
Chapter 9

Subgame Consistency in Randomly-
Furcating Cooperative Stochastic Dynamic
Games

This Chapter considers subgame consistent cooperative solutions in randomly

furcating stochastic discrete-time dynamic games. In particular, in this type of

games the evolution of the state is stochastic and future payoff structures are not

known with certainty. The presence of random elements in future payoff structures

and stock dynamics are prevalent in many practical game situations like regional

economic cooperation, corporate joint ventures and transboundary environmental

management. The analysis is based on Yeung and Petrosyan (2013a). It first

develops a class of randomly furcating stochastic dynamic games in which future

payoff structures of the game furcates or branches out randomly and the discrete-

time game dynamics evolves stochastically. Nash equilibria of this class of games

are characterized for non-cooperative outcomes and subgame-consistent solutions

are derived for cooperative paradigms. A discrete-time analytically tractable payoff

distribution procedure contingent upon specific random realizations of the state and

payoff structure is derived. Worth mentioning is that in computer modeling and

operations research discrete-time analysis often proved to be more applicable and

compatible with actual data than continuous-time analysis. The Chapter is orga-

nized as follows. The game formulation and non-cooperative equilibria are given in

Sect. 9.1. Group optimality and individual rationality under dynamic cooperation

are discussed in Sect. 9.2. Subgame consistent solutions and payment mechanism

leading to the realization of these solutions are obtained in Sect. 9.3. Section 9.4

presents an illustration in cooperative resource extraction. Extensions of the model

are provided in Sect. 9.5. Chapter appendices, chapter notes and problems are

presented in Sect. 9.6, Sect. 9.7, and Sect. 9.8 respectively.

9.1 Game Formulation and Non-cooperative Outcome

In this Section, we first consider the formulation of a general class of randomly-

furcating stochastic dynamic games and then derive the non-cooperative outcome.
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9.1.1 Randomly-Furcating Stochastic Dynamic Games

Consider the T� stage n� person nonzero-sum dynamic game with initial state x0.
The state space of the game is X2Rm and the state dynamics of the game is

characterized by the stochastic difference equation:

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �þ ϑk; ð1:1Þ

for k2 1; 2; � � �; Tf g and x1 ¼ x0;

where ui
k2Ui � Rmi is the control vector of player i at stage k, xk2X is the state, and

ϑk is a sequence of statistically independent random variables.

The payoff of player i at stage k is gi
k xk; u

1
k ; u

2
k ; � � �; un

k ; θk
� �

which is affected by a

random variable θk. In particular, θk for k2 1; 2; � � �; Tf g are independent discrete

random variables with range θ1k ; θ
2
k ; � � �; θηkk

� �
and corresponding probabilities

λ1k ; λ
2
k ; � � �; ληkk

� �
, where ηk is a positive integer for k2 1; 2; � � �; Tf g. In stage 1, it

is known that θ1 equals θ11 with probability λ11 ¼ 1.

The objective that player i seeks to maximize is

Eθ1,θ2, ���,θT ;ϑ1,ϑ2, ���,ϑT

�XT
k¼1

gi
k xk; u

1
k ; u

2
k ; � � �; un

k ; θk
� �þ qi xTþ1ð Þ

�
,

for i2 1; 2; � � �; nf g�N; ð1:2Þ

where Eθ1,θ2, ���,θT ;ϑ1,ϑ2, ���,ϑT is the expectation operation with respect to the random

variables θ1, θ2, � � �, θT and ϑ1,ϑ2, � � �,ϑT , and qi xTþ1ð Þ is a terminal payment given

at stage T þ 1. The payoffs of the players are transferable.

9.1.2 Noncooperative Equilibria

Let u
σtð Þi
t denote the strategy of player i at stage t given that the realized random

variable affecting the players’ payoffs is θσtt . In a stochastic dynamic game frame-

work, a strategy space with state-dependent property has to be considered. In

particular, a pre-specified class Γi of mapping ϕ σtð Þi
t �ð Þ : X ! Ui with the property

u
σtð Þi
t ¼ ϕ σtð Þi

t xð Þ2Γi is the strategy space of player i and each of its elements is a

permissible strategy.

To solve the game, we invoke the principle of optimality in Bellman’s (1957)
technique of dynamic programming and begin with the subgame starting at the last

operating stage, that is stage T. If θσTT 2 θ1T ; θ
2
T ; � � �; θηTT

� �
has occurred at stage T and

the state xT ¼ x, the subgame becomes:
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max
u i
T

EϑT

�
gi
T x; u1T ; u

2
T ; � � �; un

T ; θ
σT
T

� �þ qi xTþ1ð Þ
�
, for i2N;

subject to

xTþ1 ¼ f T x; u1T ; u
2
T ; � � �; un

T

� �þ ϑT : ð1:3Þ

A set of state-dependent strategiesϕ σTð Þ*
T xð Þ ¼ ϕ σTð Þ1*

T xð Þ,ϕ σTð Þ2*
T xð Þ, � � �,ϕ σTð Þn*

T xð Þ
n o

constitutes a Nash equilibrium solution to the subgame (1.3) if the following

conditions are satisfied:

V σTð Þi T; xð Þ ¼ EϑT

�
gi
T x,ϕ σTð Þ*

T xð Þ; θσTT
h i

þ qi xTþ1ð Þ
�

� EϑT

�
gi
T x,ϕ σTð Þ6¼i*

T xð Þ; θσTT
h i

þ qi exTþ1ð Þ
�
, for i2N;

where xTþ1 ¼ f T x,ϕ σTð Þ*
T xð Þ

h i
þ ϑT ,

ϕ σTð Þ6¼i*
T xð Þ
¼ ϕ σTð Þ1*

T xð Þ,ϕ σTð Þ2*
T xð Þ, � � �,ϕ σTð Þi�1*

T xð Þ, u σTð Þi
T ,ϕ σTð Þiþ1*

T xð Þ, � � �,ϕ σTð Þn*
T xð Þ

h i
;

and exTþ1 ¼ f T x,ϕ σTð Þ6¼i*
T xð Þ

h i
þ ϑT .

A characterization of the Nash equilibrium of the subgame (1.3) is provided in

the following lemma.

Lemma 1.1 A set of strategies ϕ σTð Þ*
T xð Þ ¼ ϕ σTð Þ1*

T xð Þ,ϕ σTð Þ2*
T xð Þ, � � �,ϕ σTð Þn*

T xð Þ
n o

provides a Nash equilibrium solution to the subgame (1.3) if there exist functions

V σTð Þi T; xð Þ, for i2N, such that the following conditions are satisfied:

V σTð Þi T; xð Þ ¼ max
u

σTð Þi
T

EϑT

�
gi
T x,ϕ σTð Þ6¼i*

T xð Þ; θσTT
h i

þV σTþ1ð Þi T þ 1, f T x,ϕ σTð Þ6¼i*
T xð Þ

� 	
þ ϑT

h i�
,

V σTð Þi T þ 1, xð Þ ¼ qi xð Þ; for i2N : ð1:4Þ

Proof The system of equations in (1.4) satisfies the standard stochastic dynamic

programming property and the Nash property for each player i2N. Hence a Nash
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(1951) equilibrium of the subgame (1.3) is characterized. Details of the proof of the

results can be found in Theorem 6.10 in Basar and Olsder (1999). ■

For the sake of exposition, we sidestep the issue of multiple equilibria and focus

on games in which there is a unique noncooperative Nash equilibrium in each

subgame. Using Lemma 1.1, one can characterize the value functions V σTð Þi T; xð Þ
for all σT 2 1; 2; � � �; ηTf g if they exist. In particular, V σTð Þi T; xð Þ yields player i’s
expected game equilibrium payoff in the subgame starting at stage T given that θσTT
occurs and xT ¼ x.

Then we proceed to the subgame starting at stage T � 1 when θσT�1

T�1

2 θ1T�1; θ
2
T�1; � � �; θηT�1

T�1

� �
occurs and xT�1 ¼ x. In this subgame player i2N seeks

to maximize his expected payoff

EθT ;ϑT�1,ϑT

�
gi
T�1 x; u1T�1; u

2
T�1; � � �; un

T�1; θ
σT�1

T�1

� �
þ gi

T xT ; u
1
T ; u

2
T ; � � �; un

T ; θT
� �þ qi xTþ1ð Þ

�
¼ EϑT�1,ϑT

�
gi
T�1 x; u1T�1; u

2
T�1; � � �; un

T�1; θ
σT�1

T�1

� �
þ
XηT
σT¼1

λσTT g i
T xT ; u

1
T ; u

2
T ; � � �; un

T ; θ
σT
T

� �þ qi xTþ1ð Þ
�
, for i2N; ð1:5Þ

subject to

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �þ ϑk, for k2 T � 1, Tf gand xT�1 ¼ x: ð1:6Þ

If the functions V σTð Þi T; xð Þ for all σT2 1; 2; � � �; ηTf g characterized in Lemma 1.1

exist, the subgame (1.5 and 1.6) can be expressed as a game in which player i seeks
to maximize the expected payoff

EϑT�1

�
gi
T�1 x; u1T�1; u

2
T�1; � � �; un

T�1; θ
σT�1

T�1

� �
þ
XηT
σT¼1

λσTT V σTð Þi T, f T�1 x; u1T�1; u
2
T�1; � � �; un

T�1

� �þ ϑT�1


 ��
, for i2N; ð1:7Þ

using his control ui
T�1.

