
Chapter 13

Collaborative Environmental Management

After several decades of rapid technological advancement and economic

growth, alarming levels of pollutions and environmental degradation are

emerging all over the world. Due to the geographical diffusion of pollutants,

unilateral response on the part of one country or region is often ineffective.

Though cooperation in environmental control holds out the best promise of

effective action, limited success has been observed. Existing multinational

joint initiatives like the Kyoto Protocol or pollution permit trading can hardly

be expected to offer a long-term solution because there is no guarantee that

participants will always be better off within the entire duration of the agree-

ment. This Chapter presents collaborative schemes in a cooperative differen-

tial game framework and derives subgame consistent solutions for the

schemes.

Sections 13.1, 13.2, 13.3, and 13.4 of this Chapter give an integrated exposition

of the work of Yeung and Petrosyan (2008) on a cooperative stochastic differential

game of transboundary industrial pollution. The game formulation is provided in

Sect. 13.1 and noncooperative outcomes are characterized in Sect. 13.2. Coopera-

tive arrangements, subgame-consistent imputations and payment distribution

mechanism are provided in Sect. 13.3. A numerical example is given in

Sect. 13.4. In Sect. 13.5, an extension of the Yeung and Petrosyan (2008) analysis

to incorporate uncertainties in future payoffs is presented. Section 13.6 contains the

chapter appendices. Chapter notes are given in Sect. 13.7 and problems in

Sect. 13.8.

13.1 Game Formulation

In this section we present a stochastic differential game model of environmental

with n asymmetric nations or regions.
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13.1.1 The Industrial Sector

Consider a multinational economy which is comprised of n nations. To allow

different degrees of substitutability among the nations’ outputs a differentiated

products oligopoly model has to be adopted. The differentiated oligopoly model

used by Dixit (1979) and Singh and Vives (1984) in industrial organizations is

adopted to characterize the interactions in this international market. In particular,

the nations’ outputs may range from a homogeneous product to n unrelated prod-

ucts. Specifically, the inverse demand function of the output of nation i 2 N�
1; 2; � � �; nf g at time instant s is

Pi sð Þ ¼ αi �
Xn
j¼1

β i
j qj sð Þ; ð1:1Þ

where Pi(s) is the price of the output of nation i, qj(s), is the output of nation j, α
i and

βij for i 2 N and j 2 N are positive constants. The output choice qj sð Þ 2 0; qj
� �

is

nonnegative and bounded by a maximum output constraint qj. Output price equals

zero if the right-hand-side of (1.1) becomes negative. The demand system (1.1)

shows that the economy is a form of differentiated products oligopoly with substi-

tute goods. In the case when αi ¼ αj and β i
j ¼ β j

i for all i 2 N and j 2 N, the

industrial outputs resemble a homogeneous good. In the case when β i
j ¼ 0 for i 6¼ j,

the n nations produce n unrelated products. Moreover, the industry equilibrium

generated by this oligopoly model is computable and fully tractable.

Industrial profits of nation i at time s can be expressed as:

πi sð Þ ¼ αi �
Xn
j¼1

β i
j qj sð Þ

" #
qi sð Þ � ciqi sð Þ � vi sð Þqi sð Þ, for i 2 N: ð1:2Þ

where vi sð Þ � 0 is the tax rate imposed by government i on its industrial output at
time s and ci is the unit cost of production. At each time instant s, the industrial
sector of nation i 2 N seeks to maximize (1.2). Note that each industrial sector

would consider the information on the demand structure, each other’s cost

structures and tax policies. In a competitive market equilibrium firms will

produce up to a point where marginal cost of production equals marginal revenue

and the first order condition for a Nash equilibrium for the n nations economy

yields

Xn
j¼1

β i
j qj sð Þ þ β i

i qi sð Þ ¼ αi � ci � vi sð Þ, for i 2 N: ð1:3Þ

With output tax rates v sð Þ ¼ v1 sð Þ, v2 sð Þ, � � �, vn sð Þf g being regarded as parameters

by the industrial sectors (1.3) becomes a system of equations linear in
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q sð Þ ¼ q1 sð Þ, q2 sð Þ, � � �, qn sð Þf g. Solving (1.3) yields an industry equilibrium with

output in industry i being

qi sð Þ ¼ ϕi v sð Þð Þ ¼ αi þ
X
j2N

β
i

j vj sð Þ; ð1:4Þ

where αi and β
i

j , for i 2 N and j 2 N, are constants involving the model parameters

β11;β
1
2; � � �;β1n;β21;β22; � � �;β2n; � � �;β n

1 ;β
n
2 ; � � �;β n

n

� �
, α1;α2; � � �;αn� �

and c1;c2; � � �;cnf g.
One can readily observe from (1.3) that an increase in the tax rate has the same

effect of an increase in cost. Ceteris paribus, an increase in nation i’s tax rate would
depress the output of industrial sector i and vice versa.

13.1.2 Local and Global Environmental Impacts

Industrial production emits pollutants into the environment. The emitted pollutants

cause short term local impacts on neighboring areas of the origin of production in

forms like passing-by waste in waterways, wind-driven suspended particles in air,

unpleasant odour, noise, dust and heat. For an output of qi(s) produced by nation i,

there will be a short-term local environmental impact (cost) of εiiqi(s) on nation

i itself and a local impact of εijqi(s) on its neighbor nation j. Nation i will receive

short-term local environmental impacts from its adjacent nations measured as

εjiqj(s) for j 2 K
i
. Thus K

i
is the subset of nations whose outputs produce local

environmental impacts to nation i. Moreover, industrial production would also

create long-term global environmental impacts by building up existing pollution

stocks like Green-house-gas, CFC and atmospheric particulates. Each government

adopts its own pollution abatement policy to reduce the pollution stock. Let x sð Þ
� Rþ denote the level of pollution at time s, the dynamics of pollution stock is

governed by the stochastic differential equation:

dx sð Þ ¼
� Xn

j¼1

ajqj sð Þ �
Xn
j¼1

bjuj sð Þ x sð Þ½ �1=2 � δx sð Þ
�
dsþ σ x sð Þdz sð Þ, x t0ð Þ ¼ xt0 ;

ð1:5Þ

where σ is a noise parameter and z(s) is a Wiener process, ajqj is the amount added

to the pollution stock by a unit of nation j’s output, uj(s) is the pollution abatement

effort of nation j, bjuj(s)[x(s)]
1/2 is the amount of pollution removed by uj(s) unit of

abatement effort of nation j, and δ is the natural rate of decay of the pollutants.

Short term local impacts are closely related to the level of production activities

and hence are characterized by a deterministic scheme. On the other hand, the

accumulation of pollution stock like greenhouse gas often involves the interactions

between the natural environment and the pollutants emitted and hence stochastic
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elements would appear. For instance, nature’s capability to replenish the environ-

ment, the rate of pollution degradation and climate change are subject to certain

degrees of uncertainty. Hence a stochastic dynamic game is used to model the

evolution of pollution stock (1.5). Finally the damage (cost) of the pollution stock in

the environment to nation i at time s is hix(s).

13.1.3 The Governments’ Objectives

The governments have to promote business interests and at the same time handle

the financing of the costs brought about by pollution. In particular, each government

maximizes the net gains in the industrial sector minus the sum of expenditures on

pollution abatement and damages from pollution. The instantaneous objective of

government i at time s can be expressed as:

αi �
Xn
j¼1

β i
j qj sð Þ

" #
qi sð Þ � ciqi sð Þ � cai ui sð Þ½ �2 �

X
j2Ki

ε ji qj sð Þ� �� hix sð Þ, i 2 N;

ð1:6Þ

where cai [ui(s)]
2 is the cost of employing ui amount of pollution abatement

effort, and hix(s) is the value of damage to country i from x(s) amount of

pollution.

The governments’ planning horizon is [t0,T]. It is possible that T may be very

large. At time T, the terminal appraisal associated with the state of pollution is gi

xi � x Tð Þ½ � where gi � 0 and xi � 0. The discount rate is r. Each one of the

n governments seeks to maximize the integral of its instantaneous objective (1.6)

over the planning horizon subject to pollution dynamics (1.5) with controls on the

level of abatement effort and output tax.

By substituting qi(s), for i 2 N, from (1.4) into (1.5) and (1.6) one obtains a

stochastic differential game in which government i 2 N seeks to:
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max
vi sð Þ, ui sð Þ

Et0

� ðT
t0

� 	
αi �

Xn
j¼1

β i
j αj þ

X
h2N

β
j

h vh sð Þ
" # 


αi þ
X
h2N

β
i

h vh sð Þ
" #

�ci αi þ
X
j2N

β
i

j vj sð Þ
" #

� cai ui sð Þ½ �2 �
X
j2Ki

ε ji αj þ
X
‘2N

β
j

‘ v‘ sð Þ
" #

�hix sð Þ
�
e�r s�t0ð Þds� gi x Tð Þ � xi½ �e�r T�t0ð Þ

�
ð1:7Þ

subject to

dx sð Þ ¼
� Xn

j¼1

aj αj þ
X
h2N

β
j

h vh sð Þ
" #

�
Xn
j¼1

bjuj sð Þ x sð Þ½ �1=2 � δx sð Þ
�
ds

þ σ x sð Þdz sð Þ, x t0ð Þ ¼ xt0 : ð1:8Þ

In the game (1.7 and 1.8) one can readily observe that government i’s tax policy
vi sð Þ is not only explicitly reflected in its own output but also on the outputs of other
nations. This modeling formulation allows some intriguing scenario to arise. For

instance, an increase of vi sð Þ may just cause a minor drop in nation i’s industrial
profit but may cause significant increases in its neighbors’ outputs which produce

large local negative environmental impacts to nation i. This results in nations’
reluctance to increase or impose taxes on industrial outputs.

13.2 Noncooperative Outcomes

In this section we discuss the solution to the noncooperative game (1.7) and (1.8).

