
Chapter 7

Subgame Consistent Cooperative Solution
in Dynamic Games

In many game situations, the evolutionary process is in discrete time rather than in

continuous time. An extension of the analysis to a discrete-time dynamic frame-

work is provided in this chapter. In particular, it presents an analysis on subgame

consistent solutions which entail group optimality and individual rationality for

cooperative (deterministic and stochastic) dynamic games. It integrates the works

of Yeung and Petrosyan (2010) and Chapters 12 and 13 of Yeung and Petrosyan

(2012a). We first present in Sect. 7.1 a general formulation of cooperative dynamic

games in discrete time with the noncooperative outcomes, and the notions of group

optimality and individual rationality. Subgame consistent cooperative solutions

with corresponding payoff distribution procedures are derived in Sect. 7.2. An

illustration of cooperative resource extraction in discrete time is given in

Sect. 7.3. A general formulation of coopeartive stochastic dynamic games in

discrete time is given in Sect. 7.4. Subgame consistent cooperative solutions with

corresponding payoff distribution procedures are derived in Sect. 7.5. An illustra-

tion of cooperative resource extraction under uncertainty in discrete time is given in

Sect. 7.6. A heuristic approach to obtaining subgame consistent solutions for

cooperative dynamic games is provided in Sect. 7.7. Section 7.8 contains Appen-

dices of the Chapter. Chapter Notes are given in Sect. 7.9 and problems in

Sect. 7.10. In addition, to make the discrete-time analysis in this Chapter fully in

line with the continuous-time analyses presented in earlier chapters a terminal

condition is added to each player’s payoff in Yeung and Petrosyan (2010, 2012a).

7.1 Cooperative Dynamic Games

In this Section we present the basic framework of discrete-time cooperative

dynamic games.
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7.1.1 Game Formulation

Consider the general T� stage n� person nonzero-sum discrete-time cooperative

dynamic game with initial state x0. The state space of the game is X2Rm and the

state dynamics of the game is characterized by the difference equation:

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �
; ð1:1Þ

for k2 1; 2; � � �; Tf g�κ and x1 ¼ x0,

where ui
k2Ui � Rmi is the control vector of player i at stage k, xk2X � Rm is the

state of the game.

The payoff of player i is

XT
ζ¼1

gi
ζ xζ; u

1
ζ ; u

2
ζ ; � � �; un

ζ

h i 1

1þ r

� �ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þ r

� �T

; ð1:2Þ

for i2 1; 2; � � �; nf g�N,

where r is the discount rate, and qi
Tþ1 xTþ1ð Þ is the terminal benefit that player

i received at stage T þ 1.

The payoffs of the players are transferable.

7.1.2 Noncooperative Outcome

In this subsection, we characterize the noncooperative outcome of the discrete-time

economic game (1.1 and 1.2). Let ϕ i
k xð Þ, for k2κ and i2N

� �
denote a set of

strategies that provides a feedback Nash equilibrium solution to the game (1.1 and

1.2), and

Vi k; xð Þ ¼
XT
ζ¼k

g i
ζ xζ,ϕ

1
ζ xζð Þ,ϕ2

ζ xζð Þ, � � �,ϕn
ζ xζð Þ

h i
1

1þr

� 	ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T
;

where xk ¼ x, for k2K and i2N, denote the value function indicating the game

equilibrium payoff to player i over the stages from k to T þ 1. A frequently used

way to characterize and derive a feedback Nash equilibrium of the game is provided

in the following theorem.
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Theorem 1.1 A set of strategies ϕ i
k xð Þ, fork2κ and i2N

� �
provides a feedback

Nash equilibrium solution to the game (1.1 and 1.2) if there exist functions Vi(k, x),
for k2K and i2N, such that the following recursive relations are satisfied:

Vi k; xð Þ ¼ max
u i
k



gi
k x,ϕ1

k xð Þ,ϕ2
k xð Þ, � � �,ϕi�1

k xð Þ, ui
k,ϕ

iþ1
k xð Þ, � � �,ϕn

k xð Þ� �
1

1þr

� 	k�1

þ Vi
�
k þ 1, f k x,ϕ1

k xð Þ,ϕ2
k xð Þ, � � �,ϕi�1

k xð Þ, ui
k,ϕ

iþ1
k xð Þ, � � �,ϕn

k xð Þ� � 

;

ð1:3Þ

Vi T þ 1, xð Þ ¼ qi
Tþ1 xð Þ 1

1þ r

� �T

; ð1:4Þ

for i2N and k2κ.

Proof Invoking the discrete-time dynamic programming technique in Theorem

A.5 of the Technical Appendices, Vi(k, x) is the maximized payoff of player i for

given strategies ϕ i
k xð Þ�

, for j2N and j 6¼ ig of the other n� 1 players. Hence a

Nash equilibrium appears. ■

For the sake of exposition, we sidestep the issue of multiple equilibria and focus

on solvable games in which a particular noncooperative Nash equilibrium is chosen

by the players in the entire subgame.

7.1.3 Dynamic Cooperation

Now consider the case when the players agree to cooperate and distribute the

payoff among themselves according to an optimality principle. Two essential

properties that a cooperative scheme has to satisfy are group optimality

and individual rationality. An agreed upon optimality principle entails group

optimality and an imputation to distribute the total cooperative payoff among the

players.

We first examine the group optimal solution and then the condition under which

individual rationality will be maintained.

7.1.3.1 Group Optimality

Maximizing the players’ joint payoff guarantees group optimality in a game where

payoffs are transferable. To maximize their joint payoff the players have to solve

the discrete-time dynamic programming problem of maximizing
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Xn
j¼1

XT
k¼1

�
gj
k xk; u

1
k ; u

2
k ; � � �; un

k

� � 1

1þ r

� �k�1 �
þ
Xn
j¼1

qj
Tþ1 xTþ1ð Þ 1

1þ r

� �T

; ð1:5Þ

subject to (1.1).

Invoking the discrete-time dynamic programming technique an optimal solution

to the control problem (1.1) and (1.5) can be characterized by the theorem below.

Theorem 1.2 A set of strategies ψ i
k xð Þ, fork2κ and i2N

� �
provides an optimal

solution to the problem (1.1) and (1.5) if there exist functionsW(k, x), fork2K, such
that the following recursive relations are satisfied:

W k; xð Þ ¼ max
u1
k
, u2

k
, ���, u n

k


 Xn
j¼1

gj
k xk; u

1
k ; u

2
k ; � � �; un

k

� � 1

1þ r

� �k�1

þW k þ 1, f k xk; u
1
k ; u

2
k ; � � �; un

k

� �� � 

¼
Xn
j¼1

gj
k x,ψ1

k xð Þ,ψ2
k xð Þ, � � �,ψ n

k xð Þ� �
1

1þr

� 	k�1

þW k þ 1, f k x,ψ1
k xð Þ,ψ2

k xð Þ, � � �,ψ n
k xð Þ� �� �

;

ð1:6Þ

W T þ 1, xð Þ ¼
Xn
j¼1

qj
Tþ1 xð Þ 1

1þ r

� �T

: ð1:7Þ

Proof Follow the proof of discrete-time dynamic programming technique in

Theorem A.5 of the Technical Appendices. ■

Substituting the optimal control ψ i
k xð Þ, for k2κ and i2N

� �
into the state

dynamics (1.1), one can obtain the dynamics of the cooperative trajectory as:

xkþ1 ¼ f k xk,ψ
1
k xkð Þ,ψ2

k xkð Þ, � � �,ψ n
k xkð Þ� �

; ð1:8Þ

for k2κ and x1 ¼ x0.

Let x*k
� �T

k¼1
denote the solution to (1.8) and hence the optimal cooperative

path. The total cooperative payoff over the stages from k to T þ 1 can be

expressed as:

W k; x*k
� � ¼XT

ζ¼k

Xn
j¼1

gj
ζ x*ξ ,ψ

1
ζ x*ζ

� 	
,ψ2

ζ x*ζ

� 	
,Λ,ψ n

ζ x*ζ

� 	h i
1

1þr

� 	ζ�1

þ
Xn
j¼1

qj
Tþ1 xTþ1ð Þ 1

1þr

� 	T
, for k2κ: ð1:9Þ

We then proceed to consider individual rationality.
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7.1.3.2 Individual Rationality

The players have to agree on an optimality principle in distributing the total

cooperative payoff among themselves. For individual rationality to be upheld the

payoffs an player receives under cooperation have to be no less than his noncoop-

erative payoff along the cooperative state trajectory. For instance, (i) the players

may share the excess of the total cooperative payoff over the sum of individual

noncooperative payoffs equally, or (ii) they may share the total cooperative payoff

proportionally to their noncooperative payoffs.

Let ξ �; �ð Þ denote the imputation vector guiding the distribution of the total

cooperative payoff under the agreed-upon optimality principle along the coopera-

tive trajectory x*k
� �T

k¼1
. At stage k, the imputation vector according to ξ �; �ð Þ is

ξ k; x*k
� � ¼ ξ1 k; x*k

� �
, ξ2 k; x*k
� �

, . . ., ξn k; x*k
� �� �

, for k2κ.
If for example, the optimality principle specifies that the players share the excess

of the total cooperative payoff over the sum of individual noncooperative payoffs

equally, then the imputation to player i becomes:

ξi k; x*k
� � ¼ Vi k; x*k

� �þ 1

n
W k; x*k
� ��Xn

j¼1

Vj k; x*k
� �" #

; ð1:10Þ

for i2N and k2κ.
If the optimality principle specifies that the players share the total cooperative

proportional to their noncooperative payoffs, then the imputation to player

i becomes:

ξi k; x*k
� � ¼ Vi k; x*k

� �
Xn
j¼1

Vj k; x*k
� �W k; x*k

� �
; ð1:11Þ

for i2N and k2κ.
For individual rationality to be maintained throughout all the stages k2κ, it is

required that:

ξi k; x*k
� � � Vi k; x*k

� �
, for i2N and k2κ: ð1:12Þ

In particular, the above condition guaranties that the payoff allocated to a player

under cooperation will be no less than its noncooperative payoff.

