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Preface

It is well known that noncooperative behaviors among participants would lead to an

outcome which is not Pareto optimal and it could even be highly undesirable. There

exist a large number of problems – like transboundary pollution, overpopulation,

water and food shortage, international trade, provision of public goods, infectious

diseases, military conflicts, and nuclear proliferation – that could not be solved

effectively by noncooperative individual actions. Cooperation suggests the best

possibility of obtaining socially optimal and group-efficient solutions to problems

like these. Though collaborative schemes like global cooperation in environmental

control hold out the best promise of effective action, limited success has been

observed. In particular, one can hardly be convinced that multinational joint

initiatives like the Kyoto Protocol, the Copenhagen Agreement, or the Cancun

Agreements can offer a long-term solution because there is no guarantee that

participants will always be better off throughout the entire duration of the agree-

ment. To create a cooperative solution that every party would commit to from

beginning to end, the proposed arrangement must always remain acceptable to all

the participants at any time instance within the period of cooperation. This is a

“classic” game-theoretic problem.

Formulation of optimal behaviors for players is a fundamental element in the

theory of cooperative games. The players’ behaviors satisfying some specific

optimality principles constitute a solution of the game. Dynamic cooperation is

one of the most intriguing forms of optimization analysis, and its complexity leads

to great difficulties in the derivation of satisfactory solutions. To ensure sustain-

ability of dynamic cooperative schemes, a stringent condition on the cooperative

solution is required – that is subgame consistency. A cooperative solution is

subgame consistent if the specific optimality principle agreed upon at the outset

remains effective at any subgame with a later starting time and a state brought about

by prior optimal behaviors. The notion of subgame consistency is crucial to the

success of cooperation in a dynamic framework. This book provides a comprehen-

sive treatise on subgame consistent cooperation emanated from our works on the

topic in the past two decades.
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Chapter 1

Introduction

Strategic behavior in the human and social world has been increasingly recognized

in theory and practice. From a decision-maker’s perspective, it becomes important

to consider and accommodate the interdependencies and interactions of human

decisions. As a result, game theory has emerged as a fundamental instrument in

pure and applied research. In addition, since human beings live in time and

decisions generally lead to effects over time, most of the strategic interactions are

dynamic rather than static. One particularly complex and fruitful branch of game

theory is dynamic games, which investigates interactive decision making over time.

Differential (continuous-time dynamic) games were originated by Rufus Isaacs

(1965). Discrete-time dynamic games (usually referred to as dynamic games) are

multi-stage counterparts of differential games using Bellman’s (1957) discrete-time

dynamic programming technique to obtain their solutions. Since then research

involving continuous-time and discrete-time dynamic games continue to grow in

a large number of fields and studies including economics, engineering, business,

biology, mathematics, environmental studies, and social and political sciences.

Rather exhaustive collections of differential and dynamic game applications in

economics and business can be found in Dockner et al. (2000), Jørgensen and

Zaccour (2004) and Long (2010).

It is well known that non-cooperative behaviours among participants would, in

general, lead to an outcome which is not Pareto optimal. Worse still, highly

undesirable outcomes (like the prisoner’s dilemma) and even devastating results

(like the tragedy of the commons) could appear when the involved parties only care

about their individual self interests in a non-cooperative situation. In a dynamic

world, non-cooperative behaviours guided by short-sighted individual rationality

could be a source for series of disastrous consequences in the future. The phenom-

enon of the ‘inter-temporal tragedy of temporal individual rationality’ becomes

rather common in many real world dynamic interactive activities. Cooperation

suggests the possibility of obtaining socially optimal and group efficient solutions

to decision problems involving strategic actions. The calls for cooperation had not

been scarce:
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You look at the large problems that we face – that would be overpopulation, water

shortages, global warming and AIDS, I suppose – all of that needs international cooperation

to be solved. – (Molly Ivins).

Competition has been shown to be useful up to a certain point and no further, but

cooperation, which is the thing we must strive for today, begins where competition leaves

off. – (Franklin D. Roosevelt).

When times are tough and people are frustrated and angry and hurting and uncertain, the

politics of constant conflict may be good, but what is good politics does not necessarily

work in the real world. What works in the real world is cooperation. – (William J. Clinton).

The keystone of successful business is cooperation. Friction retards progress. – (James

Cash Penney).

The only thing that will redeem mankind is cooperation. – (Bertrand Russell).

Nature is based on harmony. So it says if we want to survive and become more like nature,

then we actually have to understand that it’s cooperation versus competition. – (Bruce

Lipton).

When it comes to the fundamental issues that humanity faces, I think that solutions involve

shifting consciousness towards cooperation. – (Jeremy Gilley).

With closely knitted transnational interests, zero-sum games and conflict con-frontations

had long been outdated; helping each other on the same boat, co-operation and mutual

victory are the need of our time. – (Xi Jinping).

However dynamic cooperation cannot be sustainable if there is no guarantee that

the participants will always be better off within the entire duration of the cooper-

ation. More than anything else, it is due to the lack of this kind of guarantees that

cooperative schemes fail to last till its end. Dynamic cooperation represents one of

the most intriguing forms of optimization analysis. The complexity of the problem

leads to great difficulties in the derivation of satisfactory solutions. Similar to the

case of static (one-shot) cooperation two fundamental factors – individual rational-

ity and group optimal – must be maintained in dynamic cooperation. Group

optimality ensures that all potential gains from cooperation are captured. Failure

to fulfil group optimality leads to the condition where the participants prefer to

deviate from the agreed upon solution plan in order to extract the unexploited gains.

Individual rationality is required to hold so that the payoff allocated to any

participant under cooperation will be no less than his noncooperative payoff.

Failure to guarantee individual rationality leads to the condition where the

concerned participants would reject the agreed upon solution plan and act

noncooperatively. Yet for dynamic cooperation group optimality and individual

rationality have to be satisfied at all time instants during the entire cooperation

duration.

On top of individual rationality and group optimality being satisfied throughout

the cooperation duration sustainability of dynamic cooperation requires the satis-

faction of a stringent condition – subgame consistency. A cooperative solution is

subgame consistent if an extension of the solution policy to a subgame with a later

starting time and a state brought about by prior optimal behaviors would remain

optimal. In particular, it implies that the specific optimality principle agreed upon at
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the outset must remain effective at any instant of time throughout the game along

the optimal state trajectory. Brexit – the attempted exit of UK from the European

Union is a clear example of subgame inconsistency. Demonstration of the notion of

subgame consistency in a numerical example is provided in the Appendix of this

Chapter.

Petroysan (1997) introduced the notion of agreeable solutions in cooperative

differential games in which subgame consistent (then referred to as time consistent

solutions in the deterministic framework) solution was developed. Crucial to the

derivation of a subgame consistent cooperative solution is the formulation of a

payment distribution mechanism that would lead to the realization of the solution.

Yeung and Petrosyan (2004) developed a generalized method for the derivation of

analytically tractable subgame consistent solutions in stochastic differential games.

This has made possible the rigorous study of subgame consistent solutions in

continuous-time dynamic cooperation. Applications and exegeses of subgame

consistent solutions in differential games and stochastic differential games can be

found in Yeung (2005, 2006b, 2010) and Yeung and Petrosyan (2006a, 2007a, b, c,

2008, 2013b, 2014a).

The analysis on subgame consistent solution was further extended to randomly

furcating stochastic differential games in which both the state dynamics and future

payoffs are stochastic in Petrosyan and Yeung (2007). Applications of subgame

consistent solutions in randomly furcating stochastic differential games are found in

Petrosyan and Yeung (2006), Yeung (2008) and Yeung and Petrosyan (2012c).

Yeung (2011) analyzed subgame consistent solutions in differential games with

asynchronous players’ horizons. In developing the analysis for games with

nontransferable payoffs Yeung (2014) derived the nontransferable individual pay-

off functions under cooperation in stochastic differential games with

nontransferable payoffs. Yeung and Petrosyan (2005) and Yeung et al. (2007)

analyzed subgame consistent solutions in cooperative stochastic differential

games with nontransferable payoffs.

For discrete-time analyses, Yeung and Petrosyan (2010) developed a generalized

method for the derivation of analytically tractable subgame consistent solutions in

stochastic dynamic games. This has made possible the rigorous study of subgame

consistent solutions in discrete-time dynamic cooperation. Yeung (2014) analyzed

subgame consistent solutions in a dynamically cooperative game of environmental

management with the possibility of switching the choice of control. To accommo-

date the possibility of uncertain game duration Yeung and Petrosyan (2011) devel-

oped subgame consistent solution mechanisms for cooperative dynamic games with

random horizon. The analysis was extended to the case where the state dynamics

and the game horizon are stochastic in Yeung and Petrosyan (2012b).

The notion of subgame consistency and solution mechanisms for randomly-

furcating cooperative stochastic dynamic games were developed by Yeung and

Petrosyan (2013a). Applications of subgame consistent cooperative solution in

randomly furcating stochastic dynamic games in collaborative provision of public

goods was given in Yeung and Petrosyan (2014b). To analyze subgame consistency

under randomly furcating payoffs, stochastic dynamics and uncertain horizon

Yeung and Petrosyan (2014c) developed subgame consistent cooperative solution
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mechanisms for randomly furcating stochastic dynamic games with uncertain

horizon.

Yeung and Petrosyan (2015a) developed subgame consistent solution mecha-

nisms in cooperative dynamic games with non-transferable payoffs/utility (NTU)

using a variable payoffs weights scheme. A theorem for characterizing subgame

consistent solutions is derived. The use of a variable payoff weights scheme allows

the derivation of subgame consistent solutions under a wide range of optimality

principles. A stochastic version was provided in Yeung and Petrosyan (2015b).

Yeung (2013) derived individual player’s payoff functions in NTU cooperative

stochastic dynamic games which are used in formulating subgame consistent

solutions.

The book Cooperative Stochastic Differential Games by Yeung and Petrosyan

(2006b) was the first text focusing on subgame consistent solutions in the field of

cooperative stochastic differential games. The book Subgame Consistent Economic

Optimization by Yeung and Petrosyan (2012a) was the first text on the treatment of

subgame consistent solutions in economic optimization.

This book presents a comprehensive treatise on subgame consistent cooperation

emanated from the works of its authors in the field of cooperative subgame

consistency and cooperative dynamic games. Some novel extensions and elabo-

rated expositions on the existing work are also provided. The text is organized into

three parts. Part 1, which includes Chaps. 2, 3, 4, 5, and 6, consists of continuous-

time analyses. Part II, which includes Chaps. 7, 8, 9, 10 and 11, consists of discrete-

time analyses. Part III, which includes Chaps. 12, 13, 14, and 15, presents applica-

tions of subgame consistent solutions in various areas. Each chapter is designed to

be self contained and slightly repeated technical preliminary settings may appear.

Chapter 2 considers subgame consistent cooperative solutions in differential

games. It integrates the works of Chapter 2 of Yeung and Petrosyan (2006b),

Chapter 4 of Yeung and Petrosyan (2012a) and the deterministic version of

Yeung and Petrosyan (2004). The basic formulations of cooperative differential

games, group optimality, individual rationality under cooperation, and the notion of

subgame consistency are presented. An analysis on subgame consistent dynamic

cooperation and the derivation of a subgame consistent payoff distribution proce-

dure are provided. Subgame consistency in infinite horizon cooperative differential

games is also examined.

Chapter 3 introduces stochastic elements in the state dynamics and considers

subgame consistent cooperative solutions in stochastic differential games. It pro-

vides an integrated exposition the works of Yeung and Petrosyan (2004), Chapter 4

of Yeung and Petrosyan (2006b), and Chapter 8 of Yeung and Petrosyan (2012a).

An analysis on cooperative subgame consistency under uncertainty, derivation of a

subgame consistent payoff distribution procedure and illustrations in cooperative

fishery are presented.

Chapter 4 considers subgame consistency in randomly-furcating cooperative

stochastic differential games. This class of games allow random shocks in the

state dynamics and stochastic changes in the players’ payoff structures. The Chap-
ter presents an n� player counterpart of the Petrosyan and Yeung’s (2007) 2-player
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analysis on subgame-consistent cooperative solutions in randomly-furcating sto-

chastic differential games. The basic game formulation, an analysis on subgame

consistent dynamic cooperation and derivation of a subgame consistent payoff

distribution procedure are provided.

In many game situations, the players’ time horizons differ. This may arise from

different life spans, different entry and exit times, and different durations of leases

and contracts. Chapter 5 considers subgame consistency under asynchronous

players’ horizons. In particular, it is an integrated disquisition of the analysis in

Yeung (2011) with an extension incorporating stochastic state dynamics. Dynamic

cooperation among players coexisting in the same duration is examined and an

analysis on payoff distribution procedures leading to subgame consistent solutions

in this asynchronous horizons scenario is provided. An illustration in cooperative

resource extraction is shown.

Chapter 6 considers subgame consistent cooperative solutions in non-transfer-

rable utility/payoff (NTU) stochastic differential games. In the case when payoffs

are nontransferable, transfer of payoffs cannot be made and subgame consistent

solution mechanism becomes extremely complicated. The Chapter is an integrated

exposition of the works in Yeung and Petrsoyan (2005) and Yeung et al. (2007).

The notion of subgame consistency in NTU cooperative stochastic differential

games under time invariant payoff weights is examined and a class of cooperative

stochastic differential games with nontransferable payoffs is developed to illustrate

the derivation of subgame consistent solutions.

Part II considers subgame consistent cooperative solutions in a discrete-time

dynamic framework. In fact, in many game situations, the evolutionary process is in

discrete time rather than in continuous time. Chapter 7 considers subgame consis-

tent cooperative solutions in dynamic games. It integrates the works of Yeung and

Petrosyan (2010) and Chapters 12 and 13 of Yeung and Petrosyan (2012a). The

notions of group optimality and individual rationality, subgame consistent cooper-

ative solutions and corresponding payoff distribution procedures are derived. A

heuristic approach of obtaining subgame consistent solutions is provided to widen

the application to a wide range of cooperative game problems in which only

estimates of the expected cooperative payoffs and individual non-cooperative

payoffs with acceptable degrees of accuracy are available.

Chapter 8 considers subgame consistent cooperative solutions in random hori-

zon dynamic games. Examples of this kind of problems arise from uncertainties in

the renewal of lease, the terms of offices of elected authorities, contract renewal and

continuation of agreements subjected to periodic negotiations. The analysis is based

on the work in Yeung and Petrosyan (2011). A dynamic programming technique for

solving inter-temporal problems with random horizon is developed to serve as the

foundation of solving the game problem. The noncooperative equilibrium is char-

acterized with a set of random duration discrete-time Isaacs-Bellman equations.

The issues of dynamic cooperation under random horizon, group optimality and

individual rationality are analyzed.

Chapter 9 considers subgame consistent cooperative solutions in randomly

furcating stochastic dynamic games. In this type of games, the evolution of the
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state is stochastic and future payoff structures are not known with certainty. The

analysis is based on Yeung and Petrosyan (2013a). Non-cooperative Nash equilib-

ria of the games are characterized and subgame-consistent solutions are derived for

cooperative paradigms. A discrete-time analytically tractable payoff distribution

procedure contingent upon specific random realizations of the state and payoff

structure is derived.

Chapter 10 investigates the class of randomly furcating stochastic dynamic

games with uncertain game horizon. In particular, there exist uncertainties in the

state dynamics, future payoff structures and game horizon. The non-cooperative

Nash outcome, subgame-consistent cooperative solutions and discrete-time analyt-

ically tractable payoff distribution procedures contingent upon specific random

realizations of the state and payoff structure are derived. Corresponding Bellman

equations for solving inter-temporal problems with randomly furcating payoffs and

random horizon are derived. A set of random duration discrete-time Hamilton-

Jacobi-Bellman equations for a non-cooperative equilibrium are presented. The

analysis is developed along the work of Yeung and Petrosyan (2014c).

Chapter 11 considers subgame consistent solutions in NTU cooperative dynamic

games via the use of variable payoff weights. It is based on an elaborated exposition

of the analysis in Yeung and Petrosyan (2015a, b). The notion of subgame consis-

tency in NTU dynamic games under a variable weights scheme is presented.

Derivations of subgame consistent cooperative strategies via variable weights are

shown and an illustration in public capital build-up is given. An extension the

analysis to NTU cooperative stochastic dynamic games is also provided. The use of

variable payoff weights provides an effective way in achieving subgame consis-

tency for non-transferrable payoffs games under a wide range of optimality

principles.

In Part III, various applications of subgame consistent solutions are presented.

Chapter 12 provides subgame consistent cooperative schemes to resolve the classic

problem of cooperative public goods provisions. The first application is from

Yeung and Petrosyan (2013b) in which the analysis is in a cooperative stochastic

differential game framework with multiple asymmetric agents in public capital

build-up. The second is from Yeung and Petrosyan (2014b) in which the analysis is

conducted in a randomly-furcating stochastic dynamic game framework which

allows uncertainties in the capital accumulation dynamics and payoff structures.

Chapter 13 presents collaborative schemes for environmental management in a

cooperative differential game framework and derives subgame consistent solutions

for the schemes. Due to the geographical diffusion of pollutants, unilateral response

on the part of one country or region is often ineffective. This Chapter gives an

integrated exposition of the work of Yeung and Petrosyan (2008) on a subgame

consistent scheme of dynamic cooperation in transboundary industrial pollution

management. An extension of the Yeung and Petrosyan (2008) analysis to incor-

porate uncertainties in future payoffs is also presented.

Under the current situation of environmental degradation, even substantial

reduction in industrial production using conventional production technique would

only slow down the rate of increase and not be able to reverse the trend of continual
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pollution accumulation. Adoption of environment-preserving technique plays a

central role to solving the problem effectively. Chapter 14 presents a cooperative

dynamic model of collaborative environmental management with production tech-

nique choices and derives a subgame consistent solution. The analysis is based on

Yeung’s (2014) work on subgame consistent collaborative environmental manage-

ment with the availability of environment-preserving production techniques. An

extension of Yeung’s (2014) analysis to multiple types of environment-preserving

techniques is also provided.

Chapter 15 presents two applications in business collaboration. The first one is

on corporate joint venture and the second one is on cartel. The joint venture analysis

is based on Yeung and Petrosyan (2006a), Yeung (2010) and Chapter 9 of Yeung

and Petrosyan (2012a). An analysis of a dynamic corporate joint venture in which

gains can be obtained from cost saving cooperation is provided. Subgame consis-

tent solutions with optimality principles requiring the sharing of cooperative payoff

proportionally to the firms’ expected noncooperative payoffs and the sharing of

cooperative payoff according to the Shapley value are derived. The Cartel analysis

is extracted from Yeung (2005) and Chapter 11 of Yeung and Petrosyan (2012a). It

presents a stochastic dynamic dormant-firm cartel. The basic settings, market

outcome, optimal cartel output and subgame-consistent cartel profit sharing are

investigated.

Dynamic optimization techniques are provided in the Technical Appendices at

the end of the book. Finally, worth noting is that the text does not only provide

rigorous solution mechanisms for subgame consistent cooperation it also presents a

heuristic approach in Chap. 7 to derive subgame consistent solutions in situations

where it may not be possible or practical to obtain all the information needed. The

heuristic approach allows the application of subgame consistent solution in

dynamic games if estimates of the expected cooperative payoffs and individual

non-cooperative payoffs with acceptable degrees of accuracy are available. This

approach would be helpful to resolving the unstable elements in cooperative

schemes for a wide range of game theoretic real-world problems.

Appendix: Numerical Demonstration of Subgame
Consistency

To demonstrate the notion of subgame consistency in cooperative dynamic games

in a clear way with minimal technical requirement, we consider a simple numerical

example with two players in a 4-stage game horizon. The players derive incomes in

each stage and there is a state variable xt, for t2 1; 2; 3; 4f g. The players’ incomes

and the values of the state variable are affected by the actions of these players.
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Non-cooperative Outcome

In a non-cooperative scenario, the players’ incomes in each stage, the values of the

state variable and the players’ payoffs are summarized in Table 1.1 below.

Note that the payoff of a player at stage t refers to the sum of stage incomes that

he will receive from stage t to the last stage of the game (that is stage 4). Now

consider the case when the players agree to cooperate and enhance their joint

incomes.

Cooperation and Optimality Principle

Consider the case where the players agree to act cooperative under an optimality

principle: “Maximize the joint payoff and share the cooperative payoff proportional

to their non-cooperative payoffs”. If any side decides to opt out the cooperative plan

will be cancelled and the players will revert to playing non-cooperatively. Acting

Table 1.1 Players’ payoffs and stage incomes and the state path under non-cooperation

8 1 Introduction



cooperatively in maximizing the joint payoff, the players’ stage cooperative

incomes and the values of the state variable are given in Table 1.2 below.

Summing the stage incomes of player 1 and that of player 2 yields the cooper-

ative joint stage income. The cooperative joint incomes in each stage, the values of

the state variable and the maximized joint payoffs are given in Table 1.3 below.

Let ξi(1, x�1) denote the payoff that player i will receive in stage 1 under

cooperation for i2 1; 2f g. At initial stage 1, according to the agreed-upon optimality

principle the players would share the cooperative payoff proportional to their non-

cooperative payoffs the cooperative payoff, that is:

ξi 1; x*1
� � ¼ Vi 1; x*1

� �

V1 1; x*1
� �þ V2 1; x*1

� �W 1; x*1
� �

for i2 1; 2f g :

Using Tables 1.1 and 1.3, the cooperative payoffs of players 1 and 2 at stage 1

are respectively:

Table 1.2 Players’ stage cooperative incomes and the cooperative state path

Table 1.3 Cooperative joint incomes in each stage, the cooperative state path and maximized

joint payoffs

Appendix: Numerical Demonstration of Subgame Consistency 9



ξ1 1; x*1
� � ¼ 350

350þ 200
750 ¼ 477:273 and

ξ2 1; x*1
� � ¼ 200

350þ 200
750 ¼ 272:727:

ð1:1Þ

Hence under the optimality principle agreed-upon in the initial stage, player 1 is

expected to realize a payoff ξ1 1; x*1
� � ¼ 477:273 and player 2 is expected to realize

a payoff ξ2 1; x*1
� � ¼ 272:727. However, according to Table 1.2, the joint payoff

maximization scheme would yield a payoff of 510 to player 1 and a payoff of 240 to

player 2. A payoff distribution procedure (PDP) has to be designed so that the

payoffs according to the optimality principle can be realized.

Notion of Subgame Consistency

In a multi-stage game, a stringent condition for the sustainability of cooperation is

the notion of subgame consistency. The idea of subgame consistency is that the

specific agreed-upon optimality principle at the initial time must be maintained at

subsequent time throughout the game horizon along the optimal state trajectory. Let

ξi(t, x�t ) denote the payoff that player i will receive in stage t under cooperation for

i2 1; 2f g and t2 1; 2; 3; 4f g. At subsequent stage t2 2; 3; 4f g after the initial stage,

according to the agreed-upon optimality principle: “Maximize the joint payoff and

share the cooperative payoff proportional to their non-cooperative payoffs”, player

i’s payoff under cooperation in stage t should be

ξi t; x*t
� � ¼ Vi t; x*t

� �

V1 t; x*t
� �þ V2 t; x*t

� �W t; x*t
� �

for i2 1; 2f g and t2 2; 3; 4f g :

The non-cooperative payoffs of the players along the cooperative path, that is Vi

(t, x�t ), for i2 1; 2f g and t2 2; 3; 4f g, are given in Table 1.4 below.

Therefore in stage 2 the players would adopt the optimality principle: “Maxi-

mize the joint payoff and share the cooperative payoff proportional to their non-

cooperative payoffs”. Hence the payoffs to the players in stage 2 have to satisfy:

ξi 2; x*2
� � ¼ Vi 2; x*2

� �

V1 2; x*2
� �þ V2 2; x*2

� �W 2; x*2
� �

for i2 1; 2f g :
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Using Tables 1.2 and 1.3, the cooperative payoffs of players 1 and 2 at stage 2

are respectively:

ξ1 2; x*2
� � ¼ 280

280þ 165
570 ¼ 358:65 and

ξ2 2; x*2
� � ¼ 165

280þ 165
570 ¼ 211:35:

ð1:2Þ

Similarly, at stage 3 using the agreed-upon optimality principle the cooperative

payoffs of players 1 and 2 are respectively:

ξ1 3; x*3
� � ¼ 170

170þ 100
370 ¼ 232:96 and

ξ2 3; x*3
� � ¼ 100

170þ 100
370 ¼ 137:04:

ð1:3Þ

Finally at stage 4, using the agreed-upon optimality principle the cooperative

payoffs of players 1 and 2 are respectively:

ξ1 4; x*4
� � ¼ 75

75þ 45
180 ¼ 112:5 and

ξ2 4; x*4
� � ¼ 45

75þ 45
180 ¼ 67:5:

ð1:4Þ

A system of payoffs as in (1.1, 1.2, 1.3 and 1.4) leads a subgame consistent

solution. A payoff distribution procedure (PDP) has to be designed so that the

Table 1.4 Non-cooperative payoffs of the players along the cooperative state path
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payoffs of players 1 and 2 in stage 1 to stage 4 will be realized as (1.1, 1.2, 1.3 and

1.4). Leaving the general theorem for the derivation of PDP to be explained in

Chap. 7 we proceed to verify that a PDP with the following cooperative stage

incomes would lead to (1.1, 1.2, 1.3 and 1.4):

To verify that the PDP in Table 1.5 would lead to (1.1, 1.2, 1.3 and 1.4) we can

readily obtain:

ξ1 1; x*1
� � ¼ 118:623þ 125:69þ 120:46þ 112:5 ¼ 477:273,

ξ1 2; x*2
� � ¼ 125:69þ 120:46þ 112:5 ¼ 358:65,

ξ1 3; x*3
� � ¼ 120:46þ 112:5 ¼ 232:96,

ξ1 4; x*4
� � ¼ 112:5:

Similarly, from Table 1.5, we obtain ξ2 1; x*1
� � ¼ 272:727, ξ2 2; x*2

� � ¼ 211:35,

ξ2 3; x*3
� � ¼ 137:04 and ξ2 4; x*4

� � ¼ 67:5:

In order to achieve the PDP in Table 1.5 a transfer payment scheme with stage

income transfers received/paid (+/�) in Table 1.6 below has to be adopted.

Adding the stage transfer payments in Table 1.6 to the players’ cooperative stage
incomes in Table 1.2 yields the PDP in Table 1.5 (which leads a subgame consistent

solution). Finally, note that player i’s cooperative payoff ξi(t, x�t ) is always higher
than his non-cooperative payoff Vi(t, x�t ), for i2 1; 2f g and t2 1; 2; 3; 4f g, and
therefore the players would have no incentive to deviate from the above subgame

consistent solution at any stage of the game.

Table 1.5 Payoff Distribution Procedure (PDP) of a subgame consistent solution

Table 1.6 Transfer payments for a subgame consistent PDP

12 1 Introduction
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Part I

Continuous-Time Analysis



Chapter 2

Subgame Consistent Cooperative Solution
in Differential Games

In game theory, strategic behavior and decision making are modeled in terms of the

characteristics of players, the objective or payoff function of each individual, the

actions open to each player throughout the game, the order of such actions, and the

information available at each stage of play. Optimal decisions are then determined

under different assumptions regarding the availability and transmission of infor-

mation, and the opportunities and possibilities for individuals to communicate,

negotiate, collude, offer inducements, and enter into agreements which are binding

or enforceable to varying degrees and at varying costs. Cooperative games suggest

the possibility of socially optimal and group efficient solutions to decision problems

involving strategic action. As discussed in Chap. 1, individual rationality, group

optimality and subgame consistency are crucial elements of a cooperative game

solution. This chapter presents an analysis on subgame consistent solutions which

entail group optimality and individual rationality for cooperative differential

games. It integrates the works of Chapter 2 of Yeung and Petrosyan (2006b),

Chapter 4 of Yeung and Petrosyan (2012a) and the deterministic version of

Yeung and Petrosyan (2004).

The organization of the Chapter is as follows. Section 2.1 presents the basic

formulation of cooperative differential games. Section 2.2 presents an analysis on

subgame consistent dynamic cooperation. Derivation of a subgame consistent

payoff distribution procedure is provided in Sect. 2.3. An illustration of the solution

mechanism is given in a cooperative fishery game in Sect. 2.4. Subgame consis-

tency in infinite horizon cooperative differential games is examined in Sect. 2.5. In

Sect. 2.6, a subgame consistent solution of an infinite horizon cooperative resource

extraction scheme is derived. Chapter notes are given in Sect. 2.7 and problems in

Sect. 2.8.
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2.1 Basic Formulation of Cooperative Differential Games

Consider the general form of n-person differential games in which player i seeks to
maximize its objective:

Z T

t0

gi s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
Z s

t0

r yð Þdy
� �

ds

þ exp �
Z T

t0

r yð Þdy
� �

qi x Tð Þð Þ; ð1:1Þ

for i2N ¼ 1; 2; � � �; nf g; where r(y) is the discount rate, x sð Þ2X � Rm denotes the

state variables of game, qi(x(T)) is player i’s valuation of the state at terminal time

T and ui2Ui is the control of player i, for i2N. The payoffs of the players are

transferrable.

The state variable evolves according to the dynamics

_x sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �, x t0ð Þ ¼ x0; ð1:2Þ

where x sð Þ2X � Rm denotes the state variables of game, and ui2Ui is the control of

player i, for i2N. The functions f s; x; u1; u2; � � �; un½ �, gi s; �; u1; u2; � � �; un½ � and qi �ð Þ,
for i2N, and s2 t0; T½ � are differentiable functions.

2.1.1 Non-cooperative Feedback Equilibria

To analyze the cooperative outcome we first characterize the non-cooperative

equilibria as a benchmark for negotiation in a cooperative scheme. Since in a

non-cooperative situation it is difficult to prevent the players from revising their

strategies during the game duration, therefore they would consider adopting feed-

back strategies which are decision rules that are dependent upon the current state

x(t) and current time t, for t0 � t � s.
For the n-person differential game (1.1 and 1.2), an n -tuple of feedback

strategies u*i sð Þ ¼ ϕ*
i s; xð Þ� 2Ui, for i2Ng constitutes a Nash equilibrium solution

if the following relations for each i2N are satisfied:

V t0ð Þi t; xð Þ ¼
Z T

t

gi s, x* sð Þ,ϕ*
1 s, x* sð Þ� �

,ϕ*
2 s, x* sð Þ� �

, . . .,ϕ*
n s, x* sð Þ� �� �

exp �
Z s

t0

r yð Þdy
� �

ds

þ qi x* Tð Þ� �
exp �

Z T

t0

r yð Þdy
� �
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�
Z T

t

gi
�
s, xi sð Þ,ϕ*

1 s, xi sð Þ� �
,ϕ*

2 s, xi sð Þ� �
, . . .,ϕ*

i�1 s, xi sð Þ� �
,ϕi s, x

i sð Þ� �
,

ϕ*
iþ1 s, xi sð Þ� �

, . . . . . .,ϕ*
n s, xi sð Þ� ��

exp �
Z s

t0

r yð Þdy
� �

ds

þ qi xi Tð Þ� �
exp �

Z T

t0

r yð Þdy
� �

,8ϕ*
i s; xð Þ2Ui, x2Rm; ð1:3Þ

where on the interval [t0,T],

_x * sð Þ ¼ f s, x* sð Þ,ϕ*
1 s, x* sð Þ� �

,ϕ*
2 s, x* sð Þ� �

, . . .,ϕ*
n s, x* sð Þ� �� �

, x* tð Þ ¼ x;

and

_x i sð Þ ¼ f
�
s, xi sð Þ,ϕ*

1 s, xi sð Þð Þ,ϕ*
2 s, xi sð Þð Þ, . . .,ϕ*

i�1 s, xi sð Þð Þ,ϕi s, x
i sð Þð Þ,ϕ*

iþ1 s, xi sð Þð Þ, . . .
. . .,ϕ*

n s, xi sð Þð Þ�, xi tð Þ ¼ x, for i2N:

A feedback Nash equilibrium solution of the game (1.1 and 1.2) satisfying (1.3) can

be characterized by the following Theorem.

Theorem 1.1 An n-tuple of strategies u*i tð Þ ¼ ϕ*
i t; xð Þ� 2Ui, for i2Ng provides a

feedback Nash equilibrium solution to the game (1.1 and 1.2) if there exist

continuously differentiable functions V t0ð Þi t; xð Þ : t0; T½ � � Rm ! R, i2N, satisfying
the following set of partial differential equations:

�V
t0ð Þi
t t; xð Þ ¼ max

ui
gi
�
t, x,ϕ*

1 t; xð Þ,ϕ*
2 t; xð Þ,Λ,ϕ*

i�1 t; xð Þ, ui t; xð Þ,ϕ*
iþ1 t; xð Þ,Λ

(

Λ,ϕ*
n t; xð Þ�exp �

Z t

t0

r yð Þdy
� �

þV t0ð Þi
x t; xð Þf t, x,ϕ*

1 t; xð Þ,ϕ*
2 t; xð Þ,Λ,ϕ*

i�1 t; xð Þ, ui t; xð Þ,ϕ*
iþ1 t; xð Þ,Λ,ϕ*

n t; xð Þ� �	

¼ gi
�
t, x,ϕ*

1 t; xð Þ,ϕ*
2 t; xð Þ,Λ,ϕ*

n t; xð Þexp �
Z t

t0

r yð Þdy
� �

þV t0ð Þi
x t; xð Þf t, x,ϕ*

1 t; xð Þ,ϕ*
2 t; xð Þ,Λ,ϕ*

n t; xð Þ� �
,

V t0ð Þi T; xð Þ ¼ qi xð Þexp �
Z T

t0

r yð Þdy
� �

, i2N:

Proof Invoking the dynamic programming technique in Theorem A.1 of the

Technical Appendices, V t0ð Þi t; xð Þ is the maximized payoff of player i for given

2.1 Basic Formulation of Cooperative Differential Games 17

http://dx.doi.org/10.1007/978-981-10-1545-8_BM1


strategies
n
u*j sð Þ ¼ ϕ*

j t; xð Þ2Uj, for j2N and j 6¼ i
o

of the other n� 1 players.

Hence a Nash equilibrium appears. ■

A remark that will be utilized in subsequent analysis is given below.

Remark 1.1 Let V(τ)i(t, x) denote the feedback Nash equilibrium payoff of player

i at time t given the state x in a game with payoffs (1.1) and dynamics (1.2) which

starts at time τ for τ2�t0, T�. Note that the equilibrium feedback strategies depend

on current time and current state. One can readily verify that

exp

Z τ

t0

r yð Þdy
� �

V t0ð Þi t; xð Þ ¼ exp

Z τ

t0

r yð Þdy
� �

�
Z T

t

gi s, x* sð Þ,ϕ*
1 s, x* sð Þ� �

,ϕ*
2 s, x* sð Þ� �

,Λ,ϕ*
n s, x* sð Þ� �� �

exp �
Z s

t0

r yð Þdy
� �

ds

¼
Z T

t

gi s, x* sð Þ,ϕ*
1 s, x* sð Þ� �

,ϕ*
2 s, x* sð Þ� �

,Λ,ϕ*
n s, x* sð Þ� �� �

exp �
Z s

τ
r yð Þdy

� �
ds

¼ V τð Þi t; xð Þ;

for τ2�t0,T�. ■
While non-cooperative outcomes are (in general) not Pareto optimal the players

would consider cooperation to enhance their payoffs. This will be analyzed in the

following section.

2.1.2 Dynamic Cooperation

Cooperative games suggest the possibility of socially optimal and group efficient

solutions to decision problems involving strategic action. Now consider the case

when the players agree to cooperate and distribute the payoff among themselves

according to an optimality principle. Two essential properties that a cooperative

scheme has to satisfy are group optimality and individual rationality. Group opti-

mality ensures that the joint payoff of all the players under cooperation is maxi-

mized. Failure to fulfill group optimality leads to the condition where the

participants prefer to deviate from the agreed-upon solution plan in order to extract

the unexploited gains. Individual rationality is required to hold so that the payoff

allocated to any player under cooperation will be no less than his noncooperative

payoff. Failure to guarantee individual rationality leads to the condition where the

concerned participants would deviate from the agreed upon solution plan and play

noncooperatively.
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2.1.2.1 Group Optimality Under Cooperation

Since payoffs are transferable, group optimality requires the players to maximize

their joint payoff. The players must then solve the following optimal control

problem:

max
u1, u2, ���, un

Z T

t0

Xn
j¼1

gj s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
Z s

t0

r yð Þdy
� �

ds

(

þ exp �
Z T

t0

r yð Þdy
� �Xn

j¼1

qj x Tð Þð Þ
) ð1:4Þ

subject to (1.2).

An optimal solution to the control problem (1.2) and (1.4) characterizing the set

of group optimal control strategies is provided by the theorem below.

Theorem 1.2 A set of controls {ψ	
i (t, x), for i2N and t2 t0; T½ �gprovides an optimal

solution to the control problem (1.2) and (1.4) if there exists continuously differ-

entiable function W t0ð Þ t; xð Þ : t0; T½ � � Rm ! R satisfying the following Bellman

equation:

�W
t0ð Þ
t t; xð Þ

¼ max
u1, u2, ���, un

Xn
j¼1

gj t; x; u1; u2; � � �; un½ �
(

exp �
Z t

t0

r yð Þdy
� �

þW t0ð Þ
x f t; x; u1; u2; � � �; un½ �

	
,

W t0ð Þ T; xð Þ ¼ exp �
Z T

t0

r yð Þdy
� �Xn

j¼1

qj xð Þ:

Proof Follow the proof of Theorem A.1 in the Technical Appendices. ■

Hence the players will adopt the cooperative control {ψ	
i (t, x), for i2N and

t2 t0; T½ �g to obtain the maximized level of joint profit. Substituting this set of

control into (1.2) yields the dynamics of the optimal (cooperative) trajectory as:

_x sð Þ ¼ f s, x sð Þ,ψ*
1 s, x sð Þð Þ,ψ*

2 s, x sð Þð Þ, � � �,ψ*
n s, x sð Þð Þ� �

, x t0ð Þ ¼ x0: ð1:5Þ

Let x*(t) denote the solution to (1.5). The optimal trajectory x* tð Þ� 
T

t¼t0
can be

expressed as:

x* tð Þ ¼ x0 þ
Z t

t0

f s, x* sð Þ,ψ*
1 s, x* sð Þ� �

,ψ*
2 s, x* sð Þ� �

, � � �,ψ*
n s, x* sð Þ� �� �

ds: ð1:6Þ

For notational convenience, we use the terms x*(t) and x	t interchangeably.

2.1 Basic Formulation of Cooperative Differential Games 19

http://dx.doi.org/10.1007/978-981-10-1545-8_BM1


Note that for group optimality to be achievable, the cooperative controls

{ψ	
i (t, x*(t)), for i2N and t2 t0; T½ �g must be exercised throughout time interval

[t0, T].

The maximized cooperative payoff over the interval [t,T], for t2�t0,T�, can be

expressed as:

W t0ð Þ t; x*t
� � ¼Z T

t

Xn
j¼1

gj s, x* sð Þ,ψ*
1 s, x* sð Þ� �

,ψ*
2 s, x* sð Þ� �

, � � �,ψ*
n s, x* sð Þ� �� �

exp �
Z s

t0

r yð Þdy
� �

ds

þ exp �
Z T

t0

r yð Þdy
� �Xn

j¼1

qj x* Tð Þ� �

A remark that will be utilized in subsequent analysis is given below.

Remark 1.2 LetW(τ)(t, x	t ) denote the maximized cooperative payoff of the control

problem

max
u1, u2, ���, un

Z T

t

Xn
j¼1

gj s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
Z s

τ
r yð Þdy

� �
ds

(

þexp �
Z T

τ
r yð Þdy

� �Xn
j¼1

qj x Tð Þð Þ
)
;

subject to

_x sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �, x tð Þ ¼ x*t :

One can readily verify that

exp

Z τ

t0

r yð Þdy
� �

W t0ð Þ t; x*t
� � ¼ exp

Z τ

t0

r yð Þdy
� �

�� Z T

t

Xn
j¼1

gj s, x* sð Þ,ψ*
1 s, x* sð Þ� �

,ψ*
2 s, x* sð Þ� �

, � � �,ψ*
n s, x* sð Þ� �� �

exp �
Z s

t0

r yð Þdy
� �

ds

þ exp �
Z T

t0

r yð Þdy
� �Xn

j¼1

qj x* Tð Þ� � 	 ¼
Z T

t

Xn
j¼1

gj s, x* sð Þ,ψ*
1 s, x* sð Þ� �

,ψ*
2 s, x* sð Þ� �

, � � �,ψ*
n s, x* sð Þ� �� �

exp �
Z s

τ
r yð Þdy

� �
ds

þ exp �
Z T

τ
r yð Þdy

� �Xn
j¼1

qj x* Tð Þ� � ¼ W τð Þ t; x*t
� �

;

for τ2 t0; T½ � and t2�τ,T�. ■
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2.1.2.2 Individual Rationality

After the players agree to cooperate and maximize their joint payoff, they have to

distribute the cooperative payoff among themselves. At time t0, with the state being

x0, the term ξ t0ð Þi t0; x0ð Þ is used to denote the imputation of payoff (received over the

time interval [t0,T]) to player i. A necessary condition for group optimality and

individual rationality to be upheld is:

(i)
Xn
j¼1

ξ t0ð Þj t0; x0ð Þ ¼ W t0ð Þ t0; x0ð Þ, and

(ii) ξ t0ð Þi t0; x0ð Þ � V t0ð Þi t0; x0ð Þ, for i2N ð1:7Þ

Condition (i) of (1.7) ensures group optimality and condition (ii) guarantees

individual rationality at time t0.
For the optimization scheme to be upheld throughout the game horizon both

group rationality and individual rationality are required to be satisfied throughout

the cooperation period [t0,T]. At time τ2 t0; T½ �, let ξ(τ)i(τ, x	τ ) denote the imputation

of payoff to player i over the time interval [τ, T]. Therefore the conditions

(i)
Xn
j¼1

ξ τð Þj τ; x*τ
� � ¼ W τð Þ τ; x*τ

� �
, and

(ii) ξ τð Þi τ; x*τ
� � � V τð Þi τ; x*τ

� �
; for i2N and τ2 t0; T½ �; ð1:8Þ

have to be fulfilled.