Since the payoffs of nations are measured in monetary terms, the game is a

transferable payoff game. Under a noncooperative framework, a feedback Nash

equilibrium solution can be characterized as (see Basar and Olsder (1995)):
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Definition 2.1 A set of feedback strategies
�
u*i tð Þ ¼ μi t; xð Þ, v*i tð Þ ¼ ϕi t; xð Þ; for

i 2 N
�
provides a Nash equilibrium solution to the game (1.7 and 1.8) if there exist

suitably smooth functionsVi t; xð Þ : t0; T½ � � R ! R, i 2 N, satisfying the following
partial differential equations:

�V i
t t; xð Þ � σ2x2

2
V i
xx t; xð Þ ¼ max

vi,ui

�
� 	

αi �
Xn
j¼1

β i
j

αj þ
Xn
h 2 N
h 6¼ i

β
j

h ϕh t; xð Þ þ β
j

i vi

2
664

3
775
!

αi þ
X
h 2 N
h 6¼ i

β
i

h ϕh t; xð Þ þ β
i

i vi

2
664

3
775

�ci
αi þ

X
j 2 N
j 6¼ i

β
i

j
ϕj t; xð Þ þ β

i

i vi

2
664

3
775� cai ui½ �2

�
X
j2Ki

ε ji
αj þ

X
‘ 2 N
‘ 6¼ i

β
j

‘
ϕ‘ t; xð Þ þ β

j

i vi

2
664

3
775� hix

�
e�r t�t0ð Þ

þV i
x

� Xn
j¼1

aj
αj þ

X
h 2 N
h 6¼ i

β
j

h
ϕh t; xð Þ þ β

j

i vi

2
664

3
775

�
Xn
j ¼ 1

j 6¼ i

bjμj t; xð Þx1=2 � biuix
1=2 � δx

� �
;

ð2:1Þ
Vi T; xð Þ ¼ �gi x� xi

� �
e�r T�t0ð Þ: ð2:2Þ

Performing the indicated maximization in (2.1) yields:

μi t; xð Þ ¼ � bi
2cai

V i
x t; xð Þer t�t0ð Þx1=2; ð2:3Þ

	
αi �

Xn
j¼1

β i
j αj þ

Xn
h2N

β
j

h ϕh t; xð Þ
" # 


β
i

i �
"Xn

j¼1

β i
j β

j

i

#
αi þ

X
h2N

β
i

h ϕh t; xð Þ
" #

�ciβ
i

i �
X
j2Ki

ε ji β
j

i þ V i
x

Xn
j¼1

ajβ
j

i e
r t�t0ð Þ ¼ 0;

ð2:4Þ

for t 2 t0 < T½ � and i 2 N.
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System (2.4) forms a set of equations linear in ϕ1 t; xð Þ,ϕ2 t; xð Þ, � � �,ϕn t; xð Þf g
with V1

x t; xð Þer t�t0ð Þ,V2
x t; xð Þer t�t0ð Þ, � � �,V n

x t; xð Þer t�t0ð Þ� �
being taken as a set of

parameters. Solving (2.4) yields:

ϕi t; xð Þ ¼ α̂ i þ
X
j2N

β̂
i

j V j
x t; xð Þer t�t0ð Þ, i 2 N; ð2:5Þ

where α̂ i and β̂
i

j , for i 2 N and j 2 N, are constants involving the constant

coefficients in (2.4). Substituting the results in (2.3) and (2.5) into (2.1 and 2.2)

we obtain game equilibrium expected payoffs of the nations as:

Proposition 2.1
Vi t; xð Þ ¼ Ai tð Þxþ Ci tð Þ½ � e�r t�t0ð Þ, for i 2 N; ð2:6Þ

where A1 tð Þ,A2 tð Þ, � � �,An tð Þf g satisfying the following set of constant coefficient

quadratic ordinary differential equations:

_A i tð Þ ¼ r þ δð Þ Ai tð Þ � b2i
4cai

Ai tð Þ½ �2 � Ai tð Þ
Xn
j ¼ 1

j 6¼ i

b2j
2caj

Aj tð Þ þ hi ,

Ai Tð Þ ¼ �gi; for i 2 N; ð2:7Þ

and Ci tð Þ; i 2 Nf g isgivenby Ci tð Þ ¼ er t�t0ð Þ
� ðt

t0

Fi yð Þe�r y�t0ð Þdyþ C0
i

�
; ð2:8Þ

where C0
i ¼ gixie�r T�t0ð Þ �

ðT
t0

Fi yð Þe�r y�t0ð Þdy

Fi tð Þ ¼ �
	

αi �
Xn
j¼1

β i
j αj þ

Xn
h2Ni

β
j

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" #( ) 


	
αi þ

X
h2N

β
i

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" # 


þci αi �
X
j2N

β
i

j α̂ j þ
X
k2N

β̂
j

k Ak tð Þ
" #( )

þ
X
j2Ki

ε ji αj þ
X
‘2N

β
j

‘ α̂ ‘ þ
X
k2N

β̂
‘

k Ak tð Þ
" #( )

�Ai tð Þ
� Xn

j¼1

aj αj þ
X
h2N

β
j

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" #( ) �

:
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Proof See Appendix A. ■

The corresponding feedback Nash equilibrium strategies of the game (1.7 and

1.8) can be obtained as:

μi t; xð Þ ¼ � bi
2cai

Ai tð Þx1=2 andϕi t; xð Þ ¼ α̂ i þ
X
j2N

β̂
i

j Aj tð Þ

for i 2 N and t 2 t0; T½ �:
ð2:9Þ

A remark that will be utilized in subsequent analysis is given below.

Remark 2.1 Let V(τ)i(t, xt) denote the value function indicating the game equilib-

rium payoff of nation i in a game with payoffs (1.7) and dynamics (1.8) which starts

at time τ. One can readily verify that V τð Þi t; xtð Þ ¼ Vi t; xtð Þer τ�t0ð Þ, for τ 2 t0; T½ �. ■

13.3 Cooperative Arrangement

Now consider the case when all the nations want to cooperate and agree to act so that

an international optimum could be achieved. For the cooperative scheme to be upheld

throughout the game horizon both group rationality and individual rationality are

required to be satisfied at any time. In addition, to ensure that the cooperative solution

is dynamically stable, the agreement must be subgame-consistent. The cooperative

plan will dissolve if any of the nations deviates from the agreed-upon plan.

13.3.1 Group Optimality and Cooperative State Trajectory

Consider the cooperative stochastic differential games with payoff structure (1.5) and

dynamics (1.3). To secure group optimality the participating nations seek to maximize

their joint expected payoff by solving the following stochastic control problem:

max
v1, v2, ���, vn; u1, u2, ���, un

Et0

�
ðT
t0

Xn
‘¼1

� 	
α‘ �

Xn
j¼1

β ‘
j αj þ

X
h2N

β
j

h vh sð Þ
" # 


α‘ þ
X
h2N

β
‘

h vh sð Þ
" #

�c‘ α‘ þ
X
j2N

β
‘

j vj sð Þ
" #

� ca‘ u‘ sð Þ½ �2 �
X
j2K‘

ε j‘ αj þ
X
k2N

β
j

k vk sð Þ
" #

�h‘x sð Þ
�
e�r s�t0ð Þds�

Xn
‘¼1

g‘ x Tð Þ � x‘
� �

e�r T�t0ð Þ
�

ð3:1Þ

subject to (1.8).
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Invoking Fleming’s (1969) technique in stochastic control in Theorem A.3 of the

Technical Appendices a set of controls v**i tð Þ, u**i tð Þ� � ¼ ψ i t; xð Þ,ϖi t; xð Þ½ ��
, for i

2 Ng constitutes an optimal solution to the stochastic control problem (3.1) and

(1.8) if there exists continuously differentiable function W t; xð Þ : t0; T½ � � R ! R,
i 2 N; satisfying the following partial differential equations:

�Wt t; xð Þ � σ2x2

2
Wxx t; xð Þ ¼

max
v1, v2, ���, vn; u1, u2, ���, un

( Xn
‘¼1

"  
α‘ �

Xn
j¼1

β ‘
j αj þ

X
h2N

β
j

h vh

" # !
α‘ þ

X
h2N

β
‘

h vh

" #

�c‘ α‘ þ
X
j2N

β
‘

j vj

" #
� ca‘ u‘½ �2 �

X
j2K‘

ε j‘ αj þ
X
k2N

β
j

k vk

" #
� h‘x

#
e�r s�t0ð Þ

þWx t; xð Þ
" Xn

j¼1

aj αj þ
X
h2N

β
j

h vh

" #
�
Xn
j¼1

bjujx
1=2 � δx

# )
;

ð3:2Þ

W T; xð Þ ¼ �
Xn
i¼1

gi x Tð Þ � xi
� �

e�r T�t0ð Þ: ð3:3Þ

Performing the indicated maximization in (3.2) yields the optimal controls under

cooperation as:

ϖi t; xð Þ ¼ � bi
2cai

Wx t; xð Þer t�t0ð Þx1=2, for i 2 N; ð3:4Þ

Xn
‘¼1

"  
α‘ �

Xn
j¼1

β ‘
j αj þ

X
h2N

β
j

h ψh t; xð Þ
" # !

β
‘

i

��Xn
j¼1

β ‘
j β

j

i

�
α‘ þ

X
h2N

β
‘

h ψh t; xð Þ
" # #

�
Xn
‘¼1

"
c‘β

‘

i þ
X
j2Ki

ε j‘β
j

i

#
þ V i

x

Xn
j¼1

ajβ
j

i e
r t�t0ð Þ ¼ 0, for i 2 N:

ð3:5Þ

System (3.5) can be viewed as a set of equations linear in

ψ1 t; xð Þ,ψ2 t; xð Þ, � � �,ψn t; xð Þf g with Wx t; xð Þer t�t0ð Þ being taken as a parameter.

Solving (3.5) yields:
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ψ i t; xð Þ ¼ ^̂α
i þ ^̂β

i

Wx t; xð Þer t�t0ð Þ; ð3:6Þ

where ^̂α
i
and

^̂β
i

, for i 2 N, are constants involving the model parameters.