A set of strategies ϕ σT�1ð Þ*
T�1 xð Þ ¼ ϕ σT�1ð Þ1*

T�1 xð Þ,ϕ σT�1ð Þ2*
T�1 xð Þ, � � �,ϕ σT�1ð Þn*

T�1 xð Þ
n o

con-

stitutes a Nash equilibrium solution to the subgame (1.7) if the following conditions

are satisfied:
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V σT�1ð Þi T � 1, xð Þ ¼ EϑT�1

�
gi
T�1 x,ϕ σT�1ð Þ*

T�1 xð Þ; θσT�1

T�1

h i
þ
XηT
σT¼1

λσTT V σTð Þi T, f T�1 x,ϕ σT�1ð Þ*
T�1 xð Þ

h i
þ ϑT�1

h i�
� EϑT�1

�
gi
T�1 x,ϕ σT�1ð Þ6¼i*

T�1 xð Þ; θσT�1

T�1

h i
þ
XηT
σT¼1

λσTT V σTð Þi T, f T�1 x,ϕ σT�1ð Þ6¼i*
T�1 xð Þ

� 	
þ ϑT�1

h i�
, for i2N; ð1:8Þ

where

ϕ σT�1ð Þ6¼i*
T�1 xð Þ ¼
ϕ σT�1ð Þ1*
T�1 xð Þ,ϕ σT�1ð Þ2*

T�1 xð Þ, � � �,ϕ σT�1ð Þi�1*
T�1 xð Þ, u σT�1ð Þi

T�1 ,ϕ σT�1ð Þiþ1*
T�1 xð Þ, � � �,ϕ σT�1ð Þn*

T�1 xð Þ
h i

:

A characterization of the Nash equilibrium of the subgame (1.7) is provided in the

following lemma.

Lemma 1.2 A set of strategies ϕ σT�1ð Þ*
T�1 xð Þ ¼ ϕ σT�1ð Þ1*

T�1 xð Þ,ϕ σT�1ð Þ2*
T�1 xð Þ, � � �,

n
ϕ σT�1ð Þn*
T�1 xð Þg provides a Nash equilibrium solution to the subgame (1.7) if there

exist functions V σTð Þi T; xTð Þ for i2N and σT ¼ 1; 2; � � �; ηTf g characterized in

Lemma 1.1, and functions V σT�1ð Þi T � 1, xð Þ, for i2N, such that the following

conditions are satisfied:

V σT�1ð Þi T � 1, xð Þ ¼ max
u

σT�1ð Þi
T�1

EϑT�1

�
gi
T�1 x,ϕ σT�1ð Þ6¼i*

T�1 xð Þ; θσT�1

T�1

h i
þ
XηT
σT¼1

λσTT V σTð Þi T, f T�1 x;ϕ σT�1ð Þ6¼i*
T�1

� 	
þ ϑT�1

h i�
, for i2N: ð1:9Þ

Proof The conditions in Lemma 1.1 and the system of equations in (1.9) satisfies

the standard discrete-time stochastic dynamic programming property and the Nash

property for each player i2N. Hence a Nash equilibrium of the subgame (1.7) is

characterized. ■

In particular, V σT�1ð Þi T � 1, xð Þ, if it exists, yields player i’s expected game

equilibrium payoff in the subgame starting at stage T � 1 given that θσT�1

T�1 occurs

and xT�1 ¼ x.

Consider the subgame starting at stage t2 T � 2, T � 3, � � �, 1f g when θσtt 2
θ1t ; θ

2
t ; � � �; θηtt

� �
occurs and xt ¼ x, in which player i2N maximizes his expected

payoff
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Eθtþ1;ϑt,ϑtþ1, ���,ϑT

�
gi
t x; u1t ; u

2
t ; � � �; un

t ; θ
σt
t

� �
þ
XT
ζ¼tþ1

gi
ζ xζ; u

1
ζ ; u

2
ζ ; � � �; un

ζ ; θζ
� 	

þ qi xTþ1ð Þ
�
, for i2N; ð1:10Þ

subject to

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �þ ϑk, for k2 t, tþ 1, � � �,Tf g and xt ¼ x: ð1:11Þ

Following the above analysis, the subgame (1.10 and 1.11) can be expressed as a

game in which player i2N maximizes his expected payoff

Eϑt

�
gi
t x; u1t ; u

2
t ; � � �; un

t ; θ
σt
t

� �
þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi tþ 1, f t x; u

1
t ; u

2
t ; � � �; un

t

� �þ ϑt

 ��

, for i2N; ð1:12Þ

with his control uit,

where V σtþ1ð Þi tþ 1, f t x; u
1
t ; u

2
t ; � � �; un

t

� �þ ϑt

 �

is player i’s expected game equilib-

rium payoff in the subgame starting at stage tþ 1 given that θσtþ1

tþ1 occurs and

xtþ1 ¼ f t x; u
1
t ; u

2
t ; � � �; un

t

� �þ ϑt.

A set of strategiesϕ σtð Þ*
t xð Þ ¼ ϕ σtð Þ1*

t xð Þ,ϕ σtð Þ2*
t xð Þ, � � �,ϕ σtð Þn*

t xð Þ
n o

, constitutes a

Nash equilibrium solution to the subgame (1.12) if the following conditions are

satisfied:

V σtð Þi t; xð Þ ¼ Eϑt

�
gi
t x,ϕ σtð Þ*

t xð Þ; θσtt
h i

þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi tþ 1, f t x,ϕ σtð Þ*

t xð Þ
h i

þ ϑt
h i�

� Eϑt

�
gi
t x,ϕ σtð Þ6¼i*

t xð Þ; θσtt
h i

þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi tþ 1, f t x,ϕ σtð Þ6¼i*

t xð Þ
� 	

þ ϑt
h i�

where

ϕ σtð Þ6¼i*
t xð Þ ¼

n
ϕ σtð Þ1*
t xð Þ,ϕ σtð Þ2*

t xð Þ, � � �,ϕ σtð Þi�1*
t xð Þ,u σtð Þi

t ,ϕ σtð Þiþ1*
t xð Þ, � � �,ϕ σtð Þn*

t xð Þ
o
:

A Nash equilibrium solution for the game (1.1 and 1.2) can be characterized by the

following theorem.
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Theorem 1.1 A set of strategies ϕ σtð Þ*
t xð Þ ¼ ϕ σtð Þ1*

t xð Þ,ϕ σtð Þ2*
t xð Þ, � � �,ϕ σtð Þn*

t xð Þ
n o

;

for σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g, constitutes a Nash equilibrium solution

to the game (1.1 and 1.2) if there exist functions V σtð Þi t; xð Þ, for σt2 1; 2; � � �; ηtf g,
t2 1; 2; � � �; Tf g and i2N, such that the following recursive relations are satisfied:

V σTð Þi T þ 1, xð Þ ¼ qi xð Þ,
V σTð Þi T; xð Þ ¼ max

u
σTð Þi

T

EϑT

�
gi
T x,ϕ σTð Þ6¼i*

T xð Þ; θσTT
h i

þV σTþ1ð Þi T þ 1, f T x,ϕ σTð Þ6¼i*
T xð Þ

� 	
þ ϑT

h i�
,

V σtð Þi t; xð Þ ¼ max
u

σtð Þi
t

Eϑt

�
gi
t x,ϕ σtð Þ6¼i*

t xð Þ; θσtt
h i

þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi tþ 1, f t x,ϕ σtð Þ6¼i*

t xð Þ
� 	

þ ϑt
h i�

;

for σt2 1; 2; � � �; ηtf g, t2 1, 2, � � �,T � 1f gand i2N: ð1:13Þ

Proof The results in (1.13) characterizing the game equilibrium in stage T and

stage T � 1 are proved in Lemma 1.1 and 1.2. Invoking the subgame in stage t
2 1, 2, � � �, T � 2f g as expressed in (1.12), the results in (1.13) satisfy the optimality

conditions in stochastic dynamic programming and the Nash equilibrium property

for each player in each of these subgames. Therefore, a feedback Nash equilibrium

of the game (1.1 and 1.2) is characterized. ■

Theorem 1.1 is the discrete-time analog of the Nash equilibrium in the

continuous-time randomly furcating stochastic differential games in Chap. 4.

9.2 Dynamic Cooperation

Now consider the case when the players agree to cooperate and distribute the joint

payoff among themselves according to an optimality principle. As pointed out

before two essential properties that a cooperative scheme has to satisfy are group

optimality and individual rationality.

9.2.1 Group Optimality

In this subsection, we consider the issue of ensuring group optimality in a cooper-

ative scheme. To achieve group optimality by maximizing their expected joint
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payoff the players have to solve the discrete-time stochastic dynamic programming

problem of maximizing

Eθ1,θ2, ���,θT ;ϑ1,ϑ2, ���,ϑT

�Xn
j¼1

XT
k¼1

gj
k xk; u

1
k ; u

2
k ; � � �; un

k ; θk
� �h i

þ
Xn
j¼1

qj xTþ1ð Þ
�

ð2:1Þ

subject to (1.1).

The stochastic dynamic programming problem (1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,

1.8, 1.9, 1.10, 1.11, 1.12, 1.13 and 2.1) can be regarded as a single-player case of the

game problem (1.1 and 1.2) with n ¼ 1 and the payoff being the sum of the all the

players’ payoffs. In a stochastic dynamic framework, again strategy space with

state-dependent property has to be considered. In particular, a pre-specified class Γ̂ i

of mapping ψ σtð Þi
i �ð Þ : X ! Ui with the property u

σtð Þi
t ¼ ψ σtð Þi

t xð Þ2 Γ̂ i
, for

σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g, is the strategy space of player i and each of

its elements is a permissible strategy.

