν j

or μ j ≤ μi and ν j ≤ νi for all i, j ∈ �. Then ∃ n1, n2 ∈ � such that u <

min{μn1(x),μn1(y),
1−k
2 } or v > max{νn2(x), νn2(y), 1−k

2 }. On the other hand
min{μi (x),μi (y),

1−k
2 } < u andmax{νi (x), νi (y), 1−k

2 } > v for i ∈ �. This is a con-
tradiction.

Hence
∨
i∈�

{min{μi (x),μi (y),
1−k
2 }} = min{∨

i∈�

μi (x),
∨
i∈�

μi (y),
1−k
2 } and

∧
i∈�

{max{νi (x), νi (y), 1−k
2 }} = max{∧

i∈�

νi (x),
∧
i∈�

νi (y),
1−k
2 }.

Theorem 5 Let {Ai |i ∈ �}, where Ai = (μi , νi ) for each i ∈ �, be a family of
(∈,∈ ∨qk)-intuitionistic fuzzy bi-ideals of S such that Ai ⊆ A j or A j ⊆ Ai for all
i, j ∈ �. Then A = (μ, ν) = ⋃

i∈�

{Ai |i ∈ �} is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-
ideal of S, where

⋃
i∈�

Ai = {(∨
i∈�

μi ,
∧
i∈�

νi )|i ∈ �}.

Proof By Theorem4, we show that conditions (i)–(iii) are satisfied.

(i) Let x, y ∈ S with x ≤ y. Then, we have to show that μ(x) ≥ μ(y) and ν(x) ≤
ν(y). Since Ai is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S for each i ∈ �,
we have μi (x) ≥ μi (y) and νi (x) ≤ νi (y) for each i ∈ �. Thus

μ(x) =
∨
i∈�

(μi (x))

≥
∨
i∈�

(μi (y)) = μ(y)

and

ν(x) =
⎛
⎝∧
i∈�

νi

⎞
⎠ (x) =

∧
i∈�

(νi (x))

≤
∧
i∈�

(νi (y)) = ν(y).
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(ii) Let x, y ∈ S. As each Ai is an (∈,∈ ∨qk) intuitionistic fuzzy bi-ideal,

μi (xy) ≥ min

{
μi (x),μi (y),

1 − k

2

}
and νi (xy) ≤ max

{
νi (x), νi (y),

1 − k

2

}
.

Now

μ(xy) =
⎛
⎝∨
i∈�

μi

⎞
⎠ (xy) ≥

∨
i∈�

min

{
μi (x),μi (y),

1 − k

2

}
(by definition)

= min

⎧⎨
⎩

∨
i∈�

μi (x),
∨
i∈�

μi (y),
1 − k

2

⎫⎬
⎭ , (by Lemma 1)

= min

{
μ(x), μ(y),

1 − k

2

}

and

ν(xy) =
⎛
⎝∧
i∈�

νi

⎞
⎠ (xy) ≤

∧
i∈�

max

{
νi (x), νi (y),

1 − k

2

}
(by definition)

= max{
∧
i∈�

νi (x),
∧
i∈�

νi (y),
1 − k

2
}, (by Lemma 1)

= max{ν(x), ν(y),
1 − k

2
}.

(iii) Let x, y, z ∈ S. As each Ai is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S,
μi (xyz) ≥ min{μi (x),μi (z),

1−k
2 } and νi (xyz) ≤ max{νi (x), νi (z), 1−k

2 }.
Now

μ(xyz) =
⎛
⎝∨
i∈�

μi

⎞
⎠ (xyz) ≥

∨
i∈�

min

{
μi (x),μi (z),

1 − k

2

}
(by definition)

= min

⎧⎨
⎩

∨
i∈�

μi (x),
∨
i∈�

μi (z),
1 − k

2

⎫⎬
⎭ , (by Lemma 1)

= min

{
μ(x), μ(z),

1 − k

2

}

and

ν(xyz) =
⎛
⎝∧
i∈�

νi

⎞
⎠ (xyz) ≤

∧
i∈�

max

{
νi (x), νi (z),

1 − k

2

}
(by definition)

= max

⎧⎨
⎩

∧
i∈�

νi (x),
∧
i∈�

νi (z),
1 − k

2

⎫⎬
⎭ , (by Lemma 1)
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= max

{
ν(x), ν(z),

1 − k

2

}
.

Therefore A is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S.

Definition An IFS A = (μ, ν) of an ordered semigroup S is called strongly convex
if μ(x) = ∨

x≤y
μ(y) and ν(x) = ∧

x≤y
ν(y) respectively ∀x ∈ S.

Remark In [13, 25], an IFS A = (μ, ν) of an ordered semigroup S has been defined
strongly convex as follows: Let (A] = ((μ], (ν]), where (μ] and (ν] are defined by
(μ](x) = ∨

x≤y
μ(y) and (ν](x) = ∧

x≤y
ν(y) respectively for all x ∈ S. The IFS A of S

is called strongly convex if A = (A].
Proposition 1 Let S be an ordered semigroup. Then an IFS A = (μ, ν) of S is
strongly convex intuitionistic fuzzy subset of S if and only if x ≤ y ⇒ μ(x) ≥
μ(y) and ν(x) ≤ ν(y).

Proof Let x, y ∈ S and x ≤ y. Since A is a strongly convex intuitionistic fuzzy
subset of S, μ(x) = ∨

x≤z
μ(z) ≥ μ(y) and ν(x) = ∧

x≤z
ν(z) ≤ ν(y).

Conversely, for any x, y ∈ S and x ≤ y, as μ(x) ≥ μ(y), ν(x) ≤ ν(y), we
have

∨
x≤y

μ(y) ≤ μ(x) and
∧
x≤y

ν(y) ≥ ν(x). As x ≤ x , we have μ(x) ≤ ∨
x≤y

μ(y)

and ν(x) ≥ ∧
x≤y

ν(y). Therefore μ(x) = ∨
x≤y

μ(y) and ν(x) = ∧
x≤y

ν(y). Hence A is

a strongly convex intuitionistic fuzzy subset.

Definition For any IFS A = (μ, ν) of an ordered semigroup S and u ∈ (0, 1], v ∈
[0, 1), k ∈ [0, 1), the subset [A]vu = {x ∈ S| xv

u ∈ ∨qk A} of S is called (∈ ∨qk)-level
subset of A.

Theorem 6 Let S be an ordered semigroup. Then

(1) The subset [A]vu of S, for any (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal A of S, is a
bi-ideal of S.

(2) If A is strongly convex intuitionistic fuzzy subset of S and the subset [A]vu of S is
a bi-ideal of S, then A is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S.

Proof (1) Suppose A is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S. Let y ∈ [A]vu
and x ≤ y. Then yv

u ∈ ∨qk A, that is μ(y) ≥ u, ν(y) ≤ v or μ(y) + u + k > 1,
ν(y) + v + k < 1. Now, by Theorem4, we have μ(x) ≥ μ(y) ≥ u, ν(x) ≤ ν(y) ≤
v or μ(x) + u + k ≥ μ(y) + u + k > 1 and ν(x) + v + k ≤ ν(y) + v + k < 1.
Therefore xv

u ∈ ∨qk A. So x ∈ [A]vu .
Take any x, y ∈ [A]vu . Then xv

u ∈ ∨qk A and yv
u ∈ ∨qk A, i.e., μ(x) ≥ u, ν(x) ≤ v

orμ(x) + u + k > 1, ν(x) + v + k < 1 andμ(y) ≥ u, ν(y) ≤ v orμ(y) + u + k >

1, ν(y) + v + k < 1. Since IFS A is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S,
we have μ(xy) ≥ min{μ(x),μ(y), 1−k

2 } and ν(xy) ≤ max{ν(x), ν(y), 1−k
2 }.

Now four cases arise:
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Case(i). μ(x) ≥ u, ν(x) ≤ v and μ(y) ≥ u, ν(y) ≤ v;
Case(ii). μ(x) ≥ u, ν(x) ≤ v and μ(y) + u + k > 1, ν(y) + v + k < 1;
Case(iii). μ(x) + u + k > 1, ν(x) + v + k < 1 and μ(y) ≥ u, ν(y) ≤ v;
Case(iv). μ(x) + u + k > 1, ν(x) + v + k < 1 and μ(y) + u + k > 1, ν(y) +
v + k < 1.
Case(i): Supposeμ(x) ≥ u, ν(x) ≤ v andμ(y) ≥ u, ν(y) ≤ v. If u > 1−k

2 , then v <
1−k
2 . Now μ(xy) ≥ min{μ(x),μ(y), 1−k

2 } ≥ min{u, u, 1−k
2 } = 1−k

2 and ν(xy) ≤
max{ν(x), ν(y), 1−k

2 } ≤ max{v, v, 1−k
2 } = 1−k

2 . As μ(xy) + u + k > 1−k
2 + 1−k

2 +
k = 1 and ν(xy) + u + k < 1−k

2 + 1−k
2 + k = 1, we have (xy)vuqk A. If u ≤ 1−k

2 ,
thenv ≥ 1−k

2 .Againμ(xy) ≥ min{μ(x),μ(y), 1−k
2 } = u andν(xy) ≤ max{ν(x), ν(y),

1−k
2 } = v. Therefore, (xy)vu ∈ A. Hence (xy)vu ∈ ∨qk A.

