
Chapter 6

Subgame Consistent Cooperative Solution
in NTU Differential Games

Subgame consistency is a fundamental element in the solution of cooperative

stochastic differential games which ensures that the extension of the solution

policy to a later starting time and any possible state brought about by prior

optimal behavior of the players would remain optimal. In many game situations

payoff (or utility) of players may not be transferable. It is well known that utility

in economic study is assumed to be non-transferrable or comparable among

economic agents. The Nash (1950, 1953) bargaining solution is a solution for

non-transferable payoff cooperative games. Strategic interactions involving

national security, social issues and political gains fall into the category of

non-transferrable utility/payoff (NTU) games. In the case when payoffs are

nontransferable, transfer payments cannot be made and subgame consistent

solution mechanism becomes extremely complicated. In this Chapter, the issue

of subgame consistency in cooperative stochastic differential games with

nontransferable payoffs or utility is presented. In particular, the Chapter is an

integrated exposition of the works in Yeung and Petrosyan (2005) and Yeung

et al. (2007). The Chapter is organized as follows. The formulation of

non-transferrable utility cooperative stochastic differential games, the

corresponding Pareto optimal state trajectories and individual player’s payoffs

under cooperation are provided in Sect. 6.1. The notion of subgame consistency

in NTU cooperative stochastic differential games under time invariant payoff

weights is examined in Sect. 6.2. In Section 6.3, a class of cooperative stochastic

differential games with nontransferable payoffs is developed to illustrate the

derivation of subgame consistent solutions. Subgame consistent cooperative

solutions of the class of NTU games developed in Sect. 6.3 are investigated

in Sect. 6.4. Numerical delineations of the solutions presented in Sect. 6.4 are

given in Sect. 6.5. An analysis on infinite horizon NTU cooperative stochastic

differential games is provided in Sect. 6.6. A chapter appendices containing

proofs are given in Sect. 6.7. Chapter notes are given Sect. 6.8 and problems in

Sect. 6.9.
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6.1 NTU Cooperative Stochastic Differential Games

Consider the two-person cooperative stochastic differential game with initial state

x0 and durationT � t0. The state space of the game is X 2 Rn, with permissible state

trajectories {x(s), t0� s� T}. The state dynamics of the game is characterized by

the vector-valued stochastic differential equations:

dx sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ, x t0ð Þ ¼ x0; ð1:1Þ

where σ[s, x(s)] is a n� Θ matrix and z(s) is a Θ-dimensional Wiener process and

the initial state x0 is given. LetΩ s, x sð Þ½ � ¼ σ s, x sð Þ½ �σ s, x sð Þ½ �0 denote the covariance
matrix with its element in row h and column ζ denoted by Ωhζ s, x sð Þ½ �, ui 2 Ui

� compR‘ is the control vector of player i, for i 2 1; 2f g.
At time instant s 2 t0; T½ �, the instantaneous payoff of player i, for i 2 1; 2f g, is

denoted by gi[s, x(s), u1(s), u2(s)], and when the game terminates at time T, player
i receives a terminal payment of qi(x(T )). Payoffs are nontransferable across

players. Given a time-varying instantaneous discount rate r(s), for s 2 t0; T½ �, values
received t time after t0 have to be discounted by the factor exp �

ðt
t0

r yð Þdy
� �

. Hence

at time t0, the expected payoff of player i, for i 2 1; 2f g, is given as:

Ji t0; x0ð Þ ¼ Et0

� ðT
t0

gi s, x sð Þ, u1 sð Þ, u2 sð Þ½ �exp �
ðs
t0

r yð Þdy
� �

ds

þ exp �
ðT
t0

r yð Þdy
� �

qi x Tð Þð Þ
���� x t0ð Þ ¼ x0

�
; ð1:2Þ

where Et0 denotes the expectation operator performed at time t0,
We use Γ x0,T � t0ð Þ to denote the game (1.1 and 1.2) and Γ xτ,T � τð Þ to denote

an alternative game with state dynamics (1.1) and payoff structure (1.2) which starts

at time τ 2 t0; T½ �with initial state xτ 2 X. The benchmark noncooperative feedback

Nash equilibrium solution can be characterized by Theorem 1.1 in Chap. 3.

6.1.1 Pareto Optimal Trajectories

Consider the situation when the players agree to cooperate. We useΓc x0,T � t0ð Þ to
denote a cooperative game with dynamics (1.1) and payoffs (1.2). To achieve group

optimality, the players have to consider cooperative outcomes belonging to the

Pareto optimal set. Pareto optimal trajectories forΓc x0,T � t0ð Þ can be identified by
choosing a specific weight α1 2 0;1ð Þ that solves the following stochastic control

problem (See Leitmann (1974), Dockner and Jørgensen (1984) and Jørgensen and

Zaccour (2001)):
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max
u1,u2

J1 t0;x0ð Þþα1J
2 t0;x0ð Þ� ��

max
u1,u2

Et0

�ðT
t0

g1 s,x sð Þ,u1 sð Þ,u2 sð Þ½ �þα1g
2 s,x sð Þ,u1 sð Þ,u2 sð Þ½ �	 


exp �
ðs
t0

r yð Þdy
� �

ds

þ q1 x Tð Þð Þþα1q
2 x Tð Þð Þ� �

exp �
ðT
t0

r yð Þdy
� �����x t0ð Þ¼x0

�
; ð1:3Þ

subject to dynamics (1.1). Note that the problem max
u1, u2

J1 t0; x0ð Þ þ αiJ
2 t0; x0ð Þ� �

is

identical to the problem max
u1, u2

J2 t0; x0ð Þ þ α2J
1 t0; x0ð Þ� �

when α1 ¼ 1=α2.

Invoking the technique developed by Fleming (1969) in Theorem A.3 of the

Technical Appendices, we have

Corollary 1.1 A set of controls u
α1 t0ð Þ
i tð Þ ¼ ψα1 t0ð Þ

i t; xð Þ
n

, for i 2 1; 2f gg provides

an optimal solution to the stochastic control problem (1.3), if there exists twice

continuously differentiable function Wα1 t0ð Þ t; xð Þ : t0; T½ � � Rn ! R satisfying the

partial differential equation:

�W
α1 t0ð Þ
t t; xð Þ � 1

2

Xn
h, ζ¼1

Ωhζ t; xð ÞWα1 t0ð Þ
xhxζ

t; xð Þ ¼

max
u1, u2

�
g1 t; x; u1; u2½ � þ α1g

2 t; x; u1; u2½ �	 

exp �

ðt
t0

r yð Þdy
� �

þWα1 t0ð Þ
x t; xð Þf t; x; u1; u2½ �

�
,

Wα1 t0ð Þ T; xð Þ ¼ exp �r T � t0ð Þ½ � q1 xð Þ þ α1q2 xð Þ½ �: ■

Substituting ψα1 t0ð Þ
1 t; xð Þ and ψα1 t0ð Þ

2 t; xð Þ into (1.1) yields the dynamics of the

Pareto optimal trajectory associated with weight α1:

dx sð Þ¼f s,x sð Þ,ψα1 t0ð Þ
1 s,x sð Þð Þ,ψα1 t0ð Þ

2 s,x sð Þð Þ
h i

dsþσ s,x sð Þ½ �dz sð Þ, x t0ð Þ¼x0: ð1:4Þ

We denote the set containing realizable values of xα1* tð Þ by X
α1 t0ð Þ
t , for t 2 	

t0,T
�
.

The solution to (1.4) yields a Pareto optimal trajectory, which can be expressed

as:

x tð Þ ¼ x0 þ
ðt
t0

f s, x sð Þ,ψα1 t0ð Þ
1 s, x sð Þð Þ,ψα1 t0ð Þ

2 s, x sð Þð Þ
h i

dsþ
ðt
t0

σ s, x sð Þ½ �dz sð Þ:

We denote the set containing realizable values of x(t) along the optimal trajectory

by X
α1 t0ð Þ
t , for t 2 	

t0,T
�
.

Now, consider the cooperative game Γc xτ,T � τð Þwith state dynamics (1.1) and

payoff structure (1.2), which starts at time τ 2 t0; T½ � with initial state xτ 2 Xα1 t0ð Þ
τ .
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We use ψα1 τð Þ
i t; xð Þ to denote the optimal control in Γc xτ,T � τð Þ, for τ 2 t0; T½ � and

t 2 τ; T½ �. Using Definition 1.1 we can characterize the solution of the control

problem max
u1, u2

J1 τ; xτð Þ þ α1J
2 τ; xτð Þ� �

in Γc xτ,T � τð Þ, for τ 2 t0; T½ � and

t 2 τ; T½ �. In particular, we use ψα1 τð Þ
1 t; xð Þ, ψα1 τð Þ

2 t; xð Þ
h i

to denote the optimal

control and Wα1 τð Þ t; xð Þ : τ; T½ � � Rn ! R the corresponding maximized value

function.

