
Chapter 12

Applications in Cooperative Public Goods
Provision

The notion of public goods, which are non-rival and non-excludable, was first

introduced by Samuelson (1954). Examples of public goods include clean environ-

ment, national security, scientific knowledge, accessible public capital, technical

know-how and public information. The non-exclusiveness and positive externali-

ties of public goods constitutes major factors for market failure in their provision.

The provision of public goods constitutes a classic case of market failure which

calls for cooperative optimization. However, cooperation cannot be sustainable

unless there is guarantee that the agreed-upon optimality principle can be

maintained throughout the planning duration.

This Chapter presents two sets of applications in subgame consistent cooperative

provision of public goods to solve the problem. The first application is based on

Yeung and Petrosyan (2013b) in which the analysis is based on a cooperative

stochastic differential game framework. The second application is based on

Yeung and Petrosyan (2014b) in which the analysis is conducted in a randomly-

furcating stochastic dynamic game framework. The continuous-time differential

game analysis is provided in Sects. 12.1, 12.2, 12.3 and 12.4. Section 12.1 provides

an analytical framework of cooperative public goods provision. An application in

multiple asymmetric agents public capital build-up in given in Sect. 12.2. An

application in the development of technical knowledge as a public good in an

industry is provided in Sect. 12.3. In Sect. 12.4 application in infinite horizon

cooperative public capital goods provision is examined. The discrete-time dynamic

game analysis is provided in Sects. 12.5 and 12.6. Cooperative public goods

provision under accumulation and payoff uncertainties is presented in Sect. 12.5

and an illustration is given in Sect. 12.6. Appendices of the chapter and chapter

notes are contained in Sects. 12.7, 12.8 and 12.9 respectively.
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12.1 Cooperative Public Goods Provision: An Analytical
Framework

In this Section we set up an analytical framework to study collaborative public

goods provision. In particular, group optimal strategies, subgame consistent coop-

erative schemes and payoff distribution procedures are investigated.

12.1.1 Game Formulation and Non-cooperative Outcome

Consider the case of the provision of a public good in which a group of n agents

carry out a project by making continuous contributions of some inputs or invest-

ments to build up a productive stock of a public good. Let K(s) denote the level of
the productive stock and Ii(s) denote the contribution or investment by agent i at
time s, the stock accumulation dynamics is governed by

dK sð Þ ¼
� Xn

j¼1

Ij sð Þ � δK sð Þ
�
dsþ σK sð Þdz sð Þ, K 0ð Þ ¼ K0; ð1:1Þ

where δ is the rate of decay of the productive stock, z(s) is Wiener process and σ is a
scaling constant.

The instantaneous payoff to agent i at time instant s is

Ri K sð Þ½ � � Ci Ii sð Þ½ �, i2 1; 2; � � �; nf g ¼ N; ð1:2Þ

where Ri(K ) is the revenue/payoff to agent i if the productive stock is K and Ci[Ii] is
the cost of investing Ii by agent i. Marginal cost of investment is increasing in Ii.
Marginal revenue product of the productive stock is non-negative, that is

R0
i Kð Þ � 0, before a saturation level K has been reached; and marginal cost of

investment is positive and non-decreasing, that is C0
i Ii½ � > 0 and C

00
i Ii½ � � 0.

Moreover, the payoffs of the players are transferable.

The objective of agent i2N is to maximize its expected net revenue over the

planning horizon T, that is

E

�ð T
0

Ri K sð Þ½ � � Ci Ii sð Þ½ �f ge�rsdsþ qi K Tð Þ½ �e�rT

�
ð1:3Þ

subject to the stock accumulation dynamics (1.1), where r is the discount rate, and
qi K Tð Þ½ � � 0 is an amount conditional on the productive stock that agent i would
receive at time T.

Acting for individual interests, the agents are involved in a stochastic differential

game. In such a framework, a feedback Nash equilibrium has to be sought. Let
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�
ϕi s;Kð Þ ¼ I*i sð Þ2 Ii, for i2N and s2 0; T½ �� denote a set of feedback strategies that

brings about a feedback Nash equilibrium of the game (1.1) and (1.3). Invoking

Theorem 1.1 in Chap. 3 for solving stochastic differential games, a feedback

solution to the problem (1.1) and (1.3) can characterized by the following set of

Hamilton-Jacobi-Bellman equations:

�V i
t t;Kð Þ � 1

2
V i
KK t;Kð Þσ2K2 ¼ max

Ii

�
Ri Kð Þ � Ci Iið Þ½ �e�rt

þV i
K t;Kð Þ

� Xn
j ¼ 1

j 6¼ i

ϕj t;Kð Þ þ Ii � δK

��
; ð1:4Þ

Vi T;Kð Þ ¼ qi Kð Þe�rT , for i2N: ð1:5Þ

A Nash equilibrium non-cooperative outcome of public goods provision by the

n agents is characterized by the solution of the system of partial differential

equations (1.4 and 1.5).

12.1.2 Subgame Consistent Cooperative Scheme

It is well-known problem that noncooperative provision of goods with externalities,

in general, would lead to dynamic inefficiency. Cooperative games suggest the

possibility of socially optimal and group efficient solutions to decision problems

involving strategic action. Now consider the case when the agents agree to coop-

erate and extract gains from cooperation. In particular, they act cooperatively and

agree to distribute the joint payoff among themselves according to an optimality

principle. If any agent disagrees and deviates from the cooperation scheme, all

agents will revert to the noncooperative framework to counteract the free-rider

problem in public goods provision. In particular, free-riding would lead to a lower

future payoff due to the loss of cooperative gains. Thus a credible threat is in place.

As stated before group optimality, individual rationality and subgame consistency

are three crucial properties that sustainable cooperative scheme has to satisfy.

To fulfil group optimality the agents would seek to maximize their expected joint

payoff. To maximize their expected joint payoff the agents have to solve the

stochastic dynamic programming problem

max
I1 sð Þ, I2 sð Þ, ���, In sð Þf g

E

�Xn
j¼1

� ð T
0

Rj K sð Þ½ � � Cj Ij sð Þ� 	� �
e�rsds

þ qj K Tð Þ½ �e�rT

��
ð1:6Þ

subject to the stock dynamics (1.1).
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Let
�
ψ i s;Kð Þ, for i2N and denote a set of strategies that brings about an optimal

solution to the stochastic control problem (1.1) and (1.6). Invoking the standard

stochastic dynamic programming technique in Theorem A.3 of the Technical

Appendices an optimal solution to the stochastic control problem (1.1) and (1.6)

can characterized by the following set of equations (see also Fleming and Rishel

1975; Ross 1983):

�Wt t;Kð Þ � 1

2
WKK t;Kð Þσ2K2

¼ max
I1, I2, ���, In

(Xn
j¼1

"
Rj Kð Þ � Cj Ij


 �� 	
e�rt

#
þWK t;Kð Þ

 Xn
j¼1

Ij � δK

!)
; ð1:7Þ

W T;Kð Þ ¼
Xn
j¼1

qj K Tð Þ½ �e�rT : ð1:8Þ

A group optimal solution of public goods provision by the n agents is character-

ized by the solution of the partial differential equation (1.7 and 1.8). In particular,

W(t,K ) gives the maximized joint payoff of the n players at time t2 0; T½ � given
that the state is x.

Substituting the optimal strategies
�
ψ i s;Kð Þ, for i2N and s2 0; T½ �� into (1.1)

yields the optimal path of productive stock dynamics:

dK sð Þ ¼
�Xn
j¼1

ψ j s,K sð Þð Þ � δK sð Þ
�
dsþ σK sð Þdz sð Þ, K 0ð Þ ¼ K0: ð1:9Þ

We use X�
s to denote the set of realizable values of K(s) generated by (1.9) at time s.

The term K*
s 2X*

s is used to denote and element in X�
s .

Let ξ �; �ð Þ denote the agreed-upon imputation vector guiding the distribution of

the total cooperative payoff under the agreed-upon optimality principle along the

cooperative trajectory K* sð Þ� �
s2 0;T½ �. At time s and if the productive stock is K�

s , the

imputation vector according to ξ �; �ð Þ is

ξ s;K*
s


 � ¼ ξ1 s;K*
s


 �
, ξ2 s;K*

s


 �
, � � �, ξn s;K*

s


 �� 	
for s2 0; T½ �: ð1:10Þ

A variety of examples of imputations ξ(s,K�
s ) can be found in Chap. 2. For

individual rationality to be maintained throughout all time s2 0; T½ �, it is required
that:

ξi s;K*
s


 � � Vi s;K*
s


 �
, for i2N and s2 0; T½ �:

To satisfy group optimality, the imputation vector has to satisfy
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W s;K*
s


 � ¼Xn
j¼1

ξi s;K*
s


 �
, for s2 0; T½ �:

12.1.3 Payoff Distribution Procedure

Following the analysis in Chap. 3, we formulate a Payoff Distribution Procedure so

that the agreed-upon imputations (1.10) can be realized. Let Bi(s,K*(s)) for s2�0, T�
denote the payment that agent i will received at time s under the cooperative

agreement if K*(s) is realized at that time.

The payment scheme involving Bi(s,K*(s)) constitutes a PDP in the sense that

along the cooperative trajectory K* sð Þ� �
s20;T½ � the imputation to agent i covering the

duration [τ,T] can be expressed as:

ξi τ;K*
τ


 � ¼ E

�ðT
τ
Bi s,K* sð Þ
 �

e�rsdsþ qi K
* Tð Þ� 	

e�rT

����K* τð Þ ¼ K*
τ

�
; ð1:11Þ

for i2N and τ2 0; T½ �.
The values of Bi(s,K*(s)) for i2N and s2�τ,T�, which leads to the realization of

imputation (1.10) and hence a subgame consistent cooperative solution can be

obtained by the following theorem.

Theorem 1.1 A PDP for agent i2N with a terminal payment qi(K
�
T) at time T and

an instantaneous payment at time s2 0; T½ � which present value is:

Bi s;K
*
s


 �
e�rs ¼ �ξ is s;K*

s


 �� 1

2
σ2 K*

s


 �2
ξ iKsKs

s;K*
s


 �
� ξ iKs

s;K*
s


 �� Xn
j¼1

ψ*
j s;K*

s


 �� δK*
s

�
, for i2N and K*

s 2X*
s ; ð1:12Þ

would lead to the realization of the imputation ξ(s,K�
s ) in (1.10).

Proof See Appendix A. ■

Note that the payoff distribution procedure in Theorem 1.1 would give rise to

the agreed-upon imputation in (1.10) and therefore subgame consistency is

satisfied.

When all agents are using the cooperative strategies, the payoff that player i will
directly receive at time s is

Ri K
*
s


 �� Ci ψ
*
i s;K*

s


 �� 	
:

However, according to the agreed upon imputation, agent i is supposed to receive Bi
i

(s,K�
s ). Therefore a transfer payment (which could be positive or negative)
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ϖi s;K
*
s


 � ¼ Bi s;K
*
s


 �� Ri K
*
s


 �� Ci ψ
*
i s;K*

s


 �� 	� � ð1:13Þ

will be imputed to agent i2N at time s2 0; T½ �.

12.2 An Application in Asymmetric Agents Public Capital
Build-up

In this section, we examine an application of the analysis in the build-up of public

capital by multiple asymmetric agents.

12.2.1 Game Model

Consider an economic region with n asymmetric agents. These agents receive

benefits from an existing public capital stock K(s). The accumulation dynamics of

the public capital stock is governed by

dK sð Þ ¼
� Xn

j¼1

Ij sð Þ � δK sð Þ
�
dsþ σK sð Þdz sð Þ, K 0ð Þ ¼ K0; ð2:1Þ

where δ is the depreciation rate of the public capital and Ii sð Þ2 0; I
� 	

is the

investment made by the ith agent in the public capital.

Each agent gains from the existing level of public capital and the ith agent seeks
to maximize its expected stream of monetary gains:

E

�ðT
0

αiK sð Þ � ci Ii sð Þ½ �2
n o

e�rsds

þ qi
1K Tð Þ þ qi

2

� 	
e�rT

����K 0ð Þ ¼ K0

�
, for i2N; ð2:2Þ

subject to (2.1);

where αi, ci, qi1 and qi2 are positive constants, and αi 6¼ αj, ci 6¼ cj, q
i
1 6¼ qj

1 and

qi
2 6¼ qj

2, for i, j2N and i 6¼ j.
In particular, αiK(s) gives the gain that agent i derives from the public capital,

ci[Ii(s)]
2 is the cost of investing Ii(s) in the public capital, and qi

1K Tð Þ þ qi
2

� 	
is the

terminal valuation of the public capital at time T. Invoking the analysis in (1.5 and

1.6) in Sect. 12.1 we obtain the corresponding Hamilton-Jacobi-Bellman equations

characterizing a non-cooperative outcome as:
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�V i
t t;Kð Þ � 1

2
V i
KK t;Kð Þσ2K2 ¼ max

Ii

�
αiK � ci Iið Þ2
n o

e�rt

þV i
K t;Kð Þ

� Xn
j¼1

j 6¼i

ϕj t;Kð Þ þ Ii � δK

��
; ð2:3Þ

Vi T;Kð Þ ¼ qi
1K Tð Þ þ qi

2

� 	
e�rT , for i2N; ð2:4Þ

Performing the maximization operator in (2.4) yields:

Ii ¼ V i
K t;Kð Þ
2ci

ert, for i2N: ð2:5Þ

To solve the game (2.1 and 2.2) we first obtain the value functions indicating the

game equilibrium payoffs of the agents as follows.

Proposition 2.1 The value function Vi(t,K) of agent i can be obtained as:

Vi t;Kð Þ ¼ Ai tð ÞK þ Ci tð Þ½ �e�rt for i2N; ð2:6Þ

where

Ai tð Þ ¼ qi
1 �

αi
r þ δ


 �
e� rþδð Þ T�tð Þ þ αi

r þ δ
;

and the value of Ci(t) is generated by the following first order linear differential

equation:

_C i tð Þ ¼ rCi tð Þ þ Ai tð Þ½ �2
4ci

�
h Xn

j¼1

Ai tð ÞAj tð Þ
2cj

i
,

Ci Tð Þ ¼ qi
2, for i2N; ð2:7Þ

Proof See Appendix B. ■

Using Proposition 2.1 and (2.5) the game equilibrium strategies can be obtained

to characterize the market equilibrium. The asymmetry of agents brings about

different payoffs and investment levels in public capital investments.