To satisfy group optimality, the imputation vector has to satisfy

W k; x*k
� � ¼Xn

j¼1

ξj k; x*k
� �

, for k2κ: ð1:13Þ

This condition guarantees the highest joint payoffs for the participating players.
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7.2 Subgame Consistent Solutions and Payment
Mechanism

To guarantee dynamical stability in a dynamic cooperation scheme, the solution has

to satisfy the property of subgame consistency. In particular, the specific agreed-

upon optimality principle must remain effective at any stage of the game along the

optimal state trajectory. Since at any stage of the game the players are guided by the

same optimality principles and hence do not have any ground for deviation from the

previously adopted optimal behavior throughout the game. Therefore for subgame

consistency to be satisfied, the imputation ξ �; �ð Þ according to the original optimality

principle has to be maintained at all the T stages along the cooperative trajectory

x*k
� �T

k¼1
. In other words, the imputation

ξ k; x*k
� � ¼ ξ1 k; x*k

� �
, ξ2 k; x*k
� �

, . . ., ξn k; x*k
� �� �

at stage k, ð2:1Þ

for k2 κ
has to be upheld.

Crucial to the analysis is the formulation of a payment mechanism so that the

imputation in (2.1) can be realized.

7.2.1 Payoff Distribution Procedure

Similar to the analysis of cooperative differential games, we first formulate a Payoff

Distribution Procedure (PDP) so that the agreed imputations (2.1) can be realized.

Let Bi
k(x

�
k) denote the payment that player i will receive at stage k under the

cooperative agreement along the cooperative trajectory x*k
� �T

k¼1
.

The payment scheme involving Bi
k(x

�
k) constitutes a PDP in the sense that the

imputation to player i over the stages from k to T can be expressed as:

ξi k; x*k
� � ¼ Bi

k x*k
� �

1
1þr

� 	k�1

þ

 XT

ζ¼kþ1

Bi
ζ x*ζ

� 	
1

1þr

� 	ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T 

ð2:2Þ

for i2N and k2κ.
Using (2.2) one can obtain

ξi k þ 1, x*kþ1

� � ¼ Bi
kþ1 x*kþ1

� �
1

1þr

� 	k
þ

 XT

ζ¼kþ2

Bi
ζ x*ζ

� 	
1

1þr

� 	ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T 

: ð2:3Þ

170 7 Subgame Consistent Cooperative Solution in Dynamic Games



Upon substituting (2.3) into (2.2) yields

ξi k; x*k
� � ¼ Bi

k x*k
� � 1

1þ r

� �k�1

þ ξi k þ 1, f k x*k ,ψ k x*k
� �� �� �

; ð2:4Þ

for i2N and k2κ.
A theorem characterizing a formula for Bi

k(x
�
k), for k2κ and i2N, which yields

(2.2) is provided below.

Theorem 2.1 A payment equaling

Bi
k x*k
� � ¼ 1þ rð Þk�1

�
ξi k; x*k
� �� ξi k þ 1, f k x*k ,ψk x*k

� �� �� � �
; ð2:5Þ

for i2N,

given to player i at stage k2 1; 2; � � �; Tf g along the cooperative trajectory x*k
� �T

k¼1

would lead to the realization of the imputation {ξ(k, x�k), for k2κ}.

Proof From (2.4), one can readily obtain (2.5). Theorem 2.1 can also be verified

alternatively by showing that from (2.2)

ξi k; x*k
� � ¼ Bi

k x*k
� �

1
1þr

� 	k�1

þ

 XT

ζ¼kþ1

Bi
ζ x*ζ

� 	
1

1þr

� 	ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T

¼


ξi k; x*k
� �� �ξi k þ 1, f k x*k ,ψ k x*k

� �� �� ��

þ
XT
ζ¼kþ1



ξi ζ; x*ζ

� 	
�
�
ξi ζ þ 1, f ζ x*ζ ,ψζ x*ζ

� 	� 	h i�

¼ ξi k; x*k

� �
;

and ξi T þ 1, x*Tþ1

� � ¼ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T
.

Hence Theorem 2.1 follows. ■

The payment scheme in Theorem 2.1 gives rise to the realization of the impu-

tation guided by the agreed-upon optimal principle and will be used to derive time

(optimal-trajectory-subgame) consistent solutions in the next subsection.

7.2.2 Subgame Consistent Solution

We denote the discrete-time cooperative game with dynamics (1.1) and payoff (1.2)

by Γc(1, x0). We then denote the game with dynamics (1.1) and payoff (1.2) which

starts at stage υ with initial state x�υ by Γc(υ, x�υ). Moreover, we let
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P 1; x0ð Þ ¼ ui
h and Bi

h for h2κ and i2N, ξ 1; x0ð Þ� �
denote the agreed-upon

optimality principle for the cooperative game Γc(1, x0). Let

P x*υ , υ
� � ¼ ui

h and Bi
h for h2 υ, υþ 1, . . ., Tf g and i2N, ξ υ; x*υ

� �� �
denote the

optimality principle of the cooperative game Γc(υ, x�υ) according to the original

agreement.

A theorem characterizing a subgame consistent solution for the discrete-time

cooperative game Γc(1, x0) is presented below.

Theorem 2.2 For the cooperative game Γc(1, x0) with optimality principle

P 1; x0ð Þ ¼ ui
h and Bi

h for h2κ and i2N, ξ 1; x0ð Þ� �
in which

(i) ui
h ¼ ψ i

h x*h
� �

, for h2κ and i2N, is the set of group optimal strategies for the

game Γc(1, x0), and
(ii) Bi

h ¼ Bi
h x*h
� �

, for h2κ and i2N, where

Bi
h x*h
� � ¼ 1þ rð Þh�1

�
ξi h; x*h
� �� ξi k þ 1, f h x*h,ψh x*h

� �� �� � �
; ð2:6Þ

and [ξ1(h, x�h), ξ
2(h, x�h), . . ., ξ

i(h, x�h)], is the imputation according to the optimality

principle P(h, x�h);
is subgame consistent.

Proof Follow the proof of the continuous-time analog in Theorem 2.2 of

Chap. 3. ■

When all players are using the cooperative strategies, the payoff that player iwill

directly receive at stage k given that along the cooperative trajectory x*k
� �T

k¼1
is

gi
k x*k ,ψ

1
k x*k
� �

,ψ2
k x*k
� �

, . . .,ψ n
k x*k
� �

, x*kþ1

� �
:

However, according to the agreed upon imputation, player i will receive Bi
k(x

�
k)

at stage k. Therefore a side-payment

ϖ i
k x*k
� � ¼ Bi

k x*k
� �� gi

k x*k ,ψ
1
k x*k
� �

,ψ2
k x*k
� �

, . . .,ψ n
k x*k
� �

, x*k
� �

; ð2:7Þ

for k2κ and i2N,

will be given to player i to yield the cooperative imputation ξi(k, x�k).

7.3 An Illustration in Cooperative Resource Extraction

Consider an economy endowed with a renewable resource and with two resource

extractors (firms). The lease for resource extraction begins at stage 1 and ends at

stage 3 for these two firms. Let uik denote the amount of resource extracted by firm
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i at stage k, for i2 1; 2f g. Let Ui be the set of admissible extraction rates, and

xk2X � Rþ the size of the resource stock at stage k. The extraction cost for firm

i2 1; 2f g depends on the quantity of resource extracted uik, the resource stock size

xk, and cost parameters c1 and c2. The extraction cost for firm i at stage k is specified

as ci(u
i
k)
2/xk. The price of the resource is P.

The profits that firm 1 and firm 2 will obtain at stage k are respectively:

Pu1k �
c1
xk

u1k
� �2� �

and Pu2k �
c2
xk

u2k
� �2� �

: ð3:1Þ

In stage 4, the firms will receive a salvage value equaling qx4.
The growth dynamics of the resource is governed by the difference equation:

xkþ1 ¼ xk þ a� bxk �
X2
j¼1

uj
k; ð3:2Þ

for k2 1; 2; 3f g and x1 ¼ x0.
There exists an extraction constraint that human harvesting can at most exploit

Y proportion of the existing biomass, hence u1k þ u2k � Yxk. Moreover b < 1� Y.
The payoff of extractor i2 1; 2f g is to maximize the present value of the stream of

future profits:

X3
k¼1

Pui
k �

ci
xk

u i
k

� �2� �
1

1þ r

� �k�1

þ 1

1þ r

� �3

qx4, for i2 1; 2f g; ð3:3Þ

subject to (3.2).

Invoking Theorem 1.1, one can characterize the noncooperative equilibrium

strategies in a feedback solution for game (3.2 and 3.3). In particular, a set of

strategies ϕ i
k xð Þ, for k2 1; 2; 3f g and i2 1; 2f g� �

provides a Nash equilibrium

solution to the game (3.2 and 3.3) if there exist functions Vi(k, x), for i2 1; 2f g
and k2 1; 2; 3f g, such that the following recursive relations are satisfied:

Vi k; xð Þ ¼ max
u i
k



Pui

k �
ci
x

u i
k

� �2h i 1

1þ r

� �k�1

þVi k þ 1, xþ a� bx� ui
k � ϕ j

k xð Þ
h i 


, for k2 1; 2; 3f g;

Vi 4; xð Þ ¼ 1
1þr

� 	3
qx: ð3:4Þ

Performing the indicated maximization in (3.4) yields:

P� 2ciu
i
k

x

� �
1

1þ r

� �k�1

� V i
xkþ1

k þ 1, xþ a� bx� ui
k � ϕ j

k xð Þ
h i

¼ 0; ð3:5Þ

for i2 1; 2f g and k2 1; 2; 3f g.