The expected joint payoff of the nations under cooperation can be obtained as:

Proposition 3.1 System (3.2 and 3.3) admits a solution

W t; xð Þ ¼ A* tð Þxþ C* tð Þ� �
e�r t�t0ð Þ; ð3:7Þ

with

A* tð Þ ¼ AP
* þΦ* tð Þ

�
C
* �

ðt
t0

Xn
j¼1

b2j
2caj

Φ* yð Þdy
��1

, and

C* tð Þ ¼ er t�t0ð Þ
� ðt

t0

F* yð Þe�r y�t0ð Þdyþ C0
*

�
,

where Φ* tð Þ ¼ exp

� ðt
t0

� Xn
j¼1

b2j
2caj

AP
* þ r þ δð Þ

�
dy

�
;

C
* ¼ �Φ* Tð Þ

AP
* þ

Xn
j¼1

gj

 !þ
ðT
t0

Xn
j¼1

b2j
2caj

Φ* yð Þdy,

AP
* tð Þ ¼

�
r þ δð Þ �

�
r þ δð Þ2 þ 4

Xn
j¼1

b2j
2caj

Xn
j¼1

hj

�1=2 �.Xn
j¼1

b2j
c aj
,

F* tð Þ ¼ �
Xn
‘¼1

� 	
α‘ �

Xn
j¼1

β ‘
j αj þ

X
h2N

β
j

h
^̂α

h þ ^̂β
h

A* tð Þ
� �( ) 
�

α‘

þ
X
h2N

β
‘

h
^̂α

h þ ^̂β
h

A* tð Þ
� �)

� c‘ α‘ þ
X
j2N

β
‘

j
^̂α

j þ ^̂β
j

A* tð Þ
� �( )

�
X
j2K‘

ε j‘ αj þ
X
k2N

β
j

k
^̂α

k þ ^̂β
kj

A* tð Þ
� �( ) �

� A*
x tð Þ
� Xn

j¼1

aj αj þ
X
h2N

β
j

h
^̂α

h þ ^̂β
h

A* tð Þ
� �( ) �

, and

C0
* ¼

Xn
j¼1

gjxje�r T�t0ð Þ �
ðT
t0

F* yð Þe�r y�t0ð Þdy:
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Proof See Appendix B. ■

Using (3.4), (3.6) and (3.7), the control strategy under cooperation can be

obtained as:

ψ i t; xð Þ ¼ ^̂α
i þ ^̂β

i

A* tð Þ and ϖi t; xð Þ ¼ � bi
2cai

A* tð Þx1=2; ð3:8Þ

for t 2 t0 < T½ � and i ¼ 1, 2, � � �, n.
Substituting the optimal control strategy from (3.8) into (1.3) yields the dynam-

ics of pollution accumulation under cooperation. Solving the stochastic cooperative

pollution dynamics yields the cooperative state trajectory:

x* tð Þ ¼ e

� ð t
t0

�Xn
j¼1

b2j
2c a

j
A* sð Þ � δ� σ2

2

�
ds þ

ð t
t0

σ dz sð Þ
�

�
xt0 þ

ð t
t0

Xn
j¼1

aj αj þ
X
h2N

β
j

h
^̂α

h þ ^̂β
h

A* sð Þ
� �( )

e

� ð s
t0

�
σ2

2
þδ�
Xn
j¼1

b2j
2c a

j
A* τð Þ

�
dτ�
ð s
t0

σ dz τð Þ
�
ds

�
; ð3:9Þ

for t 2 t0; T½ �.
We use X	

t to denote the set of realizable values of x*(t) at time t generated by

(3.9). The term x	t is used to denote an element in the set X	
t .

A remark that will be utilized in subsequent analysis is given below.

Remark 3.1 Let W(τ)(t, xt) denote the value function indicating the maximized

joint payoff of the stochastic control problem with objective (3.1) and dynamics

(1.8) which starts at time τ. One can readily verify that

W τð Þ t; x*t
�  ¼ W t; x*t

� 
er τ�t0ð Þ, for τ 2 t0; T½ �: ■

13.3.2 Individually Rational and Subgame-Consistent
Imputation

An agreed upon optimality principle must be sought to allocate the cooperative

payoff. In a dynamic framework individual rationality has to be maintained at every

instant of time within the cooperative duration [t0,T] given any feasible state

generated by the cooperative trajectory (3.9). For τ 2 t0; T½ �, let ξ(τ)i(τ, x	τ ) denote
the solution imputation (payoff under cooperation) over the period [τ, T] to player

i 2 N given that the state is x*τ 2 X*
τ . Individual rationality along the cooperative

trajectory requires:
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ξ τð Þi τ; x*τ
�  � V τð Þi τ; x*τ

� 
, for i 2 N, x*τ 2 X*

τ and τ 2 t0; T½ �: ð3:10Þ

Since nations are asymmetric and the number of nations may be large, a reasonable

solution optimality principle for gain distribution is to share the expected gain from

cooperation proportional to the nations’ relative sizes of expected noncooperative

payoffs. As mentioned before, a stringent condition – subgame consistency – is

required for a credible cooperative solution. In order to satisfy the property of

subgame consistency, this optimality principle has to remain in effect throughout

the cooperation period. Hence the solution imputation scheme
�
ξ τð Þi τ; x*τ
� 

; for i

2 N
�
has to satisfy:

Condition 4.1

ξ τð Þi τ; x*τ
�  ¼ V τð Þi τ; x*τ

� þ V τð Þi τ; x*τ
� 

Xn
j¼1

V τð Þj τ; x*τ
�  W τð Þ τ; x*τ

� �Xn
j¼1

V τð Þj τ; x*τ
� " #

¼ V τð Þi τ; x*τ
� 

Xn
j¼1

V τð Þj τ; x*τ
� W τð Þ τ; x*τ

� 
;

ð3:11Þ

for i 2 N, x*τ 2 X*
τ and τ 2 t0; T½ �. ■

One can easily verify that the imputation scheme in Condition 4.1 satisfies

individual rationality. Crucial to the analysis is the formulation of a payment

distribution mechanism that would lead to the realization of Condition 4.1. This

will be done in the next Section.

13.3.3 Payment Distribution Mechanism

To formulate a payment distribution scheme over time so that the agreed upon

imputation (3.11) can be realized for any time instant τ 2 t0; T½ � we apply the

techniques developed in Chap. 3. Let the vectors

B s; x*s
�  ¼ B1 s; x*s

� 
,B2 s; x*s
� 

, � � �,Bn s; x*s
� � �

denote the instantaneous payment

to the n nations at time instant s when the state is x*s 2 X*
s . A terminal value of gi

xi � x*T
� �

is realized by nation i at time T.

To satisfy (3.11) it is required that
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ξ τð Þi τ; x*τ
�  ¼ V τð Þi τ; x*τ

� 
Xn
j¼1

V τð Þj τ; x*τ
� W τð Þ τ; x*τ

�  ¼

Eτ

0
@

8<
:

ð T

τ
Bi s, x

* sð Þ� 
e�r s�τð Þds� gi x*T � xi

� �
e�r T�τð Þ

������ x τð Þ ¼ x*τ

9=
;,

for i 2 N, x*τ 2 X*
τ and τ 2 t0; T½ �:

ð3:12Þ

To facilitate further exposition, we use the term ξ(τ)i(t, x	t ) which equals

Eτ

0
@

8<
:

ð T

t

Bi s, x
* sð Þ� 

e�r s�τð Þds� gi x*T � xi
� �

e�r T�τð Þ

������ x tð Þ ¼ x*t

9=
;

¼ V τð Þi t; x*t
� 

Xn
j¼1

V τð Þj t; x*t
� W τð Þ t; x*t

�  ¼ V tð Þi t; x*t
� 

Xn
j¼1

V tð Þj t; x*t
� W tð Þ t; x*t

� 
e�r t�τð Þ

ξ tð Þi t; x*t
� 

e�r t�τð Þ,

for x*t 2 X*
t and t 2 τ; T½ �;

ð3:13Þ

to denote the expected present value (with initial time set at τ) of nation i’s
cooperative payoff over the time interval [t,T].

A theorem characterizing a formula for Bi(τ, x	τ ), for τ 2 t0; T½ � and i 2 N, which
yields Condition 4.1 is provided below.

Theorem 3.1 A distribution scheme with a terminal payment�gi x*T � xi
� �

at time

T and an instantaneous payment at time τ 2 t0; T½ � when x τð Þ ¼ x*τ :

Bi τ; x
*
τ

�  ¼ � ξ τð Þi
t t; x*t
� ���

t¼τ

h i
� σ2x2

2
ξ τð Þi
x*t x

*
t
t; x*t
� ���

t¼τ

h i

� ξ τð Þi
x*t

t; x*t
� ���

t¼τ

h i� Xn
j¼1

aj αj þ
X
h2N

β
j

h ψh τ; x*τ
� " #

�
Xn
j¼1

bjϖj τ; x
*
τ

� 
x*τ
� 1=2 � δx*τ

�
, for i 2 N; ð3:14Þ

yield Condition 4.1.
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Proof Since ξ(τ)i(t, x	t ) is continuously differentiable in t and x	t , using (3.13) and

Remarks 2.1 and 3.1 one can obtain:

Eτ

8<
:
ð τþΔt

τ
Bi s, x

* sð Þ� 
e�r s�τð Þds

������ x τð Þ ¼ x*τ

9=
;

¼ Eτ

8<
: ξ τð Þi τ; x*τ

� � e�rΔ tξ τþΔtð Þi τ þ Δt, x*τþΔ t

� ������ x τð Þ ¼ x*τ

9=
;

¼ Eτ

8<
: ξ τð Þi τ; x*τ

� � ξ τð Þi τ þ Δt, x*τþΔ t

� ������ x τð Þ ¼ x*τ

9=
;;

ð3:15Þ

for i 2 N and τ 2 t0; T½ �,
where

Δxτ ¼
� Xn

j¼1

aj αj þ
X
h2N

β
j

h ψh τ; x*τ
� " #

�
Xn
j¼1

bjϖj τ; x
*
τ

� �
x*τ

1=2 � δx*τ

�
Δ t

þσ x*τΔ zτ þ o Δtð Þ;

Δzτ ¼ z τ þ Δtð Þ � z τð Þ; and Eτ o Δtð Þ½ �=Δt ! 0 as Δt ! 0.