Remark 1.1 Invoking Definition 1.1, one can readily show that ψα1 τð Þ
i t; xð Þ ¼ ψα1 sð Þ

i

t; xð Þ at the point (t, x), for i 2 1; 2f g, t0 � τ � s � t � T and x 2 X
α1 t0ð Þ
t . ■

Remark 1.2 Invoking Definition 1.1, one can readily show that Wα1 τð Þ t; xð Þ ¼
Wα1 sð Þ t; xð Þexp �r τ � sð Þ½ �, for t0 � τ � s � t � T and x 2 X

α1 t0ð Þ
t : ■

6.1.2 Individual Player’s Payoffs Under Cooperation

In this section, we present a methodology for the derivation of individual player’s

payoff under cooperation. To do this, we first substitute the optimal controls ψα1 t0ð Þ
1

t; xð Þ and ψα1 t0ð Þ
2 t; xð Þ into the objective functions (1.2) to derive the players’

expected payoff under cooperation with α1 being chosen as the cooperative weight.
Given that x tð Þ ¼ x 2 Xα1*

t , for t 2 τ; T½ �, we define player 1’s expected cooper-

ative payoff over the interval [t, T] as:

Ŵ
α1 t0ð Þi

t; xð Þ ¼
Et0

� ðT
t

gi s, x sð Þ,ψα1 t0ð Þ
1 s, x sð Þð Þ,ψα1 t0ð Þ

2 s, x sð Þð Þ
h i

exp �
ðs
t0

r yð Þdy
� �

ds

þ exp �
ðT
t0

r yð Þdy
� �

qi x Tð Þð Þ
���� x tð Þ ¼ x

�
, for i 2 1; 2f g; ð1:5Þ

where

dx sð Þ ¼ f s, x sð Þ,ψα1 t0ð Þ
1 s, x sð Þð Þ,ψα1 t0ð Þ

2 s, x sð Þð Þ
h i

dsþ σ s, x sð Þ½ �dz sð Þ, x tð Þ ¼ x.

To facilitate the derivation individual players’ cooperative payoffs a mechanism

characterizing player i’s cooperative payoff under payoff weights α1 is given in the
theorem below.
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Theorem 1.1 If there exist continuously functions

Ŵ
α1 t0ð Þi

t; xð Þ : t0; T½ � � Rn ! R, i 2 1; 2f g; satisfying

� Ŵ
α1 t0ð Þi
t t; xð Þ � 1

2

Xn
h, ζ¼1

Ωhζ t; xð ÞŴ α1 t0ð Þi
xhxζ t; xð Þ ¼

gi t, x,ψα1 t0ð Þ
1 t; xð Þ,ψα1 t0ð Þ

2 t; xð Þ
h i

exp �
ðt
t0

r yð Þdy
� �

þ Ŵ
α1 t0ð Þi
x t; xð Þf t, x,ψα1 t0ð Þ

1 t; xð Þ,ψα1 t0ð Þ
2 t; xð Þ

h i
and

Ŵ
α1 t0ð Þi

T; xð Þ ¼ exp �
ðT
t0

r yð Þdy
� �

qi xð Þ

then Ŵ
α1 t0ð Þi

t; xð Þgives player i’s expected cooperative payoff over the interval [t,T]
with α1 being chosen as the weight.

Proof Note that for Δ t ! 0, we can express Ŵ
α1 t0ð Þi

t; xð Þ in (1.5) as:

Ŵ
α1 t0ð Þi

t; xð Þ ¼
Et0

� ðtþΔt

t

gi s, x sð Þ,ψα1 t0ð Þ
1 s, x sð Þð Þ,ψα1 t0ð Þ

2 s, x sð Þð Þ
h i

exp �
ðs
t0

r yð Þdy
� �

ds

þ Ŵ
α1 t0ð Þi

tþ Δ t, xþ Δxð Þ
���� x tð Þ ¼ x

�

¼ Et0

�
gi t, x,ψα1 t0ð Þ

1 t; xð Þ,ψα1 t0ð Þ
2 t; xð Þ

h i
exp �

ðt
t0

r yð Þdy
� �

Δ t

þ Ŵ
α1 t0ð Þi

t; xð Þ þ Ŵ
α1 t0ð Þi
t t; xð ÞΔ t

þ Ŵ
α1 t0ð Þi
x t; xð Þf t, x,ψα1 t0ð Þ

1 t; xð Þ,ψα1 t0ð Þ
2 t; xð Þ

h i
Δ t

þ Ŵ
α1 t0ð Þi
x t; xð Þσ t; xð ÞΔzþ 1

2

Xn
h, ζ¼1

Ωhζ t; xð ÞŴ α1 t0ð Þi
xhxζ t; xð Þ þ o Δ tð Þ

�
for i 2 1; 2f g; ð1:6Þ

where

Δx ¼ f t, x,ψα1 t0ð Þ
1 t; xð Þ,ψα1 t0ð Þ

2 t; xð Þ
h i

Δ tþ σ t; xð ÞΔzþ o Δ tð Þ,
Δz ¼ z tþ Δtð Þ � z tð Þ, andEt0 o Δtð Þ½ �=Δt ! 0 as Δt ! 0

Canceling terms, performing the expectation operator, dividing throughout by Δt
and taking Δt ! 0, we obtain:
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� Ŵ
α1 t0ð Þi
t t; xð Þ � 1

2

Xn
h, ζ¼1

Ωhζ t; xð ÞŴ α1 t0ð Þi
xhxζ t; xð Þ ¼

gi t, x,ψα1 t0ð Þ
1 t; xð Þ,ψα1 t0ð Þ

2 t; xð Þ
h i

exp �
ðt
t0

r yð Þdy
� �

þ Ŵ
α1 t0ð Þi
x t; xð Þf t, x,ψα1 t0ð Þ

1 t; xð Þ,ψα1 t0ð Þ
2 t; xð Þ

h i
, for i 2 1; 2f g: ð1:7Þ

Boundary conditions require:

Ŵ
α1 t0ð Þi

T; xð Þ ¼ exp �
ðT
t0

r yð Þdy
� �

qi x Tð Þð Þ, for i 2 1; 2f g: ð1:8Þ

Hence Theorem 1.1 follows. ■

6.2 Notion of Subgame Consistency

Under cooperation with nontransferable payoffs, the players negotiate to establish

an agreement (optimality principle) on how to play the cooperative game and how

to distribute the resulting payoff. In particular, the chosen optimality principle has

to satisfy group optimality and individual rationality. Subgame consistency requires

that the extension of the solution policy to a later starting time and any possible state

brought about by prior optimal behavior of the players would remain optimal.

Consider the cooperative game Γc x0, T � t0ð Þ in which the players agree to an

optimality principle. In particular, given x0 at time t0, according to the solution

optimality principle the players will adopt

(i) a weight α01 leading to a set of cooperative controls { ψ
α0
1
t0ð Þ

1 t; xð Þ,ψα0
1
t0ð Þ

2 t; xð Þ
h i

,

for t 2 t0; T½ �}, and
(ii) an imputation ξ t0ð Þ1 x0, T � t0; α01

	 

, ξ t0ð Þ2 x0, T � t0; α01

	 
� � ¼ Ŵ
t0 α0

1ð Þ1
t0; x0ð Þ,

�

Ŵ
t0 α0

1ð Þ2
t0; x0ð Þ

�
:

Now consider the game Γc xτ,T � τð Þwhere xτ 2 Xα1 t0ð Þ
τ and τ 2 t0; T½ �, under the

same solution optimality principle the players will adopt

(i) a weight ατ1 leading to a set of cooperative controls { ψ
α τ
1
τð Þ

1 t; xð Þ,ψα τ
1
τð Þ

2 t; xð Þ
h i

,

for t 2 τ; T½ �}, and
(ii) an imputation ξ τð Þ1 τ, T � τ; ατ

1

	 

, ξ τð Þ2 τ,T � τ; ατ

1

	 
� � ¼ Ŵ
τ α τ

1ð Þ1
τ; xτð Þ,

�

Ŵ
τ α τ

1ð Þ2
τ; xτð Þ

�
:
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A formal definition of subgame consistency can be stated as:

Definition 2.1 An optimality principle yielding imputations ξ τð Þ xτ, T � τ; ατ
1

	 

, for

τ 2 t0; T½ � and xτ 2 X
α0
1
t0ð Þ

τ , constitutes a subgame consistent solution to the game

Γc x0,T � t0; α01
	 


if the following conditions are satisfied:

(i) ξ τð Þ xτ,T�τ;ατ
1

	 
¼ ξ τð Þ1 xτ,T�τ;ατ
1

	 

,ξ τð Þ2 xτ,T�τ;ατ

1

	 
� �
; for t0�τ� t�T,

is Pareto optimal;

(ii) ξ τð Þi xτ, T � τ; ατ
1

	 
 � V τð Þi τ; xτð Þ, for i 2 1; 2f g, τ 2 t0; T½ � and xτ 2 X
α0
1
t0ð Þ

τ ; and

(iii)
ξ τð Þi xt, T � t; ατ

1

	 

exp r τ � tð Þ½ � ¼ ξ tð Þi xt, T � t; α t

1

	 

,

for i 2 1; 2f g, t0 � τ � t � T and xt 2 X
α0
1
t0ð Þ

t : ■

Part (i) of Definition 4.1 requires that according to the agreed upon optimality

principle Pareto optimality is maintained at every instant of time. Hence group

rationality is satisfied throughout the game interval. Part (ii) demands individual

rationality to be met throughout the entire game interval. Part (iii) guarantees the

consistency of the solution imputations throughout the game interval in the sense that

the extension of the solution policy to a situation with a later starting time and any

possible state brought about by prior optimal behavior of the players remains optimal.

