
Chapter 2

Subgame Consistent Cooperative Solution
in Differential Games

In game theory, strategic behavior and decision making are modeled in terms of the

characteristics of players, the objective or payoff function of each individual, the

actions open to each player throughout the game, the order of such actions, and the

information available at each stage of play. Optimal decisions are then determined

under different assumptions regarding the availability and transmission of infor-

mation, and the opportunities and possibilities for individuals to communicate,

negotiate, collude, offer inducements, and enter into agreements which are binding

or enforceable to varying degrees and at varying costs. Cooperative games suggest

the possibility of socially optimal and group efficient solutions to decision problems

involving strategic action. As discussed in Chap. 1, individual rationality, group

optimality and subgame consistency are crucial elements of a cooperative game

solution. This chapter presents an analysis on subgame consistent solutions which

entail group optimality and individual rationality for cooperative differential

games. It integrates the works of Chapter 2 of Yeung and Petrosyan (2006b),

Chapter 4 of Yeung and Petrosyan (2012a) and the deterministic version of

Yeung and Petrosyan (2004).

The organization of the Chapter is as follows. Section 2.1 presents the basic

formulation of cooperative differential games. Section 2.2 presents an analysis on

subgame consistent dynamic cooperation. Derivation of a subgame consistent

payoff distribution procedure is provided in Sect. 2.3. An illustration of the solution

mechanism is given in a cooperative fishery game in Sect. 2.4. Subgame consis-

tency in infinite horizon cooperative differential games is examined in Sect. 2.5. In

Sect. 2.6, a subgame consistent solution of an infinite horizon cooperative resource

extraction scheme is derived. Chapter notes are given in Sect. 2.7 and problems in

Sect. 2.8.
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2.1 Basic Formulation of Cooperative Differential Games

Consider the general form of n-person differential games in which player i seeks to
maximize its objective:

Z T

t0

gi s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
Z s

t0

r yð Þdy
� �

ds

þ exp �
Z T

t0

r yð Þdy
� �

qi x Tð Þð Þ; ð1:1Þ

for i2N ¼ 1; 2; � � �; nf g; where r(y) is the discount rate, x sð Þ2X � Rm denotes the

state variables of game, qi(x(T)) is player i’s valuation of the state at terminal time

T and ui2Ui is the control of player i, for i2N. The payoffs of the players are

transferrable.

The state variable evolves according to the dynamics

_x sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �, x t0ð Þ ¼ x0; ð1:2Þ

where x sð Þ2X � Rm denotes the state variables of game, and ui2Ui is the control of

player i, for i2N. The functions f s; x; u1; u2; � � �; un½ �, gi s; �; u1; u2; � � �; un½ � and qi �ð Þ,
for i2N, and s2 t0; T½ � are differentiable functions.

2.1.1 Non-cooperative Feedback Equilibria

To analyze the cooperative outcome we first characterize the non-cooperative

equilibria as a benchmark for negotiation in a cooperative scheme. Since in a

non-cooperative situation it is difficult to prevent the players from revising their

strategies during the game duration, therefore they would consider adopting feed-

back strategies which are decision rules that are dependent upon the current state

x(t) and current time t, for t0 � t � s.
For the n-person differential game (1.1 and 1.2), an n -tuple of feedback

strategies u*i sð Þ ¼ ϕ*
i s; xð Þ� 2Ui, for i2Ng constitutes a Nash equilibrium solution

if the following relations for each i2N are satisfied:

V t0ð Þi t; xð Þ ¼
Z T

t

gi s, x* sð Þ,ϕ*
1 s, x* sð Þ� �

,ϕ*
2 s, x* sð Þ� �

, . . .,ϕ*
n s, x* sð Þ� �� �

exp �
Z s

t0

r yð Þdy
� �

ds

þ qi x* Tð Þ� �
exp �

Z T

t0

r yð Þdy
� �
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�
Z T

t

gi
�
s, xi sð Þ,ϕ*

1 s, xi sð Þ� �
,ϕ*

2 s, xi sð Þ� �
, . . .,ϕ*

i�1 s, xi sð Þ� �
,ϕi s, x

i sð Þ� �
,

ϕ*
iþ1 s, xi sð Þ� �

, . . . . . .,ϕ*
n s, xi sð Þ� ��

exp �
Z s

t0

r yð Þdy
� �

ds

þ qi xi Tð Þ� �
exp �

Z T

t0

r yð Þdy
� �

,8ϕ*
i s; xð Þ2Ui, x2Rm; ð1:3Þ

where on the interval [t0,T],

_x * sð Þ ¼ f s, x* sð Þ,ϕ*
1 s, x* sð Þ� �

,ϕ*
2 s, x* sð Þ� �

, . . .,ϕ*
n s, x* sð Þ� �� �

, x* tð Þ ¼ x;

and

_x i sð Þ ¼ f
�
s, xi sð Þ,ϕ*

1 s, xi sð Þð Þ,ϕ*
2 s, xi sð Þð Þ, . . .,ϕ*

i�1 s, xi sð Þð Þ,ϕi s, x
i sð Þð Þ,ϕ*

iþ1 s, xi sð Þð Þ, . . .
. . .,ϕ*

n s, xi sð Þð Þ�, xi tð Þ ¼ x, for i2N:

A feedback Nash equilibrium solution of the game (1.1 and 1.2) satisfying (1.3) can

be characterized by the following Theorem.

Theorem 1.1 An n-tuple of strategies u*i tð Þ ¼ ϕ*
i t; xð Þ� 2Ui, for i2Ng provides a

feedback Nash equilibrium solution to the game (1.1 and 1.2) if there exist

continuously differentiable functions V t0ð Þi t; xð Þ : t0; T½ � � Rm ! R, i2N, satisfying
the following set of partial differential equations:

�V
t0ð Þi
t t; xð Þ ¼ max

ui
gi
�
t, x,ϕ*

1 t; xð Þ,ϕ*
2 t; xð Þ,Λ,ϕ*

i�1 t; xð Þ, ui t; xð Þ,ϕ*
iþ1 t; xð Þ,Λ

(

Λ,ϕ*
n t; xð Þ�exp �

Z t

t0

r yð Þdy
� �

þV t0ð Þi
x t; xð Þf t, x,ϕ*

1 t; xð Þ,ϕ*
2 t; xð Þ,Λ,ϕ*

i�1 t; xð Þ, ui t; xð Þ,ϕ*
iþ1 t; xð Þ,Λ,ϕ*

n t; xð Þ� �	

¼ gi
�
t, x,ϕ*

1 t; xð Þ,ϕ*
2 t; xð Þ,Λ,ϕ*

n t; xð Þexp �
Z t

t0

r yð Þdy
� �

þV t0ð Þi
x t; xð Þf t, x,ϕ*

1 t; xð Þ,ϕ*
2 t; xð Þ,Λ,ϕ*

n t; xð Þ� �
,

V t0ð Þi T; xð Þ ¼ qi xð Þexp �
Z T

t0

r yð Þdy
� �

, i2N:

Proof Invoking the dynamic programming technique in Theorem A.1 of the

Technical Appendices, V t0ð Þi t; xð Þ is the maximized payoff of player i for given
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strategies
n
u*j sð Þ ¼ ϕ*

j t; xð Þ2Uj, for j2N and j 6¼ i
o

of the other n� 1 players.

Hence a Nash equilibrium appears. ■

A remark that will be utilized in subsequent analysis is given below.

Remark 1.1 Let V(τ)i(t, x) denote the feedback Nash equilibrium payoff of player

i at time t given the state x in a game with payoffs (1.1) and dynamics (1.2) which

starts at time τ for τ2�t0, T�. Note that the equilibrium feedback strategies depend

on current time and current state. One can readily verify that

exp

Z τ

t0

r yð Þdy
� �

V t0ð Þi t; xð Þ ¼ exp

Z τ

t0

r yð Þdy
� �

�
Z T

t

gi s, x* sð Þ,ϕ*
1 s, x* sð Þ� �

,ϕ*
2 s, x* sð Þ� �

,Λ,ϕ*
n s, x* sð Þ� �� �

exp �
Z s

t0

r yð Þdy
� �

ds

¼
Z T

t

gi s, x* sð Þ,ϕ*
1 s, x* sð Þ� �

,ϕ*
2 s, x* sð Þ� �

,Λ,ϕ*
n s, x* sð Þ� �� �

exp �
Z s

τ
r yð Þdy

� �
ds

¼ V τð Þi t; xð Þ;

for τ2�t0,T�. ■
While non-cooperative outcomes are (in general) not Pareto optimal the players

would consider cooperation to enhance their payoffs. This will be analyzed in the

following section.

2.1.2 Dynamic Cooperation

Cooperative games suggest the possibility of socially optimal and group efficient

solutions to decision problems involving strategic action. Now consider the case

when the players agree to cooperate and distribute the payoff among themselves

according to an optimality principle. Two essential properties that a cooperative

scheme has to satisfy are group optimality and individual rationality. Group opti-

mality ensures that the joint payoff of all the players under cooperation is maxi-

mized. Failure to fulfill group optimality leads to the condition where the

participants prefer to deviate from the agreed-upon solution plan in order to extract

the unexploited gains. Individual rationality is required to hold so that the payoff

allocated to any player under cooperation will be no less than his noncooperative

payoff. Failure to guarantee individual rationality leads to the condition where the

concerned participants would deviate from the agreed upon solution plan and play

noncooperatively.
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2.1.2.1 Group Optimality Under Cooperation

Since payoffs are transferable, group optimality requires the players to maximize

their joint payoff. The players must then solve the following optimal control

problem:

max
u1, u2, ���, un

Z T

t0

Xn
j¼1

gj s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
Z s

t0

r yð Þdy
� �

ds

(

þ exp �
Z T

t0

r yð Þdy
� �Xn

j¼1

qj x Tð Þð Þ
) ð1:4Þ

subject to (1.2).

An optimal solution to the control problem (1.2) and (1.4) characterizing the set

of group optimal control strategies is provided by the theorem below.

Theorem 1.2 A set of controls {ψ	
i (t, x), for i2N and t2 t0; T½ �gprovides an optimal

solution to the control problem (1.2) and (1.4) if there exists continuously differ-

entiable function W t0ð Þ t; xð Þ : t0; T½ � � Rm ! R satisfying the following Bellman

equation:

�W
t0ð Þ
t t; xð Þ

¼ max
u1, u2, ���, un

Xn
j¼1

gj t; x; u1; u2; � � �; un½ �
(

exp �
Z t

t0

r yð Þdy
� �

þW t0ð Þ
x f t; x; u1; u2; � � �; un½ �

	
,

W t0ð Þ T; xð Þ ¼ exp �
Z T

t0

r yð Þdy
� �Xn

j¼1

qj xð Þ:

Proof Follow the proof of Theorem A.1 in the Technical Appendices. ■

Hence the players will adopt the cooperative control {ψ	
i (t, x), for i2N and

t2 t0; T½ �g to obtain the maximized level of joint profit. Substituting this set of

control into (1.2) yields the dynamics of the optimal (cooperative) trajectory as:

_x sð Þ ¼ f s, x sð Þ,ψ*
1 s, x sð Þð Þ,ψ*

2 s, x sð Þð Þ, � � �,ψ*
n s, x sð Þð Þ� �

, x t0ð Þ ¼ x0: ð1:5Þ

Let x*(t) denote the solution to (1.5). The optimal trajectory x* tð Þ� 
T

t¼t0
can be

expressed as:

x* tð Þ ¼ x0 þ
Z t

t0

f s, x* sð Þ,ψ*
1 s, x* sð Þ� �

,ψ*
2 s, x* sð Þ� �

, � � �,ψ*
n s, x* sð Þ� �� �

ds: ð1:6Þ

For notational convenience, we use the terms x*(t) and x	t interchangeably.
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Note that for group optimality to be achievable, the cooperative controls

{ψ	
i (t, x*(t)), for i2N and t2 t0; T½ �g must be exercised throughout time interval

[t0, T].

