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    Abstract  

  Banana and plantain are important staple crops for Africa and important 
fruit crops for Asia, Latin America and Caribbean islands. Several nema-
tode species and rhizome weevil ( Cosmopolites sordidus ) are major pests 
in banana that cause heavy damage and revenue loss. Pesticides and bio-
control agents control the pests, but pesticide residues pose severe envi-
ronmental problems. Conventional breeding is a diffi cult and slow process 
due to the limited sources of resistance, sterility of cultivated banana vari-
eties, polyploidy levels, long cropping cycle and the lack of rapid screen-
ing methods. Genetic engineering is considered as one of the eco-friendly 
and safer methods to control these pests. This review discusses the seri-
ousness of the problem, the status and source of pest resistance and the 
mechanisms involved. The availability of various genes with potential to 
control nematodes and weevils is discussed. Further, current efforts and 
future prospects for identifying natural resistance genes and RNAi-based 
defences with potential to control nematode and banana weevil in a trans-
genic approach are outlined and discussed. Nematode-resistant transgenic 
banana cultivars expressing rice or maize cystatin genes and peptides 
 evaluated under fi eld conditions and those weevil-resistant cultivars 
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 developed using papaya cystatin gene with enhanced inhibitory potential 
are discussed in the light of biosafety concerns.  

  Keywords  

  Nematode and weevil resistance   •   Protein and peptide based transgenic 
defences   •   Cystatin genes and peptides   •   Plant lectins   •   Insecticidal pro-
teins   •   Alpha-amylase inhibitors and chitinase enzymes   •   RNAi-based 
defences  

17.1       Introduction 

 Banana and plantain ( Musa  spp.) are cultivated in 
over 130 countries worldwide covering approxi-
mately 10 million hectares with an annual pro-
duction of 139 million tons (FAOSTAT  2014 ). It 
forms an important staple diet of Latin American 
and Caribbean islands, grown mainly for subsis-
tence and for local sale. In recent years, the 
income through banana cultivation has reduced 
drastically due to severe problems affecting 
banana cultivation. Several nematode species and 
rhizome weevil ( Cosmopolites sordidus ) are 
major pests that cause huge production losses. 

 Nematodes are key pests in many commercial 
dessert banana plantations, and they also dam-
ages both cooking banana and plantains. Root 
systems damaged by nematodes are less able to 
utilize nutrients and water, become susceptible to 
secondary infection and provide weakened 
anchorage to the plant. Plants with weakened 
root systems are prone to toppling, especially in 
strong winds and when bearing fruit leading to 
loss of the fruit. Banana suffers estimated losses 
to nematodes of 6 M tonnes/year, representing 
the consumption need of 60 M people in banana- 
dependent countries. Weevil is most severe in 
plantains and East African highland bananas. 
Weevils damage the corm of plants by making 
tunnels and rootstock. Damaged corm interferes 
with root initiation and sap fl ow in the plant, 
resulting in yellowing of leaves and wilting of 
plants particularly the young suckers. The suck-
ers fi nally die, whereas the older plants are 
retarded in their growth and produce small 
bunches. The weevil-damaged plants can easily 
be blown over by the wind. Pesticides are usually 

used to control nematodes and weevils, but pesti-
cide residue is a main concern considering the 
environmental and health problems. Genetic 
transformation is considered as one of the eco- 
friendly approaches for controlling weevils and 
nematodes.  

17.2     Nematodes 

  Nematodes   cause heavy damage to banana and 
plantain crops with approximately a 20 % reduc-
tion in productivity globally (Sasser and 
Freckman  1987 ). In areas prone to tropical storms 
and particularly in Africa, losses of 40 % or 
greater can frequently occur. Nematicide applica-
tion experiments in West Africa have shown that 
after three crop-cycles, the potential reduction in 
yields is 71 ± 16 % (Atkinson  2003 ), a region of 
the world where bananas and plantains provide 
>25 % of the carbohydrate intake of approxi-
mately 70 million people, corresponding to 10 % 
of their food energy (Ortiz and Vuylsteke 1996; 
Robinson 1996). Several nematodes are major 
pests of banana and plantain crops (Atkinson 
 2003 ; Brentu et al.  2004 ; Gowen and Quénéhervé 
 1990 ).  Radopholus similis  is considered the most 
damaging species. It has a life cycle of 20–25 
days which makes its population multiply rapidly 
and cause severe crop loss (Bridge et al.  1995 ; 
Haegeman et al.  2010 ; Price  2006 ). In severe 
infections with  R. similis , yield losses due to 
stunted growth are compounded by increased 
plant toppling in strong winds as a result of 
reduced root system anchorage (Gowen and 
Quénéhervé  1990 ). In the absence of  R. similis, 
Pratylenchus coffeae ,  Helicotylenchus multicinc-
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tus  and  Meloidogyne  spp. can also become severe 
constraints on banana plantations (Bridge et al. 
 1995 ; McSorley and Parrado  1983 ; Brentu et al. 
 2004 ; Price  2006 ). Secondary fungal and bacte-
rial infections frequently compound the direct 
damage nematodes cause (Duncan and Moens 
 2006 ). 