6.3 A NTU Game for Illustration

Consider a two-person nonzero-sum stochastic differential game with initial state x0
and duration T � t0. The state space of the game is X � R, with permissible state

trajectories {x(s), t0� s� T}. The state dynamics of the game is characterized by

the stochastic differential equations:

dx sð Þ ¼ a� bx sð Þ � u1 sð Þ � u2 sð Þ½ �dsþ σ x sð Þdz sð Þ, x t0ð Þ ¼ x0 2 X; ð3:1Þ

where ui 2 Ui is the control vector of player i, for i 2 1; 2½ �, a, bandσ are positive

constants, and z(s) is a Wiener process. Equation (3.1) could be interpreted as the

stock dynamics of a biomass of renewable resource like forest or fresh water. The

state x(s) represents the resource size and ui(s) the (nonnegative) amount of

resource extracted by player i.
At time t0, the expected payoff of player i 2 1; 2f g is:

Ji t0; x0ð Þ ¼ Et0

� ðT
t0

hiui sð Þ � ciui sð Þ2x sð Þ�1 þ kix sð Þ
h i

exp �r s� t0ð Þ½ �ds

þ exp �r T � t0ð Þ½ �qix Tð Þ
���� x t0ð Þ ¼ x0

�
,

for i 2 1; 2f g; ð3:2Þ

where hi, ci, ki and qi are positive parameters.
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The term hiui(s) reflects player i’s satisfaction level obtained from the consump-

tion of the resource extracted, and ciui sð Þ2x sð Þ�1
measures the cost created in the

extraction process. kix(s) is the benefit to player i related to the existing level of

the resource. Total utility of player i is the aggregate level of satisfaction. Payoffs
in the form of utility are not transferable between players. There exists a time

discount rate r, and utility received at time t has to be discounted by the factor

exp �r t� t0ð Þ½ �. At time T, player i will receive a terminal benefit qix(T)
1/2, where

qi is nonnegative.

6.3.1 Noncooperative Outcome and Pareto Optimal
Trajectories

We use Γ x0,T � t0ð Þ to denote the game (3.1 and 3.2) and Γ xτ,T � τð Þ to denote an
alternative game with state dynamics (3.1) and payoff structure (3.2), which starts

at time τ 2 t0; T½ �with initial state xτ 2 X. Invoking the techniques of Isaacs (1965),
Bellman (1957) and Fleming (1969) as stated in Theorem 1.1 of Chap. 3 a

non-cooperative Nash equilibrium solution of the game Γ xτ,T � τð Þ can be char-

acterized as follows.

Corollary 3.1 A set of feedback strategies u
τð Þ*
i tð Þ ¼ ϕ τð Þ*

i t; xð Þ
n

, for i 2 1; 2f g
o

provides a Nash equilibrium solution to the game Γ xτ, T � τð Þ, if there exist twice
continuously differentiable functions V τð Þi t; xð Þ : τ; T½ � � R ! R, i 2 1; 2f g, satis-
fying the following partial differential equations:

�V
τð Þi
t t;xð Þ�1

2
σ2x2V τð Þi

xx t;xð Þ

¼max
ui

�
hiui�ciu

2
i x

�1þkix
� �

exp �r t�τð Þ½ �þV τð Þi
x t;xð Þ a�bx�ui�uj

� ��
, and

V τð Þi T; xð Þ ¼ exp �r T � τð Þ½ �qix, for i 2 1; 2f g, j 2 1; 2f g and j 6¼ i: ð3:3Þ

■

Performing the indicated maximization in Corollary 3.2 yields:

ϕ τð Þ*
i t; xð Þ ¼ hi � V τð Þi

x exp r t� τð Þð Þ� �
x

2ci
, for i 2 1; 2f gand x 2 X: ð3:4Þ

The feedback Nash equilibrium payoffs of the players in the game Γ xτ,T � τð Þ can
be obtained as:

Proposition 3.1 The value function representing the feedback Nash equilibrium

payoff of player i in the game Γ xτ,T � τð Þ is:
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V τð Þi t; xð Þ ¼ exp �r t� τð Þ½ � Ai tð Þxþ Bi tð Þ½ �, for i 2 1; 2f g and t 2 τ; T½ �; ð3:5Þ

where Ai(t),Bi(t),Aj(t) and Bj(t), for i 2 1; 2f g and j 2 1; 2f g and i 6¼ j, satisfy:

_A i tð Þ ¼ r þ bð ÞAi tð Þ � ki � hi � Ai tð Þ½ �2
4ci

þ Ai tð Þ hj � Aj tð Þ
� �
2cj

,

_B i tð Þ ¼ rBi tð Þ � aAi tð Þ,
Ai Tð Þ ¼ qi, Bi Tð Þ ¼ 0:

Proof Upon substitution of ϕðτÞ 	
i (t, x) from (3.4) into (3.3) yields a set of partial

differential equations. One can readily verify that (3.5) is a solution to this set of

equations. ■

Consider the case where the players agree to cooperate in order to enhance their

payoffs. Let Γc x0,T � t0ð Þ denote a cooperative game with payoff structure (3.1)

and dynamics (3.2) starting at time t0 with initial state x0. If the players agree to

adopt a weight α1 > 0, Pareto optimal trajectories for Γc x0, T � t0ð Þ can be

identified by solving the following stochastic control problem:

max
u1, u2

J1 t0; x0ð Þ þ α1J
2 t0; x0ð Þ� �

�max
u1, u2

Et0

� ðT
t0



h1u1 sð Þ � c1u1 sð Þ2x sð Þ�1 þ k1x sð Þ
h i

þ α1 h2u2 sð Þ � c2u2 sð Þ2x sð Þ�1 þ k2x sð Þ
h i �

exp �r s� t0ð Þ½ �ds

exp �r T � t0ð Þ½ � q1x Tð Þ þ q2x Tð Þ½ �
���� x t0ð Þ ¼ x0

�
; ð3:6Þ

subject to dynamics (3.1). Note that when α1 ¼ 1=α2, the problem

max
u1, u2

J1 t0; x0ð Þ þ α1J
2 t0; x0ð Þ� �

is identical to the problem max
u1, u2

J2 t0; x0ð Þ þ α2J
1

�
t0; x0ð Þg in the sense that max

u1, u2
J2 t0; x0ð Þ þ α2J

1 t0; x0ð Þ� ��max
u1, u2

α2 J1 t0; x0ð Þþ��
α1J

2 t0; x0ð Þ�g yields the same optimal controls as those from max
u1, u2

J1 t0; x0ð Þþ�
α1J

2 t0; x0ð Þg.
In Γc x0,T � t0ð Þ, let α01 be the selected weight according the agreed upon

optimality principle. Invoking Corollary 1.1 in Sect. 6.1 the optimal solution of

the stochastic control problem (3.1) and (3.6) can be characterized as:

Corollary 3.2 A set of controls { ψ
α0
1
t0ð Þ

1 t; xð Þ,ψα0
1
t0ð Þ

2 t; xð Þ
h i

, for t 2 t0; T½ �� provides
an optimal solution to the stochastic control problem max

u1, u2
J1 t0; x0ð Þþ�

α01J
2 t0; x0ð Þg, if there exists twice continuously differentiable function Wα0

1
t0ð Þ t; xð Þ

: t0; T½ � � R ! R satisfying the partial differential equation:
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�W
α0
1
t0ð Þ

t t;xð Þ�1

2
σ2x2W

α0
1
t0ð Þ

xx t;xð Þ¼

max
u1,u2

�
h1u1�c1u

2
1x

�1þk1x
� �	 þα01 h2u2�c2u

2
2x

�1þk2x
� �


exp �r t� t0ð Þ½ �

þW
α0
1
t0ð Þ

x t;xð Þ a�bx�ui�uj
� ��

,

Wα0
1
t0ð Þ T;xð Þ¼exp �r T� t0ð Þ½ � q1x Tð Þþα01q2x Tð Þ� � ð3:7Þ■

Performing the indicated maximization in Corollary 3.2 yields:

