
Knowledge Flows Within Open Source
Software Projects: A Social Network
Perspective

Noureddine Kerzazi and Ikram El Asri

Abstract Developing software is knowledge-intensive activity, requiring extensive
technical knowledge and awareness. The abstract part of development is the social
interactions that drive knowledge flows between contributors, especially for Open
Source Software (OSS). This study investigated knowledge sharing and propaga-
tion from social perspective using social network analysis (SNA). We mined and
analyzed the issue and review histories of three OSS from GitHub. Particular
attention has been paid to the socio-interactions through comments from contrib-
utors on reviews. We aim at explaining the propagation and density of knowledge
flows within contributor networks. The results show that review requests flow from
the core contributors toward peripheral contributors and comments on reviews are
in a continuous loop from the core teams to the peripherals and back; and the core
contributors leverage on their awareness and technical knowledge to increase their
notoriety by playing the role of communication brokers supported by comments on
work items.

Keywords Knowledge flows ⋅ Expertise ⋅ SNA ⋅ Open source

1 Introduction

Open source communities can be perceived as knowledge-sharing ecosystems in
which contributors learn from the community and from each other [1]. They share
both domain and technical knowledge through contributions to the source code
repositories or by reviewing source code from one another. Interactions between
contributors, which can be materialized by looking to co-edited files [2], constitutes

N. Kerzazi ⋅ I. El Asri (✉)
National Higher School for Computer Science and System Analysis (ENSIAS), Rabat,
Morocco
e-mail: ikram.asri@um5s.net.ma

N. Kerzazi
e-mail: n.kerzazi@um5s.net.ma

© Springer Science+Business Media Singapore 2017
R. El-Azouzi et al. (eds.), Advances in Ubiquitous Networking 2, Lecture Notes
in Electrical Engineering 397, DOI 10.1007/978-981-10-1627-1_19

247



the backbone of socio-technical perspective which has gained increased attention
over the past decade [3–5]. Social Network Analysis (SNA) has been used to
capture and understand such information about relations among people [6] with the
aim at enhancing team performance and software product quality.

Previous research has shown that there are expert reviewing technical contri-
butions involved in most OSS projects [7]. However, this past research does not
explain how developers identify experienced contributors to review their code and
how awareness and knowledge are spread through the contributors’ community.
Many open source (OSS) projects adopt the practice of code reviews to increase the
quality of their software products [8]. Collaboration on code review aims not only
to improve the quality of code changes made by contributors [9], but also for the
purpose of knowledge transfer and awareness [10, 11]. If we could explain the
propagation of knowledge flows within contributor networks throw code source
reviews, we can enhance the quality of the code and improve the signal to noise
ratio of comments on commits which decrease teams’ performance. One way of
locating reputed domain expert, to ask for reviewing a piece of code, is to build
contributors networks and analyze it.

Historically, SNA has been known to be effective in many areas [12]. In this
paper, we examine the socio-technical interactions for three OSS. Using histories of
version control data, we constructed contributors’ networks based upon which files
are commonly modified by contributors. Using network analysis, we can uncover
details of knowledge sharing and the circulation of knowledge flows between the
core and peripheral contributors. Our research questions can be summarized as
follows:

RQ1. Is there a Relationship between Contributors’ Network and Knowledge
Sharing?
RQ2. Does the network position of contributors affect the review process and the
number of comments on GitHub projects?
RQ3. Does the Socio-Technical analysis make knowledge transfer an actionable
concept?
RQ4. What Kind of Knowledge is transferred?

The main contributions of the paper are as follows:

• A thorough Social Network Analysis of three OSS projects that provides
insights into socio-interaction of contributors and their knowledge sharing;

• A view of knowledge circulation through code review practice along with the
kind of knowledge that is transferred;

• An exploration of how SNA metrics can inform to answer whether or to what
extent an open source community has a good underpin knowledge and aware-
ness sharing mechanisms;

• An understanding of whom are requesting code review; whom are commenting
on reviews; and whom are performing reviews according to their network
position and degree.

248 N. Kerzazi and I. El Asri



Paper organization. The remainder of the paper is organized as follows.
Section 2 presents related work and background. Section 3 introduces our
SNA-basedmethod for identifying knowledge flows. Section 4 describes the selected
projects from GitHub and data collection process. Section 5 provides our study
results. Section 6 discusses our finding and points out practical implications. Sec-
tion 7 discloses the threats of validity. Section 8 concludes and outlines future work.