With Δt ! 0, condition (3.15) can be expressed as:

Eτ

8<
: Bi τ; x

*
τ

� 
Δtþ o Δ tð Þ

9=
; ¼ Eτ

8<
: � ξ τð Þi

t t; x*t
� ���

t¼τ

h i
Δt

� ξ τð Þi
x*t

t; x*t
� ���

t¼τ

h i24 Xn
j¼1

ajψ
q
j τ; x*τ
� 

�
Xn
j¼1

bjψ
u
j τ; x*τ
� 

x*τ
� 1=2 � δx*τ

3
5Δt

� σ2x2

2
ξ τð Þi
x*t x

*
t
t; x*t
� ���

t¼τ

h i
Δt

� ξ τð Þi
x*t

t; x*t
� ���

t¼τ

h i
σ xΔ zτ � o Δtð Þ

9=
;; ð3:16Þ

Taking expectation and dividing (3.16) throughout by Δt, with Δt ! 0, yields

(3.14). Hence Theorem 3.1 follows. ■

384 13 Collaborative Environmental Management



When all nations are adopting the cooperative strategies the rate of instantaneous

payment that nation ‘ 2 N will realize at time t with the state being x	t can be

expressed as (see derivation in Appendix II):

ℜ‘ t; x*t
�  ¼ 	

α‘ �
Xn
j¼1

β ‘
j αj þ

X
h2N

β
j

h
^̂α

h þ ^̂β
h

A* tð Þ
� �( ) 


α‘ þ
X
h2N

β
‘

h
^̂α

h þ ^̂β
h

A* tð Þ
� �( )

�c‘ α‘ þ
X
j2N

β
‘

j
^̂α

j þ ^̂β
j

A* tð Þ
� �( )

� ca‘
b‘
2c a

‘
A* tð Þ

h i2
x*t

�
X
j2K‘

ε j‘ αj þ
X
k2N

β
j

k
^̂α

k þ ^̂β
kj

A* tð Þ
� �( )

� h‘x
*
t :

ð3:17Þ

Since according to Theorem 3.1 under the cooperative scheme an instantaneous

payment to nation ‘ equaling B‘(t, x
	
t ) at time t with the state being x	t , a side

payment of the value B‘ t; x*t
� �ℜ‘ t; x*t

� 
will be offered to nation ‘.

13.4 A Numerical Example

Consider a multinational economy which is comprised of 2 nations. At time instant

s the demand functions of the output of nations 1 and 2 are respectively

P1 sð Þ ¼ 50� q1 sð Þ � 0:5q2 sð Þ and P2 sð Þ ¼ 90� 2q2 sð Þ � q1 sð Þ: ð4:1Þ

The cost of production of a unit of output in nation 1 and nation 2 are respectively

2 and 1. Industrial profits of these nations at time s can be expressed as:

π1 sð Þ ¼ 50� q1 sð Þ � 0:2q2 sð Þ½ �q1 sð Þ � 2q1 sð Þ � v1 sð Þq1 sð Þ and
π2 sð Þ ¼ 90� 2q2 sð Þ � 0:6q1 sð Þ½ �q2 sð Þ � q2 � v2 sð Þq2 sð Þ: ð4:2Þ

where vi sð Þ is the tax rate imposed by the government of nation i on its industrial

output.

An industry equilibrium can be obtained as:

q1 sð Þ ¼ 4355

197
� 100

197
v1 sð Þ þ 5

197
v2 sð Þ and

q2 sð Þ ¼ 3730

197
þ 15

197
v1 sð Þ � 50

197
v2 sð Þ:

ð4:3Þ

The short-term local environmental impact (cost) of nation 1’s output on itself is

0.5q1(s) and that on nation 2 is 0.4q1(s). The short-term local environmental

impact (cost) of nation 2’s output on itself is 0.8q2(s) and that on nation 1 is

0.6q2(s).
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The dynamics of pollution stock is governed by the stochastic differential

equation:

dx sð Þ ¼
�
0:5q1 sð Þ þ q2 sð Þ � 0:4u1 sð Þx sð Þ1=2 � 0:2u2 sð Þx sð Þ1=2 � 0:01x sð Þ

�
ds

þ0:05x sð Þdz sð Þ, x t0ð Þ ¼ 20:

ð4:4Þ

The damage (cost) of the pollution stock in the environment to nations 1 and 2 are

respectively 4x(s) and 5x(s). The abatement costs are 0.5[u1(s)]
2 and [u2(s)]

2 for

nations 1 and 2 respectively. The instantaneous objectives of the governments in

nations 1 and 2 at time s are respectively:

50� q1 sð Þ � 0:2q2 sð Þ½ �q1 sð Þ � 2q1 sð Þ � 0:5 u1 sð Þ½ �2 � 0:5q1 sð Þ � 0:6q2 sð Þ � 4x sð Þ
ð4:5Þ

and

90� 2q2 sð Þ � 0:6q1 sð Þ½ �q2 sð Þ � q2 sð Þ � u2 sð Þ½ �2 � 0:8q2 sð Þ � 0:4q1 sð Þ � 5x sð Þ
ð4:6Þ

At time T ¼ 5 (decades), the terminal value associated with the state of pollution is

2 100� x Tð Þ½ � for nation 1 and 3 60� x Tð Þ½ � for nation 2.

Substituting qi(s), for i 2 1; 2f g, from (4.3) into (4.4, 4.5, and 4.6) one obtains a

stochastic differential game in which government 1 seeks to:

max
v1 sð Þ, u1 sð Þ

E0

� ð5
0

�
20668769:5

38809
� 4988

38809
v1 sð Þ þ 48967

38809
v2 sð Þ

� 15

38809
v1 sð Þv2 sð Þ � 9700

38809
v1 sð Þ½ �2 þ 25

38809
v2 sð Þ½ �2 � 0:5 u1 sð Þ½ �2

�4x sð Þ
�
e�0:05sds� 2 x Tð Þ � 100½ �e�0:25

�
;

ð4:7Þ

and government 2 seeks to

max
v2 sð Þ, u2 sð Þ

E0

� ð5
0

�
26894778

38809
þ 229316

38809
v1 sð Þ � 3704

38809
v2 sð Þ

þ 450

38809
v1 sð Þ½ �2 � 4850

38809
v2 sð Þ½ �2 � 45

38809
v1 sð Þv2 sð Þ � u2 sð Þ½ �2

�5x sð Þ
�
e�0:05sds� 3 x Tð Þ � 60½ �e�0:25

�
;

ð4:8Þ

subject to
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dx sð Þ ¼
�
5907:5

197
� 35

197
v1 sð Þ�47:5

197
v2 sð Þ

�0:4u1 sð Þx sð Þ1=2�0:2u2 sð Þx sð Þ1=2�0:01x sð Þ
�
dsþ0:05x sð Þdz sð Þ,x t0ð Þ¼10:

ð4:9Þ

Solving the game yields:

V1 t; xð Þ ¼ A1 tð Þxþ C1 tð Þ½ � e�0:05 t and V2 t; xð Þ
¼ A2 tð Þxþ C2 tð Þ½ � e�0:05 t; ð4:10Þ

where

_A 1 tð Þ ¼ 0:06A1 tð Þ � 0:08 A1 tð Þð Þ2 � 0:02A1 tð ÞA2 tð Þ þ 4,

_A 2 tð Þ ¼ 0:06A2 tð Þ � 0:01 A2 tð Þð Þ2 � 0:16A1 tð ÞA2 tð Þ þ 5,

A1 5ð Þ ¼ �2, A2 5ð Þ ¼ �3;
_C 1 tð Þ ¼ 0:05C1 tð Þ � 532:1129418� 30:12271238A1 tð Þ þ 1:216826461A2 tð Þ

�0:031957733 A1 tð Þ½ �2 � 0:0005996 A2 tð Þ½ �2 � 0:232474798A1 tð ÞA2 tð Þ,
_C 2 tð Þ ¼ 0:05C2 tð Þ � 691:5051178þ 2:098040543A1 tð Þ � 30:12885088A2 tð Þ

�0:0014636068 A1 tð Þ½ �2 � 0:116177969 A2 tð Þ½ �2 � 0:062738812A1 tð ÞA2 tð Þ,
C1 5ð Þ ¼ 200 and C2 5ð Þ ¼ 180:

The values of A1(t),A2(t),C1(t) and C2(t) over the time interval [0, 5] are computed

and presented in Figs. 13.1a, b.

Now consider the case when all the nations want to cooperate and agree to act

so that an international optimum could be achieved. The instantaneous objective

of the cooperative scheme is the sum of the individual objectives (4.5) and (4.6).

The terminal value associated with the state of pollution is

2 100� x Tð Þ½ � þ 3 60� x Tð Þ½ �.
To secure group optimality the participating nations seek to maximize their joint

expected payoff by solving the following stochastic control problem:

max
v1 sð Þ, v2 sð Þ, u1 sð Þ, μ2 sð Þ

E0

� ð5
0

� �
47563547:5

38809
þ 224328

38809
v1 sð Þ þ 45263

38809
v2 sð Þ

� 60

38809
v1 sð Þv2 sð Þ � 9250

38809
v1 sð Þ½ �2:� 4825

38809
v2 sð Þ½ �2 � 0:5 u1 sð Þ½ �2

� u2 sð Þ½ �2 � 9x sð Þ
�
e�0:05sds� 5 x Tð Þ � 76½ �e�0:25

�
ð4:11Þ

subject to (4.9).
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Solving the stochastic control problem (4.11) and (4.9) yields

W t; xð Þ ¼ A tð Þxþ C tð Þ½ � e�0:05 t ð4:12Þ

where

_A tð Þ ¼ 0:06A tð Þ � 0:09 A tð Þð Þ2 þ 9,
_C tð Þ ¼ 0:05C tð Þ � 1263:273926� 26:72283855A tð Þ � 0:149456522 A tð Þ½ �2,
A 5ð Þ ¼ �5, and C 5ð Þ ¼ 380:

The values of A(t) and C(t) over the time interval [0, 5] are computed and presented

in Figs. 13.2a, b.