7.3 An Illustration in Cooperative Resource Extraction 173



From (3.5), the game equilibrium strategies can be expressed as:

ϕ i
k xð Þ ¼

�
P� V i

xkþ1
k þ 1, xþ a� bx�

X2
‘¼1

ϕ ‘
k xð Þ

" #
1þ rð Þk�1

�
x

2ci
; ð3:6Þ

for i2 1; 2f g and k2 1; 2; 3f g.
The game equilibrium profits of the firms can be obtained as:

Proposition 3.1 The value function indicating the game equilibrium profit of

firm i is:

Vi k; xð Þ ¼ Ai
kxþ Ci

k

� �
, for i2 1; 2f g and k2 1; 2; 3f g; ð3:7Þ

where Ai
k and Ci

k, for i2 1; 2f g and k2 1; 2; 3f g, are constants in terms of the

parameters of the game (3.2 and 3.3).

Proof See Appendix A of this Chapter. ■

Substituting the relevant derivatives of the value functions in Proposition 3.1

into the game equilibrium strategies (3.6) yields a noncooperative feedback

equilibrium solution of the game (3.2 and 3.3).

Now consider the case when the extractors agree to maximize their joint

profit and share the excess of cooperative gains over their noncooperative

payoffs equally. To maximize their joint payoff, they solve the problem of

maximizing

X2
j¼1

X3
k¼1

Puj
k �

cj
xk

u j
k

� 	2� �
1

1þ r

� �k�1

þ 2
1

1þ r

� �3

qx4 ð3:8Þ

subject to (3.2).

Invoking Theorem 1.2, one can characterize the optimal controls in the dynamic

programming problem (3.2) and (3.8). In particular, a set of control strategies

ψ i
k xð Þ, for k2 1; 2; 3f g and i2 1; 2f g� �

provides an optimal solution to the problem

(3.2) and (3.8) if there exist functionsW(k, x):R ! R, for k2 1; 2; 3f g, such that the
following recursive relations are satisfied:

W k; xð Þ ¼ max
u1
k
, u2

k


 X2
j¼1

Puj
k �

cj
x

u j
k

� 	2� �
1

1þ r

� �k�1

þW k þ 1, xþ a� bx�
X2
j¼1

uj
k

" # 

, for k2 1; 2; 3f g:

W 4; xð Þ ¼ 2 1
1þr

� 	3
qx: ð3:9Þ
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Performing the indicated maximization in (3.9) yields:

P� 2ciu
i
k

x

� �
1

1þ r

� �k�1

�Wxkþ1
k þ 1, xþ a� bx�

X2
j¼1

uj
k

" #
¼ 0; ð3:10Þ

for i2 1; 2f g and k2 1; 2; 3f g.
In particular, the optimal cooperative strategies can be obtained from (3.10) as:

ui
k ¼

�
P�Wxkþ1

k þ 1, xþ a� bx�
X2
j¼1

uj
k

" #
1þ rð Þk�1

�
x

2ci
; ð3:11Þ

for i2 1; 2f g and k2 1; 2; 3f g.
The firms’ joint profit under cooperation can be obtained as:

Proposition 3.2 The value function indicating the maximized joint payoff is

W k; xð Þ ¼ Akxþ Ck½ 	, for k2 1; 2; 3f g; ð3:12Þ

where Ak and Ck, for k2 1; 2; 3f g, are constants in terms of the parameters of the

problem (3.8) and (3.2).

Proof See Appendix B of this Chapter. ■

Using (3.11) and Proposition 3.2, the optimal cooperative strategies of the

players can be expressed as:

ψ i
k xð Þ ¼ P� Akþ1 1þ rð Þk�1

h i x

2ci
, for i2 1; 2f g and k2 1; 2; 3f g: ð3:13Þ

Substituting ψ i
k(x) from (3.13) into (3.2) yields the optimal cooperative state

trajectory:

xkþ1 ¼ xk þ a� bxk �
X2
j¼1

P� Akþ1 1þ rð Þk�1
h i xk

2cj
; ð3:14Þ

for k2 1; 2; 3f g and x1 ¼ x0.
Dynamics (3.14) is a linear difference equation readily solvable by standard

techniques. Let x*k , for k2 1; 2; 3f g� �
denote the solution to (3.14).

Since the extractors agree to share the excess of cooperative gains over their

noncooperative payoffs equally, an imputation

ξi k; x*k
� � ¼ Vi k; x*k

� �þ 1

2
W k; x*k
� ��X2

j¼1

Vj k; x*k
� �" #

¼ Ai
kx

*
k þ Ci

k

� �þ 1

2
Akx

*
k þ Ck

� ��X2
j¼1

Aj
kx

*
k þ Cj

k

� 	" #
; ð3:15Þ

for k2 1; 2; 3f g and i2 1; 2f g has to be maintained.
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Invoking Theorem 2.1, if x*k2X is realized at stage k a payment equaling

Bi
k x*k
� � ¼ 1þ rð Þk�1

�
ξi k; x*k
� �� ξi k þ 1, f k x*k ,ψ k x*k

� �� �� ��
¼ 1þ rð Þk�1



Ai
kx

*
k þ Ci

k

� �þ 1

2
Akx

*
k þ Ck

� ��X2
j¼1

Aj
kx

*
k þ Cj

k

� 	 !

�
�
Ai
kþ1x

*
kþ1þ Ci

kþ1

� �þ 1

2
Akþ1x

*
kþ1þ Ckþ1

� ��X2
j¼1

Aj
kþ1x

*
kþ1þ Cj

kþ1

� 	 !�

,

ð3:16Þ

for i2 {1,2};

given to player i at stage k2κ would lead to the realization of the imputation(3.15).

A subgame consistent solution can be readily obtained from (3.13), (3.15) and

(3.16).

7.4 Cooperative Stochastic Dynamic Games

In this Section we present the basic framework of discrete-time cooperative sto-

chastic dynamic games.

7.4.1 Game Formulation

Consider the general T� stage n� person nonzero-sum discrete-time cooperative

stochastic dynamic game with initial state x0. The state space of the game is X2Rm

and the state dynamics of the game is characterized by the stochastic difference

equation:

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �þ Gk xkð Þθk; ð4:1Þ

for k2 1; 2; � � �; Tf g�κ and x1 ¼ x0;

where ui
k2Rmi is the control vector of player i at stage k, xk2X is the state, and θk

is a set of statistically independent random variables.

The objective of player i is

Eθ1,θ2, ���,θT


 XT
ζ¼1

gi
ζ xζ; u

1
ζ ; u

2
ζ ; . . .; u

n
ζ

h i
1

1þr

� 	ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T 

,

for i2 1; 2; . . .; nf g�N; ð4:2Þ

where r is the discount rate and Eθ1,θ2, ���,θT is the expectation operation with respect

to the statistics of θ1, θ2, � � �, θT .
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The payoffs of the players are transferable.

We then characterize the noncooperative outcome of the discrete-time stochastic

economic game (4.1 and 4.2). Let ϕ i
k xð Þ, for k2κ and i2N

� �
denote a set of

strategies that provides a feedback Nash equilibrium solution (if it exists) to the

game (4.1 and 4.2), and

Vi k; xð Þ ¼ Eθk ,θkþ1, ���,θT


 XT
ζ¼k

g i
ζ xζ,ϕ

1
ζ xζð Þ,ϕ2

ζ xζð Þ, . . .,ϕn
ζ xζð Þ

h i 1

1þ r

� �ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þ r

� �T 

;

where xk ¼ x, for k2K and i2N, denote the value function indicating the expected

game equilibrium payoff to player i over the stages from k to T þ 1.

A frequently used way to characterize and derive a feedback Nash equilibrium of

the game is provided in the theorem below.

Theorem 4.1 A set of strategies ϕ i
k xð Þ, for k2κ and i2N

� �
provides a feedback

Nash equilibrium solution to the game (4.1 and 4.2) if there exist functions Vi(k, x),
for k2K and i2N, such that the following recursive relations are satisfied:

Vi k; xð Þ ¼ max
u i
k

Eθk



gi
k

�
x,ϕ1

k xð Þ,ϕ2
k xð Þ, . . .,ϕi�1

k xð Þ, ui
k,ϕ

iþ1
k xð Þ, . . .

� � �,ϕn
k xð Þ� 1

1þr

� 	k�1

þ Vi k þ 1,ef i
k x; ui

k

� �þ Gk xð Þθk
h i


¼ Eθk



gi
k

�
x,ϕ1

k xð Þ,ϕ2
k xð Þ, . . .,ϕn

k xð Þ 1
1þr

� 	k�1

þVi k þ 1, f k x,ϕ1
k xð Þ,ϕ2

k xð Þ, . . .,ϕn
k xð Þ� �þ Gk xð Þθk

� �
 ð4:3Þ

Vi T þ 1, xð Þ ¼ qi
Tþ1 xð Þ 1

1þ r

� �T

; ð4:4Þ

for i2N and k2κ,

where ef i
k x; ui

k

� � ¼ f k x,ϕ1
k xð Þ,ϕ2

k xð Þ, . . .,ϕi�1
k xð Þ, ui

k,ϕ
iþ1
k xð Þ, . . .,ϕn

k xð Þ� �
and Eθk

is the expectation operation with respect to the statistics of θk.

Proof Invoking the discrete-time stochastic dynamic programming technique in

Theorem A.6 of the Technical Appendices, Vi(k, x) is the maximized payoff of

player i for given strategies ϕ i
k xð Þ�

, for j2N and j 6¼ ig of the other n� 1 players.