  Nematicides   are widely applied to soils in 
intensive banana plantations, but they are envi-
ronmentally toxic and a risk to human health 
(Atkinson et al.  2003 ). The prevalence of 
banana and plantain cultivation on small plots 
across the tropics also means that nematicides 
are inappropriate on the basis of both cost and 
grower safety. Nematode-tolerant and nema-
tode-resistant banana cultivars have been iden-
tifi ed, though the cultivars are only effective 
against single species of nematode (Lorenzen 
et al.  2010 ; Pinochet  1988 ). Concomitant nem-
atode species infection is common in banana 
and plantain growing areas. In Uganda, the 
largest producer of bananas and plantains in 
Africa (FAOSTAT 2014),  R. similis ,  H. multi-
cinctus  and  Meloidogyne  spp. are present in all 
banana-growing regions (Kashaija et al.  1994 ). 
Work in Costa Rica on the dessert banana culti-
var ‘Grand Naine’ identifi ed  R. similis, P. cof-
feae, M. incognita  and  H. multicinctus  causing 
signifi cant reductions in yield, with the multi-
species infections causing greater damage than 
single species (Moens et al.  2006 ). Similar 
work with the plantain cultivar ‘Apantu-pa’ in 
Ghana found that while  P. coffeae  caused the 
largest losses, the greatest necrosis and top-
pling, co- infection with  M. javanica  and  H. 
multicinctus  caused an increase in damage to 
the plant over any single species infection 
(Brentu et al.  2004 ). Conventional breeding has 
struggled to introduce the single species resis-
tance into economically important cultivars or 
develop hybrids with broad nematode resis-
tance (Lorenzen et al.  2010 ). A transgenic 
approach for nematode resistance is strongly 
favoured for bananas and plantains, both 
because of the diffi culty of developing an effec-
tive resistance through breeding and the avail-
ability of several proven anti-nematode genes.  

17.3     Banana Weevil 

  Banana and plantain production   in Africa is 
effected signifi cantly by rhizome weevil which is 
a serious pest (Ostmark  1974 ; Gold  1998 ; Gold 
and Messiaen  2000 ; Swennen and Vulysteke 
 2001 ; Fogein et al.  2002 ). The banana plantation 
decline (Gold et al.  1999 ) called ‘yield decline 
syndrome’ in Africa is associated with this wee-
vil. By the time the crop reaches the 4th cycle, the 
yield loss reaches 44 % (Rukazambuga et al. 
 1998 ). Crop losses up to 100 % are also reported 
in cases of severe infestation. Establishment of 
new plantations is diffi cult due to the persistence 
of this infection in soil (Sengooba  1986 ; Price 
 1994 ). The causal organism of this devastating 
disease is the weevil  Cosmopolites sordidus  
(Germar 1824) (Coleoptera: Curculionidae). The 
weevil in its adult form is free living and black in 
colour and measures 10–15 mm. It is also associ-
ated with crop debris and is nocturnally active as 
it becomes desiccated easily. The adults inhabit a 
particular location and remain there for long 
period of time. Weevils generally do not fl y. 
Infected planting materials disseminate the wee-
vil. Banana weevils have long life span and low 
fecundity. Some may live up to 4 years, though 
generally for 1 year. Adults generally feed on 
dead or dying banana plants. They are found liv-
ing under newly cut or rotting pseudostems. They 
can survive without feeding for several months 
with little moisture. They lay more than one egg 
per week on fl owering plants and crop residues. 
In the holes made by the rostrum, the females 
place their white, oval eggs singly. On the leaf 
sheaths and rhizome surfaces also oviposition is 
noticed. The emerging larvae feed on the rhi-
zome, stem and the pseudostem. The larvae pass 
through fi ve to eight instars. The adults emerge 
within 5–7 weeks out under tropical conditions. 
Eggs do not develop below 12 °C (Gold and 
Messiaen  2000 ). 

 The volatiles released by the host plants attract 
the adult weevils which enter banana plants 
through cut  rhizomes  . The weevil attack effects 
roots completely resulting in reduced nutrient 
uptake which results in reduced plant vigour and 
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delayed fl owering increasing plant’s susceptibil-
ity to other pests and diseases. Yield is reduced 
due to rhizomes weakening resulting in toppling 
and plant death. 

 Several cultural practices such as keeping the 
plantation clean by trapping the weevils are fol-
lowed, but are cost intensive. Crop sanitization 
will remove weevil refuges and breeding sites. 
Application of neem (20 %) is found to be benefi -
cial in reducing the population and oviposition. 
Chemical fertilizers are not affordable by farm-
ers, besides developing insect resistance. 
Development of resistant plants has been sug-
gested as a potential long-term solution for con-
trolling the weevil. 

