
Chapter 3

Subgame Consistent Cooperation
in Stochastic Differential Games

An essential characteristic of time – and hence decision making over time – is that

though the individual may, through the expenditure of resources, gather past and

present information, the future is inherently unknown and therefore (in the math-

ematical sense) uncertain. An empirically meaningful theory must therefore incor-

porate time-uncertainty in an appropriate manner. This Chapter considers subgame

consistent cooperation in stochastic differential games. It provides an integrated

exposition the works of Yeung and Petrosyan (2004), Chapter 4 of Yeung and

Petrosyan (2006b), and Chapter 8 of Yeung and Petrosyan (2012a).

The organization of the Chapter is as follows. Section 3.1 presents the basic

formulation of cooperative stochastic differential games. Section 3.2 presents an

analysis on cooperative subgame consistency under uncertainty. Derivation of a

subgame consistent payoff distribution procedure is provided in Sect. 3.3. An illus-

tration in cooperative fishery under uncertainty is given in Sect. 3.4. Infinite horizon

subgame consistency under uncertainty is examined in Sect. 3.5. In Sect. 3.6, a

subgame consistent solution for infinite horizon cooperative fishery under uncertainty

is presented. Chapter notes are provided in Sect. 3.7 and problems in Sect. 3.8.

3.1 Cooperative Stochastic Differential Games

Consider the general form of n-person stochastic differential games in which player

i seeks to maximize its expected payoffs:

Et0

� ðT
t0

gi s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
ðs
t0

r yð Þdy
� �

ds

þ exp �
ðT
t0

r yð Þdy
� �

qi x Tð Þð Þ
�
, for i 2 N; ð1:1Þ
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with Et0 �f g denoting the expectation operation taken at time t0, and the dynamics

of the state is

dx sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ, x t0ð Þ ¼ x0; ð1:2Þ

where σ[s, x(s)] is a m� Θ matrix and z(s) is a Θ-dimensional Wiener process

and the initial state x0 is given. Let Ω[s, x(s)]¼ σ[s, x(s)] σ[s, x(s)]’ denote the

covariance matrix with its element in row h and column ζ denoted by Ωhζ[s, x(s)].

Moreover, E dzϖ½ � ¼ 0 and E dzϖdt½ � ¼ 0 and E dzϖð Þ2
h i

¼ dt, forϖ 2 1; 2; � � �;Θ½ �;
and E dzϖdzω½ � ¼ 0, for ϖ 2 1; 2; � � �;Θ½ �,ϖ 2 1; 2; � � �;Θ½ � and ϖ 6¼ ω.

3.1.1 Non-cooperative Equilibria

Again, we first characterize the non-cooperative equilibria of the game as a

benchmark for negotiation in the cooperative scheme. A feedback Nash equilibrium

solution of the stochastic differential game (1.1) and (1.2) can be characterized by

the following Theorem.

Theorem 1.1 An N-tuple of feedback strategies ϕ*
i t; xð Þ 2 Ui; i 2 N

� �
provides a

Nash equilibrium solution to the game (1.1) and (1.2) if there exist suitably smooth

functions V t0ð Þi t; xð Þ : t0; T½ � � Rm ! R, i 2 N, satisfying the partial differential

equations

�V
t0ð Þi
t t; xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ t; xð ÞV t0ð Þi
xhxς

t; xð Þ ¼

max
ui

gi t, x,ϕ*
1 t; xð Þ,ϕ*

2 t; xð Þ, � � �,ϕ*
i�1 t; xð Þ, ui tð Þ,ϕ*

iþ1 t; xð Þ, � � �,ϕ*
n t; xð Þ� 	�

exp �
ðs
t0

r yð Þdy
� �

þV t0ð Þi
x t; xð Þf t, x,ϕ*

1 t; xð Þ,ϕ*
2 t; xð Þ, � � �,ϕ*

i�1 t; xð Þ, ui tð Þ,ϕ*
iþ1 t; xð Þ, � � �,ϕ*

n t; xð Þ� 	�
,

V t0ð Þi T; xð Þ ¼ qi xð Þexp �
ðT
t0

r yð Þdy
� �

, i 2 N:

Proof This result follows readily from the definition of Nash equilibrium and from

the stochastic control result in Theorem A.3 of the Technical Appendices. ■

In particular, V t0ð Þi t; xð Þ represents the expected game equilibrium payoff of

player i at time t 2 t0; T½ � with the state being x, that is
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V t0ð Þi t; xð Þ
¼ Et0

� ðT
t

gi s, x* sð Þ,ϕ*
1 s, x* sð Þ
 �

,ϕ*
2 s, x* sð Þ
 �

, � � �,ϕ*
n s, x* sð Þ
 �� 	

exp �
ðs
t0

r yð Þdy
� �

ds

þ qi x* Tð Þ
 �
exp �

ðT
t0

r yð Þdy
� � �

:

A remark that will be utilized in subsequent analysis is given below.

Remark 1.1 Let V(τ)i(t, x) denote the feedback Nash equilibrium payoff of nation i in
the game with stochastic dynamics (1.1) and expected payoffs (1.2) which starts at

time τ for τ 2 �t0,T�. Note that the equilibrium feedback strategies are Markovian in

the sense that they depend on current time and current state. One can readily verify that

exp

ðτ
t0

r yð Þdy
� �

V t0ð Þi t; xð Þ ¼ exp

ðτ
t0

r yð Þdy
� �

�Et0

� ðT
t

gi s, x* sð Þ,ϕ*
1 s, x* sð Þ
 �

,ϕ*
2 s, x* sð Þ
 �

, � � �,ϕ*
n s, x* sð Þ
 �� 	

exp �
ðs
t0

r yð Þdy
� �

ds

�

�Et0

� ðT
t

gi s, x* sð Þ,ϕ*
1 s, x* sð Þ
 �

,ϕ*
2 s, x* sð Þ
 �

, � � �,ϕ*
n s, x* sð Þ
 �� 	

exp �
ðs
t0

r yð Þdy
� �

ds

�

¼ Et

� ðT
t

gi s, x* sð Þ,ϕ*
1 s, x* sð Þ
 �

,ϕ*
2 s, x* sð Þ
 �

, � � �,ϕ*
n s, x* sð Þ
 �� 	

exp �
ðs
τ
r yð Þdy

� �
ds

�
¼ V τð Þi t; xð Þ, for τ 2 �t0,T�: ■

3.1.2 Dynamic Cooperation Under Uncertainty

The participating players agree to act according to an agreed-upon optimality

principle. Based on this optimality principle, the solution of the cooperative differ-

ential game Γc x0,T � t0ð Þ at time t0 includes

(i) a set of cooperative strategies

u t0ð Þ* s; xsð Þ ¼ u
t0ð Þ*
1 s; xsð Þ, u t0ð Þ*

2 s; xsð Þ, � � �, u t0ð Þ*
n s; xsð Þ

h i
, for s 2 t0; T½ � given

that the state is xs at time s;
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(ii) an imputation vector ξ t0ð Þ t0; x0ð Þ ¼ ξ t0ð Þ1 t0; x0ð Þ, ξ t0ð Þ2 t0; x0ð Þ, � � �, ξ t0ð Þn t0; x0ð Þ� 	
to allot the cooperative payoff to the players; and

(iii) a payoff distribution procedure Bt0 s; xsð Þ ¼ Bt0
1 s; xsð Þ,Bt0

2 s; xsð Þ, � � �,Bt0
n s; xsð Þ� 	

for s 2 t0; T½ �, whereBt0
i s; xsð Þ is the instantaneous payments for player i at time

s given that the state is xs. In particular,

ξ t0ð Þi t0; x0ð Þ ¼ Et0

� ð T

t0

Bt0
i s; xsð Þexp �

ðs
t0

r yð Þdy
� �

dsþ qi xTð Þ exp �
ðT
t0

r yð Þdy
� � �

,

for i 2 N:

ð1:3Þ

This means that the players agree at the outset on a set of cooperative strategies

u t0ð Þ* s; xsð Þ, an imputation ξ t0ð Þi t0; x0ð Þof the gains to the ith player covering the time

interval [t0,T], and a payoff distribution procedure Bt0 s; xsð Þf g T
s¼t0

to allocate

payments to the players over the game interval.

Recall that group optimality is an essential element in dynamic cooperation, an

optimality principle has to require the players have to maximize their expected joint

payoff:

Et0

( Xn
j¼1

ðT
t0

gj s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
ðs
t0

r yð Þdy
� �

ds

þ
Xn
j¼1

exp �
ðT
t0

r yð Þdy
� �

qi x Tð Þð Þ
)
; ð1:4Þ

subject to (1.2).

Let W t0ð Þ t; xð Þ denote maximized expected payoff of the stochastic control

problem at time t given that the state is x, that is:

W t0ð Þ t; xð Þ
¼ max

u1 sð Þ,u2 sð Þ, � � �,un sð Þ;
f or s 2 t;T½ �

Et0

�

Xn
j¼1

ðT
t

gj s, x sð Þ,u1 sð Þ,u2 sð Þ, � � �,un sð Þ½ �exp �
ðs
t0

r yð Þdy
� �

dsþ
Xn
j¼1

exp �
ðT
t0

r yð Þdy
� �

qi x Tð Þð Þ
�
:

An optimal solution to the stochastic dynamic programming control problem (1.2)

and (1.4) is provided by the theorem below.