Case(ii): Suppose that u > 1−k
2 and v < 1−k

2 . Then 1 − u − k < 1−k
2 and 1 − v −

k > 1−k
2 . So, we have μ(xy) ≥ min{μ(x),μ(y), 1−k

2 } = min{μ(y), 1−k
2 } =

1 − u − k and ν(xy) ≤ max{ν(x), ν(y), 1−k
2 } = max{ν(y), 1−k

2 } = 1 − v − k. This
implies thatμ(xy) + u + k > 1, ν(xy) + v + k < 1.Thus (xy)vuqk A. Ifu ≤ 1−k

2 and v ≤
1−k
2 , then 1 − u − k ≤ 1−k

2 and 1 − v − k ≥ 1−k
2 . So μ(xy) ≥

min{μ(x),μ(y), 1−k
2 } = u and ν(xy) ≤ max{ν(x), ν(y), 1−k

2 } = v. Therefore (xy)vu
∈ A. Hence (xy)vu ∈ ∨qk A.
Case(iii): The proof in this case is similar to the proof in Case (ii).
Case(iv): Supposeμ(x) + u + k > 1, ν(x) + v + k < 1andμ(y) + u + k > 1, ν(y) +
v + k < 1. If u > 1−k

2 , v < 1−k
2 , then μ(xy) ≥ min{μ(x),μ(y), 1−k

2 } > min{1 −
u − k, 1−k

2 } = 1 − u − k, and ν(xy) ≤ max{ν(x), ν(y), 1−k
2 } < max

{1 − v − k, 1−k
2 } = 1 − v − k. Thus (xy)vuqk A. If u ≤ 1−k

2 , v ≥ 1−k
2 , then μ(xy) ≥

min{μ(x),μ(y), 1−k
2 } ≥ min{1 − u − k, 1−k

2 } = u, and ν(xy) ≤ max{ν(x), ν(y),
1−k
2 } ≤ max{1 − v − k, 1−k

2 } = v. Thus (xy)vu ∈ A. Hence (xy)vu ∈ ∨qk A. Thus, in
all cases, we have (xy)vu ∈ ∨qk A. Therefore xy ∈ [A]vu . Finally take any x, z ∈ [A]vu
for u ∈ (0, 1], v ∈ [0, 1). Then xv

u ∈ ∨qk A and zv
u ∈ ∨qk A; that is,μ(x) ≥ u, ν(x) ≤

v or μ(x) + u + k > 1, ν(x) + v + k < 1 and μ(z) ≥ u, ν(z) ≤ v, μ(z) + u + k >

1, ν(z) + v + k < 1. Now for any y ∈ S, as IFS A is an (∈,∈ ∨qk)-intuitionistic
fuzzy bi-ideal of S, μ(xyz) ≥ min{μ(x),μ(z), 1−k

2 } and ν(xyz) ≤ max{ν(x), ν(z),
1−k
2 }. Now on the lines similar to the above proof, wemay show that (xyz)vu ∈ ∨qk A.

Thus, xyz ∈ [A]vu .
(2) let IFS A be a strongly convex intuitionistic fuzzy subset of S and u ∈

(0, 1], v ∈ [0, 1) be such that [A]vu is a bi-ideal of S. Suppose to the contrary
that μ(xy) < min{μ(x),μ(y), 1−k

2 } and ν(xy) > max{ν(x), ν(y), 1−k
2 } for some

x, y ∈ S, then there exists u ∈ (0, 1−k
2 ] and v ∈ ( 1−k

2 , 1) such that μ(xy) < u ≤
min{μ(x),μ(y), 1−k

2 } and ν(xy) > v ≥ max{ν(x), ν(y), 1−k
2 }. This implies that

x, y ∈ [A]vu . Therefore xy ∈ [A]vu implying that μ(xy) ≥ u, ν(xy) ≤ v or μ(xy) +
u + k > 1, ν(xy) + v + k < 1, which is impossible. Therefore μ(xy) ≥ min{μ(x),
μ(y), 1−k

2 } and ν(xy) ≤ max{ν(x), ν(y), 1−k
2 } for all x, y ∈ S. Similarly we may

show that μ(xyz) ≥ min{μ(x),μ(z), 1−k
2 } and ν(xyz) ≤ max{ν(x), ν(z), 1−k

2 } for
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all x, y, z ∈ S. Now A is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S follows by
Proposition1 and Theorem4.

Definition An IFS A of an ordered semigroup S is called an (∈,∈ ∨qk)-intuitionistic
fuzzy generalized bi-ideal of S if ∀u, u1 ∈ (0, 1], v, v1 ∈ [0, 1) and x, y, z ∈ S, the
following conditions are satisfied:

(i) x ≤ y ⇒ μ(x) ≥ μ(y) and ν(x) ≤ ν(y);
(ii) xv

u ∈ A, zv1
u1 ∈ A ⇒ (xyz)max{v,v1}

min{u,u1} ∈ ∨qk A.
Similar to the proof of Theorem4, we may prove.

Theorem 7 Let A be an intuitionistic fuzzy subset of an ordered semigroup S. Then
A is an (∈,∈ ∨qk)-intuitionistic fuzzy generalized bi-ideal of S if and only if A
satisfies:

(i) x ≤ y ⇒ μ(x) ≥ μ(y) and ν(x) ≤ ν(y);
(ii) μ(xyx) ≥ min{μ(x),μ(z), 1−k

2 } and μ(xyx) ≤ max{ν(x), ν(z), 1−k
2 }.

Theorem 8 Let S be an ordered semigroup. Then

(1) The subset [A]vu of S, for any (∈,∈ ∨qk)-intuitionistic fuzzy generalized bi-ideal
A of S, is a generalized bi-ideal of S.

(2) If A is strongly convex intuitionistic fuzzy subset of S and [A]vu is a generalized
bi-ideal of S, then A is an (∈,∈ ∨qk)-intuitionistic fuzzy generalized bi-ideal of
S.

Proof The proof follows on the lines similar to the proof of Theorem6.

Definition Let (S, .,≤) be an ordered semigroup. For x ∈ S, let

Ix = {(y, z) ∈ S × S|x ≤ yz}.

For any IFS A = (μ, ν) and B = (μ′, ν ′) of S, we define A ◦ B = (μ ◦ μ′, ν ◦ ν ′),
where

(μ ◦ μ′)(x) =
{ ∨

(y,z)∈Ix
min{μ(y),μ′(z)} if Ix 	= ∅;

0 if Ix = ∅.

and

(ν ◦ ν ′)(x) =
{ ∧

(y,z)∈Ix
max{ν(y), ν ′(z)} if Ix 	= ∅;

1 if Ix = ∅.

for all x ∈ S.

Definition Let A be an IFS of an ordered semigroup S. For any k ∈ [0, 1), let
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μk(x) = min

{
μ(x),

1 − k

2

}

νk(x) = max

{
ν(x),

1 − k

2

}
for all x ∈ S.

Then IFS (μk, νk) of S is denoted by Ak and is called the k-lower part of A.

Definition Let A = (μ, ν) and B = (μ′, ν ′) be two IFS of an ordered semigroup S.
For any k ∈ [0, 1), define A ∩k B and A ◦k B of S by

(A ∩k B)(x) =
(
min

{
(μ ∩ μ′)(x),

1 − k

2

}
,max

{
(ν ∩ ν ′)(x),

1 − k

2

})

and (A ◦k B)(x) =
(
min

{
(μ ◦ μ′)(x),

1 − k

2

}
,max

{
(ν ◦ ν ′)(x),

1 − k

2

})

respectively for all x ∈ .S.
It is easy to see that A ∩k B and A ◦k B are IFS of S.

The following Lemma easily follows:

Lemma 2 Let A and B be IFS of an ordered semigroup S and k ∈ [0, 1). Then
(i) (Ak)k = Ak, Ak ⊆ A;
(ii) If A ⊆ B and C ∈ I (S), then A ◦k C ⊆ B ◦k C,C ◦k A ⊆ C ◦k B, where

I(S) be the set of all IFS of S;
(iii) A ∩k B = Ak ∩ Bk;
(iv) A ◦k B = Ak ◦ Bk;
(v) A ◦k S = Ak ◦ S, S ◦k A = S ◦ Ak, A ◦k S ◦k A = Ak ◦ S ◦ Ak and S ◦k A ◦k

S = S ◦ Ak ◦ S.

Example Let S = {a, b, c} be a ordered semigroup with respect to the order relation
a ≤ b and the operation ‘. ’ defined in the following cayley table

. a b c
a a a c
b a b c
c a a c

Define an IFS A = (μ, ν) by μ(a) = 0.50, μ(b) = 0.45, μ(c) = 0.60 and ν(a) =
0.30, ν(b) = 0.35, ν(c) = 0.20. Then IFS A = (μ, ν) is an (∈,∈ ∨qk) intuitionistic
fuzzy ideal of S for any k ∈ [0, 1). But A is not an intuitionistic fuzzy ideal of S as
μ(ca) ≥ μ(c) implies that μ(a) ≥ μ(c) ⇒ 0.50 ≥ 0.60 which is not possible.