 There are not many biocontrol agents known 
which can control these weevils.  Tetramorium 
guineense  and  Pheidole megacephala , the myr-
micine ants, have been reported to have success-
fully controlled the weevil in Cuba. Antifeedants 
play a signifi cant role in weevil resistance (Ortiz 
et al.  1995 ). Kiggundu ( 2000 ) observed that corm 
size, hardiness, resin/sap production and their 
suckering ability are signifi cant parameters in 
resistance response of clones introduced in 
Africa. Large corm size provides greater resis-
tance (Balachowsky  1963 ). Certain  toxic com-
pounds   present in BB genomes imparted weevil 
resistance which was absent in AA genome. 
Corm extracts from weevil-resistant AB (Kisubi) 
and ABB (Pisang awak) genomes showed HPLC 
peaks which were absent in susceptible and resis-
tant AA clones. African cultivars have been 
found to be highly susceptible to weevil infection 
and few Indian cultivars (Karumpoovan and 
Poozhachendu) highly resistant (Padmanaban 
et al.  2001 ). Certain resistant cultivars are 
reported in Cameroon (Fogain and Price  1994 ). 
Kiggundu et al. ( 2003a ,  b ) reported that some 
wild diploid banana (Calcutta-4), three diploid 
banana hybrids (TMB2×6142-1, TMB2×8075-7 
and TMB2×7197-2) and cultivars like 
Yangambi-Km5 and Cavendish which possess 
high level of resistance may be exploited as resis-
tance source. Some cultivars like Tereza, Nalukira 
and Nsowe possess intermediary resistance. 
 Musa accuminata ,  AA genome progenitor  , was 
found to be more susceptible to weevils than  M. 

balbisiana , the BB progenitor (Mesquita et al. 
 1984 ). 

 Laboratory studies conducted by Kiggundu 
et al. ( 2006 ) on the modalities of resistance to 
banana weevil revealed that all cultivars were 
attractive to the weevil and females oviposited on 
all cultivars. The resistant cultivars showed lower 
survivorship compared to susceptible ones. 
 Antibiosis mechanisms   existed in insect resis-
tance and not antixenosis. Larval development on 
corms of susceptible cultivars was inhibited by 
methanol extracts from resistant cultivars in the 
laboratory.  

17.4     Genes Available 
for Nematodes and Weevils 
Resistance 

17.4.1     Genes for  Nematode 
Resistance   

17.4.1.1     Protein- and Peptide-Based 
Transgenic Defences 

 Proteinase inhibitors ( PI  ) of plant origin like 
trypsin, serine and cysteine, which inhibit nema-
tode development and reduce fecundity of 
females, have been used to control nematodes 
(Kiggundu et al.  2003a ,  b ; Urwin et al.  1997 ). 
Cysteine proteinase inhibitors (cystatins), which 
prevent proper intestinal digestion of dietary pro-
tein in nematodes, are well developed as anti- 
nematode proteins (Atkinson 2000; Urwin et al. 
 1995 ). Transgenic plants expressing cystatins can 
provide effective control of both cyst and root- 
knot nematodes. The cystatins have demonstrated 
effectiveness against a range of major nematode 
pests including in fi eld trials with  Globodera  spp. 
on potato expressing an engineered rice grain 
cystatin (Urwin et al.  2001 ,  2003 ) and  R. similis  
and  H. multicinctus  on plantain expressing a 
maize kernel cystatin (Tripathi et al.  2015 ). In 
glasshouse trials, the engineered rice cystatin has 
also provided 75 ± 5 % resistance in lily against  P. 
penetrans  (Vieira et al.  2014 ), and the maize cys-
tatin has provided 84 ± 8 % resistance in plantain 
to a mixed population of nematodes  R. similis ,  H. 
multicinctus  and  Meloidogyne  spp. (Roderick 

H. Roderick et al.



251

et al.  2012 ). Vain et al. ( 1998 ) demonstrated 55 % 
reduction in egg production by  Meloidogyne 
incognita  in transgenic rice plants expressing rice 
cystatin. Transgenic tomato expressing taro cys-
tatin showed resistance against  Meloidogyne  spp. 
(Chan et al.  2010 ). The transgenic plant express-
ing dual proteinase inhibitor transgenes 
 demonstrated enhanced resistance to nematodes 
(Urwin et al.  1998 ). On current evidence, it is 
likely that a cystatin-based defence should be 
effective against all economically important par-
asitic nematode pest of banana and plantain. 