Theorem 1.2 A set of controls
�
u*i tð Þ ¼ ψ*

i t; xð Þ, for i 2 N
�
constitutes an optimal

solution to the stochastic control problem (1.2) and (1.4), if there exist continuously

twice differentiable functions W t0ð Þ t; xð Þ : t0; T½ � � Rm ! R, satisfying the follow-

ing partial differential equation:
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�W
t0ð Þ
t t; xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ t; xð ÞW t0ð Þ
xhxζ

t; xð Þ ¼

max
u1, u2, ���, un

Xn
j¼1

gj t; x; u1; u2; � � �; un½ �
(

exp �
ðt
t0

r yð Þdy
� �

þW t0ð Þ
x t; xð Þf t; x; u1; u2; � � �; un½ �

�
, and

W t0ð Þ T; xð Þ ¼
Xn
j¼1

qj xð Þexp �
ðT
t0

r yð Þdy
� �

: ð1:5Þ

Proof Follow the proof of Theorem A.3 in the Technical Appendices. ■

Hence the players will adopt the cooperative control {ψ�
i (t, x), for i 2 N and t

2 t0; T½ �g to obtain the maximized level of expected joint profit. Substituting this set

of control into (1.1) yields the dynamics of the optimal (cooperative) trajectory as:

dx sð Þ ¼ f s, x sð Þ,ψ*
1 s, x sð Þð Þ,ψ*

2 s, x sð Þð Þ, � � �,ψ*
n s, x sð Þð Þ� 	

ds
þ σ s, x sð Þ½ �dz sð Þ, x t0ð Þ ¼ x0 ð1:6Þ

The solution to (1.6) can be expressed as:

x* tð Þ ¼ x0 þ
ðt
t0

f s, x* sð Þ,ψ*
1 s, x* sð Þ
 �

,ψ*
2 s, x* sð Þ
 �

, � � �,ψ*
n s, x* sð Þ
 �� 	

ds

þ
ð t
t0

σ s, x* sð Þ� 	
dz sð Þ ð1:7Þ

We use X�
t to denote the set of realizable values of x*(t) at time t generated by (1.7).

The term x*t 2 X*
t is used to denote an element in X�

t . We use the terms x*(t) and x�t
interchangeably in case where there is no ambiguity.

The cooperative control for the game (1.2) and (1.4) over the time interval [t0,T]
can be expressed more precisely as

fψ*
i t; x*t

 �

, f or i 2 N and t 2 t0; T½ �whenx*t 2 X*
t is realizedg: ð1:8Þ

The expected cooperative payoff over the interval [t,T], for t 2 �t0,T�, can be

expressed as:

W t0ð Þ t; x*t

 � ¼ Et0

�
ðT
t

Xn
j¼1

gj s, x* sð Þ,ψ*
1 s, x* sð Þ
 �

,ψ*
2 s, x* sð Þ
 �

, � � �,ψ*
n s, x* sð Þ
 �� 	

exp �
ðs
t0

r yð Þdy
� �

ds

þ exp �
ðT
t0

r yð Þdy
� �Xn

j¼1

qj x* Tð Þ
 ����� x* tð Þ ¼ x*t 2 X*
t

�
: ð1:9Þ

3.1 Cooperative Stochastic Differential Games 57

http://dx.doi.org/10.1007/978-981-10-1545-8_BM1


To verify whether the player would find it optimal to adopt the cooperative controls

(1.8) throughout the cooperative duration, we consider a stochastic control problem

with dynamics (1.2) and payoff (1.4) which begins at time τ 2 t0; T½ � with initial

state x*τ 2 X*
t . At time τ, the optimality principle ensuring group optimality requires

the players to solve the problem:

max
u1, u2, ���, un

Eτ

ðT
τ

Xn
j¼1

gj s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
ðs
τ
r yð Þdy

� �
ds

(

þ exp �
ðT
τ
r yð Þdy

� �Xn
j¼1

qj x Tð Þð Þ
)
; ð1:10Þ

subject to

dx sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ, x τð Þ ¼ x*τ 2 X*
t :

ð1:11Þ

Note that

max
u1, u2, ���, un

Et0

ðT
τ

Xn
j¼1

gj s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
ðs
t0

r yð Þdy
� �

ds

(

þ exp �
ðT
t0

r yð Þdy
� �Xn

j¼1

qj x Tð Þð Þ
���� x τð Þ ¼ x*τ 2 X*

τ

�

¼ max
u1, u2, ���, un

Et0

�
exp �

ðτ
t0

r yð Þdy
� �

� ðT
τ

Xn
j¼1

gj s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
ðs
τ
r yð Þdy

� �
ds

þ exp �
ðT
τ
r yð Þdy

� �Xn
j¼1

qj x Tð Þð Þ
����� x τð Þ ¼ x*τ 2 X*

τ

�
:

¼ exp �
ðτ
t0

r yð Þdy
� �

�

max
u1, u2, ���, un

Eτ

�
 ðT

τ

Xn
j¼1

gj s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
ðs
τ
r yð Þdy

� �
ds

þ exp �
ðT
τ
r yð Þdy

� �Xn
j¼1

qj x Tð Þð Þ
����� x τð Þ ¼ x*τ

�
: ð1:12Þ

Hence the stochastic optimal controls strategies for problem (1.10) and (1.11) are

analogous to the controls strategies for problem (1.2) and (1.4) in the time interval

[t, T].
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A remark that will be utilized in subsequent analysis is given below.

Remark 1.2 Let W(τ)(t, x�t ) denote the expected cooperative payoff of control

problem (1.10) and (1.11). One can readily verify that

exp

ðτ
t0

r yð Þdy
� �

W t0ð Þ t; x*t

 � ¼ exp

ð τ

t0

r yð Þdy
� �

W τð Þ t; x*t

 �

;

for τ 2 t0; T½ � and t 2 �τ,T� and x*τ 2 X*
t . ■

Again, we use Γc x*t , T � t

 �

to denote the cooperative game with player payoffs

(1.1) and dynamics (1.2) which starts at time t 2 �t0, T� given the state

x τð Þ ¼ x*τ 2 X*
τ . Let there exist a solution under the agreed-upon optimality princi-

ple, t0 � t � T along the optimal trajectory x* tð Þ� �T

t¼t0
. If this condition is not

satisfied it is impossible for the players to adhere to the chosen principle of

optimality.

For ξ tð Þ t; x*t

 �

, t 2 t0; T½ �, to be valid imputations, it is required that both group

optimality and individual rationality have to be satisfied. Hence a valid optimality

principle P x*t ,T � t

 �

would yield a solution which contains

(i) Xn
j¼1

ξ tð Þj t; x*t

 � ¼ W tð Þ t; x*t


 �
, for t 2 t0; T½ �; and

(ii)
ξ tð Þi t; x*t

 � � V tð Þi t; x*t


 �
, for i 2 N and t 2 t0; T½ �:

3.2 Cooperative Subgame Consistency Under Uncertainty

In this Section we examine the properties of subgame consistency in cooperative

stochastic differential games.

3.2.1 Principle of Subgame Consistency

In a stochastic environment, the condition of subgame consistency requires the

optimality principle agreed upon at the outset to remain effective in a subgame

with a later starting time and any realizable state brought about by prior

optimal behavior. Assume that at the start of the game the players execute

the solution under an agreed-upon optimality principle (which includes a set of
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cooperative strategies, an imputation to distribute the cooperative payoff and a

payoff distribution procedure). When the game proceeds to time t and the state

becomes x*t 2 X*
t , the continuation of the scheme for the game Γc x0, T � t0ð Þ has

to be consistent with the solution to the game Γc x*t , T � t

 �

under the same

optimality principle. If this consistency condition is violated, some of the

players will have an incentive to deviate from the initial agreement and

instability arises.

To verify whether the solution is indeed subgame consistent, one has to verify

whether the agreed upon cooperative strategies, payoff distribution procedures and

imputations are all subgame consistent. Using Remark 1.2, one can show that joint

expected payoff maximizing strategies are subgame consistent. In the next subsec-

tion, subgame consistent imputation and payoff distribution procedure are

examined.

3.2.2 Subgame-Consistency in Imputation and Payoff
Distribution Procedure

In this Section, we consider subgame consistency in imputation and payoff distri-

bution procedure. In the cooperative game Γc x0, T � t0ð Þ according to the solution

generated by the agreed-upon optimality principle, the players would use the payoff

distribution procedure Bt0 s; x*s

 �� � T

s¼t0
to bring about an imputation to player i as:

ξ t0ð Þi t0; x0ð Þ ¼ Et0

� ðT
t0

Bt0
i s; x*s

 �

exp �
ðs
t0

r yð Þdy
� �

dsþ qi x* Tð Þ
 �
exp �

ðT
t0

r yð Þdy
� � �

,

for i 2 N:

ð2:1Þ

When the game proceeds to time t 2 
t0,T	, the current state is x*t 2 X*
t . According

to the solution of the game Γc x0,T � t0ð Þ generated by the agreed-upon optimality

principle player i will receive an imputation (in present value viewed at time t0)
equaling

ξ t0ð Þi t; x*t

 � ¼ Et0

� ðT
t

Bt0
i s; x*s

 �

exp �
ðs
t0

r yð Þdy
� �

ds

þ qi x* Tð Þ
 �
exp �

ðT
t0

r yð Þdy
� � ����x tð Þ ¼ x*t

�
; ð2:2Þ

over the time interval [t,T].
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Note that at time t 2 
t0,T	 when the current state is x*t 2 X*
t , we have a

cooperative game Γc x*t , T � t

 �

. According to the solution generated by the same

optimality principle, the players would use the payoff distribution procedure

Bt s; x*s

 �� � T

s¼t
to bring about an imputation to player i as:

ξ tð Þi t; x*t

 � ¼ Et

� ðT
t

B t
i s; x*s

 �

exp �
ðs
t

r yð Þdy
� �

ds

þ qi x* Tð Þ
 �
exp �

ðT
t

r yð Þdy
� � �

, for i 2 N: ð2:3Þ

For the imputation and payoff distribution procedure of the game Γc x0,T � t0ð Þ to
be consistent with those of the game Γc x ct ,T � t


 �
under the same agreed-upon

optimality principle, it is essential that

exp

ðt
t0

r yð Þdy
� �

ξ t0ð Þ t; x*t

 � ¼ ξ tð Þ t; x*t


 �
, for t 2 t0; T½ �:

In addition, the payoff distribution procedure of the game Γc x0, T � t0ð Þ generated
by the agreed upon optimality principle is

Bt0 s; x*s

 � ¼ Bt0

1 s; x*s

 �

,Bt0
2 s; x*s

 �

, � � �,Bt0
n s; x*s

 �� 	

, for s 2 t0; T½ �:

Consider the case when the game has proceeded to time t and the state variable

became x*t 2 X*
t . Then one has a cooperative gameΓc x*t , T � t


 �
which starts at time

t with initial state x�t . According to the same optimality principle, the payoff

distribution procedure

Bt s; x*s

 � ¼ Bt

1 s; x*s

 �

,Bt
2 s; x*s

 �

, � � �,Bt
n s; x*s

 �� 	

, for s 2 t; T½ �;

will be adopted.