Hence a Nash equilibrium appears. ■

Again, for the sake of exposition, we sidestep the issue of multiple equilibria and

focus on solvable games in which a particular noncooperative Nash equilibrium is

chosen by the players in the entire subgame.
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7.4.2 Dynamic Cooperation under Uncertainty

Now consider the case when the players agree to cooperate and distribute the payoff

among themselves according to an optimality principle. Once again, the essential

properties of group optimality and individual rationality have to be satisfied. An

agreed upon optimality principle entails group optimality and an imputation to

distribute the total cooperative payoff among the players.

We first examine the group optimal solution and then the condition under which

individual rationality will be maintained.

7.4.2.1 Group Optimality

Maximizing the players’ expected joint payoff guarantees group optimality in a

game where payoffs are transferable. To maximize their expected joint payoff the

players have to solve the discrete-time stochastic dynamic programming problem of

maximizing

Eθ1,θ2, ���,θT


Xn
j¼1

XT
k¼1

�
gj
k xk; u

1
k ; u

2
k ; . . .; u

n
k

� �
1

1þr

� 	k�1
�

þ
Xn
j¼1

qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T 

ð4:5Þ

subject to (4.1).

Invoking the discrete-time stochastic dynamic programming technique an opti-

mal solution to the problem (4.1) and (4.5) can be characterized in the following

theorem.

Theorem 4.2 A set of strategies ψ i
k xð Þ, for k2κ and i2N

� �
, provides an optimal

solution to the problem (4.1) and (4.5) if there exist functionsW(k, x), fork2K, such
that the following recursive relations are satisfied:

W k; xð Þ ¼ max
u1
k
, u2

k
, ..., u n

k

Eθk


Xn
j¼1

gj
k x; u1k ; u

2
k ; . . .; u

n
k

� � 1

1þ r

� �k�1

þW k þ 1, f k x; u1k ; u
2
k ; . . .; u

n
k

� �þ Gk xð Þθk
� � 


¼ Eθk


 Xn
j¼1

gj
k x,ψ1

k xð Þ,ψ2
k xð Þ, . . .,ψ n

k xð Þ� �
 1

1þ r

� �k�1

þW k þ 1, f k x,ψ1
k xð Þ,ψ2

k xð Þ, . . .,ψ n
k xð Þ� �þ Gk xð Þθk

� � 

, ð4:6Þ

W T þ 1, xð Þ ¼
Xn
j¼1

qj
Tþ1 xð Þ 1

1þ r

� �T

: ð4:7Þ
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Proof Follow the proof of the discrete-time stochastic dynamic programming

technique in Theorem A.6 of the Technical Appendices. ■

Substituting the optimal control ψ i
k xð Þ, for k2κ and i2N

� �
into the state

dynamics (4.1), one can obtain the dynamics of the cooperative trajectory as:

xkþ1 ¼ f k xk,ψ
1
k xkð Þ,ψ2

k xkð Þ, . . .,ψ n
k xkð Þ� �þ Gk xkð Þθk; ð4:8Þ

for k2κ and x1 ¼ x0.
We use X�

k to denote the set of realizable values of xk at stage k generated by

(4.8). The term x*k 2X*
k is used to denote an element in X�

k .

The term W(k, x�k) gives the expected total cooperative payoff over the stages

from k to T þ 1 if x*k 2X*
k is realized at stage k2κ.We then proceed to consider

individual rationality.

7.4.2.2 Individual Rationality

The players have to agree to an optimality principle in distributing the total

cooperative payoff among themselves. For individual rationality to be upheld the

expected payoffs an player receives under cooperation have to be no less than his

expected noncooperative payoff along the cooperative state trajectory. Let ξ �; �ð Þ
denote the imputation vector guiding the distribution of the total cooperative

payoff under the agreed-upon optimality principle along the cooperative trajectory

x*k
� �T

k¼1
. At stage k, the imputation vector according to ξ �; �ð Þ is

ξ k; x*k
� � ¼ ξ1 k; x*k

� �
, ξ2 k; x*k
� �

, . . ., ξn k; x*k
� �� �

, for k2κ.
For individual rationality to be maintained throughout all the stages k2κ, it is

required that:

ξi k; x*k
� � � Vi k; x*k

� �
, for i2N and k2κ:

In particular, the above condition guaranties that the expected payoff allocated to

any player under cooperation will be no less than its expected noncooperative

payoff.

To satisfy group optimality, the imputation vector has to satisfy

W k; x*k
� � ¼Xn

j¼1

ξj k; x*k
� �

, for k2κ:

This condition guarantees the highest expected joint payoffs for the participating

players.

If the optimality principle specifies that the players share the excess of the

expected total cooperative payoff over the sum of expected individual noncooper-

ative payoffs equally, then the imputation to player i becomes:
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ξi k; x*k
� � ¼ Vi k; x*k

� �þ 1

n
W k; x*k
� ��Xn

j¼1

Vj k; x*k
� �" #

;

for i2N and k2κ.
If the optimality principle specifies that the players share the expected total

cooperative proportional to their expected noncooperative payoffs, then the impu-

tation to player i becomes:

ξi k; x*k
� � ¼ Vi k; x*k

� �
Xn
j¼1

Vj k; x*k
� �W k; x*k

� �
;

for i2N and k2κ.

7.5 Subgame Consistent Solutions and Payment
Mechanism

Now, we proceed to consider dynamically stable solutions in cooperative stochastic

dynamic games. To guarantee dynamical stability in a stochastic dynamic cooper-

ation scheme, the solution has to satisfy the property of subgame consistency. A

cooperative solution is subgame-consistent if an extension of the solution policy to

a subgame starting at a later time with any realizable state brought about by prior

optimal behavior would remain optimal under the agreed upon optimality principle.

In particular, subgame consistency ensures that as the game proceeds players are

guided by the same optimality principle at each stage of the game, and hence do not

possess incentives to deviate from the previously adopted optimal behavior. Yeung

and Petrosyan (2010) developed conditions leading to subgame consistent solutions

in stochastic differential games.

For subgame consistency to be satisfied, the imputation ξ �; �ð Þ according to the

original optimality principle has to be maintained at all the T stages along the

cooperative trajectory x*k
� �T

k¼1
. In other words, the imputation

ξ k; x*k
� � ¼ ξ1 k; x*k

� �
, ξ2 k; x*k
� �

, . . ., ξn k; x*k
� �� �

at stage k, for k2κ; ð5:1Þ

has to be upheld.

Crucial to the analysis is the formulation of a payment mechanism so that the

imputation in (5.1) can be realized.
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7.5.1 Payoff Distribution Procedure

Following the analysis of Yeung and Petrosyan (2010), we formulate a discrete-

time Payoff Distribution Procedure (PDP) so that the agreed imputations(5.1) can

be realized. Let Bi
k(x

�
k) denote the payment that player i will receive at stage k under

the cooperative agreement if x*k 2X*
k is realized at stage k2κ.

The payment scheme involving Bi
k(x

�
k) constitutes a PDP in the sense that if

x*k2X*
k is realized at stage k the imputation to player i over the stages from k to T can

be expressed as:

ξi k; x*k
� � ¼ Bi

k x*k
� �

1
1þr

� 	k�1

þEθk ,θkþ1, ...,θT


 XT
ζ¼kþ1

Bi
ζ x*ζ

� 	
1

1þr

� 	ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T 

ð5:2Þ

for i2N and k2κ.
A theorem characterizing a formula for Bi

k(x
�
k), for k2κ and i2N, which yields

(5.2) is provided below.

Theorem 5.1 A payment equaling

Bi
k x*k
� � ¼ 1þ rð Þk�1



ξi k; x*k
� ��Eθk

�
ξi k þ 1, f k x*k ,ψ k x*k

� �� �þ Gk x*k
� �

θk
� ��


;

ð5:3Þ

for i2N,

given to player i at stage k2κ, if x*k 2X*
k would lead to the realization of the

imputation ξ k; x*k
� �

, for k2κ
� �

.

Proof Using (5.2) one can obtain

ξi k þ 1, x*kþ1

� � ¼ Bi
kþ1 x*kþ1

� �
1

1þr

� 	k
þEθkþ1,θkþ3, ...,θT


 XT
ζ¼kþ2

Bi
ζ x*ζ

� 	
1

1þr

� 	ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T 

:

ð5:4Þ

Upon substituting (5.4) into (5.2) yields

ξi k; x*k
� � ¼ Bi

k x*k
� �

1
1þr

� 	k�1

þEθk

�
ξi k þ 1, f k x*k ,ψ k x*k

� �� �þ Gk x*k
� �

θk
� �� ð5:5Þ

for i2N and k2κ.
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Hence Theorem 5.1 follows. ■

The payment scheme in Theorem 5.1 gives rise to the realization of the impu-

tation guided by the agreed-upon optimal principle and will be used to derive

subgame consistent solutions in the next subsection.

7.5.2 Subgame Consistent Solution

We denote the discrete-time cooperative game with dynamics (4.1) and payoff (4.2)

by Γc(1, x0). Then we denote the game with dynamics (4.1) and payoff (4.2)

which starts at stage υ � 1 with initial state x*υ2X*
υ by Γc(υ, x�υ). Moreover, we

let P 1; x0ð Þ ¼ ui
h and Bi

h for h2κ and i2N, ξ 1; x0ð Þ� �
denote the agreed-upon

optimality principle for the cooperative game Γc(1, x0). Let

P x*υ , υ
� � ¼ ui

h and Bi
h for h2 υ, υþ 1, . . ., Tf g and i2N, ξ υ; x*υ

� �� �
denote the opti-

mality principle of the cooperative game Γc(υ, x�υ) according to the original

agreement.

A theorem characterizing a subgame consistent solution for the discrete-time

cooperative game Γc(1, x0) is presented below.