To solve the dynamic programming problem (1.1) and (2.1), we first consider the

problem starting at stage T. If θσTT 2 θ1T ; θ
2
T ; � � �; θηTT

� �
has occurred at stage T and the

state xT ¼ x, the problem becomes:

max
u1T , u

2
T , ���, u n

T

EϑT

�Xn
j¼1

gj
T x; u1T ; u

2
T ; � � �; un

T ; θ
σT
T

� �þXn
j¼1

qj xTþ1ð Þ
�

ð2:2Þ

subject to

xTþ1 ¼ f T x; u1T ; u
2
T ; � � �; un

T

� �þ ϑT : ð2:3Þ

An optimal solution to the stochastic control problem (2.2 and 2.3) is character-

ized by the following lemma.

Lemma 2.1 A set of controls u
σTð Þ*
T ¼ ψ σTð Þ*

T xð Þ ¼ ψ σTð Þ1*
T xð Þ, ψ σTð Þ2*

T xð Þ, � � �� � �,
n

ψ σTð Þn*
T xð Þg provides an optimal solution to the stochastic control problem (2.2 and

2.3) if there exist functions W σTþ1ð Þ T; xð Þ, for i2N, such that the following condi-

tions are satisfied:

W σTð Þ T;xð Þ ¼ max
u

σTð Þ1
T ,u σTð Þ2

T , ���,u σTð Þn
T

EϑT

�Xn
j¼1

gj
T x;u

σTð Þ1
T ;u

σTð Þ2
T ; � � �;u σTð Þn

T ;θσTT

h i
þW σTþ1ð Þ T þ 1, f T x;u

σTð Þ1
T ;u

σTð Þ2
T ; � � �;u σTð Þn

T

� 	
þ ϑT

h i�
,

W σTð Þ T þ 1,xð Þ þ
Xn
j¼1

qj xð Þ: ð2:4Þ
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Proof The system of equations in (2.4) satisfies the standard discrete-time sto-

chastic dynamic programming property. Details of the proof of the results can be

found in Basar and Olsder (1999). ■

Note that W σTð Þ T; xð Þ yields the expected cooperative payoff starting at stage

T given that θσTT occurs and xT ¼ x according to the dynamic programming

problem (2.2 and 2.3) if θσTT . Using Lemma 2.1, one can characterize the functions

W σTð Þ T; xð Þ for all θσTT 2 θ1T ; θ
2
T ; � � �; θηTT

� �
, if they exist. Following the analysis in

Sect. 9.2, the control problem starting at stage t when θσtt 2 θ1t ; θ
2
t ; � � �; θηtt

� �
occurs

and xt ¼ x can be expressed as:

max
ut

Eϑt

�Xn
j¼1

gj
t x; u1t ; u

2
t ; � � �; un

t ; θ
σt
t

� �
þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1W
σtþ1ð Þ tþ 1, f t x; u

1
t ; u

2
t ; � � �; un

t

� �þ ϑt

 ��

; ð2:5Þ

where W σtþ1ð Þ tþ 1, f t x; u
1
t ; u

2
t ; � � �; un

t

� �þ ϑt

 �

is the expected optimal

cooperative payoff in the control problem starting at stage tþ 1 when

θσtþ1

tþ1 2 θ1tþ1; θ
2
tþ1; � � �; θηtþ1

tþ1

� �
occurs and xtþ1 ¼ f t x; u

1
t ; u

2
t ; � � �; un

t

� �þ ϑt.
An optimal solution for the stochastic control problem (1.1) and (2.1) can be

characterized by the following theorem.

Theorem 2.1 A set of controls u
σtð Þi*
t ¼ ψ σtð Þ*

t xð Þ ¼ �ψ σtð Þ1*
t xð Þ, ψ σtð Þ2*

t xð Þ, � � �� � �,
ψ σtð Þn*
t xð Þ�, forσt2 1; 2; � � �; ηtf gand t2 1; 2; � � �; Tf gprovides an optimal solution to

the stochastic control problem (1.1) and (2.1) if there exist functionsW σtð Þ t; xð Þ, for
σt2 1; 2; � � �; ηtf gand t2 1; 2; � � �; Tf g, such that the following recursive relations are
satisfied:

W σTð Þ T þ 1, xð Þ ¼
Xn
j¼1

qj xð Þ,

W σTð Þ T; xð Þ ¼ max
u

σTð Þ1
T

, u σTð Þ2
T

, ���, u σTð Þn
T

EϑT

�Xn
j¼1

gj
T x; u

σTð Þ1
T ; u

σTð Þ2
T ; � � �; u σTð Þn

T ; θσTT

h i
þW σTþ1ð Þ T þ 1, f T x; u

σTð Þ1
T ; u

σTð Þ2
T ; � � �; u σTð Þn

T

� 	
þ ϑT

h i�
,

W σtð Þ t; xð Þ ¼ max
u

σtð Þ1
t , u σtð Þ2

t , ���, u σtð Þn
t

Eϑt

�Xn
j¼1

gj
t x; u

σtð Þ1
t ; u

σtð Þ2
t ; � � �; u σtð Þn

t ; θσtt

h i
þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1W
σtþ1ð Þ tþ 1, f t x; u

σtð Þ1
t ; u

σtð Þ2
t ; � � �; u σtð Þn

t

� 	
þ ϑt

h i�
,

for σt2 1; 2; � � �; ηtf g and t2 1, 2, � � �,T � 1f g: ð2:6Þ
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Proof The results in (2.6) characterizing the optimal solution in stage T is proved

in Lemma 2.1. Invoking the specification of the control problem starting in stage

t2 1, 2, � � �, T � 1f g as expressed in (2.5), the results in (2.6) satisfy the optimality

conditions in stochastic dynamic programming. Therefore, an optimal solution of

the stochastic control problem (1.1) and (2.1) is characterized. ■
Theorem 2.1 is the discrete-time analog of the optimal cooperative scheme in

randomly furcating stochastic differential games in Petrosyan and Yeung (2007).

Substituting the optimal control
�
ψ σkð Þi*
k xð Þ, for k2 1, 2, � � �Tf g and i2N

�
into the

state dynamics (1.1), one can obtain the dynamics of the cooperative trajectory as:

xkþ1 ¼ f k xk,ψ
σkð Þ1*
k xkð Þ,ψ σkð Þ2*

k xkð Þ, � � �,ψ σkð Þn*
k xkð Þ

� 	
þ ϑk, if θ

σk
k occurs ; ð2:7Þ

for k2 1; 2; � � �; Tf g, σk2 1; 2; � � �; ηkf g and x1 ¼ x0.
We use X�

k to denote the set of realizable values of x�k at stage k generated by

(2.7). The term x*k 2X*
k is used to denote an element in X�

k .

The termW σkð Þ k; x*k
� �

gives the expected total cooperative payoff over the stages

from k to T if θσkk occurs and x*k 2X*
k is realized at stage k.

9.2.2 Individual Rationality

The players then have to agree to an optimality principle in distributing the total

cooperative payoff among themselves. For individual rationality to be upheld the

expected payoffs a player receives under cooperation have to be no less than his

expected noncooperative payoff along the cooperative state trajectory x*k
� � Tþ1

k¼1
. The

players may (i) share the excess of the total expected cooperative payoff over the

expected sum of individual noncooperative payoffs equally, or (ii) share the total

expected cooperative payoff proportional to their expected noncooperative payoffs.

Let ξ σkð Þ k; x*k
� � ¼ ξ σkð Þ1 k; x*k

� �
, ξ σkð Þ2 k; x*k

� �
, � � �, ξ σkð Þn k; x*k

� �
 �
denote the impu-

tation vector guiding the distribution of the total expected cooperative payoff under

the agreed-upon optimality principle along the cooperative trajectory given that θσkk
has occurred in stage k, for σk2 1; 2; � � �; ηkf g and k2 1; 2; � � �; Tf g. In particular, the
imputation ξ σkð Þi k; x*k

� �
gives the expected cumulative payments that player i will

receive from stage k to stage T þ 1 under cooperation.

If for example, the optimality principle specifies that the players share the excess

of the total cooperative payoff over the sum of individual noncooperative payoffs

equally, then the imputation to player i becomes:

ξ σkð Þi k; x*k
� � ¼ V σkð Þi k; x*k

� �þ 1

n
W σkð Þ k; x*k

� ��Xn
j¼1

V σkð Þj k; x*k
� �" #

; ð2:8Þ

for i2N and k2 1; 2; � � �; Tf g.
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For individual rationality to be maintained throughout all the stages

k2 1; 2; � � �; Tf g, it is required that the imputation satisfies:

ξ σkð Þi k; x*k
� � � V σkð Þi k; x*k

� �
,

for i2N, σk2 1; 2; � � �; ηkf g and k2 1; 2; � � �; Tf g: ð2:9Þ

To guarantee group optimality, the imputation vector has to satisfy

W σkð Þ k; x*k
� � ¼Xn

j¼1

ξ σkð Þj k; x*k
� �

,

for σk2 1; 2; � � �; ηkf g and k2 1; 2; � � �; Tf g: ð2:10Þ

Hence, a valid imputation ξ σkð Þi k; x*k
� �

, for i2N, σk2 1; 2; � � �; ηkf g and

k2 1; 2; � � �; Tf g, has to satisfy conditions (2.9) and (2.10).