For the continuation of the payoff distribution procedure Bt0 s; x*s

 �

of the game

Γc x0,T � t0ð Þ to be consistent with Bt(s, x�s ) of the game Γc x*t , T � t

 �

, it is required

that

Bt0 s; x*s

 � ¼ Bt s; x*s


 �
, for s 2 t; T½ � and t 2 t0; T½ �:

Therefore a formal definition can be presented as below.

Definition 2.1 The imputation and payoff distribution procedure�
ξ t0ð Þ t0; x0ð Þ and Bt0 s; x*s


 �
for s 2 t0; T½ �� under the agreed-upon optimality

principle are subgame consistent if

3.2 Cooperative Subgame Consistency Under Uncertainty 61



(i)

exp

ðt
t0

r yð Þdy
� �

ξ t0ð Þi t; x*t

 �

	exp

ðt
t0

r yð Þdy
� �

E

� ð T

t

Bt0
i s; x*s

 �

exp �
ðs
t

r yð Þdy
� �

ds

þ qi x* Tð Þ
 �
exp �

ðT
t0

r yð Þdy
� � ����x tð Þ ¼ x*t

�
¼ ξ tð Þi t; x*t


 �	
Et

� ð T

t

B t
i s; x*s

 �

exp �
ðs
t

r yð Þdy
� �

dsþ qi x* Tð Þ
 �
exp �

ðT
t

r yð Þdy
� � �

under P x*t , T � t

 �

, for i 2 N and t 2 t0; T½ �; and
(ii) the payoff distribution procedure Bt0 s; x*s


 � ¼ Bt0
1 s; x*s

 �

,Bt0
2 s; x*s

 �

, � � �,�
Bt0
n s; x*s

 �� for s 2 t; T½ � is identical to Bt s; x*s


 � ¼ Bt
1 s; x*s

 �

,Bt
2 s; x*s

 �

, � � �,�
Bt
n s; x*s

 �� of the game Γc x*t ,T � t


 �
. ■

3.3 Subgame Consistent Payoff Distribution Procedure

Crucial to obtaining a subgame consistent solution is the derivation of a payoff

distribution procedure satisfying Definition 2.1 in Sect. 3.2. Invoking part (ii) of

Definition 2.1, we have Bt0 s; x*s

 � ¼ Bt s; x*s


 �
for t 2 t0; T½ � and s 2 t; T½ �. We use

B s; x*s

 � ¼ B1 s; x*s


 �
,B2 s; x*s

 �

, � � �,Bn s; x*s

 �� �

to denote Bt(s, x�s ) for all t 2 t0; T½ �.
Along the optimal trajectory x* sð Þ� �T

s¼t0
we then have:

ξ τð Þi τ; x*τ

 � ¼ Eτ

� ðT
τ
B τ
i s, x* sð Þ
 �

exp �
ðs
τ
r yð Þdy

� �
ds

þ qi x*T

 �

exp �
ðT
τ
r yð Þdy

� ����� x* τð Þ ¼ x*τ 2 X*
τ

�
; ð3:1Þ

for i 2 N and τ 2 t0; T½ �.
Moreover, for t 2 τ; T½ �, we use the term

ξ τð Þi t; x*t

 � ¼ Eτ

� ðT
t

B τ
i s, x* sð Þ
 �

exp �
ðs
τ
r yð Þdy

� �
ds

þ qi x*T

 �

exp �
ðT
τ
r yð Þdy

� ����� x* tð Þ ¼ x*t 2 X*
t

�
; ð3:2Þ

to denote the expected present value (with initial time being τ) of player i’s
expected payoff under cooperation over the time interval [t, T] according to the

optimality principle P x*τ ,T � τ

 �

along the cooperative state trajectory.
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Invoking (3.1) and (3.2) we have

ξ τð Þi t; xct

 � ¼ exp �

ðt
τ
r yð Þdy

� �
ξ tð Þi t; x*t

 �

,

for i 2 N and τ 2 t0; T½ � and t 2 τ; T½ � ð3:3Þ

One can readily verify that a payoff distribution procedure B s; x*s

 �� � T

s¼t0
which

satisfies (3.3) would give rise to time-consistent imputations satisfying part (i) of

Definition 2.1. The next task is the derivation of a payoff distribution procedure

B s; x*s

 �� � T

s¼t0
that leads to the realization of (3.1), (3.2), and (3.3).

We first consider the following condition concerning the imputation ξ(τ)(t, x�t ),
for τ 2 t0; T½ � and t 2 τ; T½ �.
Condition 3.1 For i 2 N and t 2 τ; T½ � and τ 2 t0; T½ �, the imputation ξ(τ)i(t, x�t ), for
i 2 N, is a function that is twice continuously differentiable in t and x*t 2 X*

t . ■

A theorem characterizing a formula for Bi(s, x
�
s ), for s 2 t0; T½ �, x*s 2 X*

s and

i 2 N, which yields (3.1), (3.2), and (3.3) can be provided as follows.

Theorem 3.1 If Condition 3.1 is satisfied, a PDP with a terminal payment qi(x�T) at
time T and an instantaneous payment at time s 2 τ; T½ �:

Bi s; x
*
s


 � ¼ � ξ sð Þi
t t; x*t

 ����

t¼s

h i
� ξ sð Þi

x*t
t; x*t

 ����

t¼s

h i
f s, x*s ,ψ

*
1 s; x*s

 �

,ψ*
2 s; x*s

 �

, � � �,ψ*
n s; x*s

 �� 	

� 1

2

Xm
h, ζ¼1

Ωhζ s; x*s

 �

ξ sð Þi
x h
t x

ζ
t

t; x*t

 �j

t¼s

�
, for i 2 N and x*s 2 X*

s ;

�
ð3:4Þ

yields imputation vector ξ(τ)(τ, x�τ ), for τ 2 t0; T½ � which satisfy (3.1), (3.2), and

(3.3).

Proof Invoking (3.1), (3.2) and (3.3), one can obtain

ξ υð Þi υ; x*υ

 � ¼ Eυ

� ð υþΔt

υ
Bi s; x

*
s


 �
exp �

ðs
υ
r yð Þdy

� �
dsþ

exp �
ðυþΔt

υ
r yð Þdy

� �
ξ υþΔtð Þi υþ Δt, x*υ þ Δx*υ


 �
x υð Þ ¼ x*υ

���� 2 X*
υ

�
,

for υ 2 τ; T½ � and i 2 N; ð3:5Þ

where

Δx*υ ¼ f υ, xcυ ,ψ
*
1 υ; x*υ

 �

,ψ*
2 υ; x*υ

 �

, � � �,ψ*
n υ; x*υ

 �� 	

Δtþ σ υ; x*υ
� 	

Δ zυ þ o Δtð Þ,
Δzυ ¼ Z υþ Δtð Þ � z υð Þ, and Eυ o Δtð Þ½ �=Δt ! 0 as Δt ! 0:
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From (3.2) and (3.5), one obtains

Eυ

� ð υþΔt

υ
Bi s; x

*
s


 �
exp �

ðs
υ
r yð Þdy

� �
ds x υð Þ ¼ x*υ

�����
¼ Eυ

�
ξ υð Þi υ; x*υ


 �� exp �
ðυþΔt

υ
r yð Þdy

� �
ξ υþΔtð Þi υþ Δt, x*υ þ Δx*υ


 � �

¼ Eυ

�
ξ υð Þi υ; x*υ


 �� ξ υð Þi υþ Δt, x*υ þ Δx*υ

 � �

,

for all υ 2 t0; T½ � and i 2 N: ð3:6Þ

If the imputations ξ(υ)(t, x�t ), for υ 2 t0; T½ �, satisfy Condition 3.1, asΔt ! 0, one can

express condition (3.6) as:

Eυ

�
Bi υ; x*υ

 �

Δtþ o Δtð Þ
�

¼ Eυ

�
� ξ υð Þi

t t; xct

 ����

t¼υ

h i
Δt

� ξ υð Þi
x c
υ

υ; xcυ

 �h i

f υ, xcυ ,ψ
*
1 υ; xcυ

 �

,ψ*
2 υ; xcυ

 �

, � � �,ψ*
n υ; xcυ

 �� 	

Δt

� 1

2

Xm
h, ζ¼1

Ωhζ υ; x*υ

 �

ξ υð Þi
x h
t x

ζ
t

t; x*t

 ����

t¼υ

� �
� ξ υð Þi

x c
υ

υ; xcυ

 �h i

σ υ; x*υ
� 	

Δ zυ

� o Δtð Þ: ð3:7Þ

Dividing (3.7) throughout by Δt, with Δt ! 0, and taking expectation yield (3.4).

Thus the payoff distribution procedure in Bi(s, x
�
s ) in (3.4) would lead to the

realization of ξ(τ)i(τ, xcτ), for τ 2 t0; T½ � which satisfy (3.1)–(3.3). ■

Assigning the instantaneous payments according to the payoff distribution

procedure in (3.4) leads to the realization of the imputation

ξ τð Þ τ; x*τ

 � 2 P x*τ ,T � τ


 �
for τ 2 t0; T½ � and x*τ 2 X*

τ .

With players using the cooperative strategies
�
ψ*
i τ; x*τ

 �

, for τ 2 t0; T½ � and

i 2 N
�
, the instantaneous payment received by player i at time instant τ is:

ζi τ; x
*
τ


 � ¼ gi τ, x*τ ,ψ
*
1 τ; x*τ

 �

,ψ*
2 τ; x*τ

 �

, � � �,ψ*
n τ; x*τ

 ��� 	

,

forτ 2 t0; T½ �, x*τ 2 X*
τ and i 2 N: ð3:8Þ

According to Theorem 3.1, the instantaneous payment that player i should receive

under the agreed-upon optimality principle is Bi(τ, x�τ ) as stated in (3.4). Hence an

instantaneous transfer payment

χi τ; x*τ

 � ¼ Bi τ; x

*
τ


 �� ζi τ; x
*
τ


 � ð3:9Þ

has to be given to player i at time τ, for i 2 N and τ 2 t0; T½ �when the state isx*τ 2 X*
τ .
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3.4 An Illustration in Cooperative Fishery Under
Uncertainty

Consider the stochastic resource extraction game with two asymmetric

extractors.