ψ
α0
1
t0ð Þ

1 t; xð Þ ¼
h1 �W

α0
1
t0ð Þ

x t; xð Þexp r t� t0ð Þð Þ
h i

x

2c1
, and

ψ
α0
1
t0ð Þ

2 t; xð Þ ¼
α01h2 �W

α0
1
t0ð Þ

x t; xð Þexp r t� t0ð Þð Þ
h i

x

2α01c2
, for t 2 t0; T½ �: ð3:8Þ

The maximized value function Wα0
1
t0ð Þ t; xð Þ of the control problem

max
u1, u2

J1 t0; x0ð Þ þ α01J
2 t0; x0ð Þ� �

can be obtained as:

Proposition 3.2

Wα0
1
t0ð Þ t; xð Þ ¼ exp �r t� t0ð Þ½ � Aα0

1 tð Þxþ Bα0
1 tð Þ

h i
, for t 2 t0; T½ �; ð3:9Þ

where Aα0
1 tð Þ and Bα0

1 tð Þ satisfy:

_A α0
1 tð Þ ¼ r þ bð ÞAα0

1 tð Þ �
h1 � Aα0

1 tð Þ
h i2

4c1

�
α01h2 � Aα0

1 tð Þ
h i2

4α01c2
� k1 � k2,

_B α0
1 tð Þ ¼ r Bα0

1 tð Þ � Aα0
1 tð Þa,

Aα0
1 Tð Þ ¼ q1 þ α01q2 and B

α0
1 Tð Þ ¼ 0: ð3:10Þ

Proof Upon substitution of ψ
α0
1
t0ð Þ

1 t; xð Þ and ψα0
1
t0ð Þ

2 t; xð Þ from (3.10) into (3.7) yields

a partial differential equation. One can readily verify that (3.9) is a solution to this

set of equations. ■

Substituting the partial derivativesW
α0
1
t0ð Þ

x t; xð Þ into ψα0
1
t0ð Þ

1 t; xð Þ and ψα0
1
t0ð Þ

2 t; xð Þ in
(3.9) yields the optimal controls of the problem max

u1, u2
J1 t0; x0ð Þ þ α01J

2 t0; x0ð Þ� �
as:

ψ
α0
1
t0ð Þ

1 t; xð Þ ¼
h1 � Aα0

1 tð Þ
h i

x

2c1
, and

ψ
α0
1
t0ð Þ

2 t; xð Þ ¼
α01h2 � Aα0

1 tð Þ
h i

x

2α01c2
, for t 2 t0; T½ �: ð3:11Þ
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Substituting these controls into (3.1) yields the dynamics of the Pareto optimal

trajectory associated with a weight α01. The Pareto optimal trajectory then can be

solved as:

xα
0
1
t0ð Þ tð Þ ¼ Φ α01; t; t0

	 

x0 þ

ðt
t0

Φ�1 α01; s; t0
	 


ads

� �� �2

; ð3:12Þ

where

Φ α01; t; t0
	 
 ¼

exp

� ðt
t0



� b� h1 � Aα0

1 sð Þ
2c1

� α1h2 � Aα0
1 sð Þ

2α01c2
� σ2

2

�
dsþ

ðt
t0

σ dz sð Þ
�
:

We use X
α0
1
t0ð Þ

t to denote the set of realizable values of xα
0
1
t0ð Þ tð Þ generated by (3.12)

at t 2 	
t0,T

�
.

Now, consider the cooperative game Γc xτ,T � τð Þwith state dynamics (3.1) and

payoff structure (3.2), which starts at time τ 2 t0; T½ � with initial state xτ 2 Xα1 t0ð Þ
τ .

Let ατ1 be the selected weight according the agreed upon optimality principle.

Following previous analysis, we can obtain the maximized value function,

optimal controls and optimal trajectory of the control problem max
u1, u2

J1 τ; xτð Þþ�
ατ
1J

2 τ; xτð Þg.

Remark 3.1 One can readily show that when α01 ¼ ατ
1 ¼ α*1, then ψ

α*
1
t0ð Þ

i t; xtð Þ ¼
ψ
α*
1
τð Þ

i t; xtð Þ at the point (t, xt), for i 2 1; 2½ �, t0 � τ � t � T and xt 2 X
α*
1
t0ð Þ

t . ■

6.3.2 Individual Player’s Payoff Under Cooperation

In order to verify individual rationality, we have to derive the players’ expected
payoffs in the cooperative game Γc x*τ ,T � τ

	 

. Let ατ1 be the weight dictated by the

solution optimality principle. We substitute

ψ
ατ
1
τð Þ

1 t; xð Þ ¼ h1 � Aα τ
1 tð Þ� �

x

2c1
and ψ

ατ
1
τð Þ

2 t; xð Þ ¼ ατ
1h2 � Aα τ

1 tð Þ� �
x

2ατ
1c2

into the players’ payoffs and define the following functions.

Definition 3.1 Given that x tð Þ ¼ x
α τ
1
τð Þ

t 2 X
α τ
1
τð Þ

t , for t 2 τ; T½ �, player 1’s expected
payoff over the interval [t, T] under the control problem max

u1, u2
J1 τ; xτð Þþ�

ατ
1J

2 τ; xτð Þg as:
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Ŵ
τ α τ

1ð Þ1
t; xð Þ ¼

Eτ

� ðT
t

h1 h1 � Aα τ
1 sð Þ� �

x sð Þ
2c1

� h1 � Aα τ
1 sð Þ� �2

x sð Þ
4c1

þ k1x sð Þ
" #

exp �r s� τð Þ½ �ds

þ exp �r T � t0ð Þ½ �q1x Tð Þ
���� x tð Þ ¼ x

�
;

and the corresponding expected payoff of player 2 over the interval [t,T] as:

Ŵ
τ α τ

1ð Þ2
t; xð Þ ¼ Eτ

�
ðT
t

h2 ατ
1h2 � Aα τ

1 sð Þ� �
x sð Þ

2ατ
1c2

� ατ
1h2 � Aα τ

1 sð Þ� �2
x sð Þ

4 ατ
1

	 
2
c2

þ kix sð Þ
" #

exp �r s� τð Þ½ �ds

þ exp �r T � τð Þ½ �q2x Tð Þ
���� x tð Þ ¼ x

�
;

where

dx sð Þ ¼ a� bx sð Þ
�

� h1 � Aα τ
1 sð Þ�x	s� 


2c1
� ατ

1h2 � Aα τ
1 sð Þ�x	s� 


2ατ
1c2

�
ds

þ σ x sð Þdz sð Þ, x tð Þ ¼ x: ■

Invoking Theorem 1.1 in Sect. 6.1, player 1’s expected payoff Ŵ
τ α τ

1ð Þ1
t; xτð Þ can

be characterized as:

� Ŵ
τ α τ

1ð Þ1
t t; xtð Þ � 1

2
Ŵ

τ α τ
1ð Þ1

xtxt
t; xtð Þσ2 x2t ¼

h1 h1 � Aα τ
1 tð Þ� �

xt

2c1
� c1 h1 � Aα τ

1 tð Þ� �2
xt

4c21
þ k1xt

" #
exp �r t� τð Þ½ �

þ Ŵ
τ α τ

1ð Þ1
xt

t; xtð Þ a� bxt

�
� h1 � Aα τ

1 tð Þ� �
xt

2c1
� ατ

1h2 � Aα τ
1 tð Þ� �

xt

2ατ
1c2

�
: ð3:13Þ

Boundary conditions require:

Ŵ
τ α τ

1ð Þ1
T; xð Þ ¼ exp �r T � τð Þ½ �q1x: ð3:14Þ

If there exist continuously differentiable functions Ŵ
τ α τ

1ð Þ1
t; xð Þ : τ; T½ � � R ! R

satisfying (3.13) and (3.14), then player 1’s expected payoff in the cooperative

game Γ xτ,T � τð Þ under the cooperation scheme with weight ατ1 is indeed

Ŵ
τ α τ

1ð Þ1
t; xð Þ. The value function Ŵ

τ α τ
1ð Þ1

t; xð Þ indicating the expected payoff of

player 1 under cooperation can be obtained as:
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Proposition 3.3 The function Ŵ
τ α τ

1ð Þ1
t; xð Þ : t0; T½ � � R ! R satisfying (3.13) and

(3.14) can be solved as:

Ŵ
τ α τ

1ð Þ1
t; xð Þ ¼ exp �r t� τð Þ½ � Â

α τ
1

1 tð Þxþ B̂
α τ
1

1 tð Þ
h i

; ð3:15Þ

where Â
α τ
1

1 tð Þ and B̂
α τ
1

1 tð Þ satisfy:

_̂A
α τ
1

1 tð Þ ¼ r þ bþ h1 � Aα τ
1 tð Þ� �

2c1
þ α1h2 � Aα τ

1 tð Þ� �
2α1c2

� �
Â

α1
1 tð Þ

� h1 � Aα τ
1 tð Þ� �

h1 þ Aα τ
1 tð Þ� �

4c1
� k1;