2 Related Work and Background

Considering people at the heart of OSS projects, SNA in software development
teams shows that social networking contains tremendous information that can be
leveraged for purposes such as: defects prediction [3, 13], teams’ organization and
coordination [14], team productivity [15], and tools or techniques for the purpose of
studying developer communities [1, 4]. We first summarize related work according
to these three different perspectives. Then we introduce previous work on knowl-
edge sharing and propagation. Finally, we present what we know about SNA
measures.

Defects Prediction—Rigby and Storey [16] examined manually hundreds of
code reviews across five high-profile OSS projects aiming to investigate the
mechanisms and behaviours that developers use to find code changes they are
competent to review. They found that the Apache project adopted a broadcast-based
style of code review, meaning increasing the awareness of new changes, but
annoying the community with a high amount of irrelevant notification. Baysal et al.
[9] studied the factors that influence the outcome of the review process and found
that review positivity (i.e., the proportion of accepted patches) can be influenced by
non-technical factors such as organization.

Furthermore, a recent qualitative study at Microsoft [10] showed that identifi-
cation of defects is not the only motivation for code review, but sharing knowledge
among team members is also considered as a very important motivation of modern
code review. This related work indicates that our findings are not specific to the
open source community but can be applied within commercial organizations.

Organization and Coordination—Recently, there has been considerable
interests and work on improving the coordination between software team’s mem-
bers [17]. Knowledge dependencies drive the need to coordinate software process
activities. Saying that an SNA approach can support identification of coordination
needs by identifying previous collaboration and communications. Social Network
metrics arise as a response to those questions such as who should do what, when it
is required.

Productivity—It has been reported that higher socio-technical congruence
usually correlates with higher developer productivity [15] and reduces integration
failures [17]. Both researchers and OSS projects leads could use STC to diagnose
project members’ collaboration and improve team coordination [18].

Knowledge Flows Within Open Source Software Projects … 249



Social Knowledge Sharing—Prior work has shown that social networking
contains plenty of information that can be leveraged for other purposes [14]. For
instance, the socio-cultural learning theories state that people learn from each other
through observation, interaction and communication [19]. Seeing learning through
its social aspect emphasizes the fact that OSS projects are increasingly growing.
Contributors are part of a community of practice, organization, and belong to a
group of people where there is competence knowledge already established. Source
code review practice and comments are seen as ideal vehicles for leveraging tacit
knowledge and learning.

3 SNA-Based Knowledge Flows

According to SNA [20], a Network consists of a set of nodes and a set of edges.
Thus, we represent contributors as nodes as shown in Fig. 1. Connections,
between those nodes, are weighted and represented based on the number of files the
pair has collaborated on.

When two contributors are directly connected by an edge they are adjacent. The
number of adjacent connections for a given contributor is called the Degree of that
contributor. As illustrated in Fig. 1, C3 has a degree of 3 and C4 has a degree of 1.

Geodesic path refers to the shortest social distance between two contributors
represented such as adjacent and unique connections. While networks’ diameter
refers to the longest path between two contributors.

3.1 Contributor Network Metrics

Connectivity metric measuring direct connections between nodes. SNA has come
up with three distinct structural properties to measure the centrality of a given node.

Centrality metrics measure how closely contributors are indirectly connected to
each other in the network. SNA measures the centrality based on two metrics:
closeness and betweenness.

Closeness refers to the average distance from a node to any other node in the
network. For example, Closeness for C1 = (1 + 1 + 2)/3 = 4/3 noticing that the

Fig. 1 An example of
Contributors’ Network with
four nodes

250 N. Kerzazi and I. El Asri



shortest paths from C1 to (C2 and C3) are each 1 and the shortest path from C1 to C4

is 2. For instance, Fig. 1 shows that C3 has the maximum possible degree
(3) meaning that it is central in this network. While C1 and C2 have a degree equal
to 2; and C4 has a degree of 1 meaning that this contributor is peripheral in this
network.

Betweenness is another centrality metric calculated for a given node as the
number of shortest paths that include this node divided by the total number of
shortest paths in the network. In the example of Fig. 1, we have a total of 6 shortest
paths. Saying that the betweenness of C1 and C2 is 3/6, while the betweenness of C3

is 5/6.

4 DataSets

We focus our study on three large and rapidly evolving open-source systems which
are highly stared projects from GitHub. Our choice of projects was based on the
following criteria: (i) project should be among the 100 most stared projects;
(ii) should be still under active development; and (iii) involving at least 250 con-
tributors. Table 1 summarizes the characteristics of our selected projects including
the programming language, the total number of developers, number of releases;
number of lines of code; number of requested reviews; and the total of commits.
Table 2 shows the characteristics of each network.