The resource stock x sð Þ 2 X 
 R follows the stochastic dynamics:

dx sð Þ ¼ ax sð Þ1=2 � bx sð Þ � u1 sð Þ � u2 sð Þ
h i

dsþ σx sð Þdz sð Þ, x t0ð Þ ¼ x0 2 X

ð4:1Þ

where ui(s) is the harvest rate of extractor i 2 1; 2f g. The instantaneous payoffs at
time s 2 t0; T½ � for extractor 1 and extractor 2 are, respectively,

u1 sð Þ1=2 � c1
x sð Þ1=2u1 sð Þ

h i
and u2 sð Þ1=2 � c2

x sð Þ1=2u2 sð Þ
h i

, where c1 and c2 are constants

and c1 6¼ c2. At time T, each extractor will receive a termination bonus qx(T )1/2.
Payoffs are transferable between extractors and over time. Given the constant

discount rate r, values received at time t are discounted by the factor

exp �r t� t0ð Þ½ �.
At time t0, the expected payoff of extractor i is:

Et0

� ðT
t0

ui sð Þ1=2 � ci

x sð Þ1=2
ui sð Þ

" #
exp �r t� t0ð Þ½ �ds

þ exp �r T � t0ð Þ½ �qx Tð Þ12
�
, for i 2 1; 2f g: ð4:2Þ

Let [ϕ�
1(t, x),ϕ

�
2(t, x)] for t 2 t0; T½ �denote a set of strategies that provides a feedback

Nash equilibrium solution to the game (4.1) and (4.2), and V t0ð Þi t; xð Þ : t0; T½ � � Rn

! R denote the feedback Nash equilibrium payoff of extractor i 2 1; 2f g that

satisfies the equations:

�V
t0ð Þi
t t; xð Þ � 1

2
σ2x2V t0ð Þi

xx t; xð Þ

¼ max
ui

�
uið Þ1=2 � ci

x1=2
ui

h i
exp �r t� t0ð Þ½ �

þV t0ð Þi
x t; xð Þ ax1=2 � bx� ui � ϕ t0ð Þ*

j t; xð Þ
h i �

, and

V t0ð Þi T; xð Þ ¼ exp �r T � t0ð Þ½ �qx Tð Þ12, for i 2 1; 2f g and j 2 1; 2f gand j 6¼ i:

ð4:3Þ

Performing the indicated maximization in (4.3) yields:
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ϕ*
i t; xð Þ ¼ x

4 ci þ V t0ð Þi
x exp r t� t0ð Þ½ �x1=2� 	2 , for i 2 1; 2f g:

To completely characterize a feedback solution, we derive the feedback Nash

equilibrium payoffs of the extractors in the game (4.1) and (4.2) as:

Proposition 4.1 The feedback Nash equilibrium payoff of extractor i 2 1; 2f g in

the game (4.1) and (4.2) is:

V t0ð Þi t; xð Þ ¼ exp �r t� t0ð Þ½ � Ai tð Þx1=2 þ Ci tð Þ
h i

; ð4:4Þ

where for i, j 2 1; 2f g and i 6¼ j,Ai tð Þ,Bi tð Þ,Aj tð Þ and Bj(t) satisfy:

_A i tð Þ ¼ r þ 1

8
σ2 þ b

2

� �
Ai tð Þ � 1

2 ci þ Ai tð Þ=2½ � þ
ci

4 ci þ Ai tð Þ=2½ �2

þ Ai tð Þ
8 ci þ Ai tð Þ=2½ �2 þ

Ai tð Þ
8 cj þ Aj tð Þ=2
� 	2 :

_C i tð Þ ¼ rCi tð Þ � a

2
Ai tð Þ,

Ai Tð Þ ¼ q and Ci Tð Þ ¼ 0

Proof First substitute ϕ�
1(t, x) and ϕ*

2 t; xð Þ,V t0ð Þi t; xð Þ from (4.4) and the

corresponding derivatives V
t0ð Þi
t t; xð Þ,V t0ð Þi

x t; xð Þ and V t0ð Þi
xx t; xð Þ into (4.3). Upon

solving (4.3) one obtains Proposition 4.1. ■

Invoking Remark 4.1 in Chap. 2, we can obtain the feedback Nash equilibrium

payoff of player i in the game with dynamics (4.1) and expected payoffs (4.2) which

starts at time τ for τ 2 �t0, T� as:
V τð Þi t; xð Þ ¼ exp �r t� τð Þ½ � Ai tð Þx1=2 þ Bi tð Þ

h i
, for i 2 1; 2f g:

3.4.1 Cooperative Extraction Under Uncertainty

Now consider the case when the resource extractors agree to act cooperatively and

follow the optimality principle under which they would

(i) maximize their joint expected payoffs and

(ii) share the excess of the total expected cooperative payoff over the sum of

expected individual noncooperative payoffs proportional to the extractors’
expected noncooperative payoffs.
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Hence the extractors maximize the sum of their expected profits:

Et0

�
ðT
t0

u1 sð Þ1=2 � c1

x sð Þ1=2
u1 sð Þ

" #
þ u2 sð Þ1=2 � c2

x sð Þ1=2
u2 sð Þ

" # !
exp �r t� t0ð Þ½ �ds

þ 2exp �r T � t0ð Þ½ �qx Tð Þ12
�
; ð4:5Þ

subject to the stochastic dynamics (4.1).

Invoking Theorem A.3 in the Technical Appendices yields the characterization

of solution of the problem (4.1) and (4.5) as a set of controls
�
u*i tð Þ ¼ ψ*

i t; xð Þ, for
i 2 1; 2f g� which satisfies the following partial differential equation:

�W
t0ð Þ
t t; xð Þ � 1

2
σ2x2W t0ð Þ

xx t; xð Þ

¼ max
u1, u2

� 
u1

1=2 � c1
x1=2

u1

h i
þ u2

1=2 � c2
x1=2

u2

h i �
exp �r t� t0ð Þ½ �

þW t0ð Þ
x t; xð Þ ax1=2 � bx� u1 � u2

� 	 �
, and

W t0ð Þ T; xð Þ ¼ 2exp �r T � t0ð Þ½ �qx1
2:

ð4:6Þ

Performing the indicated maximization we obtain:

ψ t0ð Þ*
1 t; xð Þ ¼ x

4 c1 þW t0ð Þ
x exp r t� t0ð Þ½ �x1=2� 	2, and

ψ t0ð Þ*
2 t; xð Þ ¼ x

4 c2 þW t0ð Þ
x exp r t� t0ð Þ½ �x1=2� 	2: ð4:7Þ

The maximized expected joint profit of the extractors can be obtained as:

Proposition 4.2
W t0ð Þ t; xð Þ ¼ exp �r t� t0ð Þ½ � A tð Þx1=2 þ C tð Þ

h i
; ð4:8Þ

where

_A tð Þ ¼ r þ σ2

8
þ b

2

� �
A tð Þ � 1

2 c1 þ A tð Þ=2½ � �
1

2 c2 þ A tð Þ=2½ � þ
c1

4 c1 þ A tð Þ=2½ �2

þ c2

4 c2 þ A tð Þ=2½ �2 þ
A tð Þ

8 c1 þ A tð Þ=2½ �2 þ
A tð Þ

8 c2 þ A tð Þ=2½ �2 ,

_C tð Þ ¼ rC tð Þ � a

2
A tð Þ, A Tð Þ ¼ 2q, and C Tð Þ ¼ 0:
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Proof Upon substituting the optimal strategies in (4.7),W t0ð Þ t; xð Þ in (4.8), and the

relevant derivativesW
t0ð Þ
t t; xð Þ,W t0ð Þ

x t; xð Þ andW t0ð Þ
xx t; xð Þ into (4.6) yields the results

in Proposition 4.2. ■

The optimal cooperative controls can then be obtained as:

ψ*
1 t; xð Þ ¼ x

4 c1 þ A tð Þ=2½ �2 and ψ
*
2 t; xð Þ ¼ x

4 c2 þ A tð Þ=2½ �2 : ð4:9Þ

Substituting these control strategies into (4.1) yields the dynamics of the state

trajectory under cooperation:

dx sð Þ ¼
�
ax sð Þ1=2 � bx sð Þ � x sð Þ

4 c1 þ A sð Þ=2½ �2 �
x sð Þ

4 c2 þ A sð Þ=2½ �2
�
ds

þ σx sð Þdz sð Þ, x t0ð Þ ¼ x0: ð4:10Þ

Solving (4.11) yields the optimal cooperative state trajectory as:

x* sð Þ ¼ ϖ t0; sð Þ2
�
x
1=2
0 þ

ðs
t0

ϖ�1 t0; tð ÞH1dt

�2
, for s 2 t0; T½ � ð4:11Þ

Where ϖ t0; sð Þ ¼ exp

ðs
t0

H2 τð Þ � σ2

8

� �
dυþ

ð s

t0

σ

2
dz υð Þ

� �
,H1 ¼ 1

2
a;

and H2 sð Þ ¼ �
�

1
2
bþ 1

8 c1þA sð Þ=2½ �2 þ 1

8 c2þA sð Þ=2½ �2 þ σ2

8

�
:

The cooperative control for the game Γc x0,T � t0ð Þ over the time interval [t0,T]
along the optimal trajectory can be expressed as:

ψ*
1 t; x*t

 � ¼ x*t

4 c1 þ A tð Þ=2½ �2 , and ψ
*
2 t; x*t

 � ¼ x*t

4 c2 þ A tð Þ=2½ �2 ,

for t 2 t0; T½ � and x*t 2 X*
t : ð4:12Þ

3.4.2 Subgame Consistent Cooperative Extraction

The agreed-upon optimality principle requires the extractors to share the excess of

the total expected cooperative payoff over the sum of individual noncooperative

payoffs proportional to the extractors’ expected noncooperative payoffs. Therefore

the following imputation has to be satisfied.
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Condition 4.1 An imputation