The above example shows that an (∈,∈ ∨qk)-intuitionistic fuzzy ideal of an
ordered semigroup S is not necessarily an intuitionistic fuzzy ideal of S. However, in
the following Theorem, we show that if IFS A is an (∈,∈ ∨qk)-intuitionistic fuzzy
ideal of an ordered semigroup S, then Ak is an intuitionistic fuzzy ideal of S.
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Theorem 9 Let A be an (∈,∈ ∨qk)-intuitionistic fuzzy ideal of an ordered semi-
group S. Then Ak is an intuitionistic fuzzy ideal of S.

Proof Let A = (μ, ν) be an (∈,∈ ∨qk)-intuitionistic fuzzy ideal of an ordered semi-
group S and x, y ∈ S. Then, by Theorem3, μ(xy) ≥ min{μ(x), 1−k

2 } and ν(xy) ≤
max{ν(x), 1−k

2 }. Now μk(xy) = min{μ(xy), 1−k
2 } ≥ min{μ(x), 1−k

2 } = μk(x),
νk(xy) = max{ν(xy), 1−k

2 } ≤ max{ν(x), 1−k
2 } = νk(x). Also, if x ≤ y, we need to

show that μk(x) ≥ μk(y), νk(x) ≤ νk(y). Since A is an (∈,∈ ∨qk)-intuitionistic
fuzzy ideal, we have μ(x) ≥ μ(y), ν(x) ≤ ν(y). Now μk(x) = min{μ(x), 1−k

2 } ≥
min{μ(y), 1−k

2 } = μk(y) and νk(x) = max{ν(x), 1−k
2 } ≤ max{ν(y), 1−k

2 } = νk(y).
Therefore Ak is an intuitionistic fuzzy right ideal of S. Similarly, we may show that
Ak is an intuitionistic fuzzy left ideal of S. Hence Ak is an intuitionistic fuzzy ideal
of S.

The following Proposition may easily be proved.

Proposition 2 Let A be an IFS of an ordered semigroup S and let I , J be any two
nonempty subsets of S. Then for any k ∈ [0, 1):
(i) χI ∩k χJ = (χI∩J )k;
(ii) χI ◦k χJ = (χ(I J ])k;
(iii) S ◦k χI = (χ(SI ))k, χI ◦k S = (χ(I S])k, χI ◦k S ◦k χI = (χ(I S I ])k and S ◦k

χI ◦k S = (χ(SI S])k .

Theorem 10 Let A be an IFS of an ordered semigroup S and let I be a nonempty
subset of S. Then I is a left ideal of S if and only if the characteristic function χI of
I is an (∈,∈ ∨qk)-intuitionistic fuzzy left ideal of S.
Proof Let x, y ∈ S be such that x ≤ y. If y ∈ I , then μχI (y) = 1, νχI (y) = 0. As
x ≤ y and y ∈ I , we have x ∈ I . Then μχI (x) = 1, νχI (x) = 0. Thus μχI (x) ≥
μχI (y) and νχI (x) ≤ νχI (y). If y /∈ I , thenμχI (y) = 0, νχI (y) = 1. Since x ∈ S, we
haveμχI (x) ≥ 0, νχI (x) ≤ 1.ThusμχI (y) = 0 ≤ μχI (x), andνχI (y) = 1 ≥ νχI (x).
Next we show that μχI (xy) ≥ min{μχI (y),

1−k
2 } and νχI (xy) ≤

max{νχI (y),
1−k
2 }.

Let x ∈ S and y ∈ I . Since I is a left ideal of S, xy ∈ I . Then μχI (xy) = 1 ≥
min{μχI (y),

1−k
2 } and νχI (xy) = 0 ≤ max{νχI (y),

1−k
2 }. If y /∈ I , then μχI (y) =

0, νχI (y) = 1. Now min{μχI (y),
1−k
2 } = 0 and max{νχI (y),

1−k
2 } = 1. As xy ∈

S, μχI (xy) ≥ 0, νχI (xy) ≤ 1. Thus μχI (xy) ≥ min{{μχI (y),
1−k
2 } and νχI (xy) ≤

max{{νχI (y),
1−k
2 }.

Conversely let x, y ∈ I . Now μχI (xy) ≥ min{μχI (y)
1−k
2 } = min{1, 1−k

2 } =
1−k
2 > 0 and νχI (xy) ≤ max{νχI (y),

1−k
2 } = max{0, 1−k

2 } = 1−k
2 < 1. This implies

that xy ∈ I . Let x ∈ S, y ∈ I and x ≤ y. Since y ∈ I , μχI (y) = 1, νχI (y) = 0.
As χI is an (∈,∈ ∨qk)-intuitionistic fuzzy left ideal of S and x ≤ y, μχI (x) ≥
μχI (y) = 1, νχI (x) ≤ νχI (y) = 0. Since x ∈ S, μχI (x) ≤ 1 and νχI (x) ≥ 0. There-
fore μχI (x) = 1 and νχI (x) = 0. This implies that x ∈ I .
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Dually we may prove the following:

Theorem 11 Let A be an IFS of an ordered semigroup S and let I be a nonempty
subset of S. Then I is a right ideal of S if and only if the characteristic function χI

of I is an (∈,∈ ∨qk)-intuitionistic fuzzy right ideal of S.
Combining Theorems10 and 11, we have the following:

Theorem 12 Let A be an IFS of an ordered semigroup S and I be a nonempty subset
of S. Then I is a ideal of S if and only if the characteristic function χI of I is an
(∈,∈ ∨qk)-intuitionistic fuzzy ideal of S.
Theorem 13 Let IFS A of an ordered semigroup S and I be a nonempty subset of
S. Then I is a bi-ideal of S if and only if the characteristic function χI of I is an
(∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S.
Proof The proof follows on the similar to the proof of Theorem10.

Lemma 3 Let A be a strongly convex intuitionistic fuzzy subset of an ordered semi-
group S. Then A is an (∈,∈ ∨qk)-intuitionistic fuzzy subsemigroup of S if and only
if A ◦k A ⊆ Ak.

Proof Let A = (μ, ν) be an (∈,∈ ∨qk)-intuitionistic fuzzy subsemigroup of S and
x ∈ S.

If Ix = ∅, then (μ ◦k μ)(x) = (μk ◦ μk)(x) = 0 ≤ μk(x),

(ν ◦k ν)(x) = (νk ◦ νk)(x) = 1 ≥ νk(x).

If Ix 	= ∅, then

(μ ◦k μ)(x) = min

{
(μ ◦ μ)(x),

1 − k

2

}
=

∨
(y,z)∈Ix

min

{
μ(y),μ(z),

1 − k

2

}

≤
∨

(y,z)∈Ix
min

{
μ(yz),

1 − k

2

}
(by Theorem 1)

≤
∨

(y,z)∈Ix
min

{
μ(x),

1 − k

2

}
(since A is strongly convex)

= min

{
μ(x),

1 − k

2

}
= μk(x)

and

(ν ◦k ν)(x) = max

{
(ν ◦ ν)(x),

1 − k

2

}
=

∧
(y,z)∈Ix

max

{
ν(y), ν(z),

1 − k

2

}

≥
∧

(y,z)∈Ix
max

{
ν(yz),

1 − k

2

}
(by Theorem 1)
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≥
∧

(y,z)∈Ix
max

{
ν(x),

1 − k

2

}
(since A is strongly convex)

= max

{
ν(x),

1 − k

2

}
= νk(x).

Therefore A ◦k A ⊆ Ak .
Conversely suppose that A ◦k A ⊆ Ak . Now for any x, y ∈ S

μ(xy) ≥ μk(xy) ≥ (μ ◦k μ)(xy) = (μk ◦ μk)(x) (by Lemma 2(iv))

=
∨

(b,c)∈Ixy
min{μk(b),μk(c)}

≥ min{μk(x),μk(y)} = min

{
μ(x),μ(y),

1 − k

2

}
and ν(xy) ≤ νk(xy) ≤ (ν ◦k ν)(xy) = (νk ◦ νk)(x) (by Lemma 2(iv))

=
∧

(b,c)∈Ixy
max{νk(b), νk(c)}

≤ max{νk(x), νk(y)} = max

{
ν(x), ν(y),

1 − k

2

}
.

Therefore, by Theorem1, A is an (∈,∈ ∨qk)-intuitionistic fuzzy subsemigroup of
S.

Lemma 4 An IFS A of an ordered semigroups is an (∈,∈ ∨qk)-intuitionistic fuzzy
left ideal of S if and only if

(i) x ≤ y ⇒ μ(x) ≥ μ(y) and ν(x) ≤ ν(y) ∀x, y ∈ S and
(ii) S ◦k A ⊆ Ak.

Proof Let IFS A be an (∈,∈ ∨qk)-intuitionistic fuzzy left ideal of S and x ∈
S. If Ix = ∅, then (S ◦k μ)(x) = (S ◦ μk)(x) = 0 ≤ μk(x) and (S̃ ◦k ν)(x) = (S̃ ◦
νk)(x) = 1 ≥ νk(x).

