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Abstract An efficient diffusion finite volume method on nonmatched polygonal
meshes suited for fluid slide line calculation is proposed. The method manages the
sliding meshes and the internal meshes unifying as arbitrary polygonal meshes,
takes the hanging-nodes on slip-lines naturally as the nodes of the polygon, and
constructs unified diffusion schemes with high accuracy and highly efficient solving
algorithms. Furthermore, the radiation diffusion code on unstructured polygonal
meshes has been developed and coupled with the hydrocode. Numerical results
show the validity of the radiation diffusion computational method for Lagrangian
slide lines calculation on nonmatched polygonal meshes.
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1 Introduction

In realistic physical simulations, people often face the problem of shear flow at
material interfaces. If the materials move along each other but are tied to a single
computational mesh without any sliding treatment, severe mesh distortions appear
which can eventually caused the failure of the simulation. This problem is usually
treated by introducing a slide line framework into the Lagrangian code. The
introduction of slide lines is an old but fruitful idea that dates back to Wilkins [1] as
a chapter in a book (reproduced in Chap. 5 of Wilkins [2]).
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Suppose that there exist two different meshes interacting with each other through
a common sliding line, one of them is specified as the master side defining the slide
line shape, while the other -slave- side follows the slide line. Because of the
different tangential-velocity component, the sliding treatment will cause non-
matched meshes with arbitrary shapes (with hanging nodes), see Fig. 1.

If the diffusion solver is to be incorporated into a two-dimensional (2D) hydro-
dynamics code, the diffusion equation is solved on the hydrodynamic meshes, so it
becomes a key issue whether the diffusion solver is suited with the nonmatched
sliding meshes. Typically, slide line calculation requires special treatment due to the
different mesh topology for the sliding meshes and the internal meshes, and this
causes considerable difficulties for the design of diffusion schemes and iterative
algorithms on such complex meshes, see reference [3, 4] and the reference cited there.

In this paper, we propose an efficient discretization method for solving diffusion
equations on nonmatched meshes which has been caused by hydrodynamics slide
lines calculation. The method manages the sliding meshes and the internal meshes
unifying as arbitrary polygonal meshes, takes the hanging-nodes on slide lines
naturally as the nodes of the polygon, and constructs unified diffusion schemes with
high accuracy and highly efficient solving algorithms. The diffusion scheme on
unstructured polygonal meshes has the advantages of easy coding and is quite
promising for application in multi-dimensional radiation hydrodynamics codes.

2 Basic Equations

Let X be an open bounded subset of R2 with ∂X being its boundary. We consider
the following nonlinear diffusion equations with Robin boundary condition:

q
de
dt

�r � jrTð Þ = f ,

T x; r; 0ð Þ = T0,

ajrT � n + bT = g,

ð1Þ

where q is the mass density, e = e (q;T) is the mass-specific internal energy, t is the
time, j ¼ j (q; T) is the heat conduction coefficient, T is the temperature and f is the

Fig. 1 A sample of
nonmatched meshes with
slide line
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volume-specific external energy sources. n is the unit outward normal vector. a, b,
g are the given values as the function of the space coordinates (x, r).

3 Construction of Diffusion Scheme on Nonmatched
Polygonal Meshes

Let Xh be a non-overlapping conformal partition of X onto polygonal elements Xi,
we denote the cell and cell center by i, the node by a, and the cell edge by r, where
i ¼ 1; � � � ; I, and I is the total number of the mesh cell. Denote Ai as the area of cell
i, Lrj as the length of the j-th edge rj of cell i, di;rj ; dij;rj as the distance of rj and cell
center i,ij respectively, h as the angle between the line from i to ij and edge rj; ni;rj
as the unit outward normal vector which points to cell ij (see Fig. 2).