ξ τð Þi τ; x*τ

 � ¼ V τð Þi τ; x*τ


 �
X2
j¼1

V τð Þj τ; x*τ

 �W τð Þ τ; x*τ


 �

¼
Ai τð Þ x*τ


 �1=2 þ Ci τð Þ
h i
X2
j¼1

Aj τð Þ x*τ

 �1=2 þ Cj τð Þ

h i A τð Þ x*τ

 �1=2 þ C τð Þ

h i
ð4:13Þ

is assigned to extractor i, for i 2 1; 2f g if x*τ 2 X*
τ occurs at time τ 2 t0; T½ �. ■

Applying Theorem 3.1 a subgame-consistent solution under the optimal princi-

ple P x0 ,T � t0ð Þ for the cooperative game Γc x0 , T � t0ð Þ can be obtained as:�
u s; x*s

 �

and B(s, x�s ) for s 2 t0; T½ � and ξ t0ð Þ t0; x0ð Þ� in which

(i) u(s, x�s ) for s 2 t0; T½ � is the set of group optimal strategies

ψ*
1 s; x*s

 � ¼ x*s

4 c1þA sð Þ=2½ �2 , and ψ
*
2 s; x*s

 � ¼ x*s

4 c2þA sð Þ=2½ �2 ; and

(ii) B s; x*s

 � ¼ B1 s; x*s


 �
,B2 s; x*2

 �� �

for s 2 t0; T½ � where

Bi s; x
*
s


 � ¼ � ξ sð Þi
t t; x*t

 ����

t¼s

h i
� ξ sð Þi

x*s
s; x*s

 �h i�

a x*s

 �1=2 � bx*s �

x*s
4 c1 þ A sð Þ=2½ �2 �

x*s
4 c2 þ A sð Þ=2½ �2

�

� 1

2
σ2 x*s

 �2

ξ sð Þi
x*s x

*
s
s; x*s

 �h i

, for i 2 1; 2f g ð4:14Þ

where

ξ sð Þi
t t; x*t

 ����

t¼s

h i

¼
Ai sð Þ x*s


 �1=2 þCi sð Þ
h i
X2
j¼1

Aj sð Þ x*s

 �1=2 þCj sð Þ

h i ! _A sð Þ x*s

 �1=2 þ _C sð Þ

h i
� r A sð Þ x*s


 �1=2 þC sð Þ
h in o

þ
A sð Þ x*s


 �1=2 þ B sð Þ
h i

X2
j¼1

Aj sð Þ x*s

 �1=2 þ Bj sð Þ

h i !

_A i sð Þ x*s

 �1=2 þ _B i sð Þ

h i
� r Ai sð Þ x*s


 �1=2 þ Bi sð Þ
h in o
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�
Ai sð Þ x*s


 �1=2 þ Bi sð Þ	�A sð Þ x*s

 �1=2 þ B sð Þ

h i
X2
j¼1

Aj sð Þ x*s

 �1=2 þ Bj sð Þ

h i !2

�
X2
j¼1

_A j sð Þ x*s

 �1=2 þ _C j sð Þ

h i
� r Aj sð Þ x*s


 �1=2 þ Cj sð Þ
h in o

ξ sð Þi
x*s

s; x*s

 �h i

¼
Ai sð Þ x*s


 �1=2 þ Ci sð Þ
h i

A sð Þ x*s

 ��1=2 þ A sð Þ x*s


 �1=2 þ C sð Þ
h i

Ai sð Þ x*s

 ��1=2

2
X2
j¼1

Aj sð Þ x*s

 �1=2 þ Cj sð Þ

h i

�
Ai sð Þ x*s


 �1=2 þ Ci sð Þ	�A sð Þ x*s

 �1=2 þ C sð Þ

h i
X2
j¼1

Aj sð Þ x*s

 �1=2 þ Cj sð Þ

h i !2

1

2

X2
j¼1

Aj sð Þ x*s

 ��1=2

 !
;

and

ξ sð Þi
x*s x

*
s
s; x*s

 �h i

¼ �Ci sð ÞA sð Þ x*s

 ��3=2 þ C sð ÞAi sð Þ x*s


 ��3=2

4
X2
j¼1

Aj sð Þ x*s

 �1=2 þ Cj sð Þ

h i

�
Ai sð Þ x*s


 �1=2 þ Ci sð Þ
h i

A sð Þ x*s

 ��1=2 þ A sð Þ x*s


 �1=2 þ C sð Þ
h i

Ai sð Þ x*s

 ��1=2

2
X2
j¼1

Aj sð Þ x*s

 �1=2 þ Cj sð Þ

h i !2

�
X2
j¼1

Aj sð Þ x*s

 ��1=2

h i

þ
Ai sð Þ x*s


 �1=2 þ Ci sð Þ
h i

A sð Þ x*s

 �1=2 þ C sð Þ

h i
X2
j¼1

Aj sð Þ x*s

 �1=2 þ Cj sð Þ

h i !2

1

4

X2
j¼1

Aj sð Þ x*s

 ��3=2

 !

� 1

2

X2
j¼1

Aj sð Þ x*s

 ��1=2

 !

�
2
4 Ai sð ÞA sð Þ þ 1

2
Ai sð ÞC sð Þ þ A sð ÞCi τð Þ½ � x*s


 ��1=2

X2
j¼1

Aj sð Þ x*s

 �1=2 þ Cj sð Þ

h i !2

�
Ai sð Þ x*s


 �1=2 þ Ci sð Þ
h i

A sð Þ x*s

 �1=2 þ C sð Þ

h i
X2
j¼1

Aj sð Þ x*s

 �1=2 þ Cj sð Þ

h i ! 3

X2
j¼1

Aj sð Þ x*s

 ��1=2

3
5:
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With extractors using the cooperative strategies in (4.13), the instantaneous

receipt of extractor i at time instant τ is:

ζi τ; x
*
τ


 � ¼ x*τ

 �1=2

2 ci þ A τð Þ=2½ � �
ci x

*
τ


 �1=2
4 ci þ A τð Þ=2½ �2 ,

for τ 2 t0; T½ �, x*τ 2 X*
τ and i 2 1; 2f g: ð4:15Þ

Under cooperation the instantaneous payment that extractor i 2 1; 2f g should

receive Bi(τ, x�τ ) in (4.15). Hence an instantaneous transfer payment

χi τ; x*τ

 � ¼ Bi τ; x

*
τ


 �� ζi τ; x
*
τ


 � ð4:16Þ

has to be given to extractor i at time τ, for i 2 1; 2f g and τ 2 t0; T½ �when the state is
x*τ 2 X*

τ .

3.5 Infinite Horizon Subgame Consistency Under
Uncertainty

Consider the infinite stochastic differential game in which player i seeks to

max
ui

Eτ

� ð1
τ
gi x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �r s� τð Þ½ �ds

�
,

for i 2 N; ð5:1Þ

subject to the stochastic dynamics

dx sð Þ ¼ f x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ x sð Þ½ �dz sð Þ, x τð Þ ¼ xτ: ð5:2Þ

Consider the alternative game which starts at time t 2 �t0,1� with initial state x tð Þ
¼ x:

max
ui

Et

� ð1
t

gi x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �r s� tð Þ½ �ds
�
,

for i 2 N; ð5:3Þ

subject to the stochastic dynamics

dx sð Þ ¼ f x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ x sð Þ½ �dz sð Þ, x tð Þ ¼ xt: ð5:4Þ

Let Ω x sð Þ½ � ¼ σ x sð Þ½ �σ x sð Þ½ �T denote the covariance matrix with its element in row

h and column ζ denoted by Ωhζ[x(s)].
The infinite horizon autonomous game (5.4) and (5.5) is independent of the

choice of t and dependent only upon the state at the starting time, that is x. A Nash
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equilibrium solution for the infinite-horizon stochastic differential game (5.4) and

(5.5) can be characterized by the following theorem.

Theorem 5.1 An n-tuple of strategies u*i ¼ ϕ*
i �ð Þ� 2 Ui, for i 2 Ng provides a

Nash equilibrium solution to the game (5.4) and (5.5) if there exist continuously

twice differentiable functions V̂
i
xð Þ : Rm ! R, i 2 N, satisfying the following set

of partial differential equations:

rV̂
i
xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ xð ÞV̂ i

xhxζ xð Þ

¼ max
ui

gi x,ϕ*
1 xð Þ,ϕ*

2 xð Þ, � � �,ϕ*
i�1 xð Þ, ui xð Þ,ϕ*

iþ1 xð Þ, � � �,ϕ*
n xð Þ� 	�

þ V̂
i

x xð Þf x,ϕ*
1 xð Þ,ϕ*

2 xð Þ, � � �,ϕ*
i�1 xð Þ, ui xð Þ,ϕ*

iþ1 xð Þ, � � �,ϕ*
n xð Þ� 	o

¼ gi x,ϕ*
1 xð Þ,ϕ*

2 xð Þ, � � �,ϕ*
n xð Þ� 	� þV̂

i

x xð Þf x,ϕ*
1 xð Þ,ϕ*

2 xð Þ, � � �,ϕ*
n xð Þ� 	o

;

for i 2 N.

Proof This result follows readily from the definition of Nash equilibrium and from

the infinite horizon stochastic control Theorem A.4 in the Technical Appendices.■

Now consider the case when the players agree to act cooperatively. Let Γc(τ, xτ)
denote a cooperative game in which player i’s payoff is (5.2) and the state dynamics

is (5.3). The players agree to act according to an agreed upon optimality principle

which entails

(i) group optimality and

(ii) the distribution of the total cooperative payoff according to an imputation

which equals ξ(υ)(υ, x�υ) for υ 2 �τ,1� over the game duration. Moreover, the

function ξ(υ)i(υ, x�υ), for i 2 N, is continuously differentiable in υ and x�υ.