9.3 Subgame Consistent Solutions and Payment
Mechanism

As demonstrated in Chap. 7, to guarantee dynamical stability in a stochastic

dynamic cooperation scheme, the solution has to satisfy the property of subgame

consistency in addition to group optimality and individual rationality. In particular,

an extension of a subgame-consistent cooperative solution policy to a subgame

starting at a later time with a feasible state brought about by prior optimal behavior

would remain optimal. Thus subgame consistency ensures that as the game pro-

ceeds players are guided by the same optimality principle at each stage of the game,

and hence do not possess incentives to deviate from the previously adopted optimal

behavior. For subgame consistency to be satisfied, the imputation according to the

original optimality principle has to be maintained at all the T stages along the

cooperative trajectory x*k
� �T

k¼1
. In other words, the imputation

ξ σkð Þ k; x*k
� � ¼ ξ σkð Þ1 k; x*k

� �
, ξ σkð Þ2 k; x*k

� �
, � � �, ξ σkð Þn k; x*k

� �h i
; ð3:1Þ

for σk2 1; 2; � � �; ηkf g, x*k 2X*
k and k2 1; 2; � � �; Tf g, has to be upheld.

9.3.1 Payoff Distribution Procedure

Following the analysis of Yeung and Petrosyan (2010 and 2011), we formulate a

Payoff Distribution Procedure (PDP) so that the agreed-upon imputation (3.1) can

be realized. Let B
σkð Þi
k x*k
� �

denote the payment that player i will received at stage
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k under the cooperative agreement if θσkk 2 θ1k ; θ
2
k ; � � �; θηkk

� �
occurs and x*k 2X*

k is

realized at stage k2 1; 2; � � �; Tf g. The payment scheme
�
B

σkð Þi
k x*k
� �

contingent upon

the event θσkk and state x�k , for k2 1; 2; � � �; Tf g� constitutes a PDP in the sense that

the imputation to player i over the stages 1 to T þ 1 can be expressed as:

ξ σ1ð Þi 1; x1 0ð Þ
� � ¼ B

σ1ð Þi
1 x1 0ð Þ
� �

þ Eθ2, ���,θT ;ϑ1,ϑ2, ���,ϑT
XT
ζ¼2

B
σζð Þi
ζ x*ζ

� 	
þ qi x*Tþ1

� � !
; ð3:2Þ

for i2N.
Moreover, according to the agreed-upon optimality principle in (3.1), if θσkk

occurs and x*k 2X*
k is realized at stage k the imputation to player i is ξ σkð Þi k; x*k

� �
. For

subgame consistency to be satisfied, the imputation according to the agreed-upon

optimality principle has to be maintained at all the T stages along the cooperative

trajectory x*k
� �T

k¼1
. Therefore to guarantee subgame consistency, the payment

scheme B
σkð Þi
k x*k
� �n o

has to satisfy the conditions

ξ σkð Þi k; x*k
� � ¼ B

σkð Þi
k x*k
� �

þEθkþ1,θkþ2, ���,θT ;ϑk ,ϑkþ1, ���,ϑT

� XT
ζ¼kþ1

B
σζð Þi
ζ x*ζ

� 	
þ qi x*Tþ1

� �
ð3:3Þ

for i2N and k2 1; 2; � � �; Tf g.
Using (3.3) one can readily obtain ξ σTþ1ð Þi T þ 1, x*Tþ1

� �
equals qi x*Tþ1

� �
with

probability 1. Crucial to the formulation of a subgame consistent solution is the

derivation of a payment scheme
�
B

σkð Þi
k x*k
� �

, for i2N, σk2 1; 2; � � �; ηkf g, x*k 2X*
k and

k2 1; 2; � � �; Tf g so that the imputation in (3.3) can be realized. This will be done in

the sequel.

A theorem for the derivation of a subgame consistent PDP can be established as

follows.

Theorem 3.1 A payment equaling

B
σkð Þi
k x*k
� �¼ ξ σkð Þi k;x*k

� �
�Eϑk

� Xηkþ1

σkþ1¼1

λσkþ1

kþ1

�
ξ σkþ1ð Þi kþ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �� 	
þ ϑk

h i�
; ð3:4Þ

for i2N,

234 9 Subgame Consistency in Randomly-Furcating Cooperative Stochastic Dynamic Games



given to player i at stage k2 1; 2; � � �; Tf g, if θσkk occurs and x*k 2X*
k , leads to the

realization of the imputation in (3.3).

Proof To construct the proof of Theorem 3.1, we first consider the imputation

Eθkþ1,θkþ2, ���,θT ;ϑk ,ϑkþ1, ���,ϑT

� XT
ζ¼kþ1

B
σζð Þi
ζ x*ζ

� 	
þ qi x*Tþ1

� �
¼ Eϑk

� Xηkþ1

σkþ1¼1

λσkþ1

kþ1

�
B

σkþ1ð Þi
kþ1 x*kþ1

� �
þEθkþ2,θkþ3, ���,θT ;ϑkþ2,ϑkþ3, ���,ϑT

� XT
ζ¼kþ2

B
σζð Þi
ζ x*ζ

� 	
þ qi x*Tþ1

� ���
: ð3:5Þ

Then, using (3.3) we can derive the term ξ σkþ1ð Þi k þ 1, x*kþ1

� �
as

ξ σkþ1ð Þi k þ 1, x*kþ1

� � ¼ B
σkþ1ð Þi
kþ1 x*kþ1

� �
þEθkþ2,θkþ3, ���,θT ;ϑkþ2,ϑkþ3, ���,ϑT

� XT
ζ¼kþ2

B
σζð Þi
ζ x*ζ

� 	
þ qi x*Tþ1

� �
ð3:6Þ

The expression on the right-hand-side of equation (3.6) is the same as the expres-

sion inside the square brackets of (3.5). Invoking equation (3.6) we can replace the

expression inside the square brackets of (3.5) by ξ σkþ1ð Þi k þ 1, x*kþ1

� �
and obtain:

Eθkþ1,θkþ2, ���,θT ;ϑk ,ϑkþ1, ���,ϑT

� XT
ζ¼kþ1

B
σζð Þi
ζ x*ζ

� 	
þ qi x*Tþ1

� �
¼ Eϑk

� Xηkþ1

σkþ1¼1

λσkþ1

kþ1

�
ξ σkþ1ð Þi k þ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �� 	
þ ϑk

h i�
:

Substituting the termEθkþ1,θkþ2, ���,θT ;ϑk ,ϑkþ1, ���,ϑT

� XT
ζ¼kþ1

B
σζð Þi
ζ x*ζ

� 	
þ qi x*Tþ1

� �
byEϑk� Xηkþ1

σkþ1¼1

λσkþ1

kþ1

�
ξ σkþ1ð Þi k þ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �� 	
þ ϑk

h i�
in (3.3) we can express

(3.3) as:

ξ σkð Þi k; x*k
� � ¼ B

σkð Þi
k x*k
� �

þEϑk

� Xηkþ1

σkþ1¼1

λσkþ1

kþ1

�
ξ σkþ1ð Þi k þ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �� 	
þ ϑk

h i�
: ð3:7Þ
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For condition (3.7), which is an alternative form of (3.3), to hold it is required that:

B
σkð Þi
k x*k
� � ¼ ξ σkð Þi k; x*k

� �
�Eϑk

� Xηkþ1

σkþ1¼1

λσkþ1

kþ1

�
ξ σkþ1ð Þi k þ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �� 	
þ ϑk

h i�
; ð3:8Þ

for i2N and k2 1; 2; � � �; Tf g.
Therefore by paying B

σkð Þi
k x*k
� �

to player i2N at stage k2 1; 2; � � �; Tf g, if θσkk
occurs and x*k 2X*

k , leads to the realization of the imputation in (3.3). Hence

Theorem 3.1 follows. ■

For a given imputation vector

ξ σkð Þ k; x*k
� � ¼ ξ σkð Þ1 k; x*k

� �
, ξ σkð Þ2 k; x*k

� �
, � � �, ξ σkð Þn k; x*k

� �h i
;

for σk2 1; 2; � � �; ηkf g and k2 1; 2; � � �; Tf g,
Theorem 3.1 can be used to derive the PDP that leads to the realization this

vector.

9.3.2 Transfer Payments

When all players are using the cooperative strategies, the payoff that player i will

directly received at stage k given that x*k 2X*
k and θσkk occurs becomes

gi
k x*k ,ψ

σkð Þ1*
k x*k

� �
,ψ σkð Þ2*

k x*k
� �

, � � �,ψ σkð Þn*
k x*k

� �
; θσkk

h i
.

However, according to the agreed upon imputation, player i is supposed to

receivedB
σkð Þi
k x*k
� �

at stage k as given in Theorem 3.1. Therefore a transfer payment

(which can be positive or negative)

ϖ σkð Þi
k x*k
� � ¼ B

σkð Þi
k x*k
� �

� gi
k x*k ,ψ

σkð Þ1*
k x*k

� �
,ψ σkð Þ2*

k x*k
� �

, � � �,ψ σkð Þn*
k x*k

� �
; θσkk

h i
; ð3:9Þ

for k2 1; 2; � � �; Tf g and i2N,

will be assigned to player i to yield the cooperative imputation ξi(k, x�k).
The transfer payments system in (3.9) constitutes an instrument to guide the

execution of the agreed-upon payoff sharing mechanism. Coordination of payments

is jointly performed by the participating players.
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9.4 An Illustration in Cooperative Resource Extraction
Under Uncertainty

Consider an economy endowed with a renewable resource and with 2 resource

extractors (firms). The lease for resource extraction begins at stage 1 and ends at

stage 3 for these two firms. Let uik denote the resource extracted by firm i at stage k,
for i2 1; 2f g. Let Ui be the set of admissible amount of resource extracted by firm i,
and xk2X � Rþ be the size of the resource stock at stage k.