_̂B
α τ
1

1 tð Þ ¼ rB̂
α τ
1

1 tð Þ � aÂ
α τ
1

1 tð Þ, Â
α τ
1

1 Tð Þ ¼ q1 and B̂
α τ
1

1 Tð Þ ¼ 0.

Proof Upon calculating the derivatives Ŵ
τ α τ

1ð Þ1
t t; xð Þ, Ŵ τ α τ

1ð Þ1
xx t; xð Þ, and Ŵ

τ α τ
1ð Þ1

x

t; xð Þ from (3.15) and then substituting them into (3.13) yield Proposition 3.3. ■

Following the above analysis, a continuously differentiable function Ŵ
τ α τ

1ð Þ2
t; xð Þ : τ; T½ � � R ! R giving the player 2’s expected payoff under cooperation can

be obtained as:

Proposition 3.4
Ŵ

α τ
1
τð Þ2

t; xð Þ ¼ exp �r t� τð Þ½ � Â
α τ
1

2 tð Þxþ B̂
α τ
1

2 tð Þ
h i

; ð3:16Þ

where Â
α τ
1

2 tð Þ and B̂
α τ
1

2 tð Þ has to satisfy:

_̂A
α τ
1

2
tð Þ ¼ r þ bþ h1 � Aα τ

1 tð Þ� �
2c1

þ α1h2 � Aα τ
1 tð Þ� �

2α1c2

� �
Â

α τ
1

2 tð Þ

� α1h2 � Aα τ
1 tð Þ� �

α1h2 þ Aα τ
1 tð Þ� �

4α21c2
� k2;

_̂B
α τ
1

2 tð Þ ¼ rB̂
α τ
1

2 tð Þ � aÂ
α τ
1

2 tð Þ, Â α τ
1

2 Tð Þ ¼ q2 and B̂
α τ
1

2 Tð Þ ¼ 0:

Proof Follow the proof of Proposition 3.3. ■

6.4 Subgame Consistent Cooperative Solutions
of the Game

In this section, we present subgame consistent solutions to the cooperative game

Γc x0,T � t0ð Þ. First note that group optimality will be maintained only if

the solution optimality principle selects the same weight α1 for all games
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Γc xτ,T � τð Þ, τ 2 t0; T½ � and xτ 2 Xα1 t0ð Þ
τ . For any chosen α1 to maintain individual

rationality throughout the game interval, the following condition must be satisfied.

ξ τð Þi xτ,T � τ; α1ð Þ ¼ Ŵ
τ α1ð Þi

τ; xτð Þ � V τð Þi τ; xτð Þ,
for i 2 1; 2f g, τ 2 t0; T½ � andxτ 2 Xα1 t0ð Þ

τ : ð4:1Þ

Definition 4.1 We define the set ST
τ ¼ \

τ �t<T
St, for τ 2

�
t0, T



: ■

St represents the set of α1 satisfying individual rationality at time t 2 �
t0, T



and

STτ represents the set of α1 satisfying individual rationality throughout the interval�
τ,T



. In general ST

τ 6¼ ST
t for τ, t 2 �

t0,T


where τ 6¼ t.

6.4.1 Typical Configurations of St

To find out typical configurations of the set St for t 2 �
t0,T



of the game

Γc x0,T � t0ð Þ, we perform extensive numerical simulations with a wide range of

parameter specifications for a, b, σ, h1, h2, k1, k2, c1, c2, q1, q2,T, r, x0. We calculate

the time paths of A1(t),B1(t),A2(t) and B2(t) in Proposition 3.1 for t 2 t0; T½ �. Then
we select weights α1 and calculate the time paths of Â

α1
1 tð Þ, Â α1

2 tð Þ, B̂ α1
1 tð Þ and B̂

α1
2

tð Þ in Propositions 3.3 and 3.4, for t 2 t0; T½ �. At each time instant t 2 t0; T½ �, we
derive the set of α1 that yields Â

α1
i tð Þ � Ai tð Þ and B̂

α1
i tð Þ � Bi tð Þ, for i 2 1; 2½ �, to

derive the set St, for t 2
�
t0, T



.

We denote the locus of the values of α t
1
along t 2 �

t0,T


as curve α

1
and the locus

of the values of α t
1 as curve α1. In particular, typical patterns include:

(i) The curves α
1
and α1 are continuous and move in the same direction over the

entire game duration: either both increase monotonically or both decrease

monotonically (see Fig. 6.1).

(ii) The curves α
1
and α1 are continuous. α1 declines and α1 rises over the entire

game duration (see Fig. 6.2).

(iii) The curves α
1
and α1 are continuous. One of these curves would rise/fall to a

peak/trough and then fall/rise (see Fig. 6.3).

(iv) The set ST
t0
can be nonempty or empty.

6.4.2 Examples of Subgame Consistent Solutions

In this subsection, we present some subgame consistent solutions to Γc x0,T � t0ð Þ.
Solution 4.1 Consider the cooperative differential game Γc x0,T � t0ð Þ with

parameters leading to a set of payoff weights as in Panel (b) of Fig. 6.1. In
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particular, there exist a set of weights ST
t0
6¼ ∅ under which individual rationality is

satisfied throughout the game horizon [0, T] and αT�
1

2 ST
t0
. At initial time 0, in the

cooperative Γc x0,T � t0ð Þ, an optimality principle under which the players to

choose the weight

α*1 ¼ αT�1 , in Γc xτ, T � τð Þ for τ 2 �
t0,T



yields a subgame consistent solution to the cooperative game Γc x0,T � t0ð Þ.

1α curve

1α curve

1α curve

1α curve

1α curve

1α curve

1α curve

1α curve

t0t0

t0 t0

T T

TT

a b

dc

Fig. 6.1 Both upward α
1
and α1 curves and both downward α

1
and α1 curves

T

curve

curve1

1

α

α

t0

Fig. 6.2 Declining α
1
curve

and rising α1 curve
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Proof According to the optimality principle in Solution 4.1, a uniqueα*1 ¼ αT�
1

will

be chosen for all the subgamesΓc xτ, T � τð Þ, for t0 � τ � t < T andxτ 2 X
α*
1
t0ð Þ

τ . The

vector ξ τð Þ xτ,T � τ; α*1
	 
 ¼ Ŵ

τ α*
1ð Þ1

τ; xτð Þ, Ŵ τ α*
1ð Þ2

τ; xτð Þ
� �

; for τ 2 t0; T½ �, yields a
Pareto optimal pair of imputations. Hence part (i) of Definition 2.1 is proved.

One can readily verify that Ŵ
τ α*

1ð Þi
t; xð Þexp r τ � tð Þ½ � ¼ Ŵ

t α*
1ð Þi

t; xð Þ, for

i 2 1; 2f g, t0 � τ � t � T and xt 2 X
α0
1
t0ð Þ

t . Hence part (ii) of Definition 2.1 is

satisfied.

Finally, from Definitions 4.1, one can verify that Ŵ
τ α*

1ð Þi
τ; xτð Þ ¼ exp �r t� τð Þ½ �

Â
α*
1

i tð Þx1=2 þ B̂
α*
1

i tð Þ
h i

� V τð Þi τ; xτð Þ ¼ exp �r½ t� τð Þ� Ai tð Þx1=2 þ Bi tð Þ
� �

; for i 2
1; 2f g, τ 2 t0; T½ � and xτ 2 X

α*
1
t0ð Þ

τ . Hence part (iii) of Definition 2.1 is fulfilled. ■

Solution 4.2 Consider the cooperative differential game Γc x0,T � t0ð Þ with

parameters leading to a set of payoff weights as in Panel (a) of Fig. 6.1. In

particular, there exist a set of weights ST
t0
6¼ ∅ under which individual rationality

is satisfied throughout the game horizon [0, T] andαT�1 2 ST
t0
. At initial time 0, in the

cooperative Γc x0,T � t0ð Þ, an optimality principle under which the players to

choose the weight

α*1 ¼ αT�1 , in Γc xτ,T � τð Þ for τ 2 �
t0, T



yields a subgame consistent solution to the cooperative game Γc x0,T � t0ð Þ.
Proof Follow the proof of Solution 4.1. ■

Solution 4.3 Consider the cooperative differential game Γc x0,T � t0ð Þ with

parameters leading to a set of payoff weights as in Fig. 6.2. In particular, there

exist a set of weights ST
t0
6¼ ∅ under which individual rationality is satisfied

throughout the game horizon [0,T] and αT�
1

	 
0:5
αT�1
	 
0:5 2 ST

t0
, At initial time 0, in

1α

1α

curve

1α curve

curve
1α curve

t0
t0T T

a b

Fig. 6.3 Rising to a peak and then fall curve and falling to a trough and then rise curve
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the cooperative Γc x0,T � t0ð Þ, an optimality principle under which the players to

choose the weight

α*1 ¼ αT�
1

	 
0:5
αT�1
	 
0:5

in Γc xτ,T � τð Þ for τ 2 �
t0,T



yields a subgame consistent solution to the cooperative game Γc x0,T � t0ð Þ.
Proof Follow the proof of Solution 4.1. ■

6.5 Numerical Delineation

Numerical delineations of the 4 solutions presented in Sect. 6.4 are given in the

following 4 cases.