The maximized cooperative payoff over the interval [t,T], for t2�t0,T�, can be

expressed as:

W t0ð Þ t; x*t
� � ¼Z T

t

Xn
j¼1

gj s, x* sð Þ,ψ*
1 s, x* sð Þ� �

,ψ*
2 s, x* sð Þ� �

, � � �,ψ*
n s, x* sð Þ� �� �

exp �
Z s

t0

r yð Þdy
� �

ds

þ exp �
Z T

t0

r yð Þdy
� �Xn

j¼1

qj x* Tð Þ� �

A remark that will be utilized in subsequent analysis is given below.

Remark 1.2 LetW(τ)(t, x	t ) denote the maximized cooperative payoff of the control

problem

max
u1, u2, ���, un

Z T

t

Xn
j¼1

gj s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
Z s

τ
r yð Þdy

� �
ds

(

þexp �
Z T

τ
r yð Þdy

� �Xn
j¼1

qj x Tð Þð Þ
)
;

subject to

_x sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �, x tð Þ ¼ x*t :

One can readily verify that

exp

Z τ

t0

r yð Þdy
� �

W t0ð Þ t; x*t
� � ¼ exp

Z τ

t0

r yð Þdy
� �

�� Z T

t

Xn
j¼1

gj s, x* sð Þ,ψ*
1 s, x* sð Þ� �

,ψ*
2 s, x* sð Þ� �

, � � �,ψ*
n s, x* sð Þ� �� �

exp �
Z s

t0

r yð Þdy
� �

ds

þ exp �
Z T

t0

r yð Þdy
� �Xn

j¼1

qj x* Tð Þ� � 	 ¼
Z T

t

Xn
j¼1

gj s, x* sð Þ,ψ*
1 s, x* sð Þ� �

,ψ*
2 s, x* sð Þ� �

, � � �,ψ*
n s, x* sð Þ� �� �

exp �
Z s

τ
r yð Þdy

� �
ds

þ exp �
Z T

τ
r yð Þdy

� �Xn
j¼1

qj x* Tð Þ� � ¼ W τð Þ t; x*t
� �

;

for τ2 t0; T½ � and t2�τ,T�. ■
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2.1.2.2 Individual Rationality

After the players agree to cooperate and maximize their joint payoff, they have to

distribute the cooperative payoff among themselves. At time t0, with the state being

x0, the term ξ t0ð Þi t0; x0ð Þ is used to denote the imputation of payoff (received over the

time interval [t0,T]) to player i. A necessary condition for group optimality and

individual rationality to be upheld is:

(i)
Xn
j¼1

ξ t0ð Þj t0; x0ð Þ ¼ W t0ð Þ t0; x0ð Þ, and

(ii) ξ t0ð Þi t0; x0ð Þ � V t0ð Þi t0; x0ð Þ, for i2N ð1:7Þ

Condition (i) of (1.7) ensures group optimality and condition (ii) guarantees

individual rationality at time t0.
For the optimization scheme to be upheld throughout the game horizon both

group rationality and individual rationality are required to be satisfied throughout

the cooperation period [t0,T]. At time τ2 t0; T½ �, let ξ(τ)i(τ, x	τ ) denote the imputation

of payoff to player i over the time interval [τ, T]. Therefore the conditions

(i)
Xn
j¼1

ξ τð Þj τ; x*τ
� � ¼ W τð Þ τ; x*τ

� �
, and

(ii) ξ τð Þi τ; x*τ
� � � V τð Þi τ; x*τ

� �
; for i2N and τ2 t0; T½ �; ð1:8Þ

have to be fulfilled.

In particular, condition (i) ensures Pareto optimality and condition

(ii) guarantees individual rationality, throughout the cooperation period [t0,
T]. Failure to guarantee individual rationality leads to the condition where the

concerned participants would reject the agreed upon solution plan and play

noncooperatively.

Dockner and Jørgensen (1984); Dockner and Long (1993), Tahvonen (1994);

Mäler and de Zeeuw (1998) and Rubio and Casino (2002) examines group optimal

solutions in cooperative differential games. Haurie and Zaccour (1986, 1991);

Kaitala and Pohjola (1988, 1990, 1995); Kaitala et al. (1995) and Jørgensen and

Zaccour (2001) presented classes of transferable-payoff cooperative differential

games with solutions which satisfy group optimality and individual rationality.

2.1.3 Distribution of Cooperative Payoffs

With the players using the cooperative strategies
�
ψ*
i s; x*s
� �

, for s2 t0; T½ �and i2N


,

player i would derive a direct payoff :
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W t0ð Þi t0; x0ð Þ ¼Z T

t0

gi s, x* sð Þ,ψ*
1 s, x* sð Þ� �

,ψ*
2 s, x* sð Þ� �

, � � �,ψ*
n s, x* sð Þ� �� �

exp �
Z s

t0

r yð Þdy
� �

ds

þ exp �
Z T

t0

r yð Þdy
� �

qi x* Tð Þ� �
, for i2N: ð1:9Þ

At initial time t0, for cooperation to begin the cooperative payoff to player i W t0ð Þi

t0; x0ð Þ must be no less than the non-cooperative V t0ð Þi t0; x0ð Þ for all player i2N.
However as time proceeds there is no guarantee that adopting the cooperative

strategies would lead to W tð Þi t; x*t
� � � V tð Þi t; x*t

� �
for all player i2N. In case there

exists some player i such that V tð Þi t; x*t
� �

> W tð Þi t; x*t
� �

, then player i would have an

incentive to deviate from the cooperation plan. Hence the cooperation scheme has

to include transfer payments to overcome this problem. Let χi(s) denote the

instantaneous transfer payment allocated to agent i at time s2 t0; T½ �. With players

using the cooperative strategies
�
ψ*
i s; x*s
� �

, for s2 t0; T½ � and i2N


, the payoff that

player i’s payoff under cooperation at time t0 becomes:

ξ t0ð Þi t0; x0ð Þ ¼Z T

t0

gi s, x* sð Þ,ψ*
1 s, x* sð Þ� �

,ψ*
2 s, x* sð Þ� �

, � � �,ψ*
n s, x* sð Þ� �� �þ χi

�
s

� �

exp �

Z s

t0

r yð Þdy
� �

ds

þ exp �
Z T

t0

r yð Þdy
� �

qi x* Tð Þ� �
,

for i2N;

and
Xn
j¼1

Z T

t0

χj sð Þexp �
Z s

t0

r yð Þdy
� �

ds ¼ 0: ð1:10Þ

In order to uphold individual rationality one has to device a time path of instanta-

neous transfer payments χi(s) for s2 t0; T½ � satisfying:
Z T

τ
gi s, x* sð Þ,ψ*

1 s, x* sð Þ� �
,ψ*

2 s, x* sð Þ� �
, � � �,ψ*

n s, x* sð Þ� �� �þ χi
�
s

� �

exp �

Z s

τ
r yð Þdy

� �
ds

þ exp �
Z T

τ
r yð Þdy

� �
qi x* Tð Þ� � � V τð Þi τ; x*τ

� �
, for i2N; ð1:11Þ

and

Xn
j¼1

Z T

τ
χj sð Þexp �

Z s

τ
r yð Þdy

� �
ds ¼ 0, for τ2 t0; T½ �: ð1:12Þ
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There exist a large number of χi(s) for s2 t0; T½ � paths which leads to the satisfaction
of individual rationality for all players to be selected. Nevertheless, just satisfying

individual rationality may not be acceptable. For instance, players with larger

non-cooperative payoffs (or sizes) would demand a larger share proportionally. In

the next Section we will consider the derivation of χi(s) for s2 t0; T½ � paths which
would keep the original agree-upon imputation throughout the cooperation

duration.

2.2 Subgame Consistent Dynamic Cooperation

Though group optimality and individual rationality constitute two essential prop-

erties for cooperation, their fulfillment does not necessarily guarantee a dynami-

cally stable solution in cooperation because there is no guarantee that the agreed-

upon optimality principle is fulfilled throughout the cooperative duration. The

question of dynamic stability in differential games has been explored rigorously

in the past four decades. Haurie (1976) discussed the problem of instability in

extending the Nash bargaining solution to differential games. Petrosyan (1977)

formalized mathematically the notion of dynamic stability in solutions of differen-

tial games. Petrosyan and Danilov (1979, 1982) introduced the notion of “imputa-

tion distribution procedure” for cooperative solution.

To ensure stability in dynamic cooperation over time, a stringent condition is

required: the specific agreed-upon optimality principle must be maintained at any

instant of time throughout the game along the optimal state trajectory. This condi-

tion is the notion of subgame consistency.
Let Γc x0,T � t0ð Þ denote a cooperative game in which player i’s payoff is (1.1)

and the state dynamics is (1.2). The players agree to act according to an agreed-

upon optimality principle. The agreement on how to act cooperatively and allocate

cooperative payoff constitutes the solution optimality principle of a cooperative

scheme. In particular, the solution optimality principle includes

(i) an agreement on a set of cooperative strategies/controls,

(ii) an imputation vector stating the allocation of the cooperative payoff to

individual players, and

(iii) a mechanism to distribute total payoff among players.

2.2.1 Optimality Principle

Let there be an optimality principle agreed upon by all players in the cooperative

game Γc x0,T � t0ð Þ. Based on the agreed upon optimality principle the solution of

the game Γc x0,T � t0ð Þ at time t0 includes
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(i) a set of cooperative strategies u t0ð Þ* sð Þ ¼ u
t0ð Þ*
1 sð Þ, u t0ð Þ*

2 sð Þ, � � �, u t0ð Þ*
n sð Þ

h i
, for

s2 t0; T½ �;
(ii) an imputation vector ξ t0ð Þ t0; x0ð Þ ¼ ξ t0ð Þ1 t0; x0ð Þ, ξ t0ð Þ2 t0; x0ð Þ, � � �, ξ t0ð Þn t0; x0ð Þ� �

to allot the cooperative payoff to the players; and

(iii) a payoff distribution procedureBt0 sð Þ ¼ Bt0
1 sð Þ,Bt0

2 sð Þ, � � �,Bt0
n sð Þ� �

for s2 t0; T½ �,
where Bt0

i sð Þ is the instantaneous payments for player i at time s. In particular,

ξ t0ð Þi t0; x0ð Þ ¼
Z T

t0

Bt0
i sð Þexp �

Z s

t0

r yð Þdy
� �

dsþ qi xTð Þexp �
Z T

t0

r yð Þdy
� �

;

for i2N.