If Ix 	= ∅, then by Theorem2, we have

(S ◦k μ)(x) = min

{
(S ◦ μ)(x),

1 − k

2

}
=

∨
(y,z)∈Ix

min

{
S(y),μ(z),

1 − k

2

}

=
∨

(y,z)∈Ix
min

{
1,μ(z),

1 − k

2

}
≤

∨
(y,z)∈Ix

min

{
μ(yz),

1 − k

2

}

≤
∨

(y,z)∈Ix
min

{
μ(x),

1 − k

2

}
= min

{
μ(x),

1 − k

2

}
= μk(x)
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and (S̃ ◦k ν)(x) = max

{
(S̃ ◦ ν)(x),

1 − k

2

}
=

∧
(y,z)∈Ix

max

{
S̃(y), ν(z),

1 − k

2

}

=
∧

(y,z)∈Ix
max

{
0, ν(z),

1 − k

2

}
≥

∧
(y,z)∈Ix

max

{
ν(yz),

1 − k

2

}

≥
∧

(y,z)∈Ix
max

{
ν(x),

1 − k

2

}
= max

{
ν(x),

1 − k

2

}
= νk(x)

which implies that S ◦k A ⊆ Ak .
Conversely suppose that x ≤ y. Then μ(x) ≥ μ(y) and ν(x) ≤ ν(y) ∀ x, y ∈ S

and S ◦k A ⊆ Ak .
Let b, c ∈ S and a = bc. Then as S ◦k A ⊆ Ak , we have

μ(bc) = μ(a) ≥ μk(a) ≥ (S ◦k μ)(a) = (S ◦ μk)(a) (by Lemma 2(v))

=
∨

(d,e)∈Ia
min {S(d),μk(e)}

≥ min {S(b),μk(c)} = μk(c) = min

{
μ(c),

1 − k

2

}
and ν(bc) = ν(a) ≤ νk(a) ≤ (S̃ ◦k ν)(a) = (S ◦ νk)(a) (by Lemma 2(v))

=
∧

(d,e)∈Ia
max

{
S̃(d), νk(e)

}

≤ max
{
S̃(b), νk(c)

} = νk(c) = max

{
ν(c),

1 − k

2

}
.

Hence A, by Theorem2, is an (∈,∈ ∨qk)-intuitionistic fuzzy left ideal of S.

The proof of the following follows on the lines similar to the proof of Lemma4.

Lemma 5 Let A be an IFS of an ordered semigroup S. Then A is an (∈,∈ ∨qk)-
intuitionistic fuzzy right ideal of S if and only if

(i) x ≤ y ⇒ μ(x) ≥ μ(y) and ν(x) ≤ ν(y) ∀x, y ∈ S;
(ii) A ◦k S ⊆ Ak.

Combining Lemmas4 and 5, we get the following:

Lemma 6 Let A be an IFS of an ordered semigroup S. Then A is an (∈,∈ ∨qk)-
intuitionistic fuzzy ideal of S if and only if

(i) x ≤ y ⇒ μ(x) ≥ μ(y) and ν(x) ≤ ν(y) ∀x, y ∈ S;
(ii) S ◦k A ⊆ Ak, A ◦k S ⊆ Ak.

Theorem 14 If IFS A is an (∈,∈ ∨qk)-intuitionistic fuzzy generalized bi-ideal of
an ordered semigroup S, then A ◦k S ◦k A ⊆ Ak.
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Proof Let A be an (∈,∈ ∨qk)-intuitionistic fuzzy generalized bi-ideal of an ordered
semigroup S. Then (A ◦k S ◦k A)(a) ⊆ Ak(a), for all a ∈ S. Since Ak is a fuzzy sub-
set of S, μk(a) ≥ 0 and νk(a) ≤ 1 for all a ∈ S. If (A ◦k S ◦k A)(a) = 0, then triv-
ially (μ ◦k S ◦k μ)(a) ≤ μk(a) and (ν ◦k S̃ ◦k ν)(a) ≥ νk(a). If (A ◦k S ◦k A)(a) 	=
0, by Lemma2(v), (Ak ◦ S ◦ Ak)(a) = (A ◦k S ◦k A)(a) 	= 0. Then ∃ x, y, x1, y1 ∈
S such that (x, y) ∈ Ia and (x1, y1) ∈ Ix . Then a ≤ xy and x ≤ x1y1. Since A is an
(∈,∈ ∨qk)-intuitionistic fuzzy generalized bi-ideal of S, μ(x1y1y) ≥ min{μ(x1),
μ(y), 1−k

2 } and ν(x1y1y) ≤ max{ν(x1), ν(y), 1−k
2 }. Now, by Lemma2, we have

(μ ◦k S ◦k μ)(a) = (μk ◦ S ◦ μk)(a) =
∨

(x,y)∈Ia
min{(μk ◦ S)(x),μk(y)}

=
∨

(x,y)∈Ia

⎧⎨
⎩

∨
(x1,y1)∈Ix

min{μk(x1), S(y1),μk(y)}
⎫⎬
⎭

=
∨

(x,y)∈Ia

⎧⎨
⎩

∨
(x1,y1)∈Ix

min

{
μ(x1),μ(y),

1 − k

2

}⎫⎬
⎭

≤
∨

(x,y)∈Ia

⎧⎨
⎩

∨
(x1,y1)∈Ix

min

{
μ(x1y1y),

1 − k

2

}⎫⎬
⎭

≤
∨

(x,y)∈Ia
min

{
μ(xy),

1 − k

2

}

≤ min

{
μ(a),

1 − k

2

}
= μk(a)

and

(ν ◦k S̃ ◦k ν)(a) = (νk ◦ S̃ ◦ νk)(a) =
∧

(x,y)∈Ia
max{(νk ◦ S̃)(x), νk(y)}

=
∧

(x,y)∈Ia

⎧⎨
⎩

∧
(x1,y1)∈Ix

max{νk(x1), S̃(y1), νk(y)}
⎫⎬
⎭

=
∧

(x,y)∈Ia

⎧⎨
⎩

∧
(x1,y1)∈Ix

max

{
ν(x1), ν(y),

1 − k

2

}⎫⎬
⎭

≥
∧

(x,y)∈Ia

⎧⎨
⎩

∧
(x1,y1)∈Ix

max

{
ν(x1y1y),

1 − k

2

}⎫⎬
⎭

≥
∧

(x,y)∈Ia
max

{
ν(xy),

1 − k

2

}
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≥ max

{
ν(a),

1 − k

2

}
= νk(a).

Therefore A ◦k S ◦k A ⊆ Ak .
The proof of the following theorem follows easily by Lemma3.

Theorem 15 If IFS A is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of an ordered
semigroup S, then A ◦k A ⊆ A and A ◦k S ◦k A ⊆ Ak.

Lemma 7 Let A = (μ, ν) be an IFS of an ordered semigroup S and A ◦k S ◦k
A ⊆ Ak. Then μ(xyz) ≥ min{μ(x),μ(z), 1−k

2 } and ν(xyz) ≤ max{ν(x), ν(z), 1−k
2 }

∀x, y, z ∈ S.

Proof Let a = xyz for all x, y, z ∈ S. Since A ◦k S ◦k A ⊆ Ak , we have

μ(xyz) = μ(a) ≥ μk(a) ≥ (μ ◦k S ◦k μ)(a) = (μk ◦ S ◦ μk)(a)

=
∨

(b,c)∈Ia
min{(μk ◦ S)(b),μk(c)} ≥ min{(μk ◦ S)(xy),μk(z)} (as (xy, z) ∈ Ia)

=
∨

(u,v)∈Ixy
min{μk(u), S(v),μk(z)} ≥ min{μk(x), S(y),μk(z)}

≥ min

{
min

{
μ(x),

1 − k

2

}
, 1,min

{
μ(z),

1 − k

2

}}
= min

{
μ(x),μ(z),

1 − k

2

}

and

ν(xyz) = ν(a) ≤ νk(a) ≤ (ν ◦k S̃ ◦k ν)(a) = (νk ◦ S̃ ◦ νk)(a)

=
∧

(b,c)∈Ia
max{(νk ◦ S̃)(b), νk(c)} ≤ max{(νk ◦ S̃)(xy), νk(z)} (as (xy, z) ∈ Ia)

=
∧

(u,v)∈Ixy
max{νk(u), S̃(v), νk(z)} ≤ max{νk(x), S̃(y), νk(z)}

≤ max

{
max

{
ν(x),

1 − k

2

}
, 0,max

{
ν(z),

1 − k

2

}}
= max

{
ν(x), ν(z),

1 − k

2

}
.

This completes the proof.

Theorem 16 Let IFS A and B be two (∈,∈ ∨qk)-intuitionistic fuzzy generalized
bi-ideals of an ordered semigroup S. Then A ◦k B is an (∈,∈ ∨qk)-intuitionistic
fuzzy bi-ideal of S.

Proof As IFS A = (μ, ν) and B = (μ′, ν ′) are (∈,∈ ∨qk)-intuitionistic fuzzy gen-
eralized bi-ideals of S, by Theorem14, we have μ ◦k S ◦k μ ≤ μk, ν ◦k S̃ ◦k ν ≥ νk
and μ′ ◦k S ◦k μ′ ≤ μ′

k, ν ′ ◦k S̃ ◦k ν ′ ≥ ν ′
k .