Case 5.1 Consider the cooperative game Γc x0,T � tð Þ with the following param-

eter specifications: a ¼ 10, b ¼ 1, σ ¼ 0:05, h1 ¼ 8, h2 ¼ 7, k1 ¼ 1, k2 ¼ 0:5, c1 ¼
1, c2 ¼ 1:2, q1 ¼ 0:8, q2 ¼ 0:4, T ¼ 6, r ¼ 0:02:

The numerical results are displayed in Fig. 6.4. The curve α
1
is the locus of the

values of α t
1 along t 2 �

t0,T


. The curve α1 is the locus of the values of α t

1 along

t 2 �
t0,T



. In particular, the setST

t0
¼ \

t0 �t<T
St ¼ αt01 ; α

T�
1

� � ¼ 1:182686, 1:450783½ �.
Note thatαT�1 2 ST

t0
and αT�1 =2ST

t0
, forτ 2 �

t0,T


. According to Solution 4.1, the players

would agree to the optimality principle of choosing a weight α*1 ¼ αT�
1

¼ 1:182686

throughout the game interval, and a subgame consistent solution to the cooperative

game Γc x0,T � t0ð Þ would result.
Case 5.2 Consider the cooperative game Γc x0,T � tð Þ with the following param-

eter specifications: a ¼ 6, b ¼ 0:8, σ ¼ 0:04, h1 ¼ 8, h2 ¼ 6, k1 ¼ 1, k2 ¼ 0:5, c1 ¼
1, c2 ¼ 1:5, q1 ¼ 3, q2 ¼ 2, T ¼ 3, r ¼ 0:02:

The numerical results are displayed in Fig. 6.5. In particular, the set ST
t0
¼

\
t0 �t<T

St ¼ αt01 ; α
T�
1

� � ¼ 1:246704, 1:443176½ �. Note that αT�1 2 ST
t0
and αT�

1
=2ST

t0
,

t0
1α

t0
1α

T-
1α

T-
1α

= 1.450783

= 1.024445

= 1.871887

*
1α= 1.182686 =

1α curve

1α curve

t0 T

Fig. 6.4 A subgame consistent solution with optimality principle of a weight α1* ¼
α
1
T� ¼ 1:182686
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for τ 2 �
t0,T



. According to Solution 4.2, the players would agree to the optimality

principle of choosing a weight α*1 ¼ αT�1 ¼ 1:443176 throughout the game interval,

and a subgame consistent solution to the cooperative gameΓc x0,T � t0ð Þwould result.
Case 5.3 Consider the cooperative game Γc x0,T � tð Þ with the following param-

eter specifications: a ¼ 10, b ¼ 1:1, σ ¼ 0:04, h1 ¼ 8, h2 ¼ 7, k1 ¼ 1, k2 ¼ 0:5,
c1 ¼ 1, c2 ¼ 1:2, q1 ¼ 3, q2 ¼ 2, T ¼ 3, r ¼ 0:02:

The numerical results are displayed in Fig. 6.6. In particular, the set

ST
t0
¼ \

t0 �t<T
St ¼ αt01 ; α

T�
1

� � ¼ 1:022675, 1:460205½ �. Note that αT�
1

=2ST
t0

and

αT�1 =2ST
t0
, for τ 2 �

t0, T


. According to Solution 4.3, the players would agree to the

optimality principle of choosing a weight α*1 ¼ αT�
1

	 
0:5
αT�1
	 
0:5 ¼ 1:232949

throughout the game interval, and a subgame consistent solution to the cooperative

game Γc x0, T � t0ð Þ would result.

t0
1α = 1.739807

curve
t0
1α = 1.246704

T-
1α = 1.443176 =

T-
1α = 0.910522 

1α

1α curve

t0 T

*
1α

Fig. 6.5 A subgame consistent solution with optimality principle of a weight α1* ¼
α1T� ¼ 1:443176

t0
1α = 1.460205

t0
1α = 1.022675

T-
1α = 1.552765

T-
1α = 0.979004

0.5
1

0.5
1 )()( −− TT αα = 1.232949

1α curve

1α curve

t0 T

Fig. 6.6 A subgame consistent solution with optimality principle of a weight α1* ¼ αT�
1

	 
0:5
αT�1
	 
0:5 ¼ 1:232949
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Case 5.4 Consider the cooperative game Γc x0,T � tð Þwith parameters: a ¼ 6, b ¼
1, σ ¼ 0:03, h1 ¼ 11, h2 ¼ 6, k1 ¼ 1, k2 ¼ 0:5, c1 ¼ 1, c2 ¼ 1:5, q1 ¼ 3, q2 ¼ 2,T ¼
6, r ¼ 0:02:

The numerical results are displayed in Fig. 6.7. In particular, the set

ST
t0
¼ \

t0 �t<T
St ¼ ∅. Hence there does not exist any candidate for a subgame

consistent solution for the game Γc x0,T � t0ð Þ.

6.6 Infinite Horizon Analysis

In this Section we examine the situation when the game horizon approaches

infinity. Consider an infinite-horizon cooperative stochastic differential game in

which player i’s payoff to be maximized is

Ji x0ð Þ
¼ Et0

� ð1
t0

kiui sð Þ½ �1=2 � ci

x sð Þ1=2
ui sð Þ

" #
exp �r s� t0ð Þ½ �ds

���� x t0ð Þ ¼ x0

�
; ð6:1Þ

for i 2 1; 2f g:
The state dynamics of the game is characterized by the stochastic differential

equations:

dx sð Þ ¼ ax sð Þ1=2 � bx sð Þ � u1 sð Þ � u2 sð Þ
h i

dsþ σ x sð Þdz sð Þ, x t0ð Þ ¼ x0 2 X

ð6:2Þ

where ui 2 Ui is the control vector of player i, for i 2 1; 2f g;

1α

1α

curve

curve

1
0tα

1
0tα = 2.559743

= 1.785097

t0

Fig. 6.7 The set ST
to ¼ \

to�t<T
St ¼ ∅ and no candidate for a subgame consistent solution
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a, b, and σ are positive constants, and z(s) is a Wiener process. Equation (6.2)

could be interpreted as the stock dynamics of a biomass of renewable resource (see

Jørgensen and Yeung (1996, 1999)).

Note that the infinite-horizon autonomous problem (6.1 and 6.2) is indepen-

dent of the choice of t0 and dependent only upon the state at the starting time,

that is x0. Hence, we use Γ x;1ð Þ and Γc x;1ð Þ to denote respectively a

noncooperative and a cooperative game with payoffs (6.1) and dynamics

(6.2) with starting state x. Following the previous analysis modified for an

infinite horizon problem, we can obtain the value function reflecting the

expected payoff (in current value) of player i 2 1; 2f g in the noncooperative

game Γ x;1ð Þ as
Proposition 6.1

Vi xð Þ ¼ Aix
1=2 þ Bi

h i
;

where Ai, Bi,Aj and Bj, for i 2 1; 2f g and j 2 1; 2f g and i 6¼ j, satisfy:

r þ 1

8
σ2 þ b

2

� �
Ai � ki

4 ci þ Ai=2
� �þ Aikj

8 cj þ Aj=2
� �2 ¼ 0 , and Bi ¼ a

2r
Ai:

Proof Applying Theorem 5.1 of Chap. 3 to the game (6.1 and 6.2) yields

Proposition 6.1. ■

In the case of cooperation where α1 is the chosen weight under the agreed

optimality principle, the maximized value function reflecting the maximized

expected weighted joint payoff of the stochastic control problem

max
u1, u2

J1 xð Þ þ α1J
2 xð Þ� �

subject to dynamics (6.1) can be obtained as:

Proposition 6.2 Wα1 xð Þ ¼ A
α1x1=2 þ B

α1� �
; where A

α1
and B

α1
satisfy:

r þ 1

8
σ2 þ b

2

� �
A
α1 � k1

4 c1 þ A
α1=2

� �� α1k2
4 c2 þ A

α1=2α1
� � ¼ 0, and B

α1 ¼ a

2r
A
α1 :

Proof Applying Theorem A.4 in the Technical Appendices to the stochastic

control problem max
u1, u2

J1 xð Þ þ α1J
2 xð Þ� �

subject to dynamics (6.1) yields

Proposition 6.2. ■
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The corresponding optimal controls are:

ψα1 1ð Þ
1 xð Þ ¼ k1x

4 c1 þ A
α1=2

� �2 and ψα1 1ð Þ
2 xð Þ ¼ k2x

4 c2 þ A
α1=2α1

� �2 , for x 2 X:

We define player 1’s expected payoff over the interval
�
0,1


under the control

problem max
u1, u2

J1 xð Þ þ α1J
2 xð Þ� �

as:

Ŵ
α1 1ð Þ

xð Þ ¼ E0

� ð1
0

k1x sð Þ1=2
2 c1 þ A

α1=2
� �� c1k1x sð Þ1=2

4 c1 þ A
α1
=2

� �2
" #

exp �rsð Þds
�
;

and the corresponding expected payoff of player 2 over the interval
�
0,1


as:

Ŵ
α1 2ð Þ

xð Þ ¼ E0

� ð1
0

k2x sð Þ1=2
2 c2 þ A

α1=2α1
� �� c2k2x sð Þ1=2

4 c2 þ A
α1=2α1

� �2
" #

exp �rsð Þds
�
;

where

dx sð Þ ¼ ax sð Þ1=2 � bþ



k1

4 c1 þ A
α1=2

� �2 þ k2

4 c2 þ A
α1=2α1

� �2
�
x sð Þ

" #
ds

þ σ x sð Þdz sð Þ, x tð Þ ¼ x:

An infinite-horizon counterpart of Theorem 1.1 characterizing player i’s coopera-
tive payoff under payoff weights α1 is given in the theorem below.