12.2.2 Cooperative Provision of Public Capital

Now we consider the case when the agents agree to act cooperatively and seek

higher gains. They agree to maximize their expected joint gain and distribute the
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cooperative gain proportional to their non-cooperative gains. To maximize their

expected joint gains the agents maximize

E

�ðT
0

Xn
j¼1

αjK sð Þ � cj Ij sð Þ� 	2n o
e�rsds

þ
Xn
j¼1

qj
1K Tð Þ þ qj

2

h i
e�rT

����K 0ð Þ ¼ K0

�
ð2:8Þ

subject to dynamics (2.1).

Following the analysis in (1.7 and 1.8) in Sect. 12.1, the corresponding stochas-

tic dynamic programming equation can be obtained as:

�Wt t;Kð Þ � 1

2
WKK t;Kð Þσ2K2

¼ max
I1, I2, ���, In

�Xn
j¼1

αjK � cj Ij

 �2h i

e�rt þWK t;Kð Þ

 Xn

j¼1

Ij � δK

��
; ð2:9Þ

W T;Kð Þ ¼
Xn
j¼1

qj
1K þ qj

2

� �
e�rT : ð2:10Þ

Performing the maximization operator in (2.9) yields:

Ii ¼ WK t;Kð Þ
2ci

ert, for i2N: ð2:11Þ

Themaximized expected joint profit of the n participating firms can be obtained as:

Proposition 2.2 The value function W(t,K ) indicating the maximized expected

joint payoff is

W t;Kð Þ ¼ A tð ÞK þ C tð Þ½ �e�rt; ð2:12Þ

where

A tð Þ ¼
Xn
j¼1

qj
1 �

Xn
j¼1

αj

r þ δ

0
BBBB@

1
CCCCAe� rþδð Þ T�tð Þ þ

Xn
j¼1

αj

r þ δ
, and

and the value ofC(t) is generated by the followingfirst order linear differential equation:

_C tð Þ ¼ rC tð Þ �
Xn
j¼1

A tð Þ½ �2
4cj

, C Tð Þ ¼
Xn
j¼1

qj
2:
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Proof Follow the proof of Proposition 2.1. ■

Using (2.11) and Proposition 2.2 the optimal trajectory of public capital stock

can be expressed as:

dK sð Þ ¼
�Xn

j¼1

A sð Þ
2cj

� δK sð Þ
�
dsþ σK sð Þdz sð Þ, K 0ð Þ ¼ K0: ð2:13Þ

We use X�
s to denote the set of realizable values of K* sð Þ generated by (2.13) at

time s. The term K*
s 2X*

s is used to denote and element in X�
s .

12.2.3 Subgame Consistent Payoff Distribution

Under cooperation every agent will be using the Pareto optimal strategies in (2.11)

and the expected payoff that agent iwill receive over the cooperative duration [0, T]
becomes:

E

�ðT
0



αiK

* sð Þ � A sð Þ½ �2
4ci

�
e�rsdsþ

Xn
j¼1

qi
1K

* Tð Þ þ qi
2

� 	
e�rT

�
, i2N:

At initial time 0, the agents agree to distribute the cooperative gain proportional to

their non-cooperative gains. Therefore agent i will receive an imputation

ζi 0;K0ð Þ ¼ Vi 0;K0ð ÞXn
j¼1

Vj 0;K0ð Þ
W 0;K0ð Þ

¼ Ai 0ð ÞK0 þ Ci 0ð ÞXn
j¼1

Aj 0ð ÞK0 þ Cj 0ð Þ
A 0ð ÞK0 þ C 0ð Þ½ �, for i2N:

With the agents agreeing to distribute their gains proportional to their

non-cooperative gains, the imputation vector becomes

ξi s;K*
s


 � ¼ Vi s;K*
s


 �
Xn
j¼1

Vj s;K*
s


 �W s;K*
s


 �

¼ Ai tð ÞK þ Ci tð Þ½ �Xn
j¼1

Aj tð ÞK þ Cj tð Þ
� 	 A tð ÞK þ C tð Þ½ �e�rt; ð2:14Þ

for i2N and s2 0; T½ � if the public capital stock is K*
s 2X*

s .
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To guarantee dynamical stability in a dynamic cooperation scheme, the solution

has to satisfy the property of subgame consistency which requires the satisfaction of

(2.14). Invoking Theorem 1.1, a PDP for agent i2N with a terminal payment

qi
1K Tð Þ þ qi

2

� 	
at time T and an instantaneous payment (in present value) at time

s2 0; T½ �

Bi s;K
*
s


 �
e�rs ¼ r

Ai sð ÞK*
s þ Ci sð Þ� 	

Xn
j¼1

Aj sð ÞK*
s þ Cj sð Þ� 	 A sð ÞK*

s þ C sð Þ� 	
e�rs

� Ai sð ÞK*
s þ Ci sð Þ� 	

Xn
j¼1

Aj sð ÞK*
s þ Cj sð Þ� 	 _A sð ÞK*

s þ _C sð Þ� 	
e�rs

� A sð ÞK*
s þ C sð Þ� 	

e�rs

Xn
j¼1

Aj sð ÞK*
s þ Cj sð Þ� 	 !2

�Xn
j¼1

Aj sð ÞK*
s þ Cj sð Þ� 	

_A i sð ÞK*
s þ _C i sð Þ� 	

� Ai sð ÞK*
s þ Ci sð Þ� 	Xn

j¼1

_A j sð ÞKs* þ _C j sð Þ� 	�

� ξ iKs
s;K*

s


 ��Xn
j¼1

A sð Þ
2cj

� δK*
s

�
� 1

2
σ2 K*

s


 �2
ξ iKsKs

s;K*
s


 �
; ð2:15Þ

where

ξ iKs
s;K*

s


 � ¼
2
4 Ai sð ÞK*

s þ Ci sð Þ� 	
Xn
j¼1

Aj sð ÞK*
s þ Cj sð Þ� 	A sð Þe�rs

þ
Ai sð Þ

Xn
j¼1

Aj sð ÞK*
s þ Cj sð Þ� 	� Ai sð ÞK*

s þ Ci sð Þ� 	Xn
j¼1

Aj sð Þ

Xn
j¼1

Aj sð ÞK*
s þ Cj sð Þ� 	 !2

A sð ÞK*
s þ C sð Þ� 	

e�rs

3
5;

and ξ iKsKs
s;K*

s


 � ¼ ∂ξ iKs
s;K*

s


 �
=∂Ks;

for i2N and K*
s 2X*

s ,

would lead to the realization of the imputation ξ(s,K�
s ) in (2.14).

The values of the terms Aj sð Þ, _A j sð Þ,Cj sð Þ and _C j sð Þ are given in Proposition 2.2
and its proof.

Finally, when all agents are using the cooperative strategies, the payoff that

player i will directly receive at time s is

αiK
*
s �

A sð Þ½ �2
4ci

.
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However, according to the agreed upon imputation, agent i is to receive Bi(s,K
�
s )

in (2.15). Therefore a transfer payment

ϖ i
i s;K*

s


 � ¼ Bi s;K
*
s


 �� �αiK*
s �

A sð Þ½ �2
4ci

�
ð2:16Þ

will be imputed to agent i2N at time s2 0; T½ �.

12.3 An Application in the Development of Technical
Knowledge

In this section, we examine the application of the analysis in the development of

technical knowledge as a public good in an industry.

12.3.1 Game Formulation and Noncooperative Market
Outcome

Consider an industry with two types of firms using a common type of technology.

There are n1 type 1 firms and n2 type 2 firms and the planning horizon is [0, T]. We

use I
1ð Þ
i sð Þ2 0; I

� 	
to denote the technology investment of the ith type 1 firm, for

i2 1; 2; � � �; n1f g�N1. Similarly, I
2ð Þ
j sð Þ2 0; I

� 	
is used to denote the technology

investment of the jth type 2 firm, for j2 n1 þ 1, n1 þ 2, � � �, n1 þ n2f g�N2. The

technology accumulation dynamics is governed by

dK sð Þ ¼
�X
i2N1

I
1ð Þ
i sð Þ þ

X
j2N2

I
2ð Þ
j sð Þ � δK sð Þ

�
dsþ σK sð Þdz sð Þ, K 0ð Þ ¼ K0; ð3:1Þ

where δ is the depreciation rate of technology.

Each firm benefits from the existing level of technology. The ith type 1 firm

seeks to maximize its expected stream of profits:

E

�ðT
0

α1K sð Þ � b1 K sð Þ½ �2 � ρ1I
1ð Þ
i sð Þ � c1=2ð Þ I

1ð Þ
i sð Þ

h i2� �
e�rsds

þ e�rT q1 K Tð Þð Þ2 þ q2K Tð Þ þ q3

h i ����K 0ð Þ ¼ K0

�
, for i2N1; ð3:2Þ

subject to (3.1).

In particular, given the technology level K(s), the instantaneous revenue of a type

1 firm isK sð Þ α1 � b1K sð Þ½ �. The cost of investment is ρ1I
1ð Þ
i sð Þ � 1=2ð Þ I

1ð Þ
i sð Þ

h i2
. For
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each firm, there is a terminal valuation e�rT q1 K Tð Þð Þ2 þ q2K Tð Þ þ q3

h i
with q1 < 0,

q2 > 0 and q3 > 0.

The jth type 2 firm seeks to maximize its expected stream of profits:

E

�ðT
0

α2K sð Þ � b2 K sð Þ½ �2 � ρ2I
2ð Þ
i sð Þ � c2=2ð Þ I

2ð Þ
i sð Þ

h i2� �
e�rsds

þ e�rT q1 K Tð Þð Þ2 þ q2K Tð Þ þ q3

h i ����K 0ð Þ ¼ K0

�
, for j2N2; ð3:3Þ

subject to (3.1).

To derive the noncooperative market outcome of the industry we invoke the

analysis in (1.4 and 1.5) in Sect. 12.1 and obtain the corresponding Hamilton-

Jacobi-Bellman equations

�V
1ð Þi
t t;Kð Þ � 1

2
V

1ð Þi
KK t;Kð Þσ2K2

¼ max
I
1ð Þ
i

�
α1K � b1K

2 � ρ1I
1ð Þ
i � c1=2ð Þ I

1ð Þ
i

� �2� �
e�rt

þV
1ð Þi
K t;Kð Þ

� X
‘2N1

‘ 6¼ i

ϕ 1ð Þ
‘ t;Kð Þ þ

X
‘2N2

ϕ 2ð Þ
‘ t;Kð Þ þ I

1ð Þ
i � δK

��
,

V 1ð Þi T;Kð Þ ¼ e�rT q1K
2 þ q2K þ q3


 �
, for i2N1; ð3:4Þ

�V
2ð Þj
t t;Kð Þ � 1

2
V

2ð Þj
KK t;Kð Þσ2K2

¼ max
I
2ð Þ
j

�
α2K � b2K

2 � ρ2I
2ð Þ
j � c2=2ð Þ I

2ð Þ
j

� �2� �
e�rt

þV
2ð Þj
K t;Kð Þ

� X
‘2N1

ϕ 1ð Þ
‘ t;Kð Þ þ

X
‘2N2

‘ 6¼ j

ϕ 2ð Þ
‘ t;Kð Þ þ I

2ð Þ
j � δK

�
s

�
,

V 2ð Þj T;Kð Þ ¼ e�rT q1K
2 þ q2K þ q3


 �
, for j2N2: ð3:5Þ

Performing the maximization operator in (3.4) and (3.5) yields game equilibrium

investment strategies of the type 1 firm and the type 2 firms as:

I
1ð Þ
i ¼ V

1ð Þi
K t;Kð Þert � ρ1

c1
, for i2N1; ð3:6Þ
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and

I
2ð Þ
j ¼ V

2ð Þj
K t;Kð Þert � ρ2

c2
, for j2N2: ð3:7Þ

To solve the game we first obtain the value functions indicating the game equilib-

rium payoffs of the firms as follows.

Proposition 3.1 The value functions indicating the game equilibrium payoffs of

the firms are

V 1ð Þi t;Kð Þ ¼ A1 tð ÞK2 þ B1 tð ÞK þ C1 tð Þ� 	
e�rt for i2N1; and

V 2ð Þj t;Kð Þ ¼ A2 tð ÞK2 þ B2 tð ÞK þ C2 tð Þ� 	
e�rt, for j2N2; ð3:8Þ

where the values of A1(t),A2(t),B1(t),B2(t),C1(t) and C2(t) are generated by the

following block-recursive ordinary differential equations:

_A 1 tð Þ ¼ 2� 4n1ð Þ
c1

A1 tð Þ½ �2 � 4n2
c2

A1 tð ÞA2 tð Þ þ r þ 2δ� σ2

 �

A1 tð Þ þ b1,

_A 2 tð Þ ¼ 2� 4n2ð Þ
c2

A2 tð Þ½ �2 � 4n1
c1

A1 tð ÞA2 tð Þ þ r þ 2δ� σ2

 �

A2 tð Þ þ b2,

A1 Tð Þ ¼ q1 and A2 Tð Þ ¼ q1; ð3:9Þ
_B 1 tð Þ ¼ r þ δð Þ � 4n1

c1
� 2

c1


 �
A1 tð Þ � 2

n2
c2
A2 tð Þ

� �
B1 tð Þ � 2

n2
c2
A1 tð ÞB2 tð Þ

þ 2
n1ρ1
c1

þ n2ρ2
c2


 �
A1 tð Þ � α1:

_B 2 tð Þ ¼ r þ δð Þ � 4n2
c2

� 2

c2


 �
A2 tð Þ � 2

n1
c1
A1 tð Þ

� �
B2 tð Þ � 2

n1
c1
A2 tð ÞB1 tð Þ

þ 2
n1ρ1
c1

þ n2ρ2
c2


 �
A2 tð Þ � α2:

B1 Tð Þ ¼ q2 and B2 Tð Þ ¼ q2; ð3:10Þ
_C 1 tð Þ ¼ rC1 tð Þ� n1

c1
� 1

2c1


 �
B1 tð Þ½ �2 � n2

c2
B1 tð ÞB2 tð Þþ n1ρ1

c1
þ n2ρ2

c2


 �
B1 tð Þ� ρ21

2c1
;

_C 2 tð Þ ¼ rC2 tð Þ� n2
c2

� 1

2c2


 �
B2 tð Þ½ �2 � n1

c1
B1 tð ÞB2 tð Þ

þ n1ρ1
c1

þ n2ρ2
c2


 �
B2 tð Þ� ρ22

2c2
;