It is known at each stage there is a random element, θk for k2 1; 2; 3f g, affecting
the prices of the outputs produced by these firms and their costs of extraction. If

θσkk 2 θ1k ; θ
2
k

� �
happens at stage k2 2; 3f g the profits (in present-value) that firm

1 and firm 2 will obtain at stage k are respectively:

P
σkð Þ1
k u1k �

c
σkð Þ1
k

xk
u1k
� �2" #

1
1þr

� 	k�1

and P
σkð Þ2
k u2k �

c
σkð Þ2
k

xk
u2k
� �2" #

1
1þr

� 	k�1

; ð4:1Þ

where P
σkð Þi
k is the price of the resource extracted and processed by firm i, and c

σkð Þi
k

u i
k

� �2
=xk is the production cost of firm i in stage k if θσkk occurs.

It is known in stage 1 that θ1 is θ11 with probability λ11 ¼ 1. The probability that

θσkk 2 θ1k ; θ
2
k

� �
will occur at stage k2 2; 3f g is λσkk . In stage 4, a terminal payment

(again in present-value) contingent upon the resource size equaling qix4
1

1þr

� 	3
will

be paid to firm i.
The growth dynamics of the resource is governed by the stochastic difference

equation:

xkþ1 ¼ xk þ a� bxk �
X2
j¼1

uj
k þ ϑk; ð4:2Þ

for k2 1; 2; 3f g and x1 ¼ x0,

where ϑk is a random variable with non-negative range {ϑ1k , ϑ
2
k , ϑ

3
k} and

corresponding probabilities {γ1k , γ
2
k , γ

3
k}; moreover ϑ1,ϑ2, ϑ3 are independent. More-

over, we have the constraint u1k þ u2k � 1� bð Þxk þ a.
The objective of extractor i2 1; 2f g is to maximize the present value of the

expected stream of future profits:
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Eθ1,θ2,θ3;ϑ1,ϑ2,ϑ3

�X3
k¼1

P
σkð Þi
k u i

k �
c

σkð Þi
k

xk
u i
k

� �2" #
1

1þ r

� k�1

þ qix4
1

1þ r

� 3�
ð4:3Þ

subject to the stochastic dynamics (4.2).

Invoking Lemma 1.2, one can characterize the noncooperative Nash equilibrium

strategies for the game (4.2 and 4.3) as follows. In particular, a set of strategies�
u

σkð Þi*
k ¼ ϕ σkð Þi*

k xð Þ2Γi, for σ12 1f g, σ2, σ32 1; 2f g, k2 1; 2; 3f g and i2 1; 2f g�
provides a Nash equilibrium solution to the game (4.2 and 4.3) if there exist

functionsV σkð Þi k; xð Þ, for i2 1; 2f gandk2 1; 2; 3f g, such that the following recursive
relations are satisfied:

V σkð Þi k;xð Þ ¼max
u

σkð Þi
k

Eϑk

�
P

σkð Þi
k u

σkð Þi
k � c

σkð Þi
k

x
u

σkð Þi
k

� 	2" #
1

1þ r

� k�1

þ
X2

σkþ1¼1

λσkþ1

kþ1V
σkþ1ð Þi kþ 1,xþ a� bx� u

σkð Þi
k �ϕ σkð Þj*

k xð Þþϑk
h i�

¼max
u

σkð Þi
k

�
P

σkð Þi
k u

σkð Þi
k � c

σkð Þi
k

x
u

σkð Þi
k

� 	2" #
1

1þ r

� k�1

þ
X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1V
σkþ1ð Þi kþ 1,xþ a� bx� u

σkð Þi
k �ϕ σkð Þj*

k xð Þþϑ y
k

h i�
;

V σ3ð Þi 4;xð Þ ¼ qix 1
1þr

� 	3
: ð4:4Þ

Performing the indicated maximization in (4.4) yields:

P
σkð Þi
k � 2c

σkð Þi
k u

σkð Þi
k

x

" #
1

1þr

� 	k�1

�
X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1V
σkþ1ð Þi
xkþ1

kþ 1,xþ a� bx� u
σkð Þi
k �ϕ σkð Þj*

k xð Þþ ϑ y
k

h i
¼ 0; ð4:5Þ

for i2 1; 2f g and k2 1; 2; 3f g.
From (4.5), the game equilibrium strategies can be expressed as:

ϕ σkð Þi*
k xð Þ ¼ x

2c
σkð Þi
k

�
P

σkð Þi
k � 1þ rð Þk�1

X3
y¼1

γ yk

X2
σkþ1¼1

λσkþ1

kþ1V
σkþ1ð Þi
xkþ1

k þ 1, xþ a� bx� ϕ σkð Þ1*
k xð Þ � ϕ σkð Þ2*

k xð Þ þ ϑ y
k

h i
; ð4:6Þ

for i2 1; 2f g and k2 1; 2; 3f g.
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The expected game equilibrium payoffs of the extractors can be obtained as:

Proposition 4.1 The value function indicating the expected game equilibrium

payoff of player i is

V σkð Þi k; xð Þ ¼ A
σkð Þi
k xþ C

σkð Þi
k

h i
, for i2 1; 2f g and k2 1; 2; 3f g; ð4:7Þ

where A
σkð Þi
k and C

σkð Þi
k , for i2 1; 2f g and k2 1; 2; 3f g, are constants in terms of the

parameters of the game (4.2 and 4.3).

Proof See Appendix A. ■

Substituting the relevant derivatives of the value functions in Proposition 4.1

into the game equilibrium strategies (4.6) yields a noncooperative Nash equilibrium

solution of the game (4.2 and 4.3).

Now consider the case when the extractors agree to maximize their expected

joint profit and share the excess of cooperative gains over their expected noncoop-

erative payoffs equally. To maximize their expected joint payoff, they solve the

problem of maximizing

Eθ1,θ2,θ3;ϑ1,ϑ2,ϑ3

X2
j¼1

� X3
k¼1

P
σkð Þj
k u j

k �
c

σkð Þj
k

xk
u j
k

� 	2 !
1

1þr

� 	k�1

þ qjx4
1

1þr

� 	3 �( )
ð4:8Þ

subject to (4.2).

Invoking Theorem 2.1, one can characterize the optimal controls in the stochas-

tic dynamic programming problem (4.2) and (4.8). In particular, a set of control

strategies
�
u

σkð Þi*
k ¼ ψ σkð Þi*

k xð Þ2 Γ̂ i
, for σk2 1; 2f g, k2 1; 2; 3f g and i2 1; 2f g�

provides an optimal solution to the problem (4.2) and (4.8) if there exist functions

W σkð Þ k; xð Þ, for k2 1; 2; 3f g, such that the following recursive relations are satisfied:

W σ4ð Þ 4;xð Þ ¼
X2
j¼1

qjx 1
1þr

� 	3
,

W σkð Þ k;xð Þ ¼max
u1
k
,u2

k

Eϑk

�X2
j¼1

P
σkð Þj
k u j

k �
c

σkð Þj
k

x
u j
k

� 	2 !
1

1þ r

� k�1

þ
X2

σkþ1¼1

λσkþ1

kþ1W
σkþ1ð Þ kþ 1,xþ a� bx� u1k � u2k þϑk


 ��
¼max

u1
k
,u2

k

�X2
j¼1

P
σkð Þj
k u j

k �
c

σkð Þj
k

x
u j
k

� 	2 !
1

1þ r

� k�1

þ
X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1W
σkþ1ð Þ kþ 1,xþ a� bx� u1k � u2k þϑ y

k


 ��
,

for k2 1;2;3f gandσk2 1;2f g: ð4:9Þ
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Performing the indicated maximization in (4.9) yields:

P
σkð Þj
k � 2c

σkð Þj
k u j

k

xk

 !
1

1þr

� 	k�1

�
X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1W
σkþ1ð Þ
xkþ1

k þ 1, xþ a� bx� u1k � u2k þ ϑ y
k


 � ¼ 0; ð4:10Þ

for k2 1; 2; 3f g and σk2 1; 2f g.
In particular, the optimal cooperative strategies can be obtained from (4.10) as:

ψ σkð Þi*
k xð Þ ¼ x

2c
σkð Þi
k

�
P

σkð Þi
k �

X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1W
σkþ1ð Þ
xkþ1



k þ 1, xþ a� bx

�ψ σkð Þ1*
k xð Þ � ψ σkð Þ2*

k xð Þ þ ϑ y
k

�
1þ rð Þk�1


; ð4:11Þ

for k2 1; 2; 3f g and σk2 1; 2f g.
The expected joint payoff under cooperation can be obtained as:

Proposition 4.2 The value function indicating the maximized expected joint

payoff is

W σkð Þ k; xð Þ ¼ eA σkð Þ
k xþ eC σkð Þ

k

h i
, for k2 1; 2; 3f g and σk2 1; 2f g; ð4:12Þ

where eA σkð Þ
k and eC σkð Þ

k , for k2 1; 2; 3f g and σk2 1; 2f g, are constants in terms of the

parameters of the problem (4.8) and (4.2).