By integrating (1) over Xi and using the Green formula, we obtain the following
discretized finite volume diffusion scheme (more details in [5]):

mi
enþ 1
i - eni
Dt

þ
Xli
j¼1

Fnþ 1
rj Srj¼ ri f

nþ 1
i , ð2Þ

Where mi is the mass of the cell i, Δt is the time step, tnþ 1 ¼ tn þDt, li is the
total number of the edges for cell i, Srj is the rotational area and ∇i is the rotational
volume. Frj is the discretized normal flux on edge rj in terms of cell-centered
unknowns and node-unknowns:

Fnþ 1
rj =

�jnþ 1
rj

Tnþ 1
ij

�Tnþ 1
i

dij ;rj þ di;rj
� Drj

Tnþ 1
ajþ 1

�Tnþ 1
aj

Lrj

� �� �
, rj � internal edge

�jnþ 1
i

grj�brj T
nþ 1
i

arjj
nþ 1
i þ brj di;rj

, rj � boundary edge

8>><
>>:

ð3Þ

Where

jnþ 1
rj =

dij;rj þ di;rj
dij ;rj
jnþ 1
ij

þ di;rj
jnþ 1
i

; Drj =
ðRij � RiÞ
Rij � Ri

�� �� �
ðRajþ 1 � RajÞ

Lrj

Rij � Ri

�� ��
dij;rj þ di;rj

.
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Fig. 2 Stencil of the diffusion
scheme on polygonal meshes
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jrj is the harmonic mean of the j on the adjacent meshes i and ij of edge rj;Drj

is the geometric quantity characterizing the mesh distortion, when the mesh is
orthogonal, Drj will be zero.

In order to obtain the normal flux approximation expressed in terms of
cell-centered unknowns only, we should eliminate the terms associated with node
unknowns, i.e. Tajþ 1 and Taj in expression (3). It is usually approximated with the
expression

Ta ¼ 1Pma
k¼1 xk;a

Xma

k¼1

xk;aTik ;

where ma is the total number of the adjacent cells for node a,Tij is the temperature of
the k-th adjacent cell ik;xk;a is the weight, see Fig. 3.

In [6], a highly accurate method of eliminating the cell node unknowns has been
proposed on quadrilateral meshes based on Taylor expansion. We extend this
approach to unstructured polygonal meshes, which is well suited for distorted
nonmatched meshes.

The diffusion scheme on nonmatched polygonal meshes is fully implicit and
should be solved by a nonlinear iteration method. e is the nonlinear function of
temperature T, it can be represented by the temperature:

enþ 1ðsþ 1Þ
i ¼ enþ 1ðsÞ

i þ @e
@T

� �nþ 1ðsÞ
Tnþ 1ðsþ 1Þ
i � Tnþ 1ðsÞ

i

� �
;

and j is taken as the value of the last iterative step:

jðqnþ 1; Tnþ 1Þ � jðsÞ ¼ jðqnþ 1; T ðsÞÞ:

Thus, we can obtain the linear systems which can be rewritten as the matrix
form:

A Tnþ 1ðsÞ
� �

Tnþ 1ðsþ 1Þ ¼ b Tnþ 1ðsÞ
� �

:

ki 1ki +

α

kα

1kα +

kσ

Fig. 3 Adjacent cell of
node a
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The symmetric linear systems are solved by the conjugate gradient (CG) method,
and the nonsymmetric linear systems are solved by the biconjugate gradient sta-
bilized algorithm (BICGSTAB) (see [7]).

4 Numerical Tests

Now, we will present some numerical results to illustrate the behavior of the
proposed finite volume scheme.

Let X be the unit square, and let @XS; @XE; @XN ; @XW be the boundaries of X.
There is a nonmatched interface located around x = 0.5 the mesh is independently
generated by different methods on either side of the interface.

In our nonmatched grids we measure the mesh size approximately with the
average size which is defined as:

h ¼
ffiffiffiffiffiffi
SX
I

r
;

where SX is the area of the whole computation domain and I is the sum of the cell
number in all patches.

Note that an exact solution can be found for all our tests. Let T̂h
i be that exact

solution at the centroid of the cell i. Th
i is the numerical solution in the same cell.