Theorem 6.1 If there exist continuously functions Ŵ
α1 ið Þ

xð Þ : Rn ! R, i 2 1; 2f g;
satisfying

rŴ
α1 ið Þ
t xð Þ � 1

2

Xn
h, ζ¼1

Ωhζ xð ÞŴ α1 ið Þ
xhxζ xð Þ ¼ gi x,ψα1

1 xð Þ,ψα1
2 xð Þ� �

þ Ŵ
α1 ið Þ
x t; xð Þf x,ψα1

1 xð Þ,ψα1
2 xð Þ� �

;

then Ŵ
α1 ið Þ

t; xð Þ gives player i’s expected cooperative payoff when the state is x and
α1 is chosen as the weight.

Proof Following the analysis of developing an infinite horizon counter of

the stochastic control leading to Theorem A.4 in the Technical appendices

one can obtain an infinite-horizon counterpart of Theorem 1.1 in Section as

Theorem 6.1. ■
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Using Theorem 6.1 the expected payoffs of Player 1 and Players 2 under

cooperation can be obtained as follows.

Proposition 6.3 The expected payoffs of Player 1 and Player 2 (in current-value)

under cooperation with bargaining weight α1 are respectively:

Ŵ
α1 1ð Þ

xð Þ ¼ Â
α1
1 x1=2 þ B̂

α1
1

h i
and Ŵ

α1 2ð Þ
xð Þ ¼ Â

α1
2 x1=2 þ B̂

α1
2

h i
;

where

r þ 1

8
σ2 þ b

2

� �
Â

α1
1 � k1

2 c1 þ A
α1=2

� �þ c1k1

4 c1 þ A
α1=2

� �2 þ Â
α1
1 k1

8 c1 þ A
α1=2

� �2
þ Â

α1
1 k2

8 c2 þ A
α1=2α1

� �2 ¼ 0, B̂
α1
1 tð Þ ¼ a

2r
Â

α1
1 ,

r þ 1

8
σ2 þ b

2

� �
Â

α1
2 � k2

2 c2 þ A
α1
=2α1

� �þ c2k2

4 c2 þ A
α1=2α1

� �2
þ Â

α1
2 k1

8 c1 þ A
α1=2

� �2 þ Â
α1
2 k2

8 c2 þ A
α1=2α1

� �2 ¼ 0, and B̂
α1
2 ¼ a

2r
Â

α1
2 :

Proof Follow the Proof of Proposition 3.3 yields Proposition 6.3. ■

Since the solution to the control problem max
u1, u2

J1 xð Þ þ α1J
2 xð Þ� �

yields a Pareto

optimal outcome there exist (i) an α1
1

such that Ŵ
α1
1

2ð Þ
xð Þ ¼ V2 xð Þ and Ŵ

α1
1

1ð Þ

xð Þ � V1 xð Þ, and (ii) an α11 such that Ŵ
α11 1ð Þ

xð Þ ¼ V1 xð Þ and Ŵ
α11 2ð Þ

xð Þ � V2 xð Þ.
Comparing Ŵ

α1 ið Þ
xð Þ in Proposition 6.3 with Vi(x) in Proposition 6.1 shows that

Ŵ
α1 ið Þ

xð Þ � Vi xð Þ if and only if Â
α1
i � Ai, for i 2 1; 2f g.

A condition that would be used in subsequent analysis is:

Condition 6.1 dÂ
α1
1 =dα1 < 0 and dÂ

α1
2 =dα1 > 0.

Proof See Appendix A. ■

Therefore there exists a nonempty set S1 of α1 such that Â
α1
i � Ai, for i 2 1; 2f g.

Using Condition 6.1, we can readily show that

Corollary 6.1 S1 ¼ α1
1
; α11

� �
, where α1

1
is the lowest value of α1 in S

1, and α11
the highest. Moreover, Â

α11
1 ¼ A1 and Â

α1
1

2 ¼ A2. ■

Now consider the case where the players agree to an optimality principle

which chooses the payoff weight α*1 ¼ α1
1

	 
0:5
α11
	 
0:5

. We then show that such

an optimality principle yields a subgame consistent solution in the following

Proposition.
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Proposition 6.4 An optimality principle under which the players agree to choose

the weight

α*1 ¼ α1
1

	 
0:5
α11
	 
0:5 ð6:3Þ

yields a subgame consistent solution to the cooperative game Γc x;1ð Þ:
Proof According to the optimality principle in Proposition 6.4 a unique weight α*1

¼ α1
1

	 
1=2
α11
	 
1=2

is chosen for any game Γc x;1ð Þ. Since α1
1

	 
1=2
α11
	 
1=2 2 S1,

the imputation vector ξ τð Þ x;1ð Þ ¼ Ŵ
α*
1ð Þ1

xð Þ, Ŵ α*
1ð Þ2

xð Þ
� �

yields a Pareto optimal

pair. Hence part (i) of Definition 3.2 is proved.

The present-value (at time τ < t ) counterpart of the current-value payoff

Ŵ
α*
1
ið Þ
xð Þ, i 2 1; 2f g, can be expressed as

Eτ

�
exp �r t� τð Þ½ �

ð1
t

kiψ
α*
1
1ð Þ

i x sð Þ½ �
n o1=2

� ci

x sð Þ1=2
ψ
α*
1
1ð Þ

i x sð Þ½ �
" #

exp �r s� tð Þ½ �ds
���� x tð Þ ¼ x

�
¼ exp �r t� τð Þ½ �Ŵ α*

1
ið Þ
xð Þ:

Hence, part (ii) of Definition 3.2 holds.

Since α1
1

	 
1=2
α11
	 
1=2 2 S1, Ŵ

α*
1
ið Þ
xð Þ � Vi xð Þ, for i 2 1; 2f gandx 2 X. Hence,

part (iii) of Definition 3.2 is satisfied. ■

In addition, the cooperative solution in Proposition 6.4 also satisfies the axioms

of symmetry in the following remark.

Remark 6.1 The Pareto optimal cooperative solution proposed in Proposition 6.4

also satisfies the axioms of symmetry. See Appendix B for proof details. ■

6.7 Chapter Appendices

Appendix A: Proof of Condition 6.1 Note thatWα1 xð Þ ¼ Ŵ
α1 1ð Þ

xð Þ þ α1 Ŵ
α1 2ð Þ

xð Þ,
therefore we haveA

α1 ¼ Â
α1
1 þ α1Â

α1
2 . Since u1 and u2 are nonnegative, Ŵ

α1 1ð Þ
xð Þ � 0

and Ŵ
α1 2ð Þ

xð Þ � 0. Hence A
α1
, Â

α1
1 and Â

α1
2 are nonnegative.