Proof See Appendix B. ■

Using (4.11) and Proposition 4.2, the optimal cooperative strategies of the agents

can be expressed as:

ψ σkð Þi*
k xð Þ ¼ x

2c
σkð Þi
k

�
P

σkð Þi
k �

X2
σkþ1¼1

λσkþ1

kþ1A
σkþ1ð Þ
kþ1 1þ rð Þk�1


; ð4:13Þ

for i2 1; 2f g, k2 1; 2; 3f g and σk2 1; 2f g.
Substituting ψ σkð Þi

k xð Þ from (4.13) into (4.2) yields the optimal cooperative state

trajectory:

xkþ1 ¼ xk þ a� bxk

�
X2
j¼1

x

2c
σkð Þj
k

�
P

σkð Þj
k �

X2
σkþ1¼1

λσkþ1

kþ1
eA σkþ1ð Þ
kþ1 1þ rð Þk�1


þ ϑk; ð4:14Þ
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if θσkk occurs at stage k for k2 1; 2; 3f g and x1 ¼ x0.
Dynamics (4.14) is a linear stochastic difference equation readily solvable by

standard techniques. Let
�
x*k , for k2 1; 2; 3f g� denote the solution to (4.14).

Since the extractors agree to share the excess of cooperative gains over their

expected noncooperative payoffs equally, an imputation

ξ σkð Þi k; x*k
� � ¼ V σkð Þi k; x*k

� �þ 1

2
W σkð Þ k; x*k

� ��X2
j¼1

V σkð Þj k; x*k
� �" #

¼ A
σkð Þi
k x*k þ C

σkð Þi
k

� 	
þ 1

2
eA σkð Þ
k x*k þ eC σkð Þ

k

� 	
�
X2
j¼1

A
σkð Þj
k x*k þ C

σkð Þj
k

� 	" #
; ð4:15Þ

if θσkk occurs at stage k for k2 1; 2; 3f g, σk2 1; 2f g and i2 1; 2f g has to be maintained.

Invoking Theorem 3.1, if θσkk occurs and x*k 2X is realized at stage k a payment

equaling

B
σkð Þi
k x*k
� � ¼ 1þ rð Þk�1

�
ξi k; x*k
� �

�Eθkþ1

�
ξi k þ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �� 	
þ θk

h i�
¼ 1þ rð Þk�1

�
A

σkð Þi
k x*k þ C

σkð Þi
k

� 	
þ 1

2
eA σkð Þ
k x*k þ eC σkð Þ

k

� 	
�
X2
j¼1

A
σkð Þj
k x*k þ C

σkð Þj
k

� 	 !

�
X3
y¼1

γ yk
Xηkþ1

σkþ1¼1

λσkþ1

kþ1

�
A

σkþ1ð Þi
kþ1 x

* ϑ y
kð Þ

kþ1 þ C
σk¼1ð Þi
kþ1

� 
þ 1

2
eA σkþ1ð Þ
kþ1 x

* ϑ y
kð Þ

kþ1 þ eC σkþ1ð Þ
kþ1

� 
�
X2
j¼1

A
σkþ1ð Þj
kþ1 x

* ϑ y
kð Þ

kþ1 þ C
σkþ1ð Þj
kþ1

�  !��
;

ð4:16Þ

where

x
* ϑ y

kð Þ
kþ1 ¼ x*k þ a� bx*k �

X2
j¼1

x*k

2c
σkð Þj
k

�
P

σkð Þj
k �

X2
σkþ1¼1

λσkþ1

kþ1
eA σkþ1ð Þ
kþ1 1þ rð Þk�1


þ ϑ*k

for y2 1; 2; 3f g,
given to firm i at stage k2 1; 2; 3f g would lead to the realization of the imputation

(4.15).

A subgame consistent solution can be readily obtained using (4.13), (4.15) and

(4.16).
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9.5 Extensions

The analysis can be expanded in a few directions.

Case 1: Random Changes in the State Dynamics Structures

Following Yeung (2011) one allow the structure of the state dynamics in (1.1) be

affected by the random variable θk for k2 1; 2; � � �; Tf g. In particular the state

dynamics become:

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k ; θk
� �þ ϑk; ð5:1Þ

for k2 1; 2; � � �; Tf g and x1 ¼ x0,

where ui
k2Ui � Rmi is the control vector of player i at stage k, xk2X is the state, ϑk

is a sequence of statistically independent random variables, and θk is an indepen-

dent discrete random variables with range θ1k ; θ
2
k ; � � �; θηkk

� �
and corresponding

probabilities λ1k ; λ
2
k ; � � �; ληkk

� �
.

Following the analyses in Sects. 9.1, 9.2 and 9.3, a theorem deriving a subgame

consistent PDP can be established as follows.

Theorem 5.1 A payment equaling

B
σkð Þi
k x*k
� � ¼ ξ σkð Þi k; x*k

� �
�Eϑk

" Xηkþ1

σkþ1¼1

λσkþ1

kþ1

 
ξ σkþ1ð Þi k þ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �
; θσkk

� 	
þ ϑk

h i!#
;

ð5:2Þ

for i2N,

given to player i at stage k2 1; 2; � � �; Tf g, if θσkk occurs and x*k 2X*
k , leads to the

realization of the imputation according to the agreed upon optimality principle. ■

Case 2: More Complex Branching Processes

The random event θk affecting the payoff structures of the players in stage kmay be

more complex branching processes. For instance, the random variables may not be

independent and may stem from a branching process in which the random variable

θk for k2 1; 2; � � �; Tf g is conditional upon the realization of the random variables in

its preceding stages. An example of this type of processes is the one adopted in

Yeung (2003) as a random variable stemming from the branching process as

described below.

θ1 ¼ θ11, θ
1
2, . . . , θ1η1

n o
with corresponding probabilities λ11, λ

1
2, . . . , λ1η1

n o
.

Given that θ1a1 is realized in time interval [t1, t2), for a1 ¼ 1, 2, . . . , η1,
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θ2 ¼ θ2 1;a1ð Þ½ 	
1 , θ2 1;a1ð Þ½ 	

2 , . . . , θ2 1;a1ð Þ½ 	
η2 1;a1ð Þ½ 	

� �
would be realized with the corresponding

probabilities λ2 1;a1ð Þ½ 	
1 , λ2 1;a1ð Þ½ 	

2 , . . . , λ2 1;a1ð Þ½ 	
η2 1;a1ð Þ½ 	

� �
.

Given that θ1a1 is realized in time interval [t1, t2) and θ2 1;a1ð Þ½ 	
a2

is realized in time

interval [t2, t3), for a1 ¼ 1, 2, . . . , η1 and a2 ¼ 1, 2, . . . , η2 1;a1ð Þ½ 	,

θ3 ¼ θ3 1;a1ð Þ 2;a2ð Þ½ 	
1 , θ3 1;a1ð Þ 2;a2ð Þ½ 	

2 , . . . , θ3 1;a1ð Þ 2;a2ð Þ½ 	
η3 1;a1ð Þ 2;a2ð Þ½ 	

� �
would be realized with the

corresponding probabilities

λ3 1;a1ð Þ 2;a2ð Þ½ 	
1 , λ3 1;a1ð Þ 2;a2ð Þ½ 	

2 , . . . , λ3 1;a1ð Þ 2;a2ð Þ½ 	
η3 1;a1ð Þ 2;a2ð Þ½ 	

� �
.

In general, given thatθ1a1 is realized in time interval [t1, t2),θ
2 1;a1ð Þ½ 	
a2

is realized in time

interval [t2, t3), . . ., andθ
k�1 1;a1ð Þ 2;a2ð Þ... k�2,ak�2ð Þ½ 	
ak�1

is realized in time interval [tk-1, tk), for

a1 ¼ 1, 2, . . . , η1, a2 ¼ 1, 2, . . . , η2 1;a1ð Þ½ 	, . . . , ak�1 ¼ 1, 2, . . . , ηk�1 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	,

θk ¼ θk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	
1 , θk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	

2 , . . . , θk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	
ηk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	

� �
would be realized with the corresponding probabilities

λk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	
1 , λk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	

2 , . . . , λk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	
ηk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	

� �
for k¼ 1, 2, . . ., τ.

Applying the techniques derived in the analysis in this paper, subgame consis-

tent solutions can be derived accordingly.