The solution of the cooperative game Γc(τ, xτ) under the agreed-upon optimality

principle includes

(i) a set of cooperative strategies

u τð Þ* s; x*s

 � ¼ u

τð Þ*
1 s; x*s

 �

, u
τð Þ*
2 s; x*s

 �

, � � �, u τð Þ*
n s; x*s

 �h i

, for s 2 �τ,1�;
(ii) an imputation vector ξ τð Þ τ; xτð Þ ¼ ξ τð Þ1 τ; xτð Þ, ξ τð Þ2 τ; xτð Þ, � � �, ξ τð Þn τ; xτð Þ� 	

to

allot the cooperative payoff to the players; and

(iii) a payoff distribution procedure Bτ s; x*s

 � ¼ B τ

1 s; x*s

 �

,B τ
2 s; x*s

 �

, � � �,B τ
n s; x*s

 �� 	

for s 2 �τ,1�, where Bτ
i (s, x

�
s ) is the i at time s when the state is x*s 2 X*

s . In

particular,

ξ τð Þi τ; xτð Þ ¼ Eτ

� ð1
τ
B τ
i s; x*s

 �

exp �r s� τð Þ½ � ds

�
, for i 2 N: ð5:5Þ
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3.5.1 Group Optimal Cooperative Strategies

To ensure group rationality the players maximize the sum of their expected payoffs,

the players solve the problem:

max
u1, u2, ���, un

Eτ

ð1
τ

Xn
j¼1

gj x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �r s� τð Þ½ �ds
( �

; ð5:6Þ

subject to (5.3).

Invoking Theorem A.4 in the Technical Appendices, a set of controls

ψ*
i xð Þ 2 Ui; i 2 N

� �
constitutes an optimal solution to the infinite horizon

stochastic control problem (5.3) and (5.7) if there exists continuously twice

differentiable function W(x) defined on Rm ! R which satisfies the following

equation:

rW xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ xð ÞWxhxζ xð Þ

¼ max
u1, u2, ���, un

Xn
j¼1

gj x; u1; u2; � � �; un½ �
(

þWx xð Þf x; u1; u2; � � �; un½ �
�
: ð5:7Þ

Hence the players will adopt the cooperative control {ψ�
i (x), for i 2 Ng to

obtain the maximized level of expected joint profit. Substituting this set of

control into (6.5) yields the dynamics of the optimal (cooperative) trajectory

as:

dx sð Þ ¼ f x sð Þ,ψ*
1 x sð Þð Þ,ψ*

2 x sð Þð Þ, � � �,ψ*
n x sð Þð Þ� 	

dsþ σ x sð Þ½ �dz sð Þ, x τð Þ ¼ xτ:

ð5:8Þ

The solution to (5.9) can be expressed as:

x* sð Þ ¼ xτ þ
ðs
τ
f x* υð Þ,ψ*

1 x* υð Þ
 �
,ψ*

2 x* υð Þ
 �
, � � �,ψ*

n x* υð Þ
 �� 	
dυ

þ
ðs
τ
σ x* υð Þ� 	

dz υð Þ: ð5:9Þ

We use X�
s to denote the set of realizable values of x*(s) at time s generated by (5.9).

The term x*s 2 X*
s is used to denote an element in X�

s . The terms x*(s) and x�s will be
used interchangeably in case where there is no ambiguity.

The expected cooperative payoff can be expressed as:

3.5 Infinite Horizon Subgame Consistency Under Uncertainty 73

http://dx.doi.org/10.1007/978-981-10-1545-8_BM1


W x*τ

 � ¼ Eτ

�
ð1
τ

Xn
j¼1

gj x* sð Þ,ψ*
1 x* sð Þ
 �

,ψ*
2 x* sð Þ
 �

, � � �,ψ*
n x* sð Þ
 �� 	

exp �r s� τð Þ½ �ds���� x* τð Þ ¼ x*τ

�
:

Moreover, one can easily verify that the joint payoff maximizing controls for the

cooperative game Γc(τ, xτ) over the time interval
�
t,1� is identical to the joint

payoff maximizing controls for the cooperative game Γc(t, x�t ) over the time interval�
t,1�.

3.5.2 Subgame Consistent Imputation and Payoff
Distribution Procedure

In the game Γc(t, x�t ), according to optimality principle the players would use the

Payoff Distribution Procedure Bτ s; x*s

 �� �1

s¼τ
to bring about an imputation to

player i such that:

ξ τð Þi τ; xτð Þ ¼ Eτ

� ð1
τ
B τ
i s; x*s

 �

exp �r s� τð Þ½ � ds

�
, for i 2 N:

We define

ξ τð Þi t; x*t

 � ¼ Eτ

( ð1
t

B τ
i s; x*s

 �

exp �r s� τð Þ½ � ds

���� x tð Þ ¼ x*t 2 X*
t

)
,

for i 2 N; ð5:10Þ

where t > τ and x*t 2 x* sð Þ� �1
s¼τ

.

At time τ, according to P(τ, xτ) player i is supposed to receive a payoff ξ
(τ)i(t, x�t )

over the remaining time interval
�
t,1� if the state is x*t 2 X*

t .

Consider the case when the game has proceeded to time t and the state variable

becames x*t 2 X*
t . Then one has a cooperative game Γc(t, x�t ) which starts at time twith

initial state x�t . According to the agreed-upon optimality principle, an imputation

ξ tð Þi t; x*t

 � ¼ Et

� ð1
t

B t
i s; x*s

 �

exp �r s� tð Þ½ � ds

���� x tð Þ ¼ x*t 2 X*
t

�
;

will be allotted to player i, for i 2 N.
However, according to the solution to the game Γc(τ, xτ), the imputation

(in present value viewed at time τ) to player i over the period
�
t,1� is ξ(τ)i(t, x�t )
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in (5.11). For the imputation from Γc(τ, xτ) to be consistent with those from Γc(t, x�t ),
it is required that

exp r t� τð Þ½ �ξ τð Þi t; x*t

 � ¼ ξ tð Þi t; x*t


 �
from the game Γc t, x*t


 �
under the same optimality principle, for t 2 τ;1ð Þ: ð5:11Þ

The payoff distribution procedure of the game Γc(τ, xτ) according to the agreed-

upon optimality principle is

Bτ s; x*s

 � ¼ B τ

1 s; x*s

 �

,B τ
2 s; x*s

 �

, � � �,B τ
n s; x*s

 �� 	

, for s 2 �τ,1� and x*s 2 X*
s :

When the game has proceeded to time t and the state variable became x*t 2 X*
t , we

have the game Γc(t, x�t ). According to the agreed-upon optimality principle the

payoff distribution procedure of the game Γc(t, x�t ) is

Bt s; x*s

 � ¼ Bt

1 s; x*s

 �

,Bt
2 s; x*s

 �

, � � �,Bt
n s; x*s

 �� 	

, for s 2 �t,1� andx*s 2 X*
s :

For the continuation of the payoff distribution procedure Bτ(s, x�s ) to be consistent

with Bt(s, x�s ), it is required that

Bt0 s; x*s

 � ¼ Bt s; x*s


 �
, for s 2 �t,1�and t 2 �τ,1�and x*s 2 X*

s :

Definition 5.1 The imputation and payoff distribution procedure�
ξ τð Þ τ; xτð Þ and Bτ(s, x�s ) for s 2

�
τ,1�� are subgame consistent if

(i)
exp r t� τð Þ½ �ξ τð Þi t; x*t


 �
	exp r t� τð Þ½ �Eτ

� ð1
t

B τ
i s; x*s

 �

exp �r s� τð Þ½ � ds x tð Þ ¼ x*t 2 X*
t

�����
¼ ξ tð Þi t; x*t


 �
, for t 2 τ;1ð Þ and i 2 N; and ð5:12Þ

(ii) the payoff distribution procedure Bτ(s, x�s ) for s 2
�
t,1� is identical to Bt

(s, x�s ). ■

3.5.3 Payoff Distribution Procedure Leading to Subgame
Consistency

A payoff distribution procedure leading to subgame consistent imputation has to

satisfy Definition 5.1. Invoking Definition 5.1, we have B τ
i s; x*s

 � ¼ Bt

i s; x*s

 � ¼

Bi s; x
*
s


 �
; for s 2 �τ,1�, x*s 2 X*

s and t 2 �τ,1� and i 2 N.
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Therefore along the cooperative trajectory,

ξ τð Þi τ; xτð Þ ¼ Eτ

� ð1
τ
Bi s; x

*
s


 �
exp �r s� τð Þ½ �ds

�
, for i 2 N, and

ξ υð Þi υ; x*υ

 � ¼ Eυ

� ð1
υ
Bi s; x

*
s


 �
exp �r s� υð Þ½ �ds

���� x υð Þ ¼ x*υ 2 X*
υ

�
, for i 2 N, and

ξ tð Þi t; x*t

 � ¼ Et

� ð1
t

Bi s; x
*
s


 �
exp �r s� tð Þ½ �ds

���� x tð Þ ¼ x*t 2 X*
t

�
,

for i 2 N and t � υ � τ: ð5:13Þ

Moreover, for i 2 N and t 2 �τ,1�, we define the term
ξ υð Þi t; x*t


 � ¼ Eυ

� ð1
t

Bi s; x
*
s


 �
exp �r s� υð Þ½ �ds

�
x tð Þ ¼ x*t

����
�
; ð5:14Þ

to denote the present value of player i’s cooperative payoff over the time interval
�
t,1�,

given that the state is x�t at time t 2 �υ,1�, under the optimality principle P(υ, x�υ).
Invoking (5.14) and (5.15) one can readily verify that exp r t� τð Þ½ �ξ τð Þi t; x*t


 �
¼ ξ tð Þi t; x*t


 �
; for i 2 N and τ 2 t0; T½ � and t 2 τ; T½ �.

The next task is to derive Bi(s, x
�
s ), for s 2

�
τ,1� and t 2 �τ,1� so that (5.14)

can be realized. Consider again the following condition.

Condition 5.1 For i 2 N and t � υ and υ 2 τ; T½ �, the term ξ(υ)i(t, x�t ) is a function
that is continuously differentiable in t and x�t .

A theorem characterizing a formula for Bi(s, x
�
s ), for i 2 N and s 2 �υ,1�, which

yields (5.15) is provided as follows.