This means that the players agree at the outset on a set of cooperative strategies

u t0ð Þ* sð Þ, an imputation ξ t0ð Þi t0; x0ð Þ of the gains to the i th player covering the time

interval [t0,T], and a payoff distribution procedure Bt0 sð Þf g T
s¼t0

to allocate pay-

ments to the players over the game interval.

Using the agreed-upon cooperative strategies the state evolves according to the

state dynamics:

_x sð Þ ¼ f s, x sð Þ, u t0ð Þ*
1 sð Þ, u t0ð Þ*

2 sð Þ, � � �, u t0ð Þ*
n sð Þ

h i
, x t0ð Þ ¼ x0: ð2:1Þ

The solution to (2.1) yields the optimal cooperative trajectory which is denoted by

xc sð Þf gT
s¼t0

. For notational convenience we use xc(s) and xcs interchangeably.

When time t2�t0,T� has arrived, the situation becomes a cooperative game in

which player i’s payoff is:

Z T

t

gi s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
Z s

t

r yð Þdy
� �

ds

þ exp �
Z T

t

r yð Þdy
� �

qi x Tð Þð Þ, for i2N;

ð2:2Þ

and the evolutionary dynamics of the state is

_x sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �, x tð Þ ¼ xct : ð2:3Þ

We use Γc x ct ,T � t
� �

to denote a cooperative game in which player i’s objective is

(2.2) with state dynamics (2.3). At time t2�t0,T� when the state is xct , according to

the agreed-upon principle the solution of the game Γc x ct ,T � t
� �

includes:

(i) a set of cooperative strategies u tð Þ* sð Þ ¼ u
tð Þ*
1 sð Þ, u tð Þ*

2 sð Þ, � � �, u tð Þ*
n sð Þ

h i
, for

s2 t; T½ �;
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(ii) an imputation vector ξ tð Þ t; xct
� � ¼ ξ tð Þ1 t; xct

� �
, ξ tð Þ2 t; xct

� �
, � � �, ξ tð Þn t; xct

� �� �
to

allot the cooperative payoff to the players; and

(iii) a payoff distribution procedure Bt sð Þ ¼ Bt
1 sð Þ,Bt

2 sð Þ, � � �,Bt
n sð Þ� �

for s2 t; T½ �,
where Bt

i(s) is the instantaneous payments for player i at time s. In particular,

ξ tð Þi t; xct
� � ¼ Z T

t

B t
i sð Þexp �

Z s

t

r yð Þdy
� �

dsþ qi xcT
� �

exp �
Z T

t

r yð Þdy
� �

; ð2:4Þ

for i2N and t2 t0; T½ �.
This means that under the agreed-upon optimality principle, the players agree

on a set of cooperative strategies u(t) *(s), an imputation of the gains in such a way

that the gain under cooperation of the i th player over the time interval [t,T] is equal

to ξ(t)i(t, xct ) and a payoff distribution procedure Bt sð Þf gTs¼t to allocate payments to

the players over the game interval [t,T].
Examples of optimality principles include:

(i) joint payoff maximization and equal sharing of gains from cooperation,

(ii) joint payoff maximization and sharing gains proportional to non-cooperative

payoffs,

(iii) joint payoff maximization and time varying sharing weights,

(iv) different combinations of (i), (ii) and (iii),

(v) joint payoff maximization and sharing gains according to the Shapley value,

(vi) joint payoff maximization and sharing gains according to the von Neumann-

Morgenstern solution, or

(vii) joint payoff maximization and sharing gains according to the nucleolus.

2.2.2 Cooperative Subgame Consistency

To satisfy subgame consistency, the cooperative strategies, imputation and payoff

distribution procedure u t0ð Þ* sð Þ�
and Bt0 sð Þ for s2 t0; T½ �; ξ t0ð Þ t0; x0ð Þ
 generated by

the agreed-upon optimality principle in the cooperative gameΓc x0, T � t0ð Þmust be

consistent with the cooperative strategies, imputation and payoff distribution pro-

cedure { u(t) *(s) and Bt(s) for s2 t; T½ �; ξ tð Þ t; xct
� �


generated by the same optimality

principle in the cooperative game Γc x ct ,T � t
� �

along the optimal cooperative

trajectory xcs
� 
T

s¼t0
.

If this consistency does not appear, there is no guarantee that the players would

not abandon the cooperative scheme and switch to other plans including the

non-cooperative scheme. Dynamical instability would arise as participants found

that their agreed upon optimality principle could not be maintained after coopera-

tion has gone on for some time.
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2.2.2.1 Subgame Consistent Cooperative Strategies

First we consider the cooperative strategies adopted under the agreed-upon opti-

mality principle in the gameΓc x0,T � t0ð Þ. At time t0 when the initial state is x0, the
set of cooperative strategies is

u t0ð Þ* sð Þ ¼ u
t0ð Þ*
1 sð Þ, u t0ð Þ*

2 sð Þ, � � �, u t0ð Þ*
n sð Þ

h i
, for s2 t0; T½ �:

Consider the case when the game has proceeded to time t and the state variable

became xct . Then one has a cooperative game Γc xct ,T � t
� �

which starts at time

t with initial state xct . According to the agreed upon optimality principle a set of

cooperative strategies

u tð Þ* sð Þ ¼ u
tð Þ*
1 sð Þ, u tð Þ*

2 sð Þ, � � �, u tð Þ*
n sð Þ

h i
, for s2 t;T½ �;

will be adopted.

Definition 2.1 The set of cooperative strategies

u t0ð Þ* sð Þ ¼ u
t0ð Þ*
1 sð Þ, u t0ð Þ*

2 sð Þ, � � �, u t0ð Þ*
n sð Þ

h i
in the gameΓc x0,T � t0ð Þ is subgame

consistent if

u
t0ð Þ*
1 sð Þ, u t0ð Þ*

2 sð Þ, � � �, u t0ð Þ*
n sð Þ

h i
¼ u

tð Þ*
1 sð Þ, u tð Þ*

2 sð Þ, � � �, u tð Þ*
n sð Þ

h i
in the game Γc

xct , T � t
� �

under the agreed-upon optimality principle, for s2 t; T½ � and

t2 t0; T½ �. ■

If the condition in Definition 2.1 is satisfied at each instant of time t2 t0; T½ � along
the optimal trajectory xc tð Þf gT

t¼t0
, the continuation of the original cooperative

strategies u t0ð Þ* sð Þ coincides with the cooperative strategies u(t) *(s) in the cooper-

ative game Γc xct , T � t
� �

. Hence the set of cooperative strategies u t0ð Þ* sð Þ is

subgame consistent. Recall that to ensure group optimality the players have to

maximize the players’ joint payoffs. An optimality principle which requires group

optimality would yield a set of cooperative controls that solves the problem:

max
u1, u2, ���, un

Z T

t0

Xn
j¼1

gj s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
Z s

t0

r yð Þdy
� �

ds

(

þexp �
Z T

t0

r yð Þdy
� �Xn

j¼1

qj x Tð Þð Þ
)
; ð2:5Þ

subject to _x sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �, x t0ð Þ ¼ x0: ð2:6Þ

A set of group optimal cooperative strategies {ψ	
i (s, x*(s)), for i2N and s2 t0; T½ �g

which solves the problem (2.5 and 2.6) could be characterized by Theorem 1.2. In

particular, x* tð Þ� 
T

t¼t0
is the solution path of the optimal cooperative trajectory:
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_x sð Þ ¼ f s, x sð Þ,ψ*
1 s, x sð Þð Þ,ψ*

2 s, x sð Þð Þ, � � �,ψ*
n s, x sð Þð Þ� �

, x t0ð Þ ¼ x0:

Invoking Remark 1.2 in Sect. 2.1, one can show that the joint payoff maximizing

controls for the cooperative game Γc x*t ,T � t
� �

over the time interval [t,T] is

identical to the joint payoff maximizing controls for the cooperative game

Γc x0,T � t0ð Þ over the same time interval.

Therefore the solution to an optimality principle which requires group optimality

yields a system of subgame consistent cooperative strategies. Given that group

optimality is an essential element in dynamic cooperation, a valid optimality

principle would require the maximization of joint payoff and the cooperative

strategies u t0ð Þ* sð Þ ¼ u
tð Þ*
1 sð Þ ¼ ψ*

i s, x* sð Þ� �
, for s2 t; T½ � and t2 t0; T½ �.

2.2.2.2 Subgame Consistent Imputation

Now, we consider subgame consistency in imputation and payoff distribution

procedure. In the cooperative game Γc x0,T � t0ð Þ, according to the agreed-upon

optimality principle the players would use the payoff distribution procedure

Bt0 sð Þf g T
s¼t0

to bring about an imputation to player i as:

ξ t0ð Þi t0; x0ð Þ ¼
Z T

t0

Bt0
i sð Þexp �

Z s

t0

r yð Þdy
� �

dsþ qi xTð Þexp �
Z T

t0

r yð Þdy
� �

; ð2:7Þ

for i2N.

When the game proceeds to time t2�t0,T�, the current state is xct . According to

the same optimality principle player i will receive an imputation (in present value

viewed at time t0) equaling

ξ t0ð Þi t; xct
� � ¼ Z T

t

Bt0
i sð Þexp �

Z s

t0

r yð Þdy
� �

dsþ qi xcT
� �

exp �
Z T

t0

r yð Þdy
� �

; ð2:8Þ

over the time interval [t,T].

At time t2�t0,T� when the current state is xct , we have a cooperative game

Γc xct ,T � t
� �

. According to the agreed-upon optimality principle the players would

use the payoff distribution procedure Bt sð Þf g T
s¼t to bring about an imputation to

player i as:

ξ tð Þi t; xct
� � ¼ Z T

t

B t
i sð Þexp �

Z s

t

r yð Þdy
� �

dsþ qi xcT
� �

exp �
Z T

t

r yð Þdy
� �

; ð2:9Þ

for i2N.
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For the imputation and payoff distribution procedure in the game Γc x0,T � t0ð Þ
to be consistent with those from Γc x ct ,T � t

� �
, it is essential that

exp

Z t

t0

r yð Þdy
� �

ξ t0ð Þ t; xct
� � ¼ ξ tð Þ t; xct

� �
, for t2 t0; T½ �:

In addition, in the game Γc x0,T � t0ð Þ according to the agreed-upon optimality

principle the payoff distribution procedure is

Bt0 sð Þ ¼ Bt0
1 sð Þ,Bt0

2 sð Þ, � � �,Bt0
n sð Þ� �

, for s2 t0; T½ �:

Consider the case when the game has proceeded to time t and the state variable

became xct . Then one has a cooperative game Γc xct ,T � t
� �

which starts at time

t with initial state xct . According to the agreed-upon optimality principle the payoff

distribution procedure

Bt sð Þ ¼ Bt
1 sð Þ,Bt

2 sð Þ, � � �,Bt
n sð Þ� �

, for s2 t; T½ �

will be adopted.

For the continuation of the payoff distribution procedure Bt0 sð Þ for s2 t; T½ � to be
consistent with Bt(s) in the game Γc x ct ,T � t

� �
, it is required that

Bt0 sð Þ ¼ Bt sð Þ, for s2 t; T½ � and t2 t0; T½ �:

Therefore a formal definition can be presented as below.