Theorem 5.2 For the cooperative game Γc(1, x0) with optimality principle

P 1; x0ð Þ ¼ ui
h x*h
� �

and Bi
h x*h
� �

for h2κ and i2N and x*h2X*
h, ξ 1; x0ð Þ� �

in which

(i) ui
h x*h
� � ¼ ψ i

h x*h
� �

, for h2κ and i2N and x*h2X*
h, is the set of group optimal

strategies for the game Γc(1, x0), and
(ii) Bi

h x*h
� � ¼ Bi

h x*h
� �

, for h2κ and i2N and x*h2X*
h, where

Bi
h x*h
� � ¼ 1þ rð Þh�1



ξi h; x*h
� �� Eθh

�
ξi hþ 1, f h x*h,ψh x*h

� �� �þ Gh x*h
� �

θh
� ��


;

ð5:6Þ

and ξ1 h; x*h
� �

, ξ2 h; x*h
� �

, . . ., ξi h; x*h
� �� �2P h; x*h

� �
is the imputation according to

optimality principle P(h, x�h);
is subgame consistent.

Proof Follow the proof of the continuous-time analog in Theorem 5.2 of

Chap. 7. ■

When all players are using the cooperative strategies, the payoff that player iwill

directly receive at stage k given that x*k 2X*
k is

gi
k x*k ,ψ

1
k x*k
� �

,ψ2
k x*k
� �

, � � �,ψ n
k x*k
� �� �

:
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However, according to the agreed upon imputation, player i will receive Bi
k(x

�
k)

at stage k. Therefore a side-payment

ϖ i
k x*k
� � ¼ Bi

k x*k
� �� gi

k x*k ,ψ
1
k x*k
� �

,ψ2
k x*k
� �

, . . .,ψ n
k x*k
� �� �

; ð5:7Þ

for k2κ and i2N,

will be given to player i to yield the cooperative imputation ξi(k, x�k).

7.6 Cooperative Resource Extraction under Uncertainty

Consider an economy endowed with a renewable resource and with two resource

extractors (firms). The lease for resource extraction begins at stage 1 and ends at

stage 3 for these two firms. Let uik denote the rate of resource extraction of firm i at

stage k, for i2 1; 2f g. Let Ui be the set of admissible extraction rates, and xk2X
� Rþ the size of the resource stock at stage k. The extraction cost for firm i2 1; 2f g
depends on the quantity of resource extracted uik, the resource stock size xk, and cost
parameters c1 and c2. In particular, extraction cost for firm i at stage k is specified as

ci(u
i
k)
2/xk. The price of the resource is P.

The profits that firm 1 and firm 2 will obtain at stage k are respectively:

Pu1k �
c1
xk

u1k
� �2� �

and Pu2k �
c2
xk

u2k
� �2� �

: ð6:1Þ

In stage 4, the firms will receive a salvage value equaling qx4. The growth dynamics

of the resource is governed by the stochastic difference equation:

xkþ1 ¼ xk þ a� θkxk �
X2
j¼1

uj
k; ð6:2Þ

for k2 1; 2; 3f g and x1 ¼ x0,

where θk is a random variable with non-negative range {θ1k , θ
2
k , θ

3
k} and

corresponding probabilities {λ1k , λ
2
k , λ

3
k}.

With no human harvesting, the natural growth of the resource stock is

xkþ1 � xk ¼ a� θkxk. The natural growth of the resource is while the death rate

exhibits stochasticity. There exists an extraction constraint that human harvesting

can at most exploit b proportion of the existing biomass, hence u1k þ u2k � bxk. In

addition, the highest value of θ y
k < 1� bð Þ for k2 1; 2; 3f g and y2 1; 2; 3f g.
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The objective of extractor i2 1; 2f g is to maximize the present value of the

expected stream of future profits:

Eθ1θ2θ3


X3
k¼1

Pui
k �

ci
xk

u i
k

� �2� �
1

1þ r

� �k�1

þ 1

1þ r

� �3

qx4



, for i2 1; 2f g; ð6:3Þ

subject to (6.2).

Invoking Theorem 4.2, one can characterize the noncooperative equilibrium

strategies in a feedback solution for game (6.2 and 6.3). In particular, a set of

strategies ϕ i
k xð Þ, for k2 1; 2; 3f g and i2 1; 2f g� �

provides a Nash equilibrium

solution to the game (6.2 and 6.3) if there exist functions Vi(k, x), for i2 1; 2f g
and k2 1; 2; 3f g, such that the following recursive relations are satisfied:

Vi k; xð Þ ¼ max
u i
k

Eθk



Pui

k �
ci
x

u i
k

� �2h i 1

1þ r

� �k�1

þ Vi k þ 1, xþ a� θkx� ui
k � ϕ j

k xð Þ
h i


¼ max
u i
k



Pui

k �
ci
x

u i
k

� �2h i 1

1þ r

� �k�1

þ
X3
y¼1

λ yk V
i k þ 1, xþ a� θ y

k x� ui
k � ϕ j

k xð Þ
h i


;

Vi T þ 1, xð Þ ¼ 1
1þr

� 	3
qx4: ð6:4Þ

Performing the indicated maximization in (6.4) yields:

P� 2ciu
i
k

x

� �
1

1þ r

� �k�1

�
X3
y¼1

λ yk V
i
xkþ1

k þ 1, xþ a� θ y
k x� ui

k � ϕ j
k xð Þ

h i
¼ 0;

ð6:5Þ

for i2 1; 2f g and k2 1; 2; 3f g.
From (6.5), the game equilibrium strategies can be expressed as:

ϕ i
k xð Þ ¼

�
P�
X3
y¼1

λ yk V
i
xkþ1

k þ 1, xþ a� θ y
k x�

X2
‘¼1

ϕ ‘
k xð Þ

" #
1þ rð Þk�1

�
x

2ci
; ð6:6Þ

for i2 1; 2f g and k2 1; 2; 3f g.
The expected game equilibrium profits of the firms can be obtained as:

Proposition 6.1 The value function indicating the expected game equilibrium

profit of firm i is

Vi k; xð Þ ¼ Ai
kxþ Ci

k

� �
, for i2 1; 2f g and k2 1; 2; 3f g; ð6:7Þ
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where Ai
k and Ci

k, for i2 1; 2f g and k2 1; 2; 3f g, are constants in terms of the

parameters of the game (6.2 and 6.3).

Proof See Appendix C of this Chapter. ■

Substituting the relevant derivatives of the value functions in Proposition 6.1

into the game equilibrium strategies (6.6) yields a noncooperative feedback equi-

librium solution of the game (6.2 and 6.3).

Now consider the case when the extractors agree to maximize their expected

joint profit and share the excess of cooperative gains over their expected noncoop-

erative payoffs equally. To maximize their expected joint payoff, they solve the

problem of maximizing

Eθ1θ2θ3


X2
j¼1

X3
k¼1

Puj
k �

cj
xk

u j
k

� 	2� �
1

1þ r

� �k�1

þ 2
1

1þ r

� �3

qx4



ð6:8Þ

subject to (6.2).

Invoking Theorem 4.2, one can characterize the optimal controls in the stochas-

tic dynamic programming problem (6.2) and (6.8). In particular, a set of control

strategies ψ i
k xð Þ, for k2 1; 2; 3f g and i2 1; 2f g� �

provides an optimal solution to

the problem (6.2) and (6.8) if there exist functionsW k; xð Þ : R ! R, for k2 1; 2; 3f g,
such that the following recursive relations are satisfied:

W k; xð Þ ¼ max
u1
k
, u2

k

Eθkþ1


X2
j¼1

Puj
k �

cj
x

u j
k

� 	2� �
1

1þ r

� �k�1

þW k þ 1, xþ a� θkx�
X2
j¼1

uj
k

" #

¼ max

u1
k
, u2

k


X2
j¼1

Puj
k �

cj
x

u j
k

� 	2� �
1

1þ r

� �k�1

þ
X3
y¼1

λ yk W k þ 1, xþ a� θ y
k x�

X2
j¼1

uj
k

" #

, for k2 1; 2; 3f g:

W T þ 1, xð Þ ¼ 2 1
1þr

� 	3
qx4: ð6:9Þ

Performing the indicated maximization in (6.9) yields:

P� 2ciu
i
k

x

� �
1

1þ r

� �k�1

�
X3
y¼1

λ yk Wxkþ1
k þ 1, xþ a� θ y

k x�
X2
j¼1

uj
k

" #
¼ 0;

ð6:10Þ

for i2 1; 2f g and k2 1; 2; 3f g.
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In particular, the optimal cooperative strategies can be obtained from (6.10) as:

ui
k

�
P�

X3
y¼1

λ yk Wxkþ1
k þ 1, xþ a� θ y

k x�
X2
j¼1

uj
k

" #
1þ rð Þk�1

�
x

2ci
; ð6:11Þ

for i2 1; 2f g and k2 1; 2; 3f g.
The expected joint profit under cooperation is given below.

Proposition 6.2 The value function indicating the maximized expected joint

payoff is

W k; xð Þ ¼ Akxþ Ck½ 	, for k2 1; 2; 3f g; ð6:12Þ

where Ak and Ck, for k2 1; 2; 3f g, are constants in terms of the parameters of the

problem (6.8) and (6.2).

Proof See Appendix D of this Chapter. ■

Using (6.11) and Proposition 6.2, the optimal cooperative strategies of the

extracting firms can be expressed as:

ψ i
k xð Þ ¼ P� Akþ1 1þ rð Þk�1

h i x

2ci
, for i2 1; 2f g and k2 1; 2; 3f g: ð6:13Þ

Substituting ψ i
k(x) from (6.13) into (6.2) yields the optimal cooperative state

trajectory:

xkþ1 ¼ xk þ a� θkxk �
X2
j¼1

P� Akþ1 1þ rð Þk�1
h i xk

2cj
; ð6:14Þ

for k2 1; 2; 3f g and x1 ¼ x0.
Dynamics (6.14) is a linear stochastic difference equation readily solvable by

standard techniques. Let x*k , for k2 1; 2; 3f g� �
denote the solution to (6.14).

