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Abstract The imposition of a wide range of operational conditions in foundry and
castings processes generates, as a direct consequence, a diversity of solidification
structures. It is well known that mechanical properties depend on solidification
structures. The literature presents relationships between yield strength and grain
size, such as the Hall-Petch’s equation, or ultimate tensile strength and dendrite arm
spacing. In this work, an Al–3wt%Cu–1wt%Li alloy was solidified under upward
unsteady state heat flow conditions. Heat was directionally extracted only through a
water-cooled bottom made of steel (SAE 1020). The aim of the present study is to
obtain correlations between the as-cast microstructure, solidification thermal vari-
ables and mechanical properties of an Al–3wt%Cu–1wt%Li alloy casting. The
results include tip growth rate (VL), cooling rate ( _T), primary dendrite arm spacing
(k1), ultimate tensile strength (rUTS) and yield strength (ry) as a function of
solidification conditions imposed by the metal/mold system. It is found that the
primary dendrite arm spacing decreases with the increase in tip growth rate and
cooling rate. In both cases (rUTS and ry = 0.2 %e), the finer dendritic arrangement
presents superior mechanical properties.
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1 Introduction

The high specific properties of Al–Li alloys have led to tremendous development
effort aimed in particular at aerospace applications. Al–Li castings and cast alloys
that combine the good properties of Al–Li alloys with foundry technology have
great potential in both the aircraft and automotive sectors [1]. To provide a basis for
composition design of these alloys, a study on the solidification process,
microstructure and mechanical properties of Al–Li cast alloys has been carried out.

Solidification of metals involves the transformation of the molten metal back
into the solid state. The transformation of a liquid into solid is probably the most
important phase transformation in applications of science and engineering materi-
als. Casting of metals is an example of solidification process. The principle of
casting seems simple: melt the metal, pour it into a mold, and let it cool and
solidify; yet there are many factors and variables that must be considered in order to
accomplish a successful casting operation. The physical mechanism of solidifica-
tion that occurs during casting influences the structure and properties of metals [2].

The effects of microstructure on metallic alloys properties has been highlighted
in various studies and particularly, the influence of grain size and dendrite arm
spacing upon the mechanical properties has been reported [2–10]. Although the
metallurgical and micromechanical aspects of the factors controlling microstructure,
unsoundness, strength and ductility of as-cast alloys are complex, it is well known
that solidification processing variables are of high importance. In the as-cast state an
alloy may possess within individual grains, a dendritic network where solute
concentration varies continuously, a complex dispersion of second phases and
possibly porosity and inclusions [6]. In addition to the above obstacles to slip, the
grain boundary is present at the grain perimeter. It is generally found that the grain
size reduction increases the metal strength. The well known Hall-Petch equation
shows that the yield strength is proportional to the reciprocal of the square root of
the grain diameter [5].

For cast metals, however, it is not always true that the strength improves with
decreasing grain size. Strength will increase with grain size reduction only if the
production of small grains does not increase the amount of microporosity, the
percentage volume of second phase or the dendrite spacing [6].

It is well known that there is a close correlation between thermal variables and
the solidification structure and as a direct consequence, morphological structure
parameters such as grain size and dendritic arm spacing also depend on solidifi-
cation conditions imposed by the metal/mould system. Thus, the control of solid-
ification thermal variables such as tip growth rate (VL) and cooling rate ( _T) permits
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a range of microstructures to be obtained [11–19]. Reports can be found in the
literature relating microstructural characteristics with mechanical properties (i.e.,
ultimate tensile strength, and yield strength) [2–10].

The present work focuses on the influence of heat transfer solidification variables
on the microstructural formation of Al–3wt%Cu–1wt%Li alloy castings and on the
development of correlations between dendritic spacing and mechanical properties.
Experimental results include tip growth rate (VL) and cooling rate ( _T), primary
dendrite arm spacing (k1), ultimate tensile strength (rUTS) and yield strength (ry).

2 Materials and Methods

Figure 1 shows the casting assembly used in the experiments. It can be seen that heat
is directionally extracted only through a water-cooled bottom made of steel, pro-
moting vertical upward directional solidification. The use of bottoms made of low
carbon steel (SAE 1020) permitted a wide range of solidification conditions to be
analyzed. As a consequence, a wide range of dendritic spacings should be expected.

A stainless steel split mold was used having an internal diameter of 60 mm,
height 157 mm and a 5 mm wall thickness. The lateral inner mold surface was
covered with a layer of insulating alumina to minimize radial heat losses. The
bottom part of the mold was closed with a thin (3 mm) steel sheet.