 A potential drawback to a cystatin defence is 
that the nematode is not exposed to it until after 
invasion of the root; consequently, young banana 
plants may suffer stunting given a large enough 
initial inoculation of nematodes. Peptides that 
overcome this problem by disrupting localization 
and invasion of host roots by plant parasitic nem-
atodes have also been developed. Nematodes uti-
lize a range of chemical signals produced by 
plant roots to achieve a successful parasitic inter-
action (Reynolds et al.  2011 ). Two synthetic pep-
tides with distinct modes of action have been 
identifi ed that interfere with the nematode cho-
linergic nervous system by binding to either ace-
tylcholinesterase or  nicotinic acetylcholine 
receptors (nAChRs  ) to disrupt chemoreception 
(Winter et al.  2002 ). The acetylcholinesterase- 
inhibiting peptide reduces the number of female 
 Heterodera schachtii  on  Arabidopsis thaliana  by 
more than 80 %. In the same set of experiments, 
expression of this peptide in the root tips of 
potato plants resulted in almost 95 % resistance 
to  Globodera pallida  (Lilley et al.  2011a ). The 
mode of uptake of acetylcholinesterase- inhibiting 
peptide is well documented for  H. schachtii  and 
 R. similis  (Wang et al.  2011 ; Roderick et al.  2012 ) 
and likely a highly conserved process across 
plant parasitic nematodes. The  nAChR-binding 
peptide   is taken up by the open-ended chemosen-
sory sensilla within the anterior amphidial 
pouches and is then transported along chemore-
ceptive neurons to their cell bodies where 
nAChRs are located (Wang et al.  2011 ; Roderick 
et al.  2012 ). Chemoreception is only impaired 
when that transport had been completed (Wang 
et al.  2011 ). This peptide, when expressed in root 

tips of potatoes with a cellular export signal pep-
tide, achieved up to 77 % resistance against  G. 
pallida  in glasshouse and fi eld trials (Green et al. 
 2012 ). Plantains expressing the nAChR-binding 
peptide achieved 69 ± 6 % resistance to a mixed 
population of  R. similis ,  H. multicinctus  and 
 Meloidogyne  spp. in screen house challenges 
(Roderick et al.  2012 ) and 99 ± 1 % resistance to 
a concomitant infection with  R. similis  and  H. 
multicinctus  in the fi eld (Tripathi et al .   2015 ). 
Migratory plant parasitic nematode species like 
 R. similis ,  H. multicinctus  and  Pratylenchus  spp. 
that remain motile and infective during all devel-
opmental stages may be affected throughout their 
lifecycle, while sedentary endoparasitic nema-
todes, such as  Meloidogyne  spp., are vulnerable 
to sensory intervention during their infective 
stages prior to feeding cell initiation. Both the 
cystatin and chemoreception disrupting peptide 
defences are being deployed as a stacked defence 
in plantain (Tripathi et al.  2015 ) and East African 
Highland banana to ensure a broad and durable 
defence. However, there does not appear to be a 
cumulative level of resistance from having two 
defences present (Roderick et al.  2012 ; Tripathi 
et al.  2015 ). 

 Bt proteins have effects on free-living bacte-
rial feeding nematodes (Marroquin et al.  2000 ). 
The  Cry5B protein   is toxic to wild-type 
 Caenorhabditis elegans , whereas some mutants 
of  C. elegans  are resistant to it but susceptible to 
Cry6A toxin (Marroquin et al.  2000 ). Cry55Aa, 
Cry6Aa and Cry5Ba showed toxicity to  M. hapla  
in an induced uptake study (Zhang et al.  2012 ), 
and Cry6Aa2 reduced  M. hapla  numbers when 
applied as a soak (Yu et al.  2015 ). Transgenic 
Cry5B expressed in tomato hairy roots reduced 
 M. incognita  numbers by 75 % compared to con-
trols (Li et al.  2008 ). Plant parasitic nematode 
control using Bt Cry proteins has potential, but 
the evidence base for broad nematode species 
control or for effi cacy in the fi eld has not yet been 
developed (Wei et al.  2003 ). The lectin concana-
valin A has been shown to suppress  M. incognita  
multiplication. and others, such as snowdrop lec-
tins, have biological activity against nematodes. 
Many lectins, however, have toxic effects on 
insects and mammals (Burrows and de Waele 
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 1997 ). Toxicological safety of lectins is a major 
concern for commercial development and needs 
to be studied in depth. Transgenic expression of 
lectins have not yet shown enough promise to 
make it into crop fi eld trials (Fuller et al.  2008 ; 
Atkinson et al.  2009 ; Lilley et al.  2011b ). 

  Natural resistance genes   can also offer a strat-
egy for combating plant parasitic nematodes, and 
several R-genes against nematodes have been 
identifi ed. The sugar beet gene  Hs1pro-1  confers 
resistance to the cyst nematode  Heterodera 
schachtii  (Cai et al.  1997 ). The tomato  Mi-1.2  
gene confers resistance against  Meloidogyne  spe-
cies and has been introduced into cultivated 
tomato,  Lycopersicon esculentum , by an inter-
species cross from the wild species  L. peruvia-
num  (Milligan et al.  1998 ). The  Gpa2  gene also 
conferred resistance against potato cyst nema-
tode  Globodera pallida  (van der Vossen et al. 
 2000 ). The main drawbacks of R-genes are a lack 
of genes for resistance to banana nematodes and 
a tendency for a highly species-specifi c effect.  