Definition 2.2 The imputation and payoff distribution procedure�
ξ t0ð Þ t0; x0ð Þ and Bt0 sð Þ for s2 t0; T½ �
 are subgame consistent if

(i) exp

Z t

t0

r yð Þdy
� �

ξ t0ð Þi t; xct
� �


exp

Z t

t0

r yð Þdy
� �� Z T

t

Bt0
i sð Þexp �

Z s

t

r yð Þdy
� �

dsþ qi xcT
� �

exp �
Z T

t0

r yð Þdy
� �	

¼ ξ tð Þi t; xct
� �
Z T

t

B t
i sð Þexp �

Z s

t

r yð Þdy
� �

dsþ qi xcT
� �

exp �
Z T

t

r yð Þdy
� �

,

for i2N and t2 t0;T½ �, and ð2:10Þ

(ii) the payoff distribution procedureBt0 sð Þ ¼ Bt0
1 sð Þ,Bt0

2 sð Þ, � � �,Bt0
n sð Þ� �

for s2 t; T½ �
is identical to

Bt sð Þ ¼ Bt
1 sð Þ,Bt

2 sð Þ, � � �,Bt
n sð Þ� �

, for t2 t0; T½ � ð2:11Þ

■
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Thus cooperative strategies, payoff distribution procedures and imputations

satisfying the conditions in Definitions 2.1 and 2.2 are subgame consistent.

2.3 Subgame Consistent Payoff Distribution Procedure

Crucial to obtaining a subgame consistent solution is the derivation of a payoff

distribution procedure satisfying Definition 2.2 in Sect. 2.2.

2.3.1 Derivation of Payoff Distribution Procedures

Invoking part (ii) of Definition 2.2, we haveBt0 sð Þ ¼ Bt sð Þ for t2 t0; T½ � and s2 t; T½ �.
We use B sð Þ ¼ B1 sð Þ,B2 sð Þ, � � �,Bn sð Þf g to denote Bt(s) for all t2 t0; T½ �. Along the

optimal trajectory xc sð Þf gT
s¼t0

we then have:

ξ τð Þi τ; xcτ
� � ¼ Z T

τ
Bi sð Þexp �

Z s

τ
r yð Þdy

� �
dsþ qi xcT

� �
exp �

Z T

τ
r yð Þdy

� �
; ð3:1Þ

for i2N and τ2 t0; T½ �; andXn
j¼1

Bj sð Þ ¼
Xn
j¼1

gj s, xcs , u
τð Þ*
1 sð Þ, u τð Þ*

2 sð Þ, � � �, u τð Þ*
n sð Þ

h i
:

Moreover, for t2 τ; T½ �, we use the term

ξ τð Þi t; xct
� � ¼ Z T

t

Bi sð Þexp �
Z s

τ
r yð Þdy

� �
dsþ qi xcT

� �
exp �

Z T

τ
r yð Þdy

� �
; ð3:2Þ

to denote the present value (with initial time being τ) of player i’s payoff under
cooperation over the time interval [t, T] according to the agreed-upon optimality

principle along the cooperative state trajectory.

Invoking (3.1) and (3.2) we have

ξ τð Þi t; xct
� � ¼ exp �

Z t

τ
r yð Þdy

� �
ξ tð Þi t; xct
� �

,

for i2N and τ2 t0; T½ � and t2 τ; T½ �: ð3:3Þ

One can readily verify that a payoff distribution procedure B sð Þf g T
s¼t0

which

satisfies (3.3) would give rise to subgame consistent imputations satisfying part

(ii) of Definition 2.2. The next task is the derivation of a payoff distribution

procedure B sð Þf g T
s¼t0

that leads to the realization of (3.1, 3.2 and 3.3).

We first consider the following condition concerning the imputation ξ(τ)(t, xct ),
for τ2 t0; T½ � and t2 τ; T½ �.
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Condition 3.1 For i2N and t2 τ; T½ � and τ2 t0; T½ �, the imputation ξ(τ)i(t, xct ), for
i2N, is a function that is continuously differentiable in t and xct . ■

A theorem characterizing a formula for Bi(s), for s2 t0; T½ � and i2N, which yields
(3.1, 3.2 and 3.3) is provided as follows.

Theorem 3.1 If Condition 3.1 is satisfied, a PDP with a terminal payment qi(xcT) at
time T and an instantaneous payment at time s2 τ; T½ �:

Bi sð Þ ¼ � ξ sð Þi
t t; xct
� ����

t¼s

h i
� ξ sð Þi

x c
s

s; xcs
� �h i

f s, xcs ,ψ
*
1 s; xcs
� �

,ψ*
2 s; xcs
� �

, � � �,ψ*
n s; xcs
� �� �

, for i2N; ð3:4Þ

yields imputation vector ξ(τ)(τ, xcτ), for τ2 t0; T½ � which satisfy (3.1, 3.2 and3.3).

Proof Invoking (3.1, 3.2 and 3.3), one can obtain

ξ υð Þi υ; xcυ
� � ¼ Z υþΔt

υ
Bi sð Þexp �

Z s

υ
r yð Þdy

� �
dsþ

exp �
Z υþΔt

υ
r yð Þdy

� �
ξ υþΔtð Þi υþ Δt, xcυ þ Δxcυ

� �
,

forυ2 τ; T½ � and i2N; ð3:5Þ

where Δxcυ ¼ f υ, xcυ ,ψ
*
1 υ; xcυ
� �

,ψ*
2 υ; xcυ
� �

, � � �,ψ*
n υ; xcυ
� �� �

Δtþ o Δtð Þ, and
o Δtð Þ=Δt ! 0 as Δt ! 0.

From (3.2) and (3.5), one obtains

Z υþΔt

υ
Bi sð Þexp �

Z s

υ
r yð Þdy

� �
ds

¼ ξ υð Þi υ; xcυ
� �� exp �

Z υþΔt

υ
r yð Þdy

� �
ξ υþΔtð Þi υþ Δt, xcυ þ Δxcυ

� �
¼ ξ υð Þi υ; xcυ

� �� ξ υð Þi υþ Δt, xcυ þ Δxcυ
� �

,

for all υ2 t0; T½ � and i2N ð3:6Þ

If the imputations ξ(υ)(t, xct ), for υ2 t0; T½ �, satisfy Condition 3.1, asΔt ! 0, one can

express condition (3.6) as:

Bi υð ÞΔt ¼ � ξ υð Þi
t t; xct
� ����

t¼υ

h i
Δt

� ξ υð Þi
x c
υ

υ; xcυ
� �h i

f υ, xcυ ,ψ
*
1 υ; xcυ
� �

,ψ*
2 υ; xcυ
� �

, � � �,ψ*
n υ; xcυ
� �� �

Δt� o Δtð Þ: ð3:7Þ

Dividing (3.7) throughout by Δt, with Δt ! 0, yields (3.4).
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Bi υð Þ ¼ � ξ υð Þi
t t; xct
� ����

t¼υ

h i
� ξ υð Þi

x c
υ

υ; xcυ
� �h i

f υ, xcυ ,ψ
*
1 υ; xcυ
� �

,ψ*
2 υ; xcυ
� �

, � � �,ψ*
n υ; xcυ
� �� �

Thus the payoff distribution procedure in Bi(s) in (3.4) would lead to the realization
of ξ(τ)i(τ, xcτ), for τ2 t0; T½ � which satisfy (3.1, 3.2 and 3.3). ■

Assigning the instantaneous payments according to the payoff distribution

procedure in (3.4) leads to the realization of the imputation ξ(τ)(τ, xcτ) governed by

the agreed-upon optimality principle in the game Γc x cτ ,T � τ
� �

for τ2 t0; T½ �.
Therefore the payoff distribution procedure in Bi(s) in (3.4) yields a subgame

consistent solution.

With players using the cooperative strategies
�
ψ*
i τ; x*τ
� �

, for τ2 t0; T½ � and i2N


,

the instantaneous payment received by player i at time instant τ is:

ζi τð Þ ¼ gi τ, x*τ ,ψ
*
1 τ; x*τ
� �

,ψ*
2 τ; x*τ
� �

, � � �,ψ*
n τ; x*τ
� ��� �

,

for τ2 t0; T½ � and i2N: ð3:8Þ

According to Theorem 3.1, the instantaneous payment that player i should receive

under the agreed-upon optimality principle is Bi(τ) as stated in (3.2). Hence an

instantaneous transfer payment

χi τð Þ ¼ Bi τð Þ � ζi τð Þ ð3:9Þ

has to be given to player i at time τ, for i2N and τ2 t0; T½ �.

2.3.2 Subgame Consistent Solution under Specific
Optimality Principle

In this section we present examples of subgame consistent solutions under various

optimality principles.

Case I Consider the cooperative differential game Γc x0,T � t0ð Þ. In particular, the
players agree with an optimality principle which entails

(i) group optimality and

(ii) the division of the excess of the total cooperative payoff over the sum of

individual noncooperative payoffs equally.
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According to the optimality principle the imputation to player j inΓc x0,T � t0ð Þ is:

ξ τð Þi τ; xcτ
� � ¼ V τð Þi τ; xcτ

� �þ 1

n
W τð Þ τ; xcτ

� ��Xn
j¼1

V τð Þj τ; xcτ
� �" #

; ð3:10Þ

for i2N and τ2 t0; T½ �.
The imputation in (3.10) yields

(i) ξ τð Þi τ; xcτ
� � � V τð Þi τ; xcτ

� �
, for i2N and τ2 t0; T½ �; and

(ii)
Xn
j¼1

ξ τð Þj τ; xcτ
� � ¼ W τð Þ τ; xcτ

� �
for τ2 t0; T½ �:

Hence the imputation vector ξ(τ)i(τ, x	τ ) satisfies individual rationality and group

optimality.

Applying Theorem 3.1 a subgame consistent solution under the optimal princi-

ple can be characterized by
�
u sð Þ and B(s) for s2 t0; T½ � and ξ t0ð Þ t0; x0ð Þ
 in which

(i) u(s) for s2 t0; T½ � is the set of group optimal strategies ψ*ðs, x*s Þ in the game

Γc x0, T � t0ð Þ, and
(ii) the imputation distribution procedure

B sð Þ ¼ B1 sð Þ,B2 sð Þ, � � �,Bn sð Þf g for s2 t0; T½ � where
Bi sð Þ ¼ � ∂

∂t

�
V sð Þi t; x*t

� �þ 1

n
W sð Þ t; x*t

� ��Xn
j¼1

V sð Þj t; x*t
� � !����

t¼s

�

� ∂
∂x*s

�
V sð Þi s; x*s

� �þ 1

n
W sð Þ s; x*s

� ��Xn
j¼1

V sð Þj s; x*s
� � !�

� f s, x*s ,ψ
*
1 s; x*s
� �

,ψ*
2 s; x*s
� �

, � � �,ψ*
n s; x*s
� �� �

; ð3:11Þ

for i2N.

Case II Consider the cooperative differential gameΓc x0,T � t0ð Þ. In particular, the
players agree with an optimality principle which entails

(i) group optimality and

(ii) the sharing of the excess of the total cooperative payoff over the sum of

individual noncooperative payoffs proportional to the players’ noncooperative
payoffs.