Now, by Lemma2, we have (μ ◦k μ′) ◦k (μ ◦k μ′) ≤ μ ◦k (μ′ ◦k S ◦k μ′) ≤ μ ◦k
μ′ and (ν ◦k ν ′) ◦k (ν ◦k ν ′) ≥ ν ◦k (ν ′ ◦k S̃ ◦k ν ′) ≥ ν ◦k ν ′. Clearly μ ◦k μ′ and
ν ◦k ν ′ are strongly convex intuitionistic fuzzy subsets of S. Therefore, by Lemma3,
μ ◦k μ′ and ν ◦k ν ′ are (∈,∈ ∨qk)-intuitionistic fuzzy subsemigroups of S. By
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Lemma2, we have (μ ◦k μ′) ◦k S ◦k (μ ◦k μ′) = μ ◦k μ′ ◦k (S ◦k μ) ◦k μ′ ≤
μ ◦k (μ′ ◦k S ◦k μ′) ≤ μ ◦k μ′ and (ν ◦k ν ′) ◦k S̃ ◦k (ν ◦k ν ′) = ν ◦k ν ′ ◦k (S̃ ◦k ν) ◦k
ν ′ ≥ ν ◦k (ν ′ ◦k S̃ ◦k ν ′) ≥ ν ◦k ν ′. By Lemma7, (μ ◦k μ′)(xyz) ≥ min{(μ ◦k μ′)
(x), (μ ◦k μ′)(y), 1−k

2 } and (ν ◦k ν ′)(xyz) ≤ max{(ν ◦k ν ′)(x), (ν ◦k ν ′)(y), 1−k
2 }

for all x, y, z ∈ S.
Let x ≤ y, then (μ ◦k μ′)(x) ≥ (μ ◦k μ′)(y) and (ν ◦k ν ′)(x) ≤ (ν ◦k ν ′)(y). If

Iy = ∅, then (μ ◦k μ′)(y) = (μk ◦ μ′
k)(y) = 0 and (ν ◦k ν ′)(y) = (νk ◦ ν ′

k)(y) = 1.
Since (μ ◦k μ′) and (ν ◦k ν ′) are intuitionistic fuzzy subsets of S, (μ ◦k μ′)(x) ≥ 0 =
(μ ◦k μ′)(y) and (ν ◦k ν ′) ≤ 1 = (ν ◦k ν ′)(y). Again, if Iy 	= ∅, as x ≤ y, we have
Iy ⊆ Ix . Now, by Lemma2, we have

(μ ◦k μ′)(y) = (μk ◦ μ′
k)(y) =

∨
(b,c)∈Iy

min{μk(b),μ
′
k(c)}

≤
∨

(b,c)∈Ix
min{μk(b),μ

′
k(c)} = (μk ◦ μ′

k)(x)

= (μ ◦k μ′)(x)

and

(ν ◦k ν ′)(y) = (νk ◦ ν ′
k)(y) =

∧
(b,c)∈Iy

max{νk(b), ν ′
k(c)}

≥
∧

(b,c)∈Ix
max{νk(b), ν ′

k(c)} = (νk ◦ ν ′
k)(x)

= (ν ◦k ν ′)(x).

Hence A ◦k B is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S.

4 Regular and Intra-regular Ordered Semigroups

Definition An ordered semigroup S is called regular if for each a ∈ S, there exits
an element x ∈ S such that a ≤ axa.

Definition An ordered semigroup S is called intra-regular if for each a ∈ S, there
exits x, y ∈ S such that a ≤ xa2y.

In this section, we characterize regular and intra-regular ordered semigroups
by (∈,∈ ∨qk)-intuitionistic fuzzy left ideals, (∈,∈ ∨qk)-intuitionistic fuzzy right
ideals, (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideals and (∈,∈ ∨qk)-intuitionistic fuzzy
generalized bi-ideals.

Lemma 8 (25, Lemma 4.1) An ordered semigroup S is regular if and only if
(I S I ] = I , where I is any bi-ideal of S.
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Lemma 9 (25, Lemma 4.6) Let S be an ordered semigroup. Then the following
statements are equivalent:

(i) S is regular;
(ii) I ∩ L ⊆ (I L] for each bi-ideal I and each left ideal L of S;
(iii) R ∩ I ∩ L ⊆ (RI L] for each bi-ideal I , each right ideal R and each left ideal

L of S.

Lemma 10 (25, Lemma 5.1) Let S be an ordered semigroup. Then the following
statements are equivalent:

(i) S is intra-regular;
(ii) R ∩ L ⊆ (LR] for each left ideal L and each right ideal R of S.

Theorem 17 Let S be an ordered semigroup. Then the following statements are
equivalent:

(i) S is regular;
(ii) Ak = A ◦k S ◦k A for each k ∈ [0, 1) and for each (∈,∈ ∨qk)-intuitionistic

fuzzy bi-ideal A of S.

Proof Suppose S is regular and let A = (μ, ν) be any (∈,∈ ∨qk) intuitionistic fuzzy
bi-ideals of S and a ∈ S. Since S is regular, there exits x ∈ S such that a ≤ axa.
Now

(μ ◦k S ◦k μ)(a) = (μk ◦ S ◦ μk)(a) =
∨

(y,z)∈Ia
min{(μk ◦ S)(y),μk(z)}

≥ min{(μk ◦ S)(ax),μk(a)} =
∨

(b,c)∈Iax
min{μk(b), S(c),μk(a)}

≥ min{μk(a), S(x),μk(a)} = min{μk(a), 1,μk(a)} = μk(a)

and (ν ◦k S̃ ◦k ν)(a) = (νk ◦ S̃ ◦ νk)(a) =
∧

(y,z)∈Ia
max{(νk ◦ S̃)(y), νk(z)}

≤ max{(νk ◦ S̃)(ax), νk(a)} =
∧

(b,c)∈Iax
max{νk(b), S̃(c), νk(a)}

≤ max{νk(a), S̃(x), νk(a)} = max{νk(a), 0, νk(a)} = νk(a).

So, we have A ◦k S ◦k A ⊇ Ak . Since IFS A is an (∈,∈ ∨qk)intuitionistic fuzzy
bi-ideal of S, by Theorem15, we have A ◦k S ◦k A ⊆ Ak . Hence A ◦k S ◦k A = Ak .

Conversely suppose that I be any bi-ideal of S. Then, by Theorem13, χI

is an (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideal of S. Now, by Proposition2, we
have (χI S I )k = χI ◦k S ◦k χI = (χI )k which implies that (I S I ] = I . Hence, by
Lemma8, S is regular.

The proof of the following theorem follows on lines similar to the proof of The-
orem17.

Theorem 18 Let S be any ordered semigroup. Then the following statements are
equivalent:
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(i) S is regular;
(ii) Ak = A ◦k S ◦k A for each k ∈ [0, 1) and for each (∈,∈ ∨qk)-intuitionistic

fuzzy generalized bi-ideal A of S.

Theorem 19 Let S be any ordered semigroup. Then the following statements are
equivalent:

(i) S is regular;
(ii) A ◦k B ◦k A = A ∩k B for each k ∈ [0, 1)and for each (∈,∈ ∨qk)-intuitionistic

fuzzy bi-ideal A and (∈,∈ ∨qk)-intuitionistic fuzzy ideal B of S.

Proof Let A = (μ, ν) and B = (μ′, ν ′) be any (∈,∈ ∨qk)-intuitionistic fuzzy bi-
ideal and any (∈,∈ ∨qk)-intuitionistic fuzzy ideal of S respectively. Now, by
Lemma2 and Theorem15, A ◦k B ◦k A = Ak ◦ Bk ◦ Ak ⊆ S ◦ Bk ◦ S ⊆ S ◦ Bk ⊆
Bk .

Thus A ◦k B ◦k A ⊆ Ak ∩ Bk = A ∩k B. Let a ∈ S. Since S is regular, ∃ x ∈ S
such that a ≤ axa ≤ (axa)xa. Since B is an (∈,∈ ∨qk) intuitionistic fuzzy ideal
of S, μ′(xax) ≥ min{μ′(ax), 1−k

2 } ≥ min{μ′(a), 1−k
2 } and ν ′(xax) ≤ max{ν ′(ax),

1−k
2 } ≤ max{ν ′(a), 1−k

2 }. Now μ′
k(xax) = min{μ′(xax), 1−k

2 } ≥ min{μ′(a),
1−k
2 , 1−k

2 } = μ′
k(a), ν ′

k(xax) = max{ν ′(xax), 1−k
2 } ≤ max{ν ′(a), 1−k

2 , 1−k
2 } =

ν ′
k(a). Thus

(μ ◦k μ′ ◦k μ)(a) = (μk ◦ μ′
k ◦ μk)(a) =

∨
(y,z)∈Ia

min{μk(y), (μ
′
k ◦ μk)(z)}

≥ min{μk(a), (μ′
k ◦ μk)(xaxa)} ≥ min{μk(a),μ′

k(a),μk(a)}
= (μ ∩k μ′)(a)

and

(ν ◦k ν ′ ◦k ν)(a) = (νk ◦ ν ′
k ◦ νk)(a) =

∧
(y,z)∈Ia

max{νk(y), (ν ′
k ◦ νk)(z)}

≤ max{νk(a), (ν ′
k ◦ νk)(xaxa)} ≤ max{νk(a), ν ′

k(a), νk(a)}
= (ν ∪k ν ′)(a).