The cooperative strategies are:

u*1 tð Þ ¼ ϖ1 t; xð Þ ¼ �0:4A tð Þx1=2, u*2 tð Þ ¼ ϖ2 t; xð Þ ¼ �0:1A tð Þx1=2,
v*1 tð Þ ¼ ψ1 t; xð Þ ¼ 216204942

17852140
� 6597530

17852140
A tð Þ,

v*2 tð Þ ¼ ψ2 t; xð Þ ¼ 41195291

8926070
� 8635002:5

8926070
A tð Þ:

ð4:13Þ

Fig. 13.1 The values of

A1(t), A2(t), C1(t) and C2(t)
over the time interval [0,5]
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Substituting the cooperative strategies into (4.13) yields the dynamics of pollution

accumulation under cooperation as:

dx tð Þ ¼
�
5907:5

197
� 35

197

216204942

17852140
� 6597530

17852140
A tð Þ

� �

� 47:5

197

41195291

8926070
� 8635002:5

8926070
A tð Þ

� �
þ 0:16A tð Þxþ 0:02A tð Þx

� 0:01x

�
dtþ 0:05x sð Þdz sð Þ:

Sharing the expected gain from cooperation proportional to the nations’ relative
sizes of expected noncooperative payoffs yields:

ξ τð Þi τ; x*τ
�  ¼ Ai τð Þx*τ þ Ci τð Þ� �

X2
j¼1

Aj τð Þx*τ þ Cj τð Þ� � A τð Þx*τ þ C τð Þ� � ð4:14Þ

for i 2 1; 2f g, x*τ 2 X*
τ and τ 2 t0; T½ �.

Fig. 13.2 The values of

A(t) and C(t) over the time

interval [0,5]

13.4 A Numerical Example 389



Following Theorem 3.1, a subgame consistent payment distribution procedure

consists of a terminal payment 2 100� x*T
� �

to nation 1 and a terminal payment

3 60� x*T
� �

to nation 2 at time T and an instantaneous payment at time τ 2 t0; T½ �:

Bi τ;x*τ
�  ¼ � Ai τð Þx*τ þCi τð Þ� �

X2
j¼1

Aj τð Þx*τ þCj τð Þ� � ! _A τð Þx*τ þ _C τð Þ� ��0:05 A τð Þx*τ þC τð Þ� �� �

� A τð Þx*τ þC τð Þ� �
X2
j¼1

Aj τð Þx*τ þCj τð Þ� � ! _A i τð Þx*τ þ _Ci τð Þ� ��0:05 Ai τð Þx*τ þCi τð Þ� �� �

þ Ai τð Þx*τ þCi τð Þ��A τð Þx*τ þC τð Þ� �
X2
j¼1

Aj τð Þx*τ þCj τð Þ� � !2

X2
j¼1

_Aj τð Þx*τ þ _Cj τð Þ� ��0:05 Aj τð Þx*τ þCj τð Þ� �� �

þ
�

Ai τð Þx*τ þCi τð Þ��A τð Þx*τ þC τð Þ� �
X2
j¼1

Aj τð Þx*τ þCj τð Þ� � !2

X2
j¼1

Aj τð Þ
 !

� Ai τð Þx*τ þCi τð Þ�A τð Þþ A τð Þx*τ þC τð Þ� �
Ai

�
τ

� 
X2
j¼1

Aj τð Þx*τ þCj τð Þ� �
�
�
�
5907:5

197

� 35

197

216204942

17852140
� 6597530

17852140
A τð Þ

� �
�47:5

197

41195291

8926070
�8635002:5

8926070
A τð Þ

� �

þ0:16A τð Þx*τ þ0:02A τð Þx*τ �0:01x*τ

�
, for i2 1;2f g:

When both nations are adopting the cooperative strategies the rate of instantaneous

payment that nation 1 will realize at time t with the state being x	t can be expressed

as

ℜ1 t; x*t
�  ¼ 763:0983415� 1:063694026A tð Þ � 0:115784499 A tð Þ½ �2

� 0:08 A tð Þ½ �2x*t � 4x*t : ð4:15Þ

Similarly, the rate of instantaneous payment that nation 2 will realize at time t with
the state being x	t can be expressed as
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ℜ2 t; x*t
�  ¼ 500:175621þ 1:063674026A tð Þ � 0:033672022 A tð Þ½ �2

� 0:01 A tð Þ½ �2x*t � 5x*t : ð4:16Þ

A side payment of the value B‘ t; x*t
� �ℜ‘ t; x*t

� 
will be offered to nation

‘ 2 1; 2f g. The values of B1(t, x
	
t ),B2(t, x

	
t ),ℜ1(t, x

	
t ),ℜ2(t, x

	
t ) together with the

side payment nation 1 and nation 2 will receive at different time t with given x	t
are given in Table 13.1 below.

13.5 Extension to Uncertainty in Payoffs

In this section we incorporate uncertainty in future payoffs into the cooperative

environmental management presented in the previous sections. Uncertainties in

future payoffs are prevalent in fast developing countries. This type of uncertainties

often hinders the reaching of cooperative agreements in joint pollution control

initiatives. Subgame consistent cooperative schemes provide an effective mean to

resolve the problem.

13.5.1 Game Formulation and Non-cooperative Outcome

Consider a randomly furcating counterpart of the stochastic differential game of

environmental management in Sect. 13.1 in which the future payoffs are not known

with certainty. The game horizon is [t0, T]. When the game commences at t0, the
demand structures, production costs and impacts of the pollution stock of the

nations are known. In future instants of time tk k ¼ 1, 2, � � �, mð Þ, where

t0 < tm < T�tmþ1, the demand structures, production costs and pollution impacts

in the time interval
�
tk, tkþ1


are affected by a series of random events Θk. In

particular, Θk for k 2 1, 2, � � �, mf g, are independent and identically distributed

random variables with range {θ1, θ2, . . ., θη} and corresponding probabilities

Table 13.1 PDP and transfer payments of nations 1 and 2

t x	t B1(t, x
	
t ) ℜ1(t, x

	
t )

Nation 1

side-pay B2(t, x
	
t ) ℜ2(t, x

	
t )

Nation 2

side-pay

0.5 16.274 417.369 575.71 �158.341 638.585 390.152 248.433

1 14.723 403.075 593.578 �190.503 627.295 399.367 227.928

2 13.825 398.045 604.409 �206.364 616.929 404.801 212.128

3 13.773 404.331 608.059 �203.728 606.139 405.705 200.434

3.5 13.941 409.816 611.371 �201.555 597.160 405.729 191.431

4 14.396 415.961 618.542 �202.581 583.725 405.439 178.286

4.5 15.532 421.425 633.153 �211.728 564.143 404.029 160.114
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{λ1, λ2, . . ., λη}. Changes in preference, legal arrangements, technology and the

physical environments are examples of factors which constitute to these

uncertainties.

In the time interval
�
tk, tkþ1


for k ¼ 1, 2, � � �, mð Þ if the random event θak for

ak 2 1; 2; � � �; ηf g is realized the demand function of the output of nation i 2 N�
1; 2; � � �; nf g at time instant s is Pi sð Þ ¼ α i

θak
�
Xn
j¼1

β i
j qj sð Þ, the unit cost of produc-

tion is ci θakð Þ, and the value of damage to country i from x(s) amount of pollution is

h
θak
i x sð Þ. When the game commences at t0, the demand structures, production

costs and pollution impact in the interval
�
t0, t1


are known to be Pi sð Þ ¼ α i

θ1

�
Xn
j¼1

β i
j qj sð Þ, ci θ1ð Þ and hθ1i x sð Þ.

Industrial profits of nation i at time s 2 �tk, tkþ1


if θak is realized can be

expressed as:

π
θak
i sð Þ ¼ �α i

θak
�
Xn
j¼1

β i
j qj sð Þ�qi sð Þ � c

θak
i qi sð Þ � v

θak
i sð Þqi sð Þ, for i 2 N; ð5:1Þ

where v
θak
i sð Þ � 0 is the tax rate imposed by government i on its industrial output at

time s 2 �tk, tkþ1


.