17.4.1.2     RNAi-Based Transgenic 
Defences 

  RNA interference (RNAi  ) results when  double- 
stranded RNA (dsRNA  ) triggers the degradation 
of messenger RNA (mRNA) resulting in the 
silencing of specifi c target genes. It has proven a 
useful tool for functional analysis of nematode 
genes, including for plant parasitic nematodes 
(Rosso et al.  2009 ). Triggering of RNAi silencing 
in nematodes that feed on plants expressing 
dsRNA targeting nematode genes is currently 
being developed as a nematode control strategy 
(Lilley et al.  2007 ). Experiments with transgenic 
 Arabidopsis  expressing dsRNA from inverted 
repeat hairpin constructs have identifi ed six 
 Heterodera schachtii  genes that when suppressed 
result in signifi cant reductions in female numbers 
up to 64 % (Patel et al.  2008 ,  2010 ; Sindhu et al. 
 2009 ). Suppression of  H. glycines  by 81–93 % 
has been achieved in soybean plants expressing 
dsRNA targeting one of two ribosomal proteins, 
a spliceosomal protein or synaptobrevin (Klink 
et al.  2009 ), while a similarly high reduction in 
egg production was achieved by targeting mRNA 

splicing factor  prp-17  or an uncharacterized gene 
 cpn-1  (Li et al.  2010 ). 

 Similar positive results have been seen for 
banana parasitic nematodes, particularly for 
 Meloidogyne  spp. A high level of resistance 
resulted from targeting the 16D10 gene expressed 
in the subventral gland cells and required for par-
asitism in  Meloidogyne incognita. Arabidopsis 
thaliana  plants expressing dsRNA targeting the 
16D10 gene achieved 63–90 % reduction in gall 
number and size with a corresponding reduction 
in egg production in  M. incognita ,  M. javanica , 
 M. arenaria  and  M. hapla  (Huang et al.  2006 ). 
Tobacco plants expressing dsRNA targeting 
either a splicing factor or an integrase gene of 
 Meloidogyne incognita  achieved a high level of 
resistance to that nematode (Yadav et al.  2006 ). 
Reduction in gall numbers by >90 % for  M. 
incognita  on transgenic soybean roots has also 
been shown (Ibrahim et al.  2011 ). However, not 
all plants delivered dsRNA targeting  Meloidogyne  
genes have resulted in a resistance phenotype. 
Silencing of the putative transcription factor 
MjTis11 of  M. javanica  did not signifi cantly 
affect the nematodes (Fairbairn et al.  2007 ). Only 
partial resistance was achieved when  A. thaliana  
plants targeted either a dual oxidase gene with a 
probable role in cuticle formation or a subunit of 
a signal peptidase, a protein complex required for 
the processing of secreted proteins targeted indi-
vidually in  M. incognita . Higher levels of resis-
tance were achieved by crossing transgenic lines 
expressing these two defences (Charlton et al. 
 2010 ). However, a combinatorial RNAi targeted 
at  H. glycines  did not deliver that benefi t 
(Bakhetia et al.  2008 ). Possibly transgenic silenc-
ing RNAs may saturate the RNA silencing com-
plex reducing effi cacy. 

   Radopholus similis    is also susceptible to 
RNAi although the extent of silencing can vary 
by the region of the nematode gene targeted and 
from experiment to experiment (Haegeman et al. 
 2009 ). Reductions by 60 % in infection to 
 Medicago truncatula  were achieved after soaking 
 R. similis  in dsRNA targeting a gland cell xyla-
nase gene (Haegeman et al.  2009 ). Tobacco 
plants expressing an inverted repeat hairpin 
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 construct targeting an  R. similis  cathepsin B cys-
teine proteinase transcript achieved 80 % reduc-
tion in the number of nematodes recovered (Li 
et al.  2015a ). Targeting an   R. similis    calreticulin 
resulted in a 75 % reduction in  R. similis  numbers 
recovered on transgenic tomato plants (Li et al. 
 2015b ). There has been no report of control of 
 Pratylenchus  spp. by RNAi on transgenic plants. 
Experiments that induce in vitro uptake of 
dsRNA have demonstrated transcript knockdown 
for troponin C ( pat-10 ) and calponin ( unc-87 ) 
genes, required for muscle structure and contrac-
tion, in  P. coffeae, P. thornei  and  P. zeae . 
Following treatment with dsRNA nematode 
movement was aberrant, and multiplication on 
carrot discs was signifi cantly reduced (Joseph 
et al.  2012 ; Tan et al.  2013 ). 