C1 Tð Þ ¼ q3 andC2 Tð Þ ¼ q3: ð3:11Þ
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Proof See Appendix C. ■

System (3.9, 3.10 and 3.11) is a block-recursive system of ordinary differential

equations. In particular, (3.9) is a system which involves A1(t) and A2(t); (3.10) is a
system which involves A1(t),A2(t),B1(t) and B2(t); and (3.11) is a system which

involves B1(t),B2(t),C1(t) and C2(t).
A convenient way to solve the problem numerically is to express system (3.9) as

an initial value problem with the variablesA*
1 tð Þ ¼ A1 T � tð Þ andA*

2 tð Þ ¼ A2 T � tð Þ
where:

_A *
1 tð Þ ¼ 4n1 � 2ð Þ

c1
A*
1 tð Þ� 	2 þ 4n2

c2
A*
1 tð ÞA*

2 tð Þ � r þ 2δ� σ2

 �

A*
1 tð Þ � b1,

_A *
2 tð Þ ¼ 4n2 � 2ð Þ

c2
A*
2 tð Þ� 	2 þ 4n1

c1
A*
1 tð ÞA*

2 tð Þ � r þ 2δ� σ2

 �

A*
2 tð Þ � b2,

A*
1 0ð Þ ¼ q1 and A

*
2 0ð Þ ¼ q1: ð3:12Þ

Using Euler’s method, the numerical solution of (3.12) could be readily evaluated as:

A*
1 tþ Δtð Þ ¼ A*

1 tð Þ þ
�

4n1 � 2ð Þ
c1

A*
1 tð Þ� 	2 þ 4n2

c2
A*
1 tð ÞA*

2 tð Þ

� r þ 2δ� σ2ð ÞA*
1 tð Þ � b1

�
Δt,

A*
2 tþ Δtð Þ ¼ A*

2 tð Þ þ
�

4n2 � 2ð Þ
c2

A*
2 tð Þ� 	2 þ 4n1

c1
A*
1 tð ÞA*

2 tð Þ

� r þ 2δ� σ2ð ÞA*
2 tð Þ � b2

�
Δt; ð3:13Þ

The numerical values generated in (3.13) yields A*
1 tð Þ ¼ A1 T � tð Þ and

A*
2 tð Þ ¼ A2 T � tð Þ. Substituting A1(t) and A2(t) into (3.10) yields a pair of linear

differential equations in B1(t) and B2(t) which could readily be solved numerically.

Substituting B1(t) and B2(t) into (3.11) yields a pair of independent linear differen-

tial equations in C1(t) and C2(t), which once again is readily solvable numerically.

Using Proposition 3.1 and (3.6 and 3.7) the game equilibrium strategies can be

obtained and the market equilibrium be characterized.

12.3.2 Cooperative Development of Technical Knowledge

Now we consider the case when the firms agree to act cooperatively and seek higher

expected profits. They agree to maximize their expected joint profit and share the

excess of cooperative profits over noncooperative profits equally. To maximize

their expected joint profits the firms maximize
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E

�ðT
0

X
h2N1

α1K sð Þ � b1 K sð Þ½ �2 � ρ1I
1ð Þ
h sð Þ � c1=2ð Þ I

1ð Þ
h sð Þ

h i2� �
e�rsds

þ
ðT
0

X
k2N2

α2K sð Þ � b2 K sð Þ½ �2 � ρ2I
2ð Þ
k sð Þ � c2=2ð Þ I

2ð Þ
k sð Þ

h i2� �
e�rsds

þ n1 þ n2ð Þe�rT q1 K Tð Þð Þ2 þ q2K Tð Þ þ q3

h i ����K 0ð Þ ¼ K0

�
; ð3:14Þ

subject to dynamics (3.1).

Following the analysis in (1.6, 1.7, 1.8, 1.9 and 1.10) in Sect. 12.1, the

corresponding stochastic dynamic programming equation can be obtained as:

�Wt t;Kð Þ � 1

2
WKK t;Kð Þσ2K2

¼ max
I
1ð Þ
1
, I 1ð Þ

2
, ���, I 1ð Þ

n1
;I

2ð Þ
n1þ1

, I 2ð Þ
n1þ2

, ���, I 2ð Þ
n1þn2

� X
h2N1

α1K � b1K
2 � ρ1I

1ð Þ
h � c1=2ð Þ I

1ð Þ
h

� �2� �
e�rt

þ
X
k2N2

α2K � b2K
2 � ρ2I

2ð Þ
k � c2=2ð Þ I

2ð Þ
k

� �2� �
e�rt

þWK t;Kð Þ
� X

h2N1

I
1ð Þ
h sð Þ þ

X
k2N2

I
2ð Þ
k sð Þ � δK sð Þ

� �
; ð3:15Þ

W T;Kð Þ ¼ n1 þ n2ð Þe�rT q1K
2 þ q2K þ q3


 �
: ð3:16Þ

Performing the maximization operator in (3.15) yields:

I
1ð Þ
i ¼ W t;Kð Þert � ρ1

c1
, for i2N1; and

I
2ð Þ
j ¼ W t;Kð Þert � ρ2

c2
, for j2N2: ð3:17Þ

The expected joint payoff of the firms can be obtained as:

Proposition 3.2 The value function W(t,K ), which reflects the maximized

expected joint payoff at time t given the level of technology K is

W t;Kð Þ ¼ A tð ÞK2 þ B tð ÞK þ C tð Þ� 	
e�rt; ð3:18Þ

where the values of A(t),B(t) and C(t) are generated by the following block

recursive ordinary differential equations:

_A tð Þ ¼ r þ 2δ� σ2ð ÞA tð Þ � 2
n1
c1

þ n2
c2


 �
A tð Þ½ �2 þ n1b1 þ n2b2,

A Tð Þ ¼ n1 þ n2ð Þq1; ð3:19Þ
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_B tð Þ ¼ r þ δ� 2
n1
c1

þ n2
c2


 �
A tð Þ

� �
B tð Þ þ 2

n1ρ1
c1

þ n2ρ2
c2

� �
A tð Þ � n1α1 � n2α2,

B Tð Þ ¼ n1 þ n2ð Þq2; ð3:20Þ
_C tð Þ ¼ rC tð Þ � n1

2c1
B tð Þ � ρ1½ �2 � n2

2c2
B tð Þ � ρ2½ �2,

C Tð Þ ¼ n1 þ n2ð Þq3: ð3:21Þ

Proof Follow the proof of Proposition 3.1. ■

Using (3.17) and Proposition 3.2 the optimal technology accumulation dynamics

can be expressed as:

dK sð Þ ¼
�

n1
c1

�
2A sð ÞK sð Þ þ B sð Þ � ρ1

	þ n2
c2

�
2A sð ÞK sð Þ þ B sð Þ � ρ2

	
� δK sð Þ

�
dsþ σK sð Þdz sð Þ, K 0ð Þ ¼ K0 ð3:22Þ

We use X�
s to denote the set of realizable values of K*(s) generated by (3.22) at

time s. The term K*
s 2X*

s is used to denote and element in X�
s .

With the firms agreeing to share the excess of cooperative profits over nonco-

operative profits equally the imputation vector becomes

ξ 1ð Þi s;K*
s


 � ¼ V 1ð Þi s;K*
s


 �þ 1

n1 þ n2

"
W s;K*

s


 �

�
X
h2N1

V 1ð Þh s;K*
s


 ��X
k2N2

V 2ð Þk s;K*
s


 � #
, for type1firm i2N1;

ξ 2ð Þj s;K*
s


 � ¼ V 2ð Þj s;K*
s


 �þ 1

n1 þ n2

�
W s;K*

s


 �
�
X
h2N1

V 1ð Þh s;K*
s


 ��X
k2N2

V 2ð Þk s;K*
s


 � �
, for type 2 firm j2N2;

ð3:23Þ

at time instant s2 0; T½ � if the state of technology is K*
s 2X*

s .

Invoking Theorem 1.1, a PDP for firm i2N1 and firm j2N2 with a terminal

payment q1 K*
T


 �2 þ q2K
*
T þ q3

h i
at time T and an instantaneous payment (in present

value) at time s2 0; T½ � equalling
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B
1ð Þ
i s;K*

s


 �
e�rs ¼ �ξ 1ð Þi

s s;K*
s


 �
� ξ 1ð Þi

Ks
s;K*

s


 � n1
c1

�
2A sð ÞK*

s þ B sð Þ � ρ1
� 	þ n2 2A sð ÞK*

s þ B sð Þ � ρ2
� 	

� δK*
s

�
� 1

2
σ2 K*

s


 �2
ξ 1ð Þi
KsKs

s;K*
s


 �
; given to the type 1 firm i2N1;

and

B
2ð Þ
j s;K*

s


 �
e�rs ¼ �ξ 2ð Þj

s s;K*
s


 �
� ξ 2ð Þj

Ks
s;K*

s


 � n1
c1

�
2A sð ÞK*

s þ B sð Þ � ρ1
� 	þ n2 2A sð ÞK*

s þ B sð Þ � ρ2
� 	

� δK*
s

�
� 1

2
σ2 K*

s


 �2
ξ 2ð Þj
KsKs

s;K*
s


 �
; given to the type 2 firm j2N2;

would lead to the realization of the imputation ξ(s,K�
s ) in (3.23) and hence a

subgame consistent scheme.

The terms ξ ωð Þiω
s s;K*

s


 �
, ξ ωð Þiω

Ks
s;K*

s


 �
and ξ ωð Þiω

KsKs
s;K*

s


 �
, forω2 1; 2f g and iω2Nω,

can be obtained readily using Proposition 3.1, Proposition 3.2 and (3.23).

Moreover, the game (3.1, 3.2 and 3.3) can be extended to include the case with

more than 2 types of firms. Finally, worth-noting is that the payoff structures and

state dynamics of the game (3.1, 3.2 and 3.3) encompass those of the existing

dynamic games of public goods provision. For instance, Fershtman and Nitzan

(1991) is case where n1 ¼ n, n2 ¼ 0, ρ1 ¼ ρ2 ¼ 0 and σ ¼ 0. Wirl (1996) is the

case where n1 ¼ 2, n2 ¼ 0, ρ1 ¼ ρ2 ¼ 0 and σ ¼ 0. Wang and Ewald (2010) is the

case where n1 ¼ 2, n2 ¼ 0 and ρ1 ¼ ρ2 ¼ 0. Dockner et al. (2000) is case where

n1 ¼ 1, n2 ¼ 1, b1 ¼ b2 ¼ 1, ρ1 ¼ ρ2 ¼ ρ, c1 ¼ c2 ¼ 1 and σ ¼ 0.

12.4 Infinite Horizon Analysis

In this section, we consider the case when the planning horizon approaches infinity,

that is T ! 1. The objective of agent i2N is to maximize its expected payoff

E

� ð1
0

Ri K sð Þ½ � � Ci Ii sð Þ½ �f ge�rsds

���� K 0ð Þ ¼ K0

�
ð4:1Þ

subject to dynamics (1.1).

The corresponding Hamilton-Jacobi-Bellman equations in current value formu-

lation characterizing a feedback solution of the infinite horizon problem (1.1) and

(4.1) are (see Theorem 5.1 in Chap. 3):

rVi Kð Þ � 1

2
V i
KK Kð Þσ2K2 ¼ max

Ii

�
Ri Kð Þ � Ci Iið Þ½ �

þV i
K Kð Þ

� Xn
j ¼ 1

j 6¼ i

ϕj Kð Þ þ Ii � δK

��
, for i2N; ð4:2Þ
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Performing the maximization operator in (4.2) yields:

dCi Iið Þ=dIi ¼ V i
K Kð Þ, for i2N ð4:3Þ

Condition (4.3) reflects that in a non-cooperative equilibrium the marginal cost of

investment of agent iwill be equal to the agent’s implicit marginal valuation/benefit

of the productive stock in the infinite horizon case.

12.4.1 Subgame Consistent Cooperative Provision

Consider the case when the agents agree to act cooperatively and seek higher gains.

They agree to maximize their expected joint gain and distribute the cooperative

gain according to the imputation vector

ξ Kð Þ ¼ ξ1 Kð Þ, ξ2 Kð Þ, � � �, ξn Kð Þ� 	
when the state isK: ð4:4Þ

To maximize their expected joint gains the agents maximize

max
I1 sð Þ, I2 sð Þ, ���, In sð Þf g

E

�Xn
j¼1

� ð1
0

Rj K sð Þ½ � � Cj Ij sð Þ� 	� �
e�rsds

��
ð4:5Þ

subject to dynamics (1.1).

Invoking stochastic dynamic programming techniques an optimal solution to the

stochastic control problem (1.1) and (4.5) can characterized by the following set of

equations (see Theorem A.4 in the Technical Appendices):

rW Kð Þ � 1

2
WKK Kð Þσ2K2

¼ max
I1, I2, ���, In

�Xn
j¼1

�
Rj Kð Þ � Cj Ij


 �� 	þWK Kð Þ

 Xn

j¼1

Ij � δK

� ��
: ð4:6Þ

In particular, W(K ) gives the maximized expected joint payoff of the n players at

time given that the level of technology is K. Let ψ�
j (K ), for j2N, denote the game

equilibrium investment strategy of agent i, the optimal trajectory of the public

goods can be expressed as:

dK sð Þ ¼
�Xn
j¼1

ψ j K sð Þð Þ � δK sð Þ
�
dsþ σK sð Þdz sð Þ; ð4:7Þ

for K 0ð Þ ¼ Ko,
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We use X* to denote the set of realizable values of K generated by (4.7). The

term K*2X* is used to denote an element in X*.
Following the analysis in Theorem 5.3 in Chap. 3, we formulate a Payoff

Distribution Procedure (PDP) so that the agreed-upon imputations (4.4) can be

realized. Let Bi(K*) denote the payment that agent i will received under the

cooperative agreement if K* is realized.

A theorem characterizing a formula for Bi(K*), for i2N, which yields (4.4) is

provided below.

Theorem 4.1 A PDP with an instantaneous payment equaling

Bi K
*


 � ¼ rξi K*

 �� ξ iK K*


 ��Xn
j¼1

ψ*
j K*

 �� δK*

�

� 1

2
σ2 K*

 �2

ξ iKK K*

 �

, for i2N, given that the state isK*2X* ð4:8Þ

would lead to the realization of the imputation ξ(K*) in (4.4).

Proof See Theorem 5.3 in Chap. 3. ■

Note that the payoff distribution procedure in Theorem 4.1 would give rise to the

agreed-upon imputation in (4.4) and therefore subgame consistency is satisfied.