Since the extractors agree to share the excess of cooperative gains over their

expected noncooperative payoffs equally, an imputation

ξi k; x*k
� � ¼ Vi k; x*k

� �þ 1

2
W k; x*k
� ��X2

j¼1

Vj k; x*k
� �" #

¼ Ai
kx

*
k þ Ci

k

� �þ 1

2
Akx

*
k þ Ck

� ��X2
j¼1

Aj
kx

*
k þ Cj

k

� 	" #
; ð6:15Þ

for k2 1; 2; 3f g and i2 1; 2f g has to be maintained.
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Invoking Theorem 4.1, if x*k2X is realized at stage k a payment equaling

Bi
k x*k
� � ¼ 1þ rð Þk�1

�
ξi k; x*k
� �� Eθk

�
ξi k þ 1, x

θyð Þ*
kþ1

� ���
¼ 1þ rð Þk�1



Ai
kx

*
k þ Ci

k

� �þ 1

2
Akx

*
k þ Ck

� ��X2
j¼1

Aj
kx

*
k þ Cj

k

� 	 !

�
X3
y¼1

λ yk

�
Ai
kþ1x

* θ y
kð Þ

kþ1 þ Ci
kþ1

� �
þ 1

2
Akþ1x

* θ y
kð Þ

kþ1 þ Ckþ1

� �
�
X2
j¼1

Aj
kþ1x

* θ y
kð Þ

kþ1 þ Cj
kþ1

� � !�

,

for i2 1; 2f g; ð6:16Þ

where x
* θ y

kð Þ
kþ1 ¼ x*k þ a� θ y

k x
*
k �

X2
j¼1

P� Akþ1 1þ rð Þk�1
h i

x*k
2cj
, for y2 1; 2; 3f g,

given to firm i at stage k2κ would lead to the realization of the imputation (6.15).

A subgame consistent solution can be readily obtained from (6.13), (6.15) and

(6.16).

7.7 A Heuristic Approach

In some game situations it may not be possible or practical to obtain all the

information needed in this Chapter. Therefore a heuristic method may have to be

considered to resolve the problem. To solve the problem in concern a heuristic

method employs a practical methodology not guaranteed to be optimal or perfect,

but sufficient for the immediate goals. Where finding an optimal solution is

impossible or impractical, heuristic methods often prove to be able to speed up

the process of finding a satisfactory solution. In particular, heuristic methods use

strategies and information that are readily accessible (though not a 100% exact and

accurate) to obtain a solution.

Consider the case of a heuristic approach to solving a subgame consistent

solution in a situation where the differentiable functions

f k xk; u
1
k ; u

2
k ; � � �; un

k

� �
;

Gk(xk)θk, and

gi
k xk; u

1
k ; u

2
k ; � � �; un

k

� �
, for i2 1; 2; � � �; nf g�N and k2 1; 2; � � �; Tf g�κ, in (4.1 and

4.2)

are not available.
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However, the players concur with the adoption of a set of cooperative strategies�
ψ̂ i

k xkð Þ, for k2κ and i2N
�
. Though the cooperative strategies may not be the set

of theoretically optimal controls they are perceived to be certainly beneficial to the

joint well-being of all players.

In addition, with expert knowledge and statistical techniques the expected value

of cooperative payment
Xn
j¼1

ĝ j
τ x̂ τ, ψ̂

1
τ x̂ τð Þ, ψ̂ 2

τ x̂ τð Þ, � � �, ψ̂ n
τ x̂ τð Þ� �

received in each

stage τ2 k, k þ 1, k þ 2, � � �,Tf g can be estimated with acceptable degrees of

accuracy. The value Ŵ k; x̂kð Þ can be obtained by summing the cooperative

payments
Xn
j¼1

ĝ j
τ x̂ τ, ψ̂

1
τ x̂ τð Þ, ψ̂ 2

τ x̂ τð Þ, � � �, ψ̂ n
τ x̂ τð Þ� �

expected to be received in each

stage from stage k to stage T for k2κ along the cooperation path x̂ τf g T
τ¼k, that is:

Ŵ k; x̂kð Þ ¼
XT
τ¼k

Xn
j¼1

ĝ j
τ x̂ τ, ψ̂

1
τ x̂ τð Þ, ψ̂ 2

τ x̂ τð Þ, . . ., ψ̂ n
τ x̂ τð Þ� �

þ
Xn
j¼1

qj
Tþ1 x̂ Tþ1ð Þ 1

1þr

� 	T
, for k2κ: ð7:1Þ

Again, with expert knowledge and statistical techniques the expected value of

non-cooperative payment gi
τ xτ,ϕ

1

τ xτð Þ,ϕ1

τ xτð Þ, � � �,ϕ1

τ xτð Þ
h i

of player i2N received

in each stage τ2 k, k þ 1, k þ 2, � � �, Tf g if the players revert to non-cooperation

from stage k to stage T for k2κ can be estimated with acceptable degrees of

accuracy. The value V
i
k; x̂kð Þ can be obtained by summing of the expected

payments to be received by player i in each stage from stage k to stage T for k

2κ along the non-cooperation path xτf g T
τ¼k where xk ¼ x̂ k, that is

V
i
k; x̂kð Þ ¼

XT
τ¼k

g i
τ xτ,ϕ

1

τ xτð Þ,ϕ1

τ xτð Þ, . . .,ϕ1

τ xτð Þ
h i

þ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T
for i2N: ð7:2Þ

If the agreed upon optimality principle specifies that the players share the expected

total cooperative proportional to their expected noncooperative payoffs, then the

imputation to player i becomes:

ξ̂
i
k; x̂kð Þ ¼ V

i
k; x̂kð ÞXn

j¼1

V
j
k; x̂kð Þ

Ŵ k; x̂kð Þ; ð7:3Þ

for i2N and k2κ.
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Invoking Theorem 5.1 a theoretically subgame consistent payment distribution

procedure can be obtained with:

Bi
k x*k
� � ¼ 1þ rð Þk�1



ξi k; x*k
� �� Eθk

�
ξi k þ 1, f k x*k ,ψ k x*k

� �� �þ Gk x*k
� �

θk
� ��


;

ð7:4Þ

for i2N,

given to player i at stage k2κ, if x*k 2X*
k .

Using (7.1, 7.2, 7.3 and 7.4) a subgame consistent PDP under a heuristic scheme

can be obtained with:

Bi
k x̂ kð Þ ¼ 1þ rð Þk�1



V
i
k; x̂kð ÞXn

j¼1

V
j
k; x̂kð Þ

Ŵ k; x̂kð Þ

� V
i
k þ 1, x̂ kþ1ð ÞXn

j¼1

V
j
k þ 1, x̂ kþ1ð Þ

Ŵ k þ 1, x̂ kþ1ð Þ



ð7:5Þ

given to player i2N at stage k2κ, along the cooperation path x̂ kf g T
k¼1.

The heuristic approach allows the application of subgame consistent solution in

dynamic game situations if estimates of the expected cooperative payoffs and

individual non-cooperative payoffs with acceptable degrees of accuracy are avail-

able. This approach would be helpful to resolving the unstable elements in coop-

erative schemes for a wide range of game theoretic real-world problems.

7.8 Chapter Appendices

Appendix A. Proof of Proposition 3.1

Consider first the last stage, that is stage 3. Invoking that Vi 3; xð Þ ¼ Ai
3xþ Ci

3

� �
from Proposition 3.1 and Vi 4; xð Þ ¼ 1

1þr

� 	3
qx, the conditions in Eq. (3.4) become

Vi 3; xð Þ ¼ Ai
3xþ Ci

3

� � ¼ max
u i
3



Pui

3 �
ci
x

u i
3

� �2h i 1

1þ r

� �2

þ 1
1þr

� 	3
q xþ a� bx� ui

3 � ϕ j
3 xð Þ

h i

, for i2 1; 2f g: ð8:1Þ

Performing the indicated maximization in (8.1) yields the game equilibrium strat-

egies in stage 3 as:
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ϕ i
3 xð Þ ¼

P� 1þ rð Þ�1q
h i

x

2ci
, for i2 1; 2f g: ð8:2Þ

Substituting (8.2) into (8.1) yields:

Vi 3; xð Þ ¼ Ai
3xþ Ci

3

� � ¼ 1
1þr

� 	2�
P� 1þ rð Þ�1q
h i P

2ci
x

� P� 1þ rð Þ�1q
h i2 1

4ci
x

�
þ q

�
xþ a� bx� P� 1þ rð Þ�1q

h i 1
2ci

x

� P� 1þ rð Þ�1q
h i 1

2cj
x

�
1

1þ r

� �3

for i, j2 1; 2f g and i 6¼ j: ð8:3Þ

Using (8.3), we can obtain Ai
3 and Ci

3, for i2 1; 2f g.
Now we proceed to stage 2, the conditions in Eq. (3.4) become

Vi 2; xð Þ ¼ Ai
2xþ Ci

2

� � ¼ max
u i
2



Pui

2 �
ci
x

u i
2

� �2h i 1

1þ r

� �
þ Ai

3 xþ a� bx� ui
2 � ϕ j

2 xð Þ
h i


, for i, j2 1; 2f g and i 6¼ j: ð8:4Þ

Performing the indicated maximization in (8.4) yields the game equilibrium strat-

egies in stage 2 as:

ϕ i
2 xð Þ ¼ P� 1þ rð ÞAi

3

� � x
2ci

, for i2 1; 2f g: ð8:5Þ

Substituting (8.5) into (8.4) yields

Vi 2; xð Þ ¼ Ai
2xþ Ci

2

� � ¼ 
 1

1þ r

� �
P� 1þ rð ÞAi

3

� �Pþ 1þ rð ÞAi
3

4ci

þAi
3 1� bð Þ � P� 1þ rð ÞAi

3

� � Ai
3

2ci
� P� 1þ rð ÞAj

3

h i Ai
3

2cj



xþ aAi

3,

for i, j2 1; 2f g and i 6¼ j: ð8:6Þ

Substituting Ai
3 for i2 1; 2f g into (8.6), Ai

2 and Ci
2 for i2 1; 2f g are obtained in

explicit terms.