Therefore A ◦k B ◦k A ⊇ A ∩k B. Hence A ◦k B ◦k A = A ∩k B.
Conversely, as S itself is an (∈,∈ ∨qk)-intuitionistic fuzzy ideal of S, Ak = Ak ∩

S = A ∩k S = A ◦k S ◦k A. Therefore, by Theorem17, S is regular.
On the lines similar to the proof of Theorem19, we get the following:

Theorem 20 Let S be an ordered semigroup. Then the following statements are
equivalent:

(i) S is regular;
(ii) A ◦k B ◦k A = A ∩k B for each k ∈ [0, 1)and for each (∈,∈ ∨qk)-intuitionistic

fuzzy generalized bi-ideal A and (∈,∈ ∨qk)-intuitionistic fuzzy ideal B of S.
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Theorem 21 Let S be an ordered semigroup. Then the following statements are
equivalent:

(i) S is regular;
(ii) A ◦k B = A ∩k B for each k ∈ [0, 1) and for each (∈,∈ ∨qk)-intuitionistic

fuzzy right ideal A and (∈,∈ ∨qk)-intuitionistic fuzzy left ideal B of S.

Theorem 22 Let S be an ordered semigroup. Then the following statements are
equivalent:

(i) S is intra-regular;
(ii) A ∩k B ⊆ B ◦k A for each k ∈ [0, 1) and for each (∈,∈ ∨qk)-intuitionistic

fuzzy right ideal A and (∈,∈ ∨qk)-intuitionistic fuzzy left ideal B of S.

Proof Suppose that S is an intra-regular ordered semigroup and A = (μ, ν) and B =
(μ′, ν ′) be any (∈,∈ ∨qk)-intuitionistic fuzzy right and (∈,∈ ∨qk)-intuitionistic
fuzzy left ideal of S respectively. Let a ∈ S. Then ∃ x, y ∈ S such that a ≤ xa2y.

Now (μ′ ◦k μ)(a) = (μ′
k ◦ μk)(a) = ∨

(y,z)∈Ia
min{μ′

k(y),μk(z)}

≥ min
{
μ′
k(xa),μk(ay)

} ≥ min

{
min

{
μ′(a),

1 − k

2

}
,min

{
μ(a),

1 − k

2

}}
= min

{
μ′
k(a),μk(a)

} = (μk ∩ μ′
k)(a) = (μ ∩k μ′)(a).

and (ν ′ ◦k ν)(a) = (ν ′
k ◦ νk)(a) = ∧

(y,z)∈Ia
max{ν ′

k(y), νk(z)}

≤ max
{
ν ′
k(xa), νk(ay)

} ≤ max

{
max

{
ν ′(a),

1 − k

2

}
,max

{
ν(a),

1 − k

2

}}
= max

{
ν ′
k(a), νk(a)

} = (νk ∪ ν ′
k)(a) = (ν ∪k ν ′)(a).

Therefore A ∩k B ⊆ B ◦k A.
Conversely, let R and L be any right and left ideal of S respectively and a ∈ R ∩ L .

By Theorem10, χR is an (∈,∈ ∨qk)-intuitionistic fuzzy right ideal and χL is an
(∈,∈ ∨qk)-intuitionistic fuzzy left ideal of S respectively. By Proposition2, we have
(χR∪L)k = χR ∪k χL ⊆ χL ◦ χR = (χ(LR])k , which implies that R ∩ L ⊆ (LR]. So,
by Lemma10, S is intra-regular.

Theorem 23 Let IFS A = (μ, ν) and B = (μ′, ν ′) of an ordered semigroup S, then
the following statements are equivalent:

(i) S is regular and intra-regular.
(ii) A ◦k A = Ak, for every (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideals of S.
(iii) A ∩k B ⊆ (A ◦k B) ∩ (B ◦k A), for any (∈,∈ ∨qk)-intuitionistic fuzzy

bi-ideals A and B of S.
(iv) A ∩k B ⊆ (A ◦k B) ∩ (B ◦k A), for any (∈,∈ ∨qk)-intuitionistic fuzzy

bi-ideals A and every (∈,∈ ∨qk)-intuitionistic fuzzy left ideals B of S.
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(v) A ∩k B ⊆ (A ◦k B) ∩ (B ◦k A), for any (∈,∈ ∨qk)-intuitionistic fuzzy right
ideals A and every (∈,∈ ∨qk)-intuitionistic fuzzy bi-ideals B of S.

(vi) A ∩k B ⊆ (A ◦k B) ∩ (B ◦k A), for any (∈,∈ ∨qk)-intuitionistic fuzzy right
ideals A and every (∈,∈ ∨qk)-intuitionistic fuzzy left ideals B of S.

Proof The proof follows on the lines similar to the proof of Theorems21 and 22.
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On a Problem of Satyanarayana Regarding
the Recognizability of Codes

R.D. Giri

Abstract M. Satyanarayana posed a problem in 2001: which infinite codes are
recognizable.Recognizable codemeans a code acceptedby afinite automaton.Equiv-
alently a code X is recognizable iff u−1X is finite for u ∈ A∗. It is well known that
finite codes are recognizable. We partially answer the problem of Satyanarayana.
We know that a right complete semaphore suffix code is recognizable. We study
here recognizablity of right complete semaphore codes with conditions other than
suffix and further dropping semaphore condition also. Barring right completeness,
the problem for general infinite codes is still open.

Keywords Recognizability of codes · Right complete codes · Semaphore codes
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1 Introduction

An alphabet A is a non empty set of symbols, called letters. A word w over A is
a finite concatenation of letters, a word without any letter is called the empty word
denoted by 1.

The set of all words including 1 under concatenation of words forms the free
monoid A∗ generated by A. However non empty words over A forms a semigroup
A+. Thus A+ = A∗ − {1}.

Any proper subset X of A+ is called a code if a message over X is unique namely
x1 . . . xr = y1 . . . ys , with xi , y j ∈ X implies r = s and xi = yi . The set of messages
x1 . . . xr forms a monoid X∗, called information.
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A word u ∈ A∗ is called a left (right) factor of w if uv = w (vu = w) for some
v ∈ A∗. If v = 1, the factor is called improper otherwise if v �= 1, it is called proper
factor. Note that 1 is always a left (right) factor of any word w ∈ A+.

2 Preliminaries

In this section we provide some notation, basic definitions, and results.
For a code X , the set of all left factors is denoted by PX and the set of all proper

left factors is denoted by L X that is, L X = PX\(X ∪ 1).
The set of all right factors is denoted by RX .
Some basic definitions are provided with specific references.

Definition 2.1 ([1]) A code X is called right complete if for every u ∈ A∗, there
exists a word v ∈ A∗ such that uv ∈ X∗. In other words, every word in A∗ can be
completed on the right to a message.

Remark 2.1 (Theorem 3.3. [1]) A maximal prefix code can be defined as a right
complete prefix code.

Definition 2.2 ([1, 3]) A code X over an alphabet A is said to satisfy F-1 condition
if A+ X A+ ∩ X = φ.

Definition 2.3 ([1, 3]) Maximal prefix codes which satisfy the F-1 condition are
called semaphore codes.

Definition 2.4 ([1]) A code X is said to be suffix PX -closed when uv ∈ PX implies
v ∈ PX where PX is the set of all left factors of X-words.

For example the sets X = b∗a or X = {
a, b2, ba

}
are suffix PX -closed over A =

{a, b}.
Definition 2.5 ([1, 3]) A code X over an alphabet A is called a thin code if there
exists a word u ∈ A∗ such that A∗u A∗ ∩ X = φ.

Definition 2.6 ([1]) The codes of the form An are called fixed length code or uniform
code because each X-word has length n, where n is a natural number.

Definition 2.7 ([1]) For two non-negative integers such that m + n �= 0, a code X
is called an (m, n)-limited code if for any sequence {u0, u1, . . . , um+n} of words in
A∗, the consecutive pairs u0u1, u1u2, . . . , um+n−1um+n ∈ X∗ imply um ∈ X∗.

The examples of the above definitions can be found in [1].
In order to study recognizability of codes,we need to know the notions of language

and automaton [2].
Any proper subset L of A+ is called language and code is a special language

wherein every message has a unique factorization. On the other hand combinatorial
properties of a language are recognized by finite automaton where finite automata
are defined as follows.
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Definition 2.8 ([2]) A sequential machine denoted by a pair (I, R) is called a finite
automaton (F A), where I denotes a finite set of internal states and R denotes a set
of rules governing the current state after an input symbol.

Definition 2.9 ([1]) A code X over an alphabet A is called recognizable if it
is accepted by a finite automaton. Equivalently according to Berstel and Per-
rin [1] (p. 15) the family of the non empty sets u−1X, u ∈ A∗ is finite where
u−1X = {v ∈ A∗|uv ∈ X}. In fact the non empty subsets u−1X are called states
of the minimal automaton accepting the code X .

In the entire text, we presume that no code is a subset of its alphabet. For undefined
terms, we refer to [1].