When all agents are using the cooperative strategies and the state equals K*, the
payoff that player i will directly receive is

Ri K
*


 �� Ci ψ i K
*


 �� 	
:

However, according to the agreed upon imputation, agent i is to receive Bi(K*).
Therefore a transfer payment

ϖi K
*


 � ¼ Bi K
*


 �� Ri K
*


 �� Ci ψ i K
*


 �� 	� �
: ð4:9Þ

will be imputed to agent i2N.

12.4.2 Infinite Horizon Public Capital Goods Provision: An
Illustration

In this section we consider the infinite horizon game of public capital goods

provision in which the expected payoff to agent i2N is:

E

�ð1
0

αiK sð Þ � ci Ii sð Þ½ �2
n o

e�rsds

����K 0ð Þ ¼ K0

�
, for i2N: ð4:10Þ
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The accumulation dynamics of the public capital stock is governed by (2.1).

Setting up the corresponding Hamilton-Jacobi-Bellman equations according to

(4.2) and performing the maximization operator yields:

Ii ¼ V i
K Kð Þ
2ci

, for i2N:

The value functions which reflect the expected noncooperative payoffs of the

agents can be obtained as:

Proposition 4.1 The value function reflecting the expected noncooperative payoff

of agent i is:

Vi Kð Þ ¼ AiK þ Cið Þ, for i2N; ð4:11Þ

where Ai ¼ αi
r þ δð Þ, and

Ci ¼
� Xn

j¼1

AiAj

2cjr

�
� Aið Þ2

4cir
:

Proof Following the derivation of Proposition 2.1, one can obtain the value

function as in (4.11). ■

Consider the case when the agents agree to act cooperatively and seek higher

gains. They agree to maximize their expected joint gain and distribute the cooper-

ative gain proportional to their non-cooperative gains. To maximize their expected

joint gains the agents maximize

E

�ð1
0

Xn
j¼1

αjK sð Þ � cj Ij sð Þ� 	2n o
e�rsds

����K 0ð Þ ¼ K0

�
ð4:12Þ

subject to dynamics (2.1).

Performing the maximization operator in (4.12) yields:

Ii ¼ WK Kð Þ
2ci

, for i2N:

The value functionW(K ) which reflects the maximized expected joint profits of the

nwould lead to the realization of the imputation as:

Proposition 4.2
W Kð Þ ¼ AK þ C½ �; ð4:13Þ

where A ¼
Xn
j¼1

αj
rþδð Þ and C ¼

Xn
j¼1

Að Þ2
4cjr

:
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Proof Following the derivation of Proposition 2.2, one can obtain the value

function as in (4.13). ■

With the agents agreeing to distribute their gains proportional to their

non-cooperative gains, the imputation vector becomes

ξi K*

 � ¼ Vi K*


 �
Xn
j¼1

Vj K*

 �W K*


 � ¼ AiK þ Cið ÞXn
j¼1

AjK þ Cj


 � AK þ Cð Þ; ð4:14Þ

for i2N if the public capital stock is K*2X*.

To guarantee dynamical stability in a dynamic cooperation scheme, the solution

has to satisfy the property of subgame consistency which requires the satisfaction of

(4.14). Following Theorem 4.1 we can obtain the PDP that brings about a subgame

consistent solution with instantaneous payments:

Bi K
*


 � ¼ r AiK
* þ Ci


 �
Xn
j¼1

AjK
* þ Cj


 � AK* þ C

 �

� ξ iK K*

 ��Xn

j¼1

A

2cj
� δK*

�
� 1

2
σ2 K*

 �2

ξ iKK K*

 �

; ð4:15Þ

where

ξ iK K*

 � ¼

8>>><
>>>:

�

Ai AK

* þ C

 �þ AiK

* þ Ci


 �
A
	Xn
j¼1

AjK
* þ Cj


 �
Xn
j¼1

AjK
* þ Cj


 �" #2

�
AiK

* þ Ci


 �
AK* þ C

 �Xn

j¼1

Aj

Xn
j¼1

AjK
* þ Cj


 �" #2
9>>>=
>>>;
� Xn

j¼1

A

2cj
� δK*

�
, and

ξ iKK K*

 � ¼ dξ iK K*


 �
=dK;

for i2N if the public capital stock is K*2X*.

Therefore a transfer payment

ϖi K
*


 � ¼ Bi K
*


 �� αiK
* � A2=ci


 �� 	
will be imputed to agent i2N.
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12.5 Public Goods Provision Under Accumulation
and Payoff Uncertainties

This Section considers cooperative provision of public goods by asymmetric agents

in a discrete-time dynamic game framework with uncertainties in stock accumula-

tion dynamics and future payoff structures. One of the major hindrances for

dynamic cooperation in public goods provision is the uncertainty in the future

gains. This section resolves the problem with subgame consistent schemes. The

analytical framework and the non-cooperative outcome of public goods provision

are provided in Sect. 12.5.1. Details of a Pareto optimal cooperative scheme are

presented in Sect. 12.5.2. A payment mechanism ensuring subgame consistency is

derived in Sect. 12.5.3.

12.5.1 Analytical Framework and Non-cooperative Outcome

Consider the case of the provision of a public good in which a group of n agents

carry out a project by making contributions to the building up of the stock of a

productive public good. The game involves T stages of operation and after the

T stages each agent received a terminal payment in stageT þ 1. We use Kt to denote

the level of the productive stock and Iit the public capital investment by agent i at
stage t2 1; 2; � � �; Tf g. The stock accumulation dynamics is governed by the sto-

chastic difference equation:

Ktþ1 ¼ Kt þ
Xn
j¼1

I jt � δKt þ ϑt , K1¼1K0; ð5:1Þ

for t2 1; 2; � � �; Tf g,
where δ is the depreciation rate and ϑt is a sequence of statistically independent

random variables.

The payoff of agent i at stage t is affected by a random variable θt. In particular,
the payoff to agent i at stage t is

Ri Kt; θtð Þ � Ci I it ; θt

 �

, i2 1; 2; � � �; nf g ¼ N; ð5:2Þ

where Ri(Kt, θt) is the revenue/payoff to agent i, Ci(Iit, θt) is the cost of investing

I it 2Xi, and θt for t2 1; 2; � � �; Tf g are independent discrete random variables with

range θ1t ; θ
2
t ; � � �; θηtt

� �
and corresponding probabilities λ1t ; λ

2
t ; � � �; ληtt

� �
, where ηt is

a positive integer for t2 1; 2; � � �; Tf g. In stage 1, it is known that θ1 equals θ11 with

probability λ11 ¼ 1.

Marginal revenue product of the productive stock is positive, that is

∂Ri Kt; θtð Þ=∂Kt > 0, before a saturation level K has been reached; and marginal
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cost of investment is positive and non-decreasing, that is ∂Ci I it ; θt

 �

=∂I it
�
> 0 and

∂2
Ci I it ; θt

 �

=∂I it
2 � 0.

The objective of agent i2N is to maximize its expected net revenue over the

planning horizon, that is

Eθ1,θ2, ���,θT ;ϑ1,ϑ2, ���,ϑT

�XT
s¼1

Ri Ks; θsð Þ � Ci I is; θs

 �� 	

1þ rð Þ� s�1ð Þ

þ qi KTþ1ð Þ 1þ rð Þ�T

�
ð5:3Þ

subject to the stock accumulation dynamics (5.1),

where Eθ1,θ2, ���,θT ;ϑ1,ϑ2, ���,ϑT is the expectation operation with respect to the

random variables θ1, θ2, � � �, θT and ϑ1, ϑ2, � � �, ϑT ; r is the discount rate, and qi KTð Þ
� 0 is an amount conditional on the productive stock that agent i would receive at

stage T þ 1. Since there is no uncertainty in stage T þ 1, we use θ1Tþ1 to denote the

condition in stage T þ 1 with probability λ1Tþ1 ¼ 1.

To solve the game, we follow the analysis in Chap. 9 and begin with the

subgame starting at the last operating stage, that is stage T. If

θσTT 2 θ1T ; θ
2
T ; � � �; θηTT

� �
has occurred at stage T and the public capital stock is

KT ¼ K, the subgame becomes:

max
I iT

EϑT

�
Ri KT ; θ

σT
Tð Þ � Ci I iT ; θ

σT
T


 �� 	
1þ rð Þ� T�1ð Þ

þ qi KTþ1ð Þ 1þ rð Þ�T

�
, for i2N ð5:4Þ

subject to

KTþ1 ¼ KT þ
Xn
j¼1

I jT � δKT þ ϑT ,KT ¼ K: ð5:5Þ

The subgame (5.4 and 5.5) is a stochastic dynamic game. Invoking the standard

techniques for solving stochastic dynamic games, a characterization the feedback

Nash equilibrium is provided in the following lemma.

Lemma 5.1 A set of strategies ϕ σTð Þ*
T Kð Þ ¼ ϕ σTð Þ1*

T Kð Þ,ϕ σTð Þ2*
T Kð Þ, � � �� � �,ϕ σTð Þn*

T Kð Þ
n o

provides a Nash equilibrium solution to the subgame (5.4 and 5.5) if there exist

functions V σTð Þi t;Kð Þ, for i2N and t2 1; 2f g, such that the following conditions are

satisfied:
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V σTð Þi T;Kð Þ ¼ max
I iT

EϑT

�
Ri KT ; θ

σT
Tð Þ � Ci I iT ; θ

σT
T


 �� 	
1þ rð Þ� T�1ð Þ

þV σTþ1ð Þi T þ 1,K þ
Xn
j ¼ 1

j 6¼ i

ϕ σTð Þj*
T Kð Þ þ I iT � δK þ ϑT

2
66664

3
77775
�
,

V σTþ1ð Þi T þ 1,Kð Þ ¼ qi Kð Þ 1þ rð Þ�T ; for i2N ð5:6Þ

Proof The system of equations in (5.6) satisfies the standard stochastic dynamic

programming property and the Nash property for each agent i2N. Hence a Nash

equilibrium of the subgame (5.4 and 5.5) is characterized. Details of the proof of the

results can be found in Theorem 4.1 in Chap. 7. ■

Using Lemma 5.1, one can characterize the value functions V σTð Þi T;Kð Þ for all
σT 2 1; 2; � � �; ηTf g if they exist. In particular, V σTð Þi T;Kð Þ yields agent i’s expected
game equilibrium payoff in the subgame starting at stage T given thatθσTT occurs and

KT ¼ K.
Then we proceed to the subgame starting at stage T � 1 when

θσT�1

T�1 2 θ1T�1; θ
2
T�1; � � �; θηT�1

T�1

� �
occurs and KT�1 ¼ K. In this subgame agent i2N

seeks to maximize his expected payoff

EθT ;ϑT�1,ϑT

� XT
s¼T�1

Ri Ks; θsð Þ � Ci I is; θs

 �� 	

1þ rð Þ� s�1ð Þ

þ qi KTþ1ð Þ 1þ rð Þ�T

�

¼ EϑT�1

�
Ri KT�1; θ

σT�1

T�1


 �� Ci I iT�1; θ
σT�1

T�1


 �� 	
1þ rð Þ� T�2ð Þ

þ
XηT
σT¼1

λσTT Ri KT ; θ
σT
Tð Þ � Ci I iT ; θ

σT
T


 �� 	
1þ rð Þ� T�2ð Þ

þ qi KTþ1ð Þ 1þ rð Þ�T

�
; ð5:7Þ

subject to the capital accumulation dynamics

Ktþ1 ¼ Kt þ
Xn
j¼1

I jt � δKt þ ϑt,KT�1 ¼ K, for t2 T � 1, Tf g: ð5:8Þ
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If the functions V σTð Þi T;Kð Þ for all σT 2 1; 2; � � �; ηTf g characterized in Lemma 5.1

exist, the subgame (5.7 and 5.8) can be expressed as a game in which agent i seeks
to maximize the expected payoff

EϑT�1

�
Ri KT�1; θT�1ð Þ � Ci I iT�1; θT�1


 �� 	
1þ rð Þ� T�2ð Þ

þ
XηT
σT¼1

λσTT V σTð Þi T,KT�1 þ
Xn
j¼1

I jT�1 � δKT�1 þ ϑT�1

" #�
, for i2N; ð5:9Þ

using his control I iT�1.

A Nash equilibrium of the subgame (5.9) can be characterized by the following

lemma.

Lemma 5.2 A set of strategies

ϕ σT�1ð Þ*
T�1 Kð Þ ¼ ϕ σT�1ð Þ1*

T�1 Kð Þ,ϕ σT�1ð Þ2*
T�1 Kð Þ, � � �,ϕ σT�1ð Þn*

T�1 Kð Þ
n o

provides a Nash

equilibrium solution to the subgame (5.9) if there exist functions V σTð Þi T;KTð Þ for
i2N and σT ¼ 1; 2; � � �; ηTf g characterized in Lemma 5.1, and functions

V σT�1ð Þi T � 1,Kð Þ, for i2N, such that the following conditions are satisfied:

V σT�1ð Þi T�1,Kð Þ¼max
I iT�1

EϑT�1

�
Ri KT�1;θ

σT�1

T�1


 ��Ci I iT�1;θ
σT�1

T�1


 �� 	
1þ rð Þ� T�2ð Þ

þ
XηT
σT¼1

λσTT V σTð Þi T,Kþ
Xn
j¼ 1

j 6¼ i

ϕ σT�1ð Þj*
T�1 Kð Þþ I iT�1�δKþϑT�1

2
666664

3
777775
�
, for i2N:

ð5:10Þ

Proof The conditions in Lemma 5.1 and the system of equations in (5.10) satisfies

the standard discrete-time stochastic dynamic programming property and the Nash

property for each agent i2N. Hence a Nash equilibrium of the subgame (5.9) is

characterized. ■

Using Lemma 5.2, one can characterize the functions V σTð Þi T � 1,Kð Þ for all

θσT�1

T�1 2 θ1T�1; θ
2
T�1; � � �; θηT�1

T�1

� �
, if they exist. In particular, V σT�1ð Þi T � 1,Kð Þ yields

agent i’s expected game equilibrium payoff in the subgame starting at stage T � 1

given that θσT�1

T�1 occurs and KT�1 ¼ K.
Consider the subgame starting at stage t2 T � 2, T � 3, � � �, 1f g when

θσtt 2 θ1t ; θ
2
t ; � � �; θηtt

� �
occurs and Kt ¼ K, in which agent i2N maximizes his

expected payoff
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Eϑt

�
Ri K; θσtt

 �� Ci I it ; θ

σt
t


 �� 	
1þ rð Þ� t�1ð Þ

þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi tþ 1,K þ

Xn
j¼1

I jt � δK þ ϑt

" #�
, for i2N; ð5:11Þ

subject to the public capital accumulation dynamics

Ktþ1 ¼ Kt þ
Xn
j¼1

I jt � δKt þ ϑt,Kt ¼ K: ð5:12Þ

A Nash equilibrium solution for the game (5.1, 5.2 and 5.3) can be characterized by

the following theorem.