Theorem 5.2 If Condition 5.1 is satisfied, a PDP with instantaneous payments at

time s with the state being x*s 2 X*
s equaling

Bi s; x
*
s


 � ¼ � ξ sð Þi
t t; x*t

 ����

t¼s

h i
� ξ sð Þi

x*t
t; x*t

 ����

t¼s

h i
f x*s ,ψ

*
1 s; x*s

 �

,ψ*
2 s; x*s

 �

, � � �,ψ*
n s; x*s

 �� 	

� 1

2

Xm
h, ζ¼1

Ωhζ x*s

 �

ξ sð Þi
x h
t x

ζ
t

t; x*t

 ����

t¼s

� �
, for i 2 N and s 2 �υ,1�; ð5:15Þ

yields imputation ξ(υ)i(υ, x�υ) for υ 2
�
τ,1� and x*υ 2 X*

υ which satisfy (5.14).

Proof Note that along the cooperative trajectory

ξ υð Þi t; x*t

 � ¼ Eυ

� ð1
t

Bi s; x
*
s


 �
exp �r s� υð Þ½ �ds x tð Þ ¼ x*t

���� 2 X*
t

�
¼ exp �r t� υð Þ½ �ξ tð Þi t; x*t


 �
, for i 2 N and t 2 �υ,1�: ð5:16Þ
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For Δt ! 0, equation (5.14) can be expressed as

ξ υð Þi υ; x*υ

 � ¼ Eυ

� ð1
υ
Bi s; x

*
s


 �
exp �r s� υð Þ½ �ds

�

¼ Eυ

� ðυþΔt

υ
Bi s; x

*
s


 �
exp �r s� υð Þ½ � dsþ ξ υð Þi υþ Δt, x*υ þ Δx*υ


 � �
; ð5:17Þ

where

Δx*υ ¼ f x*υ,ψ
*
1 x*υ

 �

,ψ*
2 x*υ

 �

, � � �,ψ*
n x*υ

 �� 	

Δtþ σ x*υ

 �

Δzυ þ o Δtð Þ,
Δzυ ¼ Z υþ Δtð Þ � z υð Þ, andEυ o Δtð Þ½ �=Δt ! 0 as Δt ! 0:

Replacing the term x*υ þ Δx*υ with x*υþΔt and rearranging (5.18) yields:

Eυ

� ð υþΔt

υ
Bi sð Þexp �r s� υð Þ½ � ds

�
¼ Eυ

�
ξ υð Þi υ; x*υ


 �� ξ υð Þi υþ Δt, x*υþΔt

 � �

,

for all υ 2 �τ,1� and i 2 N: ð5:18Þ

With Condition 5.1 holding and Δt ! 0, (5.19) can be expressed as:

Eυ

�
Bi s; x

*
s


 �
Δtþ o Δtð Þ

�
¼ Eυ

�
� ξ sð Þi

t t; x*t

 ����

t¼s

h i
Δt

� ξ sð Þi
x*t

t; x*t

 ����

t¼s

h i
f x*s ,ψ

*
1 s; x*s

 �

,ψ*
2 s; x*s

 �

, � � �,ψ*
n s; x*s

 �� 	

Δt

� 1

2

Xm
h, ζ¼1

Ωhζ x*s

 �

ξ sð Þi
x h
t x

ζ
t

t; x*t

 ����

t¼s

� �
Δt� ξ sð Þi

x*t
t; x*t

 ����

t¼s

h i
σ x*υ

 �

Δzυ � o Δtð Þ
�
: ð5:19Þ

Dividing (5.20) throughout byΔt, withΔt ! 0and taking expectation yields (5.16).

Thus the payoff distribution procedure in Bi(υ, x�υ) in (5.16) would lead to the

realization of the imputations which satisfy (5.14). ■

Since the payoff distribution procedure in Bi(τ) in (5.16) leads to the realization

of (5.14), it would yields subgame consistent imputations satisfying Definition 5.1.

A more succinct form of the PDP instantaneous payment in (5.14) can be derived

as follows. First we define

ξ̂
i
x*υ

 � ¼ Eυ

� ð1
υ
Bi sð Þexp �r s� υð Þ½ �ds x υð Þ ¼ x*υ

����� ξ υð Þi τ; x*υ

 �

, and

ξ̂
i
x*t

 � ¼ Et

� ð1
t

Bi sð Þexp �r s� tð Þ½ �ds x tð Þ ¼ x*t

����� ¼ ξ tð Þi t; x*t

 �

;

for i 2 N and υ 2 �τ,1� and t 2 �υ,1� along the optimal cooperative trajectory

x*s
� �1

s¼τ
.
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We then have:

ξ υð Þi t; x*t

 � ¼ exp �r t� υð Þ½ �ξ̂ i

x*t

 �

:

Differentiating the above condition with respect to t yields:

ξ υð Þi
t t; x*t

 ����

t¼υ

h i
¼ �rexp �r t� υð Þ½ �ξ̂ i

x*t

 � ¼ �rξ υð Þi t; x*t


 �
:

At t ¼ υ, ξ υð Þi t; x*t

 � ¼ ξ υð Þi υ; x*υ


 �
; therefore

ξ υð Þi
t t; x*t

 ����

t¼υ

h i
¼ rξ υð Þi t; x*t


 � ¼ rξ υð Þi υ; x*υ

 �

: ð5:20Þ

Substituting (5.21) into (5.16) yields,

Bi s; x
*
s


 � ¼ r ξ sð Þi s; x*s

 �� ξ sð Þi

x*s
s; x*s

 �

f x*s ,ψ
*
1 x*s

 �

,ψ*
2 x*s

 �

, � � �,ψ*
n x*s

 �� 	

� 1

2

Xm
h, ζ¼1

Ωhζ x*s

 �

ξ sð Þi
x h
t x

ζ
t

t; x*t

 ����

t¼s

� �
, for i 2 N, x*s 2 X*

s and s 2
�
υ,1�: ð5:21Þ

An alternative form of Theorem 5.2 can be expressed as:

Theorem 5.3 A PDP with instantaneous payments with the state being x* equaling

Bi x
*


 � ¼ r ξ̂
i
x*

 �� ξ ix* x*


 �
f x*,ψ*

1 x*

 �

,ψ*
2 x*

 �

, � � �,ψ*
n x*

 �� 	

� 1

2

Xm
h, ζ¼1

Ωhζ x*

 �

ξ̂
i

xhxζ x*

 �

, for i 2 N: ð5:22Þ

yields imputation ξ̂
i
x*

 �

.

Proof Multiplying (5.22) throughout by exp r t� υð Þ½ � yields

Bi x
*
s


 � ¼ r ξ̂
i
x*s

 �� ξ̂

i

x*s
x*s

 �

f x*s ,ψ
*
1 x*s

 �

,ψ*
2 x*s

 �

, � � �,ψ*
n x*s

 �� 	

� 1

2

Xm
h, ζ¼1

Ωhζ x*s

 �

ξ̂
i

x h
s x

ζ
s
x*s

 �

, for i 2 N, x*s 2 X*
s and s 2

�
υ,1�:

Recall that the infinite-horizon autonomous game Γ(x) is independent of the

choice of time s and dependent only upon the state, equation (5.22) can be

expressed as (5.23). ■

With agents using the cooperative strategies, when the state is x* 2 X* the

instantaneous receipt of agent i is:

ζi x
*


 � ¼ gi x*,ψ*
1 x*

 �

,ψ*
2 x*

 �

, � � �,ψ*
n x*

 �� 	

, for i 2 N: ð5:23Þ
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According to Theorem 5.2 and (5.23), the instantaneous payment that player

i should receive under the agreed-upon optimality principle is Bi(x*) as stated in

(5.23). Hence an instantaneous transfer payment

χi x*

 � ¼ Bi x

*

 �� ζi x

*

 �

, for i 2 N ð5:24Þ

has to be given to player i when the state is x* 2 X*.

3.6 Infinite Horizon Cooperative Fishery Under
Uncertainty

Consider an infinite horizon version of the cooperative fishery in Sect. 3.5. At

time τ, the expected payoff of extractor 1 and that of extractor 2 are

respectively:

Eτ

� ð1
τ

u1 sð Þ1=2 � c1

x sð Þ1=2
u1 sð Þ

" #
exp �r t� τð Þ½ �ds

�
and

Eτ

� ð1
τ

u2 sð Þ1=2 � c2

x sð Þ1=2
u2 sð Þ

" #
exp �r t� τð Þ½ �ds

�
: ð6:1Þ

The fish resource stock x sð Þ 2 X 
 R follows the stochastic dynamics:

dx sð Þ ¼ ax sð Þ1=2 � bx sð Þ � u1 sð Þ � u2 sð Þ
h i

dsþ σx sð Þdz sð Þ, x τð Þ ¼ xτ; ð6:2Þ

Invoking Theorem 5.1, the set of strategies [ϕ�
1(x),ϕ

�
2(x)] for t 2 t0; T½ � that provides

a feedback Nash equilibrium solution to the game (6.2) and (6.3) can be character-

ized by:

rV̂
i
xð Þ � 1

2
σ2x2V̂

i

xx xð Þ ¼ max
ui

�
ui

1=2 � ci
x1=2

ui þ V̂
i

x xð Þ ax1=2 � bx� ui � ϕ*
j xð Þ

h i �
for i, j 2 1;2f g and i 6¼ j: ð6:3Þ

Performing the indicated maximization in (6.4) and using the derived game

equilibrium strategies one obtains the value function of extractor i 2 1; 2f g
as:

V̂
i
t; xð Þ ¼ Aix

1=2 þ Ci

h i
; ð6:4Þ
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where for i, j 2 1; 2f g and i 6¼ j,Ai,Ci,Aj and Cj satisfy:

r þ σ2

8
þ b

2

� �
Ai � 1

2 ci þ Ai=2½ � þ
ci

4 ci þ Ai=2½ �2

þ Ai

8 ci þ Ai=2½ �2 þ
Ai

8 cj þ Aj=2
� 	2 ¼ 0; and

Ci ¼ a

2
Ai:

3.6.1 Cooperative Extraction

Consider the case when these two nations agree to act according to an agreed upon

optimality principle which entails

(i) group optimality, and

(ii) the distribution of the excess of the total expected cooperative payoff over the

sum of expected individual noncooperative payoffs proportional to the extrac-

tors’ expected noncooperative payoffs.