Finally, we proceed to the first stage, the conditions in Eq. (3.4) become

Vi 1; xð Þ ¼ Ai
1xþ Ci

1

� � ¼ max
u i
1



Pui

1 �
ci
x

u i
1

� �2h i
þ
�

Ai
2 xþ a� bx� ui

1 � ϕ j
1 xð Þ

h i
þ Ci

2

� 

, for i, j2 1; 2f g and i 6¼ j: ð8:7Þ
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Performing the indicated maximization in (8.7) yields the game equilibrium strat-

egies in stage 1 as:

ϕ i
1 xð Þ ¼ P� Ai

2

� � x
2ci

, for i2 1; 2f g: ð8:8Þ

Substituting (8.8) into (8.7) yields:

Vi 3; xð Þ ¼ Ai
1xþ Ci

1

� � ¼�
P� Ai

2

� �Pþ Ai
2

4ci
þ Ai

2 1� bð Þ � P� Ai
2

� � Ai
2

2ci
� P� Aj

2

� 	 Ai
2

2cj

�
x

þ aAi
2 þ Ci

2, for i, j2 1; 2f g and i 6¼ j: ð8:9Þ

Substituting the explicit terms for Ai
2, A

j
2, C

i
2 and C

j
2 from (8.6) into (8.9), Ai

1 and C
i
1

for i2 1; 2f g are obtained in explicit terms. ■

Appendix B. Proof of Proposition 3.2

Consider first the last stage, that is stage 3. Invoking thatW 3; xð Þ ¼ A3xþ C3½ 	 from
Proposition 3.2 and W 4; xð Þ ¼ 2 1

1þr

� 	3
qx, the conditions in Eq. (3.9) become

W 3; xð Þ ¼ A3xþ C3½ 	 ¼ max
u1
3
, u2

3


 X2
j¼1

Puj
3 �

cj
x

u j
3

� 	2� �
1

1þ r

� �2

þ 2 1
1þr

� 	3
q xþ a� bx� u13 � u23
� � 


: ð8:10Þ

Performing the indicated maximization in (8.10) yields the optimal cooperative

strategies in stage 3 as:

ψ i
3 xð Þ ¼

P� 1þ rð Þ�1
2q

h i
x

2ci
, for i2 1; 2f g: ð8:11Þ

Substituting (8.11) into (8.10) yields:

W 3; xð Þ ¼ A3xþ C3½ 	 ¼ 1
1þr

� 	2X2
j¼1

f P� 1þ rð Þ�1q
h i P

2cj
x

� P� 1þ rð Þ�1q
h i2 1

4cj
xg þ 2q

�
xþ a� bx� P� 1þ rð Þ�1q

h i 1
2ci

x

� P� 1þ rð Þ�1q
h i 1

2cj
x

�
1

1þ r

� �3

: ð8:12Þ

Using (8.12), we obtain A3 and C3.
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Now we proceed to stage 2, the conditions in Eq. (3.9) become

W 2; xð Þ ¼ A2xþ C2½ 	 ¼ max
u1
2
, u2

2

( X2
j¼1

Puj
2 �

cj
x

u j
2

� 	2� �
1

1þ r

� �

þA3 xþ a� bx�
X2
j¼1

uj
2

" # )
ð8:13Þ

Performing the indicated maximization in (8.13) yields the optimal cooperative

strategies in stage 2 as:

ψ i
2 xð Þ ¼ P� 1þ rð ÞA3½ 	 x

2ci
, for i2 1; 2f g: ð8:14Þ

Substituting (8.14) into (8.13) yields:

W 2; xð Þ ¼ A2xþ C2½ 	 ¼
�

1

1þ r

� �X2
j¼1

P� 1þ rð ÞA3½ 	Pþ 1þ rð ÞA3

4cj

þA3 1� bð Þ � P� 1þ rð ÞA3½ 	 A3

2c1
� P� 1þ rð ÞA3½ 	 A

i
3

2c2

�
xþ aA3

�
: ð8:15Þ

Substituting A3 into (8.15), A2 and C2 are obtained in explicit terms.

Finally, we proceed to the first stage, the conditions in Eq. (3.9) become

W 1; xð Þ ¼ A1xþ C1½ 	 ¼ max
u1
1
, u2

1

( X2
j¼1

Puj
1 �

cj
x

u j
1

� 	2� �

þ
 

A2 xþ a� bx�
X2
j¼1

uj
1

" #
þ C2

! )
: ð8:16Þ

Performing the indicated maximization in (8.16) yields the optimal cooperative

strategies in stage 1 as:

ψ i
1 xð Þ ¼ P� A2ð Þ x

2ci
, for i2 1; 2f g: ð8:17Þ

Substituting (8.17) into (8.16) yields:

W 1; xð Þ ¼ A1xþ C1½ 	 ¼� X2
j¼1

P� A2ð ÞPþ A2

4cj
þ A2 1� bð Þ � P� A2ð ÞA2

2c1
� P� A2ð ÞA2

2c2

�
x

þ aA2 þ C2: ð8:18Þ

Substituting the explicit terms for A2 and C2 from (8.15) into (8.18), A1 and C1 are

obtained in explicit terms. ■
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Appendix C. Proof of Proposition 6.1

Consider first the last operating stage, that is stage 3. Invoking that Vi 3; xð Þ ¼
Ai
3xþ Ci

3

� �
from Proposition 6.1 and Vi 4; xð Þ ¼ 1

1þr

� 	3
qx4; the conditions in

Eq. (6.4) become

Vi 3; xð Þ ¼ Ai
3xþ Ci

3

� � ¼ max
u i
3



Pui

3 �
ci
x

u i
3

� �2h i 1

1þ r

� �2

þ
X3
y¼1

λ y3
1

1þr

� 	3
q xþ a� θ y

3x� ui
3 � ϕ j

3 xð Þ
h i 


, for i2 1; 2f g: ð8:19Þ

Performing the indicated maximization in (8.19) yields the game equilibrium

strategies in stage 3 as:

ϕ i
3 xð Þ ¼

P� 1þ rð Þ�1q
h i

x

2ci
, for i2 1; 2f g: ð8:20Þ

Substituting (8.20) into (8.19) yields:

Vi 3; xð Þ ¼ Ai
3xþ Ci

3

� � ¼ 1
1þr

� 	2�
P� 1þ rð Þ�1q
h i P

2ci
x

� P� 1þ rð Þ�1q
h i2 1

4ci
x

�
þ q

�
xþ a�

X3
y¼1

λ y3θ
y
3x

� P� 1þ rð Þ�1q
h i 1

2ci
x� P� 1þ rð Þ�1q

h i 1
2cj

x

�
1

1þ r

� �3

for i, j2 1; 2f g and i 6¼ j: ð8:21Þ

Using (8.21), we can obtain Ai
3 and Ci

3, for i2 1; 2f g.
Now we proceed to stage 2, the conditions in Eq. (6.4) become

Vi 2; xð Þ ¼ Ai
2xþ Ci

2

� � ¼ max
u i
2



Pui

2 �
ci
x

u i
2

� �2h i 1

1þ r

� �
þ
X3
y¼1

λ y2A
i
3 xþ a� θ y

2x� ui
2 � ϕ j

2 xð Þ
h i 


,

for i, j2 1; 2f g and i 6¼ j: ð8:22Þ

Performing the indicated maximization in (8.22) yields the game equilibrium

strategies in stage 2 as:

ϕ i
2 xð Þ ¼ P� 1þ rð ÞAi

3

� � x
2ci

, for i2 1; 2f g: ð8:23Þ
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Substituting (8.23) into (8.22) yields:

Vi 2; xð Þ ¼ Ai
2xþ Ci

2

� � ¼ 
 1

1þ r

� �
P� 1þ rð ÞAi

3

� �Pþ 1þ rð ÞAi
3

4ci

þAi
3 1�

X3
y¼1

λ y2θ
y
2

 !
� P� 1þ rð ÞAi

3

� � Ai
3

2ci
� P� 1þ rð ÞAj

3

h i Ai
3

2cj



xþ aAi

3,

for i, j2 1; 2f g and i 6¼ j: ð8:24Þ

Substituting Ai
3 for i2 1; 2f g into (8.24), Ai

2 and Ci
2 for i2 1; 2f g are obtained in

explicit terms.

Finally, we proceed to the first stage, the conditions in Eq. (6.4) become

Vi 1; xð Þ ¼ Ai
1xþ Ci

1

� � ¼ max
u i
1

(
Pui

1 �
ci
x

u i
1

� �2h i
þ
X3
y¼1

λ y1

 
Ai
2 xþ a� θ y

1x� ui
1 � ϕ j

1 xð Þ
h i

þ Ci
2

! )
,

for i, j2 1; 2f g and i 6¼ j: ð8:25Þ

Performing the indicated maximization in (8.25) yields the game equilibrium

strategies in stage 1 as:

ϕ i
1 xð Þ ¼ P� Ai

2

� � x
2ci

, for i2 1; 2f g: ð8:26Þ

Substituting (8.26) into (8.25) yields:

Vi 3; xð Þ ¼ Ai
1xþ Ci

1

� � ¼"
P� Ai

2

� �Pþ Ai
2

4ci
þ Ai

2 1�
X3
y¼1

λ y1θ
y
1

 !
� P� Ai

2

� � Ai
2

2ci
� P� Aj

2

� 	 Ai
2

2cj

#
x

þ aAi
2 þ Ci

2, for i, j2 1; 2f g and i 6¼ j: ð8:27Þ

Substituting the explicit terms for Ai
2, A

j
2, C

i
2 and C

j
2 from (8.24) into (8.27), Ai

1 and

Ci
1 for i2 1; 2f g are obtained in explicit terms.