For each project we queried the GitHub API with the query https://api.github.
com/repos/<owner>/<repo>/commits?page=<n>, where <owner> is a GitHub

Table 1 Overview of the studied systems

Overview Commits
Language Contributors Releases LOC Request

review
Total

Angular.
Js

JavaScript 1403 161 369.574 349 7534

Docker Go 1314 129 670.722 2399 22318
JQuery JavaScript 250 134 62.566 10 6050

Table 2 Metric of the networks

Clustering
coefficient

Network
centralization

Avg. # of
neighbours

#Nodes Network
density

Network
heterogeneity

Angular.
Js

0.897 0.918 66.428 1393 0.048 1.674

Docker 0.874 0.794 81.385 1314 0.062 1.582
JQuery 0.834 0.725 61.179 244 0.252 0.837

Knowledge Flows Within Open Source Software Projects … 251

https://api.github.com/repos/%3cowner%3e/%3crepo%3e/commits%3fpage%3d%3cn%3e
https://api.github.com/repos/%3cowner%3e/%3crepo%3e/commits%3fpage%3d%3cn%3e


user account and <repo> is the name of the repository. Hence, we extracted the
commits data for each project including details such as the programming language
used, the time period covered, the number of commits and developers, information
about releases as well as the number of edited files.

Once the commits and edited files were linked, we were interested by all requests
of reviews for each project. Since our study is focused on knowledge sharing
between contributors, we also extracted all comments on each code review. Our
query retrieves open and closed issues (i.e., state = all), along with labels tagged as
‘need review’. Figure 2 summary interval times needed to close code review
requests.

5 Study Results

RQ1. Is there a Relationship between Contributors’ Networks and knowledge
sharing?

We were interested to find the position of contributors within the contributors’
network, that are asking for code reviews, commenting on code reviews, and car-
rying out reviewing activity. Figure 3 shows a comparative between Angular and
Docker projects. We represent in red colour contributors’ network on top of which
we map sub-networks. For instance, Fig. 3a1 illustrates the social network of
Angular (red colour) and a sub network of contributors that requested code review
(blue colour). One can observe the differences between the two projects in terms of
density and position of requesters of code reviews.

Figure 3b1–2 show the mapping of the contributors who have commented on
code reviews (green). And finally, Fig. 3c. compares the relative network position
of contributors that carried out the code reviews.

We found that core contributors act such as knowledge brokers and
boundary spanners across comments loops not only from the periphery to the

Fig. 2 Time required to close a request for code reviews

252 N. Kerzazi and I. El Asri



core, but also from the core to the periphery. We pay a close attention to how core
contributors (experts) influence communication patterns through comments on code
reviews and issues in OSS projects as well as transferring and spreading knowledge
to peripherals.

RQ2. Does the network position of contributors affect the review process and the
number of comments on GitHub projects?

We found a strong correlation between the position of contributors in the
Network (Degree) and the number of comments on code reviews. Figure 4

Fig. 3 Comparing different networks of Angular and Docker Projects. a1 Angular project
Contributors Network which requested a code review, a2 Docker project Contributors Network
which requested a code review, b1 Angular Network of commenters on code review, b2 Docker
Network of Commenters on code review, c1 Angular Network of Contributors that Resolve and
close the code review, c2 Docker Network of Contributors that Resolve and close the code review

Knowledge Flows Within Open Source Software Projects … 253



illustrates the trend of communication in the Angular project. One can also notice
that more the Degree is highly likely the contributors are active in transferring their
knowledge and awareness to other contributors. For instance, surprisingly in
Angular project we have identified 16.7 % of contributors such as core1 developers
that generate 81.6 % of communication against 83.3 % of peripheral developers
generating only 18.4 % of the comments flow.

RQ3. Does the socio-technical analysis make Knowledge Transfer an actionable
concept?

Core contributors are communication brokers that have awareness and both
technical and domain knowledge. SNA allows us to identify central core con-
tributors. We segregate contributors according to the degree of centrality they have.
Our analysis shows that we can go further with SNA metrics and patterns that can
support studying knowledge flows in OSS communities similar to previous studies
that attempt to predict software failures based on SNA metrics [13].

Figure 5 shows a comparative of the betweenness centrality metric as well as the
distribution of degree for contributors.

Table 3 summarizes SNA metrics for each network. Those metrics help to
understand the nature of the project as well as the architecture. For instance, we
observed a high density for Docker project probably meaning cohesive architecture
of this project.

Table 4 shows intrinsic SNA metrics emphasizing characteristics of interactions
between contributors such as degree and centrality metrics (betweenness and
closeness).