Theorem 5.1 A set of strategies ϕ σtð Þ*
t Kð Þ¼ ϕ σtð Þ1*

t Kð Þ,ϕ σtð Þ2*
t Kð Þ, � � �� � �,ϕ σtð Þn*

t Kð Þ
n o

;,

for σt2 1;2; � � �;ηtf g and t2 1;2; � � �;Tf g, constitutes a Nash equilibrium solution to

the game (5.1, 5.2 and 5.3) if there exist functions V σtð Þi t;Kð Þ, for σt2 1;2; � � �;ηtf g,
t2 1;2; � � �;Tf g and i2N, such that the following recursive relations are satisfied:

V σTð Þi T þ 1,Kð Þ ¼ qi KTþ1ð Þ 1þ rð Þ�T
,

V σtð Þi t;Kð Þ ¼ max
I it

Eϑt

�
Ri Kt; θ

σt
t


 �� Ci I it ; θ
σt
t


 �� 	
1þ rð Þ� t�1ð Þ

þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi tþ 1,K þ

Xn
j ¼ 1

j 6¼ i

ϕ σtð Þj*
t Kð Þ þ I it � δKt þ ϑt

2
66664

3
77775
�
,

for σt2 1; 2; � � �; ηtf g, t2 1; 2; � � �; Tf gand i2N: ð5:13Þ

Proof The results in (5.13) characterizing the game equilibrium in stage T and

stage T � 1 are proved in Lemma 5.1 and Lemma 5.2. Invoking the subgame in

stage t2 1, 2, � � �,T � 1f g as expressed in (5.11 and 5.12), the results in (5.13)

satisfy the optimality conditions in stochastic dynamic programming and the Nash

equilibrium property for each agent in each of these subgames. Therefore, a

feedback Nash equilibrium of the game (5.1, 5.2 and 5.3) is characterized. ■

Hence, the noncooperative outcome of the public capital provision game (5.1,

5.2 and 5.3) can be obtained.
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12.5.2 Optimal Cooperative Scheme

Now consider the case when the agents agree to cooperate and enhance their gains

from cooperation. In particular, they act cooperatively to maximize their expected

joint payoff and distribute the joint payoff among themselves according to an

agreed-upon optimality principle. If any agent deviates from the cooperation

scheme, all agents will revert to the noncooperative framework to counteract the

free-rider problem in public goods provision. As stated before, group optimality,

individual rationality and subgame consistency are three crucial properties that

sustainable cooperative scheme has to satisfy.

12.5.2.1 Pareto Optimal Provision

To fulfil group optimality the agents would seek to maximize their expected joint

payoff. In particular, they have to solve the discrete-time stochastic dynamic

programming problem of maximizing

Eθ1,θ2, ���,θT ;ϑ1,ϑ2, ���,ϑT

�Xn
j¼1

XT
s¼1

Rj Ks; θsð Þ � Cj I js; θs

 �� 	

1þ rð Þ� s�1ð Þ

þ
Xn
j¼1

qj KTþ1ð Þ 1þ rð Þ�T

�
ð5:14Þ

subject to dynamics (5.1).

To solve the dynamic programming problem (5.1) and (5.14), we first consider

the problem starting at stage T. If θσTT 2 θ1T ; θ
2
T ; � � �; θηTT

� �
has occurred at stage T and

the state KT ¼ K, the problem becomes:

max
I1T , I

2
T , ���, I nT

EϑT

�Xn
j¼1

Rj K; θσTTð Þ � Cj I jT ; θ
σT
T

� �h i
1þ rð Þ� T�1ð Þ

þ
Xn
j¼1

qj KTþ1ð Þ 1þ rð Þ�T

�
; ð5:15Þ

subject to KTþ1 ¼ KT ¼
Xn
j¼1

I jT � δKT þ ϑT ,KT ¼ K: ð5:16Þ

A characterization of an optimal solution to the stochastic control problem (5.15

and 5.16) is provided in the following lemma.
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Lemma 5.3 A set of controls I
σTð Þ*
T ¼ψ σTð Þ*

T Kð Þ¼ ψ σTð Þ1*
T Kð Þ,ψ σTð Þ2*

T Kð Þ, � � �� � �,ψ σTð Þn*
T Kð Þ

n o
provides an optimal solution to the stochastic control problem (5.15 and 5.16) if

there exist functions W σTþ1ð Þ T;Kð Þ such that the following conditions are satisfied:

W σTð Þ T;Kð Þ

¼ max
I

σTð Þ1
T

, I σTð Þ2
T

, ���, I σTð Þn
T

EϑT

�Xn
j¼1

Rj K; θσTTð Þ � Cj I jT ; θ
σT
T

� �h i
1þ rð Þ� T�1ð Þ

þ
Xn
j¼1

qj



K þ
Xn
h¼1

I hT � δK þ ϑT

�
1þ rð Þ�T

�
,

W σTþ1ð Þi T þ 1,Kð Þ ¼
Xn
j¼1

qj Kð Þ 1þ rð Þ�T : ð5:17Þ

Proof The system of equations in (5.17) satisfies the standard discrete-time sto-

chastic dynamic programming property. See Theorem A.6 in the Technical Appen-

dices for details of the proof of the results. ■

Using Lemma 5.3, one can characterize the functions W σTð Þ T;Kð Þ for all

θσTT 2 θ1T ; θ
2
T ; � � �; θηTT

� �
, if they exist. In particular, W σTð Þ T;Kð Þ yields the expected

cooperative payoff starting at stage T given that θσTT occurs and KT ¼ K.
Following the analysis in Sect. 12.5.1, the control problem starting at stage

t when θσtt 2 θ1t ; θ
2
t ; � � �; θηtt

� �
occurs and Kt ¼ K can be expressed as:

max
I
σtð Þ1
t , I σtð Þ2

t , ���, I σtð Þn
t

Eϑt

�Xn
j¼1

Rj K; θσtt

 �� Cj I jt ; θ

σt
t

� �h i
1þ rð Þ� t�1ð Þ

þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1W
σtþ1ð Þ



tþ 1,K þ
Xn
h¼1

I ht � δK þ ϑt

��
; ð5:18Þ

where W σtþ1ð Þ



tþ 1,K þ
Xn
h¼1

I ht � δK þ ϑt

�
is the expected optimal cooperative

payoff in the control problem starting at stage tþ 1 when

θσtþ1

tþ1 2 θ1tþ1; θ
2
tþ1; � � �; θηtþ1

tþ1

� �
occurs.

An optimal solution for the stochastic control problem (5.14) can be character-

ized by the following theorem.

Theorem 5.2 A set of controls ψ σtð Þ*
t Kð Þ¼ ψ σtð Þ1*

t Kð Þ,ψ σtð Þ2*
t Kð Þ, � � �� � �,ψ σtð Þn*

t Kð Þ
n o

, for

σt2 1;2; � � �;ηtf g and t2 1;2; � � �;Tf g provides an optimal solution to the stochastic

control problem (5.1) and (5.14) if there exist functions W σtð Þ t;Kð Þ, for
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σt2 1;2; � � �;ηtf g and t2 1;2; � � �;Tf g, such that the following recursive relations are

satisfied:

W σTð Þ T þ 1,Kð Þ ¼
Xn
j¼1

qj Kð Þ 1þ rð Þ�T
,

W σTð Þ t;Kð Þ ¼
max

I
σtð Þ1
t , I σtð Þ2

t , ���, I σtð Þn
t

Eϑt

�Xn
j¼1

Rj K; θσtt

 �� Cj I jt ; θ

σt
t

� �h i
1þ rð Þ� t�1ð Þ

þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1W
σtþ1ð Þ



tþ 1,K þ
Xn
h¼1

I ht � δK þ ϑt

��
; ð5:19Þ

for σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g.
Proof Invoking Lemma 5.3 and the specification of the control problem starting in

stage t2 1, 2, � � �,T � 1f g as expressed in (5.18), the results in (5.19) satisfy the

optimality conditions in discrete-time stochastic dynamic programming. Therefore, an

optimal solution of the stochastic control problem is characterized in Theorem 5.2. ■

Substituting the optimal control
�
ψ σtð Þi*
t Kð Þ, for t2 1, 2, � � �Tf g and i2N

�
into

(5.1), one can obtain the dynamics of the cooperative trajectory of public capital

accumulation as:

Ktþ1 ¼ Kt þ
Xn
j¼1

ψ σtð Þj*
t Ktð Þ � δKt þ ϑt, K1¼1K if θσtt occurs at stage t; ð5:20Þ

for t2 1; 2; � � �; Tf g, σt2 1; 2; � � �; ηtf g
We use X�

t to denote the set of realizable values of Kt at stage t generated by

(5.20). The term K*
t 2X*

t is used to denote an element in X�
t .

The termW σtð Þ t;K*
t


 �
gives the expected total cooperative payoff over the stages

from t to T if θσtt occurs and K*
t 2X*

t is realized at stage t.

12.5.2.2 Individually Rational Condition

The agents then have to agree to an optimality principle in distributing the total

cooperative payoff among themselves. For individual rationality to be upheld the

expected payoffs an agent receives under cooperation have to be no less than his

expected noncooperative payoff along the cooperative state trajectory K*
t

� � Tþ1

t¼1
.

Let ξ σtð Þ t;K*
t


 � ¼ ξ σtð Þ1 t;K*
t


 �
, ξ σtð Þ2 t;K*

t


 �
, � � �, ξ σtð Þn t;K*

t


 �� 	
denote the imputation

vector guiding the distribution of the total expected cooperative payoff under the
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agreed-upon optimality principle along the cooperative trajectory given that θσtt has

occurred in stage t, for σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g.
If for example, the optimality principle specifies that the agents share the

expected total cooperative payoff proportional to their non-cooperative payoffs,

then the imputation to agent i becomes:

ξ σtð Þi t;K*
t


 � ¼ V σtð Þi t;K*
t


 �
Xn
j¼1

V σtð Þj t;K*
t


 �W σtð Þ t;K*
t


 �
; ð5:21Þ

for i2N, σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g.
For individual rationality to be guaranteed in every stage k2 1; 2; � � �; Tf g, it is

required that the imputation satisfies:

ξ σtð Þi t;K*
t


 � � V σtð Þi t;K*
t


 �
; ð5:22Þ

for i2N, σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g.
To ensure group optimality, the imputation vector has to satisfy

W σtð Þ t;K*
t


 � ¼Xn
j¼1

ξ σtð Þj t;K*
t


 �
; ð5:23Þ

for σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g.
Hence, a valid imputation scheme ξ σtð Þi t;K*

t


 �
, for i2N and σt2 1; 2; � � �; ηtf g and

t2 1; 2; � � �; Tf g, has to satisfy conditions (5.22) and (5.23).

12.5.3 Subgame Consistent Payment Mechanism

To guarantee dynamical stability in a stochastic dynamic cooperation scheme, the

solution has to satisfy the property of subgame consistency in addition to group

optimality and individual rationality. For subgame consistency to be satisfied, the

imputation according to the original optimality principle has to be maintained in all

the T stages along the cooperative trajectory K*
t

� �T

t¼1
. In other words, the

imputation

ξ σtð Þ t;K*
t


 � ¼ ξ σtð Þ1 t;K*
t


 �
, ξ σtð Þ2 t;K*

t


 �
, � � �, ξ σtð Þn t;K*

t


 �h i
ð5:24Þ

has to be upheld for σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g and K*
t 2X*

t .
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12.5.3.1 Payoff Distribution Procedure

We first formulate a Payoff Distribution Procedure (PDP) so that the agreed-upon

imputation (5.24) can be realized. LetB
σtð Þi
t K*

t


 �
denote the payment that agent iwill

received at stage t under the cooperative agreement if θσtt 2 θ1t ; θ
2
t ; � � �; θηtt

� �
occurs

andK*
t 2X*

t is realized at stage t2 1; 2; � � �; Tf g. The payment scheme
�
B

σtð Þi
t K*

t


 �
for

i2N contingent upon the event θσtt and state K�
t , for t2 1; 2; � � �; Tf g� constitutes a

PDP in the sense that the imputation to agent i over the stages 1 to T can be

expressed as:

ξ σ1ð Þi 1;K0

 � ¼ B

σ1ð Þi
1 K0

 �

þEθ2, ���,θT ;ϑ1,ϑ2, ���,ϑT


 XT
ζ¼2

B
σζð Þi
ζ K*

ζ

� �
þ qi K*

Tþ1


 �
1þ rð Þ�T

�
; ð5:25Þ

for i2N.
Moreover, according to the agreed-upon optimality principle in (5.24), if θσtt

occurs and K*
t 2X*

t is realized at stage t the imputation to agent i is ξ σtð Þi t;K*
t


 �
.

Therefore the payment scheme B
σtð Þ
t K*

t


 �
has to satisfy the conditions

ξ σtð Þi t;K*
t


 � ¼ B
σtð Þi
t K*

t


 �
þEθtþ1,θtþ2, ���,θT ;ϑt,ϑtþ1, ���,ϑT


 XT
ζ¼tþ1

B
σζð Þi
ζ K*

ζ

� �
þ qi K*

Tþ1


 �
1þ rð Þ�T

�
ð5:26Þ

for i2N and all t2 1; 2; � � �; Tf g.
For notational convenience the term ξ σTþ1ð Þi T þ 1,K*

Tþ1


 �
is used to denote

qi K*
Tþ1


 �
1þ rð Þ�T

. Crucial to the formulation of a subgame consistent solution is

the derivation of a payment scheme
�
B

σtð Þi
t K*

t


 �
, for i2N, σt2 1; 2; � � �; ηtf g, K*

t

2X*
t and t2 1; 2; � � �; Tf g � so that the imputation in (5.26) can be realized.

A theorem for the derivation of a subgame consistent payment scheme can be

established as follows.