In particular, condition (i) ensures Pareto optimality and condition

(ii) guarantees individual rationality, throughout the cooperation period [t0,
T]. Failure to guarantee individual rationality leads to the condition where the

concerned participants would reject the agreed upon solution plan and play

noncooperatively.

Dockner and Jørgensen (1984); Dockner and Long (1993), Tahvonen (1994);

Mäler and de Zeeuw (1998) and Rubio and Casino (2002) examines group optimal

solutions in cooperative differential games. Haurie and Zaccour (1986, 1991);

Kaitala and Pohjola (1988, 1990, 1995); Kaitala et al. (1995) and Jørgensen and

Zaccour (2001) presented classes of transferable-payoff cooperative differential

games with solutions which satisfy group optimality and individual rationality.

2.1.3 Distribution of Cooperative Payoffs

With the players using the cooperative strategies
�
ψ*
i s; x*s
� �

, for s2 t0; T½ �and i2N


,

player i would derive a direct payoff :
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W t0ð Þi t0; x0ð Þ ¼Z T

t0

gi s, x* sð Þ,ψ*
1 s, x* sð Þ� �

,ψ*
2 s, x* sð Þ� �

, � � �,ψ*
n s, x* sð Þ� �� �

exp �
Z s

t0

r yð Þdy
� �

ds

þ exp �
Z T

t0

r yð Þdy
� �

qi x* Tð Þ� �
, for i2N: ð1:9Þ

At initial time t0, for cooperation to begin the cooperative payoff to player i W t0ð Þi

t0; x0ð Þ must be no less than the non-cooperative V t0ð Þi t0; x0ð Þ for all player i2N.
However as time proceeds there is no guarantee that adopting the cooperative

strategies would lead to W tð Þi t; x*t
� � � V tð Þi t; x*t

� �
for all player i2N. In case there

exists some player i such that V tð Þi t; x*t
� �

> W tð Þi t; x*t
� �

, then player i would have an

incentive to deviate from the cooperation plan. Hence the cooperation scheme has

to include transfer payments to overcome this problem. Let χi(s) denote the

instantaneous transfer payment allocated to agent i at time s2 t0; T½ �. With players

using the cooperative strategies
�
ψ*
i s; x*s
� �

, for s2 t0; T½ � and i2N


, the payoff that

player i’s payoff under cooperation at time t0 becomes:

ξ t0ð Þi t0; x0ð Þ ¼Z T

t0

gi s, x* sð Þ,ψ*
1 s, x* sð Þ� �

,ψ*
2 s, x* sð Þ� �

, � � �,ψ*
n s, x* sð Þ� �� �þ χi

�
s

� �

exp �

Z s

t0

r yð Þdy
� �

ds

þ exp �
Z T

t0

r yð Þdy
� �

qi x* Tð Þ� �
,

for i2N;

and
Xn
j¼1

Z T

t0

χj sð Þexp �
Z s

t0

r yð Þdy
� �

ds ¼ 0: ð1:10Þ

In order to uphold individual rationality one has to device a time path of instanta-

neous transfer payments χi(s) for s2 t0; T½ � satisfying:
Z T

τ
gi s, x* sð Þ,ψ*

1 s, x* sð Þ� �
,ψ*

2 s, x* sð Þ� �
, � � �,ψ*

n s, x* sð Þ� �� �þ χi
�
s

� �

exp �

Z s

τ
r yð Þdy

� �
ds

þ exp �
Z T

τ
r yð Þdy

� �
qi x* Tð Þ� � � V τð Þi τ; x*τ

� �
, for i2N; ð1:11Þ

and

Xn
j¼1

Z T

τ
χj sð Þexp �

Z s

τ
r yð Þdy

� �
ds ¼ 0, for τ2 t0; T½ �: ð1:12Þ
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There exist a large number of χi(s) for s2 t0; T½ � paths which leads to the satisfaction
of individual rationality for all players to be selected. Nevertheless, just satisfying

individual rationality may not be acceptable. For instance, players with larger

non-cooperative payoffs (or sizes) would demand a larger share proportionally. In

the next Section we will consider the derivation of χi(s) for s2 t0; T½ � paths which
would keep the original agree-upon imputation throughout the cooperation

duration.

2.2 Subgame Consistent Dynamic Cooperation

Though group optimality and individual rationality constitute two essential prop-

erties for cooperation, their fulfillment does not necessarily guarantee a dynami-

cally stable solution in cooperation because there is no guarantee that the agreed-

upon optimality principle is fulfilled throughout the cooperative duration. The

question of dynamic stability in differential games has been explored rigorously

in the past four decades. Haurie (1976) discussed the problem of instability in

extending the Nash bargaining solution to differential games. Petrosyan (1977)

formalized mathematically the notion of dynamic stability in solutions of differen-

tial games. Petrosyan and Danilov (1979, 1982) introduced the notion of “imputa-

tion distribution procedure” for cooperative solution.

To ensure stability in dynamic cooperation over time, a stringent condition is

required: the specific agreed-upon optimality principle must be maintained at any

instant of time throughout the game along the optimal state trajectory. This condi-

tion is the notion of subgame consistency.
Let Γc x0,T � t0ð Þ denote a cooperative game in which player i’s payoff is (1.1)

and the state dynamics is (1.2). The players agree to act according to an agreed-

upon optimality principle. The agreement on how to act cooperatively and allocate

cooperative payoff constitutes the solution optimality principle of a cooperative

scheme. In particular, the solution optimality principle includes

(i) an agreement on a set of cooperative strategies/controls,

(ii) an imputation vector stating the allocation of the cooperative payoff to

individual players, and

(iii) a mechanism to distribute total payoff among players.

2.2.1 Optimality Principle

Let there be an optimality principle agreed upon by all players in the cooperative

game Γc x0,T � t0ð Þ. Based on the agreed upon optimality principle the solution of

the game Γc x0,T � t0ð Þ at time t0 includes
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(i) a set of cooperative strategies u t0ð Þ* sð Þ ¼ u
t0ð Þ*
1 sð Þ, u t0ð Þ*

2 sð Þ, � � �, u t0ð Þ*
n sð Þ

h i
, for

s2 t0; T½ �;
(ii) an imputation vector ξ t0ð Þ t0; x0ð Þ ¼ ξ t0ð Þ1 t0; x0ð Þ, ξ t0ð Þ2 t0; x0ð Þ, � � �, ξ t0ð Þn t0; x0ð Þ� �

to allot the cooperative payoff to the players; and

(iii) a payoff distribution procedureBt0 sð Þ ¼ Bt0
1 sð Þ,Bt0

2 sð Þ, � � �,Bt0
n sð Þ� �

for s2 t0; T½ �,
where Bt0

i sð Þ is the instantaneous payments for player i at time s. In particular,

ξ t0ð Þi t0; x0ð Þ ¼
Z T

t0

Bt0
i sð Þexp �

Z s

t0

r yð Þdy
� �

dsþ qi xTð Þexp �
Z T

t0

r yð Þdy
� �

;

for i2N.

This means that the players agree at the outset on a set of cooperative strategies

u t0ð Þ* sð Þ, an imputation ξ t0ð Þi t0; x0ð Þ of the gains to the i th player covering the time

interval [t0,T], and a payoff distribution procedure Bt0 sð Þf g T
s¼t0

to allocate pay-

ments to the players over the game interval.

Using the agreed-upon cooperative strategies the state evolves according to the

state dynamics:

_x sð Þ ¼ f s, x sð Þ, u t0ð Þ*
1 sð Þ, u t0ð Þ*

2 sð Þ, � � �, u t0ð Þ*
n sð Þ

h i
, x t0ð Þ ¼ x0: ð2:1Þ

The solution to (2.1) yields the optimal cooperative trajectory which is denoted by

xc sð Þf gT
s¼t0

. For notational convenience we use xc(s) and xcs interchangeably.

When time t2�t0,T� has arrived, the situation becomes a cooperative game in

which player i’s payoff is:

Z T

t

gi s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
Z s

t

r yð Þdy
� �

ds

þ exp �
Z T

t

r yð Þdy
� �

qi x Tð Þð Þ, for i2N;

ð2:2Þ

and the evolutionary dynamics of the state is

_x sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �, x tð Þ ¼ xct : ð2:3Þ

We use Γc x ct ,T � t
� �

to denote a cooperative game in which player i’s objective is

(2.2) with state dynamics (2.3). At time t2�t0,T� when the state is xct , according to

the agreed-upon principle the solution of the game Γc x ct ,T � t
� �

includes:

(i) a set of cooperative strategies u tð Þ* sð Þ ¼ u
tð Þ*
1 sð Þ, u tð Þ*

2 sð Þ, � � �, u tð Þ*
n sð Þ

h i
, for

s2 t; T½ �;
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(ii) an imputation vector ξ tð Þ t; xct
� � ¼ ξ tð Þ1 t; xct

� �
, ξ tð Þ2 t; xct

� �
, � � �, ξ tð Þn t; xct

� �� �
to

allot the cooperative payoff to the players; and

(iii) a payoff distribution procedure Bt sð Þ ¼ Bt
1 sð Þ,Bt

2 sð Þ, � � �,Bt
n sð Þ� �

for s2 t; T½ �,
where Bt

i(s) is the instantaneous payments for player i at time s. In particular,

ξ tð Þi t; xct
� � ¼ Z T

t

B t
i sð Þexp �

Z s

t

r yð Þdy
� �

dsþ qi xcT
� �

exp �
Z T

t

r yð Þdy
� �

; ð2:4Þ

for i2N and t2 t0; T½ �.
This means that under the agreed-upon optimality principle, the players agree

on a set of cooperative strategies u(t) *(s), an imputation of the gains in such a way

that the gain under cooperation of the i th player over the time interval [t,T] is equal

to ξ(t)i(t, xct ) and a payoff distribution procedure Bt sð Þf gTs¼t to allocate payments to

the players over the game interval [t,T].
Examples of optimality principles include:

(i) joint payoff maximization and equal sharing of gains from cooperation,

(ii) joint payoff maximization and sharing gains proportional to non-cooperative

payoffs,

(iii) joint payoff maximization and time varying sharing weights,

(iv) different combinations of (i), (ii) and (iii),

(v) joint payoff maximization and sharing gains according to the Shapley value,

(vi) joint payoff maximization and sharing gains according to the von Neumann-

Morgenstern solution, or

(vii) joint payoff maximization and sharing gains according to the nucleolus.

2.2.2 Cooperative Subgame Consistency

To satisfy subgame consistency, the cooperative strategies, imputation and payoff

distribution procedure u t0ð Þ* sð Þ�
and Bt0 sð Þ for s2 t0; T½ �; ξ t0ð Þ t0; x0ð Þ
 generated by

the agreed-upon optimality principle in the cooperative gameΓc x0, T � t0ð Þmust be

consistent with the cooperative strategies, imputation and payoff distribution pro-

cedure { u(t) *(s) and Bt(s) for s2 t; T½ �; ξ tð Þ t; xct
� �


generated by the same optimality

principle in the cooperative game Γc x ct ,T � t
� �

along the optimal cooperative

trajectory xcs
� 
T

s¼t0
.

If this consistency does not appear, there is no guarantee that the players would

not abandon the cooperative scheme and switch to other plans including the

non-cooperative scheme. Dynamical instability would arise as participants found

that their agreed upon optimality principle could not be maintained after coopera-

tion has gone on for some time.
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2.2.2.1 Subgame Consistent Cooperative Strategies

First we consider the cooperative strategies adopted under the agreed-upon opti-

mality principle in the gameΓc x0,T � t0ð Þ. At time t0 when the initial state is x0, the
set of cooperative strategies is

u t0ð Þ* sð Þ ¼ u
t0ð Þ*
1 sð Þ, u t0ð Þ*

2 sð Þ, � � �, u t0ð Þ*
n sð Þ

h i
, for s2 t0; T½ �:

Consider the case when the game has proceeded to time t and the state variable

became xct . Then one has a cooperative game Γc xct ,T � t
� �

which starts at time

t with initial state xct . According to the agreed upon optimality principle a set of

cooperative strategies

u tð Þ* sð Þ ¼ u
tð Þ*
1 sð Þ, u tð Þ*

2 sð Þ, � � �, u tð Þ*
n sð Þ

h i
, for s2 t;T½ �;

will be adopted.

Definition 2.1 The set of cooperative strategies

u t0ð Þ* sð Þ ¼ u
t0ð Þ*
1 sð Þ, u t0ð Þ*

2 sð Þ, � � �, u t0ð Þ*
n sð Þ

h i
in the gameΓc x0,T � t0ð Þ is subgame

consistent if

u
t0ð Þ*
1 sð Þ, u t0ð Þ*

2 sð Þ, � � �, u t0ð Þ*
n sð Þ

h i
¼ u

tð Þ*
1 sð Þ, u tð Þ*

2 sð Þ, � � �, u tð Þ*
n sð Þ

h i
in the game Γc

xct , T � t
� �

under the agreed-upon optimality principle, for s2 t; T½ � and

t2 t0; T½ �. ■

If the condition in Definition 2.1 is satisfied at each instant of time t2 t0; T½ � along
the optimal trajectory xc tð Þf gT

t¼t0
, the continuation of the original cooperative

strategies u t0ð Þ* sð Þ coincides with the cooperative strategies u(t) *(s) in the cooper-

ative game Γc xct , T � t
� �

. Hence the set of cooperative strategies u t0ð Þ* sð Þ is

subgame consistent. Recall that to ensure group optimality the players have to

maximize the players’ joint payoffs. An optimality principle which requires group

optimality would yield a set of cooperative controls that solves the problem:

max
u1, u2, ���, un

Z T

t0

Xn
j¼1

gj s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
Z s

t0

r yð Þdy
� �

ds

(

þexp �
Z T

t0

r yð Þdy
� �Xn

j¼1

qj x Tð Þð Þ
)
; ð2:5Þ

subject to _x sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �, x t0ð Þ ¼ x0: ð2:6Þ

A set of group optimal cooperative strategies {ψ	
i (s, x*(s)), for i2N and s2 t0; T½ �g

which solves the problem (2.5 and 2.6) could be characterized by Theorem 1.2. In

particular, x* tð Þ� 
T

t¼t0
is the solution path of the optimal cooperative trajectory:
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_x sð Þ ¼ f s, x sð Þ,ψ*
1 s, x sð Þð Þ,ψ*

2 s, x sð Þð Þ, � � �,ψ*
n s, x sð Þð Þ� �

, x t0ð Þ ¼ x0:

Invoking Remark 1.2 in Sect. 2.1, one can show that the joint payoff maximizing

controls for the cooperative game Γc x*t ,T � t
� �

over the time interval [t,T] is

identical to the joint payoff maximizing controls for the cooperative game

Γc x0,T � t0ð Þ over the same time interval.

Therefore the solution to an optimality principle which requires group optimality

yields a system of subgame consistent cooperative strategies. Given that group

optimality is an essential element in dynamic cooperation, a valid optimality

principle would require the maximization of joint payoff and the cooperative

strategies u t0ð Þ* sð Þ ¼ u
tð Þ*
1 sð Þ ¼ ψ*

i s, x* sð Þ� �
, for s2 t; T½ � and t2 t0; T½ �.

2.2.2.2 Subgame Consistent Imputation

Now, we consider subgame consistency in imputation and payoff distribution

procedure. In the cooperative game Γc x0,T � t0ð Þ, according to the agreed-upon

optimality principle the players would use the payoff distribution procedure

Bt0 sð Þf g T
s¼t0

to bring about an imputation to player i as:

ξ t0ð Þi t0; x0ð Þ ¼
Z T

t0

Bt0
i sð Þexp �

Z s

t0

r yð Þdy
� �

dsþ qi xTð Þexp �
Z T

t0

r yð Þdy
� �

; ð2:7Þ

for i2N.

When the game proceeds to time t2�t0,T�, the current state is xct . According to

the same optimality principle player i will receive an imputation (in present value

viewed at time t0) equaling

ξ t0ð Þi t; xct
� � ¼ Z T

t

Bt0
i sð Þexp �

Z s

t0

r yð Þdy
� �

dsþ qi xcT
� �

exp �
Z T

t0

r yð Þdy
� �

; ð2:8Þ

over the time interval [t,T].

At time t2�t0,T� when the current state is xct , we have a cooperative game

Γc xct ,T � t
� �

. According to the agreed-upon optimality principle the players would

use the payoff distribution procedure Bt sð Þf g T
s¼t to bring about an imputation to

player i as:

ξ tð Þi t; xct
� � ¼ Z T

t

B t
i sð Þexp �

Z s

t

r yð Þdy
� �

dsþ qi xcT
� �

exp �
Z T

t

r yð Þdy
� �

; ð2:9Þ

for i2N.
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For the imputation and payoff distribution procedure in the game Γc x0,T � t0ð Þ
to be consistent with those from Γc x ct ,T � t

� �
, it is essential that

exp

Z t

t0

r yð Þdy
� �

ξ t0ð Þ t; xct
� � ¼ ξ tð Þ t; xct

� �
, for t2 t0; T½ �:

In addition, in the game Γc x0,T � t0ð Þ according to the agreed-upon optimality

principle the payoff distribution procedure is

Bt0 sð Þ ¼ Bt0
1 sð Þ,Bt0

2 sð Þ, � � �,Bt0
n sð Þ� �

, for s2 t0; T½ �:

Consider the case when the game has proceeded to time t and the state variable

became xct . Then one has a cooperative game Γc xct ,T � t
� �

which starts at time

t with initial state xct . According to the agreed-upon optimality principle the payoff

distribution procedure

Bt sð Þ ¼ Bt
1 sð Þ,Bt

2 sð Þ, � � �,Bt
n sð Þ� �

, for s2 t; T½ �

will be adopted.

For the continuation of the payoff distribution procedure Bt0 sð Þ for s2 t; T½ � to be
consistent with Bt(s) in the game Γc x ct ,T � t

� �
, it is required that

Bt0 sð Þ ¼ Bt sð Þ, for s2 t; T½ � and t2 t0; T½ �:

Therefore a formal definition can be presented as below.

Definition 2.2 The imputation and payoff distribution procedure�
ξ t0ð Þ t0; x0ð Þ and Bt0 sð Þ for s2 t0; T½ �
 are subgame consistent if

(i) exp

Z t

t0

r yð Þdy
� �

ξ t0ð Þi t; xct
� �


exp

Z t

t0

r yð Þdy
� �� Z T

t

Bt0
i sð Þexp �

Z s

t

r yð Þdy
� �

dsþ qi xcT
� �

exp �
Z T

t0

r yð Þdy
� �	

¼ ξ tð Þi t; xct
� �
Z T

t

B t
i sð Þexp �

Z s

t

r yð Þdy
� �

dsþ qi xcT
� �

exp �
Z T

t

r yð Þdy
� �

,

for i2N and t2 t0;T½ �, and ð2:10Þ

(ii) the payoff distribution procedureBt0 sð Þ ¼ Bt0
1 sð Þ,Bt0

2 sð Þ, � � �,Bt0
n sð Þ� �

for s2 t; T½ �
is identical to

Bt sð Þ ¼ Bt
1 sð Þ,Bt

2 sð Þ, � � �,Bt
n sð Þ� �

, for t2 t0; T½ � ð2:11Þ

■
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Thus cooperative strategies, payoff distribution procedures and imputations

satisfying the conditions in Definitions 2.1 and 2.2 are subgame consistent.

2.3 Subgame Consistent Payoff Distribution Procedure

Crucial to obtaining a subgame consistent solution is the derivation of a payoff

distribution procedure satisfying Definition 2.2 in Sect. 2.2.

2.3.1 Derivation of Payoff Distribution Procedures

Invoking part (ii) of Definition 2.2, we haveBt0 sð Þ ¼ Bt sð Þ for t2 t0; T½ � and s2 t; T½ �.
We use B sð Þ ¼ B1 sð Þ,B2 sð Þ, � � �,Bn sð Þf g to denote Bt(s) for all t2 t0; T½ �. Along the

optimal trajectory xc sð Þf gT
s¼t0

we then have:

ξ τð Þi τ; xcτ
� � ¼ Z T

τ
Bi sð Þexp �

Z s

τ
r yð Þdy

� �
dsþ qi xcT

� �
exp �

Z T

τ
r yð Þdy

� �
; ð3:1Þ

for i2N and τ2 t0; T½ �; andXn
j¼1

Bj sð Þ ¼
Xn
j¼1

gj s, xcs , u
τð Þ*
1 sð Þ, u τð Þ*

2 sð Þ, � � �, u τð Þ*
n sð Þ

h i
:

Moreover, for t2 τ; T½ �, we use the term

ξ τð Þi t; xct
� � ¼ Z T

t

Bi sð Þexp �
Z s

τ
r yð Þdy

� �
dsþ qi xcT

� �
exp �

Z T

τ
r yð Þdy

� �
; ð3:2Þ

to denote the present value (with initial time being τ) of player i’s payoff under
cooperation over the time interval [t, T] according to the agreed-upon optimality

principle along the cooperative state trajectory.

Invoking (3.1) and (3.2) we have

ξ τð Þi t; xct
� � ¼ exp �

Z t

τ
r yð Þdy

� �
ξ tð Þi t; xct
� �

,

for i2N and τ2 t0; T½ � and t2 τ; T½ �: ð3:3Þ

One can readily verify that a payoff distribution procedure B sð Þf g T
s¼t0

which

satisfies (3.3) would give rise to subgame consistent imputations satisfying part

(ii) of Definition 2.2. The next task is the derivation of a payoff distribution

procedure B sð Þf g T
s¼t0

that leads to the realization of (3.1, 3.2 and 3.3).

We first consider the following condition concerning the imputation ξ(τ)(t, xct ),
for τ2 t0; T½ � and t2 τ; T½ �.
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Condition 3.1 For i2N and t2 τ; T½ � and τ2 t0; T½ �, the imputation ξ(τ)i(t, xct ), for
i2N, is a function that is continuously differentiable in t and xct . ■

A theorem characterizing a formula for Bi(s), for s2 t0; T½ � and i2N, which yields
(3.1, 3.2 and 3.3) is provided as follows.

Theorem 3.1 If Condition 3.1 is satisfied, a PDP with a terminal payment qi(xcT) at
time T and an instantaneous payment at time s2 τ; T½ �:

Bi sð Þ ¼ � ξ sð Þi
t t; xct
� ����

t¼s

h i
� ξ sð Þi

x c
s

s; xcs
� �h i

f s, xcs ,ψ
*
1 s; xcs
� �

,ψ*
2 s; xcs
� �

, � � �,ψ*
n s; xcs
� �� �

, for i2N; ð3:4Þ

yields imputation vector ξ(τ)(τ, xcτ), for τ2 t0; T½ � which satisfy (3.1, 3.2 and3.3).

Proof Invoking (3.1, 3.2 and 3.3), one can obtain

ξ υð Þi υ; xcυ
� � ¼ Z υþΔt

υ
Bi sð Þexp �

Z s

υ
r yð Þdy

� �
dsþ

exp �
Z υþΔt

υ
r yð Þdy

� �
ξ υþΔtð Þi υþ Δt, xcυ þ Δxcυ

� �
,

forυ2 τ; T½ � and i2N; ð3:5Þ

where Δxcυ ¼ f υ, xcυ ,ψ
*
1 υ; xcυ
� �

,ψ*
2 υ; xcυ
� �

, � � �,ψ*
n υ; xcυ
� �� �

Δtþ o Δtð Þ, and
o Δtð Þ=Δt ! 0 as Δt ! 0.

From (3.2) and (3.5), one obtains

Z υþΔt

υ
Bi sð Þexp �

Z s

υ
r yð Þdy

� �
ds

¼ ξ υð Þi υ; xcυ
� �� exp �

Z υþΔt

υ
r yð Þdy

� �
ξ υþΔtð Þi υþ Δt, xcυ þ Δxcυ

� �
¼ ξ υð Þi υ; xcυ

� �� ξ υð Þi υþ Δt, xcυ þ Δxcυ
� �

,

for all υ2 t0; T½ � and i2N ð3:6Þ

If the imputations ξ(υ)(t, xct ), for υ2 t0; T½ �, satisfy Condition 3.1, asΔt ! 0, one can

express condition (3.6) as:

Bi υð ÞΔt ¼ � ξ υð Þi
t t; xct
� ����

t¼υ

h i
Δt

� ξ υð Þi
x c
υ

υ; xcυ
� �h i

f υ, xcυ ,ψ
*
1 υ; xcυ
� �

,ψ*
2 υ; xcυ
� �

, � � �,ψ*
n υ; xcυ
� �� �

Δt� o Δtð Þ: ð3:7Þ

Dividing (3.7) throughout by Δt, with Δt ! 0, yields (3.4).
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Bi υð Þ ¼ � ξ υð Þi
t t; xct
� ����

t¼υ

h i
� ξ υð Þi

x c
υ

υ; xcυ
� �h i

f υ, xcυ ,ψ
*
1 υ; xcυ
� �

,ψ*
2 υ; xcυ
� �

, � � �,ψ*
n υ; xcυ
� �� �

Thus the payoff distribution procedure in Bi(s) in (3.4) would lead to the realization
of ξ(τ)i(τ, xcτ), for τ2 t0; T½ � which satisfy (3.1, 3.2 and 3.3). ■

Assigning the instantaneous payments according to the payoff distribution

procedure in (3.4) leads to the realization of the imputation ξ(τ)(τ, xcτ) governed by

the agreed-upon optimality principle in the game Γc x cτ ,T � τ
� �

for τ2 t0; T½ �.
Therefore the payoff distribution procedure in Bi(s) in (3.4) yields a subgame

consistent solution.

With players using the cooperative strategies
�
ψ*
i τ; x*τ
� �

, for τ2 t0; T½ � and i2N


,

the instantaneous payment received by player i at time instant τ is:

ζi τð Þ ¼ gi τ, x*τ ,ψ
*
1 τ; x*τ
� �

,ψ*
2 τ; x*τ
� �

, � � �,ψ*
n τ; x*τ
� ��� �

,

for τ2 t0; T½ � and i2N: ð3:8Þ

According to Theorem 3.1, the instantaneous payment that player i should receive

under the agreed-upon optimality principle is Bi(τ) as stated in (3.2). Hence an

instantaneous transfer payment

χi τð Þ ¼ Bi τð Þ � ζi τð Þ ð3:9Þ

has to be given to player i at time τ, for i2N and τ2 t0; T½ �.

2.3.2 Subgame Consistent Solution under Specific
Optimality Principle

In this section we present examples of subgame consistent solutions under various

optimality principles.

Case I Consider the cooperative differential game Γc x0,T � t0ð Þ. In particular, the
players agree with an optimality principle which entails

(i) group optimality and

(ii) the division of the excess of the total cooperative payoff over the sum of

individual noncooperative payoffs equally.
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According to the optimality principle the imputation to player j inΓc x0,T � t0ð Þ is:

ξ τð Þi τ; xcτ
� � ¼ V τð Þi τ; xcτ

� �þ 1

n
W τð Þ τ; xcτ

� ��Xn
j¼1

V τð Þj τ; xcτ
� �" #

; ð3:10Þ

for i2N and τ2 t0; T½ �.
The imputation in (3.10) yields

(i) ξ τð Þi τ; xcτ
� � � V τð Þi τ; xcτ

� �
, for i2N and τ2 t0; T½ �; and

(ii)
Xn
j¼1

ξ τð Þj τ; xcτ
� � ¼ W τð Þ τ; xcτ

� �
for τ2 t0; T½ �:

Hence the imputation vector ξ(τ)i(τ, x	τ ) satisfies individual rationality and group

optimality.

Applying Theorem 3.1 a subgame consistent solution under the optimal princi-

ple can be characterized by
�
u sð Þ and B(s) for s2 t0; T½ � and ξ t0ð Þ t0; x0ð Þ
 in which

(i) u(s) for s2 t0; T½ � is the set of group optimal strategies ψ*ðs, x*s Þ in the game

Γc x0, T � t0ð Þ, and
(ii) the imputation distribution procedure

B sð Þ ¼ B1 sð Þ,B2 sð Þ, � � �,Bn sð Þf g for s2 t0; T½ � where
Bi sð Þ ¼ � ∂

∂t

�
V sð Þi t; x*t

� �þ 1

n
W sð Þ t; x*t

� ��Xn
j¼1

V sð Þj t; x*t
� � !����

t¼s

�

� ∂
∂x*s

�
V sð Þi s; x*s

� �þ 1

n
W sð Þ s; x*s

� ��Xn
j¼1

V sð Þj s; x*s
� � !�

� f s, x*s ,ψ
*
1 s; x*s
� �

,ψ*
2 s; x*s
� �

, � � �,ψ*
n s; x*s
� �� �

; ð3:11Þ

for i2N.

Case II Consider the cooperative differential gameΓc x0,T � t0ð Þ. In particular, the
players agree with an optimality principle which entails

(i) group optimality and

(ii) the sharing of the excess of the total cooperative payoff over the sum of

individual noncooperative payoffs proportional to the players’ noncooperative
payoffs.

ξ τð Þi τ; xcτ
� � ¼ V τð Þi τ; xcτ

� �
Xn
j¼1

V τð Þj τ; xcτ
� �þW τð Þ τ; xcτ

� �
; ð3:12Þ

for i2N and τ2 t0; T½ �.
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Applying Theorem 3.1 a subgame consistent solution under the optimal principle

will yield the imputation distribution procedure

B sð Þ ¼ B1 sð Þ,B2 sð Þ, � � �,Bn sð Þf g for s2 t0; T½ � where

Bi sð Þ ¼ � ∂
∂t

V sð Þi t; x*t
� �

Xn
j¼1

V sð Þj t; x*t
� �W sð Þ t; x*t

� ������
t¼s

2
66664

3
77775

� ∂
∂x*s

V sð Þi s; x*s
� �

Xn
j¼1

V sð Þj s; x*s
� �W sð Þ s; x*s

� �
2
66664

3
77775

� f s, x*s ,ψ
*
1 s; x*s
� �

,ψ*
2 s; x*s
� �

, � � �,ψ*
n s; x*s
� �� �

for i2N ð3:13Þ

Case III Consider the cooperative differential game Γc x0,T � t0ð Þ with two

players. In particular, the players agree with an optimality principle which entails

(i) group optimality and

(ii) the division of the excess of the total cooperative payoff over the sum of

individual noncooperative payoffs by the time-varying weights – τ
Tþα for player

1 and Tþα�τ
Tþα for player 2 at time τ2 t0; T½ �.

According to optimality principle the imputations to player 1 and player 2 in Γc

x0,T � t0ð Þ are:

ξ τð Þ1 τ; xcτ
� � ¼ V τð Þ1 τ; xcτ

� �þ τ

T þ α
W τð Þ τ; xcτ

� ��X2
j¼1

V τð Þj τ; xcτ
� �" #

for player 1, and

ξ τð Þ2 τ; xcτ
� � ¼ V τð Þ2 τ; xcτ

� �þ T þ α� τ

T þ α
W τð Þ τ; xcτ

� ��X2
j¼1

V τð Þj τ; xcτ
� �" #

ð3:14Þ

for player 2; τ2 t0; T½ �.
Applying Theorem 3.1 a subgame consistent solution under the optimal princi-

ple will yield the imputation distribution procedure

B sð Þ ¼ B1 sð Þ,B2 sð Þ, � � �,Bn sð Þf g for s2 t0; T½ � where
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B1 sð Þ ¼ � ∂
∂t

"
V sð Þ1 t; x*t

� �þ t

T þ α
W sð Þ t; x*t

� ��X2
j¼1

V sð Þj t; x*t
� � ! ����

t¼s

#

� ∂
∂x*s

"
V sð Þ1 s; x*s

� �þ s

T þ α
W sð Þ s; x*s

� ��X2
j¼1

V sð Þj s; x*s
� � ! #

� f s, x*s ,ψ
*
1 s; x*s
� �

,ψ*
2 s; x*s
� �� �

B2 sð Þ ¼ � ∂
∂t

"
V sð Þ2 t; x*t

� �þ T � tþ α

T þ α
W sð Þ t; x*t

� ��X2
j¼1

V sð Þj t; x*t
� � ! ����

t¼s

#

� ∂
∂x*s

"
V sð Þ1 s; x*s

� �þ T � sþ ε

T þ α
W sð Þ s; x*s

� ��X2
j¼1

V sð Þj s; x*s
� � ! #

� f s, x*s ,ψ
*
1 s; x*s
� �

,ψ*
2 s; x*s
� �� �

: ð3:15Þ

A variety of optimality principles with various imputation schemes can be

constructed.

2.4 An Illustration in Cooperative Fishery

Consider a deterministic version of an example in Yeung and Petrosyan (2004) in

which two nations are harvesting fish in common waters. The growth rate of the fish

stock is characterized by the differential equation:

_x sð Þ ¼ ax sð Þ1=2 � bx sð Þ � u1 sð Þ � u2 sð Þ, x t0ð Þ ¼ x02X; ð4:1Þ

where ui2Ui is the (nonnegative) amount of fish harvested by nation i, for i2 1; 2f g,
aandb are positive constants.

The harvesting cost for nation i2 1; 2f g depends on the quantity of resource

extracted ui(s), the resource stock size x(s), and a parameter ci. In particular, nation

i’s extraction cost can be specified as ciui sð Þx sð Þ�1=2
. The fish harvested by nation

i at time swill generate a net benefit of the amount [ui(s)]
1/2. The horizon in concern

is [t0,T]. At time T, nation i will receive a termination bonus qix(T )
1/2, where qi is

nonnegative. There exists a positive discount rate r.
At time t0 the payoff of nation i2 1; 2½ � is:

Z T

t0

ui sð Þ½ �1=2 � ci

x sð Þ1=2
ui sð Þ

" #
exp �r s� t0ð Þ½ �ds

þ exp �r T � t0ð Þ½ �qix Tð Þ12: ð4:2Þ
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Following the above analysis a set of feedback strategies u*i tð Þ ¼ ϕ*
i t; xð Þ�

, for i

2 1; 2f gg provides a feedback Nash equilibrium solution to the game (4.1 and 4.2),

if there exist continuously differentiable functions V τð Þi t; xð Þ : τ; T½ � � R !
R, i2 1; 2f g, satisfying the following partial differential equations:

�V
τð Þi
t t; xð Þ ¼ max

ui

�
u
1=2
i � ci

x1=2
ui

h i
exp �r t� τð Þ½ �

þ V τð Þi
x t; xð Þ ax1=2 � bx� ui � ϕ*

j t; xð Þ
h i 	

, and

V τð Þi T; xð Þ ¼ qix
1=2 exp �r T � τð Þ½ � for i2 1; 2f g, j2 1; 2f g and j 6¼ i: ð4:3Þ

Performing the indicated maximization yields:

ϕ*
i t; xð Þ ¼ x

4 ci þ V τð Þi
x exp r t� τð Þ½ �x1=2� � 2 , for i2 1; 2f g ð4:4Þ

Substituting ϕ	
1(t, x) and ϕ	

2(t, x) into (4.3) and upon solving (4.43 one obtains can

obtain the feedback Nash equilibrium payoff of nation i in the game (4.1 and 4.2)

as:

V τð Þi t; xð Þ ¼ exp �r t� τð Þ½ � Ai tð Þx1=2 þ Ci tð Þ
� �

,

for i2 1; 2f gand t2 τ; T½ � and τ2 t0; T½ �; ð4:5Þ

where Ai(t),Ci(t),Aj(t) and Cj(t), for i2 1; 2f g and j2 1; 2f g and i 6¼ j, satisfy:

_A i tð Þ ¼ r þ b

2

� �
Ai tð Þ � 1

2 ci þ Ai tð Þ=2½ � þ
ci

4 ci þ Ai tð Þ=2½ �2

þ Ai tð Þ
8 ci þ Ai tð Þ=2½ �2 þ

Ai tð Þ
8 cj þ Aj tð Þ=2
� �2

_C i tð Þ ¼ rCi tð Þ � a

2
Ai tð Þ and Ai Tð Þ ¼ q , and Ci Tð Þ ¼ 0: ð4:6Þ

Now consider the case when the nations agree to cooperate in harvesting the fishery.

Let Γc x0,T � t0ð Þ denote a cooperative game with the game structure of

Γ x0,T � t0ð Þ in which the players agree to act according to the optimality principle

that they would

(i) maximize the sum of their payoffs and

(ii) divide the excess of the total cooperative payoff over the sum of individual

noncooperative payoffs equally.
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To maximize the joint payoffs, the nations would consider the optimal control

problem:

Z T

t0

u1 sð Þ1=2 � c1

x sð Þ1=2
u1 sð Þ

" #
þ u2 sð Þ1=2 � c2

x sð Þ1=2
u2 sð Þ

" # !
exp �r t� t0ð Þ½ �ds

þ 2exp �r T � t0ð Þ½ �qx Tð Þ12; ð4:7Þ

subject to (4.1).

Let [ψ	
1(t, x),ψ

	
2(t, x)] denote a set of controls that provides a solution to the

optimal control problem (4.1) and (4.7) andW t0ð Þ t; xð Þ : t0; T½ � � Rn ! R denote the

value function that satisfies the equations:

�W
t0ð Þ
t t; xð Þ

¼ max
u1, u2

�
u1

1=2 � c1
x1=2

u1

h i
þ u2

1=2 � c2
x1=2

u2

h i �
exp �r t� t0ð Þ½ �

þW t0ð Þ
x t; xð Þ ax1=2 � bx� u1 � u2

� �	
, and

W t0ð Þ T; xð Þ ¼ 2exp �r T � t0ð Þ½ �qx1
2: ð4:8Þ

Performing the indicated maximization we obtain:

ψ*
1 t; xð Þ ¼ x

4 c1 þW t0ð Þ
x exp r t� t0ð Þ½ �x1=2� �2, and

ψ*
2 t; xð Þ ¼ x

4 c2 þW t0ð Þ
x exp r t� t0ð Þ½ �x1=2� �2:

Substituting ψ	
1(t, x) and ψ	

2(t, x) above into (4.8) yields the value function

W t0ð Þ t; xð Þ ¼ exp �r t� t0ð Þ½ � Â tð Þx1=2 þ Ĉ tð Þ
h i

;

where
_̂A tð Þ ¼ r þ b

2

� �
Â tð Þ � 1

2 c1þÂ tð Þ=2½ � �
1

2 c2þÂ tð Þ=2½ �

þ c1

4 c1 þ Â tð Þ=2� �2 þ c2

4 c2 þ Â tð Þ=2� �2 þ Â tð Þ
8 c1 þ Â tð Þ=2� �2 þ Â tð Þ

8 c2 þ Â tð Þ=2� �2 ,
_̂
C tð Þ ¼ rĈ tð Þ � a

2
Â tð Þ, Â Tð Þ ¼ 2q, and B̂ Tð Þ ¼ 0: ð4:9Þ
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The optimal cooperative controls can then be obtained as:

ψ*
1 t; xð Þ ¼ x

4 c1 þ Â tð Þ=2� �2 and ψ*
2 t; xð Þ ¼ x

4 c2 þ Â tð Þ=2� �2 : ð4:10Þ

Substituting these control strategies into (4.1) yields the dynamics of the state

trajectory under cooperation:

_x sð Þ ¼ ax sð Þ1=2 � bx sð Þ � x sð Þ
4 c1 þ Â sð Þ=2� �2 � x sð Þ

4 c2 þ Â sð Þ=2� �2 , x t0ð Þ

¼ x0: ð4:11Þ

Solving (4.11) yields the optimal cooperative state trajectory for Γc x0,T � t0ð Þ as:

x* sð Þ ¼ ϖ t0; sð Þ2
�
x
1=2
0 þ

Z s

t0

ϖ�1 t0; tð ÞH1dt

�2
, for s2 t0; T½ �; ð4:12Þ

whereϖ t0; sð Þ ¼ exp

Z s

t0

H2 τð Þdτ
� �

,H1 ¼ 1
2
a, andH2 sð Þ ¼ �

�
1
2
bþ 1

8 c1þÂ sð Þ=2½ �2 þ

1

8 c2þÂ sð Þ=2½ �2
�
:

The cooperative control for the game Γc x0,T � t0ð Þ over the time interval [t0,T]

along the optimal trajectory x* tð Þ� 
T

t¼t0
can be expressed precisely as:

ψ*
1 t; x*t
� � ¼ x*t

4 c1 þ Â tð Þ=2� �2 , and ψ*
2 t; x*t
� � ¼ x*t

4 c2 þ Â tð Þ=2� �2 : ð4:13Þ

Following the above analysis, the value function of the optimal control problem

with dynamics structure (4.1) and payoff structure (4.7) which starts at time τ with

initial state x	τ can be obtained asW
τð Þ t; xð Þ ¼ exp �r t� τð Þ½ � Â tð Þx1=2 þ B̂ tð Þ� �

, and

the corresponding optimal controls as

ψ*
1 t; x*t
� � ¼ x*t

4 c1 þ Â tð Þ=2� �2 , andψ*
2 t; x*t
� � ¼ x*t

4 c2 þ Â tð Þ=2� �2 ;
over the time interval [τ,T].

The agreed-upon optimality principle entails an imputation

ξ τð Þi τ; x*τ
� � ¼ V τð Þi τ; x*τ

� �þ 1

n
W τð Þ τ; x*τ

� ��Xn
j¼1

V τð Þj τ; x*τ
� �" #

, i2 1; 2f g; ð4:14Þ

in the cooperative game Γc x*τ , T � τ
� �

for τ2�t0,T�.
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Applying Theorem 3.1 a subgame consistent solution under the above optimal

principle for the cooperative game Γc x0 , T � t0ð Þ can be obtained as:�
u sð Þ and B(s) for s2 t0; T½ � and ξ t0ð Þ t0; x0ð Þ} in which

(i) u(s) for s2 t0; T½ � is the set of group optimal strategies

ψ*
1 s; x*s
� � ¼ x*s

4 c1þÂ sð Þ=2½ �2 , and ψ*
2 s; x*s
� � ¼ x*s

4 c2þÂ sð Þ=2½ �2 ; and
(ii) the imputation distribution procedure

B sð Þ ¼ B1 sð Þ,B2 sð Þf g for s2 t0; T½ � where

Bi sð Þ ¼ �1

2
_A i sð Þ x*s

� �1=2 þ _C i sð Þ
h i

þ r Ai sð Þ x*s
� �1=2 þ Ci sð Þ

h i� ��

þ 1

2
Ai sð Þ x*s

� ��1=2
� �

a x*s
� �1=2 � bx*s �

x*s

4 ci þ Â sð Þ=2� �2 � x*s

4 cj þ Â sð Þ=2� �2
" #	

�1

2

_̂A sð Þ x*s
� �1=2 þ _̂

C sð Þ
h i

þ r Â sð Þ x*s
� �1=2 þ Ĉ sð Þ

h i� ��

þ 1

2
Â sð Þ x*s

� ��1=2
� �

a x*s
� �1=2 � bx*s �

x*s

4 ci þ Â sð Þ=2� �2 � x*s

4 cj þ Â sð Þ=2� �2
" #	

þ 1

2
_A j sð Þ x*s

� �1=2 þ _C j sð Þ
h i

þ r Aj sð Þ x*s
� �1=2 þ Cj sð Þ

h i� ��

þ 1

2
Aj sð Þ x*s

� ��1=2
� �

a x*s
� �1=2 � bx*s �

x*s

4 ci þ Â sð Þ=2� �2 � x*s

4 cj þ Â sð Þ=2� �2
" #	

,

for i, j2 1; 2f gand i 6¼ j; ð4:15Þ

where _A i sð Þ and _C i sð Þ are given in (4.6); and
_̂A sð Þ and _̂

C sð Þ are given in (4.9).