The following well known results are frequently used in proving our main results.
Their proofs are in [4].

Lemma 2.1 ([4, Theorem 1]) Let X be a right complete code over an alphabet A.
Then A∗ = X∗ P.

Lemma 2.2 If X is a semaphore code over an alphabet A then RX ⊆ X ∪ L X .

Proof Letu ∈ RX , ifu /∈ X ∪ L X thenu /∈ L X yielding vu ∈ X for v ∈ A+ therefore
uv ∈ X ∩ A+ X A+ contradicting F-1 condition, hence u ∈ X . �

Lemma 2.3 Let X be a (1, 1) limited code over an alphabet A satisfying the F-1
condition, then L X ∩ RX ⊆ X. In addition if X is a right complete code then RX ⊆ X.

Proof If u ∈ L X ∩ RX then, xu, uy ∈ X for some x, y ∈ A+. Thus by (1, 1)-limited
condition, u ∈ X+. If u ∈ Xn for n > 1 then xu ∈ X ∩ A+ Xn , contradicting F-1
condition for X . Hence u ∈ X . If X is a right complete code then by Lemma2.2,
RX ⊆ X ∪ L X yielding RX ⊆ X . �

Lemma 2.4 Let X be a semaphore code over the alphabet A and X �= A. If RX ⊆ X
then X = (B ′)∗ B where B ′, B are non empty subsets of A such that A = B ∪ B ′, B ∩
B ′ = φ and B = X ∩ A.

Proof Since RX ⊆ X , so every right factor of an X-word is an X-word. Note a right
factor is a letter or concatenation of more than one letter which is in fact an X−word
ending with a letter. Set B = X ∩ A �= φ, X �= A, A = B ∪ B ′, B ∩ B ′ = φ, B ′ �=
φ. By the F-1 condition A+ X A+ ∩ X = φ, no letter of B occurs as an internal factor
of any X-word, hence X ⊆ (B ′)∗ B. But (B ′)∗ B is prefix and X is maximal prefix,
so X = (B ′)∗ B. �

Proposition 2.5 Let X be a semaphore code, X �= A. Then the following are equiv-
alent:

(i) X = (B ′)∗ B where B, B ′ are non empty subsets of A such that A = B ∪ B ′, B ∩
B ′ = φ and B = X ∩ A

(ii) X is a (1, 0)—limited code.
(iii) X is a (1, 1)—limited code.
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(iv) RX ⊆ X where RX has its usual meaning.
(v) L X ∩ RX = φ where L X and RX have their usual meanings.

Proof (i) ⇒ (i i), follows from Theorem 10 ([3], p. 368).
(i i) ⇒ (i i i) As is well known ([1], p. 329)
an (m, n) limited code is also an (m + s, n + t) limited code for s, t ≥ 0
(i i i) ⇒ (iv) It follows by Lemma 2.3
(iv) ⇒ (v). On the contrary if u ∈ L X ∩ RX then by Lemma2.2, u ∈ X ∪ L X which
yields ux ∈ X , a contradiction to prefix property. Hence L X ∩ RX = φ

(v) ⇒ (iv) Let u ∈ RX , u /∈ X . By Lemma2.2, RX ⊆ X ∪ L X , so u ∈ RX ∩ L X �=
φ, a contradiction, hence RX ⊆ X . �

Corollary 2.1 Let X be a semaphore code, X �= A. If RX ⊆ X then X = (B ′)∗ B.

Proof Let uxv ∈ X for x ∈ X, u, v ∈ A+ which implies xv ∈ RX ⊆ X . Clearly
x ∈ X is a left factor of an X-word xv contradicting prefix property of X , so by
Proposition2.5 X = (B ′)∗ B. �

3 A Key Result

Now we prove a key result to establish the recognizability of semaphore codes.

Theorem 3.1 Let X �= {a, b} be a semaphore code. If L X ∩ RX ⊆ A. Then X has
one of the following forms:
(1)

{
a, ba, b2

}
(2) b∗a (3)

{
a2, b2, ab, ba

}
(4)

{
a2 ∪ ab ∪ b+a

}
(5)

{
b2 ∪ ba ∪ a+b2 ∪ ab ∪ a+ba

}
(6)

{
a+b+a ∪ b+a

}
(7)

{
ab2 ∪ (ab)2 ∪ b+a+b ∪ a+b

}
(8)

{
ab+ab ∪ a+b

}
(9) codes obtained from above on interchanging a and b. The total partition classes
are sixteen.

Proof Let M be the family of all codes under various possible options that are
mutually pairwise disjoint such that there union is M itself.

Case 1: a ∈ X, b ∈ X . It is vacuous as X �= {a, b}
Case 2: a ∈ X, b /∈ X, X �= {a, b}
Subcase 2.1: X words end with a so ba ∈ X .

Subcase 2.2: b2 ∈ X

Considering the two subcases together we have X = {
a, ba, b2

}
Subcase 2.3: b2 /∈ X then bn /∈ X . Claim bna ∈ X . If not then by Lemma3.1 bna =
Xr PX for r ≥ 1 which forces some power of b is an X-word which is false as b /∈ X
and bn /∈ X . Now bna ∈ X for all n hence X = b∗a.

Case 3: a /∈ X, b ∈ X . It is dual to case 2, and lies in class (9).
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Case 4: a /∈ X, b /∈ X . We obtain all possible codes systematically.

Subcase 4.1: Under above hypothesis,X-words endwith both a aswell as b. therefore
ab, ba ∈ X . Further there are three more subcase of this;

Subcase 4.1.1: a2 ∈ X, b2 ∈ X , then required maximal prefix code is
X = {

ab, ba, a2, b2
}
.

Subcase 4.1.2: a2 ∈ X but b2 /∈ X , X-word does not end with b then bn /∈ X for all
natural numbers n i.e. bnt ∈ X for some t ∈ A+. By assumption L X ∩ RX ⊆ A, X �=
A so RX ⊆ X ∪ A. Suppose t /∈ A then t ∈ X . Since X-word does not end with b so
t /∈ b+ so t = a or a2. The second option is ruled out as it contradicts (F-1)-conditions
as ba ∈ X . In first option we get bna ∈ X for all n. Hence X = {

a2 ∪ ab ∪ b+a
}
.

Subcase 4.1.3: a2 /∈ X , b2 ∈ X and X-word does not end with a. Clearly an /∈ X as
a2 /∈ X for all values of n. We claim anb2, anba ∈ X . By Lemma3.1 words, anb2 ∈
Xr PX , anba ∈ Xs PX for r, s ≥ 1. This shows x = ar ∈ a+ and y = asb ∈ a+b are
X-words contradicting a+ ∩ X = φ and a+b ∩ X = φ. Hence the claim. Therefore
required code X = {

b2 ∪ ab ∪ a+b2 ∪ a+ba
}
.

Subcase 4.2: a2 /∈ X, b2 /∈ X

Subcase 4.2.1: X-words end with a but does not end with b. We obtain the required
codes. Since a2 /∈ X, b2 /∈ X so a+ ∩ X = φ, b+ ∩ X = φ. SinceX-word do not end
with b so anb /∈ X for all n. We note that anbm /∈ X for all natural numbers n, m ≥
2. In case otherwise anbm = a(an−1bm−1)b ∈ A+ X A+ ∩ X a contradiction to (F-
1)-condition. Let anbma /∈ X . Then by Lemma3.1 ambma = x1.x2 . . . . . . xr q, xi ∈
X, 1 ≤ i ≤ r, q ∈ PX . For r ≥ 1, we obtain x1 ∈ {

a+ ∪ a+b+}
which is false, since

ba ∈ X, X is prefix and satisfies (F-1)-condition so anbma /∈ PX . Therefore anbma ∈
X for all natural numbers n and m. Similarly we can show bna ∈ X . Hence maximal
prefix code is X = {

a+b+a ∪ b+a
}
.

Subcase 4.2.2: X-words end with b but do not end with a. We further divide into
subcases.

Subcase 4.2.2 (i): In addition to above, we have condition that ab2 ∈ X . Since
aba /∈ X so aba ∈ PX yielding (ab)2 ∈ X since X-words do not end with a so
bna /∈ X for all n. Dual to Case 4.2.1 we obtain bnam ∈ X for all n, m ≥ 2. Similarly
we show that anb ∈ X . Hence maximal prefix code is

X = {
ab2, (ab)2 ∪ b+a+b ∪ a+b

}
Subcase 4.2.2 (ii): In addition to above ab2 /∈ X then abn /∈ X . Clearly ab ∈ X . As
X-word does not end with a so abna /∈ X and hence abna ∈ PX for all n. Therefore
abnab ∈ X for all n ≥ 1. Further a2 /∈ X implies an /∈ X so anb ∈ X . If not then
anb ∈ PX for all n i.e. bnt ∈ X for some t ∈ A+. By assumption L X ∩ RX ⊆ A, X �=
A so RX ⊆ X ∪ A. Suppose t /∈ A then t ∈ X . Since X-words do not end with a so
t ∈ b+ i.e. t = b or t = b2. Second option is ruled out as it leads to a contradiction
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to (F-1)-condition as ab ∈ X . For first option t = b; anb ∈ X . Therefore maximal
prefix code X = {

ab+ab ∪ a+b
}
. Subcase 4.3: Neither is there any word ending

with a not is there any word ending with b. This case is vacuous as X-word has to
end with a or b.