Define the equation r þ 1
8
σ2 þ b

2

� �
A
α1 � k1

4 c1þA
α1=2½ � �

α1k2
4 c2þA

α1=2α1½ � ¼ 0 in Proposi-

tion 6.2 as Ψ A
α1 ; α1

	 
 ¼ 0. Implicitly differentiating Ψ A
α1 ; α1

	 
 ¼ 0 yields:
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dA
α1

dα1
¼

k2 c2 þ A
α1=α1

� �
4 c2 þ A

α1
=2α1

� �2 = r þ 1

8
σ2 þ b

2

� �
þ k1

8 c1 þ A
α1
=2

� �2 þ k2

8 c2 þ A
α1
=2α1

� �2
( )

> 0

ð7:1Þ

Then we define the equation r þ 1
8
σ2 þ b

2

� �
Â

α1
1 � k1

2 c1þA
α1=2½ � þ

c1k1

4 c1þA
α1=2½ �2

þ Â
α1
1 k1

8 c1þA
α1=2½ �2 þ

Â
α1
1 k2

8 c2þA
α1=2α1½ �2 ¼ 0 in Proposition 6.3 as Ψ1 Â

α1
1 ; α1

� �
¼ 0:

The effect of a change in α1 on Â
α1
1 can be obtained as:

dÂ
α1
1

dα1
¼ �

∂Ψ1 Â
α1
1 ; α1

� �
=∂α1

∂Ψ1 Â
α1
1 ; α1

� �
=∂Â

α1
1

; ð7:2Þ

Where

∂Ψ1

∂Â
α1
1

¼ r þ 1

8
σ2 þ b

2

� �
þ k1

8 c1 þ A
α1=2

� �2 þ k2

8 c2 þ A
α1=2α1

� �2 > 0, and ð7:3Þ

∂Ψ1

∂α1
¼

k1 A
α1 � Â

α1
1

h i
8 c1 þ A

α1=2
� �3 dA

α1

dα1
þ Â

α1
1 k2=α12

8 c2 þ A
α1=2α1

� �3 A
α1 � α1

dA
α1

dα1

� �
ð7:4Þ

From Proposition 6.3, we obtain:

Â
α1
2 ¼

k2 c2 þ A
α1=α1

� �
4 c2 þ A

α1=2α1
� �2 = r þ 1

8
σ2 þ b

2

� �
þ k1

8 c1 þ A
α1=2

� �2 þ k2

8 c2 þ A
α1=2α1

� �2
( )

:

ð7:5Þ

Comparing (7.5) with (7.1) shows that dA
α1=dα1 ¼ Â

α1
2 . Upon substituting dA

α1=dα1
by Â

α1
2 and invoking the relation A

α1 ¼ Â
α1
1 þ α1Â

α1
2 , we have

∂Ψ1

∂α1
¼

k1α1 Â
α1
2

� �2

8 c1 þ A
α1
=2

� �3 þ Â
α1
1

� �2

k2=α12

8 c2 þ A
α1
=2α1

� �3 > 0: ð7:6Þ
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Therefore, dÂ
α1
1 =dα1 < 0. Following the above analysis, we have:

dÂ
α1
2

dα1
¼

k2 Â
α1
1

� �2

=α13

8 c2 þ A
α1=2α1

� �3 þ Â
α1
2

� �2

k1

8 c1 þ A
α1=2

� �3
8><
>:

9>=
>;


 r þ 1

8
σ2 þ b

2

� �
þ k1

8 c1 þ A
α1
=2

� �2 þ k2

8 c2 þ A
α1
=2α1

� �2
( )

> 0: ð7:7Þ

Hence Condition 6.1 follows. ■

Appendix B: Proof of Remark 6.1 Let [V(max)1(x),V2(x)] denote a payoff

pair along the Pareto optimal trajectory. From Condition 6.1 and Corollary 6.1,

in the problem max
u1, u2

J1 xð Þ þ α1J
2 xð Þ� �

if α1
1

is chosen, Ŵ
α1
1

2ð Þ
xð Þ ¼ V2 xð Þ and

Ŵ
α1
1

1ð Þ
xð Þ ¼ V maxð Þ1 xð Þ. On the other hand, in the problemmax

u1, u2
J2 xð Þ þ α2J

1 xð Þ� �
,

in order to have player 2’s expected payoff being V2(x) and player 1’s payoff being
V(max)1(x) the weight α12 has to be chosen. Recall that when α1 ¼ 1=α2, the problem

max
u1, u2

J1 xð Þ þ α1J
2 xð Þ� �

is identical to the problem max
u1, u2

J2 xð Þ þ α2J
1 xð Þ� �

. Since

max
u1, u2

J1 xð Þ þ α1
1
J2 xð Þ� �

and max
u1, u2

J2 xð Þ þ α12 J1 xð Þ� �
both yield V2(x) and V1(max)

(x), it is necessary that α1
1

¼ 1=α12 . With similar argument, α11 ¼ 1=α1
2
is verified.

According to Proposition 6.4, in the problem max
u1, u2

J1 xð Þ þ α1J
2 xð Þ� �

an opti-

mality principle under which the players agree to choose the weight α*1 ¼ α1
1

	 
0:5
α11
	 
0:5

yields a subgame consistent solution to the cooperative game Γc x;1ð Þ.
Following the same optimality principle in the problem max

u1, u2
J2 xð Þ þ α2J

1 xð Þ� �
under which the players agree to choose the weight α*2 ¼ α1

2

	 
0:5
α12
	 
0:5

, which is

equivalent to having 1=α*1 ¼ 1= α1
1

	 
0:5
α11
	 
0:5h i

.

Since α*2 ¼ 1=α*1, the controls in the problems max
u1, u2

J1 xð Þ þ α*1J
2 xð Þ� �

and max
u1, u2

J2 xð Þ þ α*2J
1 xð Þ� �

are identical. Hence the axiom of symmetry prevails. ■

6.8 Chapter Notes

The number of studies in cooperative dynamic games with non-transferrable utility/

payoff (NTU) is much less than that of cooperative dynamic games with transfer-

rable payoffs. Leitmann (1974), Dockner and Jørgensen (1984), Hamalainen

et al. (1986), Yeung and Petrosyan (2005), Yeung et al. (2007), de-Paz

et al. (2013), and Marin-Solano (2014) studied continuous-time cooperative
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differential games with non-transferable payoffs. The stringent requirement of

subgame consistency imposes additional hurdles to the derivation of solutions for

cooperative stochastic differential games. In the case when players’ payoffs are

nontransferable, the derivation of solution candidates becomes even more compli-

cated and intractable. In this Chapter, subgame consistent solutions of cooperative

stochastic differential games with nontransferable payoffs are examined and a class

of cooperative stochastic differential games with nontransferable payoffs is used to

illustrate some possible solutions. Theorem 1.1 characterizing the players’ expected
payoff under cooperation was developed by Yeung (2004). Finally, the analysis can

be applied to NTU cooperative differential games with the removal of the stochastic

term σ[s, x(s)]. Finally, the notion of cooperative subgame consistency under

variable payoff weights is examined in the discrete-time case in Chap. 11.

6.9 Problems

1. Consider a two-person stochastic differential game with initial state x 0ð Þ ¼ x0
¼ 14 and duration [0, 4]. The state dynamics of the game is characterized by the

stochastic differential equations:

dx sð Þ ¼ 15� x sð Þ � u1 sð Þ � u2 sð Þ½ �dsþ 0:01x sð Þdz sð Þ;

where ui 2 Ui is the control vector of player i, for i 2 1; 2½ �, and z(s) is a Wiener

process. The state dynamics is the stock dynamics of a biomass of renewable

resource like forest or fresh water. The state x(s) represents the resource size and
ui(s) the (nonnegative) amount of resource extracted by player i.

At time 0, the expected payoff of player 1 is:

J1 0; x0ð Þ ¼ E0

� ð4
0

4u1 sð Þ � u1 sð Þ2x sð Þ�1 þ 0:5x sð Þ
h i

exp �0:05½ �ds

þ 2exp �0:2½ �x Tð Þ
�
, and,

the expected payoff of player 2 is:

J2 0; x0ð Þ ¼ E0

� ð4
0

3u1 sð Þ � 2u1 sð Þ2x sð Þ�1 þ x sð Þ
h i

exp �0:05½ �ds

þ 3exp �0:2½ �x Tð Þ
�
:

If the payoff weight α1 ¼ 0:4 is chosen to maximize the expected weighted

payoff
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max
u1, u2

E0

�
J1 0; x0ð Þ þ α1J

2 0; x0ð Þ
�
; derive the individual payoffs of the players

under cooperation.

2. Consider an infinite horizon stochastic differential game with initial state

x 0ð Þ ¼ x0 ¼ 10. The state dynamics of the game is characterized by the stochas-

tic differential equations:

dx sð Þ ¼ 9� 2x sð Þ � u1 sð Þ � u2 sð Þ½ �dsþ 0:02x sð Þdz sð Þ;

where ui 2 Ui is the control vector of player i, for i 2 1; 2½ �, and z(s) is a Wiener

process.

At time 0, the expected payoff of player 1 is:

J1 0; x0ð Þ ¼ E0

� ð1
0

4u1 sð Þ � u1 sð Þ2x sð Þ�1 þ 0:2x sð Þ
h i

exp �0:05½ �ds
�
; and the

expected payoff of player 2 is:

J2 0; x0ð Þ ¼ E0

� ð1
0

4u1 sð Þ � 2u1 sð Þ2x sð Þ�1 þ 1:5x sð Þ
h i

exp �0:05½ �ds
�
:

If the payoff weight α1 ¼ 0:35 is chosen to maximize the expected weighted

payoff

max
u1, u2

E0

�
J1 0; x0ð Þ þ α1J

2 0; x0ð Þ
�
; derive the individual payoffs of the players

under cooperation.
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