Case 3: Games with Deterministic Dynamics

The analysis can be readily applied to derive subgame consistent solutions in

randomly-furcating dynamic games in which the random variables ϑk in the stock

dynamics are not present. In particular, the objective that player i seeks to maximize

becomes

Eθ1,θ2, ���,θT

�XT
k¼1

gi
k xk; u

1
k ; u

2
k ; � � �; un

k ; θk

 �þ qi xTþ1ð Þ

�
, for i2N ð5:3Þ

subject to the deterministic dynamics:

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �
: ð5:4Þ

Following the analysis in Sects 9.3 and 9.4 and the proof of Theorem 3.1, a

theorem deriving a subgame consistent PDP for the randomly-furcating dynamic

game (5.3 and 5.4) can be established as follows.
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Theorem 5.2 A payment equaling

B
σkð Þi
k x*k
� � ¼ ξ σkð Þi k; x*k

� �� � Xηkþ1

σkþ1¼1

λσkþ1

kþ1

�
ξ σkþ1ð Þi k þ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �� 	h i�
;

ð5:5Þ

for i2N,

given to player i at stage k2 1; 2; � � �; Tf g, if θσkk occurs and2X*
k , would yield the

PDP leading to a subgame consistent solution of the game (5.3 and 5.4). ■

9.6 Chapter Appendices

Appendix A. Proof of Proposition 4.1 Consider first the last stage, that is stage

3, when θσ33 occurs. Invoking that V σ3ð Þi 3; xð Þ ¼ A
σ3ð Þi
3 xþ C

σ3ð Þi
3

h i
from Proposition

4.1 and V σ3ð Þi 4; xð Þ ¼ qix 1
1þr

� 	3
, the conditions in equation (4.4) become

A
σ3ð Þi
3 xþ C

σ3ð Þi
3

h i
¼ max

u
σ3ð Þi

3

�
P

σ3ð Þi
3 u

σ3ð Þi
3 � c

σ3ð Þi
3

x
u

σ3ð Þi
3

� 	2" #
1

1þ r

� k�1

þ
X3
y¼1

γ y3q
i xþ a� bx� u

σ3ð Þi
3 � ϕ σ3ð Þj*

3 xð Þ þ ϑ y
3

h i�
, for i2 1; 2f g: ðA:1Þ

Performing the indicated maximization in (A.1) yields:

P
σ3ð Þi
3 � 2c

σ3ð Þi
3 u

σ3ð Þi
3

x

" #
1

1þ r

� k�1

�
X3
y¼1

γ y3q
i ¼ 0, for i2 1; 2f g: ðA:2Þ

The game equilibrium strategies in stage 3 can then be expressed as:

ϕ σ3ð Þi*
3 xð Þ ¼ P

σ3ð Þi
3 � 1þ rð Þ2qi

h i x

2c
σ3ð Þi
3

, for i2 1; 2f g: ðA:3Þ

Substituting (A.3) into (A.1) yields:

A
σ3ð Þi
3 xþ C

σ3ð Þi
3

h i
¼
�
P

σ3ð Þi
3 P

σ3ð Þi
3 � 1þ rð Þ2qi

h i x

2c
σ3ð Þi
3

� 1

4c
σ3ð Þi
3

P
σ3ð Þi
3 � 1þ rð Þ2qi

h i2
x

�
1

1þ r

� k�1

þ
X3
y¼1

γ y3q
i

�
xþ a� bx�

X2
j¼1

P
σ3ð Þj
3 � 1þ rð Þ2qj

h i x

2c
σ3ð Þj
3

þ ϑ y
3


; ðA:4Þ

for i2 1; 2f g.

244 9 Subgame Consistency in Randomly-Furcating Cooperative Stochastic Dynamic Games



Note that both sides of equation (A.4) are linear expression of x, the termsA
σ3ð Þi
3 and

C
σ3ð Þi
3 , for i2 1; 2f g and σ32 1; 2f g, are explicitly given in (A.4).

Now we proceed to stage 2, the conditions in equation (4.4) become

A
σ2ð Þi
2 xþ C

σ2ð Þi
2

h i
¼ max

u
σ2ð Þi

2

�
P

σ2ð Þi
2 u

σ2ð Þi
2 � c

σ2ð Þi
2

x
u

σ2ð Þi
2

� 	2" #
1

1þ r

� 

þ
X3
y¼1

γ y2
X2
σ3¼1

λσ33

�
A

σ3ð Þi
3 xþ a� bx� u

σ2ð Þi
2 � ϕ σ2ð Þj*

2 xð Þ þ ϑ y
2

h i
þ C

σ3ð Þi
3

��
; ðA:5Þ

for i2 1; 2f g.
Performing the indicated maximization in (A.5) yields:

P
σ2ð Þi
2 � 2c

σ2ð Þi
2 u

σ2ð Þi
2

x

" #
1

1þ r

� 
�
X3
y¼1

γ y2
X2
σ3¼1

λσ33 A
σ3ð Þi
3 ¼ 0, for i2 1; 2f g: ðA:6Þ

The game equilibrium strategies in stage 2 can then be expressed as:

ϕ σ2ð Þi*
2 xð Þ ¼ P

σ2ð Þi
2 � 1þ rð Þ

X2
σ3¼1

λσ33 A
σ3ð Þi
3

" #
x

2c
σ2ð Þi
2

, for i2 1; 2f g: ðA:7Þ

Substituting (A.7) into (A.5) yields:

A
σ2ð Þi
2 xþ C

σ2ð Þi
2

h i
¼
�
P

σ2ð Þi
2 P

σ2ð Þi
2 � 1þ rð Þ

X2
σ3¼1

λσ33 A
σ3ð Þi
3

" #
x

2c
σ2ð Þi
2

� 1

4c
σ2ð Þi
2

P
σ2ð Þi
2 � 1þ rð Þ

X2
σ3¼1

λσ33 A
σ3ð Þi
3

" #2
x

�
1

1þ r

� 
þ
X3
y¼1

γ y2
X2
σ3¼1

λσ33

�
A

σ3ð Þi
3

�
xþ a� bx

�
X2
j¼1

P
σ2ð Þj
2 � 1þ rð Þ

X2
σ3¼1

λσ33 A
σ3ð Þi
3

" #
x

2c
σ2ð Þj
2

þ ϑ y
2


þ C

σ3ð Þi
3

�
;

ðA:8Þ

for i2 1; 2f g.
Once again, both sides of equation (A.8) are linear expression of x, the terms

A
σ2ð Þi
2 and C

σ2ð Þi
2 , for i2 1; 2f g and σ22 1; 2f g, can be obtained explicitly using

(A.8).
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Finally, we proceed to the first stage, the conditions in equation (4.4) become

A
σ1ð Þi
1 xþ C

σ1ð Þi
1

h i
¼ max

u
σ1ð Þi

1

�
P

σ1ð Þi
1 u

σ1ð Þi
1 � c

σ1ð Þi
1

x
u

σ1ð Þi
1

� 	2" #

þ
X3
y¼1

γ y1
X2
σ2¼1

λσ22

�
A

σ2ð Þi
2 xþ a� bx� u

σ1ð Þi
1 � ϕ σ1ð Þj

1 xð Þ þ ϑ y
1

h i
þ C

σ2ð Þi
2

��
ðA:9Þ

for i2 1; 2f g.
Following the analysis in (A.6 and A.7), the game equilibrium strategies in stage

1 can then be expressed as:

ϕ σ1ð Þi*
1 xð Þ ¼ P

σ1ð Þi
1 �

X2
σ2¼1

λσ22 A
σ2ð Þi
2

" #
x

2c
σ1ð Þi
1

, for i2 1; 2f g: ðA:10Þ

Substituting (A.10) into (A.9) yields:

A
σ1ð Þi
1 xþ C

σ1ð Þi
1

h i
¼
�
P

σ1ð Þi
1 P

σ1ð Þi
1 �

X2
σ2¼1

λσ22 A
σ2ð Þi
2

" #
x

2c
σ1ð Þi
1

� 1

4c
σ1ð Þi
1

P
σ1ð Þi
1 �

X2
σ2¼1

λσ22 A
σ2ð Þi
2

" #2
x

�
þ
X3
y¼1

γ y1
X2
σ3¼1

λσ22�
A

σ2ð Þi
2

�
xþ a� bx

�
X2
j¼1

P
σ1ð Þj
1 � 1þ rð Þ

X2
σ2¼1

λσ22 A
σ2ð Þi
2

" #
x

2c
σ1ð Þj
1

þ ϑ y
1


þ C

σ2ð Þi
2

�
; ðA:11Þ

for i2 1; 2f g.
Once again, both sides of equation (A.11) are linear expression of x, the terms

A
σ1ð Þi
1 and C

σ1ð Þi
1 , for i2 1; 2f g and σ1 ¼ 1, can be obtained explicitly using (A.11).

Appendix B. Proof of Proposition 4.2 Consider first the last stage, that is stage

3, when θσ33 occurs. Invoking that W σ3ð Þ 3; xð Þ ¼ eA σ3ð Þ
3 xþ eC σ3ð Þ

3

h i
from Proposition

4.2 and W σ3ð Þ 4; xð Þ ¼
X2
j¼1

qjx 1
1þr

� 	3
, the condition in equation (4.9) becomes

eA σ3ð Þ
3 xþ eC σ3ð Þ

3

h i
¼ max

u
σ3ð Þ1

3
, u σ3ð Þ2

3

�X2
j¼1

P
σ3ð Þj
3 u

σ3ð Þj
3 � c

σ3ð Þj
3

x
u

σ3ð Þj
3

� 	2" #
1

1þ r

� k�1

þ
X3
y¼1

γ y3
X2
j¼1

qj xþ a� bx�
X2
‘¼1

u
σ3ð Þ‘
3 þ ϑ y

3

" #�
: ðB:1Þ
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Performing the indicated maximization in (B.1) yields:

P
σ3ð Þi
3 � 2c

σ3ð Þi
3 u

σ3ð Þi
3

x

" #
1

1þ r

� k�1

�
X3
y¼1

γ y3
X2
j¼1

qj ¼ 0, for i2 1; 2f g: ðB:2Þ

The optimal cooperative strategies in stage 3 can then be expressed as:

ψ σ3ð Þi*
3 xð Þ ¼ P

σ3ð Þi
3 � 1þ rð Þ2

X2
j¼1

qj

" #
x

2c
σ3ð Þi
3

, for i2 1; 2f g: ðB:3Þ

Substituting (B.3) into (B.1) yields:

eA σ3ð Þ
3 xþ eC σ3ð Þ

3

h i
¼
X2
j¼1

�
P

σ3ð Þj
3 P

σ3ð Þj
3 � 1þ rð Þ2

X2
‘¼1

q‘

" #
x

2c
σ3ð Þj
3

� 1

4c
σ3ð Þj
3

P
σ3ð Þj
3 � 1þ rð Þ2

X2
‘¼1

q‘

" #2
x

�
1

1þ r

� k�1

þ
X3
y¼1

γ y3
X2
j¼1

qj
�
xþ a� bx

�
X2
‘¼1

P
σ3ð Þ‘
3 � 1þ rð Þ2

X2
ζ¼1

qζ

" #
x

2c
σ3ð Þj
3

þ ϑ y
3


; ðB:4Þ

for i2 1; 2f g.
Note that both sides of equation (B.4) are linear expression of x, the terms eA σ3ð Þ

3

and eC σ3ð Þ
3 , for σ32 1; 2f g, are explicitly given in (B.4).