In a competitive market equilibrium firms will produce up to a point where

marginal cost of production equals marginal revenue and the first order condition

for a Nash equilibrium for the n nations economy yields

Xn
j¼1

β i
j qj sð Þ þ β i

i qi sð Þ ¼ α i
θak

� c
θak
i � v

θak
i sð Þ, for i 2 N: ð5:2Þ

With output tax rates vθak sð Þ ¼ v
θak
1 sð Þ, vθak2 sð Þ, � � �, vθakn sð Þ

n o
being regarded as

parameters by firms (5.2) becomes a system of equations linear in

q sð Þ ¼ q1 sð Þ, q2 sð Þ, � � �, qn sð Þf g. Solving (1.3) yields an industry equilibrium with

output in industry i being

qi sð Þ ¼ ϕi v
θak sð Þ�  ¼ α i

θak
þ
X
j2N

β
i θakð Þ
j v

θak
j sð Þ; ð5:3Þ

where α i
θak

and β
i θakð Þ
j , for i 2 N and j 2 N, are constants involving the model

parameters

β11;β
1
2; � ��;β1n;β21;β22; � � �;β2n; � ��;β n

1 ;β
n
2 ; � � �;β n

n

� �
, α1θak

;α2θak
; �� �;αn

θak

n o
and c

θak
1 ;c

θak
2 ; � � �;cθakn

n o
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The instantaneous objective of government i at time s 2 �tk, tkþ1


can be

expressed as:

�
α i
θak

�
Xn
j¼1

β i
j qj sð Þ�qi sð Þ� c

θak
i qi sð Þ� cai u

θak
i sð Þ

h i2
�
X
j2Ki

ε ji qj sð Þ� �� h
θak
i x sð Þ, i2N

ð5:4Þ

By substituting qi(s), for i 2 N, from (5.3) into (5.4) and (1.5) one obtains a

randomly furcating stochastic differential game in which government i 2 N seeks to

maximize its payoff:

Et0

(ðt1
t0

" 
α i
θ1
�
Xn
j¼1

β i
j α j

θ1
þ
X
h2N

β
j θ1ð Þ
h vθ1h sð Þ

" #!
α i
θ1
þ
X
h2N

β
i θ1ð Þ
h vθ1h sð Þ

" #

�cθ1i α i
θ1
þ
X
j2N

β
i θ1ð Þ
j vθ1j sð Þ

" #
�cai uθ1i sð Þ� �2�X

j2Ki

ε ji α j
θ1
þ
X
‘2N

β
j θ1ð Þ
‘ vθ1‘ sð Þ

" #

�hθ1i x sð Þ
#
e�r s�t0ð Þds

þ
Xm
k¼1

Xη
ak¼1

λak

ðtkþ1

tk

" 
α i
θak
�
Xn
j¼1

β i
j α j

θak
þ
X
h2N

β
j θakð Þ
h v

θak
h sð Þ

" #!
α i
θak

þ
X
h2N

β
i θakð Þ
h v

θak
h sð Þ

" #

�c
θak
i α i

θak
þ
X
j2N

β
i θakð Þ
j v

θak
j sð Þ

" #
�cai u

θak
i sð Þ

h i2
�
X
j2Ki

ε ji α j
θak

þ
X
‘2N

β
j θakð Þ
‘ v

θak
‘ sð Þ

" #

�h
θak
i x sð Þ

#
e�r s�t0ð Þds�gi x Tð Þ�xi

� �
e�r T�t0ð Þ

)
ð5:5Þ

subject to

dx sð Þ¼
�Xn

j¼1

aj α j
θak

þ
X
h2N

β
j θakð Þ
h v

θak
h sð Þ

" #
�
Xn
j¼1

bju
θak
j sð Þ x sð Þ½ �1=2�δx sð Þ

�
ds

þσx sð Þdz sð Þ, fors2 �tk, tkþ1


ifθak occurs in the interval

�
tk, tkþ1


,

and x t0ð Þ¼ xt0 ð5:6Þ

Invoking 1.1 in Chap. 4 a Nash equilibrium of the randomly furcating stochastic

differential game (5.5 and 5.6) can be characterized by the following theorem.
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Theorem 5.1 A set of feedback strategies fu mð Þθam*

i tð Þ ¼ μ mð Þθam
i t; xð Þ, v mð Þθam*

i tð Þ
¼ ϕ mð Þθam

i t; xð Þ; for t 2 tm; T½ �; u kð Þθak*
i tð Þ ¼ μ

kð Þθak
i t; xð Þ, v kð Þθak*

i tð Þ ¼ ϕ
kð Þθαk
i t; xð Þ; for

t 2 �tk, tkþ1


, k 2 0, 1, 2, � � �,m� 1f g and i 2 Ng, contingent upon the events θam

2 θ1, θ2, . . . , θη
� �

and θak 2 θ1, θ2, . . . , θη
� �

for k 2 1, 2, � � �,m� 1f g consti-

tutes a Nash equilibrium solution for the game (5.5 and 5.6), if there exist contin-

uously differentiable functions Vi θam½ � mð Þ t; xð Þ : tm;T½ � � R ! R and

Vi θαk½ � kð Þ t; xð Þ : tk; tkþ1½ � � R ! R, for k 2 1, 2, � � �,m� 1f g and i 2 N, which satisfy
the following partial differential equations:

�V
i θam½ � mð Þ
t t; xð Þ � σ2x2

2
Vi θam½ � mð Þ
xx t; xð Þ

¼ max
vi, ui

� � 	
α i
θam

�
Xn
j¼1

β i
j α j

θam
þ

Xn
h 2 N
h 6¼ i

β
j θamð Þ
h ϕm θamð Þ

h t; xð Þ þ β
j θamð Þ
i vi

2
66664

3
77775



� α i
θam

þ
X
h 2 N
h 6¼ i

β
i θamð Þ
h ϕm θamð Þ

h t; xð Þ þ β
i θamð Þ
i vi

2
66664

3
77775

�c
θam
i α i

θam
þ
X
j 2 N
j 6¼ i

β
i θamð Þ
j ϕm θamð Þ

j t; xð Þ þ β
i θamð Þ
i vi

2
66664

3
77775� cai ui½ �2

�
X
j2Ki

ε ji α j
θam

þ
X
‘ 2 N
‘ 6¼ i

β
j θamð Þ
‘ ϕm θamð Þ

‘ t; xð Þ þ β
j θamð Þ
i vi

2
66664

3
77775�h

θam
i x

�
e�r t�t0ð Þ

þVi θam½ � mð Þ
x t; xð Þ

� Xn
j¼1

aj α j
θam

þ
X
h 2 N
h 6¼ i

β
j θamð Þ
h ϕm θamð Þ

h t; xð Þ þ β
j θamð Þ
i vi

2
66664

3
77775

�
Xn
j ¼ 1

j 6¼ i

bjμ
m θamð Þ
j t; xð Þx1=2 � biuix

1=2 � δx

� �
,

Vi θam½ � mð Þ T; xð Þ ¼ �gi x� xi½ �e�r T�t0ð Þ; ð5:7Þ
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�V
i θak½ � kð Þ
t t; xð Þ � σ2x2

2
V
i θak½ � kð Þ
xx t; xð Þ

¼ max
vi, ui

� � 	
α i
θak

�
Xn
j¼1

β i
j α j

θak
þ

Xn
h 2 N
h 6¼ i

β
j θakð Þ
h ϕ

k θakð Þ
h t; xð Þ þ β

j θakð Þ
i vi

2
66664

3
77775



� α i
θak

þ
X
h 2 N
h 6¼ i

β
i θakð Þ
h ϕ

k θakð Þ
h t; xð Þ þ β

i θakð Þ
i vi

2
66664

3
77775

�c
θak
i α i

θak
þ
X
j 2 N
j 6¼ i

β
i θakð Þ
j ϕ

k θakð Þ
j t; xð Þ þ β

i θakð Þ
i vi

2
66664

3
77775� cai ui½ �2

�
X
j2Ki

ε ji α j
θak

þ
X
‘ 2 N
‘ 6¼ i

β
j θakð Þ
‘ ϕ

k θakð Þ
‘ t; xð Þ þ β

j θakð Þ
i vi

2
66664

3
77775� h

θam
i x

�
e�r t�t0ð Þ

þV
i θak½ � kð Þ
x t; xð Þ

� Xn
j¼1

aj α j
θak

þ
X
h 2 N
h 6¼ i

β
j θakð Þ
h ϕ

k θakð Þ
h t; xð Þ þ β

j θakð Þ
i vi

2
66664

3
77775

�
Xn
j ¼ 1

j 6¼ i

bjμ
k θakð Þ
j t; xð Þx1=2 � biuix

1=2�δx

� �
,

Vi θak½ � kð Þ tkþ1; xð Þ ¼
Xη

akþ1¼1

λakþ1
Vi θakþ1½ � kþ1ð Þ tkþ1; xð Þ, for i 2 N and

k 2 0, 1, 2, � � �,m� 1f g ð5:8Þ

Proof Follow the proof of Theorem 1.1 in Chap. 4. ■

Following the analysis in Sect. 13.2 we perform the indicated maximizations in

(5.7 and 5.8) to obtain the game equilibrium strategies and the value functions:

Vi θαk½ � kð Þ t; xð Þ ¼ Ai
k θakð Þ tð Þxþ Ci

k θakð Þ tð Þ
� �

e�r t�t0ð Þ; ð5:9Þ

for i 2 N and k 2 0, 1, 2, � � �,m� 1f g,
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whereAi
k θakð Þ tð Þ andCi

k θakð Þ tð Þ, for i 2 N and k 2 0, 1, 2, � � �,m� 1f g satisfy a set
of constant coefficient quadratic ordinary differential equations similar to that in

Proposition 2.1.

13.5.2 Cooperative Arrangement

Now consider the case when all the nations want to cooperate and agree to act so

that an international optimum could be achieved. For the cooperative scheme to be

upheld throughout the game horizon both group rationality and individual rational-

ity are required to be satisfied at any time. In addition, to ensure that the cooperative

solution is dynamically stable, the agreement must be subgame-consistent.

13.5.2.1 Group Optimality and Individual Rationality

To secure group optimality the participating nations seek to maximize their joint

expected payoff

Et0

� ðt1
t0

Xn
i¼1

� 	
α i
θ1
�
Xn
j¼1

β i
j α j

θ1
þ
X
h2N

β
j θ1ð Þ
h vθ1h sð Þ

" # 

α i
θ1
þ
X
h2N

β
i θ1ð Þ
h vθ1h sð Þ

" #

� cθ1i α i
θ1
þ
X
j2N

β
i θ1ð Þ
j vθ1j sð Þ

" #
� cai uθ1i sð Þ� �2 �X

j2Ki

ε ji α j
θ1
þ
X
‘2N

β
j θ1ð Þ
‘ vθ1‘ sð Þ

" #

� hθ1i x sð Þ
�
e�r s�t0ð Þds

þ
Xm
k¼1

Xη
ak¼1

λak

ðthþ1

th

Xn
i¼1

� 	
α i
θak

�
Xn
j¼1

β i
j α j

θak
þ
X
h2N

β
j θakð Þ
h v

θak
h sð Þ

" # 

α i
θak

þ
X
h2N

β
i θakð Þ
h v

θak
h sð Þ

" #

� c
θak
i α i

θak
þ
X
j2N

β
i θakð Þ
j v

θak
j sð Þ

" #
� cai u

θak
i sð Þ

h i2

�
X
j2Ki

ε ji α j
θak

þ
X
‘2N

β
j θakð Þ
‘ v

θak
‘ sð Þ

" #
� h

θak
i x sð Þ

�
e�r s�t0ð Þds

�
Xn
i¼1

gi x Tð Þ � xi
� �

e�r T�t0ð Þ
�

ð5:10Þ

subject to (5.6)
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Invoking Theorem 2.1 in Chap. 4 an optimal solution to the randomly furcating

stochastic control problem (5.6) and (5.10) can be characterized by the theorem

below.