With players using the cooperative strategies, the instantaneous receipt of player

i at time instant τ is:

ζi τð Þ ¼ x*τ
� �1=2

2 ci þ A τð Þ=2½ � �
ci x

*
τ

� �1=2
4 ci þ A τð Þ=2½ �2 ; ð4:16Þ

Under cooperation the instantaneous payment that player i should receive is Bi(τ) as
stated in (4.15). Hence an instantaneous transfer payment
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χi τð Þ ¼ Bi τð Þ � ζi τð Þ ð4:17Þ

has to be given to player i at time τ, for i2 1; 2f g and τ2 t0; T½ �.

2.5 Infinite Horizon Analysis

In this section we consider infinite horizon cooperative differential games in which

player i’s payoff is:

Z 1

τ
gi x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �r s� τð Þ½ �ds, for i2N: ð5:1Þ

The state dynamics is

_x sð Þ ¼ f x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �, x τð Þ ¼ xτ: ð5:2Þ

Since s does not appear in gi[x(s), u1(s), u2(s)] and the state dynamics, the game (5.1

and 5.2) is an autonomous problem. Consider the alternative game Γ(x) which starts
at time t2�t0,1� with initial state x tð Þ ¼ x:

max
ui

Z 1

t

gi x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �r s� tð Þ½ �ds, for i2N; ð5:3Þ

subject to the state dynamics

_x sð Þ ¼ f x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �, x tð Þ ¼ x: ð5:4Þ

The infinite-horizon autonomous game Γ(x) is independent of the choice of t and
dependent only upon the state at the starting time, that is x.

A feedback Nash equilibrium solution for the infinite-horizon autonomous game

(5.3) and (5.4) can be characterized as follows:

Theorem 5.1 An n-tuple of strategies u*i ¼ ϕ*
i �ð Þ� 2Ui, for i2Ng provides a

feedback Nash equilibrium solution to the infinite-horizon game (5.3) and (5.4) if

there exist continuously differentiable functions V̂
i
xð Þ : Rm ! R, i2N, satisfying

the following set of partial differential equations:

rV̂
i
xð Þ ¼ max

ui
gi x,ϕ*

1 xð Þ,ϕ*
2 xð Þ, � � �,ϕ*

i�1 xð Þ, ui,ϕ*
iþ1 xð Þ, � � �,ϕ*

n xð Þ� ��

þV̂
i

x xð Þf x,ϕ*
1 xð Þ,ϕ*

2 xð Þ, � � �,ϕ*
i�1 xð Þ, ui,ϕ*

iþ1 xð Þ, � � �,ϕ*
n xð Þ� � 	

, for i2N:
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Proof By Theorem A.2 in the Technical Appendices, V̂
i
xð Þ is the value function

associated with the optimal control problem of player i, i2N. Hence the conditions
in Theorem 5.1 imply a Nash equilibrium. ■

Now consider the case when the players agree to act cooperatively. Let Γc(τ, xτ)
denote a cooperative game in which player i’s payoff is (5.1) and the state dynamics

is (5.2). The players agree to act according to an agreed upon optimality principle

P(τ, xτ) which entails

(i) group optimality and

(ii) the distribution of the total cooperative payoff according to an imputation

vector ξ(υ)(υ, x	υ) for υ2
�
τ,1� over the game duration. Moreover, the function

ξ υð Þi υ; x*υ
� �2ξ υð Þ υ; x*υ

� �
, for i2N, is continuously differentiable in υ and x	υ.

The solution of the cooperative game Γc(τ, xτ) includes

(i) a set of group optimal cooperative strategies

u τð Þ* sð Þ ¼ u
τð Þ*
1 sð Þ, u τð Þ*

2 sð Þ, � � �, u τð Þ*
n sð Þ

h i
, for s2�τ,1�;

(ii) an imputation vector ξ τð Þ τ; xτð Þ ¼ ξ τð Þ1 τ; xτð Þ, ξ τð Þ2 τ; xτð Þ, � � �, ξ τð Þn τ; xτð Þ� �
to

allot the cooperative payoff to the players; and

(iii) a payoff distribution procedure Bτ sð Þ ¼ B τ
1 sð Þ,B τ

2 sð Þ, � � �,B τ
n sð Þ� �

for

s2�τ,1�, where Bτ
i (s) is the instantaneous payments for player i at time s.

In particular,

ξ τð Þi τ; xτð Þ ¼
Z 1

τ
B τ
i sð Þexp �r s� τð Þ½ � ds, for i2N ð5:5Þ

In the following sub-sections, we characterize the cooperative strategies and payoff

distribution procedure of the cooperative game Γc(τ, xτ) under the agreed-upon

optimality principle.

2.5.1 Group Optimal Cooperative Strategies

To ensure group rationality the players maximize the sum of their payoffs, the

players solve the problem:

max
u1, u2, ���, un

Z 1

τ

Xn
j¼1

gj x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �r s� τð Þ½ �ds
( 	

; ð5:6Þ

subject to (5.2).

Following Theorem A.2 in the Technical Appendices, we note that a set of

controls {ψ	
1(x), for i2Ngprovides a solution to the optimal control problem (5.6) if
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there exists continuously differentiable function W xð Þ : Rm ! R satisfying the

infinite-horizon Bellman equation:

rW xð Þ ¼ max
u1, u2, ���, un

X2
j¼1

gj x; u1; u2; � � �; un½ �
(

þWxf x; u1; u2; � � �; un½ �
	
: ð5:7Þ

The players will adopt the cooperative control {ψ	
1(x), for i2Ng characterized in

(5.7). Note that these controls are functions of the current state x only. Substitut-
ing this set of control into the state dynamics yields the optimal (cooperative)

trajectory as;

_x sð Þ ¼ f x sð Þ,ψ*
1 x sð Þð Þ,ψ*

2 x sð Þð Þ, � � �,ψ*
n x sð Þð Þ� �

, x τð Þ ¼ xτ: ð5:8Þ

Let x*(s) denote the solution to (5.8). The optimal trajectory x* sð Þ� 
1
s¼τ

can be

expressed as:

x* sð Þ ¼ xτ þ
Z s

τ
f x* υð Þ,ψ*

1 x* υð Þ� �
,ψ*

2 x* υð Þ� �
, � � �,ψ*

n x* υð Þ� �� �
dυ.

For notational convenience, we use the terms x*(s) and x	s interchangeably.
The cooperative control for the game can be expressed more precisely as:

fψ*
i x*s
� �

, for i2N and s2�τ,1�g;
which are functions of the current state x	s only. The term

W x*τ
� � ¼ Z 1

τ

Xn
j¼1

gj x* sð Þ,ψ*
1 x* sð Þ� �

,ψ*
2 x* sð Þ� �

, � � �,ψ*
n x* sð Þ� �� �

exp �r s� τð Þ½ �ds

yields the maximized cooperative payoff at current time τ, given that the state

is x	τ

2.5.2 Subgame Consistent Imputation and Payoff
Distribution Procedure

According to the agreed-upon optimality principle P(τ, xτ) the players would use

the Payoff Distribution Procedure Bτ sð Þf g1s¼τ to bring about an imputation to

player i as:

ξ τð Þi τ; xτð Þ ¼
Z 1

τ
B τ
i sð Þexp �r s� τð Þ½ � ds, for i2N: ð5:9Þ
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At time τ, we define the present value of player i’s payoff over the time interval�
t,1� as:

ξ τð Þi t; x*t
� � ¼ Z 1

t

B τ
i sð Þexp �r s� τð Þ½ � ds, for i2N; ð5:10Þ

where t > τ and x*t 2 x* sð Þ� 
1
s¼τ

.

Consider the case when the game has proceeded to time t and the state variable

became x	t . Then one has a cooperative game Γc(t, x	t ) which starts at time t with
initial state x	t . According to the agreed-upon optimality principle, an imputation

ξ tð Þi t; x*t
� � ¼ Z 1

t

B t
i sð Þexp �r s� tð Þ½ � ds;

will be allotted to player i, for i2N.
However, according to the optimality principle, the imputation (in present value

viewed at time τ) to player i over the period
�
t,1� is

ξ τð Þi t; x*t
� � ¼ Z 1

t

B τ
i sð Þexp �r s� τð Þ½ � ds, for i2N; ð5:11Þ

For the imputations from the optimality principle to be consistent throughout the

cooperation duration, it is essential that

exp r t� τð Þ½ �ξ τð Þi t; x*t
� � ¼ ξ tð Þi t; x*t

� �
, for t2 τ;1ð Þ:

In addition, at time τ when the initial state is xτ, according to the optimality

principle the payoff distribution procedure is

Bτ sð Þ ¼ B τ
1 sð Þ,B τ

2 sð Þ, � � �,B τ
n sð Þ� �

, for s2�τ,1�:
When the game has proceeded to time t and the state variable became x	t . According
to the optimality principle the payoff distribution procedure

Bt sð Þ ¼ Bt
1 sð Þ,Bt

2 sð Þ, � � �,Bt
n sð Þ� �

, for s2�t,1�;
will be adopted.

For the continuation of the payoff distribution procedure to be consistent it is

required that

Bt0 sð Þ ¼ Bt sð Þ, for s2�t,1�and t2�τ,1�:
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Definition 5.1 The imputation and payoff distribution procedure�
ξ τð Þ τ; xτð Þ and Bτ(s) for s2�τ,1�
 are subgame consistent if

(i) exp r t� τð Þ½ �ξ τð Þi t; x*t
� �
exp r t� τð Þ½ �

Z 1

t

B τ
i sð Þexp �r s� τð Þ½ � ds

¼ ξ tð Þi t; x*t
� �

, for t2 τ;1ð Þ and i2N; and
ð5:12Þ

(ii) the payoff distribution procedureBτ sð Þ ¼ B τ
1 sð Þ,B τ

2 sð Þ, � � �,B τ
n sð Þ� �

for s2�t,1�
is identical to Bt sð Þ ¼ Bt

1 sð Þ,Bt
2 sð Þ, � � �,Bt

n sð Þ� �2 t; x*t
� �

: ■

Definition 5.1 yields the infinite horizon subgame consistent imputation and

payoff distribution procedure.

2.5.3 Derivation of Subgame Consistent Payoff Distribution
Procedure

A payoff distribution procedure leading to subgame consistent imputation has to

satisfy Definition 5.1. Invoking Definition 5.1, we have B τ
i sð Þ ¼ Bt

i sð Þ ¼ Bi sð Þ, for
s2�τ,1� and t2�τ,1� and i2N.

Therefore along the cooperative trajectory x* tð Þ� 

t�t0

,

ξ τð Þi τ; x*τ
� � ¼ Z 1

τ
Bi sð Þexp �r s� τð Þ½ �ds, for i2N, and

ξ υð Þi υ; x*υ
� � ¼ Z 1

υ
Bi sð Þexp �r s� υð Þ½ �ds, for i2N, and

ξ tð Þi t; x*t
� � ¼ Z 1

t

Bi sð Þexp �r s� tð Þ½ �ds, for i2N and t � υ � τ ð5:13Þ

Moreover, for i2N and t2�τ,1�, we define the term
ξ υð Þi t; x*t

� � ¼ � Z 1

t

Bi sð Þexp �r s� υð Þ½ �ds
�

x tð Þ ¼ x*t

����
	
; ð5:14Þ

to denote the present value of player i’s cooperative payoff over the time interval�
t,1�, given that the state is x	t at time t2�υ,1�, under the solution Ρ(υ, x	υ).
Invoking (5.13) and (5.14) one can readily verify that

exp r t� τð Þ½ �ξ τð Þi t; x*t
� � ¼ ξ tð Þi t; x*t

� �
, for i2N and τ2 t0; T½ � and t2 τ; T½ �.

The next task is to derive Bi(s), for s2
�
τ,1� and t2�τ,1� so that (5.13) can be

realized. Consider again the following condition.
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Condition 5.1 For i2N and t � υ and υ2 τ; T½ �, the term ξ(υ)i(t, x	t ) is a function that
is continuously differentiable in t and x	t .

A theorem characterizing a formula for Bi(s), for i2N and s2�υ,1�, which
yields (5.14) is provided as follows.

Theorem 5.2 If Condition 5.1 is satisfied, a PDP with instantaneous payments at

time s equaling

Bi sð Þ ¼ � ξ sð Þi
t t; x*t
� ����

t¼s

h i
� ξ sð Þi

x*s
s; x*s
� �

f x*s ,ψ
*
1 x*s
� �

,ψ*
2 x*s
� �

, � � �,ψ*
n x*s
� �� �

; ð5:15Þ

for i2N and s2�υ,1�,
yields imputation ξ(υ)i(υ, xcυ), for υ2

�
τ,1� which satisfy (5.13).

Proof Note that along the cooperative trajectory x* tð Þ� 

t�τ

ξ υð Þi t; x*t
� � ¼ Z 1

t

Bi sð Þexp �r s� υð Þ½ �ds ¼ exp �r t� υð Þ½ � ξ tð Þi t; x*t
� �

,

for i2N and t2�υ,1�: ð5:16Þ

For Δt ! 0, Eq. (5.13) can be expressed as

ξ υð Þi τ; x*τ
� � ¼ Z 1

υ
Bi sð Þexp �r s� υð Þ½ �ds

¼
Z υþΔt

υ
Bi sð Þexp �r s� υð Þ½ � dsþ ξ υð Þi υþ Δt, x*υ þ Δx*υ

� �
; ð5:17Þ

where

Δx*υ ¼ f x*υ,ψ
*
1 x*υ
� �

,ψ*
2 x*υ
� �

, � � �,ψ*
n x*υ
� �� �

Δtþ o Δtð Þ, and o Δtð Þ=Δt ! 0asΔt ! 0.

Replacing the term x*υ þ Δx*υ with x*υþΔt and rearranging (5.17) yields:

Z υþΔt

υ
Bi sð Þexp �r s� υð Þ½ � ds

¼ ξ υð Þi υ; x*υ
� �� ξ υð Þi υþ Δt, x*υþΔt

� �
, for allυ2�τ,1�and i2N: ð5:18Þ

Consider the following condition concerning ξ(υ)i(t, x	t ), for υ2
�
τ,1� and t2�υ,1�:

With Condition 5.1 holding and Δt ! 0, (5.18) can be expressed as:

Bi υð ÞΔt ¼ � ξ υð Þi
t t; x*t
� ����

t¼τ

h i
Δt

� ξ υð Þi
x*υ

υ; x*υ
� �

f x*υ,ψ
*
1 x*υ
� �

,ψ*
2 x*υ
� �

, � � �,ψ*
n x*υ
� �� �

Δt� o Δtð Þ: ð5:19Þ
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Dividing (5.19) throughout by Δt, with Δt ! 0, yields (5.15). Thus the payoff

distribution procedure in Bi(υ) in (5.15) would lead to the realization of the

imputations which satisfy (5.15). ■

Since the payoff distribution procedure in Bi(τ) in (5.15) leads to the realization

of (5.13), it would yields subgame consistent imputations satisfying Definition 5.1.

A more succinct form of Theorem 5.2 can be derived as follows. Note that, a

PDP with instantaneous payments at time s equaling

Bi sð Þ ¼ r ξ sð Þi s; x*s
� �� ξ sð Þi

x*s
s; x*s
� �

f x*s ,ψ
*
1 x*s
� �

,ψ*
2 x*s
� �

, � � �,ψ*
n x*s
� �� �

,

for i2N and s2�υ,1�; ð5:20Þ

yields imputation ξ(υ)i(υ, xcυ), for υ2
�
τ,1� which satisfy (5.13).

To demonstrate that (5.20) is an alternative form for (5.15) in Theorem 5.2, we

define

ξ̂
i
x*υ
� � ¼ � Z 1

υ
Bi sð Þexp �r s� υð Þ½ �ds x υð Þ ¼ x*υ

	���� ¼ ξ υð Þi τ; x*υ
� �

, and

ξ̂
i
x*t
� � ¼ � Z 1

t

Bi sð Þexp �r s� tð Þ½ �ds x tð Þ ¼ x*t

	���� ¼ ξ tð Þi t; x*t
� �

;

for i2N and υ2�τ,1� and t2�υ,1� along the optimal cooperative trajectory

x*s
� 
1

s¼τ
.

We then have:

ξ υð Þi t; x*t
� � ¼ exp �r t� υð Þ½ � ξ̂ i

x*t
� �

:

Differentiating ξ(υ)i(t, x	t ) with respect to t yields:

ξ υð Þi
t t; x*t
� ����

t¼υ

h i
¼ �r exp �r t� υð Þ½ � ξ̂ i

x*t
� � ¼ �r ξ υð Þi t; x*t

� �
:

At t ¼ υ, ξ υð Þi t; x*t
� � ¼ ξ υð Þi υ; x*υ

� �
, therefore

ξ υð Þi
t t; x*t
� ����

t¼υ

h i
¼ rξ υð Þi t; x*t

� � ¼ rξ υð Þi υ; x*υ
� �

: ð5:21Þ

Substituting (5.21) into (5.15) yields (5.20). Since the infinite-horizon autonomous

game Γ(x) is independent of the choice of time s and dependent only upon the state,
Eq. (5.20) can be expressed as:

Bi x
*
s

� � ¼ r ξ̂
i
x*s
� �� ξ̂

i

x*s
x*s
� �

f x*s ,ψ
*
1 x*s
� �

,ψ*
2 x*s
� �

, � � �,ψ*
n x*s
� �� �

, for i2N: ð5:22Þ
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Therefore a subgame consistent solution for the cooperative game Γc(τ, xτ)
with optimality principle P(τ, xτ) includes the cooperative strategies and Payoff

Distribution Procedure:�
u sð Þ and B(x	s ) for s2

�
τ,1�
 in which

(i) u(s) is the set of group optimal strategies ψ*(x	s ) for the game Γc(τ, xτ), and
(ii) the payoff distribution procedure

B x*s
� � ¼ B1 x*s

� �
,B2 x*s
� �

, � � �,Bn x*s
� �� 


where

Bi x
*
s

� � ¼ r ξ̂
i
x*s
� �� ξ̂

i

x*s
x*s
� �

f x*s ,ψ
*
1 x*s
� �

,ψ*
2 x*s
� �

, � � �,ψ*
n x*s
� �� �

; ð5:23Þ

for i2N.

With players using the cooperative strategies
�
ψ*
i x*υ
� �

, for i2N and υ2�τ,1�
,
the instantaneous receipt of player i at time instant υ is:

ζi x
*
υ

� � ¼ gi x*υ ,ψ
*
1 x*υ
� �

,ψ*
2 x*υ
� �

, � � �,ψ*
n x*υ
� �� �

,

for i2N: ð5:24Þ

According to Theorem 5.2, the instantaneous payment that player i should receive

under the agreed-upon optimality principle is Bi(υ) in (5.15) or equivalently Bi(x
	
υ)

in (5.23). Hence an instantaneous transfer payment

χi x*υ
� � ¼ Bi x

*
υ

� �� ζi x
*
υ

� � ð5:25Þ

has to be given to player i at time υ, for i2N.

2.6 Infinite Horizon Resource Extraction

Consider an infinite horizon version of the cooperative fishery game in Sect. 2.5. At

initial time τ, the payoff of nation 1 and that of nation 2 are respectively:

Z 1

τ
u1 sð Þ1=2 � c1

x sð Þ1=2
u1 sð Þ

" #
exp �r t� τð Þ½ �ds

and

Z 1

τ
u2 sð Þ1=2 � c2

x sð Þ1=2
u2 sð Þ

" #
exp �r t� τð Þ½ �ds: ð6:1Þ
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The resource stock x sð Þ2X � R follows the dynamics

_x sð Þ ¼ ax sð Þ1=2 � bx sð Þ � u1 sð Þ � u2 sð Þ, x τð Þ ¼ xτ2X; ð6:2Þ

Using Theorem 5.1, the value function V̂
i
t; xð Þ reflecting the payoff of nation i in a

noncooperative feedback Nash equilibrium can be obtained as:

V̂
i
t; xð Þ ¼ Aix

1=2 þ Ci

h i
; ð6:3Þ

where for i, j2 1; 2f g and i 6¼ j,Ai,Ci,Aj and Cj satisfy:

r þ b

2

� �
Ai � 1

2 ci þ Ai=2½ � þ
ci

4 ci þ Ai=2½ �2

þ Ai

8 ci þ Ai=2½ �2 þ
Ai

8 cj þ Aj=2
� �2 ¼ 0, and

Ci ¼ a

2
Ai:

The game equilibrium strategies can be obtained as:

ϕ*
1 xð Þ ¼ x

4 c1 þ A1=2½ �2 , andϕ
*
2 xð Þ ¼ x

4 c2 þ A2=2½ �2 : ð6:4Þ

Consider the case when these two nations agree to act according to an agreed upon

optimality principle which entails

(i) group optimality, and

(ii) the distribution of the cooperative payoff according to the imputation that

divides the excess of the total cooperative payoff over the sum of individual

noncooperative payoffs equally.

To maximize their joint payoff for group optimality, the nations have to solve the

control problem of maximizing

Z 1

τ
u1 sð Þ1=2 � c1

x sð Þ1=2
u1 sð Þ

" #
þ u2 sð Þ1=2 � c2

x sð Þ1=2
u2 sð Þ

" # !
exp �r t� τð Þ½ �ds

ð6:5Þ

subject to (6.2).

Invoking Eq. (5.7), we obtain:

rW xð Þ ¼ max
u1, u2

� 
u1

1=2 � c1
x1=2

u1

h i
þ u2

1=2 � c2
x1=2

u2

h i �

þWx xð Þ ax1=2 � bx� u1 � u2
� � 	

:
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The value function W(x) which reflects the maximized joint payoff can be

obtained as:

W xð Þ ¼ Ax1=2 þ C
h i

;

where r þ b
2

� �
A� 1

2 c1þA=2½ � � 1
2 c2þA=2½ �

þ c1

4 c1 þ A=2½ �2 þ
c2

4 c2 þ A=2½ �2 þ
A

8 c1 þ A=2½ �2 þ
A

8 c2 þ A=2½ �2 ¼ 0, and

C ¼ a

2r
A

The optimal cooperative controls can then be obtained as:

ψ*
1 xð Þ ¼ x

4 c1 þ A=2½ �2 and ψ*
2 xð Þ ¼ x

4 c2 þ A=2½ �2 : ð6:6Þ

Substituting these control strategies into (6.2) yields the dynamics of the state

trajectory under cooperation:

_x sð Þ ¼ ax sð Þ1=2 � bx sð Þ � x sð Þ
4 c1 þ A=2½ �2 �

x sð Þ
4 c2 þ A=2½ �2 , x τð Þ ¼ xτ: ð6:7Þ

Solving (6.7) yields the optimal cooperative state trajectory x* sð Þ� 
1
τ¼t0

for the

cooperative game (6.1 and 6.2) as:

x* sð Þ ¼ a

2H
þ xτð Þ1

2 � a

2H

� �
exp �H s� τð Þ½ �

h i2
; ð6:8Þ

where H ¼ �
�

b
2
þ 1

8 c1þA=2½ �2 þ 1

8 c2þA=2½ �2

�
:

According to the agreed-upon optimality principle these nations will distribute

the cooperative payoff according to the imputation which divides the excess of the

total cooperative payoff over the sum of individual noncooperative payoffs equally.

Hence the imputation ξ υ; x*υ
� � ¼ ξ̂

1
x*υ
� �

, ξ̂
2
x*υ
� �h i

has to satisfy:

Condition 6.1

ξ̂
i
x*υ
� � ¼ V̂

i
x*υ
� �þ 1

2
W x*υ
� ��X2

j¼1

V̂
j
x*υ
� �" #

; ð6:9Þ

for i2 1; 2f g and υ2�τ,1�. ■
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Applying Theorem 5.2 and Eq. (5.23) a subgame consistent solution payoff

distribution procedure B x*s
� � ¼ B1 x*s

� �
,B2 x*s
� �� 


for s2�τ,1� can be obtained as:

Bi x
*
s

� � ¼ 1

2

�
r Ai x

*
s

� �1=2 þ Ci

h i
þ r A x*s

� �1=2 þ C
h i

� r Aj x
*
s

� �1=2 þ Cj

h i 	

� 1

4

�
Ai x

*
s

� ��1=2 þ A x*s
� ��1=2 � Aj x

*
s

� ��1=2
	

�
�
a x*s
� �1=2 � bx*s �

x*s
4 c1 þ A=2½ �2 �

x*s
4 c2 þ A=2½ �2

�
; ð6:10Þ

for i, j2 1; 2f g and i 6¼ j.

With players using the cooperative strategies ψ*
i x*υ
� �

, i2 1; 2f g� 

along the

cooperative trajectory, the instantaneous receipt of player i at time instant υ
becomes:

ζi x
*
υ

� � ¼ x*υ
� �1=2

2 ci þ A=2½ � �
ci x

*
υ

� �1=2
4 ci þ A=2½ �2 ; ð6:11Þ

According to (6.10), the instantaneous payment that player i should receive under

the agreed-upon optimality principle is Bi(x
	
υ). Hence an instantaneous transfer

payment

χi x*υ
� � ¼ Bi x

*
υ

� �� ζi x
*
υ

� � ð6:12Þ

has to be given to player i at time υ2�τ,1�, for i2 1; 2f g.

2.7 Chapter Notes

Significant contributions to general game theory include von Neumann and

Morgenstern (1944); Nash (1950, 1953); Vorob’ev (1972); Shapley (1953) and

Shubik (1959a, b). Dynamic optimization techniques are essential in the derivation

of solutions to differential games. The origin of differential games was established

by Rufus Isaacs in the late 1940s (the complete work was published in Isaacs

(1965)). In the meantime, control theory reached its maturity in theOptimal Control
Theory of Pontryagin et al. (1962) and Bellman’s Dynamic Programming (1957).

Berkovitz (1964) developed a variational approach to differential games, and

Leitmann and Mon (1967) investigated the geometry of differential games.

Pontryagin (1966) solved differential games in open-loop solution in terms of the

maximum principle. Cooperative games suggest the possibility of socially optimal

and group efficient solutions to decision problems involving strategic action. As

discussed above, Individual rationality and group optimality are essential element
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of a cooperative game solution. Dockner and Jørgensen (1984); Dockner and Long

(1993); Tahvonen (1994); Mäler and de Zeeuw (1998) and Rubio and Casino

(2002) presented cooperative solutions satisfying group optimality in differential

games. The majority of cooperative differential games adopt solutions satisfying

the essential criteria for dynamic stability – group optimality and individual ratio-

nality. Haurie and Zaccour (1986, 1991), Kaitala and Pohjola (1988, 1990, 1995),

Kaitala et al. (1995) and Jørgensen and Zaccour (2001) presented classes of

transferable-payoff cooperative differential games with solutions which satisfy

group optimality and individual rationality. Miao et al. (2010) studied a cooperative

differential game on transmission rate in wireless networks. Lin et al. (2014)

presented a cooperative differential game for model energy-bandwidth efficiency

tradeoff in the Internet. Huang et al. (2016) presented a cooperative differential

game of transboundary industrial pollution with a Stackelberg game between firms

and local governments while the governments cooperate in pollution reduction.

Tolwinski et al. (1986) considered cooperative equilibria in differential games in

which memory-dependent strategies and threats are introduced to maintain the

agreed-upon control path. Petrosyan and Danilov (1982); Petrosyan and Zenkevich

(1996) and Petrosyan (1997) provided a detailed analysis of subgame consistent

(then referred to as time consistent solutions in the deterministic framework)

imputation distribution schemes in cooperative differential games. Filar and

Petrosyan (2000) considered dynamic cooperative games in characteristic functions

which evolve over time in a dynamic equation that is influenced by the current

(instantaneous) characteristic function and cooperative solution concept adopted.

Yeung and Petrosyan (2004) presented subgame consistent solution in stochastic

differential games and Yeung and Petrosyan (2012a) gave a comprehensive account

of the topic. Application of subgame consistent solutions in differential games in

cost-saving joint venture, collaborative environmental management and dormant

firm cartel can be found in Yeung and Petrosyan (2012a). Other examples of

cooperative differential games with solutions satisfying subgame consistency can

be found in Petrosyan (1997), Jørgensen and Zaccour (2001). A note concerning the

notations used in Petrosyan (1997) and Yeung and Petrosyan (2004) is given in

Yeung and Petrosyan (2012d). A non-cooperative-equivalent imputation formula in

cooperative differential games is provided by Yeung (2007b) and an irrational-

behaviour proof condition in cooperative differential games is given in Yeung

(2006a). A study on the tragedy of the commons in a dynamic game framework

can be found in Hartwick and Yeung (1997).

2.8 Problems

1. Consider the case of three nations harvesting fish in common waters. The growth

rate of the fish biomass is characterized by the differential equation:

_x sð Þ ¼ 4x sð Þ1=2 � 0:5x sð Þ � u1 sð Þ � u2 sð Þ, x 0ð Þ ¼ 50;
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where ui2Ui is the (nonnegative) amount of fish harvested by nation i, for
i2 1; 2f g. The horizon of the game is [0, 5].

The harvesting cost for nation i2 1; 2f g depends on the quantity of resource

extracted ui(s) and the resource stock size x(s). In particular, nation 1’s extraction

cost is u1 sð Þx sð Þ�1=2
and nation 2’s is 2u2 sð Þx sð Þ�1=2

. The revenue of fish

harvested by nation 1 at time s is 2[u1(s)]
1/2 and that by nation 2 is [u2(s)]

1/2.

The interest rate is 0.05.

Characterize a feedback Nash equilibrium solution for this fishery game.

2. If these nations agree to cooperate and maximize their joint payoff, obtain a

group optimal cooperative solution.

3. Furthermore, if these nations agree to share the excess of their gain from

cooperation equally along the optimal trajectory, derive a subgame consistent

cooperative solution.

4. If the game horizon of the above problems is extended to infinity, what would be

the answers to Problems 1, 2 and 3?
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Chapter 3

Subgame Consistent Cooperation
in Stochastic Differential Games

An essential characteristic of time – and hence decision making over time – is that

though the individual may, through the expenditure of resources, gather past and

present information, the future is inherently unknown and therefore (in the math-

ematical sense) uncertain. An empirically meaningful theory must therefore incor-

porate time-uncertainty in an appropriate manner. This Chapter considers subgame

consistent cooperation in stochastic differential games. It provides an integrated

exposition the works of Yeung and Petrosyan (2004), Chapter 4 of Yeung and

Petrosyan (2006b), and Chapter 8 of Yeung and Petrosyan (2012a).

The organization of the Chapter is as follows. Section 3.1 presents the basic

formulation of cooperative stochastic differential games. Section 3.2 presents an

analysis on cooperative subgame consistency under uncertainty. Derivation of a

subgame consistent payoff distribution procedure is provided in Sect. 3.3. An illus-

tration in cooperative fishery under uncertainty is given in Sect. 3.4. Infinite horizon

subgame consistency under uncertainty is examined in Sect. 3.5. In Sect. 3.6, a

subgame consistent solution for infinite horizon cooperative fishery under uncertainty

is presented. Chapter notes are provided in Sect. 3.7 and problems in Sect. 3.8.

3.1 Cooperative Stochastic Differential Games

Consider the general form of n-person stochastic differential games in which player

i seeks to maximize its expected payoffs:

Et0

� ðT
t0

gi s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
ðs
t0

r yð Þdy
� �

ds

þ exp �
ðT
t0

r yð Þdy
� �

qi x Tð Þð Þ
�
, for i 2 N; ð1:1Þ
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with Et0 �f g denoting the expectation operation taken at time t0, and the dynamics

of the state is

dx sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ, x t0ð Þ ¼ x0; ð1:2Þ

where σ[s, x(s)] is a m� Θ matrix and z(s) is a Θ-dimensional Wiener process

and the initial state x0 is given. Let Ω[s, x(s)]¼ σ[s, x(s)] σ[s, x(s)]’ denote the

covariance matrix with its element in row h and column ζ denoted by Ωhζ[s, x(s)].

Moreover, E dzϖ½ � ¼ 0 and E dzϖdt½ � ¼ 0 and E dzϖð Þ2
h i

¼ dt, forϖ 2 1; 2; � � �;Θ½ �;
and E dzϖdzω½ � ¼ 0, for ϖ 2 1; 2; � � �;Θ½ �,ϖ 2 1; 2; � � �;Θ½ � and ϖ 6¼ ω.

3.1.1 Non-cooperative Equilibria

Again, we first characterize the non-cooperative equilibria of the game as a

benchmark for negotiation in the cooperative scheme. A feedback Nash equilibrium

solution of the stochastic differential game (1.1) and (1.2) can be characterized by

the following Theorem.

Theorem 1.1 An N-tuple of feedback strategies ϕ*
i t; xð Þ 2 Ui; i 2 N

� �
provides a

Nash equilibrium solution to the game (1.1) and (1.2) if there exist suitably smooth

functions V t0ð Þi t; xð Þ : t0; T½ � � Rm ! R, i 2 N, satisfying the partial differential

equations

�V
t0ð Þi
t t; xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ t; xð ÞV t0ð Þi
xhxς

t; xð Þ ¼

max
ui

gi t, x,ϕ*
1 t; xð Þ,ϕ*

2 t; xð Þ, � � �,ϕ*
i�1 t; xð Þ, ui tð Þ,ϕ*

iþ1 t; xð Þ, � � �,ϕ*
n t; xð Þ� 	�

exp �
ðs
t0

r yð Þdy
� �

þV t0ð Þi
x t; xð Þf t, x,ϕ*

1 t; xð Þ,ϕ*
2 t; xð Þ, � � �,ϕ*

i�1 t; xð Þ, ui tð Þ,ϕ*
iþ1 t; xð Þ, � � �,ϕ*

n t; xð Þ� 	�
,

V t0ð Þi T; xð Þ ¼ qi xð Þexp �
ðT
t0

r yð Þdy
� �

, i 2 N:

Proof This result follows readily from the definition of Nash equilibrium and from

the stochastic control result in Theorem A.3 of the Technical Appendices. ■

In particular, V t0ð Þi t; xð Þ represents the expected game equilibrium payoff of

player i at time t 2 t0; T½ � with the state being x, that is
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V t0ð Þi t; xð Þ
¼ Et0

� ðT
t

gi s, x* sð Þ,ϕ*
1 s, x* sð Þ
 �

,ϕ*
2 s, x* sð Þ
 �

, � � �,ϕ*
n s, x* sð Þ
 �� 	

exp �
ðs
t0

r yð Þdy
� �

ds

þ qi x* Tð Þ
 �
exp �

ðT
t0

r yð Þdy
� � �

:

A remark that will be utilized in subsequent analysis is given below.

Remark 1.1 Let V(τ)i(t, x) denote the feedback Nash equilibrium payoff of nation i in
the game with stochastic dynamics (1.1) and expected payoffs (1.2) which starts at

time τ for τ 2 �t0,T�. Note that the equilibrium feedback strategies are Markovian in

the sense that they depend on current time and current state. One can readily verify that

exp

ðτ
t0

r yð Þdy
� �

V t0ð Þi t; xð Þ ¼ exp

ðτ
t0

r yð Þdy
� �

�Et0

� ðT
t

gi s, x* sð Þ,ϕ*
1 s, x* sð Þ
 �

,ϕ*
2 s, x* sð Þ
 �

, � � �,ϕ*
n s, x* sð Þ
 �� 	

exp �
ðs
t0

r yð Þdy
� �

ds

�

�Et0

� ðT
t

gi s, x* sð Þ,ϕ*
1 s, x* sð Þ
 �

,ϕ*
2 s, x* sð Þ
 �

, � � �,ϕ*
n s, x* sð Þ
 �� 	

exp �
ðs
t0

r yð Þdy
� �

ds

�

¼ Et

� ðT
t

gi s, x* sð Þ,ϕ*
1 s, x* sð Þ
 �

,ϕ*
2 s, x* sð Þ
 �

, � � �,ϕ*
n s, x* sð Þ
 �� 	

exp �
ðs
τ
r yð Þdy

� �
ds

�
¼ V τð Þi t; xð Þ, for τ 2 �t0,T�: ■

3.1.2 Dynamic Cooperation Under Uncertainty

The participating players agree to act according to an agreed-upon optimality

principle. Based on this optimality principle, the solution of the cooperative differ-

ential game Γc x0,T � t0ð Þ at time t0 includes

(i) a set of cooperative strategies

u t0ð Þ* s; xsð Þ ¼ u
t0ð Þ*
1 s; xsð Þ, u t0ð Þ*

2 s; xsð Þ, � � �, u t0ð Þ*
n s; xsð Þ

h i
, for s 2 t0; T½ � given

that the state is xs at time s;
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(ii) an imputation vector ξ t0ð Þ t0; x0ð Þ ¼ ξ t0ð Þ1 t0; x0ð Þ, ξ t0ð Þ2 t0; x0ð Þ, � � �, ξ t0ð Þn t0; x0ð Þ� 	
to allot the cooperative payoff to the players; and

(iii) a payoff distribution procedure Bt0 s; xsð Þ ¼ Bt0
1 s; xsð Þ,Bt0

2 s; xsð Þ, � � �,Bt0
n s; xsð Þ� 	

for s 2 t0; T½ �, whereBt0
i s; xsð Þ is the instantaneous payments for player i at time

s given that the state is xs. In particular,

ξ t0ð Þi t0; x0ð Þ ¼ Et0

� ð T

t0

Bt0
i s; xsð Þexp �

ðs
t0

r yð Þdy
� �

dsþ qi xTð Þ exp �
ðT
t0

r yð Þdy
� � �

,

for i 2 N:

ð1:3Þ

This means that the players agree at the outset on a set of cooperative strategies

u t0ð Þ* s; xsð Þ, an imputation ξ t0ð Þi t0; x0ð Þof the gains to the ith player covering the time

interval [t0,T], and a payoff distribution procedure Bt0 s; xsð Þf g T
s¼t0

to allocate

payments to the players over the game interval.

Recall that group optimality is an essential element in dynamic cooperation, an

optimality principle has to require the players have to maximize their expected joint

payoff:

Et0

( Xn
j¼1

ðT
t0

gj s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
ðs
t0

r yð Þdy
� �

ds

þ
Xn
j¼1

exp �
ðT
t0

r yð Þdy
� �

qi x Tð Þð Þ
)
; ð1:4Þ

subject to (1.2).

Let W t0ð Þ t; xð Þ denote maximized expected payoff of the stochastic control

problem at time t given that the state is x, that is:

W t0ð Þ t; xð Þ
¼ max

u1 sð Þ,u2 sð Þ, � � �,un sð Þ;
f or s 2 t;T½ �

Et0

�

Xn
j¼1

ðT
t

gj s, x sð Þ,u1 sð Þ,u2 sð Þ, � � �,un sð Þ½ �exp �
ðs
t0

r yð Þdy
� �

dsþ
Xn
j¼1

exp �
ðT
t0

r yð Þdy
� �

qi x Tð Þð Þ
�
:

An optimal solution to the stochastic dynamic programming control problem (1.2)

and (1.4) is provided by the theorem below.

Theorem 1.2 A set of controls
�
u*i tð Þ ¼ ψ*

i t; xð Þ, for i 2 N
�
constitutes an optimal

solution to the stochastic control problem (1.2) and (1.4), if there exist continuously

twice differentiable functions W t0ð Þ t; xð Þ : t0; T½ � � Rm ! R, satisfying the follow-

ing partial differential equation:
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�W
t0ð Þ
t t; xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ t; xð ÞW t0ð Þ
xhxζ

t; xð Þ ¼

max
u1, u2, ���, un

Xn
j¼1

gj t; x; u1; u2; � � �; un½ �
(

exp �
ðt
t0

r yð Þdy
� �

þW t0ð Þ
x t; xð Þf t; x; u1; u2; � � �; un½ �

�
, and

W t0ð Þ T; xð Þ ¼
Xn
j¼1

qj xð Þexp �
ðT
t0

r yð Þdy
� �

: ð1:5Þ

Proof Follow the proof of Theorem A.3 in the Technical Appendices. ■

Hence the players will adopt the cooperative control {ψ�
i (t, x), for i 2 N and t

2 t0; T½ �g to obtain the maximized level of expected joint profit. Substituting this set

of control into (1.1) yields the dynamics of the optimal (cooperative) trajectory as:

dx sð Þ ¼ f s, x sð Þ,ψ*
1 s, x sð Þð Þ,ψ*

2 s, x sð Þð Þ, � � �,ψ*
n s, x sð Þð Þ� 	

ds
þ σ s, x sð Þ½ �dz sð Þ, x t0ð Þ ¼ x0 ð1:6Þ

The solution to (1.6) can be expressed as:

x* tð Þ ¼ x0 þ
ðt
t0

f s, x* sð Þ,ψ*
1 s, x* sð Þ
 �

,ψ*
2 s, x* sð Þ
 �

, � � �,ψ*
n s, x* sð Þ
 �� 	

ds

þ
ð t
t0

σ s, x* sð Þ� 	
dz sð Þ ð1:7Þ

We use X�
t to denote the set of realizable values of x*(t) at time t generated by (1.7).

The term x*t 2 X*
t is used to denote an element in X�

t . We use the terms x*(t) and x�t
interchangeably in case where there is no ambiguity.