To maximize their joint expected payoff for group optimality, the nations have

to solve the stochastic control problem of maximizing

Et

�
ð1
t

u1 sð Þ1=2 � c1

x sð Þ1=2
u1 sð Þ

" #
þ u2 sð Þ1=2 � c2

x sð Þ1=2
u2 sð Þ

" # !
exp �r t� tð Þ½ �ds�

: ð6:5Þ

subject to (6.3).

Invoking Theorem A.4 in the Technical Appendices yields the characterization

of solution of the problem (6.3) and (6.6) as:

Corollary 6.1 A set of controls
�
ψ*
i xð Þ, for i 2 1; 2f g� constitutes an optimal

solution to the stochastic control problem (6.3) and (6.6), if there exist continuously

twice differentiable functions W xð Þ : Rm ! R;, satisfying the following partial

differential equation:

rW xð Þ � 1

2
σ2x2Wxx xð Þ ¼ max

u1, u2

� 
u1

1=2 � c1
x1=2

u1

h i
þ u2

1=2 � c2
x1=2

u2

h i �

þWx xð Þ ax1=2 � bx� u1 � u2
� 	 �

: ð6:6Þ■
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Performing the indicated maximization and solving (6.7) one obtains the max-

imized expected joint profit can be derived as:

W xð Þ ¼ Ax1=2 þ C
h i

; ð6:7Þ

where

r þ σ2

8
þ b

2

� �
A� 1

2 c1 þ A=2½ � �
1

2 c2 þ A=2½ �
þ c1

4 c1 þ A=2½ �2 þ
c2

4 c2 þ A=2½ �2 þ
A

8 c1 þ A=2½ �2 þ
A

8 c2 þ A=2½ �2 ¼ 0, and

C ¼ a

2r
A: ð6:8Þ

The optimal cooperative controls can then be obtained as:

ψ*
1 xð Þ ¼ x

4 c1 þ A=2½ �2 , and ψ*
2 xð Þ ¼ x

4 c2 þ A=2½ �2 : ð6:9Þ

Substituting these control strategies into (6.3) yields the dynamics of the state

trajectory under cooperation:

dx sð Þ ¼
�
ax sð Þ1=2 � bx sð Þ � x sð Þ

4 c1 þ A=2½ �2 �
x sð Þ

4 c2 þ A=2½ �2
�
ds

þ σx sð Þdz sð Þ, x t0ð Þ ¼ x0: ð6:10Þ

Solving (6.11) yields the optimal cooperative state trajectory as:

x* sð Þ ¼ ϖ t0; sð Þ2
�
x
1=2
0 þ

ðs
t0

ϖ�1 t0; tð ÞH1dt

�2
, for s 2 t0; T½ �; ð6:11Þ

where

ϖ t0; sð Þ ¼ exp

ðs
t0

H2 τð Þ � σ2

8

� �
dυþ

ðs
t0

σ

2
dz υð Þ

� �
,H1 ¼ 1

2
a;

and H2 sð Þ ¼ �
�
1

2
bþ 1

8 c1 þ A sð Þ=2½ �2 þ
1

8 c2 þ A sð Þ=2½ �2 þ
σ2

8

�
:

3.6.2 Subgame Consistent Payoff Distribution

With the extractors using the cooperative strategies (6.10) along the stochastic

cooperative path, they agree to share the excess of the total expected cooperative
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payoff over the sum of individual noncooperative payoffs proportional to the

extractors’ expected noncooperative payoffs. Therefore the following imputation

has to be satisfied.

Condition 6.1 An imputation

ξ υð Þi υ; x*υ

 � ¼ V̂

i
x*υ

 �

X2
j¼1

V̂
j
x*υ

 �W x*υ


 � ¼ Ai x
*
υ


 �1=2 þ Ci

h i
X2
j¼1

Aj x
*
υ


 �1=2 þ Cj

h i A x*υ

 �1=2 þ C

h i
ð6:12Þ

is assigned to extractor i, for i 2 1; 2f g if x*υ 2 X*
υ occurs at time υ 2 �τ,1�. ■

Applying Theorem 5.3 a subgame-consistent solution for the cooperative game

Γc(τ, xτ) includes:

(i) a set of group optimal strategies

ψ*
1 x*s

 � ¼ x*s

4 c1 þ A=2½ �2 and ψ*
2 x*s

 � ¼ x*s

4 c2 þ A=2½ �2 ; and

(ii) a Payoff Distribution Procedure

B s; x*s

 � ¼ B1 s; x*s


 �
,B2 s; x*s

 �

, � � �,Bn s; x*s

 �� �

for s 2 �τ,1�with
Bi s; x

*
s


 � ¼ r ξ sð Þi s; x*s

 �

� ξ sð Þi
x*s

s; x*s

 ��

a x*s

 �1=2 � bx*s �

x*s
4 c1 þ A=2½ �2 �

x*s
4 c2 þ A=2½ �2

�

� 1

2
σ2 x*s

 �2

ξ τð Þi
x h
s x

ζ
s

s; x*s

 �

, for i 2 1; 2f g;
where

ξ sð Þi
x*s

si
xs� s; x*s

 � ¼ Ai x

*
s


 �1=2 þ Ci

h i
A x*s

 ��1=2 þ A x*s


 �1=2 þ C
h i

Ai x
*
s


 ��1=2

2
X2
j¼1

Aj x
*
s


 �1=2 þ Cj

h i

�
Ai x

*
s


 �1=2 þ Ci

	�
A x*s

 �1=2 þ C

h i
X2
j¼1

Aj x
*
s


 �1=2 þ Cj

h i !2

1

2

X2
j¼1

Aj x
*
s


 ��1=2

 !
;

and ξ τð Þi
x*s x

*
s
s; x*s

 � ¼ �CiA x*s


 ��3=2 þ CAi x
*
s


 ��3=2

4
X2
j¼1

Aj x
*
s


 �1=2 þ Cj

h i

�
Ai x

*
s


 �1=2 þ Ci

h i
A x*s

 ��1=2 þ A x*s


 �1=2 þ C
h i

Ai x
*
s


 ��1=2

2
X2
j¼1

Aj x
*
s


 �1=2 þ Cj

h i ! 2
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X2
j¼1

Aj x
*
s


 ��1=2
h i

þ
Ai x

*
s


 �1=2 þ Ci

	�
A x*s

 �1=2 þ C

h i
X2
j¼1

Aj x
*
s


 �1=2 þ Cj

h i !2

1

4

X2
j¼1

Aj x
*
s


 ��3=2

 !

� 1

2

X2
j¼1

Aj x
*
s


 ��1=2

 !
�

2
64 AiAþ 1

2
AiCþ ACi½ � x*s


 ��1=2

X2
j¼1

Aj x
*
s


 �1=2 þ Cj

h i !2

�
Ai x

*
τ


 �1=2 þ Ci

h i
A x*τ

 �1=2 þ C

h i
X2
j¼1

Aj x
*
τ


 �1=2 þ Cj

h i ! 3

X2
j¼1

Aj x
*
τ


 ��1=2

3
75: ð6:13Þ

With extractors using the cooperative strategies in (6.13), the instantaneous

receipt of extractor i at time instant υ 2 �τ,1� with the state being x�υ is:

ζi υ; x
*
υ


 � ¼ x*υ

 �1=2

2 ci þ A=2½ � �
ci x

*
υ


 �1=2
4 ci þ A=2½ �2 , for i 2 1; 2f g; ð6:14Þ

Under the cooperative agreement, the instantaneous payment that extractor i 2
1; 2f g should receive under the agreed-upon optimality principle is Bi(υ, x�υ) in

(6.14). Hence an instantaneous transfer payment

χi υ; x*υ

 � ¼ Bi υ; x

*
υ


 �� ζi υ; x
*
υ


 � ð6:15Þ

has to be given to extractor i at time υ, for i 2 1; 2f g and x*υ 2 X*
υ.

3.7 Chapter Notes

The analysis on subgame consistent solution in stochastic differential games was

presented in Yeung and Petrosyan (2004). In particular, a generalized theorem for

the derivation of an analytically tractable “payoff distribution procedure” which

would lead to subgame-consistent solutions was developed. Examples of coopera-

tive stochastic differential games with solutions satisfying subgame consistency can

be found in Yeung (2005, 2007a, 2008, 2010) and Yeung and Petrosyan (2004,

2006a, b, 2007a, b, c, 2008, 2012c, 2014a). Theorem 3.1 could be applied to obtain

subgame consistent cooperative solution for existing differential games in
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economic analysis. Solution mechanisms for cooperative stochastic differential

games can be found in Yeung (2006b).

3.8 Problems

1. Consider the case of two nations harvesting fish in common waters. The growth

rate of the fish biomass is subject to stochastic shocks and follows the differential

equation:

dx sð Þ ¼ 12x sð Þ1=2 � x sð Þ � u1 sð Þ � u2 sð Þ
h i

dsþ 0:1x sð Þdz sð Þ, x 0ð Þ ¼ 100;

where z(s) is a Wiener process, x(s) is the fish stock and ui(s) is the amount of fish

harvested by nation i, for i 2 1; 2f g. The horizon of the game is [0, 3].

The harvesting cost for nation i 2 1; 2f g depends on the quantity of resource

extracted ui(s) and the resource stock size x(s). In particular, nation 1’s extraction

cost is 2u1 sð Þx sð Þ�1=2
and nation 2’s is u2 sð Þx sð Þ�1=2

. The fish harvested by nation

1 at time swill generate a net benefit of the amount 3[u1(s)]
1/2 and the fish harvested

by nation 2 at time swill generate a net benefit of the amount 2[u2(s)]
1/2. At terminal

time 5, nations 1 and 2 will receive termination bonuses 8x(3)1/2 and 6x(3)1/2 while
the interest rate is 0.05.

Characterize a feedback Nash equilibrium solution for this stochastic

fishery game.

2. If these nations agree to cooperate and maximize their expected joint payoff,

obtain a group optimal cooperative solution.

3. Furthermore, if these nations agree to share the expected gain proportional to

their non-cooperative payoffs, derive a subgame consistent solution.

4. Consider the case when the game horizon in exercise 1 is extended to infinity.

(i) Characterize a feedback Nash equilibrium solution for this stochastic

dynamic game.

(ii) If these nations agree to cooperate and maximize their expected joint payoff

and share the excess of their expected gain equally, derive a subgame

consistent solution.
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