 The susceptibility of  H. multicinctus  to RNAi 
has yet to be investigated and is hampered by the 
scarcity of genetic sequences available for the 
nematode. In contrast to the availability of com-
plete genome sequences for the  P. coffeae  (Burke 
et al.  2015a ,  b ) and  Meloidogyne  spp. (Abad et al. 
 2008 ; Opperman et al.  2008 ) and the ongoing 
sequencing of  R similis  genome (Bird et al. 
 2015 ), a complete mitochondrial genome for  R. 
similis  is available (Jacob et al.  2009 ), which 
greatly increases the likelihood of identifying 
suitable targets.   

17.4.2      Genes   for Weevil Resistance 

 Studies on differentially expressed genes follow-
ing weevil infestation was initiated in a joint 
project between UBBP (Uganda Banana 
Biotechnology Project) and FABI (Forestry and 
Agricultural Biotechnology Institute) of the 
University of Pretoria. Genes expressed during 
weevil infestation were compared in resistant and 
susceptible Musa varieties using techniques 
called cDNARDA (Representational Difference 
Analysis of cDNA) (Hubank and Schatz  1994 ). 

17.4.2.1      Proteinase Inhibitors   
 Protein inhibitors are used for obtaining defence 
against weevils also. Expression of proteinase 
inhibitors naturally in plants when insect attacks 

was studied during insect wounding and herbiv-
ory by Ryan ( 1990 ), Pernas et al. ( 2000 ) and 
Ashouri et al. ( 2001 ). As mentioned under nema-
todes, cysteine proteases are enzymes in the mid 
gut of coleopteran insects such as the banana 
weevil, important in the breakdown of dietary 
proteins. Two major proteinase classes, serine 
and cysteine, are present in the digestive system 
of insects. Lepidoptera, Dictyoptera and 
Hymenoptera belong to Serine proteinase, while 
Odoptera and Hemiptera possess cysteine pro-
teinase activity. Cysteine proteinases are used by 
Coleopteran insects (Gatehouse et al.  1985 ; 
Murdock et al.  1987 ). A combination of both ser-
ine and cysteine proteinases is also used (Gerald 
et al.  1997 ) by pyramiding, to harvest the double 
advantage of both the proteins, to combat the 
weevil problem (Gerald et al.  1997 ). 

 The potential of phytocystatins (OC-I and 
papaya cystatin) in controlling the banana weevil 
was studied by Kiggundu et al. ( 2002 ) who ana-
lyzed, in the gut of banana weevil, protease activ-
ity. Hydrolysis of casein at an acidic pH optimum 
(pH) was observed in extracts from complete 
weevil larval guts. Alkaline pH (pH 8.0) showed 
lesser activity. The presence of cathepsin L and B 
and cysteine protease in the larval gut was evi-
dent by the hydrolysis of the specifi c substrates 
Z-Phe-Arg-MCA and Z-Arg-Arg-MCA. In addi-
tion, by using specifi c Bz-Arg-MCA and N-uc- 
Ala-Ala-Pro-Phe-MCA substrates, trypsin- and 
chymotrypsin-like protease activity was 
observed. OC-I and cystatin were produced as 
fusion protein with histidine tag in  E. coli  and 
purifi ed. These purifi ed proteins at 1 × 10 −5  ngml −1  
and 2.1 × 10 −5 ng ml −1  showed 66.2 % and 81.6 % 
with LD50 inhibition of cysteine protease activ-
ity in the banana weevil gut homogenate. Purifi ed 
OC-I at 0.6 mg cystatin g fresh weight −1  inhibited 
larval weight gain per day when fed on banana 
stem disc vacuum infi ltrated with the inhibitory 
protein. This study demonstrated that cysteine 
proteases are used instead of cathepsin L and B 
by the banana weevil for protein digestion and 
metabolism in the gut, while phytocystatins are 
potential control agents for banana weevil 
growth. The importance of papain-like-cysteine 
proteases, trans-epoxysuccinyl-L-leucylamido-
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(e-guanidino) butane (E-64) on the growth and 
development of several coleopteran insects was 
reported by Fabrick et al. ( 2002 ). In GM plants, 
for insect control, exogenous cysteine proteinase 
inhibitors were used (Leple et al.  1995 ). The 
plant cystatins OsCys I and OpCys II showed 
extensive growth delay on  Cosmopolites sordidus  
on cystatin extract media (Kiggundu et al.  2010 ).  