This completes the partition of all possible mutually disjoint sets of codes and the
proof. �

4 Recognizability

Now we are ready to prove some results on recognizability.

Theorem 4.1 Let X be a semaphore code, X �= A. Then X is recognizable if it
satisfies anyone of the equivalent conditions of Proposition2.5.

Proof By virtue of Proposition2.5, it is sufficient to prove that X = (B ′)∗ B is recog-
nizable. Note that, u−1X �= φ iff u ∈ X ∪ PX . Let u ∈ X ∪ {1} and u−1X �= φ then
u ∈ L X = (B ′)+. If uy ∈ X with y ∈ A+ then y ∈ X by condition (iv) of Propo-
sition2.5 therefore u−1X ⊆ X . If x ∈ X then ux ∈ (B ′)+ B ⊆ X . Thus X = u−1X .
Thus X is recognizable. �

Corollary 4.1 Let X be a maximal prefix code X �= A then X is recognizable code
if RX ⊆ X.

Proof It follows from Corollary 2.1 and Theorem 4.1. �

Theorem 4.2 Let X be a semaphore code over A = {a, b} ; X �= A. Then X is
recognizable code if L X ∩ RX ⊆ A.

Proof By virtue of key Theorem 3.1, we prove that all subsets given in the theo-
rem are recognizable. This follows from the fact that each set is given by a regular
expression. �

Now we turn our attention to non-semaphore codes and non-recognizability.
It is well known (Theorem 5.5 [1]) that semaphore codes are suffix PX -closed.

It is obvious that suffix PX -closed sets b∗a and
{
a, ba, b2

}
are recognizable. First

we look at what happens when the maximal prefix property (right completeness) of
semaphore code is weakened and suffix PX -closed is retained.

Proposition 4.1 Let X be a prefix code over an alphabet A = {a, b} containing a. If
X is suffix PX -closed then X ⊆ a ∪ bm ∪ b+a where m is some fixed natural number.

Proof Clearly bman ∈ X and bman A+
� X by prefix property of X . But if bman ∈ X

then bma ∈ PX which gives a ∈ PX by suffix PX -condition of X . Since X is prefix
so a /∈ PX , a contradiction. Hence bma ∈ X . Now factorizing bma into X-words
and a ∈ X yields some power of b is an X-word by definition of code. Hence X ⊆
a ∪ bm ∪ b+a for a fixed m ≥ 1. �
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Now we see the conditions of recognizability, right completeness and suffix ness
give specific structure to the code.

Proposition 4.2 Let X be a recognizable, right complete and suffix code over an
alphabet A. Then for any a ∈ A, X contains a power of a.

Proof Any w ∈ X has to have all letters a only yielding the assertion. �

Now we give two results on non-recognizatibility.

Theorem 4.3 Let X be a right complete suffix code over an alphabet A = {a, b}
and X � A. If X contains a letter a and (ba)nb /∈ X for all natural numbers n. Then
X is non recognizable.

Proof Since X �= A, a ∈ X so b /∈ X . By contrapositive definition of suffix code
(ba)nb /∈ X implies (ba)n /∈ X for every natural number n. By Lemma 2.1 we have
(ba)nb = x1 . . . xr .q; xi ∈ X, q ∈ PX ⊂ A+. By observation x1 = (ba)nt1 for some
t1 ∈ A+ ⇒ (ba)nb = (x1)x2 . . . xr q = (ba)nt1x2 . . . xr q ⇒ b = t x2 . . . xr q since
t, q ∈ A+ so length of LHS is 1 and RHS is greater than or equal to 2, a con-
tradiction. Therefore (ba)n = x1t1 for t ∈ A+ as X is prefix. If n = 1, ba = x1t1
implying b = x1 ∈ X a contradiction to b /∈ X . Similarly for n > 1 (ba)(ba)n−1 =
x1t1(ba)n−1t2.

Now (ba)n−1 /∈ X so (ba)n−1t2 ∈ X for t2 ∈ A+. Hence ba = t2t1 yielding b = t2.
This shows (ba)nb ∈ X , a contradiction to hypothesis. Therefore (ba)n−1 = x1t2 ∈
X A+. This contradiction proves (ba)nb ∈ PX for all natural numbers n. Hence{[(ba)nb]−1X

}
is an infinite family, proving X is not recognizable. �

If any one of the conditions in the hypothesis of the theorem fails then the theorem
breaks down.

Counter Example 4.1 Let X = a ∪ b3 ∪ b2a ∪ (ba)+b2 ∪ (ba)+a+b since baab,

(ba)2ab ∈ X so X is not suffix code. Further a ∈ X, X is maximal prefix so it is
right complete. For every natural number n, [(ba)n]−1X = (ba)∗b2 ∪ (ba)∗a+b,

[(ba)nb]−1X = a(ba)∗b2 ∪ a(ba)∗a+b and [(ba)nam]−1X = a∗b for all n and m so
X is recognizable. The literal diagram is as follows.
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a2

an

a

1
b

b2

b3

bn

b2a
n

m

ba

(ba)2

(b
a)

n a
m

(b
a)

n

n
2

Counter Example 4.2 Let X = {
a2, b2, ab, ba

}
. Clearly X satisfies all conditions

except the letters are not X-words namely A ∩ X = φ. So X is recognizable being a
finite code.

Counter Example 4.3 Let X = a ∪ b2 ∪ ba+b whose literal diagram is as follows:

an

a

1

b

b2ba

ba
bn

bab

ba
n

Clearly X is maximal prefix code hence right complete also. But bab ∈ X is violation
of the one of the hypotheses. Since (ban)−1X = A∗b, for every natural number n.
Hence X is a recognizable code.
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Theorem 4.4 Let X be a right complete suffix code over an alphabet A = {a, b}
and X � A. If no letter is an X-word, (ba)nb /∈ X for any natural number n and
aba ∈ X, then X is not a recognizable code.

Proof Given that (ba)n = (ba)n−2.b(aba) /∈ X but aba ∈ X so by the suffix prop-
erty (X ∩ A+ X) = φ we have (ba)n ∈ A+ X . We claim that (ba)n ∈ P . On the con-
trary let (ba)n /∈ P . By Lemma2.1, (ba)n = x1 . . . xr .q with xi ∈ X, q ∈ P . Since
(ba)n = (ba)n−1(ba) /∈ X so by suffix property (ba)n−1 /∈ X i.e. (ba)n−1.t ∈ X
for some t ∈ A+. That is ba = t x1 ∈ t A+ implying t = b so (ba)n−1b ∈ X A+ as
(ba)n−1 /∈ X . Using the fact (ba)nb /∈ X for every n, on reduction, in a finite number
of steps we have ba ∈ X A+ implying b ∈ X , contrary to our hypothesis. This proves
our claim (ba)n ∈ P for every n. Thus

{[ba]−1X
}
is an infinite family of subsets of

X which are mutually distinct by the suffix condition. Hence X is not recognizable.

Counter Example 4.4 The code X = {
a2, b2, ab, ba

}
given in counter Exam-

ple4.2 works for this theorem, because it satisfies all conditions except aba ∈ X .

Counter Example 4.5 The code X = a2 ∪ b2 ∪ ab+a ∪ ba+b is given by follow-
ing literal diagram:

an

a

1

b
b2

ba
bn

bab

ba
n

bn

abn

ab
an

a2

Clearly X is maximal prefix and suffix code. The condition (ba)nb /∈ X of the The-
orem 4.5 is violated as bab ∈ X . Hence X is recognizable because (abn)−1X = b∗a
and (ban)−1X = a∗b for all natural numbers n.

Counter Example 4.6 Let X = a2 ∪ b2 ∪ ba ∪ ab+a. It is maximal prefix. But it is
not suffix as aba ∈ X and ba ∈ X . However condition (ba)nb /∈ X holds because in
particular if bab ∈ X and ba ∈ X will violate prefix nature of X . Further (abn)−1X =
b∗a for every natural number n. Hence X is recognizable.

Problem 4.1 Prove Theorem4.3 with the weaker condition (ba)nb /∈ X for n > 1.
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Remark 4.1 Since the recognizable codes are thin ([1], p. 69) and then right complete
codes are maximal prefix codes ([1] Theorem3.7, p. 101), the recognizability of right
complete codes reduces to maximal prefix codes. Therefore we have the following
problem:-

Problem 4.2 Find conditions under which suffix maximal prefix codes are recog-
nizable.

This problem arises because we have an example of right complete code which
is suffix over A = {a, b} and a ∈ X Further it violates condition (ba)nb /∈ X for
natural numbers n of the Theorem4.3, yet it is not recognizable, contrary to counter
Examples4.1–4.3. This is because, the code is not thin (X ∩ A+ X A+ = φ). The
example is as follows:-

Counter Example 4.7 X = {
uab|u||u ∈ A∗} over A = {a, b}. This is not thin

because bab ∈ X, b2ab2 ∈ X so b2ab2 ∈ X ∩ A+ X A+ �= φ, contrary to the defi-
nition of thin.
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