Experiments were performed with an Al–3wt%Cu–1wt%Li alloy. The men-
tioned chemistry was evaluated regarding to dendritic growth while tensile tests
were performed with this aluminum alloy. The thermophysical properties of the
aluminum and studied alloy are summarized in Table 1. Specific heats, latent heats

Fig. 1 Schematic
representation of the
experimental setup: 1
rotameter; 2 heat-extracting
bottom; 3 thermocouples; 4
computer and data acquisition
software; 5 data logger; 6
casting; 7 mold; 8 temperature
controller; 9 electric heaters;
10 insulating ceramic
shielding
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of fusion and liquidus temperatures were obtained by Thermo-Calc1 computations.
The Al–Cu–Li partial phase diagram and the Al–Cu–Li isomorph phase diagram
with 3wt% Cu (constant) were also computed by Thermo-Calc and it is shown in
Figs. 2 and 3, respectively.

The initial melt temperature (Tp) was standardized at 10 °C above the liquidus
temperature (TLiq) of the studied alloy. The thermal contact condition at the
metal/mold interface was also standardized with the heat-extracting surface at the
mold bottom being polished.

Table 1 Casting material used for experimentation and the corresponding thermophysical
properties

Properties Symbol/units Al (pure) Al–3wt%Cu–1wt%Li

Thermal conductivity KS [W m−1 K−1] 221.6 216

KL [W m−1 K−1] 91.9 93

Specific heat cS [J kg−1 K−1] 1255 1170

cL [J kg−1 K−1] 1175 1140

Density qS [kg m−3] 2700 2887

qL [kg m−3] 2389 2554

Latent heat of fusion L [J kg−1] 383,000 322,000

Melting temperature TM [°C] 660

Liquidus temperature TLiq [°C] 655

Solidus temperature TSol [°C] 645

Fig. 2 Al-Cu-Li partial
phase diagram furnished by
the software ThermoCalc AB,
version N

1Thermo-Calc software is an exclusive copyright property of the STT Foundation (Foundation of
Computational Thermodynamics, Stockholm, Sweden).
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Continuous temperature measurements in the casting were monitored during
solidification via the output of a bank of fine type K thermocouples (made from
0.2 mm diameter wire) sheathed in 1.6 mm diameter steel tubes, and positioned at
4, 8, 12, 22, 52, 68 and 88 mm from the heat-extracting surface at the bottom. The
thermocouples were calibrated at the melting point of aluminum exhibiting fluc-
tuations of about 1 °C. All of the thermocouples were connected by coaxial cables
to a data logger interfaced with a computer, and the temperature data, read at
intervals of 0.1 s, were automatically acquired.

Each cylindrical ingot was subsequently sectioned along its vertical axis, ground
and etched with an acid solution to reveal the macrostructure (Poulton’s reagent:
5 mL H2O; 5 mL HF—48 %; 30 mL HNO3; 60 mL HCl).

Selected transverse (perpendicular to the growth direction) sections of the
directionally solidified specimens at different positions from the metal/mold inter-
face were polished and etched with Tucker’s reagent (a solution of 45 mL HCl;
15 mL HNO3, 15 mL HF and 25 mL distilled water) for metallography. Image
processing systems Neophot 32 (Carl Zeiss, Esslingen, Germany) and Leica
Quantimet 500 MC (Leica Imaging Systems Ltd., Cambridge, England) were used
to measure primary dendrite arm spacings, k1, (about 30 independent readings for
each selected position, with the average taken to be the local spacing) and their
distribution range. The method used for measuring the primary arm spacing on the
transverse section was the triangle method [13].

Transverse specimens were cut from the castings, as indicated in Fig. 4, and
prepared for tensile testing according to specifications of ASTM standard E 8M [20].
In order to ensure reproducibility of results, three specimens were tested for each

Fig. 3 Al-Cu-Li isomorph
phase diagram with 3wt% Cu
(constant) furnished by the
software ThermoCalc AB,
version N
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selected position, and mean values of yield tensile strength, ultimate tensile strength
have been determined at different positions with respect to the casting surface.

3 Results and Discussion

Figure 5 shows cooling curves corresponding to the thermal responses of seven
thermocouples inserted into the casting at different positions from the cooled surface.
The data were acquired during the solidification of Al–3wt%Cu–1wt%Li alloy.

The thermocouples readings have been used to generate a plot of position from
the metal/mold interface as a function of time corresponding to the liquidus (tL) front
passing by each thermocouple. A curve fitting technique on these experimental
points has generated a power function of position as a function of time (Fig. 6).