Theorem 5.2 A set of control strategies fu mð Þθam*

i tð Þ ¼ ϖ mð Þθam
i t; xð Þ, v mð Þθam*

i tð Þ ¼
ψ

mð Þθam
i t; xð Þ; for t 2 tm; T½ �; u kð Þθak*

i tð Þ ¼ ϖ
kð Þθak
i t; xð Þ, v kð Þθak*

i tð Þ ¼ ψ
kð Þθαk
i t; xð Þ; for t

2 �tk, tkþ1


, k 2 0, 1, 2, � � �,m� 1f g and i 2 Ng, contingent upon the events θam

2 θ1, θ2, . . . , θη
� �

and θak 2 θ1, θ2, . . . , θη
� �

for k 2 1, 2, � � �,m� 1f g consti-

tutes a Nash equilibrium solution for the game (5.5 and 5.6), if there exist contin-

uously differentiable functions W θam½ � mð Þ t; xð Þ : tm; T½ � � R ! R and

W θαk½ � kð Þ t; xð Þ : tk; tkþ1½ � � R ! R, for k 2 1, 2, � � �,m� 1f g and i 2 N, which satisfy
the following partial differential equations:

�W
θam½ � mð Þ
t t; xð Þ � σ2x2

2
W θam½ � mð Þ

xx t; xð Þ ¼

max
v1, v2, ���, vn; u1, u2, ���, un

�
Xn
i¼1

� 	
α i
θam

�
Xn
j¼1

β i
j α j

θam
þ
X
h2N

β
j θamð Þ
h vh

" # 

α i
θam

þ
X
h2N

β
i θamð Þ
h vh

" #

�c
θam
i α i

θak
þ
X
j2N

β
i θamð Þ
j vj

" #
� cai ui½ �2 �

X
j2Ki

ε ji α j
θam

þ
X
‘2N

β
j θamð Þ
‘ v‘

" #

�h
θam
i x

�

þW θam½ � mð Þ
x t; xð Þ

� Xn
j¼1

aj α j
θam

þ
X
h2N

β
j θamð Þ
h vh

" #
�
Xn
j¼1

bjujx
1=2 � δx

� �
,

W θam½ � mð Þ T; xð Þ ¼ �
Xn
i¼1

gi x� xi½ �e�r T�t0ð Þ;

�W
θak½ � kð Þ
t t; xð Þ � σ2x2

2
W

θak½ � kð Þ
xx t; xð Þ ¼

max
v1, v2, ���, vn; u1, u2, ���, un� Xn

i¼1

� 	
α i
θak

�
Xn
j¼1

β i
j α j

θak
þ
X
h2N

β
j θakð Þ
h vh

" # 

α i
θak

þ
X
h2N

β
i θakð Þ
h vh

" #

�c
θak
i α i

θak
þ
X
j2N

β
i θakð Þ
j vj

" #
� cai ui½ �2 �

X
j2Ki

ε ji α j
θak

þ
X
‘2N

β
j θakð Þ
‘ v‘

" #
� h

θak
i x

�

þW
θak½ � kð Þ
x t; xð Þ

� Xn
j¼1

aj α j
θak

þ
X
h2N

β
j θakð Þ
h vh

" #
�
Xn
j ¼ 1

j 6¼ i

bjujx
1=2 � δx

� �
,

W θak½ � kð Þ tkþ1; xð Þ ¼
Xη

akþ1¼1

λakþ1
W θakþ1½ � kþ1ð Þ tkþ1; xð Þ, for k 2 0, 1, 2, � � �,m� 1f g:

Proof Follow the proof of Theorem 2.1 in Chap. 4. ■
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Following the analysis in Sect. 13.3 we perform the indicated maximizations in

Theorem 5.2 to obtain the game equilibrium strategies and the value functions:

W θαk½ � kð Þ t; xð Þ ¼ Ak θakð Þ tð Þxþ Ck θakð Þ tð Þ
h i

e�r t�t0ð Þ; ð5:11Þ

for k 2 0, 1, 2, � � �,m� 1f g,
where Ak θakð Þ tð Þ and Ck θakð Þ tð Þ, for k 2 0, 1, 2, � � �,m� 1f g satisfy a set of

ordinary differential equations similar to that in Proposition 3.1.

Assume that at time t0 when the initial state is x0 the agreed upon optimality

principle assigns a set of imputation vectors contingent upon the events θ1 and θak
for θak 2 θ1, θ2, . . . , θη

� �
and k 2 1; 2; � � �;mf g. We use

ξ1 θ1½ � 0ð Þ t0; x0ð Þ, ξ2 θ01½ � 0ð Þ t0; x0ð Þ, � � �, ξn θ1½ � 0ð Þ t0; x0ð Þ
h i

to denote an imputation vector of the gains in such a way that the share of the ith

player over the time interval [t0,T] is equal to ξi θ1½ � 0ð Þ t0; x0ð Þ.
Individual rationality requires that

ξi θ1½ � 0ð Þ t0; x0ð Þ � Vi θ1½ � 0ð Þ t0; x0ð Þ, for i 2 N:

In a dynamic framework, individual rationality has to be maintained at every instant

of time t 2 t0; T½ � along the cooperative trajectory. At time t, for t 2 �t0, t1,
individual rationality requires:

ξi θ1½ � 0ð Þ t; x*t
�  � Vi θ1½ � 0ð Þ t; x*t

� 
, for i 2 N:

At time tk, for k 2 1; 2; � � �;mf g, if θak 2 θ1, θ2, . . . , θη
� �

has occurred and the

state is x*tk , the same optimality principle assigns an imputation vector

ξ1 θak½ � kð Þ tk; x
*
tk

� �
, ξ2 θak½ � kð Þ tk; x

*
tk

� �
, � � �, ξn θak½ � kð Þ tk; x

*
tk

� �h i
(in current value at time

tk). Individual rationality is satisfied if:

ξi θak½ � kð Þ tk; x
*
tk

� �
� Vi θak½ � kð Þ tk; x

*
tk

� �
: for i 2 N:

At time t, for t 2 �tk, tkþ1


, individual rationality requires:

ξi θak½ � kð Þ t; x*t
�  � Vi θak½ � kð Þ t; x*t

� 
: for i 2 N:

13.5.2.2 Subgame-Consistent Imputation

Finally, we would derive a set of imputation that would like to a subgame consistent

solution. Invoking Theorem 3.1 in Chap. 4, a subgame consistent PDP can be

derived with the theorem below.
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Theorem 5.3 A PDP with a terminal payment qi x*T
� 

at time T and an instanta-

neous payment (in present value) at time τ 2 tk; tkþ1½ �:

B
θakð Þk

i τð Þ ¼ � ξ
i θak½ � kð Þ
t t; x*t

� 
t¼τj

� �
� σ2 x*τ

� 2
2

ξ
i θak½ � kð Þ
x*t x

*
t

t; x*t
� 

t¼τj
� �

� ξ
i θak½ � kð Þ
x*t

t; x*t
� 

t¼τj
� �

�
� Xn

j¼1

aj α j
θak

þ
X
h2N

β
j θakð Þ
h ψ

kð Þθak
h τ; x*τ

� " #
�
Xn
j¼1

bjϖ
kð Þθak
j τ; x*τ

� �
x*τ

1=2 � δx*τ

�
;

ð5:12Þ

for i 2 N and k 2 1; 2; � � �;mf g,
contingent upon θ k

ak
2 θ1, θ2, . . . , θη
� �

has occurred at time tk,

yields a subgame-consistent cooperative solution to the randomly furcating

stochastic differential game (5.1 and 5.2).

Proof Follow the proof of Theorem 3.1 in Chap. 4. ■

Thus a subgame consistent cooperative solution is established.

13.6 Appendices

Appendix A: Proof of Proposition 2.1

Using (2.3), (2.5) and (2.6), system (2.1 and 2.2) can be expressed as:

r Ai tð Þxþ Ci tð Þ½ � � _A i tð Þxþ _C i tð Þ
� �

¼
� 	

αi �
Xn
j¼1

β i
j αj þ

Xn
h2Ni

β
j

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" #( ) 


	
αi þ

X
h2N

β
i

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" # 


�ci αi þ
X
j2N

β
i

j α̂ j þ
X
k2N

β̂
j

k Ak tð Þ
" #( )

�cai
bi
2c a

i
Ai tð Þ

h i2
x�

X
j2Ki

ε ji αj þ
X
‘2N

β
j

‘ α̂ ‘ þ
X
k2N

β̂
‘

k Ak tð Þ
" #( )

� hix

�

þAi tð Þ
� Xn

j¼1

aj αj þ
X
h2N

β
j

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" #( )

þ
Xn
j¼1

bj
bj
2caj

Aj tð Þx� δx

�
;

ð6:1Þ
Ai Tð Þxþ Ci Tð Þ½ � ¼ �gi x� xi

� 
, for i 2 N: ð6:2Þ

For (6.1) and (6.2) to hold, it is required that
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_A i tð Þ ¼ r þ δð Þ Ai tð Þ � Ai tð Þ
Xn
j ¼ 1

j 6¼ i

b2j
2caj

Aj tð Þ � b2i
4cai

Ai tð Þ½ �2 þ hi ; ð6:3Þ

Ai Tð Þ ¼ �gi; ð6:4Þ

_C i tð Þ ¼ rCi tð Þ �
	

αi �
Xn
j¼1

β i
j αj þ

Xn
h2Ni

β
j

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" #( ) 


	
αi þ

X
h2N

β
i

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" # 


þci αi �
X
j2N

β
i

j α̂ j þ
X
k2N

β̂
j

k Ak tð Þ
" #( )

þ
X
j2Ki

ε ji αj þ
X
‘2N

β
j

‘ α̂ ‘ þ
X
k2N

β̂
‘

k Ak tð Þ
" #( )

�Ai tð Þ
� Xn

j¼1

aj αj þ
X
h2N

β
j

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" #( ) �

¼ rCi tð Þ þ Fi tð Þ;

ð6:5Þ

Ci Tð Þ ¼ gixi: ð6:6Þ

Equations (6.3, 6.4, 6.5, and 6.6) forms a block recursive system of differential

equations with (6.3) and (6.4) being independent of (6.5) and (6.6).