Now we proceed to stage 2, the condition in equation (4.9) becomes

eA σ2ð Þ
2 xþ eC σ2ð Þ

2

h i
¼ max

u
σ2ð Þ1

2
, u σ2ð Þ2

2

�X2
j¼1

P
σ2ð Þj
2 u

σ2ð Þj
2 � c

σ2ð Þj
2

x
u

σ2ð Þj
2

� 	2" #
1

1þ r

� 

þ
X3
y¼1

γ y2
X2
σ3¼1

λσ33

�eA σ3ð Þ
3 xþ a� bx�

X2
j¼1

u
σ2ð Þj
2 þ ϑ y

2

" #
þ eC σ3ð Þ

3

��
: ðB:5Þ

Performing the indicated maximization in (B.5) yields:

P
σ2ð Þi
2 � 2c

σ2ð Þi
2 u

σ2ð Þi
2

x

" #
1

1þ r

� 
�
X3
y¼1

γ y2
X2
σ3¼1

λσ33 eA σ3ð Þ
3 ¼ 0, for i2 1; 2f g: ðB:6Þ

The optimal cooperative strategies in stage 2 can then be expressed as:
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ψ σ2ð Þi*
2 xð Þ ¼ P

σ2ð Þi
2 � 1þ rð Þ

X2
σ3¼1

λσ33 eA σ3ð Þ
3

" #
x

2c
σ2ð Þi
2

, for i2 1; 2f g: ðB:7Þ

Substituting (B.7) into (B.5) yields:

eA σ2ð Þ
2 xþ eC σ2ð Þ

2

h i
¼
X2
j¼1

�
P

σ2ð Þj
2 P

σ2ð Þj
2 � 1þ rð Þ

X2
σ3¼1

λσ33 eA σ3ð Þ
3

" #
x

2c
σ2ð Þj
2

� 1

4c
σ2ð Þj
2

P
σ2ð Þj
2 � 1þ rð Þ

X2
σ3¼1

λσ33 eA σ3ð Þ
3

" #2
x

�
1

1þ r

� 
þ
X3
y¼1

γ y2
X2
σ3¼1

λσ33

�eA σ3ð Þ
3

�
xþ a� bx

�
X2
j¼1

P
σ2ð Þj
2 � 1þ rð Þ

X2
σ3¼1

λσ33 eA σ3ð Þ
3

" #
x

2c
σ2ð Þj
2

þ ϑ y
2


þ eC σ3ð Þ

3

�
:

ðB:8Þ

Once again, both sides of equation (B.8) are linear expression of x, the terms eA σ2ð Þ
2

and eC σ2ð Þ
2 , for σ22 1; 2f g, can be obtained explicitly using (B.8).

Finally, we proceed to the first stage, the conditions in equation (4.9) become

eA σ1ð Þ
1 xþ eC σ1ð Þ

1

h i
¼ max

u
σ1ð Þ1

1
, u σ1ð Þ2

1

�X2
j¼1

P
σ1ð Þj
1 u

σ1ð Þj
1 � c

σ1ð Þj
1

x
u

σ1ð Þj
1

� 	2" #

þ
X3
y¼1

γ y1
X2
σ2¼1

λσ22

�eA σ2ð Þ
2 xþ a� bx�

X2
j¼1

u
σ1ð Þj
1 þ ϑ y

1

" #
þ eC σ2ð Þ

2

��
: ðB:9Þ

Following the analysis in (B.6 and B.7), the optimal cooperative strategies in stage

1 can then be expressed as:

ψ σ1ð Þi*
1 xð Þ ¼ P

σ1ð Þi
1 �

X2
σ1¼1

λσ22 eA σ2ð Þ
2

" #
x

2c
σ1ð Þi
1

, for i2 1; 2f g: ðB:10Þ

Substituting (B.10) into (B.9) yields:

eA σ1ð Þ
1 xþ eC σ1ð Þ

1

h i
¼
X2
j¼1

�
P

σ1ð Þj
1 P

σ1ð Þj
1 �

X2
σ2¼1

λσ22 eA σ2ð Þ
2

" #
x

2c
σ1ð Þj
1

� 1

4c
σ1ð Þj
1

P
σ1ð Þj
1 �

X2
σ2¼1

λσ22 eA σ2ð Þ
2

" #2
x

�
þ
X3
y¼1

γ y1
X2
σ2¼1

λσ22

�eA σ2ð Þ
2

�
xþ a� bx

�
X2
j¼1

P
σ1ð Þj
1 �

X2
σ2¼1

λσ22 eA σ2ð Þ
2

" #
x

2c
σ1ð Þj
1

þ ϑ y
1


þ eC σ2ð Þ

2

�
: ðB:11Þ

248 9 Subgame Consistency in Randomly-Furcating Cooperative Stochastic Dynamic Games



Once again, both sides of equation (B.11) are linear expression of x, the termseA σ1ð Þ
1 and eC σ1ð Þ

1 , for σ1 ¼ 1, can be obtained explicitly using (B.11).

9.7 Chapter Notes

This Chapter considers subgame-consistent cooperative solutions in randomly

furcating stochastic dynamic games developed by Yeung and Petrosyan (2013a).

The extension of continuous-time randomly furcating stochastic differential games

to an analysis in discrete time is not just of theoretical interest but also for practical

reasons in applications in operations research. In the process of obtaining the main

results for subgame consistent solution, Nash equilibrium for randomly furcating

stochastic dynamic games and optimal control for randomly furcating stochastic

control problems are also derived. Yeung and Petrosyan (2014b) considered

subgame consistent cooperative provision of public goods under accumulation

and payoff uncertainties. Yeung and Petrosyan (2014a) examined subgame consis-

tent solution for a dynamic game of pollution management in which future envi-

ronmental costs are not known with certainty.

9.8 Problems

1. Consider an economy endowed with a renewable resource and with 2 resource

extractors (firms). The lease for resource extraction begins at stage 1 and ends at

stage 3 for these two firms. Let uik denote the resource extracted by firm i at stage
k, for i2 1; 2f g. Let Ui be the set of admissible amount of resource extracted by

firm i, and xk2X � Rþ be the size of the resource stock at stage k.
It is known at each stage there is a random element, θk for k2 1; 2; 3f g,

affecting the revenues of the outputs produced by these firms and their costs of

extraction. If θ1k happens at stage k2 2; 3f g the profits (in present-value) that firm
1 and firm 2 will obtain at stage k are respectively:

4u1k �
2

xk
u1k
� �2� �

1

1þ r

� k�1

and 2u2k �
1

xk
u2k
� �2� �

1

1þ r

� k�1

;

where r ¼ 0:05 is the discount rate.

If θ2k happens at stage k2 2; 3f g the profits (in present-value) that firm 1 and

firm 2 will obtain at stage k are respectively:

2u1k �
2

xk
u1k
� �2� �

1

1þ r

� k�1

and 3u2k �
2

xk
u2k
� �2� �

1

1þ r

� k�1

:
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It is known in stage 1 that θ11 has occurred. The probability that θ1k will occur at
stage k2 2; 3f g is 0.6 and the probability that θ2k will occur at stage k2 2; 3f g is

0.4. In stage 4, a terminal payment (again in present-value) equaling x4
1

1þr

� 	3
will be paid to firm 1 and a terminal payment (again in present-value) equaling

0:5x4
1

1þr

� 	3
will be paid to firm 2.

The growth dynamics of the resource is governed by the stochastic difference

equation:

xkþ1 ¼ xk þ 15� 0:1xk �
X2
j¼1

uj
k þ ϑk;

for k2 1; 2; 3f g and x1 ¼ 12,

where ϑk is a random variable with non-negative range {0, 1, 2} and

corresponding probabilities {0.1, 0.7, 0.2}; moreover ϑ1,ϑ2,ϑ3 are independent.
Moreover, we have the constraint u1k þ u2k � 0:9xk þ 15.

The objective of extractor i2 1; 2f g is to maximize the present value of the

expected stream of future profits:

Characterize the feedback Nash equilibrium.

2. Obtain a group optimal solution that maximizes the joint expected profit.

3. Consider the case when the extractors agree to share the excess of cooperative

gains over their expected noncooperative profits equally. Derive a subgame

consistent solution.
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