The derivative of this functionwith respect to time has yielded values for tip growth
rate, VL = dP/dt. Figure 7 shows the experiment performed with an Al–3wt% Cu–
1wt%Li alloy. The line represents an empirical power function fit with the experi-
mental points. A single experimental law represents the experimental scatter (Fig. 8).

Fig. 4 Removal of specimens for tensile tests (dimensions in mm)
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Fig. 5 Experimental cooling curves for seven thermocouples inside the casting (Al–3wt%Cu–1wt
%Li)
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Fig. 6 Position from the metal/mold interface as a function of time corresponding to the liquidus
(tL) for thermocouples inside the casting (Al–3wt%Cu–1wt%Li)
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Fig. 7 Tip growth rate as a function of position from the metal/mold interface for an Al–3wt%
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Fig. 8 Cooling rate as a function of position from the metal/mold interface for an Al–3wt%Cu–
1wt%Li alloy
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The data acquisition system, in which temperature readings are collected at a
frequency of 0.5 s, permits accurate determination of the slope of the experimental
cooling curves. The cooling rate was determined by considering the thermal data
recorded immediately after the passing of the liquidus front by each thermocouple.

The macrostructure of the directionally solidified casting are shown in Fig. 9.
Columnar growth has prevailed along the casting length for the alloy experimen-
tally examined.

Typical microstructures on transverse sections of Al–3wt%Cu–1wt%Li alloy
casting are shown in Fig. 10. The dendrite arm spacings were sufficiently distinct to
permit accurate measurements along the casting length.

Fig. 9 Macrostructure
of Al–3wt%Cu–1wt%Li alloy
casting
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Fig. 10 Experimental k1 at
different positions from the
casting surface for the Al–3wt
%Cu–1wt%Li alloy: 10 mm
(a), 30 mm (b) and 60 mm (c)
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Figure 11 shows the measured primary dendrite arm spacing (k1) expressed as a
function of distance from the metal/mold interface. It can be observed that, as
expected, k1 increases with distance from casting surface due to the corresponding
decrease in cooling rate and tip growth rate.

Figures 12 and 13 show the mean experimental values of primary dendrite arm
spacings (k1) as a function of cooling rate and tip growth rate, respectively, mea-
sured from the afore mentioned microstructures. Points are experimental results and
lines represent an empirical fit of the experimental points, with dendritic spacings
being expressed as a power function either of tip growth rate or of cooling rate.

It can be seen that a −0.55 power law characterizes the experimental variation of
primary spacings with cooling rate (Fig. 12). This is in agreement with recent
observations reported by Rocha et al. [13] that exponential relationships best
generate the experimental variation of primary dendritic arms with cooling rate
along the unsteady-state solidification of Sn–Pb and Al–Cu alloys. Peres and
co-authors [21] have also found this type of relation as the best one regarding to
unsteady-state directional solidification of Al–Si hypoeutectic alloys.

Figure 14 shows the primary dendrite stems have grown perpendicularly to the
imposed loading in the tests, which probably becomes the primary dendrite an
efficient barrier against the tensile forces. Because of that, the mechanical param-
eters determined through the tensile tests were correlated with primary dendrite arm
spacing.

The results of the tensile tests are summarized in Fig. 15a, b, where the ultimate
tensile strength (rUTS) and the yield strength [ry=0.2] (0.2 % proof stress) are related
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Fig. 11 Primary dendrite arm spacing as a function of position from the metal/mold interface for
an Al–3wt%Cu–1wt%Li alloy
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to the primary dendrite arm spacing, respectively. It can be seen that both rUTS and
ry increase with decreasing dendrite arm spacing.

4 Conclusions

In order to investigate the role of primary dendrite arm spacing on mechanical
properties of the Al–3wt%Cu–1wt%Li alloy, solidification experiments and tensile
tests were carried out. The following main conclusions can be drawn from the
present experimental investigation:

(1) The experimental expressions correlating the ultimate tensile strength and
yield strength with primary dendrite arm spacing for an Al–3wt%Cu–1wt%Li
alloy have shown that a finer structural dendritic morphology provides better
mechanical properties than a coarser morphology; and

(2) The control of as-cast microstructures, by manipulating solidification pro-
cessing variables, such the cooling rate and tip growth rate can be used as an
alternative way to produce components with better mechanical properties.

Fig. 14 Aligned dendritic network dealing with the uniaxial loading of tensile tests
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