Solving A1 tð Þ,A2 tð Þ, � � �,An tð Þf g in (6.3 and 6.4) and upon substituting them into

(6.5) and (6.6) yield a system of linear first order differential equations:

_C i tð Þ ¼ rCi tð Þ þ Fi tð Þ; ð6:7Þ
Ci Tð Þ ¼ gixi, and i 2 N: ð6:8Þ

Since Ci(t) is independent of Cj(t) for i 6¼ j, Ci tð Þ can be solved as:

Ci tð Þ ¼ er t�t0ð Þ
� ðt

t0

Fi yð Þe�r y�t0ð Þdyþ C0
i

�
; ð6:9Þ

whereC0
i ¼ gixie�r T�t0ð Þ �

ðT
t0

Fi yð Þe�r y�t0ð Þdy: ð6:10Þ

Hence Proposition 2.1 follows. Q.E.D.

Appendix B: Proof of Proposition 3.1
Substituting (3.4) and (3.6) into (3.2) and using (3.7) one obtains:
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r A* tð ÞxþC* tð Þ� �� _A* tð Þxþ _C* tð Þ� �¼Xn
‘¼1

�	
α‘�

Xn
j¼1

β ‘
j αjþ

X
h2N

β
j

h
^̂α
hþ ^̂β

h

A* tð Þ
� �( )


α‘þ
X
h2N

β
‘

h
^̂α
hþ ^̂β

h

A* tð Þ
� �( )

�c‘ α‘þ
X
j2N

β
‘

j
^̂α
jþ ^̂β

j

A* tð Þ
� �( )

�ca‘
b‘
2c a

‘
A* tð Þ

h i2
x

�
X
j2K‘

ε j‘ αjþ
X
k2N

β
j

k
^̂α
kþ ^̂β

kj

A* tð Þ
� �( )

�h‘x

�

þA*
x tð Þ
�Xn

j¼1

aj αjþ
X
h2N

β
j

h
^̂α
hþ ^̂β

h

A* tð Þ
� �( )

þ
Xn
j¼1

b2j
2caj

A* tð Þx�δx

�
,

ð6:11Þ

A* Tð Þxþ C* Tð Þ� � ¼ �
Xn
i¼1

gi x Tð Þ � xi
� �

: ð6:12Þ

For (6.11) and (6.12) to hold, it is required that

_A * tð Þ ¼ r þ δð Þ A* tð Þ �
Xn
j¼1

b2j
2caj

A* tð Þ� �2 þXn
j¼1

hj ; ð6:13Þ

A* Tð Þ ¼ �
Xn
j¼1

gj; ð6:14Þ

_C * tð Þ ¼ rC* tð Þ �
Xn
‘¼1

� 	
α‘ �

Xn
j¼1

β ‘
j αj þ

X
h2N

β
j

h
^̂α

h þ ^̂β
h

A* tð Þ
� �( ) 
�

α‘

þ
X
h2N

β
‘

h
^̂α

h þ ^̂β
h

A* tð Þ
� ��� c‘ α‘ þ

X
j2N

β
‘

j
^̂α

j þ ^̂β
j

A* tð Þ
� �( )

�
X
j2K‘

ε j‘ αj þ
X
k2N

β
j

k
^̂α

k þ ^̂β
kj

A* tð Þ
� �( ) �

�A*
x tð Þ
� Xn

j¼1

aj αj þ
X
h2N

β
j

h
^̂α

h þ ^̂β
h

A* tð Þ
� �( ) �

¼ rC* tð Þ þ F* tð Þ;

ð6:15Þ

C* Tð Þ ¼
Xn
j¼1

gjxj: ð6:16Þ

Equations (6.13, 6.14, 6.15, and 6.16) forms a block recursive system of differential

equations with (6.13 and 6.14) being independent of (6.15 and 6.16). Moreover,
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(6.15 and 6.16) is a Riccati equation with constant coefficients which solution can

be obtained by standard methods as:

A* tð Þ ¼ AP
* þΦ* tð Þ

�
C
* �

ðt
t0

Xn
j¼1

b2j
2caj

Φ* yð Þdy
��1

; ð6:17Þ

where Φ* tð Þ ¼ exp

� ðt
t0

� Xn
j¼1

b2j
2caj

AP
* þ r þ δð Þ

�
dy

�
;

C
* ¼ �Φ* Tð Þ

AP
* þ
Xn
j¼1

gj

 !þ
ðT
t0

Xn
j¼1

b2j
2caj

Φ* yð Þdy; and

AP
* tð Þ ¼

�
r þ δð Þ �

�
r þ δð Þ2 þ 4

Xn
j¼1

b2j
2caj

Xn
j¼1

hj

�1=2 �
=
Xn
j¼1

b2j
c aj

is a particu-

lar solution of the (6.13).

Upon substituting A*(t) above into (6.15), the system (6.15 and 6.16) becomes a

system of linear first order differential equations:

_C * tð Þ ¼ rC* tð Þ þ þF* tð Þ; ð6:18Þ

C* Tð Þ ¼
Xn
j¼1

gjxj: ð6:19Þ

Solving (6.18 and 6.19) yields:

C* tð Þ ¼ er t�t0ð Þ
� ðt

t0

F* yð Þe�r y�t0ð Þdyþ C0
*

�
; ð6:20Þ

where C0
* ¼

Xn
j¼1

gjxje�r T�t0ð Þ �
ðT
t0

F* yð Þe�r y�t0ð Þdy:

Hence Proposition 3.1 follows. Q.E.D.

13.7 Chapter Notes

Though cooperation in environmental control holds out the best promise of effec-

tive action, limited success has been observed because existing multinational joint

initiatives fail to satisfy the property of subgame consistency. In this Chapter we
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present a cooperative stochastic differential game of transboundary industrial

pollution with industries and governments being separate entities. In particular,

industrial production creates two types of negative environmental externalities – a

short-term local impact and a long-term global impact. Given these impacts the

individual government tax policy has to take into consideration the tax policies of

other nations and these policies’ intricate effects on outputs and environmental

effects. A subgame consistent cooperative solution is derived in this stochastic

differential game. A payment distribution mechanism is provided to support the

subgame consistent solution under which the expected gain from cooperation is

shared proportionally to the nations’ relative sizes of expected noncooperative

payoffs. The incorporation of uncertainties in future payoffs in Sect. 13.5 enriches

the analysis with consideration of a realistic concern.

Applications of noncooperative differential games in environmental studies can

be found in Yeung (1992); Dockner and Long (1993); Tahvonen (1994); Stimming

(1999); Feenstra et al. (2001) and Dockner and Leitmann (2001). Cooperative

differential games in environmental control have been presented by Dockner and

Long (1993); Jørgensen and Zaccour (2001); Petrosyan and Zaccour (2003); Fredj

et al. (2004); Breton et al. (2005, 2006), Yeung (2007a, 2008), Yeung and Petrosyan

(2007a, 2012c) and Li (2014).

13.8 Problems

1. Consider an economy which is comprised of 2 nations and the planning horizon

is [0, 4]. At time instant s the demand functions of the output of nations 1 and

2 are respectively

P1 sð Þ ¼ 60� 1:5q1 sð Þ � 0:2q2 sð Þ and P2 sð Þ ¼ 75� 3q2 sð Þ � 0:5q1 sð Þ:

The dynamics of pollution stock is governed by the stochastic differential

equation:

dx sð Þ ¼
�
q1 sð Þ þ 0:5q2 sð Þ � 0:4u1 sð Þx sð Þ1=2 � 0:3u2 sð Þx sð Þ1=2 � 0:02x sð Þ

�
ds

þ 0:04x sð Þdz sð Þ, x 0Þ ¼ 25:ð

The damage (cost) of the pollution stock in the environment to nations 1 and

2 are respectively 3x(s) and 4x(s). The abatement costs are [u1(s)]
2 and 0.4[u2(s)]

2

for nations 1 and 2 respectively. The instantaneous objectives of the governments

in nations 1 and 2 at time s are respectively:

60� 1:5q1 sð Þ � 0:2q2 sð Þ½ �q1 sð Þ � 2q1 sð Þ � u1 sð Þ½ �2 � 0:5q1 sð Þ � 0:6q2 sð Þ � 3x sð Þ
and
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75� 3q2 sð Þ � 0:5q1 sð Þ½ �q2 sð Þ � 2q2 sð Þ � u2 sð Þ½ �2 � 0:8q2 sð Þ � 0:4q1 sð Þ � 4x sð Þ:

At terminal time 4, the terminal value associated with the state of pollution is

2 90� x Tð Þ½ � for nation 1 and 2 70� x Tð Þ½ � for nation 2.

Characterize a feedback Nash equilibrium solution for this fishery game.

2. If these nations agree to cooperate and maximize their joint payoff, obtain a

group optimal cooperative solution.

3. Furthermore, if these nations agree to share their cooperative gain proportional

to their expected payoffs, derive a subgame consistent cooperative solution.
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