ξ τð Þi τ; xcτ
� � ¼ V τð Þi τ; xcτ

� �
Xn
j¼1

V τð Þj τ; xcτ
� �þW τð Þ τ; xcτ

� �
; ð3:12Þ

for i2N and τ2 t0; T½ �.
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Applying Theorem 3.1 a subgame consistent solution under the optimal principle

will yield the imputation distribution procedure

B sð Þ ¼ B1 sð Þ,B2 sð Þ, � � �,Bn sð Þf g for s2 t0; T½ � where

Bi sð Þ ¼ � ∂
∂t

V sð Þi t; x*t
� �

Xn
j¼1

V sð Þj t; x*t
� �W sð Þ t; x*t

� ������
t¼s

2
66664

3
77775

� ∂
∂x*s

V sð Þi s; x*s
� �

Xn
j¼1

V sð Þj s; x*s
� �W sð Þ s; x*s

� �
2
66664

3
77775

� f s, x*s ,ψ
*
1 s; x*s
� �

,ψ*
2 s; x*s
� �

, � � �,ψ*
n s; x*s
� �� �

for i2N ð3:13Þ

Case III Consider the cooperative differential game Γc x0,T � t0ð Þ with two

players. In particular, the players agree with an optimality principle which entails

(i) group optimality and

(ii) the division of the excess of the total cooperative payoff over the sum of

individual noncooperative payoffs by the time-varying weights – τ
Tþα for player

1 and Tþα�τ
Tþα for player 2 at time τ2 t0; T½ �.

According to optimality principle the imputations to player 1 and player 2 in Γc

x0,T � t0ð Þ are:

ξ τð Þ1 τ; xcτ
� � ¼ V τð Þ1 τ; xcτ

� �þ τ

T þ α
W τð Þ τ; xcτ

� ��X2
j¼1

V τð Þj τ; xcτ
� �" #

for player 1, and

ξ τð Þ2 τ; xcτ
� � ¼ V τð Þ2 τ; xcτ

� �þ T þ α� τ

T þ α
W τð Þ τ; xcτ

� ��X2
j¼1

V τð Þj τ; xcτ
� �" #

ð3:14Þ

for player 2; τ2 t0; T½ �.
Applying Theorem 3.1 a subgame consistent solution under the optimal princi-

ple will yield the imputation distribution procedure

B sð Þ ¼ B1 sð Þ,B2 sð Þ, � � �,Bn sð Þf g for s2 t0; T½ � where
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B1 sð Þ ¼ � ∂
∂t

"
V sð Þ1 t; x*t

� �þ t

T þ α
W sð Þ t; x*t

� ��X2
j¼1

V sð Þj t; x*t
� � ! ����

t¼s

#

� ∂
∂x*s

"
V sð Þ1 s; x*s

� �þ s

T þ α
W sð Þ s; x*s

� ��X2
j¼1

V sð Þj s; x*s
� � ! #

� f s, x*s ,ψ
*
1 s; x*s
� �

,ψ*
2 s; x*s
� �� �

B2 sð Þ ¼ � ∂
∂t

"
V sð Þ2 t; x*t

� �þ T � tþ α

T þ α
W sð Þ t; x*t

� ��X2
j¼1

V sð Þj t; x*t
� � ! ����

t¼s

#

� ∂
∂x*s

"
V sð Þ1 s; x*s

� �þ T � sþ ε

T þ α
W sð Þ s; x*s

� ��X2
j¼1

V sð Þj s; x*s
� � ! #

� f s, x*s ,ψ
*
1 s; x*s
� �

,ψ*
2 s; x*s
� �� �

: ð3:15Þ

A variety of optimality principles with various imputation schemes can be

constructed.

2.4 An Illustration in Cooperative Fishery

Consider a deterministic version of an example in Yeung and Petrosyan (2004) in

which two nations are harvesting fish in common waters. The growth rate of the fish

stock is characterized by the differential equation:

_x sð Þ ¼ ax sð Þ1=2 � bx sð Þ � u1 sð Þ � u2 sð Þ, x t0ð Þ ¼ x02X; ð4:1Þ

where ui2Ui is the (nonnegative) amount of fish harvested by nation i, for i2 1; 2f g,
aandb are positive constants.

The harvesting cost for nation i2 1; 2f g depends on the quantity of resource

extracted ui(s), the resource stock size x(s), and a parameter ci. In particular, nation

i’s extraction cost can be specified as ciui sð Þx sð Þ�1=2
. The fish harvested by nation

i at time swill generate a net benefit of the amount [ui(s)]
1/2. The horizon in concern

is [t0,T]. At time T, nation i will receive a termination bonus qix(T )
1/2, where qi is

nonnegative. There exists a positive discount rate r.
At time t0 the payoff of nation i2 1; 2½ � is:

Z T

t0

ui sð Þ½ �1=2 � ci

x sð Þ1=2
ui sð Þ

" #
exp �r s� t0ð Þ½ �ds

þ exp �r T � t0ð Þ½ �qix Tð Þ12: ð4:2Þ
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Following the above analysis a set of feedback strategies u*i tð Þ ¼ ϕ*
i t; xð Þ�

, for i

2 1; 2f gg provides a feedback Nash equilibrium solution to the game (4.1 and 4.2),

if there exist continuously differentiable functions V τð Þi t; xð Þ : τ; T½ � � R !
R, i2 1; 2f g, satisfying the following partial differential equations:

�V
τð Þi
t t; xð Þ ¼ max

ui

�
u
1=2
i � ci

x1=2
ui

h i
exp �r t� τð Þ½ �

þ V τð Þi
x t; xð Þ ax1=2 � bx� ui � ϕ*

j t; xð Þ
h i 	

, and

V τð Þi T; xð Þ ¼ qix
1=2 exp �r T � τð Þ½ � for i2 1; 2f g, j2 1; 2f g and j 6¼ i: ð4:3Þ

Performing the indicated maximization yields:

ϕ*
i t; xð Þ ¼ x

4 ci þ V τð Þi
x exp r t� τð Þ½ �x1=2� � 2 , for i2 1; 2f g ð4:4Þ

Substituting ϕ	
1(t, x) and ϕ	

2(t, x) into (4.3) and upon solving (4.43 one obtains can

obtain the feedback Nash equilibrium payoff of nation i in the game (4.1 and 4.2)

as:

V τð Þi t; xð Þ ¼ exp �r t� τð Þ½ � Ai tð Þx1=2 þ Ci tð Þ
� �

,

for i2 1; 2f gand t2 τ; T½ � and τ2 t0; T½ �; ð4:5Þ

where Ai(t),Ci(t),Aj(t) and Cj(t), for i2 1; 2f g and j2 1; 2f g and i 6¼ j, satisfy:

_A i tð Þ ¼ r þ b

2

� �
Ai tð Þ � 1

2 ci þ Ai tð Þ=2½ � þ
ci

4 ci þ Ai tð Þ=2½ �2

þ Ai tð Þ
8 ci þ Ai tð Þ=2½ �2 þ

Ai tð Þ
8 cj þ Aj tð Þ=2
� �2

_C i tð Þ ¼ rCi tð Þ � a

2
Ai tð Þ and Ai Tð Þ ¼ q , and Ci Tð Þ ¼ 0: ð4:6Þ

Now consider the case when the nations agree to cooperate in harvesting the fishery.

Let Γc x0,T � t0ð Þ denote a cooperative game with the game structure of

Γ x0,T � t0ð Þ in which the players agree to act according to the optimality principle

that they would

(i) maximize the sum of their payoffs and

(ii) divide the excess of the total cooperative payoff over the sum of individual

noncooperative payoffs equally.
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To maximize the joint payoffs, the nations would consider the optimal control

problem:

Z T

t0

u1 sð Þ1=2 � c1

x sð Þ1=2
u1 sð Þ

" #
þ u2 sð Þ1=2 � c2

x sð Þ1=2
u2 sð Þ

" # !
exp �r t� t0ð Þ½ �ds

þ 2exp �r T � t0ð Þ½ �qx Tð Þ12; ð4:7Þ

subject to (4.1).

Let [ψ	
1(t, x),ψ

	
2(t, x)] denote a set of controls that provides a solution to the

optimal control problem (4.1) and (4.7) andW t0ð Þ t; xð Þ : t0; T½ � � Rn ! R denote the

value function that satisfies the equations:

�W
t0ð Þ
t t; xð Þ

¼ max
u1, u2

�
u1

1=2 � c1
x1=2

u1

h i
þ u2

1=2 � c2
x1=2

u2

h i �
exp �r t� t0ð Þ½ �

þW t0ð Þ
x t; xð Þ ax1=2 � bx� u1 � u2

� �	
, and

W t0ð Þ T; xð Þ ¼ 2exp �r T � t0ð Þ½ �qx1
2: ð4:8Þ

Performing the indicated maximization we obtain:

ψ*
1 t; xð Þ ¼ x

4 c1 þW t0ð Þ
x exp r t� t0ð Þ½ �x1=2� �2, and

ψ*
2 t; xð Þ ¼ x

4 c2 þW t0ð Þ
x exp r t� t0ð Þ½ �x1=2� �2:

Substituting ψ	
1(t, x) and ψ	

2(t, x) above into (4.8) yields the value function

W t0ð Þ t; xð Þ ¼ exp �r t� t0ð Þ½ � Â tð Þx1=2 þ Ĉ tð Þ
h i

;

where
_̂A tð Þ ¼ r þ b

2

� �
Â tð Þ � 1

2 c1þÂ tð Þ=2½ � �
1

2 c2þÂ tð Þ=2½ �

þ c1

4 c1 þ Â tð Þ=2� �2 þ c2

4 c2 þ Â tð Þ=2� �2 þ Â tð Þ
8 c1 þ Â tð Þ=2� �2 þ Â tð Þ

8 c2 þ Â tð Þ=2� �2 ,
_̂
C tð Þ ¼ rĈ tð Þ � a

2
Â tð Þ, Â Tð Þ ¼ 2q, and B̂ Tð Þ ¼ 0: ð4:9Þ
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The optimal cooperative controls can then be obtained as:

ψ*
1 t; xð Þ ¼ x

4 c1 þ Â tð Þ=2� �2 and ψ*
2 t; xð Þ ¼ x

4 c2 þ Â tð Þ=2� �2 : ð4:10Þ

Substituting these control strategies into (4.1) yields the dynamics of the state

trajectory under cooperation:

_x sð Þ ¼ ax sð Þ1=2 � bx sð Þ � x sð Þ
4 c1 þ Â sð Þ=2� �2 � x sð Þ

4 c2 þ Â sð Þ=2� �2 , x t0ð Þ

¼ x0: ð4:11Þ

Solving (4.11) yields the optimal cooperative state trajectory for Γc x0,T � t0ð Þ as:

x* sð Þ ¼ ϖ t0; sð Þ2
�
x
1=2
0 þ

Z s

t0

ϖ�1 t0; tð ÞH1dt

�2
, for s2 t0; T½ �; ð4:12Þ

whereϖ t0; sð Þ ¼ exp

Z s

t0

H2 τð Þdτ
� �

,H1 ¼ 1
2
a, andH2 sð Þ ¼ �

�
1
2
bþ 1

8 c1þÂ sð Þ=2½ �2 þ

1

8 c2þÂ sð Þ=2½ �2
�
:

The cooperative control for the game Γc x0,T � t0ð Þ over the time interval [t0,T]

along the optimal trajectory x* tð Þ� 
T

t¼t0
can be expressed precisely as:

ψ*
1 t; x*t
� � ¼ x*t

4 c1 þ Â tð Þ=2� �2 , and ψ*
2 t; x*t
� � ¼ x*t

4 c2 þ Â tð Þ=2� �2 : ð4:13Þ

Following the above analysis, the value function of the optimal control problem

with dynamics structure (4.1) and payoff structure (4.7) which starts at time τ with

initial state x	τ can be obtained asW
τð Þ t; xð Þ ¼ exp �r t� τð Þ½ � Â tð Þx1=2 þ B̂ tð Þ� �

, and

the corresponding optimal controls as

ψ*
1 t; x*t
� � ¼ x*t

4 c1 þ Â tð Þ=2� �2 , andψ*
2 t; x*t
� � ¼ x*t

4 c2 þ Â tð Þ=2� �2 ;
over the time interval [τ,T].