The cooperative control for the game (1.2) and (1.4) over the time interval [t0,T]
can be expressed more precisely as

fψ*
i t; x*t

 �

, f or i 2 N and t 2 t0; T½ �whenx*t 2 X*
t is realizedg: ð1:8Þ

The expected cooperative payoff over the interval [t,T], for t 2 �t0,T�, can be

expressed as:

W t0ð Þ t; x*t

 � ¼ Et0

�
ðT
t

Xn
j¼1

gj s, x* sð Þ,ψ*
1 s, x* sð Þ
 �

,ψ*
2 s, x* sð Þ
 �

, � � �,ψ*
n s, x* sð Þ
 �� 	

exp �
ðs
t0

r yð Þdy
� �

ds

þ exp �
ðT
t0

r yð Þdy
� �Xn

j¼1

qj x* Tð Þ
 ����� x* tð Þ ¼ x*t 2 X*
t

�
: ð1:9Þ
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To verify whether the player would find it optimal to adopt the cooperative controls

(1.8) throughout the cooperative duration, we consider a stochastic control problem

with dynamics (1.2) and payoff (1.4) which begins at time τ 2 t0; T½ � with initial

state x*τ 2 X*
t . At time τ, the optimality principle ensuring group optimality requires

the players to solve the problem:

max
u1, u2, ���, un

Eτ

ðT
τ

Xn
j¼1

gj s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
ðs
τ
r yð Þdy

� �
ds

(

þ exp �
ðT
τ
r yð Þdy

� �Xn
j¼1

qj x Tð Þð Þ
)
; ð1:10Þ

subject to

dx sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ, x τð Þ ¼ x*τ 2 X*
t :

ð1:11Þ

Note that

max
u1, u2, ���, un

Et0

ðT
τ

Xn
j¼1

gj s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
ðs
t0

r yð Þdy
� �

ds

(

þ exp �
ðT
t0

r yð Þdy
� �Xn

j¼1

qj x Tð Þð Þ
���� x τð Þ ¼ x*τ 2 X*

τ

�

¼ max
u1, u2, ���, un

Et0

�
exp �

ðτ
t0

r yð Þdy
� �

� ðT
τ

Xn
j¼1

gj s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
ðs
τ
r yð Þdy

� �
ds

þ exp �
ðT
τ
r yð Þdy

� �Xn
j¼1

qj x Tð Þð Þ
����� x τð Þ ¼ x*τ 2 X*

τ

�
:

¼ exp �
ðτ
t0

r yð Þdy
� �

�

max
u1, u2, ���, un

Eτ

�
 ðT

τ

Xn
j¼1

gj s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �
ðs
τ
r yð Þdy

� �
ds

þ exp �
ðT
τ
r yð Þdy

� �Xn
j¼1

qj x Tð Þð Þ
����� x τð Þ ¼ x*τ

�
: ð1:12Þ

Hence the stochastic optimal controls strategies for problem (1.10) and (1.11) are

analogous to the controls strategies for problem (1.2) and (1.4) in the time interval

[t, T].
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A remark that will be utilized in subsequent analysis is given below.

Remark 1.2 Let W(τ)(t, x�t ) denote the expected cooperative payoff of control

problem (1.10) and (1.11). One can readily verify that

exp

ðτ
t0

r yð Þdy
� �

W t0ð Þ t; x*t

 � ¼ exp

ð τ

t0

r yð Þdy
� �

W τð Þ t; x*t

 �

;

for τ 2 t0; T½ � and t 2 �τ,T� and x*τ 2 X*
t . ■

Again, we use Γc x*t , T � t

 �

to denote the cooperative game with player payoffs

(1.1) and dynamics (1.2) which starts at time t 2 �t0, T� given the state

x τð Þ ¼ x*τ 2 X*
τ . Let there exist a solution under the agreed-upon optimality princi-

ple, t0 � t � T along the optimal trajectory x* tð Þ� �T

t¼t0
. If this condition is not

satisfied it is impossible for the players to adhere to the chosen principle of

optimality.

For ξ tð Þ t; x*t

 �

, t 2 t0; T½ �, to be valid imputations, it is required that both group

optimality and individual rationality have to be satisfied. Hence a valid optimality

principle P x*t ,T � t

 �

would yield a solution which contains

(i) Xn
j¼1

ξ tð Þj t; x*t

 � ¼ W tð Þ t; x*t


 �
, for t 2 t0; T½ �; and

(ii)
ξ tð Þi t; x*t

 � � V tð Þi t; x*t


 �
, for i 2 N and t 2 t0; T½ �:

3.2 Cooperative Subgame Consistency Under Uncertainty

In this Section we examine the properties of subgame consistency in cooperative

stochastic differential games.

3.2.1 Principle of Subgame Consistency

In a stochastic environment, the condition of subgame consistency requires the

optimality principle agreed upon at the outset to remain effective in a subgame

with a later starting time and any realizable state brought about by prior

optimal behavior. Assume that at the start of the game the players execute

the solution under an agreed-upon optimality principle (which includes a set of
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cooperative strategies, an imputation to distribute the cooperative payoff and a

payoff distribution procedure). When the game proceeds to time t and the state

becomes x*t 2 X*
t , the continuation of the scheme for the game Γc x0, T � t0ð Þ has

to be consistent with the solution to the game Γc x*t , T � t

 �

under the same

optimality principle. If this consistency condition is violated, some of the

players will have an incentive to deviate from the initial agreement and

instability arises.

To verify whether the solution is indeed subgame consistent, one has to verify

whether the agreed upon cooperative strategies, payoff distribution procedures and

imputations are all subgame consistent. Using Remark 1.2, one can show that joint

expected payoff maximizing strategies are subgame consistent. In the next subsec-

tion, subgame consistent imputation and payoff distribution procedure are

examined.

3.2.2 Subgame-Consistency in Imputation and Payoff
Distribution Procedure

In this Section, we consider subgame consistency in imputation and payoff distri-

bution procedure. In the cooperative game Γc x0, T � t0ð Þ according to the solution

generated by the agreed-upon optimality principle, the players would use the payoff

distribution procedure Bt0 s; x*s

 �� � T

s¼t0
to bring about an imputation to player i as:

ξ t0ð Þi t0; x0ð Þ ¼ Et0

� ðT
t0

Bt0
i s; x*s

 �

exp �
ðs
t0

r yð Þdy
� �

dsþ qi x* Tð Þ
 �
exp �

ðT
t0

r yð Þdy
� � �

,

for i 2 N:

ð2:1Þ

When the game proceeds to time t 2 
t0,T	, the current state is x*t 2 X*
t . According

to the solution of the game Γc x0,T � t0ð Þ generated by the agreed-upon optimality

principle player i will receive an imputation (in present value viewed at time t0)
equaling

ξ t0ð Þi t; x*t

 � ¼ Et0

� ðT
t

Bt0
i s; x*s

 �

exp �
ðs
t0

r yð Þdy
� �

ds

þ qi x* Tð Þ
 �
exp �

ðT
t0

r yð Þdy
� � ����x tð Þ ¼ x*t

�
; ð2:2Þ

over the time interval [t,T].
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Note that at time t 2 
t0,T	 when the current state is x*t 2 X*
t , we have a

cooperative game Γc x*t , T � t

 �

. According to the solution generated by the same

optimality principle, the players would use the payoff distribution procedure

Bt s; x*s

 �� � T

s¼t
to bring about an imputation to player i as:

ξ tð Þi t; x*t

 � ¼ Et

� ðT
t

B t
i s; x*s

 �

exp �
ðs
t

r yð Þdy
� �

ds

þ qi x* Tð Þ
 �
exp �

ðT
t

r yð Þdy
� � �

, for i 2 N: ð2:3Þ

For the imputation and payoff distribution procedure of the game Γc x0,T � t0ð Þ to
be consistent with those of the game Γc x ct ,T � t


 �
under the same agreed-upon

optimality principle, it is essential that

exp

ðt
t0

r yð Þdy
� �

ξ t0ð Þ t; x*t

 � ¼ ξ tð Þ t; x*t


 �
, for t 2 t0; T½ �:

In addition, the payoff distribution procedure of the game Γc x0, T � t0ð Þ generated
by the agreed upon optimality principle is

Bt0 s; x*s

 � ¼ Bt0

1 s; x*s

 �

,Bt0
2 s; x*s

 �

, � � �,Bt0
n s; x*s

 �� 	

, for s 2 t0; T½ �:

Consider the case when the game has proceeded to time t and the state variable

became x*t 2 X*
t . Then one has a cooperative gameΓc x*t , T � t


 �
which starts at time

t with initial state x�t . According to the same optimality principle, the payoff

distribution procedure

Bt s; x*s

 � ¼ Bt

1 s; x*s

 �

,Bt
2 s; x*s

 �

, � � �,Bt
n s; x*s

 �� 	

, for s 2 t; T½ �;

will be adopted.

For the continuation of the payoff distribution procedure Bt0 s; x*s

 �

of the game

Γc x0,T � t0ð Þ to be consistent with Bt(s, x�s ) of the game Γc x*t , T � t

 �

, it is required

that

Bt0 s; x*s

 � ¼ Bt s; x*s


 �
, for s 2 t; T½ � and t 2 t0; T½ �:

Therefore a formal definition can be presented as below.

Definition 2.1 The imputation and payoff distribution procedure�
ξ t0ð Þ t0; x0ð Þ and Bt0 s; x*s


 �
for s 2 t0; T½ �� under the agreed-upon optimality

principle are subgame consistent if
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(i)

exp

ðt
t0

r yð Þdy
� �

ξ t0ð Þi t; x*t

 �

	exp

ðt
t0

r yð Þdy
� �

E

� ð T

t

Bt0
i s; x*s

 �

exp �
ðs
t

r yð Þdy
� �

ds

þ qi x* Tð Þ
 �
exp �

ðT
t0

r yð Þdy
� � ����x tð Þ ¼ x*t

�
¼ ξ tð Þi t; x*t


 �	
Et

� ð T

t

B t
i s; x*s

 �

exp �
ðs
t

r yð Þdy
� �

dsþ qi x* Tð Þ
 �
exp �

ðT
t

r yð Þdy
� � �

under P x*t , T � t

 �

, for i 2 N and t 2 t0; T½ �; and
(ii) the payoff distribution procedure Bt0 s; x*s


 � ¼ Bt0
1 s; x*s

 �

,Bt0
2 s; x*s

 �

, � � �,�
Bt0
n s; x*s

 �� for s 2 t; T½ � is identical to Bt s; x*s


 � ¼ Bt
1 s; x*s

 �

,Bt
2 s; x*s

 �

, � � �,�
Bt
n s; x*s

 �� of the game Γc x*t ,T � t


 �
. ■

3.3 Subgame Consistent Payoff Distribution Procedure

Crucial to obtaining a subgame consistent solution is the derivation of a payoff

distribution procedure satisfying Definition 2.1 in Sect. 3.2. Invoking part (ii) of

Definition 2.1, we have Bt0 s; x*s

 � ¼ Bt s; x*s


 �
for t 2 t0; T½ � and s 2 t; T½ �. We use

B s; x*s

 � ¼ B1 s; x*s


 �
,B2 s; x*s

 �

, � � �,Bn s; x*s

 �� �

to denote Bt(s, x�s ) for all t 2 t0; T½ �.
Along the optimal trajectory x* sð Þ� �T

s¼t0
we then have:

ξ τð Þi τ; x*τ

 � ¼ Eτ

� ðT
τ
B τ
i s, x* sð Þ
 �

exp �
ðs
τ
r yð Þdy

� �
ds

þ qi x*T

 �

exp �
ðT
τ
r yð Þdy

� ����� x* τð Þ ¼ x*τ 2 X*
τ

�
; ð3:1Þ

for i 2 N and τ 2 t0; T½ �.
Moreover, for t 2 τ; T½ �, we use the term

ξ τð Þi t; x*t

 � ¼ Eτ

� ðT
t

B τ
i s, x* sð Þ
 �

exp �
ðs
τ
r yð Þdy

� �
ds

þ qi x*T

 �

exp �
ðT
τ
r yð Þdy

� ����� x* tð Þ ¼ x*t 2 X*
t

�
; ð3:2Þ

to denote the expected present value (with initial time being τ) of player i’s
expected payoff under cooperation over the time interval [t, T] according to the

optimality principle P x*τ ,T � τ

 �

along the cooperative state trajectory.
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Invoking (3.1) and (3.2) we have

ξ τð Þi t; xct

 � ¼ exp �

ðt
τ
r yð Þdy

� �
ξ tð Þi t; x*t

 �

,

for i 2 N and τ 2 t0; T½ � and t 2 τ; T½ � ð3:3Þ

One can readily verify that a payoff distribution procedure B s; x*s

 �� � T

s¼t0
which

satisfies (3.3) would give rise to time-consistent imputations satisfying part (i) of

Definition 2.1. The next task is the derivation of a payoff distribution procedure

B s; x*s

 �� � T

s¼t0
that leads to the realization of (3.1), (3.2), and (3.3).

We first consider the following condition concerning the imputation ξ(τ)(t, x�t ),
for τ 2 t0; T½ � and t 2 τ; T½ �.
Condition 3.1 For i 2 N and t 2 τ; T½ � and τ 2 t0; T½ �, the imputation ξ(τ)i(t, x�t ), for
i 2 N, is a function that is twice continuously differentiable in t and x*t 2 X*

t . ■

A theorem characterizing a formula for Bi(s, x
�
s ), for s 2 t0; T½ �, x*s 2 X*

s and

i 2 N, which yields (3.1), (3.2), and (3.3) can be provided as follows.

Theorem 3.1 If Condition 3.1 is satisfied, a PDP with a terminal payment qi(x�T) at
time T and an instantaneous payment at time s 2 τ; T½ �:

Bi s; x
*
s


 � ¼ � ξ sð Þi
t t; x*t

 ����

t¼s

h i
� ξ sð Þi

x*t
t; x*t

 ����

t¼s

h i
f s, x*s ,ψ

*
1 s; x*s

 �

,ψ*
2 s; x*s

 �

, � � �,ψ*
n s; x*s

 �� 	

� 1

2

Xm
h, ζ¼1

Ωhζ s; x*s

 �

ξ sð Þi
x h
t x

ζ
t

t; x*t

 �j

t¼s

�
, for i 2 N and x*s 2 X*

s ;

�
ð3:4Þ

yields imputation vector ξ(τ)(τ, x�τ ), for τ 2 t0; T½ � which satisfy (3.1), (3.2), and

(3.3).

Proof Invoking (3.1), (3.2) and (3.3), one can obtain

ξ υð Þi υ; x*υ

 � ¼ Eυ

� ð υþΔt

υ
Bi s; x

*
s


 �
exp �

ðs
υ
r yð Þdy

� �
dsþ

exp �
ðυþΔt

υ
r yð Þdy

� �
ξ υþΔtð Þi υþ Δt, x*υ þ Δx*υ


 �
x υð Þ ¼ x*υ

���� 2 X*
υ

�
,

for υ 2 τ; T½ � and i 2 N; ð3:5Þ

where

Δx*υ ¼ f υ, xcυ ,ψ
*
1 υ; x*υ

 �

,ψ*
2 υ; x*υ

 �

, � � �,ψ*
n υ; x*υ

 �� 	

Δtþ σ υ; x*υ
� 	

Δ zυ þ o Δtð Þ,
Δzυ ¼ Z υþ Δtð Þ � z υð Þ, and Eυ o Δtð Þ½ �=Δt ! 0 as Δt ! 0:
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From (3.2) and (3.5), one obtains

Eυ

� ð υþΔt

υ
Bi s; x

*
s


 �
exp �

ðs
υ
r yð Þdy

� �
ds x υð Þ ¼ x*υ

�����
¼ Eυ

�
ξ υð Þi υ; x*υ


 �� exp �
ðυþΔt

υ
r yð Þdy

� �
ξ υþΔtð Þi υþ Δt, x*υ þ Δx*υ


 � �

¼ Eυ

�
ξ υð Þi υ; x*υ


 �� ξ υð Þi υþ Δt, x*υ þ Δx*υ

 � �

,

for all υ 2 t0; T½ � and i 2 N: ð3:6Þ

If the imputations ξ(υ)(t, x�t ), for υ 2 t0; T½ �, satisfy Condition 3.1, asΔt ! 0, one can

express condition (3.6) as:

Eυ

�
Bi υ; x*υ

 �

Δtþ o Δtð Þ
�

¼ Eυ

�
� ξ υð Þi

t t; xct

 ����

t¼υ

h i
Δt

� ξ υð Þi
x c
υ

υ; xcυ

 �h i

f υ, xcυ ,ψ
*
1 υ; xcυ

 �

,ψ*
2 υ; xcυ

 �

, � � �,ψ*
n υ; xcυ

 �� 	

Δt

� 1

2

Xm
h, ζ¼1

Ωhζ υ; x*υ

 �

ξ υð Þi
x h
t x

ζ
t

t; x*t

 ����

t¼υ

� �
� ξ υð Þi

x c
υ

υ; xcυ

 �h i

σ υ; x*υ
� 	

Δ zυ

� o Δtð Þ: ð3:7Þ

Dividing (3.7) throughout by Δt, with Δt ! 0, and taking expectation yield (3.4).

Thus the payoff distribution procedure in Bi(s, x
�
s ) in (3.4) would lead to the

realization of ξ(τ)i(τ, xcτ), for τ 2 t0; T½ � which satisfy (3.1)–(3.3). ■

Assigning the instantaneous payments according to the payoff distribution

procedure in (3.4) leads to the realization of the imputation

ξ τð Þ τ; x*τ

 � 2 P x*τ ,T � τ


 �
for τ 2 t0; T½ � and x*τ 2 X*

τ .

With players using the cooperative strategies
�
ψ*
i τ; x*τ

 �

, for τ 2 t0; T½ � and

i 2 N
�
, the instantaneous payment received by player i at time instant τ is:

ζi τ; x
*
τ


 � ¼ gi τ, x*τ ,ψ
*
1 τ; x*τ

 �

,ψ*
2 τ; x*τ

 �

, � � �,ψ*
n τ; x*τ

 ��� 	

,

forτ 2 t0; T½ �, x*τ 2 X*
τ and i 2 N: ð3:8Þ

According to Theorem 3.1, the instantaneous payment that player i should receive

under the agreed-upon optimality principle is Bi(τ, x�τ ) as stated in (3.4). Hence an

instantaneous transfer payment

χi τ; x*τ

 � ¼ Bi τ; x

*
τ


 �� ζi τ; x
*
τ


 � ð3:9Þ

has to be given to player i at time τ, for i 2 N and τ 2 t0; T½ �when the state isx*τ 2 X*
τ .
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3.4 An Illustration in Cooperative Fishery Under
Uncertainty

Consider the stochastic resource extraction game with two asymmetric

extractors.

The resource stock x sð Þ 2 X 
 R follows the stochastic dynamics:

dx sð Þ ¼ ax sð Þ1=2 � bx sð Þ � u1 sð Þ � u2 sð Þ
h i

dsþ σx sð Þdz sð Þ, x t0ð Þ ¼ x0 2 X

ð4:1Þ

where ui(s) is the harvest rate of extractor i 2 1; 2f g. The instantaneous payoffs at
time s 2 t0; T½ � for extractor 1 and extractor 2 are, respectively,

u1 sð Þ1=2 � c1
x sð Þ1=2u1 sð Þ

h i
and u2 sð Þ1=2 � c2

x sð Þ1=2u2 sð Þ
h i

, where c1 and c2 are constants

and c1 6¼ c2. At time T, each extractor will receive a termination bonus qx(T )1/2.
Payoffs are transferable between extractors and over time. Given the constant

discount rate r, values received at time t are discounted by the factor

exp �r t� t0ð Þ½ �.
At time t0, the expected payoff of extractor i is:

Et0

� ðT
t0

ui sð Þ1=2 � ci

x sð Þ1=2
ui sð Þ

" #
exp �r t� t0ð Þ½ �ds

þ exp �r T � t0ð Þ½ �qx Tð Þ12
�
, for i 2 1; 2f g: ð4:2Þ

Let [ϕ�
1(t, x),ϕ

�
2(t, x)] for t 2 t0; T½ �denote a set of strategies that provides a feedback

Nash equilibrium solution to the game (4.1) and (4.2), and V t0ð Þi t; xð Þ : t0; T½ � � Rn

! R denote the feedback Nash equilibrium payoff of extractor i 2 1; 2f g that

satisfies the equations:

�V
t0ð Þi
t t; xð Þ � 1

2
σ2x2V t0ð Þi

xx t; xð Þ

¼ max
ui

�
uið Þ1=2 � ci

x1=2
ui

h i
exp �r t� t0ð Þ½ �

þV t0ð Þi
x t; xð Þ ax1=2 � bx� ui � ϕ t0ð Þ*

j t; xð Þ
h i �

, and

V t0ð Þi T; xð Þ ¼ exp �r T � t0ð Þ½ �qx Tð Þ12, for i 2 1; 2f g and j 2 1; 2f gand j 6¼ i:

ð4:3Þ

Performing the indicated maximization in (4.3) yields:
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ϕ*
i t; xð Þ ¼ x

4 ci þ V t0ð Þi
x exp r t� t0ð Þ½ �x1=2� 	2 , for i 2 1; 2f g:

To completely characterize a feedback solution, we derive the feedback Nash

equilibrium payoffs of the extractors in the game (4.1) and (4.2) as:

Proposition 4.1 The feedback Nash equilibrium payoff of extractor i 2 1; 2f g in

the game (4.1) and (4.2) is:

V t0ð Þi t; xð Þ ¼ exp �r t� t0ð Þ½ � Ai tð Þx1=2 þ Ci tð Þ
h i

; ð4:4Þ

where for i, j 2 1; 2f g and i 6¼ j,Ai tð Þ,Bi tð Þ,Aj tð Þ and Bj(t) satisfy:

_A i tð Þ ¼ r þ 1

8
σ2 þ b

2

� �
Ai tð Þ � 1

2 ci þ Ai tð Þ=2½ � þ
ci

4 ci þ Ai tð Þ=2½ �2

þ Ai tð Þ
8 ci þ Ai tð Þ=2½ �2 þ

Ai tð Þ
8 cj þ Aj tð Þ=2
� 	2 :

_C i tð Þ ¼ rCi tð Þ � a

2
Ai tð Þ,

Ai Tð Þ ¼ q and Ci Tð Þ ¼ 0

Proof First substitute ϕ�
1(t, x) and ϕ*

2 t; xð Þ,V t0ð Þi t; xð Þ from (4.4) and the

corresponding derivatives V
t0ð Þi
t t; xð Þ,V t0ð Þi

x t; xð Þ and V t0ð Þi
xx t; xð Þ into (4.3). Upon

solving (4.3) one obtains Proposition 4.1. ■

Invoking Remark 4.1 in Chap. 2, we can obtain the feedback Nash equilibrium

payoff of player i in the game with dynamics (4.1) and expected payoffs (4.2) which

starts at time τ for τ 2 �t0, T� as:
V τð Þi t; xð Þ ¼ exp �r t� τð Þ½ � Ai tð Þx1=2 þ Bi tð Þ

h i
, for i 2 1; 2f g:

3.4.1 Cooperative Extraction Under Uncertainty

Now consider the case when the resource extractors agree to act cooperatively and

follow the optimality principle under which they would

(i) maximize their joint expected payoffs and

(ii) share the excess of the total expected cooperative payoff over the sum of

expected individual noncooperative payoffs proportional to the extractors’
expected noncooperative payoffs.
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Hence the extractors maximize the sum of their expected profits:

Et0

�
ðT
t0

u1 sð Þ1=2 � c1

x sð Þ1=2
u1 sð Þ

" #
þ u2 sð Þ1=2 � c2

x sð Þ1=2
u2 sð Þ

" # !
exp �r t� t0ð Þ½ �ds

þ 2exp �r T � t0ð Þ½ �qx Tð Þ12
�
; ð4:5Þ

subject to the stochastic dynamics (4.1).

Invoking Theorem A.3 in the Technical Appendices yields the characterization

of solution of the problem (4.1) and (4.5) as a set of controls
�
u*i tð Þ ¼ ψ*

i t; xð Þ, for
i 2 1; 2f g� which satisfies the following partial differential equation:

�W
t0ð Þ
t t; xð Þ � 1

2
σ2x2W t0ð Þ

xx t; xð Þ

¼ max
u1, u2

� 
u1

1=2 � c1
x1=2

u1

h i
þ u2

1=2 � c2
x1=2

u2

h i �
exp �r t� t0ð Þ½ �

þW t0ð Þ
x t; xð Þ ax1=2 � bx� u1 � u2

� 	 �
, and

W t0ð Þ T; xð Þ ¼ 2exp �r T � t0ð Þ½ �qx1
2:

ð4:6Þ

Performing the indicated maximization we obtain:

ψ t0ð Þ*
1 t; xð Þ ¼ x

4 c1 þW t0ð Þ
x exp r t� t0ð Þ½ �x1=2� 	2, and

ψ t0ð Þ*
2 t; xð Þ ¼ x

4 c2 þW t0ð Þ
x exp r t� t0ð Þ½ �x1=2� 	2: ð4:7Þ

The maximized expected joint profit of the extractors can be obtained as:

Proposition 4.2
W t0ð Þ t; xð Þ ¼ exp �r t� t0ð Þ½ � A tð Þx1=2 þ C tð Þ

h i
; ð4:8Þ

where

_A tð Þ ¼ r þ σ2

8
þ b

2

� �
A tð Þ � 1

2 c1 þ A tð Þ=2½ � �
1

2 c2 þ A tð Þ=2½ � þ
c1

4 c1 þ A tð Þ=2½ �2

þ c2

4 c2 þ A tð Þ=2½ �2 þ
A tð Þ

8 c1 þ A tð Þ=2½ �2 þ
A tð Þ

8 c2 þ A tð Þ=2½ �2 ,

_C tð Þ ¼ rC tð Þ � a

2
A tð Þ, A Tð Þ ¼ 2q, and C Tð Þ ¼ 0:
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Proof Upon substituting the optimal strategies in (4.7),W t0ð Þ t; xð Þ in (4.8), and the

relevant derivativesW
t0ð Þ
t t; xð Þ,W t0ð Þ

x t; xð Þ andW t0ð Þ
xx t; xð Þ into (4.6) yields the results

in Proposition 4.2. ■

The optimal cooperative controls can then be obtained as:

ψ*
1 t; xð Þ ¼ x

4 c1 þ A tð Þ=2½ �2 and ψ
*
2 t; xð Þ ¼ x

4 c2 þ A tð Þ=2½ �2 : ð4:9Þ

Substituting these control strategies into (4.1) yields the dynamics of the state

trajectory under cooperation:

dx sð Þ ¼
�
ax sð Þ1=2 � bx sð Þ � x sð Þ

4 c1 þ A sð Þ=2½ �2 �
x sð Þ

4 c2 þ A sð Þ=2½ �2
�
ds

þ σx sð Þdz sð Þ, x t0ð Þ ¼ x0: ð4:10Þ

Solving (4.11) yields the optimal cooperative state trajectory as:

x* sð Þ ¼ ϖ t0; sð Þ2
�
x
1=2
0 þ

ðs
t0

ϖ�1 t0; tð ÞH1dt

�2
, for s 2 t0; T½ � ð4:11Þ

Where ϖ t0; sð Þ ¼ exp

ðs
t0

H2 τð Þ � σ2

8

� �
dυþ

ð s

t0

σ

2
dz υð Þ

� �
,H1 ¼ 1

2
a;

and H2 sð Þ ¼ �
�

1
2
bþ 1

8 c1þA sð Þ=2½ �2 þ 1

8 c2þA sð Þ=2½ �2 þ σ2

8

�
:

The cooperative control for the game Γc x0,T � t0ð Þ over the time interval [t0,T]
along the optimal trajectory can be expressed as:

ψ*
1 t; x*t

 � ¼ x*t

4 c1 þ A tð Þ=2½ �2 , and ψ
*
2 t; x*t

 � ¼ x*t

4 c2 þ A tð Þ=2½ �2 ,

for t 2 t0; T½ � and x*t 2 X*
t : ð4:12Þ

3.4.2 Subgame Consistent Cooperative Extraction

The agreed-upon optimality principle requires the extractors to share the excess of

the total expected cooperative payoff over the sum of individual noncooperative

payoffs proportional to the extractors’ expected noncooperative payoffs. Therefore

the following imputation has to be satisfied.
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Condition 4.1 An imputation

ξ τð Þi τ; x*τ

 � ¼ V τð Þi τ; x*τ


 �
X2
j¼1

V τð Þj τ; x*τ

 �W τð Þ τ; x*τ


 �

¼
Ai τð Þ x*τ


 �1=2 þ Ci τð Þ
h i
X2
j¼1

Aj τð Þ x*τ

 �1=2 þ Cj τð Þ

h i A τð Þ x*τ

 �1=2 þ C τð Þ

h i
ð4:13Þ

is assigned to extractor i, for i 2 1; 2f g if x*τ 2 X*
τ occurs at time τ 2 t0; T½ �. ■

Applying Theorem 3.1 a subgame-consistent solution under the optimal princi-

ple P x0 ,T � t0ð Þ for the cooperative game Γc x0 , T � t0ð Þ can be obtained as:�
u s; x*s

 �

and B(s, x�s ) for s 2 t0; T½ � and ξ t0ð Þ t0; x0ð Þ� in which

(i) u(s, x�s ) for s 2 t0; T½ � is the set of group optimal strategies

ψ*
1 s; x*s

 � ¼ x*s

4 c1þA sð Þ=2½ �2 , and ψ
*
2 s; x*s

 � ¼ x*s

4 c2þA sð Þ=2½ �2 ; and

(ii) B s; x*s

 � ¼ B1 s; x*s


 �
,B2 s; x*2

 �� �

for s 2 t0; T½ � where

Bi s; x
*
s


 � ¼ � ξ sð Þi
t t; x*t

 ����

t¼s

h i
� ξ sð Þi

x*s
s; x*s

 �h i�

a x*s

 �1=2 � bx*s �

x*s
4 c1 þ A sð Þ=2½ �2 �

x*s
4 c2 þ A sð Þ=2½ �2

�

� 1

2
σ2 x*s

 �2

ξ sð Þi
x*s x

*
s
s; x*s

 �h i

, for i 2 1; 2f g ð4:14Þ

where

ξ sð Þi
t t; x*t

 ����

t¼s

h i

¼
Ai sð Þ x*s


 �1=2 þCi sð Þ
h i
X2
j¼1

Aj sð Þ x*s

 �1=2 þCj sð Þ

h i ! _A sð Þ x*s

 �1=2 þ _C sð Þ

h i
� r A sð Þ x*s


 �1=2 þC sð Þ
h in o

þ
A sð Þ x*s


 �1=2 þ B sð Þ
h i

X2
j¼1

Aj sð Þ x*s

 �1=2 þ Bj sð Þ

h i !

_A i sð Þ x*s

 �1=2 þ _B i sð Þ

h i
� r Ai sð Þ x*s


 �1=2 þ Bi sð Þ
h in o
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�
Ai sð Þ x*s


 �1=2 þ Bi sð Þ	�A sð Þ x*s

 �1=2 þ B sð Þ

h i
X2
j¼1

Aj sð Þ x*s

 �1=2 þ Bj sð Þ

h i !2

�
X2
j¼1

_A j sð Þ x*s

 �1=2 þ _C j sð Þ

h i
� r Aj sð Þ x*s


 �1=2 þ Cj sð Þ
h in o

ξ sð Þi
x*s

s; x*s

 �h i

¼
Ai sð Þ x*s


 �1=2 þ Ci sð Þ
h i

A sð Þ x*s

 ��1=2 þ A sð Þ x*s


 �1=2 þ C sð Þ
h i

Ai sð Þ x*s

 ��1=2

2
X2
j¼1

Aj sð Þ x*s

 �1=2 þ Cj sð Þ

h i

�
Ai sð Þ x*s


 �1=2 þ Ci sð Þ	�A sð Þ x*s

 �1=2 þ C sð Þ

h i
X2
j¼1

Aj sð Þ x*s

 �1=2 þ Cj sð Þ

h i !2

1

2

X2
j¼1

Aj sð Þ x*s

 ��1=2

 !
;

and

ξ sð Þi
x*s x

*
s
s; x*s

 �h i

¼ �Ci sð ÞA sð Þ x*s

 ��3=2 þ C sð ÞAi sð Þ x*s


 ��3=2

4
X2
j¼1

Aj sð Þ x*s

 �1=2 þ Cj sð Þ

h i

�
Ai sð Þ x*s


 �1=2 þ Ci sð Þ
h i

A sð Þ x*s

 ��1=2 þ A sð Þ x*s


 �1=2 þ C sð Þ
h i

Ai sð Þ x*s

 ��1=2

2
X2
j¼1

Aj sð Þ x*s

 �1=2 þ Cj sð Þ

h i !2

�
X2
j¼1

Aj sð Þ x*s

 ��1=2

h i

þ
Ai sð Þ x*s


 �1=2 þ Ci sð Þ
h i

A sð Þ x*s

 �1=2 þ C sð Þ

h i
X2
j¼1

Aj sð Þ x*s

 �1=2 þ Cj sð Þ

h i !2

1

4

X2
j¼1

Aj sð Þ x*s

 ��3=2

 !

� 1

2

X2
j¼1

Aj sð Þ x*s

 ��1=2

 !

�
2
4 Ai sð ÞA sð Þ þ 1

2
Ai sð ÞC sð Þ þ A sð ÞCi τð Þ½ � x*s


 ��1=2

X2
j¼1

Aj sð Þ x*s

 �1=2 þ Cj sð Þ

h i !2

�
Ai sð Þ x*s


 �1=2 þ Ci sð Þ
h i

A sð Þ x*s

 �1=2 þ C sð Þ

h i
X2
j¼1

Aj sð Þ x*s

 �1=2 þ Cj sð Þ

h i ! 3

X2
j¼1

Aj sð Þ x*s

 ��1=2

3
5:
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With extractors using the cooperative strategies in (4.13), the instantaneous

receipt of extractor i at time instant τ is:

ζi τ; x
*
τ


 � ¼ x*τ

 �1=2

2 ci þ A τð Þ=2½ � �
ci x

*
τ


 �1=2
4 ci þ A τð Þ=2½ �2 ,

for τ 2 t0; T½ �, x*τ 2 X*
τ and i 2 1; 2f g: ð4:15Þ

Under cooperation the instantaneous payment that extractor i 2 1; 2f g should

receive Bi(τ, x�τ ) in (4.15). Hence an instantaneous transfer payment

χi τ; x*τ

 � ¼ Bi τ; x

*
τ


 �� ζi τ; x
*
τ


 � ð4:16Þ

has to be given to extractor i at time τ, for i 2 1; 2f g and τ 2 t0; T½ �when the state is
x*τ 2 X*

τ .

3.5 Infinite Horizon Subgame Consistency Under
Uncertainty

Consider the infinite stochastic differential game in which player i seeks to

max
ui

Eτ

� ð1
τ
gi x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �r s� τð Þ½ �ds

�
,

for i 2 N; ð5:1Þ

subject to the stochastic dynamics

dx sð Þ ¼ f x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ x sð Þ½ �dz sð Þ, x τð Þ ¼ xτ: ð5:2Þ

Consider the alternative game which starts at time t 2 �t0,1� with initial state x tð Þ
¼ x:

max
ui

Et

� ð1
t

gi x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �r s� tð Þ½ �ds
�
,

for i 2 N; ð5:3Þ

subject to the stochastic dynamics

dx sð Þ ¼ f x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ x sð Þ½ �dz sð Þ, x tð Þ ¼ xt: ð5:4Þ

Let Ω x sð Þ½ � ¼ σ x sð Þ½ �σ x sð Þ½ �T denote the covariance matrix with its element in row

h and column ζ denoted by Ωhζ[x(s)].
The infinite horizon autonomous game (5.4) and (5.5) is independent of the

choice of t and dependent only upon the state at the starting time, that is x. A Nash
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equilibrium solution for the infinite-horizon stochastic differential game (5.4) and

(5.5) can be characterized by the following theorem.

Theorem 5.1 An n-tuple of strategies u*i ¼ ϕ*
i �ð Þ� 2 Ui, for i 2 Ng provides a

Nash equilibrium solution to the game (5.4) and (5.5) if there exist continuously

twice differentiable functions V̂
i
xð Þ : Rm ! R, i 2 N, satisfying the following set

of partial differential equations:

rV̂
i
xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ xð ÞV̂ i

xhxζ xð Þ

¼ max
ui

gi x,ϕ*
1 xð Þ,ϕ*

2 xð Þ, � � �,ϕ*
i�1 xð Þ, ui xð Þ,ϕ*

iþ1 xð Þ, � � �,ϕ*
n xð Þ� 	�

þ V̂
i

x xð Þf x,ϕ*
1 xð Þ,ϕ*

2 xð Þ, � � �,ϕ*
i�1 xð Þ, ui xð Þ,ϕ*

iþ1 xð Þ, � � �,ϕ*
n xð Þ� 	o

¼ gi x,ϕ*
1 xð Þ,ϕ*

2 xð Þ, � � �,ϕ*
n xð Þ� 	� þV̂

i

x xð Þf x,ϕ*
1 xð Þ,ϕ*

2 xð Þ, � � �,ϕ*
n xð Þ� 	o

;

for i 2 N.

Proof This result follows readily from the definition of Nash equilibrium and from

the infinite horizon stochastic control Theorem A.4 in the Technical Appendices.■

Now consider the case when the players agree to act cooperatively. Let Γc(τ, xτ)
denote a cooperative game in which player i’s payoff is (5.2) and the state dynamics

is (5.3). The players agree to act according to an agreed upon optimality principle

which entails

(i) group optimality and

(ii) the distribution of the total cooperative payoff according to an imputation

which equals ξ(υ)(υ, x�υ) for υ 2 �τ,1� over the game duration. Moreover, the

function ξ(υ)i(υ, x�υ), for i 2 N, is continuously differentiable in υ and x�υ.

The solution of the cooperative game Γc(τ, xτ) under the agreed-upon optimality

principle includes

(i) a set of cooperative strategies

u τð Þ* s; x*s

 � ¼ u

τð Þ*
1 s; x*s

 �

, u
τð Þ*
2 s; x*s

 �

, � � �, u τð Þ*
n s; x*s

 �h i

, for s 2 �τ,1�;
(ii) an imputation vector ξ τð Þ τ; xτð Þ ¼ ξ τð Þ1 τ; xτð Þ, ξ τð Þ2 τ; xτð Þ, � � �, ξ τð Þn τ; xτð Þ� 	

to

allot the cooperative payoff to the players; and

(iii) a payoff distribution procedure Bτ s; x*s

 � ¼ B τ

1 s; x*s

 �

,B τ
2 s; x*s

 �

, � � �,B τ
n s; x*s

 �� 	

for s 2 �τ,1�, where Bτ
i (s, x

�
s ) is the i at time s when the state is x*s 2 X*

s . In

particular,

ξ τð Þi τ; xτð Þ ¼ Eτ

� ð1
τ
B τ
i s; x*s

 �

exp �r s� τð Þ½ � ds

�
, for i 2 N: ð5:5Þ
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3.5.1 Group Optimal Cooperative Strategies

To ensure group rationality the players maximize the sum of their expected payoffs,

the players solve the problem:

max
u1, u2, ���, un

Eτ

ð1
τ

Xn
j¼1

gj x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �exp �r s� τð Þ½ �ds
( �

; ð5:6Þ

subject to (5.3).

Invoking Theorem A.4 in the Technical Appendices, a set of controls

ψ*
i xð Þ 2 Ui; i 2 N

� �
constitutes an optimal solution to the infinite horizon

stochastic control problem (5.3) and (5.7) if there exists continuously twice

differentiable function W(x) defined on Rm ! R which satisfies the following

equation:

rW xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ xð ÞWxhxζ xð Þ

¼ max
u1, u2, ���, un

Xn
j¼1

gj x; u1; u2; � � �; un½ �
(

þWx xð Þf x; u1; u2; � � �; un½ �
�
: ð5:7Þ

Hence the players will adopt the cooperative control {ψ�
i (x), for i 2 Ng to

obtain the maximized level of expected joint profit. Substituting this set of

control into (6.5) yields the dynamics of the optimal (cooperative) trajectory

as:

dx sð Þ ¼ f x sð Þ,ψ*
1 x sð Þð Þ,ψ*

2 x sð Þð Þ, � � �,ψ*
n x sð Þð Þ� 	

dsþ σ x sð Þ½ �dz sð Þ, x τð Þ ¼ xτ:

ð5:8Þ

The solution to (5.9) can be expressed as:

x* sð Þ ¼ xτ þ
ðs
τ
f x* υð Þ,ψ*

1 x* υð Þ
 �
,ψ*

2 x* υð Þ
 �
, � � �,ψ*

n x* υð Þ
 �� 	
dυ

þ
ðs
τ
σ x* υð Þ� 	

dz υð Þ: ð5:9Þ

We use X�
s to denote the set of realizable values of x*(s) at time s generated by (5.9).

The term x*s 2 X*
s is used to denote an element in X�

s . The terms x*(s) and x�s will be
used interchangeably in case where there is no ambiguity.

The expected cooperative payoff can be expressed as:
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W x*τ

 � ¼ Eτ

�
ð1
τ

Xn
j¼1

gj x* sð Þ,ψ*
1 x* sð Þ
 �

,ψ*
2 x* sð Þ
 �

, � � �,ψ*
n x* sð Þ
 �� 	

exp �r s� τð Þ½ �ds���� x* τð Þ ¼ x*τ

�
:

Moreover, one can easily verify that the joint payoff maximizing controls for the

cooperative game Γc(τ, xτ) over the time interval
�
t,1� is identical to the joint

payoff maximizing controls for the cooperative game Γc(t, x�t ) over the time interval�
t,1�.

3.5.2 Subgame Consistent Imputation and Payoff
Distribution Procedure

In the game Γc(t, x�t ), according to optimality principle the players would use the

Payoff Distribution Procedure Bτ s; x*s

 �� �1

s¼τ
to bring about an imputation to

player i such that:

ξ τð Þi τ; xτð Þ ¼ Eτ

� ð1
τ
B τ
i s; x*s

 �

exp �r s� τð Þ½ � ds

�
, for i 2 N:

We define

ξ τð Þi t; x*t

 � ¼ Eτ

( ð1
t

B τ
i s; x*s

 �

exp �r s� τð Þ½ � ds

���� x tð Þ ¼ x*t 2 X*
t

)
,

for i 2 N; ð5:10Þ

where t > τ and x*t 2 x* sð Þ� �1
s¼τ

.

At time τ, according to P(τ, xτ) player i is supposed to receive a payoff ξ
(τ)i(t, x�t )

over the remaining time interval
�
t,1� if the state is x*t 2 X*

t .