Appendix D. Proof of Proposition 6.2
Consider first the last stage, that is stage 3. Invoking thatW 3; xð Þ ¼ A3xþ C3½ 	 from
Proposition 6.2 and W 4; xð Þ ¼ 2 1

1þr

� 	3
qx4, the conditions in Eq. (6.9) become
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W 3; xð Þ ¼ A3xþ C3½ 	 ¼ max
u1
3
, u2

3

( X2
j¼1

Puj
3 �

cj
x

u j
3

� 	2� �
1

1þ r

� �2

þ
X3
y¼1

λ y3 2 1
1þr

� 	3
q xþ a� θ y

3x�
X2
j¼1

uj
3

" # )
: ð8:28Þ

Performing the indicated maximization in (8.28) yields the optimal cooperative

strategies in stage 3 as:

ψ i
3 xð Þ ¼

P� 1þ rð Þ�1
2q

h i
x

2ci
, for i2 1; 2f g: ð8:29Þ

Substituting (8.29) into (8.28) yields:

W 3; xð Þ ¼ A3xþ C3½ 	 ¼ 1
1þr

� 	2X2
j¼1



P� 1þ rð Þ�1q
h i P

2cj
x

� P� 1þ rð Þ�1q
h i2 1

4cj
x



þ 2q

�
xþ a�

X3
y¼1

λ y3θ
y
3x� P� 1þ rð Þ�1q

h i 1
2ci

x

� P� 1þ rð Þ�1q
h i 1

2cj
x

�
1

1þ r

� �3

: ð8:30Þ

Using (8.30), we obtain A3 and C3.

Now we proceed to stage 2, the conditions in Eq. (6.9) become

W 2; xð Þ ¼ A2xþ C2½ 	 ¼ max
u1
2
, u2

2

( X2
j¼1

Puj
2 �

cj
x

u j
2

� 	2� �
1

1þ r

� �

þ
X3
y¼1

λ y2A3 xþ a� θ y
2x�

X2
j¼1

uj
2

" # )
: ð8:31Þ

Performing the indicated maximization in (8.31) yields the optimal cooperative

strategies in stage 2 as:

ψ i
2 xð Þ ¼ P� 1þ rð ÞA3½ 	 x

2ci
, for i2 1; 2f g: ð8:32Þ
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Substituting (8.32) into (8.31) yields:

W 2; xð Þ ¼ A2xþ C2½ 	 ¼
�

1

1þ r

� �X2
j¼1

P� 1þ rð ÞA3½ 	Pþ 1þ rð ÞA3

4cj

þA3 1�
X3
y¼1

λ y2θ
y
2

 !
� P� 1þ rð ÞA3½ 	 A3

2c1
� P� 1þ rð ÞA3½ 	 A

i
3

2c2

�
x

þ aA3: ð8:33Þ

Substituting A3 into (8.33), A2 and C2 are obtained in explicit terms.

Finally, we proceed to the first stage, the conditions in Eq. (6.9) become

W 1; xð Þ ¼ A1xþ C1½ 	 ¼ max
u1
1
, u2

1


 X2
j¼1

Puj
1 �

cj
x

u j
1

� 	2� �
þ
X3
y¼1

λ y1

�
A2 xþ a� θ y

1x�
X2
j¼1

uj
1

" #
þ C2

� 

: ð8:34Þ

Performing the indicated maximization in (8.34) yields the optimal cooperative

strategies in stage 1 as:

ψ i
1 xð Þ ¼ P� A2ð Þ x

2ci
, for i2 1; 2f g: ð8:35Þ

Substituting (8.35) into (8.34) yields:

W 1; xð Þ ¼ A1xþ C1½ 	 ¼
� X2

j¼1

P� A2ð ÞPþ A2

4cj
þ A2 1�

X3
y¼1

λ y1θ
y
1

 !
� P� A2ð ÞA2

2c1
� P� A2ð ÞA2

2c2

�
xþ aA2 þ C2: ð8:36Þ

Substituting the explicit terms for A2 and C2 from (8.33) into (8.36), A1 and C1 are

obtained in explicit terms.

7.9 Chapter Notes

Discrete-time dynamic games often are more suitable for real-life applications and

operations research analyses. Properties of Nash equilibria in dynamic games are

examined in Basar (1974, 1976). Solution algorithm for solving dynamic games can

be found in Basar (1977a, b). Petrosyan and Zenkevich (1996) presented an analysis

on cooperative dynamic games in discrete time framework. The SIAM Classics on

Dynamic Noncoperative Game Theory by Basar and Olsder (1995) gave a
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comprehensive treatment of discrete-time noncooperative dynamic games. Bylka

et al. (2000) analyzed oligopolistic price competition in a dynamic game model.

Wie and Choi (2000) examined discrete-time traffic network. Beard and McDonald

(2007) investigated water sharing agreements, and Amir and Nannerup (2006)

considered resource extraction problems in a discrete-time dynamic framework.

Krawczyk and Tidball (2006) considered a dynamic game of water allocation. Nie

et al. (2006) considered dynamic programmingapproach to discrete time dynamic

Stackelberg games. Dockner and Nishimura (1999) and Rubio and Ulph (2007)

presented discrete-time dynamic game for pollution management. Dutta and

Radner (2006) presented a discrete-time dynamic game to study global warming.

Ehtamo and Hamalainen (1993) examined cooperative incentive equilibrium for a

dynamic resource game. Yeung (2014) examined dynamically consistent collabo-

rative environmental management with technology selection in a discrete-time

dynamic game framework. Lehrer and Scarsini (2013) considered the core of

dynamic cooperative games.

Discrete-time stochastic differential game analyses are less frequent than its

continuous-time counterpart. Basar and Ho (1974) examined informational prop-

erties of the Nash solutions of stochastic nonzero-sum games. Elimination of

informational nonuiqueness in Nash equilibrium through a stochastic formulation

was first discussed in Basar (1976) and further examined in Basar (1975, 1979,

1989). Basar and Mintz (1972, 1973) and Basar (1978) developed equilibrium

solution of linear-quadratic stochastic dynamic games with noisy observation.

Bauso and Timmer (2009) considered robust dynamic cooperative games where

at each point in time the coalitional values are unknown but bounded by a polyhe-

dron. Smith and Zenou (2003) considered a discrete-time stochastic job searching

model. Esteban-Bravo and Nogales (2008) analyzed mathematical programming

for stochastic discrete-time dynamics arising in economic systems including exam-

ples in a stochastic national growth model and international growth model with

uncertainty. Basar and Olsder (1995) gave a comprehensive treatment of noncoop-

erative stochastic dynamic games. Yeung and Petrosyan (2010) provided the

techniques in characterizing subgame consistent solutions for stochastic dynamic

gamessubgame consistent solutions for stochastic dynamic games. Finally, a heu-

ristic approach of obtaining subgame consistent solutions is provided in Sect. 7.7 to

widen the application to a wide range of cooperative game problems in which only

estimates of the expected cooperative payoffs and individual non-cooperative

payoffs with acceptable degrees of accuracy are available.

7.10 Problems

(1) Consider an economy endowed with a renewable resource and with 2 resource

extractors (firms). The lease for resource extraction begins at stage 1 and ends at

stage 3 for these two firms. Let uik denote the rate of resource extraction of firm
i at stage k, for i2 1; 2f g. Let Ui be the set of admissible extraction rates, and
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xk2X � Rþ the size of the resource stock at stage k. In particular, we have Ui 2
R+and u1k þ u2k � xk. The extraction cost for firms 1 and 2 are respectively

(u1k)
2/xk and 1.5(uik)

2/xk.
The profits that firm 1 and firm 2 will obtain at stage k are respectively:

10u1k �
4

xk
u1k
� �2� �

and 4u2k �
2

xk
u2k
� �2� �

:

A terminal payment of 4x4 will be given to each firm after stage 3.

The growth dynamics of the resource is governed by the difference equation:

xkþ1 ¼ xk þ 20� 0:1xk �
X2
j¼1

uj
k, for k2 1; 2; 3f g and x1 ¼ 24:

Characterize the feedback Nash equilibriumsolution for the above resource

economy.

(2) If the extractors agree to cooperate and maximize their joint payoff, derive the

optimal cooperative strategies and the optimal resource trajectory.

(3) Consider the case when the extractors agree to share the excess of cooperative

gains over their noncooperative payoffs equally. Derive a subgame consistent

solution.

(4) Consider an economy endowed with a renewable resource and with two

resource extractors (firms). The lease for resource extraction begins at stage

1 and ends at stage 4 for these two firms. Let uik denote the rate of resource

extraction of firm i at stage k, for i2 1; 2f g. Let Ui be the set of admissible

extraction rates, and xk2X � Rþ the size of the resource stock at stage k. In

particular, we have Ui 2 R+ and u1k þ u2k � xk.
The profits that firm 1 and firm 2 will obtain at stage k are respectively:

5u1k �
2

xk
u1k
� �2� �

and 3u2k �
1

xk
u2k
� �2� �

:

A terminal payment of 3x4 will be given to each firm after stage 4.

The growth dynamics of the resource is governed by the stochastic differ-

ence equation:

xkþ1 ¼ xk þ 15� 0:1xk �
X2
j¼1

uj
k þ θkxk;

for k2 1; 2; 3; 4f g and x1 ¼ 55,

where θk is a random variable with range {0, 0.1, 0.2} and corresponding

probabilities {0.3, 0.5, 0.2}
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Characterize a Nash equilibrium solution for the above discrete-time sto-

chastic market game.

(5) If the extractors agree to cooperate and maximize their expected joint payoff,

derive the group optimal cooperative strategies.

(6) Consider the case when the extractors agree to share the excess of expected

cooperative gains proportional to their expected noncooperative payoffs.

Derive a subgame consistent solution.
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