Then, the convergence rates can be estimated with the asymptotic errors using both
the maximum norm

Eh
max ¼ max

i¼1;���;I
Th
i � T̂h

i

�� ��;
and the mean-square norm

Eh
L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXI

i¼1

Th
i � T̂h

i


 �2
Ai

vuut :

The asymptotic error is estimated by

Eh ¼ Chq þO ðhqþ 1Þ;

where q is the order of truncation error and the constant C is independent of h.
Calculations are performed on a sequence of grids with different values of h. For

two grids with mesh size h1 and h2, we denote the asymptotic error on these two
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meshes with Eh1 and Eh2 , respectively. Then the order of convergence is evaluated
using

q ¼
log Eh1

Eh2

� �

log h1
h2

� � :

4.1 Linear Diffusion Problem

We consider the following linear diffusion equation

Tt �r � rT ¼ �2p2e�p2t in X;
T ¼ e�p2t 2þ cos pxð Þþ sin pyð Þð Þ on @XS [ @XN ;
rT � n ¼ 0 on @XE [ @XW ;
T x; 0ð Þ ¼ 2þ cos pxð Þþ sin pyð Þ on X:

The exact solution for this problem is given by
T ¼ e�p2t 2þ cos pxð Þþ sin pyð Þð Þ.

We perform the calculation on a sequence of nonmatched polygonal meshes
shown in Fig. 4, the numbers of cells are 158, 570, 2180 respectively. Figure 5
shows that the numerical solution is convergent to the exact solution as the mesh is
further refined.

In addition the asymptotic error in the maximum norm and in the mean-square
norm are displayed in the Fig. 6. The line labeled with 2nd order is also plotted to
give the theoretical second convergence error. The results for our method show that
it has almost a second order convergence rate in both the max and L2 norms on
nonmatched polygonal meshes.

158 570 2180

Fig. 4 A sequence of nonmatched polygonal meshes
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4.2 Nonlinear Diffusion Problem

Consider the following nonlinear problem

Tt �r � ðjrTÞ ¼ f in X
Tðx; y; 0Þ ¼ T0 on X
Tðx; y; tÞ ¼ g on @X

The heat conduction coefficient is j Tð Þ ¼ T7=5 þ 1, and the nonlinear exact
solution is given as T ¼ etð2x3 � 3x2 þ 2Þð2y3 � 3y2 þ 3Þ. The source term,
Dirichlet boundary condition and the initial value of the temperature are given by
the exact solution. We compute the solution until t = 0.1.

The asymptotic errors are evaluated on a sequence of nonmatched random
meshes with three different resolutions. Specifically, there is a grid of 10 � 10

Fig. 5 Contours of the numerical and exact solution for the linear problem

Fig. 6 Asymptotic error in
logarithmic scale for the linear
problem
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(resp. 20 � 20, 40 � 40) cells on the left hand side of the sliding interface. And on
the right-hand side is a grid of 10 � 6 (resp. 20 � 12, 40 � 24) cells, see Fig. 7. It
is shown in Fig. 8 It is shown in Fig. 8 that the numerical solution is convergent to
the exact solution as the mesh is further refined.

In addition the asymptotic error in the maximum norm and in the mean-square
norm are displayed in the Fig. 9. The line labeled with 2nd order is also plotted to

10 10 10 6× + × 20 20 20 12× + × 40 40 40 24× + ×

Fig. 7 A sequence of nonmatched random meshes

Fig. 8 Contours of the numerical and exact solution for nonlinear problem

Fig. 9 Asymptotic error in
logarithmic scale for the
nonlinear problem
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give the theoretical second convergence error. The results for our method show that
it has almost a second order convergence rate in both the max and L2 norms on
nonmatched polygonal meshes.

5 Conclusion

In this paper, we propose a finite volume diffusion method on nonmatched
polygonal meshes caused by the fluid sliding computation. The diffusion scheme
has some benefits:

– Cell center unknowns only
– Numerical flux has explicit physical meaning
– Numerical tests show the method has almost second order convergence for

linear and nonlinear diffusion problems on distorted nonmatched meshes
– Suited for arbitrary polygonal meshes and easy to incorporated into a

Lagrangian hydrodynamics code.
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