Consider the case when the game has proceeded to time t and the state variable

becames x*t 2 X*
t . Then one has a cooperative game Γc(t, x�t ) which starts at time twith

initial state x�t . According to the agreed-upon optimality principle, an imputation

ξ tð Þi t; x*t

 � ¼ Et

� ð1
t

B t
i s; x*s

 �

exp �r s� tð Þ½ � ds

���� x tð Þ ¼ x*t 2 X*
t

�
;

will be allotted to player i, for i 2 N.
However, according to the solution to the game Γc(τ, xτ), the imputation

(in present value viewed at time τ) to player i over the period
�
t,1� is ξ(τ)i(t, x�t )
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in (5.11). For the imputation from Γc(τ, xτ) to be consistent with those from Γc(t, x�t ),
it is required that

exp r t� τð Þ½ �ξ τð Þi t; x*t

 � ¼ ξ tð Þi t; x*t


 �
from the game Γc t, x*t


 �
under the same optimality principle, for t 2 τ;1ð Þ: ð5:11Þ

The payoff distribution procedure of the game Γc(τ, xτ) according to the agreed-

upon optimality principle is

Bτ s; x*s

 � ¼ B τ

1 s; x*s

 �

,B τ
2 s; x*s

 �

, � � �,B τ
n s; x*s

 �� 	

, for s 2 �τ,1� and x*s 2 X*
s :

When the game has proceeded to time t and the state variable became x*t 2 X*
t , we

have the game Γc(t, x�t ). According to the agreed-upon optimality principle the

payoff distribution procedure of the game Γc(t, x�t ) is

Bt s; x*s

 � ¼ Bt

1 s; x*s

 �

,Bt
2 s; x*s

 �

, � � �,Bt
n s; x*s

 �� 	

, for s 2 �t,1� andx*s 2 X*
s :

For the continuation of the payoff distribution procedure Bτ(s, x�s ) to be consistent

with Bt(s, x�s ), it is required that

Bt0 s; x*s

 � ¼ Bt s; x*s


 �
, for s 2 �t,1�and t 2 �τ,1�and x*s 2 X*

s :

Definition 5.1 The imputation and payoff distribution procedure�
ξ τð Þ τ; xτð Þ and Bτ(s, x�s ) for s 2

�
τ,1�� are subgame consistent if

(i)
exp r t� τð Þ½ �ξ τð Þi t; x*t


 �
	exp r t� τð Þ½ �Eτ

� ð1
t

B τ
i s; x*s

 �

exp �r s� τð Þ½ � ds x tð Þ ¼ x*t 2 X*
t

�����
¼ ξ tð Þi t; x*t


 �
, for t 2 τ;1ð Þ and i 2 N; and ð5:12Þ

(ii) the payoff distribution procedure Bτ(s, x�s ) for s 2
�
t,1� is identical to Bt

(s, x�s ). ■

3.5.3 Payoff Distribution Procedure Leading to Subgame
Consistency

A payoff distribution procedure leading to subgame consistent imputation has to

satisfy Definition 5.1. Invoking Definition 5.1, we have B τ
i s; x*s

 � ¼ Bt

i s; x*s

 � ¼

Bi s; x
*
s


 �
; for s 2 �τ,1�, x*s 2 X*

s and t 2 �τ,1� and i 2 N.
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Therefore along the cooperative trajectory,

ξ τð Þi τ; xτð Þ ¼ Eτ

� ð1
τ
Bi s; x

*
s


 �
exp �r s� τð Þ½ �ds

�
, for i 2 N, and

ξ υð Þi υ; x*υ

 � ¼ Eυ

� ð1
υ
Bi s; x

*
s


 �
exp �r s� υð Þ½ �ds

���� x υð Þ ¼ x*υ 2 X*
υ

�
, for i 2 N, and

ξ tð Þi t; x*t

 � ¼ Et

� ð1
t

Bi s; x
*
s


 �
exp �r s� tð Þ½ �ds

���� x tð Þ ¼ x*t 2 X*
t

�
,

for i 2 N and t � υ � τ: ð5:13Þ

Moreover, for i 2 N and t 2 �τ,1�, we define the term
ξ υð Þi t; x*t


 � ¼ Eυ

� ð1
t

Bi s; x
*
s


 �
exp �r s� υð Þ½ �ds

�
x tð Þ ¼ x*t

����
�
; ð5:14Þ

to denote the present value of player i’s cooperative payoff over the time interval
�
t,1�,

given that the state is x�t at time t 2 �υ,1�, under the optimality principle P(υ, x�υ).
Invoking (5.14) and (5.15) one can readily verify that exp r t� τð Þ½ �ξ τð Þi t; x*t


 �
¼ ξ tð Þi t; x*t


 �
; for i 2 N and τ 2 t0; T½ � and t 2 τ; T½ �.

The next task is to derive Bi(s, x
�
s ), for s 2

�
τ,1� and t 2 �τ,1� so that (5.14)

can be realized. Consider again the following condition.

Condition 5.1 For i 2 N and t � υ and υ 2 τ; T½ �, the term ξ(υ)i(t, x�t ) is a function
that is continuously differentiable in t and x�t .

A theorem characterizing a formula for Bi(s, x
�
s ), for i 2 N and s 2 �υ,1�, which

yields (5.15) is provided as follows.

Theorem 5.2 If Condition 5.1 is satisfied, a PDP with instantaneous payments at

time s with the state being x*s 2 X*
s equaling

Bi s; x
*
s


 � ¼ � ξ sð Þi
t t; x*t

 ����

t¼s

h i
� ξ sð Þi

x*t
t; x*t

 ����

t¼s

h i
f x*s ,ψ

*
1 s; x*s

 �

,ψ*
2 s; x*s

 �

, � � �,ψ*
n s; x*s

 �� 	

� 1

2

Xm
h, ζ¼1

Ωhζ x*s

 �

ξ sð Þi
x h
t x

ζ
t

t; x*t

 ����

t¼s

� �
, for i 2 N and s 2 �υ,1�; ð5:15Þ

yields imputation ξ(υ)i(υ, x�υ) for υ 2
�
τ,1� and x*υ 2 X*

υ which satisfy (5.14).

Proof Note that along the cooperative trajectory

ξ υð Þi t; x*t

 � ¼ Eυ

� ð1
t

Bi s; x
*
s


 �
exp �r s� υð Þ½ �ds x tð Þ ¼ x*t

���� 2 X*
t

�
¼ exp �r t� υð Þ½ �ξ tð Þi t; x*t


 �
, for i 2 N and t 2 �υ,1�: ð5:16Þ
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For Δt ! 0, equation (5.14) can be expressed as

ξ υð Þi υ; x*υ

 � ¼ Eυ

� ð1
υ
Bi s; x

*
s


 �
exp �r s� υð Þ½ �ds

�

¼ Eυ

� ðυþΔt

υ
Bi s; x

*
s


 �
exp �r s� υð Þ½ � dsþ ξ υð Þi υþ Δt, x*υ þ Δx*υ


 � �
; ð5:17Þ

where

Δx*υ ¼ f x*υ,ψ
*
1 x*υ

 �

,ψ*
2 x*υ

 �

, � � �,ψ*
n x*υ

 �� 	

Δtþ σ x*υ

 �

Δzυ þ o Δtð Þ,
Δzυ ¼ Z υþ Δtð Þ � z υð Þ, andEυ o Δtð Þ½ �=Δt ! 0 as Δt ! 0:

Replacing the term x*υ þ Δx*υ with x*υþΔt and rearranging (5.18) yields:

Eυ

� ð υþΔt

υ
Bi sð Þexp �r s� υð Þ½ � ds

�
¼ Eυ

�
ξ υð Þi υ; x*υ


 �� ξ υð Þi υþ Δt, x*υþΔt

 � �

,

for all υ 2 �τ,1� and i 2 N: ð5:18Þ

With Condition 5.1 holding and Δt ! 0, (5.19) can be expressed as:

Eυ

�
Bi s; x

*
s


 �
Δtþ o Δtð Þ

�
¼ Eυ

�
� ξ sð Þi

t t; x*t

 ����

t¼s

h i
Δt

� ξ sð Þi
x*t

t; x*t

 ����

t¼s

h i
f x*s ,ψ

*
1 s; x*s

 �

,ψ*
2 s; x*s

 �

, � � �,ψ*
n s; x*s

 �� 	

Δt

� 1

2

Xm
h, ζ¼1

Ωhζ x*s

 �

ξ sð Þi
x h
t x

ζ
t

t; x*t

 ����

t¼s

� �
Δt� ξ sð Þi

x*t
t; x*t

 ����

t¼s

h i
σ x*υ

 �

Δzυ � o Δtð Þ
�
: ð5:19Þ

Dividing (5.20) throughout byΔt, withΔt ! 0and taking expectation yields (5.16).

Thus the payoff distribution procedure in Bi(υ, x�υ) in (5.16) would lead to the

realization of the imputations which satisfy (5.14). ■

Since the payoff distribution procedure in Bi(τ) in (5.16) leads to the realization

of (5.14), it would yields subgame consistent imputations satisfying Definition 5.1.

A more succinct form of the PDP instantaneous payment in (5.14) can be derived

as follows. First we define

ξ̂
i
x*υ

 � ¼ Eυ

� ð1
υ
Bi sð Þexp �r s� υð Þ½ �ds x υð Þ ¼ x*υ

����� ξ υð Þi τ; x*υ

 �

, and

ξ̂
i
x*t

 � ¼ Et

� ð1
t

Bi sð Þexp �r s� tð Þ½ �ds x tð Þ ¼ x*t

����� ¼ ξ tð Þi t; x*t

 �

;

for i 2 N and υ 2 �τ,1� and t 2 �υ,1� along the optimal cooperative trajectory

x*s
� �1

s¼τ
.
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We then have:

ξ υð Þi t; x*t

 � ¼ exp �r t� υð Þ½ �ξ̂ i

x*t

 �

:

Differentiating the above condition with respect to t yields:

ξ υð Þi
t t; x*t

 ����

t¼υ

h i
¼ �rexp �r t� υð Þ½ �ξ̂ i

x*t

 � ¼ �rξ υð Þi t; x*t


 �
:

At t ¼ υ, ξ υð Þi t; x*t

 � ¼ ξ υð Þi υ; x*υ


 �
; therefore

ξ υð Þi
t t; x*t

 ����

t¼υ

h i
¼ rξ υð Þi t; x*t


 � ¼ rξ υð Þi υ; x*υ

 �

: ð5:20Þ

Substituting (5.21) into (5.16) yields,

Bi s; x
*
s


 � ¼ r ξ sð Þi s; x*s

 �� ξ sð Þi

x*s
s; x*s

 �

f x*s ,ψ
*
1 x*s

 �

,ψ*
2 x*s

 �

, � � �,ψ*
n x*s

 �� 	

� 1

2

Xm
h, ζ¼1

Ωhζ x*s

 �

ξ sð Þi
x h
t x

ζ
t

t; x*t

 ����

t¼s

� �
, for i 2 N, x*s 2 X*

s and s 2
�
υ,1�: ð5:21Þ

An alternative form of Theorem 5.2 can be expressed as:

Theorem 5.3 A PDP with instantaneous payments with the state being x* equaling

Bi x
*


 � ¼ r ξ̂
i
x*

 �� ξ ix* x*


 �
f x*,ψ*

1 x*

 �

,ψ*
2 x*

 �

, � � �,ψ*
n x*

 �� 	

� 1

2

Xm
h, ζ¼1

Ωhζ x*

 �

ξ̂
i

xhxζ x*

 �

, for i 2 N: ð5:22Þ

yields imputation ξ̂
i
x*

 �

.

Proof Multiplying (5.22) throughout by exp r t� υð Þ½ � yields

Bi x
*
s


 � ¼ r ξ̂
i
x*s

 �� ξ̂

i

x*s
x*s

 �

f x*s ,ψ
*
1 x*s

 �

,ψ*
2 x*s

 �

, � � �,ψ*
n x*s

 �� 	

� 1

2

Xm
h, ζ¼1

Ωhζ x*s

 �

ξ̂
i

x h
s x

ζ
s
x*s

 �

, for i 2 N, x*s 2 X*
s and s 2

�
υ,1�:

Recall that the infinite-horizon autonomous game Γ(x) is independent of the

choice of time s and dependent only upon the state, equation (5.22) can be

expressed as (5.23). ■

With agents using the cooperative strategies, when the state is x* 2 X* the

instantaneous receipt of agent i is:

ζi x
*


 � ¼ gi x*,ψ*
1 x*

 �

,ψ*
2 x*

 �

, � � �,ψ*
n x*

 �� 	

, for i 2 N: ð5:23Þ
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According to Theorem 5.2 and (5.23), the instantaneous payment that player

i should receive under the agreed-upon optimality principle is Bi(x*) as stated in

(5.23). Hence an instantaneous transfer payment

χi x*

 � ¼ Bi x

*

 �� ζi x

*

 �

, for i 2 N ð5:24Þ

has to be given to player i when the state is x* 2 X*.

3.6 Infinite Horizon Cooperative Fishery Under
Uncertainty

Consider an infinite horizon version of the cooperative fishery in Sect. 3.5. At

time τ, the expected payoff of extractor 1 and that of extractor 2 are

respectively:

Eτ

� ð1
τ

u1 sð Þ1=2 � c1

x sð Þ1=2
u1 sð Þ

" #
exp �r t� τð Þ½ �ds

�
and

Eτ

� ð1
τ

u2 sð Þ1=2 � c2

x sð Þ1=2
u2 sð Þ

" #
exp �r t� τð Þ½ �ds

�
: ð6:1Þ

The fish resource stock x sð Þ 2 X 
 R follows the stochastic dynamics:

dx sð Þ ¼ ax sð Þ1=2 � bx sð Þ � u1 sð Þ � u2 sð Þ
h i

dsþ σx sð Þdz sð Þ, x τð Þ ¼ xτ; ð6:2Þ

Invoking Theorem 5.1, the set of strategies [ϕ�
1(x),ϕ

�
2(x)] for t 2 t0; T½ � that provides

a feedback Nash equilibrium solution to the game (6.2) and (6.3) can be character-

ized by:

rV̂
i
xð Þ � 1

2
σ2x2V̂

i

xx xð Þ ¼ max
ui

�
ui

1=2 � ci
x1=2

ui þ V̂
i

x xð Þ ax1=2 � bx� ui � ϕ*
j xð Þ

h i �
for i, j 2 1;2f g and i 6¼ j: ð6:3Þ

Performing the indicated maximization in (6.4) and using the derived game

equilibrium strategies one obtains the value function of extractor i 2 1; 2f g
as:

V̂
i
t; xð Þ ¼ Aix

1=2 þ Ci

h i
; ð6:4Þ
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where for i, j 2 1; 2f g and i 6¼ j,Ai,Ci,Aj and Cj satisfy:

r þ σ2

8
þ b

2

� �
Ai � 1

2 ci þ Ai=2½ � þ
ci

4 ci þ Ai=2½ �2

þ Ai

8 ci þ Ai=2½ �2 þ
Ai

8 cj þ Aj=2
� 	2 ¼ 0; and

Ci ¼ a

2
Ai:

3.6.1 Cooperative Extraction

Consider the case when these two nations agree to act according to an agreed upon

optimality principle which entails

(i) group optimality, and

(ii) the distribution of the excess of the total expected cooperative payoff over the

sum of expected individual noncooperative payoffs proportional to the extrac-

tors’ expected noncooperative payoffs.

To maximize their joint expected payoff for group optimality, the nations have

to solve the stochastic control problem of maximizing

Et

�
ð1
t

u1 sð Þ1=2 � c1

x sð Þ1=2
u1 sð Þ

" #
þ u2 sð Þ1=2 � c2

x sð Þ1=2
u2 sð Þ

" # !
exp �r t� tð Þ½ �ds�

: ð6:5Þ

subject to (6.3).

Invoking Theorem A.4 in the Technical Appendices yields the characterization

of solution of the problem (6.3) and (6.6) as:

Corollary 6.1 A set of controls
�
ψ*
i xð Þ, for i 2 1; 2f g� constitutes an optimal

solution to the stochastic control problem (6.3) and (6.6), if there exist continuously

twice differentiable functions W xð Þ : Rm ! R;, satisfying the following partial

differential equation:

rW xð Þ � 1

2
σ2x2Wxx xð Þ ¼ max

u1, u2

� 
u1

1=2 � c1
x1=2

u1

h i
þ u2

1=2 � c2
x1=2

u2

h i �

þWx xð Þ ax1=2 � bx� u1 � u2
� 	 �

: ð6:6Þ■
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Performing the indicated maximization and solving (6.7) one obtains the max-

imized expected joint profit can be derived as:

W xð Þ ¼ Ax1=2 þ C
h i

; ð6:7Þ

where

r þ σ2

8
þ b

2

� �
A� 1

2 c1 þ A=2½ � �
1

2 c2 þ A=2½ �
þ c1

4 c1 þ A=2½ �2 þ
c2

4 c2 þ A=2½ �2 þ
A

8 c1 þ A=2½ �2 þ
A

8 c2 þ A=2½ �2 ¼ 0, and

C ¼ a

2r
A: ð6:8Þ

The optimal cooperative controls can then be obtained as:

ψ*
1 xð Þ ¼ x

4 c1 þ A=2½ �2 , and ψ*
2 xð Þ ¼ x

4 c2 þ A=2½ �2 : ð6:9Þ

Substituting these control strategies into (6.3) yields the dynamics of the state

trajectory under cooperation:

dx sð Þ ¼
�
ax sð Þ1=2 � bx sð Þ � x sð Þ

4 c1 þ A=2½ �2 �
x sð Þ

4 c2 þ A=2½ �2
�
ds

þ σx sð Þdz sð Þ, x t0ð Þ ¼ x0: ð6:10Þ

Solving (6.11) yields the optimal cooperative state trajectory as:

x* sð Þ ¼ ϖ t0; sð Þ2
�
x
1=2
0 þ

ðs
t0

ϖ�1 t0; tð ÞH1dt

�2
, for s 2 t0; T½ �; ð6:11Þ

where

ϖ t0; sð Þ ¼ exp

ðs
t0

H2 τð Þ � σ2

8

� �
dυþ

ðs
t0

σ

2
dz υð Þ

� �
,H1 ¼ 1

2
a;

and H2 sð Þ ¼ �
�
1

2
bþ 1

8 c1 þ A sð Þ=2½ �2 þ
1

8 c2 þ A sð Þ=2½ �2 þ
σ2

8

�
:

3.6.2 Subgame Consistent Payoff Distribution

With the extractors using the cooperative strategies (6.10) along the stochastic

cooperative path, they agree to share the excess of the total expected cooperative
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payoff over the sum of individual noncooperative payoffs proportional to the

extractors’ expected noncooperative payoffs. Therefore the following imputation

has to be satisfied.

Condition 6.1 An imputation

ξ υð Þi υ; x*υ

 � ¼ V̂

i
x*υ

 �

X2
j¼1

V̂
j
x*υ

 �W x*υ


 � ¼ Ai x
*
υ


 �1=2 þ Ci

h i
X2
j¼1

Aj x
*
υ


 �1=2 þ Cj

h i A x*υ

 �1=2 þ C

h i
ð6:12Þ

is assigned to extractor i, for i 2 1; 2f g if x*υ 2 X*
υ occurs at time υ 2 �τ,1�. ■

Applying Theorem 5.3 a subgame-consistent solution for the cooperative game

Γc(τ, xτ) includes:

(i) a set of group optimal strategies

ψ*
1 x*s

 � ¼ x*s

4 c1 þ A=2½ �2 and ψ*
2 x*s

 � ¼ x*s

4 c2 þ A=2½ �2 ; and

(ii) a Payoff Distribution Procedure

B s; x*s

 � ¼ B1 s; x*s


 �
,B2 s; x*s

 �

, � � �,Bn s; x*s

 �� �

for s 2 �τ,1�with
Bi s; x

*
s


 � ¼ r ξ sð Þi s; x*s

 �

� ξ sð Þi
x*s

s; x*s

 ��

a x*s

 �1=2 � bx*s �

x*s
4 c1 þ A=2½ �2 �

x*s
4 c2 þ A=2½ �2

�

� 1

2
σ2 x*s

 �2

ξ τð Þi
x h
s x

ζ
s

s; x*s

 �

, for i 2 1; 2f g;
where

ξ sð Þi
x*s

si
xs� s; x*s

 � ¼ Ai x

*
s


 �1=2 þ Ci

h i
A x*s

 ��1=2 þ A x*s


 �1=2 þ C
h i

Ai x
*
s


 ��1=2

2
X2
j¼1

Aj x
*
s


 �1=2 þ Cj

h i

�
Ai x

*
s


 �1=2 þ Ci

	�
A x*s

 �1=2 þ C

h i
X2
j¼1

Aj x
*
s


 �1=2 þ Cj

h i !2

1

2

X2
j¼1

Aj x
*
s


 ��1=2

 !
;

and ξ τð Þi
x*s x

*
s
s; x*s

 � ¼ �CiA x*s


 ��3=2 þ CAi x
*
s


 ��3=2

4
X2
j¼1

Aj x
*
s


 �1=2 þ Cj

h i

�
Ai x

*
s


 �1=2 þ Ci

h i
A x*s

 ��1=2 þ A x*s


 �1=2 þ C
h i

Ai x
*
s


 ��1=2

2
X2
j¼1

Aj x
*
s


 �1=2 þ Cj

h i ! 2
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X2
j¼1

Aj x
*
s


 ��1=2
h i

þ
Ai x

*
s


 �1=2 þ Ci

	�
A x*s

 �1=2 þ C

h i
X2
j¼1

Aj x
*
s


 �1=2 þ Cj

h i !2

1

4

X2
j¼1

Aj x
*
s


 ��3=2

 !

� 1

2

X2
j¼1

Aj x
*
s


 ��1=2

 !
�

2
64 AiAþ 1

2
AiCþ ACi½ � x*s


 ��1=2

X2
j¼1

Aj x
*
s


 �1=2 þ Cj

h i !2

�
Ai x

*
τ


 �1=2 þ Ci

h i
A x*τ

 �1=2 þ C

h i
X2
j¼1

Aj x
*
τ


 �1=2 þ Cj

h i ! 3

X2
j¼1

Aj x
*
τ


 ��1=2

3
75: ð6:13Þ

With extractors using the cooperative strategies in (6.13), the instantaneous

receipt of extractor i at time instant υ 2 �τ,1� with the state being x�υ is:

ζi υ; x
*
υ


 � ¼ x*υ

 �1=2

2 ci þ A=2½ � �
ci x

*
υ


 �1=2
4 ci þ A=2½ �2 , for i 2 1; 2f g; ð6:14Þ

Under the cooperative agreement, the instantaneous payment that extractor i 2
1; 2f g should receive under the agreed-upon optimality principle is Bi(υ, x�υ) in

(6.14). Hence an instantaneous transfer payment

χi υ; x*υ

 � ¼ Bi υ; x

*
υ


 �� ζi υ; x
*
υ


 � ð6:15Þ

has to be given to extractor i at time υ, for i 2 1; 2f g and x*υ 2 X*
υ.

3.7 Chapter Notes

The analysis on subgame consistent solution in stochastic differential games was

presented in Yeung and Petrosyan (2004). In particular, a generalized theorem for

the derivation of an analytically tractable “payoff distribution procedure” which

would lead to subgame-consistent solutions was developed. Examples of coopera-

tive stochastic differential games with solutions satisfying subgame consistency can

be found in Yeung (2005, 2007a, 2008, 2010) and Yeung and Petrosyan (2004,

2006a, b, 2007a, b, c, 2008, 2012c, 2014a). Theorem 3.1 could be applied to obtain

subgame consistent cooperative solution for existing differential games in
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economic analysis. Solution mechanisms for cooperative stochastic differential

games can be found in Yeung (2006b).

3.8 Problems

1. Consider the case of two nations harvesting fish in common waters. The growth

rate of the fish biomass is subject to stochastic shocks and follows the differential

equation:

dx sð Þ ¼ 12x sð Þ1=2 � x sð Þ � u1 sð Þ � u2 sð Þ
h i

dsþ 0:1x sð Þdz sð Þ, x 0ð Þ ¼ 100;

where z(s) is a Wiener process, x(s) is the fish stock and ui(s) is the amount of fish

harvested by nation i, for i 2 1; 2f g. The horizon of the game is [0, 3].

The harvesting cost for nation i 2 1; 2f g depends on the quantity of resource

extracted ui(s) and the resource stock size x(s). In particular, nation 1’s extraction

cost is 2u1 sð Þx sð Þ�1=2
and nation 2’s is u2 sð Þx sð Þ�1=2

. The fish harvested by nation

1 at time swill generate a net benefit of the amount 3[u1(s)]
1/2 and the fish harvested

by nation 2 at time swill generate a net benefit of the amount 2[u2(s)]
1/2. At terminal

time 5, nations 1 and 2 will receive termination bonuses 8x(3)1/2 and 6x(3)1/2 while
the interest rate is 0.05.

Characterize a feedback Nash equilibrium solution for this stochastic

fishery game.

2. If these nations agree to cooperate and maximize their expected joint payoff,

obtain a group optimal cooperative solution.

3. Furthermore, if these nations agree to share the expected gain proportional to

their non-cooperative payoffs, derive a subgame consistent solution.

4. Consider the case when the game horizon in exercise 1 is extended to infinity.

(i) Characterize a feedback Nash equilibrium solution for this stochastic

dynamic game.

(ii) If these nations agree to cooperate and maximize their expected joint payoff

and share the excess of their expected gain equally, derive a subgame

consistent solution.
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Chapter 4

Subgame Consistency in Randomly-
Furcating Cooperative Stochastic
Differential Games

An essential characteristic of time – and hence decision making over time – is that

though an individual may, through the expenditure of resources, gather past and

present information, the future is inherently unknown and therefore (in the math-

ematical sense) uncertain. There is no escape from this fact, regardless of what

resources the individual should choose to devote to obtaining data, information, and

to forecasting. An empirically meaningful theory must therefore incorporate time-

uncertainty in an appropriate manner. Important forms of structure uncertainty

follow from uncertainty of payoffs and perturbing stochastic state dynamics.

Causes of structure uncertainty include (a) Imprecise or incomplete knowledge

about the game’s payoffs over time – the benefits and costs from playing are

generally known only probabilistically, and (b) imperfect knowledge regarding

the behavior of the game’s state variables – generally, how the game evolves

over time is only known probabilistically. To meet the challenges following from

structure-uncertainty, randomly-furcating stochastic differential games allows ran-

dom shocks in the stock dynamics and stochastic changes in payoffs. Since future

payoff are not known with certainty, the term “randomly-furcating” is introduced to

highlight the fact that a particularly useful way to analyze the situation is to assume

that payoffs change at any future time instant according to (known) probability

distributions defined in terms of multiple-branching stochastic processes (see

Yeung (2001) and Yeung (2003)).

This Chapter presents an n� player counterpart of the Petrosyan and Yeung’s
(2007) 2-player analysis on subgame-consistent cooperative solutions in

randomly-furcating stochastic differential games. The organization of the

Chapter is as follows. Section 4.1 presents the basic formulation of randomly-

furcating cooperative differential games. Section 4.2 presents an analysis on

subgame consistent dynamic cooperation of this class of games. Derivation of a

subgame consistent payoff distribution procedure is provided in Sect. 4.3. An

illustration of the solution mechanism is given in a cooperative fishery game in

Sect. 4.4. Subgame consistency in infinite horizon randomly-furcating cooperative
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differential games is examined in Sect. 4.4. Chapter notes are given in Sect. 4.5

and problems in Sect. 4.6.

4.1 Game Formulation and Noncooperative Outcomes

Consider a class of randomly furcating stochastic differential game in which there

are n players. The game interval is [t0, T]. When the game commences at t0, the

payoff structures of the players in the interval
�
t0, t1

�
are known. In future instants

of time tk k ¼ 1, 2, � � �, mð Þ, where t0 < tm < T�tmþ1, the payoff structures in

the time interval
�
tk, tkþ1

�
are affected by a series of random eventsΘk. In particular,

Θk for k 2 1, 2, � � �, mf g, are independent and identically distributed random

variables with range {θ1, θ2, . . ., θη} and corresponding probabilities {λ1, λ2,
. . ., λη}. Changes in preference, technology, legal arrangements and the physical

environments are examples of factors which constitute the change in payoff struc-

tures. At time T a terminal value qi(x(T )) will be given to player i. Specifically
player i seeks to maximize the expected payoff:

Et0

ðt1
t0

g i;θ00½ � s,x sð Þ,u1 sð Þ,u2 sð Þ, � � �,un sð Þ½ �
�

e�r s�t0ð Þds

þ
Xm
h¼1

Xη
ah¼1

λah

ðthþ1

th

g i;θ h
ah

� �
s,x sð Þ,u1 sð Þ,u2 sð Þ, � � �,un sð Þ½ �e�r s�t0ð Þ þ e�r T�t0ð Þqi x Tð Þð Þ

)
,

for i2 1;2; � � �;nf g�N;

ð1:1Þ

where x sð Þ 2 X � Rκ is a vector of state variables, θ h
ak
2 θ1, θ2, . . . , θη
� �

for

k 2 1; 2; � � �;mf g, θa0 ¼ θ00 is known at time t0, r is the discount rate, ui 2 Ui is the

control of player i, and Et0 denotes the expectation operator performed at time t0.
The payoffs of the players are transferable.

The state dynamics of the game is characterized by the vector-valued stochastic

differential equations:

dx sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ,
x t0ð Þ ¼ x0; ð1:2Þ

where σ[s, x(s)] is a κ � υmatrix and z(s) is a υ -dimensional Wiener process and the

initial state x0 is given. Let Ω s, x sð Þ½ � ¼ σ s, x sð Þ½ �σ s,x sð Þ½ �T denote the covariance

matrix with its element in row h and column ζ denoted by Ωhζ[s, x(s)]. ui 2 Ui

� compR‘ is the control vector of player i, for i 2 N.
To obtain a Nash equilibrium solution for the game (1.1 and 1.2), we first

consider the solution for the subgame in the last time interval, that is [tm,T]. For
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the case where θm
am

2 θ1, θ2, . . . , θη
� �

has occurred at time instant tm and

x tmð Þ ¼ xtm 2 X, player i maximizes the payoff:

Etm

�ðT
tm

g i;θ m
am½ � s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ � e�r s�t0ð Þds

þ qi x Tð Þð Þe�r T�t0ð Þ
���� x tmð Þ ¼ xtm

	
; ð1:3Þ

subject to

dx sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ, x tmð Þ ¼ xtm : ð1:4Þ

The conditions characterizing a Nash equilibrium solution of the game (1.3 and 1.4)

is provided in the lemma below.

Lemma 1.1 A set of feedback strategies {u
mð Þθ m

αm
i tð Þ ¼ ϕ

mð Þθ m
αm

i t; xð Þ; i 2 1; 2f g and

t 2 tm; T½ �} constitutes a Nash equilibrium solution for the game (1.3 and 1.4), if

there exist continuously differentiable functions Vi θ m
αm½ � mð Þ t; xð Þ : tm; T½ � � Rκ ! R,

for i 2 1; 2f g, which satisfy the following partial differential equations:

�V
i θ m

αm½ � mð Þ
t t; xð Þ � 1

2

Xn
h, ζ¼1

Ωhζ t; xð ÞVi θ m
αm½ � mð Þ

xhxζ
t; xð Þ

¼ max
u
θαm
i 2Ui

�
g i;θ m

αm½ � t, x, u
mð Þθ m

αm
i ,ϕ mð Þθ m

αm
N\ i

t; xð Þ
h i

e�r t�t0ð Þ

þV
i θ m

αm½ � mð Þ
x t; xð Þf t, x, u

mð Þθ m
αm

i ,ϕ mð Þθ m
αm

N\ i
t; xð Þ

h i	
, and

Vi θ m
αm½ � mð Þ T; xð Þ ¼ e�r T�tmð Þqi xð Þ, for i 2 N, j 2 N and j 6¼ i; ð1:5Þ

where

ϕ mð Þθ m
αm

N\ i
t; xð Þ ¼

ϕ
mð Þθ m

αm
1 t; xð Þ,ϕ mð Þθ m

αm
2 t; xð Þ, � � �,ϕ mð Þθ m

αm
i�1 t; xð Þ,ϕ mð Þθ m

αm
iþ1 t; xð Þ, � � �,ϕ mð Þθ m

αm
n t; xð Þ

h i
:

Proof System (1.5) satisfies the optimal conditions in stochastic dynamic pro-

gramming in Theorem A.3 in the Technical Appendices for each player and the

Nash equilibrium condition (1951). Hence Lemma 1.1 follows. ■

For ease of exposition and sidestepping the issue of multiple equilibria, we

assume that a particular noncooperative Nash equilibrium is adopted in the entire

subgame. In order to formulate the subgame in the second last time interval�
tm�1, tm

�
, it is necessary to identify the expected terminal payoffs at time tm.
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If θm
am

occurs at time tm, one can invoke Lemma 1.1 and obtain player i’s payoffs

at time tm asVi θ m
αm½ � mð Þ tm; xtmð Þ. Note thatVi θ m

αm½ � mð Þ tm; xtmð Þ gives the expected payoff
to player i for playing the subgame in the last interval if θm

am
occurs at time tm.

Taking into consideration of all the possibilities of θm
am

2 θ1, θ2, . . . , θη
� �

, the

expected payoff to player i for playing the subgame in the last interval payoff

can be obtained as:

Xη
a¼1

λaV
i θ m

α½ � mð Þ tm; xtmð Þ: ð1:6Þ

The expected terminal payoff of player i, for i 2 N, in the subgame over the time

interval tm�1; tm½ � is reflected by (1.6) under the assumption that a particular Nash

equilibrium is adopted in each of the possible subgame scenarios in the time

interval [tm, T]. If θm�1
am�1

2 θ1, θ2, . . . , θη
� �

occurs at time tm�1, the subgame in

the time interval tm�1; tm½ � can be formally set up as:

max
ui

Etm�1

�ðtτ
tτ�1

g i;θm�1
am�1

½ � s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ � e�r s�t0ð Þds

þ
Xη
a¼1

λaV
i θ m

α½ � mð Þ tm, x tmð Þð Þ
���� x tm�1ð Þ ¼ xtm�1

	
, for i 2 N ð1:7Þ

subject to

dx sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ,
x tm�1ð Þ ¼ xtm�1

2 X ð1:8Þ

Similarly, if θ k
ak
2 θ1, θ2, . . . , θη
� �

occurs at time tk the subgame in the time

interval
�
tk, tkþ1

�
, for k 2 0, 1, 2, � � �,m� 2f g can be set up as:

max
ui

�ðtkþ1

tk

g i;θ k
ak

� �
s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ � e�r s�t0ð Þds

þ
Xη
a¼1

λaV
i θkþ1

α½ � kþ1ð Þ tkþ1, x tkþ1ð Þð Þ
���� x tkð Þ ¼ xtk

	
, for i 2 N; ð1:9Þ

subject to

dx sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ,
x tkð Þ ¼ xtk 2 X: ð1:10Þ

Following Lemma 1.1 a Nash equilibrium solution of game (1.1 and 1.2) can be

characterized by the following theorem.
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Theorem 1.1 A set of feedback strategies
�
u

mð Þθ m
αm

i tð Þ ¼ ϕ
mð Þθ m

αm
i t; xð Þ; for t 2 tm; T½ �;

u
kð Þθ k

αk
i tð Þ ¼ ϕ

kð Þθ k
αk

i t; xð Þ, for t 2 �
tk, tkþ1

�
, k 2 0, 1, 2, � � �,m� 1f g and i 2 N

�
,

contingent upon the events θm
αm

2 θ1, θ2, . . . , θη
� �

and θ k
αk
2 θ1, θ2, . . . , θη
� �

for k 2 1, 2, � � �,m� 1f g constitutes a Nash equilibrium solution for the game

(1.1 and 1.2), if there exist continuously differentiable functions Vi θ m
αm½ � mð Þ t; xð Þ :

tm; T½ � � Rκ! R and Vi θ k
αk

� �
kð Þ t; xð Þ: tk; tkþ1½ � � Rκ ! R, for k 2 0, 1, 2, � � �,m� 1f g

and i 2 N, which satisfy the following partial differential equations:

�V
i θ m

αm½ � mð Þ
t t; xð Þ � 1

2

Xn
h, ζ¼1

Ωhζ t; xð ÞVi θ m
αm½ � mð Þ

xhxζ
t; xð Þ

¼ max
u
θαm
i

2Ui

�
g i;θ m

αm½ � t, x, u
mð Þθ m

αm
i ,ϕ mð Þθ m

αm
N\ i

t; xð Þ
h i

e�r t�t0ð Þ

þV
i θ m

αm½ � mð Þ
x t; xð Þf t, x, u

mð Þθ m
αm

i ,ϕ mð Þθ m
αm

N\ i
t; xð Þ

h i	
, and

Vi θ m
αm½ � mð Þ T; xð Þ ¼ e�r T�t0ð Þqi xð Þ;

�V
i θ k

αk

� �
kð Þ

t t; xð Þ � 1

2

Xn
h, ζ¼1

Ωhζ t; xð ÞVi θ k
αk

� �
kð Þ

xhxζ
t; xð Þ

¼ max
u
θαk
i 2Ui

�
g i;θ k

αk

� �
t, x, u

kð Þθ k
αk

i ,ϕ
kð Þθ k

αk
N\ i t; xð Þ


 �
e�r t�t0ð Þ

þV
i θ k

αk

� �
kð Þ

x t; xð Þf t, x, u
kð Þθ k

αk
i ,ϕ

kð Þθ k
αk

N\ i t; xð Þ

 �	

, and

Vi θ k
αk

� �
kð Þ tkþ1; xð Þ ¼

Xη
a¼1

λaV
i θkþ1

a½ � kþ1ð Þ tkþ1; xð Þ;

for i 2 N and k 2 0, 1, 2, � � �,m� 1f g.
Proof The results in Theorem 1.1 satisfy the optimal conditions in stochastic

dynamic programming in Technical Appendix A.3 for each player and the Nash

equilibrium condition (1951). Hence Theorem 1.1 follows. ■

Two remarks given below will be utilized in subsequent analysis.

Remark 1.1 One can readily verify that V
i θ k

αk

� �
kð Þ

tk; xtkð Þ ¼ Vi θ k
αk

� �
kð Þ tk; xtkð Þer tk�t0ð Þ

is the expected feedback Nash equilibrium payoff of player i in the game

max
ui

�ðtkþ1

tk

g i;θ k
ak

� �
s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ � e�r s�tkð Þds

þ e�r tkþ1�tkð ÞXη
a¼1

λaV
i θkþ1

a½ � kþ1ð Þ
tkþ1, x tkþ1ð Þð Þ

���� x tkð Þ ¼ xtk

	
,

for i 2 N;
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subject to

dx sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ,
x tkð Þ ¼ xtk 2 X:

Remark 1.2 One can also readily verify that V
i θ k

αk

� �
kð Þτ

τ; xτð Þ ¼
Vi θ k

αk

� �
kð Þ τ; xτð Þer τ�t0ð Þ, for τ 2 �

tk, tkþ1

�
, is the expected feedback Nash equilibrium

payoff of player i in the game

max
ui

�ðtkþ1

τ
g i;θ k

ak

� �
s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ � e�r s�τð Þds

þ e�r tkþ1�τð ÞXη
a¼1

λaV
i θkþ1

a½ � kþ1ð Þ
tkþ1, x tkþ1ð Þð Þ

���� x τð Þ ¼ xτ

	
, for i 2 N;

subject to

dx sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ,
x τð Þ ¼ xτ 2 X:

4.2 Dynamic Cooperation

Now consider the case when the players want to cooperate and agree to act and

allocate the cooperative payoff according to a set of agreed upon optimality

principles. The agreement on how to act cooperatively and allocate cooperative

payoff constitutes the solution optimality principle of a cooperative scheme. In

particular, the optimality principle includes:

(i) an agreement on a set of cooperative strategies/controls,

and

(ii) a mechanism to distribute total payoff between players.

Both group rationality and individual rationality are required in a cooperative

plan. Group rationality requires the players to seek a set of cooperative strategies/

controls that yields a Pareto optimal solution. The allocation principle has to satisfy

individual rationality in the sense that no player would be worse off than before

under cooperation.

4.2.1 Group Rationality

Since payoffs are transferable, group rationality requires the players to maximize

their expected joint payoff
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Et0

Xn
j¼1

ðt1
t0

g j;θ00½ � s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �
(

e�r s�t0ð Þds

þ
Xn
j¼1

Xm
h¼1

Xη
ah¼1

λah

ðthþ1

th

g j;θ h
ah

� �
s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �e�r s�t0ð Þds

þ e�r T�t0ð ÞXn
j¼1

qj x Tð Þð Þ
)

ð2:1Þ

subject to (1.2).

We solve the control problem (2.1) and (1.1) in a manner similar to that we used

to solve the game (1.1 and 1.2). In particular, an optimal solution of the problem

(1.2) and (2.1) is characterized by the theorem below.