17.4.2.2     Chitinase Enzymes 
and Alpha- Amylase 
Inhibitors (AI) 

  Chitinase enzymes      and  alpha-amylase inhibitors   
(AI) also act potentially against the weevil infesta-
tion. The chitinolytic activity on the insect cell 
wall protects the plants from the further damage; 
genetic transformation of these anti-insecticidal 
genes may help to develop GM banana with 
enhanced resistance to weevil (Morton et al.  2000 ). 
Enhanced resistance to Lepidopteran insects was 
seen in transgenic plants expressing enhanced chi-
tinase activity (Ding et al.  1998 ). Alpha-amylase 
inhibitors inhibit AL-1 and AL-2, two types of 
amylases isolated from wild beans ( Phaseolus vul-
garis ) (Le Berre-Anton et al.  1997 ; Morton et al. 
2000). Enhanced resistance to coleopteran insects 
was observed in transgenic azuki beans expressing 
seed alpha-amylase (Ishimoto et al.  1996 ).  

17.4.2.3      Plant Lectins and Insecticidal 
Proteins   

  Plant lectins   are inhibitory to a number of organ-
isms (Sharma et al.  2000 ). Lectins isolated from 
pea, wheat, rice and soybean are toxic to insects 
due to their carbohydrate binding capabilities. A 
lectin from snowdrop,   Galanthus nivalis  aggluti-
nin (GNA  ), is toxic to several Homoptera, 
Coleoptera and Lepidopteran insect pests 
(Tinjuangjun  2002 ). GNA has been found to be 
useful in developing transgenic potato and sugar-
cane resistant to Peach potato aphid and sugar-
cane grub ( Antitrogus consanguineus ), 
respectively (Gatehouse et al.  1997 ; Nutt et al. 
 1999 ). Some of the lectins are toxic to mammals 
(Jouanin et al. 1998 ) which is a major concern 
(Boulter  1993 ), while garlic lectins are toxic only 
to insects, a major concern about the use of lec-

tins, and are potential candidates for weevil con-
trol (Kiggundu 2003). 

 For Lepidopteran control in GM crops, Bt 
gene technology is the most widely used 
(Krettiger  1997 ). There are more than 50 insecti-
cidal crystal proteins among Bt genes. The pro-
teins are solubilized in the alkaline environment 
of the insect’s midgut when an insect feeds on Bt 
endotoxin protein in GM plant and become toxic 
to the insect causing its death. Transgenic rice 
developed with cry1Ab gene was found resistant 
to rice leaf folder ( Cnaphalocrocis medinalis ) 
(Ye et al.  2003 ). Transgenic potato and cotton- 
carrying Cry03Aa offered resistance to Colorado 
beetle and boll weevil respectively (Wilson et al. 
 1992 ). Against the banana weevil, Bt gene with 
high toxic effects has not been identifi ed so far. 

 Bakaze ( 2010 ) developed a diet to evaluate 
resistance in banana germplasm and in vitro effi -
cacy of a  Bacillus thuringiensis  endotoxin  Cry6A   
as well as  Carica papaya  cystatin (CpCYS) 
against  C. sordidus . The artifi cial diet enabled 
banana weevil larvae to develop to adults in 48 
days compared to 36 days on natural banana stem 
diet. The survival rate and the life cycle comple-
tion of the neonate were found more in media 
mixed with susceptible banana (Mbwazirume) 
corm powder than the resistant variety 
(Cavendish). The individual expression of these 
proteins was done in M15 cells by using pQE9/
pQE30x9 expression system. The expressed pro-
teins were purifi ed and mixed at different con-
centration (1 ppm, 2 ppm) with diet. More than 
65 % of mortality was observed at 1 ppm concen-
tration of Cry6A followed by  CpCYS . A concen-
tration of 2 ppm showed 83 % mortality with 
 CpCYS  and 75 % with Cry6A. Neonate mortality 
did not increase signifi cantly when these proteins 
were mixed and used. Fifty percent mortality 
(LD50) of neonate larvae was observed at 0.24 
ppm and 0.15 ppm for Cry6A and CpCYS, 
respectively. The outcome of this study showed 
that two genes together were more effective in 
combating  C. sordidus . 

 Vegetative insecticidal proteins (VIPs) are 
another class of proteins which cause gut paraly-
sis and lysis of the gut epithelium cells, thus 
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arresting gut function fully leading to the death of 
the insect (Duck and Evola  1997 ).  

17.4.2.4      RNAi-Based Approaches   
 Ocimati et al. ( 2004 ) reported the 100 % mortal-
ity on banana weevil growth by using dsRNA 
synthesized from E2 ubiquitin gene which plays 
major role in protein catabolism of banana wee-
vil. Signifi cant growth retardation was observed 
with 50 and 100 ng/μl of dsRNA concentration in 
in vitro bioassay. Through this mechanism, 
essential genes can be silenced across the spe-
cies, thus providing a molecular approach for 
great promise for the control of plant disease and 
pest (Whyard et al.  2009 ).    