Theorem 5.3 A payment equaling

B
σtð Þi
t K*

t


 � ¼ 1þ rð Þ t�1ð Þ
�
ξ σtð Þi t;K*

t


 �
�Eϑt

� Xηtþ1

σtþ1¼1

λσtþ1

tþ1



ξ σtþ1ð Þi tþ 1,K*

t þ
Xn
h¼1

ψ σtð Þh*
t K*

t


 �� δK*
t þ ϑt

" #���
; ð5:27Þ

given to agent i2N at stage t2 1; 2; � � �; Tf g, if θσtt occurs and K*
t 2X*

t , leads to the

realization of the imputation in (5.26).
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Proof To construct the proof of Theorem 5.3, we first express the term

Eθtþ1,θtþ2, ���,θT ;ϑt,ϑtþ1, ���,ϑT


 XT
ζ¼tþ1

B
σζð Þi
ζ K*

ζ

� �
1þ rð Þ� ζ�1ð Þþqi K*

Tþ1


 �
1þ rð Þ�T

�

¼ Eϑtþ1

� Xηtþ1

σtþ1¼1

λσtþ1

tþ1

�
B

σtþ1ð Þi
tþ1 K*

tþ1


 �
1þ rð Þ� t�1ð Þ

þ Eθtþ2,θtþ3, ���,θT ;ϑtþ2,ϑtþ3, ���,ϑT


 XT
ζ¼tþ2

B
σζð Þi
ζ K*

ζ

� �
1þ rð Þ� ζ�1ð Þ

þ qi K*
Tþ1


 �
1þ rð Þ�T

� � �
ð5:28Þ

Then, using (5.26) we can express the term ξ σtþ1ð Þi tþ 1,K*
tþ1


 �
as

ξ σtþ1ð Þi tþ 1,K*
tþ1


 � ¼ B
σtþ1ð Þi
tþ1 K*

tþ1


 �
1þ rð Þ�t

þEθtþ2,θtþ3, ���,θT ;ϑtþ2,ϑtþ3, ���,ϑT


 XT
ζ¼tþ2

B
σζð Þi
ζ K*

ζ

� �
þ qi K*

Tþ1


 �
1þ rð Þ�T

�
: ð5:29Þ

The expression on the right-hand-side of equation (5.29) is the same as the

expression inside the square brackets of (5.28). Invoking equation (5.29) we can

replace the expression inside the square brackets of (5.28) by ξ σtþ1ð Þi tþ 1,K*
tþ1


 �
and obtain:

Eθtþ1,θtþ2, ���,θT ;ϑt,ϑtþ1, ���,ϑT


 XT
ζ¼tþ1

B
σζð Þi
ζ K*

ζ

� �
1þ rð Þ� ζ�1ð Þ þ qi K*

Tþ1


 �
1þ rð Þ�T

�

¼ Eϑt

� Xηtþ1

σtþ1¼1

λσtþ1

tþ1



ξ σtþ1ð Þi tþ 1,K*

tþ1


 � � �

¼ Eϑt

� Xηtþ1

σtþ1¼1

λσtþ1

tþ1



ξ σtþ1ð Þi tþ 1,K*

t þ
Xn
h¼1

ψ σtð Þh*
t K*

t


 �� δK*
t þ ϑt

" # � �
.

Substituting the term

Eθtþ1,θtþ2, ���,θT ;ϑt,ϑtþ1, ���,ϑT


 XT
ζ¼tþ1

B
σζð Þi
ζ K*

ζ

� �
1þ rð Þ� ζ�1ð Þ þ qi K*

Tþ1


 �
1þ rð Þ�T

�

by Eϑt

� Xηtþ1

σtþ1¼1

λσtþ1

tþ1



ξ σtþ1ð Þi tþ 1,K*

t þ
Xn
h¼1

ψ σtð Þh*
t K*

t


 �� δK*
t þ ϑt

" # � �
in (5.26)

we can express (5.26) as:
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ξ σtð Þi t;K*
t


 � ¼ B
σtð Þi
t K*

t


 �
1þ rð Þ� t�1ð Þ

þEϑt

� Xηtþ1

σtþ1¼1

λσtþ1

tþ1



ξ σtþ1ð Þi tþ 1,K*

t þ
Xn
h¼1

ψ σtð Þh*
t K*

t


 �� δK*
t þ ϑt

" # � �
:

ð5:30Þ

For condition (5.30), which is an alternative form of (5.26), to hold it is required

that:

B
σtð Þi
t K*

t


 � ¼ 1þ rð Þ t�1ð Þ
�

ξ σtð Þi t;K*
t


 �
�Eϑt

� Xηtþ1

σtþ1¼1

λσtþ1

tþ1



ξ σtþ1ð Þi tþ 1,K*

t þ
Xn
h¼1

ψ σtð Þh*
t K*

t


 �� δK*
t þ ϑt

" # � � �
;

ð5:31Þ

for i2N and t2 1; 2; � � �; Tf g.
Therefore by payingB

σtð Þi
t K*

t


 �
to agent i2N at stage t2 1; 2; � � �; Tf g, ifθσtt occurs

and K*
t 2X*

t is realized, leads to the realization of the imputation in (5.26). Hence

Theorem 5.3 follows. ■

For a given imputation vector

ξ σtð Þ t;K*
t


 � ¼ ξ σtð Þ1 t;K*
t


 �
, ξ σtð Þ2 t;K*

t


 �
, � � �, ξ σtð Þn t;K*

t


 �h i
;

for σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g, Theorem 5.3 can be used to derive the

PDP that leads to the realization this vector.

12.5.3.2 Transfer Payments

When all agents are using the cooperative strategies given that K*
t 2X*

t , and θσtt
occur, the payoff that agent i will directly receive at stage t becomes

Ri K*
t ; θ

σt
t


 �� Ci ψ σtð Þi*
t K*

t


 �
, θσtt

� �h i
1þ rð Þ� t�1ð Þ ð5:32Þ

However, according to the agreed upon imputation, agent i is supposed to receive

B
σtð Þi
t K*

t


 �
at stage t as given in Theorem 5.3. Therefore a transfer payment (which

can be positive or negative)
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ϖ σtð Þi
t K*

t


 � ¼ B
σtð Þi
t K*

t


 �� Ri K*
t ; θ

σt
t


 �� Ci ψ σtð Þi*
t K*

t


 �
, θσtt

� �h i
1þ rð Þ� t�1ð Þ;

ð5:33Þ

for t2 1; 2; � � �; Tf g and i2N,

will be assigned to agent i to yield the cooperative imputation ξ σtð Þ t;K*
t


 �
.

12.6 An Illustration

In this section, we provide an illustration of the derivation of a subgame con-

sistent solution of public goods provision under accumulation and payoff uncer-

tainties in a multiple asymmetric agents situation. The basic game structure is a

discrete-time analog of an example in Yeung and Petrosyan (2013b) but with

the crucial addition of uncertain future payoff structures to reflect probable

changes in preferences, technologies, demographic structures and institutional

arrangements.

12.6.1 Public Capital Build-up Amid Uncertainties

We consider an n asymmetric agents economic region in which the agents receive

benefits from an existing public capital stock Kt at each stage t2 1; 2; � � �; Tf g. The
accumulation dynamics of the public capital stock is governed by the stochastic

difference equation:

Ktþ1 ¼ Kt þ
Xn
j¼1

I jt � δKt þ ϑt , K1¼1K0, for t2 1; 2; 3f g; ð6:1Þ

where ϑt is a discrete random variable with non-negative range {ϑ1t ,ϑ
2
t ,ϑ

3
t } and

corresponding probabilities {γ1t , γ
2
t , γ

3
t }, and

X3
j¼1

γ jtϑ
j
t ¼ ϖt > 0.

At stage 1, it is known that θσ11 ¼ θ11 has happened with probability λ11 ¼ 1, and

the payoff of agent i is

α σ1ð Þi
1 K1 � c

σ1ð Þi
1 I i1

 �2

;
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At stage t2 2; 3f g, the payoff of agent i is

α σtð Þi
t Kt � c

σtð Þi
t I it

 �2

;

if θσtt 2 θ1t ; θ
2
t ; θ

3
t ; θ

4
t

� �
occurs.

In particular, α σtð Þi
t Kt gives the gain that agent i derives from the public capital at

stage t2 1; 2; 3f g, and c
σtð Þi
t I it

 �2

is the cost of investing Iit in the public capital.

The probability that θσtt 2 θ1t ; θ
2
t ; θ

3
t ; θ

4
t

� �
will occur at stage t2 2; 3f g is

λσtt 2 λ1t ; λ
2
t ; λ

3
t ; λ

4
t

� �
. In stage 4, a terminal payment contingent upon the size of

the capital stock equaling qiK4 þ mið Þ 1þ rð Þ�3
will be paid to agent i. Since there is

no uncertainty in stage 4, we use θ14 to denote the condition in stage 4 with

probability λ14 ¼ 1.

The objective of agent i2N is to maximize the expected payoff:

Eθ1,θ2,θ3;ϑ1,ϑ2,ϑ3

� X3
τ¼1

α στð Þi
τ Kτ � c στð Þi

τ I iτ

 �2h i

1þ rð Þ� τ�1ð Þ

þ qiK4 þ mið Þ 1þ rð Þ�3

�
; ð6:2Þ

subject to the public capital accumulation dynamics (6.1).

The noncooperative outcome will be examined in the next subsection.

12.6.2 Noncooperative Outcome

Invoking Theorem 5.1, one can characterize the noncooperative Nash equilibrium

strategies for the game (6.1 and 6.2) as follows. In particular, a set of strategies�
I
σtð Þi*
t ¼ ϕ σtð Þi*

t Kð Þ, for σ12 1f g, σ2, σ32 1; 2; 3; 4f g, t2 1; 2; 3f g and i2N
�

pro-

vides a Nash equilibrium solution to the game (6.1 and 6.2) if there exist functions

V σtð Þi t;Kð Þ, for i2N and t2 1; 2; 3f g, such that the following recursive relations are

satisfied:
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V σtð Þi t;Kð Þ¼max
I it

Eϑt

�
α σtð Þi
t K�c

σtð Þi
t I it

 �2h i

1þrð Þ� t�1ð Þ

þ
X4
σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi tþ1,Kþ

Xn
j¼1

j 6¼ i

ϕ σtð Þj*
t Kð Þþ I it �δKþϑt

2
66664

3
77775
�

¼max
I it

�
α σtð Þi
t K�c

σtð Þi
t I it

 �2h i

1þrð Þ� t�1ð Þ

þ
X3
y¼1

γ yt
X4
σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi tþ1,Kþ

Xn
j¼1

j 6¼ i

ϕ σtð Þj*
t Kð Þþ I it �δKþϑ y

t

2
66664

3
77775
�
,

for t2 1;2;3f g; ð6:3Þ
V σ4ð Þi 4;Kð Þ ¼ qiK þ mi


 �
1þ rð Þ�3: ð6:4Þ

Performing the indicated maximization in (6.3) yields:

I it ¼ ϕ σtð Þi*
t Kð Þ

¼ 1þ rð Þt�1

2c
σtð Þi
t

X3
y¼1

γ yt
X4
σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi
Ktþ1

tþ 1,K þ
Xn
j¼1

ϕ σtð Þj*
t Kð Þ � δK þ ϑ y

t

" #
;

ð6:5Þ

for i2N, t2 1; 2; 3f g, σ1 ¼ 1, and στ2 1; 2; 3; 4f g for τ2 2; 3f g.
The game equilibrium payoffs of the agents can be obtained as:

Proposition 6.1 The value function which represents the expected payoff of

agent i is:

V σtð Þi t;Kð Þ ¼ A
σtð Þi
t K þ C

σtð Þi
t

h i
1þ rð Þ� t�1ð Þ; ð6:6Þ

for i2N, t2 1; 2; 3f g, σ1 ¼ 1; and στ2 1; 2; 3; 4f g for τ2 2; 3f g;
where

A
σ3ð Þi
3 ¼ α σ3ð Þi

3 þ qi 1� δð Þ 1þ rð Þ�1
, and
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C
σ3ð Þi
3 ¼ � qið Þ2 1þ rð Þ�2

4c
σ3ð Þi
3

þ
2
4 qi

Xn
j¼1

qj 1þ rð Þ�1

2c
σ3ð Þj
3

þ qiϖ3 þ mi

3
5 1þ rð Þ�1;

A
σ2ð Þi
2 ¼ α σ2ð Þi

2 þ
X4
σ3¼1

λσ33 A
σ3ð Þi
3 1� δð Þ 1þ rð Þ�1

, and

C
σ2ð Þi
2 ¼ � 1

4c
σ2ð Þi
2

0
@ X4

σ3¼1

λσ33 A
σ3ð Þi
3

� �
1þ rð Þ�1

1
A

2

þ
X4
σ3¼1

λσ33

2
4 A

σ3ð Þi
3

0
@Xn

j¼1

X4
ρ3¼1

λρ33
A

ρ3ð Þj
3 1þ rð Þ�1

2c
σ2ð Þj
2

þϖ2

1
Aþ C

σ3ð Þi
3

3
5 1þ rð Þ�1

9=
;;

A
σ1ð Þi
1 ¼ α σ1ð Þi

1 þ
X4
σ2¼1

λσ22 A
σ2ð Þi
2 1� δð Þ 1þ rð Þ�1

, and

C
σ1ð Þi
1 ¼ � 1

4c
σ1ð Þi
1

0
@ X4

σ2¼1

λσ22 A
σ2ð Þi
2

� �
1þ rð Þ�1

1
A

2

þ
X4
σ2¼1

λσ22

2
4 A

σ2ð Þi
2

0
@Xn

j¼1

X4
ρ2¼1

λρ22
A

ρ2ð Þj
2 1þ rð Þ�1

2c
σ1ð Þj
1

þϖ1

1
Aþ C

σ2ð Þi
2

3
5 1þ rð Þ�1

9=
;;

for i2N.

Proof See Appendix D. ■

Substituting the relevant derivatives of the value functions V σtð Þi t;Kð Þ in Prop-

osition 6.1 into the game equilibrium strategies (6.5) yields a noncooperative Nash

equilibrium solution of the game (6.1 and 6.2).

12.6.3 Cooperative Provision of Public Capital

Now we consider the case when the agents agree to cooperate and seek to enhance

their gains. They agree to maximize their expected joint gain and distribute the

cooperative gain proportional to their expected non-cooperative gains. The agents

would first maximize their expected joint payoff
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Eθ1,θ2,θ3;ϑ1,ϑ2,ϑ3

� Xn
j¼1

X3
τ¼1

α στð Þj
τ Kτ � c στð Þj

τ I jτ

 �2h i

1þ rð Þ� τ�1ð Þ

þ
Xn
j¼1

qjK4 þ mjð Þ 1þ rð Þ�3

�
; ð6:7Þ

subject to the stochastic dynamics (6.1).