Theorem 2.1 A set of controls { u
mð Þθ m

αm
i tð Þ ¼ ψ

mð Þθ m
αm

i t; xð Þ; for t 2 tm; T½ � ;
u

kð Þθ k
αk

i tð Þ ¼ ψ
kð Þθ k

αk
i t; xð Þ, for t 2 �

tk, tkþ1

�
, k 2 0, 1, 2, � � �,m� 1f g and i 2 N },

contingent upon the events θm
αm

and θ k
αk

constitutes an optimal solution for the

stochastic control problem (2.1 and 1.2), if there exist continuously differentiable

functions W θ m
αm½ � mð Þ t; xð Þ : tm; T½ � � Rκ ! R and W θ k

αk

� �
kð Þ t; xð Þ : tk; tkþ1½ � �Rκ ! R

for k 2 0, 1, 2, � � �,m� 1f g which satisfy the following partial differential equa-

tions:

�W
θ m
αm½ � mð Þ

t t; xð Þ � 1

2

Xn
h, ζ¼1

Ωhζ t; xð ÞW θ m
αm½ � mð Þ

xhxζ
t; xð Þ

¼ max
u
θαm
1

, uθαm
2

, ���, uθαmn

� Xn
j¼1

g j;θ m
αm½ � t, x tð Þ, u mð Þθ m

αm
1 , u

mð Þθ m
αm

2 , � � �, u mð Þθ m
αm

n

h i
e�r t�tτð Þ

þW
θ m
αm½ � mð Þ

x t; xð Þf t; x; u
mð Þθ m

αm
1 ; u

mð Þθ m
αm

2 ; � � �; u mð Þθ m
αm

n

h i 	
, and

W θ m
αm½ � mð Þ T; xð Þ ¼ e�r T�t0ð ÞXn

j¼1

qj xð Þ;

�W
θ k
αk

� �
kð Þ

t t; xð Þ � 1

2

Xn
h, ζ¼1

Ωhζ t; xð ÞW θ k
αk

� �
kð Þ

xhxζ
t; xð Þ

¼ max
u
θαk
1
, u

θαk
2
, ���, uθαk

2

� Xn
j¼1

g j;θ k
αk

� �
t; x; u

kð Þθ k
αk

1 ; u
kð Þθ k

αk
2 ; � � �; u kð Þθ k

αk
n


 �
e�r t�tkð Þ

þW
θ k
αk

� �
kð Þ

x t; xð Þf t; x; u
kð Þθ k

αk
1 ; u

kð Þθ k
αk

2 ; � � �; u kð Þθ k
αk

n


 � 	
, and

W θ k
αk

� �
kð Þ tkþ1; xð Þ ¼

Xη
a¼1

λaW
θkþ1
a½ � kð Þ tkþ1; xð Þ, fork 2 0, 1, 2, � � �,m� 1f g:
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Proof Following the argument in the analysis in Sect. 4.1 we obtainXη
a¼1

λaW
θ m
α½ � kþ1ð Þ tkþ1; xtkþ1

� �
as the expected terminal value for the stochastic control

problem in the time interval tk; tkþ1½ �, for k 2 0; 1; 2; � � �;mf g. Then direct applica-

tion of the stochastic control technique in Theorem A.3 in the Technical Appendi-

ces and the Nash equilibrium condition yields Theorem 2.1. ■

Hence under cooperation the players will adopt the cooperative strategy

ψ
hð Þθ h

ah

i t; xð Þ,ψ hð Þθ h
ah

2 t; xð Þ, � � �,ψ hð Þθ h
ah

n t; xð Þ

 �

in the time interval
�
th, thþ1

�
if θah 2

θ1, θ2, . . . , θη
� �

occurs at time th, for h 2 0; 1; 2; � � �;mf g. In a cooperative

framework, the issue of non-uniqueness of the optimal controls can be resolved

by agreement between the players on a particular set of controls. Substituting the set

of cooperative strategy into (1.2) yields the dynamics of the cooperative state

trajectory in the time interval
�
tk, tkþ1

�
for k 2 0; 1; 2; � � �;mf g as

dx sð Þ ¼ f s, x sð Þ,ψ kð Þθ k
αk

1 s, x sð Þð Þ,ψ kð Þθ k
αk

2 s, x sð Þð Þ, � � �,ψ kð Þθ k
αk

n s, x sð Þð Þ

 �

ds

þ σ s, x sð Þ½ �dz sð Þ; ð2:2Þ

x tkð Þ ¼ xtk , for s 2
�
tk, tkþ1

�
, if θ k

ak
2 θ1, θ2, . . . , θη
� �

occurs at time tk.

For simplicity in exposition we denote the set of state variable realizable at

time t according to (2.2) by X�
t , and use x�t to denote an element in X�

t that would

occur.

Finally, similar to Remarks 1.1 and 1.2 we have two results that will be utilized

in subsequent analysis:

Remark 2.1 One can readily verify thatW
θ k
αk

� �
kð Þ

tk; xkð Þ ¼ W θ k
αk

� �
kð Þ tk; xkð Þer tk�t0ð Þ

is the maximized value of the stochastic control problem

max
u1, u2, ���, un

Etk

Xn
j¼1

ðtkþ1

tk

g j;θ k
ak

� �
s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �

(
e�r s�tkð Þds

þ
Xn
j¼1

Xm
h¼kþ1

Xη
ah¼1

λah

ðthþ1

th

g j;θ h
ah

� �
s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �e�r s�tkð Þds

þ e�r T�tkð ÞXn
j¼1

qj x Tð Þð Þ
)

subject to

dx sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ,
x tkð Þ ¼ xtk 2 X:

92 4 Subgame Consistency in Randomly-Furcating Cooperative Stochastic. . .



Remark 2.2 One can readily verify that

W
θ k
αk

� �
kð Þτ

τ; xτð Þ ¼ W θ k
αk

� �
kð Þ τ; xτð Þer τ�t0ð Þ, for τ 2 �

tk, tkþ1

�
;

is the maximized value of the stochastic control problem

max
u1, u2, ���, un

Eτ

Xn
j¼1

ðtkþ1

τ
g j;θ k

ak

� �
s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �

(
e�r s�τð Þds

þ
X2
j¼1

Xm
h¼kþ1

Xη
ah¼1

λah

ðthþ1

th

g j;θ h
ah

� �
s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �e�r s�τð Þds

þ e�r T�τð ÞXn
j¼1

qj x Tð Þð Þ
)

subject to

dx sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ, x τð Þ ¼ xτ 2 X:

4.2.2 Individual Rationality

Assume that at time t0 when the initial state is x0 the agreed upon optimality

principle assigns a set of imputation vectors contingent upon the events θ00 and

θ h
ah
for θ h

ah
2 θ1, θ2, . . . , θη
� �

and h 2 1; 2; � � �;mf g. We use

ξ1 θ00½ � 0ð Þ t0; x0ð Þ, ξ2 θ00½ � 0ð Þ t0; x0ð Þ, � � �, ξn θ00½ � 0ð Þ t0; x0ð Þ
h i

to denote an imputation vector of the gains in such a way that the share of the ith

player over the time interval [t0,T] is equal to ξi θ
0
0½ � 0ð Þt0 t0; x0ð Þ.

Individual rationality requires that

ξi θ
0
0½ � 0ð Þt0 t0; x0ð Þ 	 Vi θ00½ � 0ð Þ t0; x0ð Þ, for i 2 N:

In a dynamic framework, individual rationality has to be maintained at every instant

of time t 2 t0; T½ � along the cooperative trajectory. At time t, for t 2 �
t0, t1

�
, if the

players are allowed to reconsider their cooperative plan, they will compare

their expected cooperative payoff to their expected noncooperative payoff at that

time. Using the same optimality principle, at time t, for t 2 �
t0, t1

�
, an imputation

vector will assign the shares of the players over the time interval [t,T] as
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ξ1 θ00½ � 0ð Þt t; x*t
� �

, ξ2 θ00½ � 0ð Þt t; x*t
� �

, � � �, ξn θ00½ � 0ð Þt t; x*t
� �h i

(in current value at time t). Indi-

vidual rationality requires that

ξi θ
0
0½ � 0ð Þt t; x*t

� � 	 V
i θ00½ � 0ð Þt

t; x*t
� �

, for i 2 N and t 2 �
t0, t1

�
:

At time th, for h 2 1; 2; � � �;mf g, if θ h
ah
2 θ1, θ2, . . . , θη
� �

has occurred and

the state is x*th , the same optimality principle assigns an imputation vector

ξ1 θ h
ah

� �
hð Þth th; x

*
th

 �
, ξ2 θ h

ah

� �
hð Þth th; x

*
th

 �
, � � �, ξn θ h

ah

� �
hð Þth th; x

*
th

 �
 �
(in current value at

time th). Individual rationality is satisfied if:

ξi θ h
ah

� �
hð Þth th; x

*
th

 �
	 V

i θ h
ah

� �
hð Þth th; x

*
th

 �
: for i 2 N :

Using the same optimality principle, at time t, for t 2 �
th, thþ1

�
, an imputation

vector will assign the shares of the players over the time interval [t,T] as

ξ1 θ h
ah

� �
hð Þt t; x*t
� �

, ξ2 θ h
ah

� �
hð Þt t; x*t
� �

, � � �, ξn θ h
ah

� �
hð Þt t; x*t
� �
 �

(in terms of current value

at time t). Individual rationality requires that

ξi θ h
ah

� �
hð Þt t; x*t
� � 	 V

i θ h
ah

� �
hð Þt

t; x*t
� �

, for i 2 N, t 2 �
th, thþ1

�
and h 2 1; 2; � � �;mf g.

4.3 Subgame Consistent Solution and Payoff Distribution

A stringent requirement for solutions of cooperative stochastic differential games to

be dynamically stable is the property of subgame consistency. Under subgame

consistency, an extension of the solution policy to a situation with a later starting

time and any feasible state brought about by prior optimal behaviors would remain

optimal. In particular, when the game proceeds, at each instant of time the players

are guided by the same optimality principles, and hence do not have any ground for

deviation from the previously adopted optimal behavior throughout the game. A

dynamically stable solution to the randomly furcating game (1.1 and 1.2) is sought

in this section.

4.3.1 Solution Imputation Vector

According to the solution optimality principle the players agree to share their

cooperative payoff according to the following set of imputation vectors
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ξ1 θ00½ � 0ð Þ t0; x0ð Þ, ξ2 θ00½ � 0ð Þ t0; x0ð Þ, � � �, ξn θ00½ � 0ð Þ t0; x0ð Þ
h i

at time t0,

ξ1 θ00½ � 0ð Þt t; x*t
� �

, ξ2 θ00½ � 0ð Þt t; x*t
� �

, � � �, ξn θ00½ � 0ð Þt t; x*t
� �h i

for t 2 �
t0, t1

�
,

ξ1 θ h
ah

� �
hð Þ th; x

*
th

 �
, ξ2 θ h

ah

� �
hð Þ th; x

*
th

 �
, � � �, ξn θ h

ah

� �
hð Þ th; x

*
th

 �
 �
at time th,

forθ h
ah
2 θ1, θ2, . . . , θη
� �

andh 2 1; 2; � � �;mf g,

ξ1 θ h
ah

� �
hð Þt t; x*t
� �

, ξ1 θ h
ah

� �
hð Þt t; x*t
� �

, � � �, ξn θ h
ah

� �
hð Þt t; x*t
� �
 �

for t 2 �
th, thþ1

�
andθ h

ah
2 θ1, θ2, . . . , θη
� �

andh 2 1; 2; � � �;mf g: ð3:1Þ

Since (3.1) is guided by a solution optimality principle group optimality and

individual rationality are satisfied.

The solution imputation ξi θ k
ak

� �
kð Þτ t; x*t
� �

may be governed by many specific

principles. For instance, the players agree to maximize the sum of their payoffs and

equally divide the excess of the cooperative payoff over the noncooperative payoff.

The imputation scheme has to satisfy:

Scheme 3.1

ξi θ k
ak

� �
kð Þ tk; x

*
tk

 �
¼ V

i θ k
ak

� �
kð Þ

tk; x
*
tk

 �
þ 1

n



W

θ k
ak

� �
kð Þ

tk; x
*
tk

 �

�
Xn
j¼1

V
j θ k

ak

� �
kð Þ

tk; x
*
tk

 � �
, and

ξi θ k
ak

� �
kð Þt t; x*t
� � ¼ V

i θ k
ak

� �
kð Þt

t; x*t
� �þ 1

n



W

θ k
ak

� �
kð Þ

tk; x
*
tk

 �

�
Xn
j¼1

V
j θ k

ak

� �
kð Þt

tk; x
*
tk

 � �
,

for i 2 N and t 2 tk; tkþ1ð Þ:

As another example, the solution imputation ξi θ k
ak

� �
kð Þτ t; x*t
� �

may be an allocation

principle in which the players allocate the total joint payoff according to the relative

sizes of the firms’ noncooperative profits. Hence the imputation scheme has to satisfy

Scheme 3.2

ξi θ k
ak

� �
kð Þ tk; x

*
tk

 �
¼

V
i θ k

ak

� �
kð Þ

tk; x
*
tk

 �
Xn
j¼1

V
j θ k

ak

� �
kð Þ

tk; x
*
tk

 �W
θ k
ak

� �
kð Þ

tk; x
*
tk

 �
, and

ξi θ k
ak

� �
kð Þt t; x*t
� � ¼ V

i θ k
ak

� �
kð Þt

t; x*t
� �

Xn
j¼1

V
i θ k

ak

� �
kð Þt

t; x*t
� �W θ k

ak

� �
kð Þt

t; x*t
� �

, for i 2 N and t 2 tk; tkþ1ð Þ:
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Crucial to the analysis is the formulation of a payoff distribution mechanism

that would lead to the realization of Condition (3.1). This will be done in the next

subsection.

4.3.2 Subgame-Consistent Payoff Distribution Procedure

First consider the cooperative subgame in the last time interval, that is [tm,T] in

which θm
am

2 θ1, θ2, . . . , θη
� �

has occurred at time tm. To maximize expected joint

payoff the players

max
u1, u2, ���, un

Etm

�Xn
j¼1

ðT
tm

g j;θ m
am½ � s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �e�r s�tmð Þds

þ e�r T�tmð ÞXn
j¼1

qj x Tð Þð Þ
	

ð3:2Þ

subject to

dx sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ,
x tmð Þ ¼ x*tm : ð3:3Þ

According to (3.1) the players agree to share their cooperative payoff according to

the imputation

ξ1 θ m
am½ � mð Þtm tm; x

*
tm

 �
, ξ2 θ m

am½ � mð Þtm tm; x
*
tm

 �
, � � �, ξn θ m

am½ � mð Þtm tm; x
*
tm

 �h i
:

Following Yeung and Petrosyan (2004), we formulate a payoff distribution over

time so that the agreed imputations can be realized. Let the vectors

B
θ m
amð Þm

1 sð Þ,B θ m
amð Þm

2 sð Þ, � � �,B θ m
amð Þm

n sð Þ

 �

denote the instantaneous payoff at time

s 2 tm; T½ � for the cooperative subgame (3.2 and 3.3). In other words, player i, for

i 2 N, obtains an instantaneous payment B
θ m
amð Þm

i sð Þ at time instant s. A terminal

value of qi(x�T) is received by player i at time T.

In particular, B
θ m
amð Þm

i sð Þ and qi(x�T) constitute a payoff distribution for the

subgame in the sense that

ξi θ
m
am½ � mð Þtm tm; x

*
tm

 �
¼ Etm

�� ð T

tm

B
θ m
amð Þm

i sð Þe�r s�tmð Þdsþ e�r T�tmð Þqi x*T
� � �

x tmð Þ ¼ x*tm

����
	
,

for i 2 N: ð3:4Þ
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As the game proceed to at time t, for t 2 �
tm,T

�
, using the same optimality principle

an imputation vector will assign the shares of the players over the time interval [t,T]

as ξi θ
m
am½ � mð Þt t; x*t

� �
. For consistency reasons, it is required that

ξi θ
m
am½ � mð Þt t; x*t

� �
¼ Et

�� ð T

t

B
θ m
amð Þm

i sð Þe�r s�tð Þdsþ e�r T�tð Þqi x*T
� � �

x tð Þ ¼ x*t

����
	
,

for t 2 tm; T½ �: ð3:5Þ

To fulfill group optimality, it is required that

Xn
j¼1

ξj θ
m
am½ � mð Þt t; x*t

� � ¼ W
θ m
am½ � mð Þt

t; x*t
� �

for t 2 tm; T½ �, and
Xn
j¼1

Bj θ m
am½ � mð Þt tð Þ

¼
Xn
j¼1

g j;θ m
am½ � t, x*t ,ψ

mð Þθ m
αm

1 t; x*t
� �

,ψ
mð Þθ m

αm
2 t; x*t

� �
, � � �,ψ mð Þθ m

αm
n t; x*t

� �h i
: ð3:6Þ

If the conditions from (3.4) to (3.6) are satisfied, one can say that the solution

imputations are time-consistent in the sense that (3.1) can be realized.

Now we consider

ξi θ
m
am½ � mð Þtm t; x*t

� � ¼ Etm

�� ð T

t

B
θ m
amð Þm

i sð Þe�r s�tmð Þds

þ e�r T�tmð Þqi x*T
� � �

x tð Þ ¼ x*t

����
	
,

for t 2 tm; T½ �and i 2 N: ð3:7Þ

Using (3.4), (3.5) and (3.7), we have

ξi θ
m
am½ � mð Þtm t; x*t

� � ¼ e�r t�tmð Þξi θ
m
am½ � mð Þt t; x*t

� �
, for t 2 tm; T½ �: ð3:8Þ

Moreover, we can write

ξi θ
m
am½ � mð Þτ τ; x*τ

� � ¼ Eτ

�ð τþΔt

τ
B

θ m
amð Þm

i sð Þe�r s�τð Þds

þ e�r Δ tð Þξi θ
m
am½ � mð ÞτþΔt τ þ Δt, x*τ þ Δx*τ

� �
x τð Þ ¼ x*τ

	����
forτ 2 tm; T½ �and i 2 N; ð3:9Þ

where
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Δx*τ ¼ f τ, x*τ ,ψ
mð Þθ m

am

1 τ; x*τ
� �

,ψ
mð Þθ m

am

2 τ; x*τ
� �

, � � �,ψ mð Þθ m
am

n τ; x*τ
� �h i

Δt
þ σ τ; x*τ

� �
Δzτ þ o Δtð Þ;

and

Δzτ ¼ z τ þ Δtð Þ � z τð Þ, and Et o Δtð Þ½ �=Δt ! 0 as Δt ! 0.

From (3.9) we obtain

Eτ

�ð τþΔt

τ
B

θ m
amð Þm

i sð Þe�r s�τð Þds x τð Þ ¼ x*τ

	����
¼ ξi θ

m
am½ � mð Þt t; x*t

� �� e�r Δ tð Þξi θ
m
am½ � mð ÞtþΔt tþ Δt, x*t þ Δx*t

� �
: ð3:10Þ

Invoking (3.8) yields

Eτ

�ð tþΔt

t

B
θ m
amð Þm

i sð Þe�r s�tð Þds x tð Þ ¼ x*t

	����
¼ ξi θ

m
am½ � mð Þτ τ; x*τ

� �� ξi θ
m
am½ � mð Þτ τ þ Δt, x*τ þ Δx*τ

� �
; ð3:11Þ

For imputations ξi θ
m
am½ � mð Þτ t; x*t

� �
, for τ 2 tm; T½ � and t 2 τ; T½ � being functions that are

continuously twice differentiable in t and x�t , one can express (3.11), withΔt ! 0, as:

Eτ

�
B

θ m
amð Þm

i τð ÞΔtþ o Δtð Þ
	

¼ Eτ

�
� ξ

i θ m
am½ � mð Þτ

t t; x*t
� �

t¼τj

 �

Δ t

� ξ
i θ m

am½ � mð Þτ
x*t

t; x*t
� �

t¼τj

 �

f τ, x*τ ,ψ
mð Þθ m

am

1 τ; x*τ
� �

,ψ
mð Þθ m

am

2 τ; x*τ
� �

, � � �,ψ mð Þθ m
am

n τ; x*τ
� �h i

Δt

� 1

2

Xn
h, ζ¼1

Ωhζ τ; x*τ
� �

ξ
i θ m

am½ � mð Þτ
x h
t x

ζ
t

t; x*t
� �����

t¼τ


 �
Δt

� ξ
i θ m

am½ � mð Þτ
xt t; x*t

� �����
t¼τ


 �
σ τ; x*τ
� �

;Δzτ;�; o Δtð Þ
	
: ð3:12Þ

Dividing (3.12) throughout by Δt, with Δt ! 0, and taking expectation yield

B
θ m
amð Þm

i τð Þ ¼ � ξ
i θ m

am½ � mð Þτ
t t; x*t

� �
t¼τj


 �

� ξ
i θ m

am½ � mð Þτ
x*t

t; x*t
� �

t¼τj

 �

f τ, x*τ ,ψ
mð Þθ m

am

1 τ; x*τ
� �

,ψ
mð Þθ m

am

2 τ; x*τ
� �

, � � �,ψ mð Þθ m
am

n τ; x*τ
� �h i

�1

2

Xn
h, ζ¼1

Ωhζ τ; x*τ
� �

ξ
i θ m

am½ � mð Þτ
x h
t x

ζ
t

t; x*t
� �����

t¼τ


 �
, for i 2 N; ð3:13Þ
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One can repeat the analysis from (3.4) to (3.13) for all ξi θ
m
am½ � mð Þτ τ; x*τ

� �
each associated with an θm

am
2 θ1, θ2, . . . , θη
� �

and obtain the corresponding

B
θ m
amð Þm

i τð Þ for τ 2 tm; T½ �.
In order to formulate the cooperative subgame in the second last time interval

tm�1; tm½ �, it is necessary to identify the expected terminal payoffs at time tm. Using

Theorem 2.1, one can obtain W θ m
am½ � mð Þ tm; x

*
m

� �
if θm

am
2 θ1, θ2, . . . , θη
� �

occurs at

time tm. The term
Xη
a¼1

W θ m
a½ � mð Þ tm; x

*
m

� �
gives the expected joint payoff of the

cooperative game over the duration [tm, T] and hence is the expected terminal

joint payoff for the cooperative subgame in the time interval tm�1; tm½ �. In a similar

manner, the term
Xη
a¼1

W θkþ1
a½ � kþ1ð Þ tkþ1; x

*
kþ1

� �
gives the expected terminal joint

payoff for the cooperative subgame in the time interval tk; tkþ1½ � for

k 2 0, 1, 2, � � �,m� 1f g. In general, the cooperative subgame in the time interval

tk; tkþ1½ � if θ k
ak
2 θ1, θ2, . . . , θη
� �

occurs at time tk for k 2 0, 1, 2, � � �,m� 1f g can
be expressed as:

max
u1, u2

Etk

(X2
j¼1

ðtkþ1

tk

g j;θ k
ak

� �
s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �e�r s�tkð Þds

þ e�r tkþ1�tkð ÞX2
j¼1

Xη
a¼1

W
θkþ1
a½ � kþ1ð Þ

tkþ1, x tkþ1ð Þð Þ
)

ð3:14Þ

subject to

dx sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ, � � �, un sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ,
x tkð Þ ¼ x*k : ð3:15Þ

One can repeat the analysis from (3.4) to (3.13) for all ξi θ k
ak

� �
kð Þτ τ; x*τ
� �

each

associated with an θ k
ak
2 θ1, θ2, . . . , θη
� �

for k 2 0, 1, 2, � � �,m� 1f g and derive

the corresponding B
θ k
ak

� �
k

i τð Þ for τ 2 �
tk, tkþ1

�
.

A theorem characterizing a subgame consistent PDP is provided below.

Theorem 3.1 If the solution imputations ξi θ k
ak

� �
kð Þτ t; x*t
� �

, for i 2 N and

τ 2 tk; tkþ1½ � and t 2 τ; tkþ1½ � and k 2 0, 1, 2, � � �,m� 1f g, satisfy group

optimality, individual rationality and are differentiable in t and x�t , a PDP with

a terminal payment qi x*T
� ��

at time T and an instantaneous payment at time

τ 2 tk; tkþ1½ �:
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B
θ k
ak

� �
k

i τð Þ ¼ � ξ
i θ k

ak

� �
kð Þτ

t t; x*t
� �

t¼τj

 �

� ξ
i θ k

ak

� �
kð Þτ

x*t
t; x*t
� �

t¼τj

 �

f τ, x*τ ,ψ
kð Þθ k

ak

1 τ; x*τ
� �

,ψ
kð Þθ k

ak

2 τ; x*τ
� �

, � � �,ψ kð Þθ k
ak

n τ; x*τ
� �
 �

� 1

2

Xn
h, ζ¼1

Ωhζ τ; x*τ
� �

ξ
i θ k

ak

� �
kð Þτ

x h
t x

ζ
t

t; x*t
� �����

t¼τ


 �
; ð3:16Þ

for i 2 N and k 2 1; 2; � � �;mf g,
contingent upon θ k

ak
2 θ1, θ2, . . . , θη
� �

has occurred at time tk,

yields a subgame-consistent cooperative solution to the randomly furcating

stochastic differential game (1.1 and 1.2).

Proof Theorem 3.1 can be proved by following the analysis from (3.4) to (3.15).■

4.4 An Illustration in Cooperative Resource Extraction

Consider a resource extraction game, in which two extractors are awarded leases to

extract a renewable resource over the time interval [t0, T]. The resource stock x sð Þ
2 X � R follows the dynamics:

dx sð Þ¼ ax sð Þ1=2�bx sð Þ�u1 sð Þ�u2 sð Þ
h i

dsþσx sð Þdz sð Þ, x t0ð Þ¼ x0 2X; ð4:1Þ

where u1(s) is the harvest rate of extractor 1 and u2(s) is the harvest rate of extractor
2. The dynamics is adopted from Jørgensen and Yeung (1996).

The instantaneous payoff at time s 2 t0; T½ � for player 1 and player 2 are

respectively:

u1 sð Þ1=2 � ε a½ �
1 c1

x sð Þ1=2
u1 sð Þ

" #
and u2 sð Þ1=2 � ε a½ �

2 c2

x sð Þ1=2
u2 sð Þ

" #
;

if the event θa happens for a 2 1; 2; 3f g, where ε½a�1 , ε½a�2 , c1 and c2 are constants.
At time t0, it is known that θ1 has occurred. θ1 will remain in effect until time

t1 2 t0; Tð Þ. At time t1, the corresponding probabilities for the events {θ1, θ2, θ3} to
occur are {λ1, λ2, λ3} ¼ {1/4, 1/2, 1/4}. The occurred event will remain until the

end of the game, that is time T. At time T, each extractor will receive a termination

bonus qx(T )1/2, which depends on the resource remaining at the terminal time.

Payoffs are transferable between player 1 and player 2 and over time. There is a

constant discount rate r.
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Applying Theorem 1.1, we obtain the following value functions for the associ-

ating noncooperative games.

Vi θ1a½ � 1ð Þ t; xð Þ ¼ exp �r t� t0ð Þ½ � A
θ1a 1ð Þ
i tð Þx1=2 þ C

θ1a 1ð Þ
i tð Þ

h i
,

for i 2 1; 2f g, a 2 1; 2; 3f gand t 2 t1; T½ �; ð4:2Þ

Vi θ1½ � 0ð Þ t; xð Þ ¼ exp �r t� t0ð Þ½ � A
θ1 0ð Þ
i tð Þx1=2 þ C

θ1 0ð Þ
i tð Þ

h i
,

for i 2 1; 2f gand t 2 t0; t1½ �; ð4:3Þ

where A
θ1a 1ð Þ
i tð Þ, Cθ1a 1ð Þ

i tð Þ, Aθ1 0ð Þ
i tð Þ and C

θ1 0ð Þ
i tð Þ satisfy:

_A
θ1a 1ð Þ
i tð Þ ¼ r þ σ2

8
þ b

2


 �
A
θ1a 1ð Þ
i tð Þ

� 1

2 ε a½ �
i ci þ A

θ1a 1ð Þ
i tð Þ=2

h iþ ε a½ �
i ci

4 ε a½ �
i ci þ A

θ1a 1ð Þ
i tð Þ=2

h i 2

þ A
θ1a 1ð Þ
i tð Þ

8 ε a½ �
i ci þ A

θ1a 1ð Þ
i tð Þ=2

h i2 þ Aθ1a 1ð Þi tð Þ
8 ε a½ �

j cj þ A
θ1a 1ð Þ
j tð Þ=2

h i 2
,

_C
θ1a 1ð Þ
i tð Þ ¼ rC

θ1a 1ð Þ
i tð Þ � α

2
A
θ1a 1ð Þ
i tð Þ,

A
θ1a 1ð Þ
i Tð Þ ¼ q , andC

θ1a 1ð Þ
i Tð Þ ¼ 0; for i 2 1; 2f ganda 2 1; 2; 3f g;

_A
θ1 0ð Þ
i tð Þ ¼ r þ σ2

8
þ b

2


 �
A
θ1 0ð Þ
i tð Þ

� 1

2 ε 1½ �
i ci þ A

θ1 0ð Þ
i tð Þ=2

h iþ ε 1½ �
i ci

4 ε 1½ �
i ci þ A

θ1 0ð Þ
i tð Þ=2

h i 2

þ A
θ1 0ð Þ
i tð Þ

8 ε 1½ �
i ci þ A

θ1 0ð Þ
i tð Þ=2

h i2 þ A
θ1 0ð Þ
i tð Þ

8 ε 1½ �
j cj þ A

θ1 0ð Þ
j tð Þ=2

h i 2
,

_C
θ1 0ð Þ
i tð Þ ¼ rC

θ1 0ð Þ
i tð Þ � α

2
A
θ1 0ð Þ
i tð Þ,

A
θ1 0ð Þ
i t1ð Þ ¼

X3
h¼1

λhA
θ1h 1ð Þ
i t1ð Þ, andCθ1 0ð Þ

i t1ð Þ ¼
X3
h¼1

λhC
θ1h 1ð Þ
i t1ð Þ:

Applying Theorem 2.1, we obtain

W θ1α½ � 1ð Þ t; xð Þ ¼ exp �r t� t0ð Þ½ � Â
θ1a 1ð Þ

tð Þx1=2 þ B̂
θ1a 1ð Þ

tð Þ
h i

,

fora 2 1; 2; 3f gand t 2 t1; T½ �; ð4:4Þ
W θ1½ � 0ð Þ t; xð Þ ¼ exp �r t� t0ð Þ½ � Â

θ1 0ð Þ
tð Þx1=2 þ B̂

θ1 0ð Þ
tð Þ

h i
,

for t 2 t0; t1½ �: ð4:5Þ
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where Â
θ1a 1ð Þ

tð Þ, B̂ θ1a 1ð Þ
tð Þ, Â θ1 0ð Þ

tð Þ and B̂
θ1 0ð Þ

tð Þ satisfy:

_̂A
θ1a 1ð Þ

tð Þ ¼ r þ σ2

8
þ b

2


 �
Â

θ1a 1ð Þ
tð Þ �

X2
j¼1

1

2 ε a½ �
j cj þ Â

θ1a 1ð Þ
tð Þ=2

h i

þ
X2
j¼1

ε a½ �
j cj

4 ε a½ �
j cj þ Â

θ1a 1ð Þ
tð Þ=2

h i2 þX2
j¼1

Â
θ1a 1ð Þ

tð Þ
8 ε a½ �

j cj þ Â
θ1a 1ð Þ

tð Þ=2
h i2 ,

_̂B
θ1a 1ð Þ

tð Þ ¼ rB̂
θ1a 1ð Þ

tð Þ � a

2
Â

θ1a 1ð Þ
tð Þ,

Â
θ1a 1ð Þ

Tð Þ ¼ 2q, and B̂
θ1a 1ð Þ

Tð Þ ¼ 0;

_̂A
θ1 0ð Þ

tð Þ ¼ r þ σ2

8
þ b

2


 �
Â

θ1 0ð Þ
tð Þ �

X2
j¼1

1

2 ε 1½ �
j cj þ Â

θ1 0ð Þ
tð Þ=2

h i

þ
X2
j¼1

ε 1½ �
j cj

4 ε 1½ �
j cj þ Â

θ1 0ð Þ
tð Þ=2

h i2 þX2
j¼1

Â
θ1 0ð Þ

tð Þ
8 ε 1½ �

j cj þ Â
θ1 0ð Þ

tð Þ=2
h i2 ,

_̂B
θ1 0ð Þ

tð Þ ¼ rB̂
θ1 0ð Þ

tð Þ � a

2
Â

θ1 0ð Þ
tð Þ,

Â
θ1 0ð Þ

t1ð Þ ¼
X3
h¼1

λhÂ
θ1h 1ð Þ

t1ð Þ, and B̂ θ1 0ð Þ
Tð Þ ¼

X3
h¼1

λhB̂
θ1h 1ð Þ

t1ð Þ:

Using (4.4) and (4.5) the optimal cooperative controls can then be obtained as:

ψ 0ð Þθ1
i t; xð Þ ¼ x

4 ε 1½ �
i ci þ Â

θ1 0ð Þ
tð Þ=2

h i2 , for i 2 1; 2f gand t 2 �
t0, t1

�
; ð4:6Þ

ψ
1ð Þθ1a
i t; xð Þ ¼ x

4 ε a½ �
i ci þ Â

θ1a 1ð Þ
tð Þ=2

h i2 , for i 2 1; 2f gand t 2 t1; T½ �; ð4:7Þ

if θ1a 2 θ1; θ2; θ3f g occurs at time t1.
Substituting these control strategies into (2.2) yields the dynamics of the state

trajectory under cooperation. The optimal cooperative state trajectory in the time

interval
�
t0, t1

�
can be obtained as:

x* tð Þ ¼ ϖ t0; t; θ1ð Þ2


x
1=2
0 þ

ðt
t0

ϖ�1 t0; sð Þα
2
ds

�2
, for t 2 �

t0, t1
�
; ð4:8Þ

where ϖ t0; t; θ1ð Þ ¼ exp

ðt
t0

H0 θ1; υð Þ � σ2

8


 �
dυþ

ðt
t0

σ

2
dz υð Þ


 �
, and
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H0 θ1; sð Þ ¼ �


b

2
þ
X2
j¼1

1

8 ε 1½ �
j cj þ Â

θ1 0ð Þ
sð Þ=2

h i2 þ σ2

8

�
:

If θ1a 2 θ1; θ2; θ3f g occurs at time t1, the optimal cooperative state trajectory in the

interval [t1, T] becomes

x* tð Þ ¼ ϖ t0; t; θ
1
a

� �2

x*t1

 �1=2

þ
ðt
t0

ϖ�1 t1; s; θ
1
a

� �α
2
ds

�2
, for t 2 t1; T½ �; ð4:9Þ

where ϖ t1; t; θ
1
a

� � ¼ exp

ðt
t1

H1 θ1a; υ
� �� σ2

8


 �
dυþ

ðt
t1

σ

2
dz υð Þ


 �
, and

H1 θ1a; s
� � ¼ �



b
2
þ
X2
j¼1

1

8 ε 1½ �
j cjþÂ

θ1a 0ð Þ
sð Þ=2

h i2 þ σ2

8

�
.

Now suppose that the players agree to divide their cooperative gains according

to scheme 3.1 in the time interval
�
t0, t1

�
, according scheme 3.1 if θ1 occurs at time

t1 and according scheme 3.2 if θ2 or θ3 occurs at time t1.
Using Schemes 3.1 and 3.2, Theorem 3.1 and the results derived in section, an

instantaneous payment at time τ 2 tk; tkþ1½ �:

B
θ k
ak

� �
k

i τð Þ ¼ � ξ
i θ k

ak

� �
kð Þτ

t t; x*t
� �

t¼τj

 �

� ξ
i θ k

ak

� �
kð Þτ

x*t
t; x*t
� �

t¼τj

 �

f τ, x*τ ,ψ
kð Þθ k

ak

1 τ; x*τ
� �

,ψ
kð Þθ k

ak

2 τ; x*τ
� �
 �

� 1

2

Xn
h, ζ¼1

Ωhζ τ; x*τ
� �

ξ
i θ k

ak

� �
kð Þτ

x h
t x

ζ
t

t; x*t
� �����

t¼τ


 �

for i 2 1; 2f g, k 2 0; 1f g, θ0a0 ¼ θ1 and θ1a 2 θ1; θ2; θ3f g can be obtained explicitly

using the results derived in (4.2) to (4.8).

4.5 Chapter Notes

This chapter considers subgame-consistent cooperative solutions in randomly

furcating stochastic differential games. This approach widens the application of

cooperative stochastic differential game theory to problems where future environ-

ments are not known with certainty. If the state dynamics is deterministic the above

analysis yields subgame consistent cooperative solutions for randomly-furcating

differential games. Yeung (2008) considered subgame consistent solutions for a

pollution management differential game in collaborative abatement under uncertain

future payoffs.
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Finally, the random eventΘk, fork 2 1, 2, � � �, mf g, affecting the payoffs may

be more complex stochastic processes, like a branching process with a series of

random events Θk, for k 2 1, 2, � � �, mf g, which is a random variable stemming

from the branching process as described below.

Given that θ1a1 is realized in time interval
�
t1, t2

�
, for a1 ¼ 1, 2, . . . , η1, the process

Θ2 in time interval
�
t2, t3

�
has a range θ2 ¼ θ2 1;a1ð Þ½ �

1 , θ2 1;a1ð Þ½ �
2 , . . . , θ2 1;a1ð Þ½ �

η2 1;a1ð Þ½ �

� 	
with

the corresponding probabilities λ2 1;a1ð Þ½ �
1 , λ2 1;a1ð Þ½ �

2 , . . . , λ2 1;a1ð Þ½ �
η2 1;a1ð Þ½ �

� 	
.

Given that θ1a1 is realized in time interval
�
t1, t2

�
and θ2 1;a1ð Þ½ �

a2
is realized

in time interval
�
t2, t3

�
, for a1 ¼ 1, 2, . . . , η1 and a2 ¼ 1, 2, . . . , η2 1;a1ð Þ½ �, θ3 ¼

θ3 1;a1ð Þ 2;a2ð Þ½ �
1 , θ3 1;a1ð Þ 2;a2ð Þ½ �

2 , . . . , θ3 1;a1ð Þ 2;a2ð Þ½ �
η3 1;a1ð Þ 2;a2ð Þ½ �

� 	
would be realized with the cor-

responding probabilities λ3 1;a1ð Þ 2;a2ð Þ½ �
1 , λ3 1;a1ð Þ 2;a2ð Þ½ �

2 , . . . , λ3 1;a1ð Þ 2;a2ð Þ½ �
η3 1;a1ð Þ 2;a2ð Þ½ �

� 	
.

In general, given that θ1a1 is realized in time interval
�
t1, t2

�
, θ2 1;a1ð Þ½ �

a2
is realized

in time interval
�
t2, t3

�
, . . ., and θk�1 1;a1ð Þ 2;a2ð Þ... k�2,ak�2ð Þ½ �

ak�1
is realized in time interval�

tk�1, tk
�
, for a1 ¼ 1, 2, . . . , η1, a2 ¼ 1, 2, . . . , η2 1;a1ð Þ½ �, . . ., ak�1 ¼ 1, 2, . . . ,

ηk�1 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ �, θk ¼ θk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ �
1 , θk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ �

2 , . . . ,
n

θk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ �
ηk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ �

	
would be realized with the corresponding probabilities

λk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ �
1 , λk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ �

2 , . . . , λk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ �
ηk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ �

� 	

for k ¼ 1, 2, . . . , τ.

4.6 Problems

1. Consider a resource extraction game, in which two extractors are awarded leases

to extract a renewable resource over the time interval [0, 4]. The resource stock

x sð Þ 2 X � R follows the dynamics:

dx sð Þ ¼ 10x sð Þ1=2 � x sð Þ � u1 sð Þ � u2 sð Þ
h i

dsþ 0:05x sð Þdz sð Þ, x 0ð Þ ¼ 80;

where u1(s) is the harvest rate of extractor 1 and u2(s) is the harvest rate of

extractor 2.
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The instantaneous payoff at time s 2 �
0, 2

�
for player 1 and player 2 are

known to be respectively:

2u1 sð Þ1=2 � 2

x sð Þ1=2
u1 sð Þ

" #
and u2 sð Þ1=2 � 2

x sð Þ1=2
u2 sð Þ

" #
:

The instantaneous payoff at time s 2 2; 4½ � for player 1 and player 2 are known to
be respectively:

2u1 sð Þ1=2� 2

x sð Þ1=2
u1 sð Þ

" #
and 3u2 sð Þ1=2� 2

x sð Þ1=2
u2 sð Þ

" #
with probability 0:3,

2u1 sð Þ1=2� 1

x sð Þ1=2
u1 sð Þ

" #
and 2u2 sð Þ1=2� 1

x sð Þ1=2
u2 sð Þ

" #
with probability 0:4,

and 3u1 sð Þ1=2� 0:5

x sð Þ1=2
u1 sð Þ

" #
and 4u2 sð Þ1=2� 2

x sð Þ1=2
u2 sð Þ

" #
with probability 0:3:

At terminal time 4, extractor 1 will receive a termination bonus 2x(4)1/2 and

extractor 2 will receive a termination bonus x(4)1/2. The discount rate is 0.05.
Characterize a feedback Nash equilibrium.

2. Obtain a group optimal solution which maximizes the joint expected payoff of

the extractors.

3. Derive a subgame consistent solution in which the players share the excess gain

from cooperation equally.
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Chapter 5

Subgame Consistency Under Asynchronous
Players’ Horizons

In many game situations, the players’ time horizons differ. This may arise from

different life spans, different entry and exit times, and the different duration for

leases and contracts. Asynchronous horizon game situations occur frequently in

economic and social activities. In this Chapter, subgame consistent cooperative

solutions are derived for differential games with asynchronous players’ horizons
and uncertain types of future players. Analytically tractable payoff distribution

mechanisms which lead to the realization of these solutions are derived. This

analysis extends the application of cooperative differential game theory to prob-

lems where the players’ game horizons are asynchronous and the types of future

players are uncertain. In particular, the Chapter is an integrated disquisition of the

analysis in Yeung (2011) with an extension to incorporate stochastic state

dynamics.

The organization of the chapter is as follows. Section 5.1 presents the game

formulation and characterizes noncooperative outcomes. Dynamic cooperation

among players coexisting in the same duration is examined in Sect. 5.2. Section 5.3

provides an analysis on payoff distribution procedures leading to dynamically

consistent solutions in this asynchronous horizons scenario. An illustration in

cooperative resource extraction is given in Sect. 5.4. An extension to stochastic

dynamics is provided in Sect. 5.5. Chapter notes are given in Sect. 5.6 and problems

in Sect. 5.7.

5.1 Game Formulation and Noncooperative Outcome

In this section we present an analytical framework of differential games with

asynchronous players’ horizons and characterize the noncooperative outcome.
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5.1.1 Game Formulation

For clarity in exposition and without loss of generality, we consider a general class

of differential games, in which there are υþ 1overlapping cohorts or generations of

players. The game begins at time t1 and terminates at time tυþ1. In the time interval�
t1, t2

�
, there coexist a generation 0 player whose game horizon is

�
t1, t2

�
and a

generation 1 player whose game horizon is
�
t1, t3

�
. In the time interval

�
tk, tkþ1

�
for

k2 2, 3, � � �, υ� 1f g, there coexist a generation k � 1 player whose game horizon is�
tk�1, tkþ1

�
and a generation k player whose game horizon is

�
tk, tkþ2

�
. In the last

time interval tυ; tυþ1½ �, there coexist a generation υ� 1 player and a generation υ
player whose game horizon is just tυ; tυþ1½ �.