The agreed-upon optimality principle entails an imputation

ξ τð Þi τ; x*τ
� � ¼ V τð Þi τ; x*τ

� �þ 1

n
W τð Þ τ; x*τ

� ��Xn
j¼1

V τð Þj τ; x*τ
� �" #

, i2 1; 2f g; ð4:14Þ

in the cooperative game Γc x*τ , T � τ
� �

for τ2�t0,T�.
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Applying Theorem 3.1 a subgame consistent solution under the above optimal

principle for the cooperative game Γc x0 , T � t0ð Þ can be obtained as:�
u sð Þ and B(s) for s2 t0; T½ � and ξ t0ð Þ t0; x0ð Þ} in which

(i) u(s) for s2 t0; T½ � is the set of group optimal strategies

ψ*
1 s; x*s
� � ¼ x*s

4 c1þÂ sð Þ=2½ �2 , and ψ*
2 s; x*s
� � ¼ x*s

4 c2þÂ sð Þ=2½ �2 ; and
(ii) the imputation distribution procedure

B sð Þ ¼ B1 sð Þ,B2 sð Þf g for s2 t0; T½ � where

Bi sð Þ ¼ �1

2
_A i sð Þ x*s

� �1=2 þ _C i sð Þ
h i

þ r Ai sð Þ x*s
� �1=2 þ Ci sð Þ

h i� ��

þ 1

2
Ai sð Þ x*s

� ��1=2
� �

a x*s
� �1=2 � bx*s �

x*s

4 ci þ Â sð Þ=2� �2 � x*s

4 cj þ Â sð Þ=2� �2
" #	

�1

2

_̂A sð Þ x*s
� �1=2 þ _̂

C sð Þ
h i

þ r Â sð Þ x*s
� �1=2 þ Ĉ sð Þ

h i� ��

þ 1

2
Â sð Þ x*s

� ��1=2
� �

a x*s
� �1=2 � bx*s �

x*s

4 ci þ Â sð Þ=2� �2 � x*s

4 cj þ Â sð Þ=2� �2
" #	

þ 1

2
_A j sð Þ x*s

� �1=2 þ _C j sð Þ
h i

þ r Aj sð Þ x*s
� �1=2 þ Cj sð Þ

h i� ��

þ 1

2
Aj sð Þ x*s

� ��1=2
� �

a x*s
� �1=2 � bx*s �

x*s

4 ci þ Â sð Þ=2� �2 � x*s

4 cj þ Â sð Þ=2� �2
" #	

,

for i, j2 1; 2f gand i 6¼ j; ð4:15Þ

where _A i sð Þ and _C i sð Þ are given in (4.6); and
_̂A sð Þ and _̂

C sð Þ are given in (4.9).

With players using the cooperative strategies, the instantaneous receipt of player

i at time instant τ is:

ζi τð Þ ¼ x*τ
� �1=2

2 ci þ A τð Þ=2½ � �
ci x

*
τ

� �1=2
4 ci þ A τð Þ=2½ �2 ; ð4:16Þ

Under cooperation the instantaneous payment that player i should receive is Bi(τ) as
stated in (4.15). Hence an instantaneous transfer payment
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χi τð Þ ¼ Bi τð Þ � ζi τð Þ ð4:17Þ

has to be given to player i at time τ, for i2 1; 2f g and τ2 t0; T½ �.

2.5 Infinite Horizon Analysis

In this section we consider infinite horizon cooperative differential games in which

player i’s payoff is:

Z 1

τ
gi x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �r s� τð Þ½ �ds, for i2N: ð5:1Þ

The state dynamics is

_x sð Þ ¼ f x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �, x τð Þ ¼ xτ: ð5:2Þ

Since s does not appear in gi[x(s), u1(s), u2(s)] and the state dynamics, the game (5.1

and 5.2) is an autonomous problem. Consider the alternative game Γ(x) which starts
at time t2�t0,1� with initial state x tð Þ ¼ x:

max
ui

Z 1

t

gi x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �r s� tð Þ½ �ds, for i2N; ð5:3Þ

subject to the state dynamics

_x sð Þ ¼ f x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �, x tð Þ ¼ x: ð5:4Þ

The infinite-horizon autonomous game Γ(x) is independent of the choice of t and
dependent only upon the state at the starting time, that is x.

A feedback Nash equilibrium solution for the infinite-horizon autonomous game

(5.3) and (5.4) can be characterized as follows:

Theorem 5.1 An n-tuple of strategies u*i ¼ ϕ*
i �ð Þ� 2Ui, for i2Ng provides a

feedback Nash equilibrium solution to the infinite-horizon game (5.3) and (5.4) if

there exist continuously differentiable functions V̂
i
xð Þ : Rm ! R, i2N, satisfying

the following set of partial differential equations:

rV̂
i
xð Þ ¼ max

ui
gi x,ϕ*

1 xð Þ,ϕ*
2 xð Þ, � � �,ϕ*

i�1 xð Þ, ui,ϕ*
iþ1 xð Þ, � � �,ϕ*

n xð Þ� ��

þV̂
i

x xð Þf x,ϕ*
1 xð Þ,ϕ*

2 xð Þ, � � �,ϕ*
i�1 xð Þ, ui,ϕ*

iþ1 xð Þ, � � �,ϕ*
n xð Þ� � 	

, for i2N:
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Proof By Theorem A.2 in the Technical Appendices, V̂
i
xð Þ is the value function

associated with the optimal control problem of player i, i2N. Hence the conditions
in Theorem 5.1 imply a Nash equilibrium. ■

Now consider the case when the players agree to act cooperatively. Let Γc(τ, xτ)
denote a cooperative game in which player i’s payoff is (5.1) and the state dynamics

is (5.2). The players agree to act according to an agreed upon optimality principle

P(τ, xτ) which entails

(i) group optimality and

(ii) the distribution of the total cooperative payoff according to an imputation

vector ξ(υ)(υ, x	υ) for υ2
�
τ,1� over the game duration. Moreover, the function

ξ υð Þi υ; x*υ
� �2ξ υð Þ υ; x*υ

� �
, for i2N, is continuously differentiable in υ and x	υ.

The solution of the cooperative game Γc(τ, xτ) includes

(i) a set of group optimal cooperative strategies

u τð Þ* sð Þ ¼ u
τð Þ*
1 sð Þ, u τð Þ*

2 sð Þ, � � �, u τð Þ*
n sð Þ

h i
, for s2�τ,1�;

(ii) an imputation vector ξ τð Þ τ; xτð Þ ¼ ξ τð Þ1 τ; xτð Þ, ξ τð Þ2 τ; xτð Þ, � � �, ξ τð Þn τ; xτð Þ� �
to

allot the cooperative payoff to the players; and

(iii) a payoff distribution procedure Bτ sð Þ ¼ B τ
1 sð Þ,B τ

2 sð Þ, � � �,B τ
n sð Þ� �

for

s2�τ,1�, where Bτ
i (s) is the instantaneous payments for player i at time s.

In particular,

ξ τð Þi τ; xτð Þ ¼
Z 1

τ
B τ
i sð Þexp �r s� τð Þ½ � ds, for i2N ð5:5Þ

In the following sub-sections, we characterize the cooperative strategies and payoff

distribution procedure of the cooperative game Γc(τ, xτ) under the agreed-upon

optimality principle.

2.5.1 Group Optimal Cooperative Strategies

To ensure group rationality the players maximize the sum of their payoffs, the

players solve the problem:

max
u1, u2, ���, un

Z 1

τ

Xn
j¼1

gj x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �r s� τð Þ½ �ds
( 	

; ð5:6Þ

subject to (5.2).

Following Theorem A.2 in the Technical Appendices, we note that a set of

controls {ψ	
1(x), for i2Ngprovides a solution to the optimal control problem (5.6) if
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there exists continuously differentiable function W xð Þ : Rm ! R satisfying the

infinite-horizon Bellman equation:

rW xð Þ ¼ max
u1, u2, ���, un

X2
j¼1

gj x; u1; u2; � � �; un½ �
(

þWxf x; u1; u2; � � �; un½ �
	
: ð5:7Þ

The players will adopt the cooperative control {ψ	
1(x), for i2Ng characterized in

(5.7). Note that these controls are functions of the current state x only. Substitut-
ing this set of control into the state dynamics yields the optimal (cooperative)

trajectory as;

_x sð Þ ¼ f x sð Þ,ψ*
1 x sð Þð Þ,ψ*

2 x sð Þð Þ, � � �,ψ*
n x sð Þð Þ� �

, x τð Þ ¼ xτ: ð5:8Þ

Let x*(s) denote the solution to (5.8). The optimal trajectory x* sð Þ� 
1
s¼τ

can be

expressed as:

x* sð Þ ¼ xτ þ
Z s

τ
f x* υð Þ,ψ*

1 x* υð Þ� �
,ψ*

2 x* υð Þ� �
, � � �,ψ*

n x* υð Þ� �� �
dυ.

For notational convenience, we use the terms x*(s) and x	s interchangeably.
The cooperative control for the game can be expressed more precisely as:

fψ*
i x*s
� �

, for i2N and s2�τ,1�g;
which are functions of the current state x	s only. The term

W x*τ
� � ¼ Z 1

τ

Xn
j¼1

gj x* sð Þ,ψ*
1 x* sð Þ� �

,ψ*
2 x* sð Þ� �

, � � �,ψ*
n x* sð Þ� �� �

exp �r s� τð Þ½ �ds

yields the maximized cooperative payoff at current time τ, given that the state

is x	τ

2.5.2 Subgame Consistent Imputation and Payoff
Distribution Procedure

According to the agreed-upon optimality principle P(τ, xτ) the players would use

the Payoff Distribution Procedure Bτ sð Þf g1s¼τ to bring about an imputation to

player i as:

ξ τð Þi τ; xτð Þ ¼
Z 1

τ
B τ
i sð Þexp �r s� τð Þ½ � ds, for i2N: ð5:9Þ
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At time τ, we define the present value of player i’s payoff over the time interval�
t,1� as:

ξ τð Þi t; x*t
� � ¼ Z 1

t

B τ
i sð Þexp �r s� τð Þ½ � ds, for i2N; ð5:10Þ

where t > τ and x*t 2 x* sð Þ� 
1
s¼τ

.