Invoking Theorem 5.2, one can characterize the solution of the stochastic

dynamic programming problem (6.1) and (6.7) as follows. In particular, a set of

control strategies
�
u

σtð Þi*
t ¼ ψ σtð Þi*

t Kð Þ, for t2 1; 2; 3f g and

i2N, σ1 ¼ 1, στ2 1; 2; 3; 4f g for τ2 2; 3f g�, provides an optimal solution to the

problem (6.1) and (6.7) if there exist functionsW σtð Þ t;Kð Þ, for t2 1; 2; 3f g, such that
the following recursive relations are satisfied:

W σtð Þ t;Kð Þ ¼ max
I1t , I2t ���, I nt

Eϑt

( Xn
j¼1

α σtð Þj
t K � c

σtð Þj
t I jt

� �2� �
1þ rð Þ� t�1ð Þ

þ
X4
σtþ1¼1

λσtþ1

tþ1W
σtþ1ð Þ tþ 1,K þ

Xn
j¼1

I jt � δK þ ϑt

" # )

¼ max
I it

( Xn
j¼1

α σtð Þj
t K � c

σtð Þj
t I jt

� �2� �
1þ rð Þ� t�1ð Þ

þ
X3
y¼1

γ yt
X4
σtþ1¼1

λσtþ1

tþ1W
σtþ1ð Þi tþ 1,K þ

Xn
j¼1

I jt � δK þ ϑ y
t

" # )
,

for t2 1; 2; 3f g; ð6:8Þ
W σ4ð Þ 4;Kð Þ ¼

Xn
j¼1

qjK þ mj

 �

1þ rð Þ�3 ð6:9Þ

Performing the indicated maximization in (6.8) yields:

I it ¼ψ σtð Þi*
t Kð Þ

¼ 1þrð Þt�1

2c
σtð Þi
t

X3
y¼1

γ yt
X4
σtþ1¼1

λσtþ1

tþ1W
σtþ1ð Þ
Ktþ1

tþ1,Kþ
Xn
j¼1

ψ σtð Þj*
t Kð Þ�δKþϑ y

t

" #
; ð6:10Þ

for i2N, t2 1; 2; 3f g, σ1 ¼ 1, and στ2 1; 2; 3; 4f g for τ2 2; 3f g.
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The expected joint payoff under cooperation can be obtained as:

Proposition 6.2 The value function which represents the expected joint payoff is

W σtð Þ t;Kð Þ ¼ A
σtð Þ
t K þ C

σtð Þ
t

h i
1þ rð Þ� t�1ð Þ; ð6:11Þ

for t2 1; 2; 3f g, σ1 ¼ 1, and στ2 1; 2; 3; 4f g for τ2 2; 3f g;
where

A
σ3ð Þ
3 ¼

Xn
j¼1

α σ3ð Þj
3 þ

Xn
j¼1

qj 1� δð Þ 1þ rð Þ�1
, and

C
σ3ð Þ
3 ¼ �

Xn
j¼1

Xn

h¼1
qh 1þ rð Þ�1

� � 2

4c
σ3ð Þj
3

þ
Xn
j¼1

"
qj

 Xn
‘¼1

X n

h¼1
qh 1þ rð Þ�1

2c
σ3ð Þ‘
3

þϖ3

!
þ mj

#
1þ rð Þ�1;

A
σ2ð Þ
2 ¼

Xn
j¼1

α σ2ð Þj
2 þ

X4
σ3¼1

λσ33 A
σ3ð Þ
3 1� δð Þ 1þ rð Þ�1

, and

C
σ2ð Þ
2 ¼ �

Xn
j¼1

1

4c
σ2ð Þj
2

 X4
σ3¼1

λσ33 A
σ3ð Þ
3 1þ rð Þ�1

!2

þ
X4
σ3¼1

λσ33

"
A

σ3ð Þi
3

 Xn
j¼1

X4
ρ3¼1

λρ33
A

ρ3ð Þj
3 1þ rð Þ�1

2c
σ2ð Þj
2

þϖ2

!
þ C

σ3ð Þi
3

#
1þ rð Þ�1

)
;

A
σ1ð Þ
1 ¼

Xn
j¼1

α σ1ð Þj
1 þ

X4
σ2¼1

λσ22 A
σ2ð Þ
2 1� δð Þ 1þ rð Þ�1

, and

C
σ1ð Þ
1 ¼ �

Xn
j¼1

1

4c
σ1ð Þj
1

 X4
σ2¼1

λσ22 A
σ2ð Þ
2 1þ rð Þ�1

!2

þ
X4
σ2¼1

λσ22

"
A

σ2ð Þ
2

 Xn
j¼1

X4
ρ2¼1

λρ22
A

ρ2ð Þ
2 1þ rð Þ�1

2c
σ1ð Þj
1

þϖ1

!
þ C

σ2ð Þ
2

#
1þ rð Þ�1

)
:

Proof Follow the proof of Proposition 6.1. ■

Using (6.10) and Proposition 6.2, the optimal cooperative strategies of the agents

can be obtained as:
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ψ σ3ð Þi*
3 Kð Þ ¼

Xn

h¼1
qh 1þ rð Þ�1

2c
σ3ð Þi
3

,

ψ σ2ð Þi*
2 Kð Þ ¼

X4
σ3¼1

λσ33
A

σ3ð Þ
3 1þ rð Þ�1

2c
σ2ð Þi
2

,

ψ σ1ð Þi*
1 Kð Þ ¼

X4
σ2¼1

λσ22
A

σ2ð Þ
2 1þ rð Þ�1

2c
σ1ð Þi
1

, for i2N: ð6:12Þ

Substituting ψ σtð Þi*
t Kð Þ from (6.12) into (6.1) yields the optimal cooperative accu-

mulation dynamics:

Ktþ1 ¼ Kt þ
Xn
j¼1

X4
σtþ1¼1

λσtþ1

tþ1

A
σtþ1ð Þ
tþ1 1þ rð Þ�1

2c
σtð Þj
t

� δKt þ ϑt , K1¼1K0; ð6:13Þ

if θσtt occurs at stage t, for t2 1; 2; 3f g.

12.6.4 Subgame Consistent Cooperative Solution

Given that the agents agree to share the cooperative gain proportional to their

expected non-cooperative payoffs, an imputation

ξ σtð Þi t;K*
t


 �¼ V σtð Þi t;K*
t


 �
Xn
j¼1

V σtð Þj t;K*
t


 �W σtð Þ t;K*
t


 �

¼
A

σtð Þi
t K*

t þC
σtð Þi
t

h i
Xn
j¼1

A
σtð Þi
t K*

t þC
σtð Þi
t

h i A
σtð Þ
t K*

t þC
σtð Þ
t

h i
1þrð Þ� t�1ð Þ

, for i2N; ð6:14Þ

if θσtt occurs at stage t for t2 1; 2; 3f g has to be maintained.

Invoking Theorem 5.3, if θσtt occurs and K*
t 2X*

t is realized at stage t a payment

equaling
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B
σtð Þi
t K*

t


 �¼ 1þrð Þ t�1ð Þ
�
ξ σtð Þi t;K*

t


 �

�
�X3

y¼1

γ yt
Xηtþ1

σtþ1¼1

λσtþ1

tþ1



ξ σtþ1ð Þi�tþ1,K*

t þ
Xn
h¼1

ψ σtð Þh*
t K*

t


 ��δK*
t þϑ y

t

�� �

¼
A

σtð Þi
t K*

t þC
σtð Þi
t

h i
Xn
j¼1

A
σtð Þi
t K*

t þC
σtð Þi
t

h i A
σtð Þ
t K*

t þC
σtð Þ
t

h i

�
X3
y¼1

γ yt
Xηtþ1

σtþ1¼1

λσtþ1

tþ1

A
σtþ1ð Þi
tþ1 Ktþ1 σtþ1;ϑ

y
tð ÞþC

σtþ1ð Þi
tþ1

h i
Xn
j¼1

A
σtþ1ð Þi
tþ1 Ktþ1 σtþ1;ϑ

y
tð ÞþC

σtþ1ð Þi
tþ1

h i
�
A

σtþ1ð Þ
tþ1 Ktþ1 σtþ1;ϑ

y
tð Þ

þC
σtð Þ
tþ1

�
1þrð Þ�1; ð6:15Þ

where Ktþ1 σtþ1; ϑ
y
tð Þ ¼ K*

t þ
Xn
j¼1

X4
σtþ1¼1

λσtþ1

tþ1

A
σtþ1ð Þ

tþ1
1þrð Þ�1

2c
σtð Þj
t

� δK*
t þ ϑ y

t ;

given to agent i at stage t2 1; 2; 3f g if θσtt occurs would lead to the realization of the

imputation (6.14).

A subgame consistent solution and the corresponding payment schemes can be

obtained using Propositions 5.1 and 5.2 and conditions (6.12, 6.13, 6.14 and 6.15).

Finally, since all agents are adopting the cooperative strategies, the payoff that

agent i will directly receive at stage t is

α σtð Þi
t K*

t �
1

4c
σtð Þi
t


 X4
σtþ1¼1

λσtþ1

tþ1A
σtþ1ð Þ
tþ1 1þ rð Þ�1

�2

; ð6:16Þ

if θσtt occurs at stage t.
However, according to the agreed upon imputation, agent i is supposed to

receive ξ σtð Þi t;K*
t


 �
in (6.15), therefore a transfer payment (which can be positive

or negative) equalling

π σtð Þi t;K*
t


 � ¼ ξ σtð Þi t;K*
t


 �� α σtð Þi
t K*

t

þ 1

4c
σtð Þi
t


 X4
σtþ1¼1

λσtþ1

tþ1A
σtþ1ð Þ
tþ1 1þ rð Þ�1

�2

ð6:17Þ

will be given to agent i2N at stage t.
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12.7 Appendices

Appendix A. Proof of Theorem 1.1 Invoking (1.11), one can obtain

ξi τ;K*
τ


 � ¼ E

� ðT
τ
Bi s,K

* sð Þ
 �
e�rsdsþ qi K

* Tð Þ� 	
e�rT

����K* τð Þ ¼ K*
τ

�
,

¼ E

� ðτþΔt

τ
Bi s,K

* sð Þ
 �
e�rsds

þ ξ τþΔtð Þi τ þ Δt,K*
τ þ ΔK*

τ


 �
K* τð Þ ¼ K*

τ

����
�
; ð7:1Þ

i2N and τ2 0; T½ �,
where

ΔK*
τ ¼

� Xn
j¼1

ψ*
j τ;K*

τ


 �� δK*
τ

�
Δtþ σK*

τΔzτ þ o Δtð Þ, and

Δzτ ¼ Z τ þ Δtð Þ � z τð Þ, and Eτ o Δtð Þ½ �=Δt ! 0 as Δt ! 0.

Using (7.1), one obtains

E

� ðτþΔt

τ
Bi s,K

* sð Þ
 �
e�rsds K* τð Þ ¼ K*

τ

����
�

¼ E

�
ξi τ;K*

τ


 �� ξ τþΔtð Þi τ þ Δt,K*
τ þ ΔK*

τ


 �
K* τð Þ ¼ K*

τ

����
�
,

for all τ2 0; T½ � and i2N: ð7:2Þ

If the imputations ξi(τ,K�
τ ) are continuous and differentiable, as Δt ! 0, one can

express condition (7.2) as:

E

�
Bi s;K

*
s


 �
e�rtΔtþ o Δtð Þ

�
¼ E

�
� ξ iτ τ;K*

τ


 �
Δt

� ξ iKτ
τ;K*

τ


 �� Xn
j¼1

ψ*
j τ;K*

τ


 �� δK*
τ

�
Δt

� 1

2
ξ iKτ

τ;K*
τ


 �
σK*

τΔzτ �
1

2
ξ iKτKτ

τ;K*
τ


 �
σ2 K*

τ


 �2Δto Δtð Þ
�

for i2N: ð7:3Þ

Dividing (7.3) throughout by Δt, with Δt ! 0, and taking expectation yield (1.12).

Thus the payoff distribution procedure in Bi
i(s,K

�
s ) in (1.12) would lead to the

realization of ξ(s,K�
s ) in (1.10). ■
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Appendix B. Proof of Proposition 2.1 Using the value functions in Proposition

2.1 and the optimal strategies in (2.5) the Hamilton-Jacobi-Bellman equations (2.4)

reduces to:

r Ai tð ÞK þ Ci tð Þ½ � � _A i tð ÞK þ _C i tð Þ
� 	 ¼ αiK � Ai tð Þ½ �2

4ci
þ Ai tð Þ

� Xn
j¼1

Aj tð Þ
2cj

� δK

�
,

Ai Tð ÞK þ Ci Tð Þ½ � ¼ qi
1K þ qi

2, for i2N; ð7:4Þ

For (7.4) to hold it is required that

_A i tð Þ ¼ r þ δð ÞAi tð Þ � αi, Ai Tð Þ ¼ qi
1; and ð7:5Þ

_C i tð Þ ¼ rCi tð Þ þ Ai tð Þ½ �2
4ci

�
� Xn

j¼1

Ai tð ÞAj tð Þ
2cj

�
, Ci Tð Þ ¼ qi

2; for i2N: ð7:6Þ

The differential equation system (7.5 and 7.6) is a block-recursive system with Ai(t)
in (7.5) being independent of Aj(t) for j 6¼ i and all Cj(t) for j2N.

Solving each of the n independent constant-coefficient linear differential equa-

tion in (7.5) yields:

Ai tð Þ ¼ qi
1 �

αi
r þ δ


 �
e� rþδð Þ T�tð Þ þ αi

r þ δ
, for i2N: ð7:7Þ

Substituting the explicit solution of Ai(t) from (7.7) into (7.6) yields:

_C i tð Þ ¼ rCi tð Þ þ 1

4ci

"
qi
1 �

αi
r þ δ


 �
e� rþδð Þ T�tð Þ þ αi

r þ δ

#2

�
Xn
j¼1

1

2cj

"
qi
1 �

αi
r þ δ


 �
e� rþδð Þ T�tð Þ þ αi

r þ δ

#
"

qj
1 �

αj
r þ δ


 �
e� rþδð Þ T�tð Þ þ αj

r þ δ

#
,

Ci Tð Þ ¼ qi
2, for i2N; ð7:8Þ

which is a system of independent linear differential equations in Ci(t). Note that the
coefficients are integrable functions; hence the solution of Ci(t) could be readily

obtained. Q.E.D.