When the game starts at initial time t1, it is known that in the time interval [t1, t2),

there coexist a type ω1
0 generation 0 player and a type ω1

1 generation 1 player. At

time t1, it is also known that the probability of the generation k player being type

ωak
k 2 ω1

k ;ω
2
k ; � � �;ωςk

k

� �
is λakk 2 λ1k ; λ

2
k ; � � �; λςkk

� �
, for k2 2; 3; � � �; υf g. The type of

generation k player will become known with certainty at time tk.
The instantaneous payoffs and terminal rewards of the type ωak

k generation

k player and the type ωak�1

k�1 generation k � 1 player coexisting in the time interval�
tk, tkþ1

�
are respectively:

gk�1 ω
ak�1
k�1ð Þ s,x sð Þ,u ω

ak�1
k�1

;Oð Þωak
k

k sð Þ,u ω
ak
k
;Yð Þωak�1

k�1

k sð Þ
� �

and qk�1 ω
ak�1
k�1ð Þ tkþ1,x tkþ1ð Þ½ � and

gk ω
ak
kð Þ s,x sð Þ,u ω

ak�1
k�1

;Oð Þωak
k

k sð Þ,u ω
ak
k
;Yð Þωak�1

k�1

k sð Þ
� �

and qk ω
ak
kð Þ tkþ2,x tkþ2ð Þ½ �; ð1:1Þ

for k2 1; 2; 3; � � �; υf g;
where u

ω
ak�1
k�1

;Oð Þωak
k

k sð Þ is the vector of controls of the type ωak�1

k�1 generation k � 1

player when he is in his second (old) life stage while the type ωak
k generation

k player is coexisting;

and u
ω
ak
k
;Yð Þωak�1

k�1

k sð Þ is that of the type ωak
k generation k player when he is in his first

(young) life stage while the type ωak�1

k�1 generation k � 1 player is coexisting.

Note that the superindex “O” in u
ω
ak�1
k�1

;Oð Þωak
k

k sð Þ denote “Old” and the superindex
“Y” in u

ω
ak
k
;Yð Þωak�1

k�1

k sð Þ denote “Young”. The state dynamics of the game is charac-

terized by the vector-valued differential equations:

_x sð Þ ¼ f s, x sð Þ, u ω
ak�1
k�1

;Oð Þωak
k

k sð Þ, u ω
ak
k
;Yð Þωak�1

k�1

k sð Þ
� �

, for s2�
tk, tkþ1

�
; ð1:2Þ

if typeωak
k generation k player and typeωak�1

k�1 generation k � 1 player co-exist in the

time interval
�
tk, tkþ1

�
for k2 1; 2; 3; � � �; υf g, and x t1ð Þ ¼ x02X.
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In the game interval
�
tk, tkþ1

�
for k2 1, 2, 3, � � �, υ� 1f g with type ωak�1

k�1

generation k � 1 player and type ωak
k generation k player, the type ωak�1

k�1 generation

k � 1 player seeks to maximize:

Z tkþ1

tk

gk�1 ω
ak�1
k�1ð Þ s, x sð Þ, u ω

ak�1
k�1

;Oð Þωak
k

k sð Þ, u ω
ak
k
;Yð Þωak�1

k�1

k sð Þ
� �

e�r s�tkð Þds

þ e�r tkþ1�tkð Þqk�1 ω
ak�1
k�1ð Þ tkþ1, x tkþ1ð Þ½ �; ð1:3Þ

and the type ωk generation k player seeks to maximize:

Z tkþ1

tk

gk ω
ak
kð Þ s, x sð Þ, u ω

ak�1
k�1

;Oð Þωak
k

k sð Þ, u ω
ak
k
;Yð Þωak�1

k�1

k sð Þ
� �

e�r s�tkð Þds

þ
Xςkþ1

‘¼1

λ ‘kþ1

Z tkþ2

tkþ1

gk ω
ak
kð Þ s, x sð Þ, u ω

ak
k
;Oð Þω ‘

kþ1

kþ1 sð Þ, u ω ‘
kþ1

;Yð Þωak
k

kþ1 sð Þ
� �

e�r s�tkð Þds

þ e�r tkþ2�tkð Þqk ω
ak
kð Þ tkþ2, x tkþ2ð Þ½ � ð1:4Þ

subject to dynamics (1.2), where r is the discount rate.
In the last time interval tυ; tυþ1½ �where the generation υ� 1player is of typeωaυ�1

υ�1

and the generation υ player is of type ωaυ
υ , the type ωaυ�1

υ�1 generation υ� 1 player

seeks to maximize:

Z tυþ1

tυ

gυ�1 ω
aυ�1
υ�1ð Þ s, x sð Þ, u ω

aυ�1
υ�1

;Oð Þωaυ
υ

υ sð Þ, u ωaυ
υ ;Yð Þωaυ�1

υ�1
υ sð Þ

� �
e�r s�tυð Þds

þ e�r tυþ1�tυð Þqυ�1 ω
aυ�1
υ�1ð Þ tυþ1, x tυþ1ð Þ½ �; ð1:5Þ

and the type ωaυ
υ generation υ player seeks to maximize:

Z tυþ1

tυ

gυ ωaυ
υð Þ s, x sð Þ, u ω

aυ�1
υ�1

;Oð Þωaυ
υ

υ sð Þ, u ωaυ
υ ;Yð Þωaυ�1

υ�1
υ sð Þ

� �
e�r s�tυð Þds

þ e�r tυþ1�tυð Þqυ ωaυ
υð Þ tυþ1, x tυþ1ð Þ½ �; ð1:6Þ

subject to dynamics (1.2).

The game formulated is a finite overlapping generations version of Jørgensen

and Yeung’s (2005) infinite generations game.

5.1.2 Noncooperative Outcomes

To obtain a characterization of a noncooperative solution to the asynchronous

horizons game mentioned above we first consider the solutions of the game in the

last time interval tυ; tυþ1½ �, that is the game (1.5 and 1.6). One way to characterize
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and derive a feedback solution to the game in tυ; tυþ1½ � is provided in the lemma

below.

Lemma 1.1 If the generation υ� 1 player is of typeωaυ�1

υ�1 2 ω1
υ�1;ω

2
υ�1; � � �;ωςυ�1

υ�1

� �
and the generation υ player is of type ωaυ

υ 2 ω1
υ;ω

2
υ; � � �;ωςυ

υ

� �
in the time interval

tυ; tυþ1½ �, a set of feedback strategies ϕ
ω
aυ�1
υ�1

;Oð Þωaυ
υ

υ t; xð Þ; ϕ ωaυ
υ ;Yð Þωaυ�1

υ�1
υ t; xð Þ

� 	
consti-

tutes a Nash equilibrium solution for the game (1.5 and 1.6), if there exist contin-

uously differentiable functions Vυ�1 ω
aυ�1
υ�1

;Oð Þωaυ
υ t; xð Þ : tυ; tυþ1½ � � Rm ! R and

Vυ ωaυ
υ ;Yð Þωaυ�1

υ�1 t; xð Þ : tυ; tυþ1½ � � Rm ! R satisfying the following partial differen-

tial equations:

�V
υ�1 ω

aυ�1
υ�1

;Oð Þωaυ
υ

t t; xð Þ ¼ max
uO
υ

gυ�1 ω
aυ�1
υ�1ð Þ t, x, uO

υ ,ϕ
ωaυ
υ ;Yð Þωaυ�1

υ�1
υ t; xð Þ

h i
e�r t�tυð Þ

n
þ V

υ�1 ω
aυ�1
υ�1

;Oð Þωaυ
υ

x t; xð Þf t, x, uO
υ ,ϕ

ωaυ
υ ;Yð Þωaυ�1

υ�1
υ t; xð Þ

h io
,

Vυ�1 ω
aυ�1
υ�1

;Oð Þωaυ
υ tυþ1; xð Þ ¼ e�r tυþ1�tυð Þqυ�1 ω

aυ�1
υ�1ð Þ tυþ1; xð Þ, and

� V
υ ωaυ

υ ;Yð Þωaυ�1
υ�1

t t; xð Þ ¼ max
u Y
υ

gυ ωaυ
υð Þ t, x,ϕ

ω
aυ�1
υ�1

;Oð Þωaυ
υ

υ�1 t; xð Þ, uY
υ

� �
e�r t�tυð Þ

�

þ V
υ ωaυ

υ ;Yð Þωaυ�1
υ�1

x t; xð Þf t, x,ϕ
ω
aυ�1
υ�1

;Oð Þωaυ
υ

υ�1 t; xð Þ, uY
υ

� �	
,

Vυ ωaυ
υ ;Yð Þωaυ�1

υ�1 tυþ1; xð Þ ¼ e�r tυþ1�tυð Þqυ ωaυ
υð Þ tυþ1, x tυþ1ð Þ½ � ð1:7Þ

Proof Follow the proof of Theorem 1.1 in Chap. 2. ■

For ease of exposition and sidestepping the issue of multiple equilibria, the

analysis focuses on solvable games in which a particular noncooperative Nash

equilibrium is chosen by the players in the entire subgame.

We proceed to examine the game in the second last interval
�
tυ�1, tυ

�
. If the

generation υ� 2 player is of typeωaυ�2

υ�2 2 ω1
υ�2;ω

2
υ�2; � � �;ωςυ�2

υ�2

� �
and the generation

υ� 1 player is of type ωaυ�1

υ�1 2 ω1
υ�1;ω

2
υ�1; � � �;ωςυ�1

υ�1

� �
. The type ωaυ�2

υ�2 generation

υ� 2 player seeks to maximize:

Z tυ

tυ�1

gυ�2 ω
aυ�2
υ�2ð Þ s, x sð Þ, u ω

aυ�2
υ�2

;Oð Þωaυ�1
υ�1

υ�2 sð Þ, u ω
aυ�1
υ�1

;Yð Þωaυ�2
υ�2

υ�1 sð Þ
� �

e�r s�tυ�1ð Þds

þ e�r tυ�tυ�1ð Þqυ�2 ω
aυ�2
υ�2ð Þ tυ, x tυð Þ½ �:

ð1:8Þ

In the subgame in the time interval
�
tυ�1, tυ

�
the expected payoff of the type ωaυ�1

υ�1

generation υ� 1 player at time tυ can be expressed as:

Xςυ
‘¼1

λ ‘υV
υ�1 ω

aυ�1
υ�1

;Oð Þω ‘
υ tυ; xð Þ: ð1:9Þ
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Therefore the type ωaυ�1

υ�1 generation υ� 1 player then seeks to maximize:

Z tυ

tυ�1

gυ�1 ω
aυ�1
υ�1ð Þ s, x sð Þ, u ω

aυ�2
υ�2

;Oð Þωaυ�1
υ�1

υ�2 sð Þ, u ω
aυ�1
υ�1

;Yð Þωaυ�1
υ�2

υ�1 sð Þ
� �

e�r s�tυ�1ð Þds

þ e�r tυ�tυ�1ð ÞXςυ
‘¼1

λ ‘υV
υ�1 ω

aυ�1
υ�1

;Oð Þω ‘
υ tυ, x tυð Þð Þ:

Similarly, in the subgame in the interval
�
tk, tkþ1

�
the expected payoff of the type ωk

generation k player at time tkþ1 can be expressed as:

Xςkþ1

‘¼1

λ ‘kþ1V
k ω

ak
k
;Oð Þω ‘

kþ1 tkþ1; xð Þ, fork2 1, 2, � � �, υ� 3f g: ð1:10Þ

Consider the game in the time interval
�
tk, tkþ1

�
involving the type ωak

k generation

k player and the typeωak�1

k�1 generationk � 1player, fork2 1, 2, � � �, υ� 3f g. The type
ωak�1

k�1 generation k � 1 player will maximize the payoff

Z tkþ1

tk

gk�1 ω
ak�1
k�1ð Þ s, x sð Þ, u ω

ak�1
k�1

;Oð Þωak
k

k�1 sð Þ, uk ω
ak
k
;Yð Þωak�1

k�1 sð Þ
� �

e�r s�tkð Þds

þ e�r tkþ1�tkð Þqk�1 ω
ak�1
k�1ð Þ tkþ1, x tkþ1ð Þ½ �; ð1:11Þ

and the type ωak
k generation k player will maximize the payoff:

Z tkþ1

tk

gk ω
ak
kð Þ s, x sð Þ, u ω

ak�1
k�1

;Oð Þωak
k

k�1 sð Þ, uk ω
ak
k
;Yð Þωak�1

k�1 sð Þ
� �

e�r s�tkð Þds

þ e�r tkþ1�tkð ÞXςkþ1

‘¼1

λ ‘kþ1V
k ω

ak
k
;Oð Þω ‘

kþ1 tkþ1, x tkþ1ð Þð Þ; ð1:12Þ

subject to (1.2).

A feedback solution to the game (1.5, 1.6) and (1.11, 1.12) can be characterized

by the lemma below.

Lemma 1.2 A set of feedback strategies ϕ
ω
ak�1
k�1

;Oð Þωak
k

k�1 t; xð Þ; ϕ ω
ak
k
;Yð Þωak�1

k�1

k t; xð Þ
� 	

constitutes a Nash equilibrium solution for the game (1.5, 1.6) and (1.11, 1.12), if

there exist continuously differentiable functions Vk�1 ω
ak�1
k�1

;Oð Þωak
k t; xð Þ : tk; tkþ1½ � �

Rm ! R andVk ω
ak
k
;Yð Þωak�1

k�1 t; xð Þ : tk; tkþ1½ � � Rm ! R satisfying the following partial

differential equations:
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�V
υ ωaυ

υ ;Yð Þωaυ�1
υ�1

t t; xð Þ ¼ max
u Y
υ

gυ ωaυ
υð Þ t, x,ϕ

ω
aυ�1
υ�1

;Oð Þωaυ
υ

υ�1 t; xð Þ, uY
υ

� �
e�r t�tυð Þ

�

þ V
υ ωaυ

υ ;Yð Þωaυ�1
υ�1

x t; xð Þf t, x,ϕ
ω
aυ�1
υ�1

;Oð Þωaυ
υ

υ�1 t; xð Þ, uY
υ

� �	
Vυ ωaυ

υ ;Yð Þωaυ�1
υ�1 tυþ1; xð Þ ¼ e�r tυþ1�tυð Þqυ ωaυ

υð Þ tυþ1, x tυþ1ð Þ½ �; and
�V

k�1 ω
ak�1
k�1

;Oð Þωak
k

t t; xð Þ ¼ max
uO
k

gk�1 ωk�1ð Þ t, x, uO
k ,ϕ

ω
ak
k
;Yð Þωak�1

k�1

k t; xð Þ
� �

e�r t�tkð Þ
�

þ V
k�1 ω

ak�1
k�1

;Oð Þωak
k

x t; xð Þf t, x, uO
k ,ϕ

ω
ak
k
;Yð Þωak�1

k�1

k t; xð Þ
� �	

,

Vk�1 ω
ak�1
k�1

;Oð Þωak
k tkþ1; xð Þ ¼ e�r tkþ1�tkð Þqk�1 ω

ak�1
k�1ð Þ tkþ1; xð Þ, and

�V
k ω

ak
k
;Yð Þωak�1

k�1

t t; xð Þ ¼ max
u Y
k

g k;ωkð Þ t; x;ϕ
ω
ak�1
k�1

;Oð Þωak
k

k�1 ; uY
k

� �
e�r t�tkð Þ

�

þ V
k ω

ak
k
;Yð Þωak�1

k�1
x t; xð Þf t; x;ϕ

ω
ak�1
k�1

;Oð Þωak
k

k�1 ; uY
k

� �	

Vk ω
ak
k
;Yð Þωak�1

k�1 tkþ1; xð Þ ¼ e�r tkþ1�tkð ÞXςkþ1

‘¼1

λ ‘kþ1V
k ω

ak
k
;Oð Þω ‘

kþ1 tkþ1; xð Þ; ð1:13Þ

for k2 1, 2, � � �, υ� 1f g.
Proof Again follow the proof of Theorem 1.1 in Chap. 2. ■

5.2 Dynamic Cooperation Among Coexisting Players

Now consider the case when coexisting players want to cooperate and agree to act

and allocate the cooperative payoff according to a set of agreed upon optimality

principles. The agreement on how to act cooperatively and allocate cooperative

payoff constitutes the solution optimality principle of a cooperative scheme. In

particular, the solution optimality principle for the cooperative game includes (i) an

agreement on a set of cooperative strategies/controls, and (ii) an imputation of their

payoffs.

Consider the game in the time interval
�
tk, tkþ1

�
involving the typeωak

k generation

k player and the type ωak�1

k�1 generation k � 1 player. Let ϖ
ω
ak�1
k�1

;ω
ak
kð Þ

h denote the

probability that the type ωak
k generation k player and the type ωak�1

k�1 generation k � 1

player would agree to the solution imputation

ξk�1 ω
ak�1
k�1

;Oð Þωak
k

h½ � t; xð Þ, ξk ω
ak
k
;Yð Þωak�1

k�1
h½ � t; xð Þ

h i
, over the time interval

�
tk, tkþ1

�
;

where
Xς

ω
ak�1
k�1

;ω
ak
kð Þ

h¼1

ϖ
ω
ak�1
k�1

;ω
ak
kð Þ

h ¼ 1:
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At time t1, the agreed-upon imputation for the type ω1
0 generation 0 player and the

type ω1
1 generation 1 player are known to be ξ0 ω1

0
;Oð Þω1

1
1½ � t; xð Þ, ξ1 ω1

1
;Yð Þω1

0
1½ � t; xð Þ

h i
,

over the time interval
�
t1, t2

�
.

The solution imputation may be governed by many specific principles. For

instance, the players may agree to maximize the sum of their expected payoffs

and equally divide the excess of the cooperative payoff over the noncooperative

payoff. As another example, the solution imputation may be an allocation principle

in which the players allocate the total joint payoff according to the relative sizes of

the players’ noncooperative payoffs. Finally, it is also possible that the players

refuse to cooperate. In that case, the imputation vector becomes

Vk�1 ω
ak�1
k�1

;Oð Þωak
k t; xð Þ, Vk ω

ak
k
;Yð Þωak�1

k�1 t; xð Þ
h i

.

Both group optimality and individual rationality are required in a cooperative

plan. Group optimality requires the players to seek a set of cooperative strategies/

controls that yields a Pareto optimal solution. The allocation principle has to satisfy

individual rationality in the sense that neither player would be no worse off than

before under cooperation.

5.2.1 Group Optimality

Since payoffs are transferable, group optimality requires the players coexisting in

the same time interval to maximize their expected joint payoff. Consider the last

time interval tυ; tυþ1½ �, in which the generation υ� 1 player is of type ωaυ�1

υ�1 2
ω1
υ�1;ω

2
υ�1; � � �;ωςυ�1

υ�1

� �
and the generation υ player is of type

ωaυ
υ 2 ω1

υ;ω
2
υ; � � �;ωςυ

υ

� �
. The players maximize their joint payoff

Z tυþ1

tυ

gυ�1 ω
aυ�1
υ�1ð Þ s, x sð Þ, u ω

aυ�1
υ�1

;Oð Þωaυ
υ

υ sð Þ, u ωaυ
υ ;Yð Þωaυ�1

υ�1
υ sð Þ

� �


þ gυ ωaυ
υð Þ s, x sð Þ, u ω

aυ�1
υ�1

;Oð Þωaυ
υ

υ sð Þ, u ωaυ
υ ;Yð Þωaυ�1

υ�1
υ sð Þ

� ��
e�r s�tυð Þds

þ e�r tυþ1�tυð Þ qυ�1 ω
aυ�1
υ�1ð Þ tυþ1, x tυþ1ð Þ½ � þ qυ ωaυ

υð Þ tυþ1, x tυþ1ð Þ½ �
� 

; ð2:1Þ

subject to (1.2).

An optimal solution of the problem (2.1 and 1.2) can be characterized by the

following lemma.

Lemma 2.1 A set of Controls ψ
ω
aυ�1
υ�1

;Oð Þωaυ
υ

υ�1 t; xð Þ; ψ ωaυ
υ ;Yð Þωaυ�1

υ�1
υ t; xð Þ

� 	
constitutes an

optimal solution for the control problem (2.1 and 1.2), if there exist continuously

differentiable functions W tυ;tυþ1½ � ω
aυ�1
υ�1

;ωaυ
υð Þ t; xð Þ : tυ; tυþ1½ � � Rm ! R satisfying the

following partial differential equations:

5.2 Dynamic Cooperation Among Coexisting Players 113



�W
tυ;tυþ1½ � ω

aυ�1
υ�1

;ωaυ
υð Þ

t t; xð Þ ¼ max
uO
υ , uO

υ

gυ�1 ω
aυ�1
υ�1ð Þ t; x; uO

υ ; u
Y
υ

� �
e�r t�tυð Þ

�

þ gυ ωaυ
υð Þ t; x; uO

υ ; u
Y
υ

� �
e�r t�tυð Þ þW

tυ;tυþ1½ � ω
aυ�1
υ�1

;ωaυ
υð Þ

x t; xð Þf t; x; uO
υ ; u

Y
υ

� �	
,

W tυ;tυþ1½ � ω
aυ�1
υ�1

;ωaυ
υð Þ tυþ1; xð Þ ¼ e�r tυþ1�tυð Þ qυ�1 ω

aυ�1
υ�1ð Þ tυþ1; xð Þ þ qυ

�
ωaυ
υ

�
tυþ1; xð Þ

� �
:

ð2:2Þ

Proof Invoking Bellman’s techniques of dynamic programming stated in Theorem

A.1 of the Technical Appendices an optimal solution of the problem (2.1 and 1.2)

can be characterized as (2.2). ■

We proceed to examine joint payoff maximization problem in the time interval�
tυ�1, tυ

�
involving the type ωaυ�1

υ�1 generation υ� 1 player and type ωaυ�2

υ�2 generation

υ� 2 player. A critical problem is to determent typeωaυ�1

υ�1 generation υ� 1 player’s
expected valuation of his optimization problem in the time interval

�
tυ�1, tυ

�
at time

tυ. At time tυ, the ωaυ�1

υ�1 generation υ� 1 player may co-exist with the type ωaυ
υ

2 ω1
υ;ω

2
υ; � � �;ωςυ

υ

� �
generation υ player with probabilities λ1υ; λ

2
υ; � � �; λςυυ

� �
. Con-

sider the case in the time interval
�
tυ, tυþ1

�
in which the type ωaυ�1

υ�1 generation υ� 1

player and the type ωaυ
υ generation υ player co-exist. The probability that the type

ωaυ�1

υ�1 generation player and the type ωaυ
υ generation player would agree to the

solution imputation

ξυ�1 ω
aυ�1
υ�1

;Oð Þωaυ
υ h½ � t; xð Þ, ξυ ωaυ

υ ;Yð Þωaυ�1
υ�1

h½ � t; xð Þ
h i

is ϖ
ω
aυ�1
υ�1

;ωaυ
υð Þ

h ,

where
Xζ

ω
aυ�1
υ�1

;ωaυυð Þ

h¼1

ϖ
ω
aυ�1
υ�1

;ωaυ
υð Þ

h ¼ 1: ð2:3Þ

In the optimization problem within the time interval
�
tυ�1, tυ

�
, the expected reward

to the ωυ�1 generation υ� 1 player at time tυ can be expressed as:

Xςυ
‘¼1

λ ‘υ
Xζ

ω
aυ�1
υ�1

;ω ‘
υð Þ

h¼1

ϖ
ω
aυ�1
υ�1

;ω ‘
υð Þ

h ξυ�1 ω
aυ�1
υ�1

;Oð Þω ‘
υ h½ � tυ; xð Þ: ð2:4Þ

Similarly for the optimization problem within the time interval
�
tk, tkþ1

�
, the

expected reward to the typeωak
k generation k player at time tkþ1 can be expressed as:
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Xςkþ1

‘¼1

λ ‘kþ1

Xζ
ω
ak
k

;ω ‘
kþ1ð Þ

h¼1

ϖ
ω
ak
k
;ω ‘

kþ1ð Þ
h ξk ω

ak
k
;Oð Þω ‘

kþ1
h½ � tkþ1; xð Þ, fork2 1, 2, � � �, υ� 2f g: ð2:5Þ

The joint maximization problem in the time interval
�
tk, tkþ1

�
, for

k2 1, 2, � � �, υ� 2f g, involving the type ωak
k generation k player and type ωak�1

k�1

generation k � 1 player can be expressed as the maximization of joint payoff

Z tkþ1

tk



gk�1 ω

ak�1
k�1ð Þ s, x sð Þ, u ω

ak�1
k�1

;Oð Þωak
k

k sð Þ, u ω
ak
k
;Yð Þωak�1

k�1

k sð Þ
� ��

þ gk ω
ak
kð Þ s, x sð Þ, u ω

ak�1
k�1

;Oð Þωak
k

k sð Þ, u ω
ak
k
;Yð Þωak�1

k�1

k sð Þ
� ��

e�r s�tkð Þds

þ e�r tkþ1�tkð Þ qk�1 ω
akþ1
k�1ð Þ tkþ1, x tkþ1ð Þ½ �

�

þ
Xςkþ1

‘¼1

λ ‘kþ1

Xζ
ω
ak
k

;ω ‘
kþ1ð Þ

h¼1

ϖ
ω
ak
k
;ω ‘

kþ1ð Þ
h ξk ω

ak
k
;Oð Þω ‘

kþ1
h½ � tkþ1, x tkþ1ð Þð Þ

	
; ð2:6Þ

subject to (1.2).

The conditions characterizing an optimal solution of the problem of maximizing

(2.6) subject to (1.2) are given in the following theorem.

Theorem 2.1 A set of controls ψ
ω
ak�1
k�1

;Oð Þωak
k

k�1 t; xð Þ; ψ ω
ak
k
;Yð Þωak�1

k�1

k t; xð Þ
� 	

constitutes

an optimal solution for the control problem (1.2 and 2.6), if there exist continuously

differentiable functions W tk ;tkþ1½ � ω
ak�1
k�1

;ω
ak
kð Þ t; xð Þ : �

tk, tkþ1

�� Rm ! R satisfying the

following partial differential equations:

�W
tυ;tυþ1½ � ω

aυ�1
υ�1

;ωaυ
υð Þ

t t; xð Þ ¼ max
uO
υ , u Y

υ

gυ�1 ω
aυ�1
υ�1ð Þ t; x; uO

υ ; u
Y
υ

� �
e�r t�tυð Þ

�

þ gυ ωaυ
υð Þ t; x; uO

υ ; u
Y
υ

� �
e�r t�tυð Þ þW

tυ;tυþ1½ � ω
aυ�1
υ�1

;ωaυ
υð Þ

x t; xð Þ f t; x; uO
υ ; u

Y
υ

� �	
W tυ;tυþ1½ � ω

aυ�1
υ�1

;ωaυ
υð Þ tυþ1; xð Þ ¼ e�r tυþ1�tυð Þ

qυ�1 ω
aυ�1
υ�1ð Þ tυþ1; xð Þ þ qυ

�
ωaυ
υ

�
tυþ1; xð Þ

� �
and

�W
tk ;tkþ1½ � ω

ak�1
k�1

;ω
ak
kð Þ

t t; xð Þ ¼ max
uO
k
, u Y

υ

gk�1 ω
ak�1
k�1ð Þ t; x; uO

k ; u
Y
k

� �
e�r t�tkð Þ

n
þ gk ω

ak
kð Þ t; x; uO

k ; u
Y
k

� �
e�r t�tkð Þ þW

tk ;tkþ1½ � ω
ak�1
k�1

;ω
ak
kð Þ

x t; xð Þf t; x; uO
k ; u

Y
k

� ��
W tk ;tkþ1½ � ω

ak�1
k�1

;ω
ak
kð Þ tkþ1; xð Þ ¼ e�r tkþ1�tkð Þ qk�1 ω

ak�1
k�1ð Þ tkþ1; xð Þ

�

þ
Xςkþ1

‘¼1

λ ‘kþ1

Xζ
ω
ak
k

;ω ‘
kþ1ð Þ

h¼1

ϖ
ω
ak
k
;ω ‘

kþ1ð Þ
h ξk ω

ak
k
;Oð Þω ‘

kþ1
h½ � tkþ1, x tkþ1ð Þð Þ


, for k2 1, 2, � � �, υ� 1f g: ð2:7Þ

5.2 Dynamic Cooperation Among Coexisting Players 115



Proof Invoking Bellman’s (1957) technique of dynamic programming stated in

Theorem A.1 of the Technical Appendices we obtain the conditions characterizing

an optimal solution of the problem (1.2) and (2.6) as in (2.7). ■

In particular,W tk ;tkþ1½ � ω
ak�1
k�1

;ω
ak
kð Þ t; xð Þ gives the maximized joint payoff of the type

ωak
k generation k player and type ωak�1

k�1 generation k � 1 player at time t2 tk; tkþ1½ �
with the state x in the control problem

max

u
ω
ak�1
k�1

;Oð Þωakk
k

, u
ω
ak
k

;Yð Þωak�1
k�1

k

Z tkþ1

t



gk�1 ω

ak�1
k�1ð Þ s, x sð Þ, u ω

ak�1
k�1

;Oð Þωak
k

k sð Þ, u ω
ak
k
;Yð Þωak�1

k�1

k sð Þ
� ��

þ gk ω
ak
kð Þ s, x sð Þ, u ω

ak�1
k�1

;Oð Þωak
k

k sð Þ, u ω
ak
k
;Yð Þωak�1

k�1

k sð Þ
� � �

e�r s�tkð Þds

þ e�r tkþ1�tkð Þ qk�1 ω
akþ1
k�1ð Þ tkþ1, x tkþ1ð Þ½ �

�

þ
Xςkþ1

‘¼1

λ ‘kþ1

Xζ
ω
ak
k

;ω ‘
kþ1ð Þ

h¼1

ϖ
ω
ak
k
;ω ‘

kþ1ð Þ
h ξk ω

ak
k
;Oð Þω ‘

kþ1
h½ � tkþ1, x tkþ1ð Þð Þ

	

subject to

_x sð Þ ¼ f s, x sð Þ, u ω
ak�1
k�1

;Oð Þωak
k

k sð Þ, u ω
ak
k
;Yð Þωak�1

k�1

k sð Þ
� �

, for s2�
tk, tkþ1

�
x tð Þ ¼ x:

Substituting the set of cooperative strategies into (1.2) yields the dynamics of the

cooperative state trajectory in the time interval
�
tk, tkþ1

�

_x sð Þ ¼ f s, x sð Þ,ψ ω
ak�1
k�1

;Oð Þωak
k

k�1 s, x sð Þð Þ,ψ ω
ak
k
;Yð Þωak�1

k�1

k s, x sð Þð Þ
� �

; ð2:8Þ

if type ωak
k generation k player and type ωak�1

k�1 generation k � 1 player coexist in�
tk, tkþ1

�
, for s2�

tk, tkþ1

�
, k2 1; 2; � � �; υf g and x tkð Þ ¼ xtk 2X.

Let x ω
ak�1
k�1

;ω
ak
kð Þ* tð Þ

n o tkþ1

t¼tk
denote the cooperative solution path governed by (2.8).

For simplicity in exposition we denote x ω
ak�1
k�1

;ω
a
k

k
k

� �
* tð Þ by x

ω
ak�1
k�1

;ω
ak
kð Þ*

t .

To fulfill group optimality, the imputation vectors have to satisfy:

ξk�1 ω
ak�1
k�1

;Oð Þωak
k

h½ � t; x*
� �þ ξk ω

ak
k
;Yð Þωak�1

k�1
h½ � t; x*
� � ¼ W tk ;tkþ1½ � ω

ak�1
k�1

;ω
ak
kð Þ t; x*

� �
; ð2:9Þ

for t2�
tk, tkþ1

�
, ωak

k 2 ω1
k ;ω

2
k ; � � �;ωςk

k

� �
, ωak�1

k�1 2 ω1
k�1;ω

2
k�1; � � �;ωςk�1

k�1

� �
,

h2 1; 2; � � �; ζ ω
ak
k
;ω

ak�1
kþ1ð Þ

n o
and k2 0; 1; 2; � � �; υf g.
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5.2.2 Individual Rationality

In a dynamic framework, individual rationality requires that the imputation

received by a player has to be no less than his noncooperative payoff throughout

the time interval in concern. Hence for individual rationality to hold along the

cooperative trajectory x ω
ak�1
k�1

;ω
ak
kð Þ* tð Þ

n o tkþ1

t¼tk
;

ξk�1 ω
ak�1
k�1

;Oð Þωak
k

h½ � t; x*t
� � � Vk�1 ω

ak�1
k�1

;Oð Þωak
k t; x*t
� �

and

ξk ω
ak
k
;Yð Þωak�1

k�1
h½ � t; x*t
� � � Vk ω

ak
k
;Yð Þωak�1

k�1 t; x*t
� �

; ð2:10Þ

for t2�
tk, tkþ1

�
, ωak

k 2 ω1
k ;ω

2
k ; � � �;ωςk

k

� �
, ωak�1

k�1 2 ω1
k�1;ω

2
k�1; � � �;ωςk�1

k�1

� �
;

h2 1; 2; � � �; ζ ω
ak
k
;ω

ak�1
kþ1ð Þ

n o
and k2 0; 1; 2; � � �; υf g;

where x�t is the short form for x
ω
ak�1
k�1

;ω
ak
kð Þ*

t .

For instance, using the results derived, an imputation vector equally dividing the

excess of the cooperative payoff over the noncooperative payoff can be expressed

as:

ξk�1 ω
ak�1
k�1

;Oð Þωak
k

h½ � t; x*t
� � ¼ Vk�1 ω

ak�1
k�1

;Oð Þωak
k t; x*t
� �þ 0:5

�
W tk ;tkþ1½ � ω

ak�1
k�1

;ω
ak
kð Þ t; x*t

� �
� Vk�1 ω

ak�1
k�1

;Oð Þωak
k t; x*t
� �� Vk ω

ak
k
;Yð Þωak�1

k�1 t; x*t
� ��

, and

ξk ω
ak
k
;Yð Þωak�1

k�1
h½ � t; x*t
� � ¼ Vk ω

ak
k
;Yð Þωak�1

k�1 t; x*t
� �þ 0:5

�
W tk ;tkþ1½ � ω

ak�1
k�1

;ω
ak
kð Þ t; x*t

� �
� Vk�1 ω

ak�1
k�1

;Oð Þωak
k t; x*t
� �� Vk ω

ak
k
;Yð Þωak�1

k�1 t; x*t
� ��

: ð2:11Þ

One can readily see that the imputations in (2.11) satisfy individual rationality and

group optimality.

5.3 Subgame Consistent Solutions and Payoff Distribution

A stringent requirement for solutions of cooperative differential games to be

dynamically stable is the property of subgame consistency. Under subgame con-

sistency, an extension of the solution policy to a situation with a later starting time

and any feasible state brought about by prior optimal behaviors would remain

optimal. In particular, when the game proceeds, at each instant of time the players

are guided by the same optimality principles. According to the solution optimality

principle the players agree to share their cooperative payoff according to the

imputations
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ξk�1 ω
ak�1
k�1

;Oð Þωak
k

h½ � t; x*t
� �

, ξk ω
ak
k
;Yð Þωak�1

k�1
h½ � t; x*t
� �h i

ð3:1Þ

over the time interval
�
tk, tkþ1

�
:

To achieve dynamic consistency, a payment scheme has to be derived so that

imputation (3.1) will be maintained throughout the time interval
�
tk, tkþ1

�
. Follow-

ing the analysis in Chap. 3, we formulate a payoff distribution procedure (PDP)

over time so that the agreed imputations (3.1) can be realized. Let B
ω
ak�1
k�1

;Oð Þωak
k

h½ �
k�1 sð Þ

and B
ω
ak
k
;Yð Þωak�1

k�1
h½ �

k sð Þ denote the instantaneous payments at time s2�
tk, tkþ1

�
allocated to the type ωak�1

k�1 generation k � 1 (old) player and type ωak
k generation

k (young) player.
In particular, the imputation vector can be expressed as:

ξk�1 ω
ak�1
k�1

;Oð Þωak
k

h½ � t; x*t
� �

¼
Z tkþ1

tk

B
ω
ak�1
k�1

;Oð Þωak
k

h½ �
k�1 sð Þe�r s�tkð Þdsþ e�r tkþ1�tkð Þqk�1 ω

ak�1
k�1ð Þ tkþ1, x

* tkþ1ð Þ� �
ξk ω

ak
k
;Yð Þωak�1

k�1
h½ � t; x*t
� � ¼ Z tkþ1

tk

B
ω
ak
k
;Yð Þωak�1

k�1
h½ �

k sð Þe�r s�tkð Þds

þ e�r tkþ1�tkð ÞXςkþ1

‘¼1

λ ‘kþ1

Xς
ω
ak
k

;ω ‘
kþ1ð Þ

h¼1

ϖ
ω
ak
k
;ω ‘

kþ1ð Þ
h ξk ω

ak
k
;Oð Þω ‘

kþ1
h½ � tkþ1, x

* tkþ1ð Þ� �
; ð3:2Þ

for k2 1, 2, � � �, υ� 1f g; and

ξυ�1 ω
aυ�1
υ�1

;Oð Þωaυ
υ h½ � t; x*t

� � ¼ Z tυþ1

tυ

B
ω
aυ�1
υ�1

;Oð Þωaυ
υ h½ �

υ�1 sð Þe�r s�tυð Þds

þ e�r tυþ1�tυð Þqυ�1 ω
aυ�1
υ�1ð Þ tυþ1, x

* tυþ1ð Þ� �
ξυ ωaυ

υ ;Yð Þωaυ�1
υ�1

h½ � t; x*t
� � ¼ Z tυþ1

tυ

B
ωaυ
υ ;Yð Þωaυ�1

υ�1
h½ �

υ sð Þe�r s�tυð Þds

þ e�r tυþ1�tυð Þqυ ωaυ
υð Þ tυþ1, x

* tυþ1ð Þ� �
: ð3:3Þ

Using the analysis in Chap. 2 we obtain a PDP leading to the realization of the

imputation vectors in (3.2 and 3.3) in the following theorem.

Theorem 3.1 If the imputation vector
�
ξk�1 ω

ak�1
k�1

;Oð Þωak
k

h½ � t; x*t
� �

;

ξk ω
ak
k
;Oð Þωak�1

k�1
h½ � t; x*t
� ��

are functions that are continuously differentiable in t and

x�t , a PDP with an instantaneous payment at time t2�
tk, tkþ1

�
:
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B
ω
ak�1
k�1

;Oð Þωak
k

h½ �
k�1 tð Þ ¼ �ξ

k�1 ω
ak�1
k�1

;Oð Þωak
k

h½ �
t t; x*t

� �
� ξ

k�1 ω
ak�1
k�1

;Oð Þωak
k

h½ �
x t; x*t

� �
f t, x*t ,ψ

ω
ak�1
k�1

;Oð Þωak
k

k�1 t; x*t
� �

,ψ
ω
ak
k
;Yð Þωak�1

k�1

k t; x*t
� �� �

ð3:4Þ

allocated to the type ωak�1

k�1 generation k � 1 player;

and an instantaneous payment at time t2�
tk, tkþ1

�
:

B
ω
ak
k
;Yð Þωak�1

k�1
h½ �

k tð Þ ¼ �ξ
k ω

ak
k
;Yð Þωak�1

k�1
h½ �

t t; x*t
� �

� ξ
k ω

ak
k
;Yð Þωak�1

k�1
h½ �

x t; x*t
� �

f t, x*t ,ψ
ω
ak�1
k�1

;Oð Þωak
k

k�1 t; x*t
� �

,ψ
ω
ak
k
;Yð Þωak�1

k�1

k t; x*t
� �� �

allocated to the type ωak
k generation k player,

yields a mechanism leading to the realization of the imputation vector

ξk�1 ω
ak�1
k�1

;Oð Þωak
k

h½ � t; x*t
� �

, ξk ω
ak
k
;Yð Þωak�1

k�1
h½ � t; x*t
� �h i

, fork2 1; 2; � � �; υf g:

Proof Follow the proof leading to Theorem 3.1 in Chap. 2 with the imputation

vector in present value (rather than in current value). ■

5.4 An Illustration in Resource Extraction

Consider the game in which there are 4 overlapping generations of players with

generation 0 and generation 1 players in
�
t1, t2

�
, generation 1 and generation

2 players in
�
t2, t3

�
, generation 2 and generation 3 players in [t3, t4]. Players are

of either type 1 or type 2. The instantaneous payoffs and terminal rewards of the

type 1 generation k player and the type 2 generation k player are respectively:

ukð Þ1=2 � c1
x1=2

uk

h i
andq1x

1=2, and ukð Þ1=2 � c2
x1=2

uk

h i
andq2x

1=2; ð4:1Þ

where the state variable x(s) is the biomass of a renewable resource. uk(s) is the
harvest of the generation k extraction firm. The type i2 1; 2f g generation k extrac-

tion firm’s extraction cost is ciuk sð Þx sð Þ�1=2
.

At initial time t1, it is known that the generation 0 player is of type 1 and the

generation 1 player is also of type 1. It is also known that the generation 2 and

generation 3 players may be of type 1 with probability λ1k ¼ 0:4 and of type 2 with

probability λ2k ¼ 0:6 in time interval
�
tk, tkþ1

�
for k2 2; 3f g.
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The state dynamics of the game is characterized by:

_x sð Þ ¼ ax sð Þ1=2 � bx sð Þ � u
i;Oð Þj
k sð Þ � u

j;Yð Þi
k sð Þ; ð4:2Þ

if the old generation k � 1 extractor is of type i and the young generation k extractor

is of type j, for s2�
tk, tkþ1

�
and k2 1; 2; 3f g;

x t1ð Þ ¼ x02X � R;

where u
ði;OÞj
k (s) denote the harvest of the type i generation k � 1 old extractor and

u
ðj;YÞi
k (s) denote the harvest of the type j generation k young extractor.

The death rate of the resource is b. The rate of growth is a/x1/2 which reflects the
decline in the growth rate as the biomass increases. The game is an asynchronous

horizons version of the synchronous-horizon resource extraction game in Yeung

and Petrosyan (2006b).

This asynchronous horizon game can be expressed as follows. In the time

interval [t3, t4], consider the case with a type i2 1; 2f g generation 2 firm and a

type j2 1; 2f g generation 3 firm, the game becomes

max
u

i;Oð Þj
3

�Z t4

t3

u
i;Oð Þj
3 sð Þ

h i1=2
� ci

x sð Þ1=2
u

i;Oð Þj
3 sð Þ

" #
exp �r s� t3ð Þ½ �ds

þ exp �r t4 � t3ð Þ½ �qix t4ð Þ12
	
,

max
u

j;Yð Þi
3

�Z t4

t3

u
j;Yð Þi
3 sð Þ

h i1=2
� cj

x sð Þ1=2
u

j;Yð Þi
2 sð Þ

" #
exp �r s� t3ð Þ½ �ds

þ exp �r t4 � t3ð Þ½ �qjx t4ð Þ12
	
; ð4:3Þ

subject to (4.2).