17.5      Genetic Transformation   
of Banana and Plantain 
for Nematode and Weevil 
Resistance 

 Transgenic banana of cultivar ‘Cavendish 
Williams’ expressing rice cystatin (OcIΔD86) 
was developed and tested in glasshouse for nem-
atode resistance. These transgenic lines showed 
about 69–70 % resistance against  R. similis  
(Atkinson et al.  2004b ) .  Transgenic plantain of 
cultivar ‘Gonja manjaya’ was generated using a 
maize cystatin or the nAChR inhibiting peptide 
or both these traits stacked together (Roderick 
et al.  2012 ). Evaluation in the screen house for 
resistance against mixed population of the banana 
nematodes  R. similis ,  H. multicinctus  and 
 Meloidogyne  spp. identifi ed several transgenic 
lines that provided 70–84 % resistance to  R. 
similis . Numbers of  H. multicinctus  and 
 Meloidogyne  spp. were also suppressed, though 
the population on controls was too small to show 
statistical signifi cance (Roderick et al.  2012 ). 
Further evaluation of the 12 lines with high levels 
of resistance in a confi ned fi eld trial in Uganda 
identifi ed a number of lines that matched resis-
tance seen in the screen house. The best line, an 
nAChR inhibiting peptide line, reduced  R. similis  
numbers by 99 % and provided a 186 % increase 
in yield compared to control plants (Tripathi 

et al.  2015 ). This is the fi rst fi eld-based evidence 
of transgenic banana for resistance against 
nematodes. 

 Namuddu et al. ( 2013 ) developed transgenic 
banana cultivar ‘Sukali Ndiizi’ (ABB) using 
papaya cystatin (CpCYS-Mut89). This gene has 
been previously modifi ed to improve its inhibi-
tory potential against banana pests (Kiggundu 
et al.  2010 ). A total of 57 transgenic lines were 
generated. Putatively transgenic plants were vali-
dated by PCR, and gene integration was further 
confi rmed by Southern blot hybridization. These 
transgenic lines are yet to be evaluated for resis-
tance to weevils and nematodes.  

17.6      Biosafety   of Transgenic 
Nematode Resistance 
and Conclusion 

 Biosafety of transgenic approaches is an impor-
tant consideration, particularly when intended for 
commercial release in a food crop. The safety of 
the engineered rice cystatin used in potato and 
banana fi eld trials is well established. Cystatins 
are not toxins (Atkinson et al.  2004a ), and plants 
expressing transgenic cystatins do not harm a 
range of nontarget organisms (Atkinson et al. 
 2009 ). Studies of impacts on free-living soil 
nematodes by transgenic anti-nematode plants 
have also been developed due to the high sensi-
tivity of this group of organisms to changes in the 
soil microenvironment and them being the most 
likely group to be affected by anti-nematode 
defences (Ingham  2000 ). Nematode faunal anal-
ysis is used to quantify the shifts in free-living 
nematode genera across the different trophic 
groups present in the soil. Genera are split into 
those that respond rapidly to environmental 
change, which are used to calculate an enrich-
ment index, and those that prefer undisturbed 
habitats, which are used to calculate a structural 
index. The ratio of enrichment to structural val-
ues indicates the state of the soil, and a shift in the 
ratio indicates disturbance (Ferris et al.  2001 ). 
When applied to a transgenic potato fi eld trial 
with an nAChR-binding peptide and an engi-
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neered rice cystatin, the transgenic lines did not 
signifi cantly shift the structural or enrichment 
indices (Green et al.  2012 ). 

 Biosafety can be increased by reduction of 
transgenic defence expression outside of the 
roots through the use of tissue-specifi c promot-
ers. Promoters have been used to deliver cystatins 
to the feeding sites of root-knot nematodes 
(Lilley et al.  2004 ). The tobacco cellulase pro-
moter is expressed the syncytia of  H. schachtii  
and has been used to develop an RNAi defence 
(Patel et al.  2008 ,  2010 ). The MDK4-20 pro-
moter of  A. thaliana  has been used to target 
expression of an nAChR-binding peptide to root 
tips and also the root border cells that detach 
from the roots of many crops (Lilley et al.  2011a , 
 b ); when used to drive expression in potato, this 
promoter also provided greater levels of resis-
tance compared to lines utilizing a constitutive 
promoter (Green et al.  2012 ). Such promoters 
can lower the burden of the transgene expression 
in transgenic plants, reduce nontarget organism 
exposure and increase food safety by preventing 
or reducing the presence of the transprotein in 
edible tissues. 

 RNAi-based defences lack the potential of 
allergenicity inherent in protein-based defences. It 
is, however, at risk of off-target effects both within 
the target organism and on nontarget organisms. 
Each double-stranded RNA (dsRNA) molecule 
needs to be carefully designed to reduce sequence 
identity between the target gene of the nematode 
and that any other sequence likely to be exposed to 
the dsRNA. Both of these considerations could be 
particularly important if small RNA molecules are 
shown to have prolonged environmental persis-
tence (Auer and Frederick  2009 ).     
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