0

100

200

300

400

500

0 200 400 600 800 1000 1200 1400 1600

N
um

be
r 

of
 C

om
m

en
ts

Network Degree

Fig. 4 Mapping the Contributors Centrality Degree Metric with the Number of Comments

1We define a Degree threshold > 500 to filter on core developers which are marked as central in
our SNA analysis.

254 N. Kerzazi and I. El Asri



6 Discussion

Review assignments are not sufficient to explain comments flows in a project.
Figure 6 shows the distribution of contributors pre-assigned for code reviews
(yellow) within the overall contributors’ network. Nerveless, we have seen quite lot
of code reviews carried out by other contributors with different degrees of cen-
trality, which is not necessarily problematic but may indicate areas where the

Fig. 5 Comparing networks metrics of Angular and Docker Projects. a1 Angular Betweenness
metric, a2 Docker Betweenness metric, b1 Angular Degree Metric, b2 Docker Degree Metric

Table 3 Network SNA mertics

Projects Density Centrality Avg. neighbours Clustering coef.

JQuery 0.252 0.725 61.197 0.834
Angular 0.048 0.918 66.428 0.897
Docker 0.062 0.794 81.385 0.874

Table 4 Contributors SNA metrics

Projects Degree Betweenness Closeness Clustering coef.

JQuery [1–236] Median = 48 [0–0.8] [0.46–0.97] [0–1]
Angular [1–1343] Median = 38 [0–0.16] [0.35–0.96] [0–1]
Docker [1–1122] Median = 38 [0–0.08] [0.41–0.87] [0–1]

Knowledge Flows Within Open Source Software Projects … 255



review assignment was not supported by either awareness or cross-functional
knowledge or the distribution of domain knowledge in the core team. OSS Team
leads can optimize the team configuration when forming new teams, especially for
the code review activity.

The core contributors are assumed to be structurally more central, in the con-
tributors’ networks, than other contributors. They have enough either awareness or
knowledge about the product to manage other developers’ contributions.

RQ4. What kind of Knowledge is transferred?

We manually classify comments according to technical or domain knowledge.
Another category emerged throughout our classification process: Awareness. The
majority of knowledge transfer is about Awareness (46.3 %), then technical
(34.5 %) generating large contributors’ debates and domain knowledge (19.1 %).
For example, contributor 13286 in Angular project commented on an implementing
approach that he perceived as an anti-pattern:

[I’m not quite sure why you’re against this. The job of ‘inject’ is to inject a function, as its
name implies. Not inject a function and eliminate its return value. I would argue, instead,
that is an anti-pattern of function decorators. It’s confusing and unnecessary….] 13286.

7 Threats to Validity

Construct Validity—In this paper, we adopt co-edited files as a heuristic to build
the graph of contributors’ networks. We do not consider the time frame such as
co-edition within one month or under releases. In fact, we could rely on comments
for SNA instead of co-edited files. However, focusing only on comments will hide
the big analysis of all socio-interactions. Furthermore, our heuristic based on file
co-edition does not consider the amount of LOC the contributors make. However,
file editing is considered by many studies as a fine-grained enough indicator of
developers’ collaboration [2]. Furthermore, we assume that all communications
occur with either review requests or comments within the review process. We

Angular Docker JQuery

Fig. 6 Assigned contributors for reviewing source code

256 N. Kerzazi and I. El Asri



cannot assume that developers on GitHub are not using an external social media or
mailing list to communicate.

Internal Validity—We are aware that we might miss transitive dependencies
between technical elements. For instance, changing the framework on which
depends many files is unseen such as a technical interaction. Moreover, software
development is dynamic, and as contributions are made over time, the nature of the
socio-interaction changes. We mitigated this threat by studying multiple open
source projects, using different languages, within the GitHub community. Fur-
thermore, our analysis is time-agnostic. Since contributors are changing over time,
the number of core developers may vary as well. We plan to conduct a temporal
analysis of core contributors in future work to get more insights on how those
contributors rich their actual position in the Network.

External Validity—In this study, we choose three projects which therefore might
limit the generation of our results. However, we choose carefully mature and
long-lived projects running in different languages and with an amount of contributors
ranging from 250 to 1403. We filtered away projects that have fewer than 250 con-
tributors or fewer than 1,000 edited files to remove projects that are immature or
without an underpinning socio-technical interaction, and thus alleviate potential bias.

8 Conclusion

In this paper, we have performed Social Network Analysis on three open source
projects. We showed how knowledge is transferred between core contributors and
peripherals when using code review activity. We build contributors’ networks based
on co-edited files and then we build sub-networks for contributors requesting code
reviews, commenting on, and those performing the code reviews. SNA visualization
makes the identification of the structural interactions analysis of those networks
possible. We found that there is a strong correlation relationship between the degree
centrality of contributors and their implication on knowledge and awareness transfer.