Appendix C. Proof of Proposition 3.1 Invoking the fact that firms of the same

type are identical, we have ϕ 1ð Þ
i t;Kð Þ ¼ ϕ 1ð Þ

h t;Kð Þ and V 1ð Þi t;Kð Þ ¼ V 1ð Þh t;Kð Þ for
i, h2N1 ; and similarly ϕ 2ð Þ

j t;Kð Þ ¼ ϕ 2ð Þ
‘ t;Kð Þ and V 2ð Þj t;Kð Þ ¼ V 2ð Þ‘ t;Kð Þ for

j, ‘2N2. Using the value functions in Proposition 3.1 and the optimal strategies
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in (3.6 and 3.7), one can express Hamilton-Jacobi-Bellman equations (3.4 and 3.5)

as:

r A1 tð ÞK2 þ B1 tð ÞK þ C1 tð Þ� 	� _A 1 tð ÞK2 þ _B 1 tð ÞK þ _C 1 tð Þ� 	
� A1 tð Þσ2K2

¼
�

α1K � b1K
2 � ρ1 2A1 tð ÞK þ B1 tð Þ � ρ1½ �

� c1=2ð Þ 2A1 tð ÞK þ B1 tð Þ � ρ1½ �2
�

þ 2A1 tð ÞK þ B1 tð Þ½ �
�
n1 2A1 tð ÞK þ B1 tð Þ � ρ1½ �

þ n2 2A2 tð ÞK þ B2 tð Þ � ρ2½ � � δK

�
, A1 Tð ÞK2 þ B1 Tð ÞK þ C1 Tð Þ� 	

¼ q1K
2 þ q2K þ q3

� 	
; r A2 tð ÞK2 þ B2 tð ÞK þ C2 tð Þ� 	

� _A 2 tð ÞK2 þ _B 2 tð ÞK þ _C 2 tð Þ� 	� A2 tð Þσ2K2

¼
�

α2K � b2K
2 � ρ2 2A2 tð ÞK þ B2 tð Þ � ρ2½ �

� c2=2ð Þ 2A2 tð ÞK þ B2 tð Þ � ρ2½ �2
�

þ 2A2 tð ÞK þ B2 tð Þ½ �
�
n1 2A1 tð ÞK þ B1 tð Þ � ρ1½ �

þ n2 2A2 tð ÞK þ B2 tð Þ � ρ2½ � � δK

�
, A2 Tð ÞK2 þ B2 Tð ÞK þ C2 Tð Þ� 	

¼ q1K
2 þ q2K þ q3

� 	
: ð7:9Þ

For system (7.9) to hold it is required that

(i) the coefficients multiplying with K2 and K have to agree with system, and

(ii) the equalities of the other terms as indicated by the system.

These required conditions are given in (3.9, 3.10 and 3.11).

Hence Proposition 3.1 follows. Q.E.D.

Appendix D. Proof of Proposition 6.1 Consider first the last stage, that is stage

3, when θσ33 occurs. Invoking that V σ3ð Þi 3;Kð Þ ¼ A
σ3ð Þi
3 K þ C

σ3ð Þi
3

h i
1þ rð Þ�2

and

V σ4ð Þi 4;K4ð Þ ¼ qiK þ mið Þ 1þ rð Þ�3
from Proposition 6.1, the condition governing

t ¼ 3 in equation (6.3) becomes
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A
σ3ð Þi
3 K þ C

σ3ð Þi
3

h i
1þ rð Þ�2 ¼ max

I i3

�
α σ3ð Þi
3 K � c

σ3ð Þi
3 I i3

 �2h i

1þ rð Þ�2

þ
X3
y¼1

γ y3
X1
σ4¼1

λσ44�
qi



K þ
Xn
j ¼ 1

j 6¼ i

ϕ σ3ð Þj*
3 Kð Þ þ I i3 � δK þ ϑ y

3

�
þ mi

�
1þ rð Þ�3

�
, for i2N:

ð7:10Þ

Performing the indicated maximization in (7.10) yields the game equilibrium

strategies in stage 3 as:

ϕ σ3ð Þi*
3 Kð Þ ¼ qi 1þ rð Þ�1

2c
σ3ð Þi
3

, for i2N: ð7:11Þ

Substituting (7.11) into (7.10) yields:

A
σ3ð Þi
3 K þ C

σ3ð Þi
3

h i
¼ α σ3ð Þi

3 K � qið Þ2 1þ rð Þ�2

4c
σ3ð Þi
3

þ
X3
y¼1

γ y3

�
qi



K þ
Xn
j¼1

qj 1þ rð Þ�1

2c
σ3ð Þj
3

� δK þ ϑ y
t

�
þ mi

�
1þ rð Þ�1

�
; ð7:12Þ

for i2N.
Note that both sides of equation (7.12) are linear expressions of K. For (7.12) to

hold it is required that:

A
σ3ð Þi
3 ¼ α σ3ð Þi

3 þ qi 1� δð Þ 1þ rð Þ�1
, and

C
σ3ð Þi
3 ¼ � qið Þ2 1þ rð Þ�2

4c
σ3ð Þi
3

þ
"
qi
Xn
j¼1

qj 1þ rð Þ�1

2c
σ3ð Þj
3

þ qiϖ3 þ mi

#
1þ rð Þ�1; ð7:13Þ

for i2N.

Now we proceed to stage 2, usingV σ3ð Þi 3;Kð Þ ¼ A
σ3ð Þi
3 K þ C

σ3ð Þi
3

h i
1þ rð Þ�2

with

A
σ3ð Þi
3 and C

σ3ð Þi
3 given in (7.13), the conditions in equation (6.3) become
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A
σ2ð Þi
2 K þ C

σ2ð Þi
2

h i
1þ rð Þ�1 ¼ max

I i2

(
α σ2ð Þi
2 K � c

σ2ð Þi
2 I i2

 �2h i

1þ rð Þ�1

þ
X3
y¼1

γ y2
X4
σ3¼1

λσ33

"
A

σ3ð Þi
3

 
K þ

Xn
j ¼ 1

j 6¼ i

ϕ σ2ð Þj*
2 Kð Þ þ I i2 � δK þ ϑ y

2

!
þ C

σ3ð Þi
3

#
1þ rð Þ�2

)
,

for i2N: ð7:14Þ

Performing the indicated maximization in (7.14) yields the game equilibrium

strategies in stage 2 as:

ϕ σ2ð Þi*
2 Kð Þ ¼

X4
σ3¼1

λσ33
A

σ3ð Þi
3 1þ rð Þ�1

2c
σ2ð Þi
2

, for i2N: ð7:15Þ

Substituting (7.15) into (7.14) yields:

A
σ2ð Þi
2 K þ C

σ2ð Þi
2

h i
¼ α σ2ð Þi

2 K � 1

4c
σ2ð Þi
2

 X4
σ3¼1

λσ33 A
σ3ð Þi
3 1þ rð Þ�1

!2

þ
X3
y¼1

γ y2
X4
σ3¼1

λσ33

"
A

σ3ð Þi
3

 
K þ

Xn
j¼1

X4
ρ3¼1

λρ33
A

ρ3ð Þj
3 1þ rð Þ�1

2c
σ2ð Þj
2

� δK þ ϑ y
2

!
þ C

σ3ð Þi
3

#
1þ rð Þ�1

)
, for i2N: ð7:16Þ

Both sides of equation (7.16) are linear expressions of K. For (7.16) to hold it is

required that:

A
σ2ð Þi
2 ¼ α σ2ð Þi

2 þ
X4
σ3¼1

λσ33 A
σ3ð Þi
3 1� δð Þ 1þ rð Þ�1

, and

C
σ2ð Þi
2 ¼ � 1

4c
σ2ð Þi
2

 X4
σ3¼1

λσ33 A
σ3ð Þi
3 1þ rð Þ�1

!2

þ
X4
σ3¼1

λσ33

"
A

σ3ð Þi
3

 Xn
j¼1

X4
ρ3¼1

λρ33
A

ρ3ð Þj
3 1þ rð Þ�1

2c
σ2ð Þj
2

þϖ2

!
þ C

σ3ð Þi
3

#
1þ rð Þ�1

)
,

for i2N: ð7:17Þ
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Now we proceed to stage 1, using V σ2ð Þi 2;Kð Þ ¼ A
σ2ð Þi
2 K þ C

σ2ð Þi
2

h i
1þ rð Þ�1

with

A
σ2ð Þi
2 and C

σ2ð Þi
2 given in (7.17), the conditions in equation (6.3) become

A
σ1ð Þi
1 K þ C

σ1ð Þi
1

h i
¼ max

I i1

�
α σ1ð Þi
1 K � c

σ1ð Þi
1 I i1

 �2h i

þ
X3
y¼1

γ y1
X4
σ2¼1

λσ22�
A

σ2ð Þi
2



K þ

Xn
j ¼ 1

j 6¼ i

ϕ σ1ð Þj*
1 Kð Þ þ I i1 � δK þ ϑ y

1

�
þ C

σ2ð Þi
2

�
1þ rð Þ�1

�
,

for i2N: ð7:18Þ

Performing the indicated maximization in (7.18) yields the game equilibrium

strategies in stage 1 as:

ϕ σ1ð Þi*
1 Kð Þ ¼

X4
σ2¼1

λσ22
A

σ2ð Þi
2 1þ rð Þ�1

2c
σ1ð Þi
1

, for i2N ð7:19Þ

Substituting (7.19) into (7.18) yields:

A
σ1ð Þi
1 K þ C

σ1ð Þi
1

h i
¼ α σ1ð Þi

1 K � 1

4c
σ1ð Þi
1

 X4
σ2¼1

λσ22 A
σ2ð Þi
2 1þ rð Þ�1

!2

þ
X3
y¼1

γ y1
X4
σ2¼1

λσ22

"
A

σ2ð Þi
2

 
K þ

Xn
j¼1

X4
ρ2¼1

λρ22
A

ρ2ð Þj
2 1þ rð Þ�1

2c
σ1ð Þj
1

� δK þ ϑ y
1

!
þ C

σ2ð Þi
2

#
1þ rð Þ�1

)
, for i2N: ð7:20Þ

Both sides of equation (7.20) are linear expressions of K. For (7.20) to hold it is

required that:
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A
σ1ð Þi
1 ¼ α σ1ð Þi

1 þ
X4
σ2¼1

λσ22 A
σ2ð Þi
2 1� δð Þ 1þ rð Þ�1

, and

C
σ1ð Þi
1 ¼ � 1

4c
σ1ð Þi
1

 X4
σ1¼1

λσ22 A
σ2ð Þi
2 1þ rð Þ�1

!2

þ
X4
σ2¼1

λσ22

"
A

σ2ð Þi
2

 Xn
j¼1

X4
ρ2¼1

λρ22
A

ρ2ð Þj
2 1þ rð Þ�1

2c
σ1ð Þj
1

þϖ1

!
þ C

σ2ð Þi
2

#
1þ rð Þ�1

)
,

for i2N: ð7:21Þ

Hence Proposition 6.1 follows. Q.E.D.

12.8 Chapter Notes

Though cooperative provision of public goods is the key to a socially optimal

solution one may find it hard to be convinced that dynamic cooperation can offer a

long-term solution unless the agreed-upon optimality principle can be maintained

from the beginning to the end. The notion of public goods, which are non-rival and

non-excludable, was first introduced by Samuelson (1954). Problems concerning

private provision of public goods are studied in Bergstrom et al. (1986). Static

analysis on provision of public goods are found in Chamberlin (1974), McGuire

(1974) and Gradstein and Nitzan (1989). In many contexts, the provision and use of

public goods are carried out in an intertemporal framework. Fershtman and Nitzan

(1991) and Wirl (1996) considered differential games of public goods provision

with symmetric agents. Wang and Ewald (2010) introduced stochastic elements

into these games. Dockner et al. (2000) presented a game model with two asym-

metric agents in which knowledge is a public good. These studies on dynamic game

analysis focus on the noncooperative equilibria and the collusive solution that

maximizes the joint payoffs of all agents.

This Chapter provides applications of cooperative provision of public goods

with a subgame consistent cooperative scheme. The analysis can be readily

extended into a multiple public capital goods paradigm. In addition, more compli-

cated stochastic disturbances in the public goods dynamics, like

σ I1 sð Þ, I2 sð Þ, � � �, In sð Þ,K sð Þ½ �, can be adopted.

12.9 Problems

1. Consider a 4-stage 3 asymmetric agents economic game in which the agents

receive benefits from an existing public capital stock Kt. The accumulation
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dynamics of the public capital stock is governed by the stochastic difference

equation:

Ktþ1 ¼ Kt þ
X5
j¼1

I jt � 0:1Kt þ ϑt , K1¼120, for t2 1; 2; 3; 4f g;

where ϑt is a discrete random variable with range {1, 2, 3} and corresponding

probabilities {0.7, 0.2, 0.1}.

At stage 1, it is known that θ11 has happened, and the payoffs of agents 1, 2 and
3 are respectively:

5K1 � 2 I1ð Þ2, 3K1 � I1ð Þ2 and 6K1 � 3 I1ð Þ2:

At stage t2 2; 3; 4f g, the payoffs of agent 1, 2 and 3 are respectively

5K1 � 2 I1ð Þ2, 3K1 � I1ð Þ2 and6K1 � 3 I1ð Þ2

if θ1t occurs; and the payoffs of agent 1, 2 and 3 are respectively

6K1 � 2 I1ð Þ2, 3K1 � 2 I1ð Þ2, 4K1 � 2 I1ð Þ2

if θ2t occurs.
The probability that θ1t would occur is 0.6 and the probability that θ2t would

occur is 0.4.

In stage 5, the terminal valuations of the agent 1, 2 and 3 are respectively:

2K5 þ 10ð Þ 1þ rð Þ�4
, K5 þ 15ð Þ 1þ rð Þ�4

and 3K5 þ 5ð Þ 1þ rð Þ�4:

Characterize the feedback Nash equilibrium.

2. Obtain a group optimal solution that maximizes the joint expected profit.

3. Consider the case when the agents agree to share the cooperative gain propor-

tional to their expected non-cooperative payoffs in providing the public good

jointly. Derive a subgame consistent solution.

12.9 Problems 369
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