Consider the case when the game has proceeded to time t and the state variable

became x	t . Then one has a cooperative game Γc(t, x	t ) which starts at time t with
initial state x	t . According to the agreed-upon optimality principle, an imputation

ξ tð Þi t; x*t
� � ¼ Z 1

t

B t
i sð Þexp �r s� tð Þ½ � ds;

will be allotted to player i, for i2N.
However, according to the optimality principle, the imputation (in present value

viewed at time τ) to player i over the period
�
t,1� is

ξ τð Þi t; x*t
� � ¼ Z 1

t

B τ
i sð Þexp �r s� τð Þ½ � ds, for i2N; ð5:11Þ

For the imputations from the optimality principle to be consistent throughout the

cooperation duration, it is essential that

exp r t� τð Þ½ �ξ τð Þi t; x*t
� � ¼ ξ tð Þi t; x*t

� �
, for t2 τ;1ð Þ:

In addition, at time τ when the initial state is xτ, according to the optimality

principle the payoff distribution procedure is

Bτ sð Þ ¼ B τ
1 sð Þ,B τ

2 sð Þ, � � �,B τ
n sð Þ� �

, for s2�τ,1�:
When the game has proceeded to time t and the state variable became x	t . According
to the optimality principle the payoff distribution procedure

Bt sð Þ ¼ Bt
1 sð Þ,Bt

2 sð Þ, � � �,Bt
n sð Þ� �

, for s2�t,1�;
will be adopted.

For the continuation of the payoff distribution procedure to be consistent it is

required that

Bt0 sð Þ ¼ Bt sð Þ, for s2�t,1�and t2�τ,1�:
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Definition 5.1 The imputation and payoff distribution procedure�
ξ τð Þ τ; xτð Þ and Bτ(s) for s2�τ,1�
 are subgame consistent if

(i) exp r t� τð Þ½ �ξ τð Þi t; x*t
� �
exp r t� τð Þ½ �

Z 1

t

B τ
i sð Þexp �r s� τð Þ½ � ds

¼ ξ tð Þi t; x*t
� �

, for t2 τ;1ð Þ and i2N; and
ð5:12Þ

(ii) the payoff distribution procedureBτ sð Þ ¼ B τ
1 sð Þ,B τ

2 sð Þ, � � �,B τ
n sð Þ� �

for s2�t,1�
is identical to Bt sð Þ ¼ Bt

1 sð Þ,Bt
2 sð Þ, � � �,Bt

n sð Þ� �2 t; x*t
� �

: ■

Definition 5.1 yields the infinite horizon subgame consistent imputation and

payoff distribution procedure.

2.5.3 Derivation of Subgame Consistent Payoff Distribution
Procedure

A payoff distribution procedure leading to subgame consistent imputation has to

satisfy Definition 5.1. Invoking Definition 5.1, we have B τ
i sð Þ ¼ Bt

i sð Þ ¼ Bi sð Þ, for
s2�τ,1� and t2�τ,1� and i2N.

Therefore along the cooperative trajectory x* tð Þ� 

t�t0

,

ξ τð Þi τ; x*τ
� � ¼ Z 1

τ
Bi sð Þexp �r s� τð Þ½ �ds, for i2N, and

ξ υð Þi υ; x*υ
� � ¼ Z 1

υ
Bi sð Þexp �r s� υð Þ½ �ds, for i2N, and

ξ tð Þi t; x*t
� � ¼ Z 1

t

Bi sð Þexp �r s� tð Þ½ �ds, for i2N and t � υ � τ ð5:13Þ

Moreover, for i2N and t2�τ,1�, we define the term
ξ υð Þi t; x*t

� � ¼ � Z 1

t

Bi sð Þexp �r s� υð Þ½ �ds
�

x tð Þ ¼ x*t

����
	
; ð5:14Þ

to denote the present value of player i’s cooperative payoff over the time interval�
t,1�, given that the state is x	t at time t2�υ,1�, under the solution Ρ(υ, x	υ).
Invoking (5.13) and (5.14) one can readily verify that

exp r t� τð Þ½ �ξ τð Þi t; x*t
� � ¼ ξ tð Þi t; x*t

� �
, for i2N and τ2 t0; T½ � and t2 τ; T½ �.

The next task is to derive Bi(s), for s2
�
τ,1� and t2�τ,1� so that (5.13) can be

realized. Consider again the following condition.
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Condition 5.1 For i2N and t � υ and υ2 τ; T½ �, the term ξ(υ)i(t, x	t ) is a function that
is continuously differentiable in t and x	t .

A theorem characterizing a formula for Bi(s), for i2N and s2�υ,1�, which
yields (5.14) is provided as follows.

Theorem 5.2 If Condition 5.1 is satisfied, a PDP with instantaneous payments at

time s equaling

Bi sð Þ ¼ � ξ sð Þi
t t; x*t
� ����

t¼s

h i
� ξ sð Þi

x*s
s; x*s
� �

f x*s ,ψ
*
1 x*s
� �

,ψ*
2 x*s
� �

, � � �,ψ*
n x*s
� �� �

; ð5:15Þ

for i2N and s2�υ,1�,
yields imputation ξ(υ)i(υ, xcυ), for υ2

�
τ,1� which satisfy (5.13).

Proof Note that along the cooperative trajectory x* tð Þ� 

t�τ

ξ υð Þi t; x*t
� � ¼ Z 1

t

Bi sð Þexp �r s� υð Þ½ �ds ¼ exp �r t� υð Þ½ � ξ tð Þi t; x*t
� �

,

for i2N and t2�υ,1�: ð5:16Þ

For Δt ! 0, Eq. (5.13) can be expressed as

ξ υð Þi τ; x*τ
� � ¼ Z 1

υ
Bi sð Þexp �r s� υð Þ½ �ds

¼
Z υþΔt

υ
Bi sð Þexp �r s� υð Þ½ � dsþ ξ υð Þi υþ Δt, x*υ þ Δx*υ

� �
; ð5:17Þ

where

Δx*υ ¼ f x*υ,ψ
*
1 x*υ
� �

,ψ*
2 x*υ
� �

, � � �,ψ*
n x*υ
� �� �

Δtþ o Δtð Þ, and o Δtð Þ=Δt ! 0asΔt ! 0.

Replacing the term x*υ þ Δx*υ with x*υþΔt and rearranging (5.17) yields:

Z υþΔt

υ
Bi sð Þexp �r s� υð Þ½ � ds

¼ ξ υð Þi υ; x*υ
� �� ξ υð Þi υþ Δt, x*υþΔt

� �
, for allυ2�τ,1�and i2N: ð5:18Þ

Consider the following condition concerning ξ(υ)i(t, x	t ), for υ2
�
τ,1� and t2�υ,1�:

With Condition 5.1 holding and Δt ! 0, (5.18) can be expressed as:

Bi υð ÞΔt ¼ � ξ υð Þi
t t; x*t
� ����

t¼τ

h i
Δt

� ξ υð Þi
x*υ

υ; x*υ
� �

f x*υ,ψ
*
1 x*υ
� �

,ψ*
2 x*υ
� �

, � � �,ψ*
n x*υ
� �� �

Δt� o Δtð Þ: ð5:19Þ
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Dividing (5.19) throughout by Δt, with Δt ! 0, yields (5.15). Thus the payoff

distribution procedure in Bi(υ) in (5.15) would lead to the realization of the

imputations which satisfy (5.15). ■

Since the payoff distribution procedure in Bi(τ) in (5.15) leads to the realization

of (5.13), it would yields subgame consistent imputations satisfying Definition 5.1.

A more succinct form of Theorem 5.2 can be derived as follows. Note that, a

PDP with instantaneous payments at time s equaling

Bi sð Þ ¼ r ξ sð Þi s; x*s
� �� ξ sð Þi

x*s
s; x*s
� �

f x*s ,ψ
*
1 x*s
� �

,ψ*
2 x*s
� �

, � � �,ψ*
n x*s
� �� �

,

for i2N and s2�υ,1�; ð5:20Þ

yields imputation ξ(υ)i(υ, xcυ), for υ2
�
τ,1� which satisfy (5.13).

To demonstrate that (5.20) is an alternative form for (5.15) in Theorem 5.2, we

define

ξ̂
i
x*υ
� � ¼ � Z 1

υ
Bi sð Þexp �r s� υð Þ½ �ds x υð Þ ¼ x*υ

	���� ¼ ξ υð Þi τ; x*υ
� �

, and

ξ̂
i
x*t
� � ¼ � Z 1

t

Bi sð Þexp �r s� tð Þ½ �ds x tð Þ ¼ x*t

	���� ¼ ξ tð Þi t; x*t
� �

;

for i2N and υ2�τ,1� and t2�υ,1� along the optimal cooperative trajectory

x*s
� 
1

s¼τ
.

We then have:

ξ υð Þi t; x*t
� � ¼ exp �r t� υð Þ½ � ξ̂ i

x*t
� �

:

Differentiating ξ(υ)i(t, x	t ) with respect to t yields:

ξ υð Þi
t t; x*t
� ����

t¼υ

h i
¼ �r exp �r t� υð Þ½ � ξ̂ i

x*t
� � ¼ �r ξ υð Þi t; x*t

� �
:

At t ¼ υ, ξ υð Þi t; x*t
� � ¼ ξ υð Þi υ; x*υ

� �
, therefore

ξ υð Þi
t t; x*t
� ����

t¼υ

h i
¼ rξ υð Þi t; x*t

� � ¼ rξ υð Þi υ; x*υ
� �

: ð5:21Þ

Substituting (5.21) into (5.15) yields (5.20). Since the infinite-horizon autonomous

game Γ(x) is independent of the choice of time s and dependent only upon the state,
Eq. (5.20) can be expressed as:

Bi x
*
s

� � ¼ r ξ̂
i
x*s
� �� ξ̂

i

x*s
x*s
� �

f x*s ,ψ
*
1 x*s
� �

,ψ*
2 x*s
� �

, � � �,ψ*
n x*s
� �� �

, for i2N: ð5:22Þ
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Therefore a subgame consistent solution for the cooperative game Γc(τ, xτ)
with optimality principle P(τ, xτ) includes the cooperative strategies and Payoff

Distribution Procedure:�
u sð Þ and B(x	s ) for s2

�
τ,1�
 in which

(i) u(s) is the set of group optimal strategies ψ*(x	s ) for the game Γc(τ, xτ), and
(ii) the payoff distribution procedure

B x*s
� � ¼ B1 x*s

� �
,B2 x*s
� �

, � � �,Bn x*s
� �� 


where

Bi x
*
s

� � ¼ r ξ̂
i
x*s
� �� ξ̂

i

x*s
x*s
� �

f x*s ,ψ
*
1 x*s
� �

,ψ*
2 x*s
� �

, � � �,ψ*
n x*s
� �� �

; ð5:23Þ

for i2N.

With players using the cooperative strategies
�
ψ*
i x*υ
� �

, for i2N and υ2�τ,1�
,
the instantaneous receipt of player i at time instant υ is:

ζi x
*
υ

� � ¼ gi x*υ ,ψ
*
1 x*υ
� �

,ψ*
2 x*υ
� �

, � � �,ψ*
n x*υ
� �� �

,

for i2N: ð5:24Þ

According to Theorem 5.2, the instantaneous payment that player i should receive

under the agreed-upon optimality principle is Bi(υ) in (5.15) or equivalently Bi(x
	
υ)

in (5.23). Hence an instantaneous transfer payment

χi x*υ
� � ¼ Bi x

*
υ

� �� ζi x
*
υ

� � ð5:25Þ

has to be given to player i at time υ, for i2N.