By understanding the knowledge flows between OSS collaborators,
socio-technical interactions structure, OSS communities gain an increased ability to
facilitate code reviews in their projects. We hope this will lead to software projects
with more efficient knowledge transfer, less overhead of review assignment, and
increased leverage of the software quality and teams’ performance.

References

1. VonHippel, E., VonKrogh, G.: Open source software and the “Private-Collective” innovation
model: issues for organization science. Organ. Sci. 14(2), 209–223 (2003)

2. Dabbish, L., et al.: Social coding in GitHub: transparency and collaboration in an open
software repository. In: The Conference on Computer Supported Cooperative Work. Seattle,
WA, USA (2012)

Knowledge Flows Within Open Source Software Projects … 257



3. Begel, A., DeLine, R., Zimmermann, T.: Social media for software engineering. In: FSE/SDP
Workshop on Future of Software Engineering Research, pp. 33–38. Santa Fe, New Mexico,
USA (2010)

4. Yang, X.: Social Network Analysis in Open Source Software Peer Review, pp. 820–822
(2014)

5. Yang, X., et al.: Understanding OSS Peer Review Roles in Peer Review Social Network
(PeRSoN), pp. 709–712 (2012)

6. Bird, C., et al.: Latent social structure in open source projects. In: Proceedings of the 16th
International Symposium on Foundations of Software Engineering (FSE’08). Atlanta, Georgia
(2008)

7. Asundi, J., Jayant, R.: Patch review processes in open source software development
communities: a comparative case study. In: The 40th Annual Hawaii International Conference
on System Sciences (2007)

8. Bissyande, T.F., et al.: Got issues? Who cares about it? A large scale investigation of issue
trackers from GitHub. In: 24th International Symposium on Software Reliability Engineering
(ISSRE) (2013)

9. Baysal, O., et al.: The influence of non-technical factors on code review. In: Proceedings of the
20th Working Conference on Reverse Engineering. Koblenz, Germany (2013)

10. Bacchelli, A., Bird, C.: Expectations, outcomes, and challenges of modern code review. In:
Proceedings of the 35th International Conference on Software Engineering (ICSE’13). San
Francisco, CA, USA (2013)

11. Kilamo, T., et al.: Knowledge transfer in collaborative teams: experiences from a two-week
code camp. In: 36th International Conference on Software Engineering (ICSE’13),
pp. 264–271. Hyderabad, India (2014)

12. Yarosh, S., et al.: I need someone to help!: a taxonomy of helper-finding activities in the
enterprise. In: Proceedings of the 27th International Conference on Computer Supported
Cooperative Work (CSCW’13), pp. 1375–1386. Texas, USA (2013)

13. Meneely, A., et al.: Predicting failures with developer networks and social network analysis.
In: International Symposium on Foundations of Software Engineering (FSE’11). Atlanta,
Georgia (2011)

14. Hossaina, L., Zhub, D.: Social networks and coordination performance of distributed software
development teams. J. High Technol. Manage. Res. 20(1), 52–61 (2009)

15. Cataldo, M., Herbsleb, J.D.: Coordination breakdowns and their impact on development
productivity and software failures. Trans. Softw. Eng. 39(3), 343–360 (2013)

16. Rigby, P.C., Storey, M.-A.: Understanding broadcast based peer review on open source
software projects. In: Proceedings of the 33rd International Conference on Software
Engineering (ICSE’11). 2011. Waikiki, Honolulu, USA

17. Kwan, I., Schroter, A., Damian, D.: Does socio-technical congruence have an effect on
software build success? a study of coordination in a software project. Trans. Softw. Eng. 37(3),
307–324 (2011)

18. Cataldo, et al.: Identification of coordination requirements: implications for the design of
collaboration and awareness tools. In: Proceedings of the 20th International Conference on
Computer Supported Cooperative Work. Banff, Alberta, Canada (2006)

19. Nam, K.K., Ackerman, M.S., Adamic, L.A.: Questions in, knowledge in?: a study of Naver’s
question answering community. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. Boston, MA, USA (2009)

20. Kadushin, C.: Understanding Social Networks: Theories, Concepts, and Findings. Oxford
University Press (2011)

258 N. Kerzazi and I. El Asri


	19 Knowledge Flows Within Open Source Software Projects: A Social Network Perspective
	Abstract
	1 Introduction
	2 Related Work and Background
	3 SNA-Based Knowledge Flows
	3.1 Contributor Network Metrics

	4 DataSets
	5 Study Results
	6 Discussion
	7 Threats to Validity
	8 Conclusion
	References