2.6 Infinite Horizon Resource Extraction

Consider an infinite horizon version of the cooperative fishery game in Sect. 2.5. At

initial time τ, the payoff of nation 1 and that of nation 2 are respectively:

Z 1

τ
u1 sð Þ1=2 � c1

x sð Þ1=2
u1 sð Þ

" #
exp �r t� τð Þ½ �ds

and

Z 1

τ
u2 sð Þ1=2 � c2

x sð Þ1=2
u2 sð Þ

" #
exp �r t� τð Þ½ �ds: ð6:1Þ
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The resource stock x sð Þ2X � R follows the dynamics

_x sð Þ ¼ ax sð Þ1=2 � bx sð Þ � u1 sð Þ � u2 sð Þ, x τð Þ ¼ xτ2X; ð6:2Þ

Using Theorem 5.1, the value function V̂
i
t; xð Þ reflecting the payoff of nation i in a

noncooperative feedback Nash equilibrium can be obtained as:

V̂
i
t; xð Þ ¼ Aix

1=2 þ Ci

h i
; ð6:3Þ

where for i, j2 1; 2f g and i 6¼ j,Ai,Ci,Aj and Cj satisfy:

r þ b

2

� �
Ai � 1

2 ci þ Ai=2½ � þ
ci

4 ci þ Ai=2½ �2

þ Ai

8 ci þ Ai=2½ �2 þ
Ai

8 cj þ Aj=2
� �2 ¼ 0, and

Ci ¼ a

2
Ai:

The game equilibrium strategies can be obtained as:

ϕ*
1 xð Þ ¼ x

4 c1 þ A1=2½ �2 , andϕ
*
2 xð Þ ¼ x

4 c2 þ A2=2½ �2 : ð6:4Þ

Consider the case when these two nations agree to act according to an agreed upon

optimality principle which entails

(i) group optimality, and

(ii) the distribution of the cooperative payoff according to the imputation that

divides the excess of the total cooperative payoff over the sum of individual

noncooperative payoffs equally.

To maximize their joint payoff for group optimality, the nations have to solve the

control problem of maximizing

Z 1

τ
u1 sð Þ1=2 � c1

x sð Þ1=2
u1 sð Þ

" #
þ u2 sð Þ1=2 � c2

x sð Þ1=2
u2 sð Þ

" # !
exp �r t� τð Þ½ �ds

ð6:5Þ

subject to (6.2).

Invoking Eq. (5.7), we obtain:

rW xð Þ ¼ max
u1, u2

� 
u1

1=2 � c1
x1=2

u1

h i
þ u2

1=2 � c2
x1=2

u2

h i �

þWx xð Þ ax1=2 � bx� u1 � u2
� � 	

:
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The value function W(x) which reflects the maximized joint payoff can be

obtained as:

W xð Þ ¼ Ax1=2 þ C
h i

;

where r þ b
2

� �
A� 1

2 c1þA=2½ � � 1
2 c2þA=2½ �

þ c1

4 c1 þ A=2½ �2 þ
c2

4 c2 þ A=2½ �2 þ
A

8 c1 þ A=2½ �2 þ
A

8 c2 þ A=2½ �2 ¼ 0, and

C ¼ a

2r
A

The optimal cooperative controls can then be obtained as:

ψ*
1 xð Þ ¼ x

4 c1 þ A=2½ �2 and ψ*
2 xð Þ ¼ x

4 c2 þ A=2½ �2 : ð6:6Þ

Substituting these control strategies into (6.2) yields the dynamics of the state

trajectory under cooperation:

_x sð Þ ¼ ax sð Þ1=2 � bx sð Þ � x sð Þ
4 c1 þ A=2½ �2 �

x sð Þ
4 c2 þ A=2½ �2 , x τð Þ ¼ xτ: ð6:7Þ

Solving (6.7) yields the optimal cooperative state trajectory x* sð Þ� 
1
τ¼t0

for the

cooperative game (6.1 and 6.2) as:

x* sð Þ ¼ a

2H
þ xτð Þ1

2 � a

2H

� �
exp �H s� τð Þ½ �

h i2
; ð6:8Þ

where H ¼ �
�

b
2
þ 1

8 c1þA=2½ �2 þ 1

8 c2þA=2½ �2

�
:

According to the agreed-upon optimality principle these nations will distribute

the cooperative payoff according to the imputation which divides the excess of the

total cooperative payoff over the sum of individual noncooperative payoffs equally.

Hence the imputation ξ υ; x*υ
� � ¼ ξ̂

1
x*υ
� �

, ξ̂
2
x*υ
� �h i

has to satisfy:

Condition 6.1

ξ̂
i
x*υ
� � ¼ V̂

i
x*υ
� �þ 1

2
W x*υ
� ��X2

j¼1

V̂
j
x*υ
� �" #

; ð6:9Þ

for i2 1; 2f g and υ2�τ,1�. ■
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Applying Theorem 5.2 and Eq. (5.23) a subgame consistent solution payoff

distribution procedure B x*s
� � ¼ B1 x*s

� �
,B2 x*s
� �� 


for s2�τ,1� can be obtained as:

Bi x
*
s

� � ¼ 1

2

�
r Ai x

*
s

� �1=2 þ Ci

h i
þ r A x*s

� �1=2 þ C
h i

� r Aj x
*
s

� �1=2 þ Cj

h i 	

� 1

4

�
Ai x

*
s

� ��1=2 þ A x*s
� ��1=2 � Aj x

*
s

� ��1=2
	

�
�
a x*s
� �1=2 � bx*s �

x*s
4 c1 þ A=2½ �2 �

x*s
4 c2 þ A=2½ �2

�
; ð6:10Þ

for i, j2 1; 2f g and i 6¼ j.

With players using the cooperative strategies ψ*
i x*υ
� �

, i2 1; 2f g� 

along the

cooperative trajectory, the instantaneous receipt of player i at time instant υ
becomes:

ζi x
*
υ

� � ¼ x*υ
� �1=2

2 ci þ A=2½ � �
ci x

*
υ

� �1=2
4 ci þ A=2½ �2 ; ð6:11Þ

According to (6.10), the instantaneous payment that player i should receive under

the agreed-upon optimality principle is Bi(x
	
υ). Hence an instantaneous transfer

payment

χi x*υ
� � ¼ Bi x

*
υ

� �� ζi x
*
υ

� � ð6:12Þ

has to be given to player i at time υ2�τ,1�, for i2 1; 2f g.

2.7 Chapter Notes

Significant contributions to general game theory include von Neumann and

Morgenstern (1944); Nash (1950, 1953); Vorob’ev (1972); Shapley (1953) and

Shubik (1959a, b). Dynamic optimization techniques are essential in the derivation

of solutions to differential games. The origin of differential games was established

by Rufus Isaacs in the late 1940s (the complete work was published in Isaacs

(1965)). In the meantime, control theory reached its maturity in theOptimal Control
Theory of Pontryagin et al. (1962) and Bellman’s Dynamic Programming (1957).

Berkovitz (1964) developed a variational approach to differential games, and

Leitmann and Mon (1967) investigated the geometry of differential games.

Pontryagin (1966) solved differential games in open-loop solution in terms of the

maximum principle. Cooperative games suggest the possibility of socially optimal

and group efficient solutions to decision problems involving strategic action. As

discussed above, Individual rationality and group optimality are essential element
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of a cooperative game solution. Dockner and Jørgensen (1984); Dockner and Long

(1993); Tahvonen (1994); Mäler and de Zeeuw (1998) and Rubio and Casino

(2002) presented cooperative solutions satisfying group optimality in differential

games. The majority of cooperative differential games adopt solutions satisfying

the essential criteria for dynamic stability – group optimality and individual ratio-

nality. Haurie and Zaccour (1986, 1991), Kaitala and Pohjola (1988, 1990, 1995),

Kaitala et al. (1995) and Jørgensen and Zaccour (2001) presented classes of

transferable-payoff cooperative differential games with solutions which satisfy

group optimality and individual rationality. Miao et al. (2010) studied a cooperative

differential game on transmission rate in wireless networks. Lin et al. (2014)

presented a cooperative differential game for model energy-bandwidth efficiency

tradeoff in the Internet. Huang et al. (2016) presented a cooperative differential

game of transboundary industrial pollution with a Stackelberg game between firms

and local governments while the governments cooperate in pollution reduction.

Tolwinski et al. (1986) considered cooperative equilibria in differential games in

which memory-dependent strategies and threats are introduced to maintain the

agreed-upon control path. Petrosyan and Danilov (1982); Petrosyan and Zenkevich

(1996) and Petrosyan (1997) provided a detailed analysis of subgame consistent

(then referred to as time consistent solutions in the deterministic framework)

imputation distribution schemes in cooperative differential games. Filar and

Petrosyan (2000) considered dynamic cooperative games in characteristic functions

which evolve over time in a dynamic equation that is influenced by the current

(instantaneous) characteristic function and cooperative solution concept adopted.

Yeung and Petrosyan (2004) presented subgame consistent solution in stochastic

differential games and Yeung and Petrosyan (2012a) gave a comprehensive account

of the topic. Application of subgame consistent solutions in differential games in

cost-saving joint venture, collaborative environmental management and dormant

firm cartel can be found in Yeung and Petrosyan (2012a). Other examples of

cooperative differential games with solutions satisfying subgame consistency can

be found in Petrosyan (1997), Jørgensen and Zaccour (2001). A note concerning the

notations used in Petrosyan (1997) and Yeung and Petrosyan (2004) is given in

Yeung and Petrosyan (2012d). A non-cooperative-equivalent imputation formula in

cooperative differential games is provided by Yeung (2007b) and an irrational-

behaviour proof condition in cooperative differential games is given in Yeung

(2006a). A study on the tragedy of the commons in a dynamic game framework

can be found in Hartwick and Yeung (1997).

2.8 Problems

1. Consider the case of three nations harvesting fish in common waters. The growth

rate of the fish biomass is characterized by the differential equation:

_x sð Þ ¼ 4x sð Þ1=2 � 0:5x sð Þ � u1 sð Þ � u2 sð Þ, x 0ð Þ ¼ 50;
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where ui2Ui is the (nonnegative) amount of fish harvested by nation i, for
i2 1; 2f g. The horizon of the game is [0, 5].

The harvesting cost for nation i2 1; 2f g depends on the quantity of resource

extracted ui(s) and the resource stock size x(s). In particular, nation 1’s extraction

cost is u1 sð Þx sð Þ�1=2
and nation 2’s is 2u2 sð Þx sð Þ�1=2

. The revenue of fish

harvested by nation 1 at time s is 2[u1(s)]
1/2 and that by nation 2 is [u2(s)]

1/2.

The interest rate is 0.05.

Characterize a feedback Nash equilibrium solution for this fishery game.

2. If these nations agree to cooperate and maximize their joint payoff, obtain a

group optimal cooperative solution.

3. Furthermore, if these nations agree to share the excess of their gain from

cooperation equally along the optimal trajectory, derive a subgame consistent

cooperative solution.

4. If the game horizon of the above problems is extended to infinity, what would be

the answers to Problems 1, 2 and 3?
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