In the time interval
�
tk, tkþ1

�
, for k2 1; 2f g, consider the case with a type i2 1; 2f g

generation k � 1 firm and a type j2 1; 2f g generation k firm, the game becomes

max
u

i;Oð Þj
k

�Z tkþ1

tk

u
i;Oð Þj
k sð Þ

h i1=2
� ci

x sð Þ1=2
u

i;Oð Þj
k sð Þ

" #
exp �r s� tkð Þ½ �ds

þ exp �r tkþ1 � tkð Þ½ �qix tkþ1ð Þ12
	
,

max
u

j;Yð Þi
k

, u j;Oð Þ‘
kþ1

�Z tkþ1

tk

u
j;Yð Þi
k sð Þ

h i1=2
� cj

x sð Þ1=2
u

j;Yð Þi
k sð Þ

" #
exp �r s� tkð Þ½ �ds

þ
X2
‘¼1

λ ‘kþ1

Z tkþ2

tkþ1

u
j;Oð Þ‘
kþ1 sð Þ

h i1=2
� cj

x sð Þ1=2
u

j;Oð Þ‘
kþ1 sð Þ

" #
exp �r s� tkð Þ½ �ds

þ exp �r tkþ2 � tkð Þ½ �qjx tkþ2ð Þ12
	
; ð4:4Þ

subject to (4.2).
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5.4.1 Noncooperative Outcomes

In this section we first characterize the noncooperative outcome of the asynchro-

nous horizons game (4.2, 4.3 and 4.4) as follows.

Proposition 4.1 The feedback Nash equilibrium payoffs for the type i2 1; 2f g
generation k � 1firm and the type j2 1; 2f ggeneration k firm coexisting in the game

interval
�
tk, tkþ1

�
can be obtained as:

Vk�1 i;Oð Þj t; xð Þ ¼ exp �r t� tkð Þ½ � A
i;Oð Þj
k�1 tð Þx1=2 þ C

i;Oð Þj
k�1 tð Þ

h i
, and

Vk j;Yð Þi t; xð Þ ¼ exp �r t� tkð Þ½ � A
j;Yð Þi
k tð Þx1=2 þ C

j;Yð Þi
k tð Þ

h i
; ð4:5Þ

for k2 1; 2; 3f g and i, j2 1; 2f g;
where

A
i;Oð Þj
k�1 tð Þ, C i;Oð Þj

k�1 tð Þ, A j;Yð Þi
k tð Þ and C

ðj;YÞi
k (t) satisfy:

_A
i;Oð Þj
k�1 tð Þ ¼ r þ b

2

� �
A

i;Oð Þj
k�1 tð Þ � 1

2 ci þ A
i;Oð Þj
k�1 tð Þ=2

h i

þ ci

4 ci þ A
i;Oð Þj
k�1 tð Þ=2

h i 2
þ A

i;Oð Þj
k�1 tð Þ

8 ci þ A
i;Oð Þj
k�1 tð Þ=2

h i2 þ A
i;Oð Þj
k�1 tð Þ

8 cj þ A
j;Yð Þi
k tð Þ=2

h i 2
,

_C
i;Oð Þj
k�1 tð Þ ¼ rC

i;Oð Þj
k�1 tð Þ � a

2
A

i;Oð Þj
k�1 tð Þ;

A
i;Oð Þj
k�1 tkþ1ð Þ ¼ qi and C

i;Oð Þj
k�1 tkþ1ð Þ ¼ 0, for k2 1; 2; 3f g; ð4:6Þ

_A
j;Yð Þi
k tð Þ ¼ r þ b

2

� �
A

j;Yð Þi
k tð Þ � 1

2 cj þ A
j;Yð Þi
k tð Þ=2

h iþ cj

4 cj þ A
j;Yð Þi
k tð Þ=2

h i2
þ A

j;Yð Þi
k tð Þ

8 cj þ A
j;Yð Þi
k tð Þ=2

h i2 þ A
j;Yð Þi
k tð Þ

8 ci þ A
i;Oð Þj
k�1 tð Þ=2

h i2
_C

j;Yð Þi
k tð Þ ¼ rC

j;Yð Þi
k tð Þ � a

2
A

j;Yð Þi
k tð Þ, for k2 1; 2; 3f g;

A
j;Yð Þi
k tkþ1ð Þ ¼ e�r tkþ1�tkð ÞX2

‘¼1

λ ‘kþ1A
j;Oð Þ‘
kþ1 tkþ1ð Þ and

C
j;Yð Þi
k tkþ1ð Þ ¼ e�r tkþ1�tkð ÞX2

‘¼1

λ ‘kþ1C
j;Oð Þ‘
kþ1 tkþ1ð Þ,

for k2 1; 2f g, and A
j;Yð Þi
3 t4ð Þ ¼ qj and C

j;Yð Þi
3 t4ð Þ ¼ 0: ð4:7Þ
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Proof Performing the indicated maximization in (4.4) and solving the system yield

(4.5). Hence Proposition 4.1 follows. ■

The solution time paths A
i;Oð Þj
k�1 tð Þ, C i;Oð Þj

k�1 tð Þ, A j;Yð Þi
k tð Þ and C

ðj;YÞi
k (t) for the system

of first order differential equations in (4.6) and (4.7) can be computed numerically

for given values of the model parameters r, q1, q2, c1, c2, a, b, λ1k and λ2k .
The game equilibrium strategies then can be expressed as:

ϕ i;Oð Þj
k t; xð Þ ¼ x

4 ci þ A
i;Oð Þj
k tð Þ=2

h i2 and ϕ j;Yð Þi
k t; xð Þ ¼ x

4 cj þ A
j;Yð Þi
k tð Þ=2

h i2 :

5.4.2 Dynamic Cooperation

Now consider the case when coexisting firms want to cooperate and agree to act and

allocate the cooperative payoff according to a set of agreed upon optimality

principles. Let there be three acceptable imputations for the extractor firms.

Imputation I: the firms would share the excess gain from cooperation equally with

weights w
o 1ð Þ
k ¼ 0:5 for the generation k � 1 firm and w

Y 1ð Þ
k ¼ 0:5 for the

generation k firm.

Imputation II: the generation k � 1firm acquiresw
o 2ð Þ
k ¼ 0:6of the excess gain from

cooperation and the generation k firm acquires w
Y 2ð Þ
k ¼ 0:4 of the excess gain.

Imputation III: the generation k � 1 firm acquires w
o 3ð Þ
k ¼ 0:4 of the excess gain

from cooperation and the generation k firm acquires w
Y 3ð Þ
k ¼ 0:6 of the

excess gain.

In time interval
�
tk, tkþ1

�
, if both the generation k � 1 firm and the generation

k firm are of type 1, the probabilities that the firms would agree to Imputations I, II

and III are respectivelyϖ 1;1ð Þ1
k ¼ 0:8, ϖ 1;1ð Þ2

k ¼ 0:1andϖ 1;1ð Þ3
k ¼ 0:1, for k2 2; 3f g.

If both the generation k � 1 firm and the generation k firm are of type 2, the

probabilities that the firms would agree to Imputations I, II and III are respectively

ϖ 2;2ð Þ1
k ¼ 0:7, ϖ 2;2ð Þ2

k ¼ 0:15 and ϖ 2;2ð Þ3
k ¼ 0:15, for k2 2; 3f g.

If the generationk � 1firm is of type 1 and the generation k firm are of type 2, the

probabilities that the firms would agree to Imputations I, II and III are respectively

ϖ 1;2ð Þ1
k ¼ 0:15, ϖ 1;2ð Þ2

k ¼ 0:75 and ϖ 1;2ð Þ3
k ¼ 0:1, for k2 2; 3f g.

If the generationk � 1firm is of type 2 and the generation k firm are of type 1, the

probabilities that the firms would agree to Imputations I, II and III are respectively

ϖ 2;1ð Þ1
k ¼ 0:15, ϖ 2;1ð Þ2

k ¼ 0:1 and ϖ 2;1ð Þ3
k ¼ 0:75, for k2 2; 3f g.
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At initial time t1, the type 1 generation 0 firm and the type 1 generation 1 firm are

assumed to have agreed to Imputation II.

Since payoffs are transferable, group optimality requires the firms coexisting in

the same time interval to maximize their joint payoff. Consider the last time interval

[t3, t4], in which the generation 2 firm is of type i2 1; 2f gand the generation 3 firm is

of type j2 1; 2f g. The firms maximize their joint profit

�Z t4

t3

u
i;Oð Þj
3 sð Þ

h i1=2
� ci

x sð Þ1=2
u

i;Oð Þj
3 sð Þ

" #
exp �r s� t3ð Þ½ �ds

þ
Z t4

t3

u
j;Oð Þi
3 sð Þ

h i1=2
� cj

x sð Þ1=2
u

j;Oð Þi
3 sð Þ

" #
exp �r s� t3ð Þ½ �ds

þ exp �r t4 � t3ð Þ½ �qix t4ð Þ12 þ exp �r t4 � t3ð Þ½ �qjx t4ð Þ12
	
; ð4:8Þ

subject to (4.2).

The maximized joint payoffs of the players in the last subgame interval can be

characterized by the proposition below.

Proposition 4.2 The maximized joint payoff with type i2 1; 2f g generation 2 firm

and the type j2 1; 2f g generation 3 firm coexisting in the game interval
�
t3, t4

�
can

be obtained as:

W t3;t4½ � i;jð Þ t; xð Þ ¼ exp �r t� t3ð Þ½ � A t3;t4½ � i;jð Þ tð Þx1=2 þ C t3;t4½ � i;jð Þ tð Þ
h i

; ð4:9Þ

where A t3;t4½ � i;jð Þ tð Þ and C t3;t4½ � i;jð Þ tð Þ satisfy:

_A t3;t4½ � i;jð Þ tð Þ ¼ r þ b

2

� �
A t3;t4½ � i;jð Þ tð Þ � 1

2 ci þ A t3;t4½ � i;jð Þ tð Þ=2� �
� 1

2 cj þ A t3;t4½ � i;jð Þ tð Þ=2� �þ ci

4 ci þ A t3;t4½ � i;jð Þ tð Þ=2� � 2
þ cj

4 cj þ A t3;t4½ � i;jð Þ tð Þ=2� �2
þ A t3;t4½ � i;jð Þ tð Þ
8 ci þ A t3;t4½ � i;jð Þ tð Þ=2� �2 þ A t3;t4½ � i;jð Þ tð Þ

8 cj þ A t3;t4½ � i;jð Þ tð Þ=2� � 2
_C t3;t4½ � i;jð Þ tð Þ ¼ rC t3;t4½ � i;jð Þ tð Þ � a

2
A t3;t4½ � i;jð Þ tð Þ,

A t3;t4½ � i;jð Þ t4ð Þ ¼ qi þ qj and C
t3;t4½ � i;jð Þ t4ð Þ ¼ 0: ð4:10Þ
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Proof Invoking the dynamic programming techniques in Theorem A.1 in the

Technical Appendices one can obtain (4.9 and 4.10). ■

The solution time paths A t3;t4½ � i;jð Þ tð Þ and C t3;t4½ � i;jð Þ tð Þ for the system of first order

differential equations in (4.9 and 4.10) can be computed numerically for given

values of the model parameters r, q1, q2, c1, c2, a and b.

In the game interval
�
t3, t4

�
with type i2 1; 2f g generation 2 firm and the type

j2 1; 2f g generation 3 firm coexisting, if imputation h2 1; 2; 3f g is chosen the

imputations of the firms under cooperation can be expressed as:

ξ2 i;Oð Þj h½ � t; xð Þ ¼ V2 i;Oð Þj t; xð Þ þ w
o hð Þ
3

�
W t3;t4½ � i;jð Þ t; xð Þ � V2 i;Oð Þj t; xð Þ

�V3 j;Yð Þi t; xð Þ�,
ξ3 j;Yð Þi h½ � t; xð Þ ¼ V3 j;Yð Þi t; xð Þ þ w

Y hð Þ
3

�
W t3;t4½ � i;jð Þ t; xð Þ � V2 i;Oð Þj t; xð Þ

�V3 j;Yð Þi t; xð Þ�: ð4:11Þ

Now we proceed to the second last interval
�
tk, tkþ1

�
for k ¼ 2. Consider the case in

which the generation k firm is of type j2 1; 2f g and the generation k � 1 firm is

known to be of type i ¼ 2. Following the analysis in (2.4) and (2.5), the expected

terminal reward to the type j generation k firm at time tkþ1 can be expressed as:

X2
‘¼1

λ ‘k
X3
h¼1

ϖ j;‘ð Þ
h ξk j;Oð Þ‘ h½ � tkþ1; xð Þ, for k ¼ 2: ð4:12Þ

A review of Proposition 4.1, Proposition 4.2 and (4.11) shows the term in (4.12) can

be written as:

A
ζ j;Oð Þ
k x1=2 þ C

ζ j;Oð Þ
k ; ð4:13Þ

where A
ζðj;OÞ
k and C

ζðj;OÞ
k are constant terms.

The joint maximization problem in the time interval
�
tk, tkþ1

�
, for k2 1; 2f g,

involving the type j generation k player and type i generation k � 1 player can be

expressed as:

max
u

i;Oð Þj
k

, u j;Yð Þi
k

�Z tkþ1

tk

u
i;Oð Þj
k sð Þ

h i1=2
� ci

x sð Þ1=2
u

i;Oð Þj
k sð Þ

" #
exp �r s� tkð Þ½ �ds

þ
Z tkþ1

tk

u
j;Yð Þi
k sð Þ

h i1=2
� cj

x sð Þ1=2
u

j;Yð Þi
k sð Þ

" #
exp �r s� tkð Þ½ �ds

þ exp �r tkþ1 � tkð Þ½ �
�
qix tkþ1ð Þ12 þ

X2
‘¼1

λ ‘k
X3
h¼1

ϖ j;‘ð Þ
h ξk j;Oð Þ‘ h½ � tkþ1; xð Þ

�	
; ð4:14Þ

subject to (4.2).
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The maximized joint payoff of the players in the first two subgame intervals can

be characterized by the proposition below.

Proposition 4.3 The maximized joint payoff with type i2 1; 2f g generation k � 1

firm and the type j2 1; 2f g generation k firm coexisting in the game interval�
tk, tkþ1

�
, for k2 1; 2f g, can be obtained as:

W tk ;tkþ1½ � i;jð Þ t; xð Þ ¼ exp �r t� tkð Þ½ � A tk ;tkþ1½ � i;jð Þ tð Þx1=2 þ C tk ;tkþ1½ � i;jð Þ tð Þ
h i

; ð4:15Þ

where A tk ;tkþ1½ � i;jð Þ tð Þ and C tk ;tkþ1½ � i;jð Þ tð Þ satisfy:

_A tk ;tkþ1½ � i;jð Þ tð Þ ¼ r þ b

2

� �
A tk ;tkþ1½ � i;jð Þ tð Þ � 1

2 ci þ A tk ;tkþ1½ � i;jð Þ tð Þ=2� �
� 1

2 cj þ A tk ;tkþ1½ � i;jð Þ tð Þ=2� �þ ci

4 ci þ A tk ;tkþ1½ � i;jð Þ tð Þ=2� � 2
þ cj

4 cj þ A tk ;tkþ1½ � i;jð Þ tð Þ=2� �2
þ A tk ;tkþ1½ � i;jð Þ tð Þ
8 ci þ A tk ;tkþ1½ � i;jð Þ tð Þ=2� �2 þ A tk ;tkþ1½ � i;jð Þ tð Þ

8 cj þ A tk ;tkþ1½ � i;jð Þ tð Þ=2� � 2
_C tk ;tkþ1½ � i;jð Þ tð Þ ¼ rC tk ;tkþ1½ � i;jð Þ tð Þ � a

2
A tk ;tkþ1½ � i;jð Þ tð Þ,

A tk ;tkþ1½ � i;jð Þ tkþ1ð Þ ¼ qi þ A
ζ j;Oð Þ
k and C tk ;tkþ1½ � i;jð Þ tkþ1ð Þ ¼ C

ζ j;Oð Þ
k : ð4:16Þ

Proof Performing the maximization operator in (4.14) and invoking (4.13) one can

obtain the results in (4.15) and (4.16). ■

The solution time pathsA tk ;tkþ1½ � i;jð Þ tð ÞandC tk ;tkþ1½ � i;jð Þ tð Þ for the system of first order

differential equations in (4.16) can be computed numerically for given values of the

model parameters r, q1, q2, c1, c2, a, b, λ1k , λ
2
k , and ϖðj;‘Þ

h for h2 1; 2; 3f g and

j, ‘2 1; 2f g.
The optimal cooperative controls can then be obtained as:

ψ i;Oð Þj
k�1 t; xð Þ ¼ x

4 ci þ A tk;tkþ1½ � i;jð Þ tð Þ=2� �2, and
ψ j;Yð Þi
k t; xð Þ ¼ x

4 cj þ A tk ;tkþ1½ � i;jð Þ tð Þ=2� �2: ð4:17Þ
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Substituting these control strategies into (4.2) yields the dynamics of the state

trajectory under cooperation. The optimal cooperative state trajectory in the time

interval
�
tk, tkþ1

�
can be obtained as:

x i;jð Þ* tð Þ ¼ Ω i;jð Þ tk; tð Þ� �2�
xtkð Þ1=2 þ

Z t

tk

Ω�1
i;jð Þ tk; sð Þa

2
ds

�2
; ð4:18Þ

where Ω i;jð Þ tk; tð Þ ¼ exp

Z t

tk

H i;jð Þ υð Þdυ
� �

and

H i;jð Þ sð Þ ¼ �
�
b

2
þ 1

8 ci þ A tk ;tkþ1½ � i;jð Þ sð Þ=2� �2 þ 1

8 cj þ A tk ;tkþ1½ � i;jð Þ sð Þ=2� � 2
�

The term x�t is used to denote x(i,j ) *(t) whenever there is no ambiguity.

5.4.3 Dynamically Consistent Payoff Distribution

According to the solution optimality principle the players agree to share their

cooperative payoff according to the solution imputations:

ξk�1 i;Oð Þj h½ � t; xð Þ ¼ Vk�1 i;Oð Þj t; xð Þ þ wh
k�1

�
W tk ;tkþ1½ � i;jð Þ t; xð Þ � Vk�1 i;Oð Þj t; xð Þ

�Vk j;Yð Þi t; xð Þ�,
ξk j;Yð Þi h½ � t; xð Þ ¼ Vk j;Yð Þi t; xð Þ þ wh

k

�
W tk ;tkþ1½ � i;jð Þ t; xð Þ � Vk�1 i;Oð Þj t; xð Þ

�Vk j;Yð Þi t; xð Þ�;
for h2 1; 2; 3f g, i, j2 1; 2f g and k2 1; 2; 3f g.

These imputations are continuous differentiable in x and t. If an imputation

vector ξk�1 i;Oð Þj h½ � t; xð Þ, ξk j;Yð Þi h½ � t; xð Þ� �
is chosen, a crucial process is to derive a

payoff distribution procedure (PDP) so that this imputation could be realized for

t2�
tk, tkþ1

�
along the cooperative trajectory x*t

� �tkþ1

t¼tk
.

Following Theorem 3.1, a PDP leading to the realization of the imputation

vector ξk�1 i;Oð Þj h½ � t; xð Þ, ξk j;Yð Þi h½ � t; xð Þ� �
can be obtained as:

Corollary 4.1 A PDP with an instantaneous payment at time t2�
tk, tkþ1

�
:

B
i;Oð Þj h½ �
k tð Þ ¼ �ξk�1 i;Oð Þj h½ �

t t; x*t
� �� ξk�1 i;Oð Þj h½ �

x t; x*t
� ��

a x∗t
� �1=2 � bx∗t

� x*t

4 ci þ A tk;tkþ1½ � i;jð Þ tð Þ=2� �2 � x*t

4 cj þ A tk ;tkþ1½ � i;jð Þ tð Þ=2� �2
�
; ð4:19Þ
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allocated to the type i generation k � 1 player;

and an instantaneous payment at time t2�
tk, tkþ1

�
:

B
j;Yð Þi h½ �
k tð Þ ¼ �ξk j;Yð Þi h½ �

t t; x*t
� �� ξk j;Yð Þi h½ �

x t; x*t
� ��

a x∗t
� �1=2 � bx∗t

� x*t

4 ci þ A tk ;tkþ1½ � i;jð Þ tð Þ=2� �2 � x*t

4 cj þ A tk ;tkþ1½ � i;jð Þ tð Þ=2� �2
�

ð4:20Þ

allocated to the type j generation k player,
yields a mechanism leading to the realization of the imputation vector

ξk�1 i;Oð Þj h½ � t; xð Þ, ξk j;Yð Þi h½ � t; xð Þ� �
, for k2 1; 2; 3f g, h2 1; 2; 3f g and i, j2 1; 2f g: ■

Since the imputations ξk�1 i;Oð Þj h½ � t; xð Þ and ξk( j,Y )i[h](t, x) are in terms of explicit

differentiable functions, the relevant derivatives can be derived using the results in

Propositions 4.1, 4.2 and 4.3. Hence, the PDP B
ði;OÞj½h�
k (t) and B

ðj;YÞi½h�
k (t) in (4.19)

and (4.20) can be obtained explicitly.

5.5 Extension to Stochastic Dynamics

In this Section we extend the analysis to the case where the state dynamics is

stochastic and governed by the stochastic differential equations:

dx sð Þ ¼ f s, x sð Þ, u ωk�1;Oð Þωk

k�1 sð Þ, u ωk ;Yð Þωk�1

k sð Þ
h i

dsþ σ s, x sð Þ½ �dz sð Þ,
x t1ð Þ ¼ x02X; ð5:1Þ

for s2�
tk, tkþ1

�
; if the typeωak generation k player and the typeωak�1

generationak�1

player coexist in the time interval
�
tk, tkþ1

�
for k2 1; 2; 3; � � �; υf g, and where σ[s, x

(s)] is a n�Θ matrix and z(s) is a Θ-dimensional Wiener process. Let Ω s, x sð Þ½ �
¼ σ s, x sð Þ½ � σ s,x sð Þ½ �; denote the covariance matrix with its element in row h and

column ζ denoted by Ωhζ[s, x(s)].

5.5.1 Noncooperative Outcomes and Joint Maximization

Following the analysis in Sect. 5.1 of this Chapter and Sect. 3.1 of Chap. 3 a

counterpart of Lemma 1.2 characterizing the noncooperative outcomes of the game

the stochastic dynamic problem (1.3, 1.4, 1.5, 1.6 and 5.1) can be obtained as

Lemma 5.1 below.
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Lemma 5.1 A set of feedback strategies ϕ
ω
ak�1
k�1

;Oð Þωak
k

k�1 t; xð Þ; ϕ ω
ak
k
;Yð Þωak�1

k�1

k t; xð Þ
� 	

constitutes a Nash equilibrium solution for the game (1.3, 1.4, 1.5, 1.6 and 5.1), if

there exist continuously differentiable functions Vk�1 ω
ak�1
k�1

;Oð Þωak
k t; xð Þ : tk; tkþ1½ � �

Rm ! R andVk ω
ak
k
;Yð Þωak�1

k�1 t; xð Þ : tk; tkþ1½ � � Rm ! R satisfying the following partial

differential equations:

�V
υ ωaυ

υ ;Yð Þωaυ�1
υ�1

t t; xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ t; xð Þ Vυ ωaυ
υ ;Oð Þωaυ�1

υ�1

xhxζ
t; xð Þ

¼ max
u Y
υ

gυ ωaυ
υð Þ t, x,ϕ

ω
aυ�1
υ�1

;Oð Þωaυ
υ

υ�1 t; xð Þ, uY
υ

� �
e�r t�tυð Þ

�

þ V
υ ωaυ

υ ;Yð Þωaυ�1
υ�1

x t; xð Þf t, x,ϕ
ω
aυ�1
υ�1

;Oð Þωaυ
υ

υ�1 t; xð Þ, uY
υ

� �	
,

Vυ ωaυ
υ ;Yð Þωaυ�1

υ�1 tυþ1; xð Þ ¼ e�r tυþ1�tυð Þqυ ωaυ
υð Þ tυþ1, x tυþ1ð Þ½ �; and

�V
k�1 ω

ak�1
k�1

;Oð Þωak
k

t t; xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ t; xð Þ Vk�1 ω
ak�1
k�1

;Oð Þωak
k

xhxζ
t; xð Þ

¼ max
uO
k

gk�1 ωk�1ð Þ t, x, uO
k ,ϕ

ω
ak
k
;Yð Þωak�1

k�1

k t; xð Þ
� �

e�r t�tkð Þ
�

þ V
k�1 ω

ak�1
k�1

;Oð Þωak
k

x t; xð Þ f t, x, uO
k ,ϕ

ω
ak
k
;Yð Þωak�1

k�1

k t; xð Þ
� �	

Vk�1 ω
ak�1
k�1

;Oð Þωak
k tkþ1; xð Þ ¼ e�r tkþ1�tkð Þqk�1 ω

ak�1
k�1ð Þ tkþ1; xð Þ, and

�V
k ω

ak
k
;Yð Þωak�1

k�1

t t; xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ t; xð Þ Vk ω
ak
k
;Yð Þωak�1

k�1

xhxζ
t; xð Þ

¼ max
u Y
k

g k;ωkð Þ t; x;ϕ
ω
ak�1
k�1

;Oð Þωak
k

k�1 ; uY
k

� �
e�r t�tkð Þ

�

þ V
k ω

ak
k
;Yð Þωak�1

k�1
x t; xð Þ f t; x;ϕ

ω
ak�1
k�1

;Oð Þωak
k

k�1 ; uY
k

� �	

Vk ω
ak
k
;Yð Þωak�1

k�1 tkþ1; xð Þ ¼ e�r tkþ1�tkð ÞXςkþ1

‘¼1

λ ‘kþ1 V
k ω

ak
k
;Oð Þω ‘

kþ1 tkþ1; xð Þ; ð5:2Þ

for k2 1, 2, � � �, υ� 1f g.
Proof Follow the proof of Theorem 1.1 in Chap. 3. ■

Now consider the case when coexisting players want to cooperate and maximize

their joint expected payoff. Following the analysis in Sect. 5.2, the joint
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maximization problem in the time interval
�
tυ, tυþ1

�
involving typeωaυ

υ generation υ
player and typeωaυ�1

υ�1 generation υ� 1 player can be expressed as the expected joint

payoff

Etυ

�Z tυþ1

tυ

gυ�1 ω
aυ�1
υ�1ð Þ s, x sð Þ, u ω

aυ�1
υ�1

;Oð Þωaυ
υ

υ�1 sð Þ, u ωaυ
υ ;Yð Þωaυ�1

υ�1
υ sð Þ

� �


þ gυ ωaυ
υð Þ s, x sð Þ, u ω

aυ�1
υ�1

;Oð Þωaυ
υ

υ�1 sð Þ, u ωaυ
υ ;Yð Þωaυ�1

υ�1
υ sð Þ

� ��
e�r s�tυð Þds

þ e�r tυþ1�tυð Þ qυ�1 ω
aυ�1
υ�1ð Þ tυþ1, x tυþ1ð Þ½ � þ qυ ωaυ

υð Þ tυþ1, x tυþ1ð Þ½ �
� 	

; ð5:3Þ

subject to (5.1).

The joint maximization problem in the time interval
�
tk, tkþ1

�
, for

k2 1, 2, � � �, υ� 1f g, involving the type ωak
k generation k player and type ωak�1

k�1

generation k � 1 player can be expressed as the maximization of the expected joint

payoff:

Etk

Z tkþ1

tk



gk�1 ω

ak�1
k�1ð Þ s, x sð Þ, u ω

ak�1
k�1

;Oð Þωak
k

k sð Þ, u ω
ak
k
;Yð Þωak�1

k�1

k sð Þ
� ��

þ gk ω
ak
kð Þ s, x sð Þ, u ω

ak�1
k�1

;Oð Þωak
k

k sð Þ, u ω
ak
k
;Yð Þωak�1

k�1

k sð Þ
� � �

e�r s�tkð Þds

þ e�r tkþ1�tkð Þ qk�1 ω
akþ1
k�1ð Þ tkþ1, x tkþ1ð Þ½ �

�

þ
Xςkþ1

‘¼1

λ ‘kþ1

Xς
ω
ak
k

;ω ‘
kþ1ð Þ

h¼1

ϖ
ω
ak
k
;ω ‘

kþ1ð Þ
h ξk ω

ak
k
;Oð Þω ‘

kþ1
h½ � tkþ1, x tkþ1ð Þð Þ

	
; ð5:4Þ

subject to (5.1).

Following the analysis in Sect. 5.2 a counterpart of Theorem 2.1 characterizing

an optimal solution of the problem of maximizing (5.3) and (5.4) subject to (5.1)

can be obtained as Theorem 5.1 below.

Theorem 5.1 A set of controls ψ
ω
ak�1
k�1

;Oð Þωak
k

k�1 t; xð Þ; ψ ω
ak
k
;Yð Þωak�1

k�1

k t; xð Þ
� 	

constitutes

an optimal solution for the control problem (5.1, 5.3 and 5.4), if there exist

continuously differentiable function W tk ;tkþ1½ � ω
ak�1
k�1

;ω
ak
kð Þ t; xð Þ : �tk, tkþ1

�� Rm ! R

satisfying the following partial differential equations:
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�W
tυ;tυþ1½ � ω

aυ�1
υ�1

;ωaυ
υð Þ

t t; xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ t; xð ÞW tυ;tυþ1½ � ω
aυ�1
υ�1

;ωaυ
υð Þ

xhxζ
t; xð Þ

¼ max
uO
υ , u Y

υ

gυ�1 ω
aυ�1
υ�1ð Þ t; x; uO

υ ; u
Y
υ

� �
e�r t�tυð Þ

�

þ gυ ωaυ
υð Þ t; x; uO

υ ; u
Y
υ

� �
e�r t�tυð Þ þW

tυ;tυþ1½ � ω
aυ�1
υ�1

;ωaυ
υð Þ

x t; xð Þ f t; x; uO
υ ; u

Y
υ

� �	
,

W tυ;tυþ1½ � ω
aυ�1
υ�1

;ωaυ
υð Þ tυþ1; xð Þ ¼ e�r tυþ1�tυð Þ qυ�1 ω

aυ�1
υ�1ð Þ tυþ1; xð Þ þ qυ

�
ωaυ
υ

�
tυþ1; xð Þ

� �
; and

�W
tk ;tkþ1½ � ω

ak�1
k�1

;ω
ak
kð Þ

t t; xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ t; xð ÞW tk ;tkþ1½ � ω
ak�1
k�1

;ω
ak
kð Þ

xhxζ
t; xð Þ

¼ max
uO
k
, u Y

υ

gk�1 ω
ak�1
k�1ð Þ t; x; uO

k ; u
Y
k

� �
e�r t�tkð Þ

n
þ gk ω

ak
kð Þ t; x; uO

k ; u
Y
k

� �
e�r t�tkð Þ þW

tk ;tkþ1½ � ω
ak�1
k�1

;ω
ak
kð Þ

x t; xð Þ f t; x; uO
k ; u

Y
k

� ��
,

W tk ;tkþ1½ � ω
ak�1
k�1

;ω
ak
kð Þ tkþ1; xð Þ ¼ e�r tkþ1�tkð Þ qk�1 ω

ak�1
k�1ð Þ tkþ1; xð Þ

�
,

þ
Xςkþ1

‘¼1

λ ‘kþ1

Xς
ω
ak
k

;ω ‘
kþ1ð Þ

h¼1

ϖ
ω
ak
k
;ω ‘

kþ1ð Þ
h ξk ω

ak
k
;Oð Þω ‘

kþ1
h½ � tkþ1, x tkþ1ð Þð Þ


,

for k2 1, 2, � � �, υ� 1f g: ð5:5Þ

Proof Follow the proof of Theorem A.3 in the Technical Appendices we obtain the

conditions characterizing an optimal solution of the problem (5.1), (5.3) and (5.4) as

in (5.5). ■

In particular,W tk ;tkþ1½ � ω
ak�1
k�1

;ω
ak
kð Þ t; xð Þgives the maximized expected joint payoff of

the type ωak
k generation k player and type ωak�1

k�1 generation k � 1 player at time t
2 tk; tkþ1½ � with the state x in the stochastic control problem

max

u
ω
ak�1
k�1

;Oð Þωakk
k

, u
ω
ak
k

;Yð Þωak�1
k�1

k

Etk

Z tkþ1

t



gk�1 ω

ak�1
k�1ð Þ s, x sð Þ, u ω

ak�1
k�1

;Oð Þωak
k

k sð Þ, u ω
ak
k
;Yð Þωak�1

k�1

k sð Þ
� ��

þ gk ω
ak
kð Þ s, x sð Þ, u ω

ak�1
k�1

;Oð Þωak
k

k sð Þ, u ω
ak
k
;Yð Þωak�1

k�1

k sð Þ
� ��

e�r s�tkð Þds

þ e�r tkþ1�tkð Þ qk�1 ω
akþ1
k�1ð Þ tkþ1, x tkþ1ð Þ½ �

�

þ
Xςkþ1

‘¼1

λ ‘kþ1

Xς
ω
ak
k

;ω ‘
kþ1ð Þ

h¼1

ϖ
ω
ak
k
;ω ‘

kþ1ð Þ
h ξk ω

ak
k
;Oð Þω ‘

kþ1
h½ � tkþ1, x tkþ1ð Þð Þ

	
;
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subject to

dx sð Þ ¼ f s, x sð Þ, u ωk�1;Oð Þωk

k�1 sð Þ, u ωk ;Yð Þωk�1

k sð Þ
h i

dsþ σ s, x sð Þ½ �dz sð Þ, x tð Þ ¼ x:

Substituting the set of cooperative strategies into (5.1) yields the dynamics of the

cooperative state trajectory in the time interval
�
tk, tkþ1

�

dx sð Þ ¼ f s, x sð Þ,ψ ω
ak�1
k�1

;Oð Þωak
k

k�1 s, x sð Þð Þ,ψ ω
ak
k
;Yð Þωak�1

k�1

k s, x sð Þð Þ
� �

ds

þ σ s, x sð Þ½ �dz sð Þ ð5:6Þ

if type ωak
k generation k player and type ωak�1

k�1 generation k � 1 player coexist in�
tk, tkþ1

�
, for s2�

tk, tkþ1

�
, k2 1; 2; � � �; υf g and x tkð Þ ¼ xtk 2X.

We denote the set of realizable states at time t from (5.6) under the scenarios of

different players by X
ω
ak�1
k�1

;ω
a
k

k
k

� �
*

t , for t2�
tk, tkþ1

�
and k2 1; 2; � � �; υf g. We use the

term x
ω
ak�1
k�1

;ω
a
k

k
k

� �
*

t by x
ω
ak�1
k�1

;ω
a
k

k
k

� �
*

t 2X
ω
ak�1
k�1

;ω
a
k

k
k

� �
*

t to denote an element in

X
ω
ak�1
k�1

;ω
a
k

k
k

� �
*

t . The term x�t is used to denote x
ω
ak�1
k�1

;ω
a
k

k
k

� �
*

t whenever there is no

ambiguity. For simplicity in exposition we also use x ω
ak�1
k�1

;ω
a
k

k
k

� �
* tð Þ and x ω

ak�1
k�1

;ω
ak
kð Þ*

t

inter-changeably.

5.5.2 Subgame Consistent Solutions and Payoff Distribution

Now consider the case when coexisting players want to cooperate and agree to act

and allocate the cooperative payoff according to a set of agreed upon optimality

principles. Again in the time interval
�
tk, tkþ1

�
the probability that the type ωak

k

generation k player and the type ωak�1

k�1 generation k � 1 player would agree to the

solution imputation

ξk�1 ω
ak�1
k�1

;Oð Þωak
k

h½ � t; xð Þ, ξk ω
ak
k
;Yð Þωak�1

k�1
h½ � t; xð Þ

h i
over the time interval

�
tk, tkþ1

�
, is

ϖ
ω
ak�1
k�1

;ω
ak
kð Þ

h ,where
Xζ

ω
ak�1
k�1

;ω
ak
kð Þ

h¼1

ϖ
ω
ak�1
k�1

;ω
ak
kð Þ

h ¼ 1. At time t1, the agreed-upon imputa-

tion for the type ω1
0 generation 0 player and the type ω1

1 player are known.

Following the analysis in Sect. 5.3 a counter-part of Theorem 3.1 which derives

the PDP that yields a subgame consistent solution for the cooperative game (5.1)

and (5.3, 5.4) can be obtained in the theorem below.
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Theorem 5.2 If the imputation vector ξk�1 ω
ak�1
k�1

;Oð Þωak
k

h½ � t; x*t
� �

, ξk ω
ak
k
;Oð Þωak�1

k�1
h½ �

h
t; x*t
� ��

, are functions that are continuously differentiable in t and x�t , a PDP with

an instantaneous payment at time t2�
tk, tkþ1

�
:

B
ω
ak�1
k�1

;Oð Þωak
k

h½ �
k�1 tð Þ ¼ �ξ

k�1 ω
ak�1
k�1

;Oð Þωak
k

h½ �
t t; x*t

� �
� 1

2

Xm
h, ζ¼1

Ωhζ t; x*t
� �

ξ
k�1 ω

ak�1
k�1

;Oð Þωak
k

xhxζ
t; x*t
� �

� ξ
k�1 ω

ak�1
k�1

;Oð Þωak
k

h½ �
x t; x*t

� �
f t, x*t ,ψ

ω
ak�1
k�1

;Oð Þωak
k

k�1 t; x*t
� �

,ψ
ω
ak
k
;Yð Þωak�1

k�1

k t; x*t
� �� �

ð5:7Þ

allocated to the type ωak�1

k�1 generation k � 1 player;

and an instantaneous payment at time t2�
tk, tkþ1

�
:

B
ω
ak
k
;Yð Þωak�1

k�1
h½ �

k tð Þ ¼ �ξ
k ω

ak
k
;Yð Þωak�1

k�1
h½ �

t t; x*t
� �� 1

2

Xm
h, ζ¼1

Ωhζ t; x*t
� �

ξ
k ω

ak
k
;Yð Þωak�1

k�1

xhxζ
t; x*t
� �

� ξ
k ω

ak
k
;Yð Þωak�1

k�1
h½ �

x t; x*t
� �

f t, x*t ,ψ
ω
ak�1
k�1

;Oð Þωak
k

k�1 t; x*t
� �

,ψ
ω
ak
k
;Yð Þωak�1

k�1

k t; x*t
� �� �

allocated to the type ωak
k generation k player,

yields a mechanism leading to the realization of the imputation vector

ξk�1 ω
ak�1
k�1

;Oð Þωak
k

h½ � t; x*t
� �

, ξk ω
ak
k
;Yð Þωak�1

k�1
h½ � t; x*t
� �h i

, for k2 1; 2; � � �; υf g:

Proof Follow the proof leading to Theorem 3.1 in Chap. 3 with the imputation

vector in present value (rather than in current value). ■

5.6 Chapter Notes

This Chapter considers cooperative differential games in which players enter the

game at different times and have diverse horizons. Moreover, the types of future

players are not known with certainty. Subgame consistent cooperative solutions and

analytically tractable payoff distribution mechanisms leading to the realization of

these solutions are derived. Finally, the overlapping generations of players can be

extended to more complex structures. The game horizon of the players can include

more than two time intervals and be different across players. The number of players
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in each time interval can also be more than two and be different across intervals.

Hence, the analysis can be formulated as a general class of stochastic differential

games with asynchronous horizons structures. An analysis on subgame consistent

cooperative solutions in stochastic differential games with asynchronous horizons

and uncertain types of players can be found in Yeung (2012).

5.7 Problems

1. Consider the game in which there are 4 overlapping generations of players with

generation 0 and generation 1 players in
�
0, 2

�
, generation 1 and generation

2 players in
�
2, 4

�
, generation 2 and generation 3 players in [4, 6]. Players are of

either type 1 or type 2. The instantaneous payoffs and terminal rewards of the

type 1 generation k player and the type 2 generation k player are respectively:

2 ukð Þ1=2 � 1

x1=2
uk

� �
and q1x

1=2; and ukð Þ1=2 � 2

x1=2
uk

� �
andq2x

1=2;

where the state variable x(s) is the biomass of a renewable resource. uk(s) is the
harvest of the generation k extraction firm. The type i2 1; 2f g generation

k extraction firm’s extraction cost is ciuk sð Þx sð Þ�1=2
.

At initial time 0, it is known that the generation 0 player is of type 1 and the

generation 1 player is also of type 1. It is also known that the generation 2 and

generation 3 players may be of type 1 with probability λ1 ¼ 0:4 and of type

2 with probability λ2 ¼ 0:6.
The state dynamics of the game is characterized by:

_x sð Þ ¼ 10x sð Þ1=2 � 2x sð Þ � u
i;Oð Þj
k sð Þ � u

j;Yð Þi
k sð Þ;

if the old generation k � 1 extractor is of type i and the young generation

k extractor is of type j, for s2�
tk, tkþ1

�
and k2 1; 2; 3f g with t1 ¼ 0, t2 ¼ 2

and t3 ¼ 4; and x 0ð Þ ¼ 30;

where u
ði;OÞj
k (s) denote the harvest of the type i generation k � 1 old extractor

and u
ðj;YÞi
k (s) denote the harvest of the type j generation k young extractor. The

discount rate is 0.05.

Characterize the non-cooperative feedback Nash equilibrium for the genera-

tion 0 player and generation 1 player game.

2. Construct a subgame consistent cooperative solution in which all types of

players would accept the imputation which shares the excess cooperative gains

(over the individual payoffs) equally among themselves.
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Chapter 6

Subgame Consistent Cooperative Solution
in NTU Differential Games

Subgame consistency is a fundamental element in the solution of cooperative

stochastic differential games which ensures that the extension of the solution

policy to a later starting time and any possible state brought about by prior

optimal behavior of the players would remain optimal. In many game situations

payoff (or utility) of players may not be transferable. It is well known that utility

in economic study is assumed to be non-transferrable or comparable among

economic agents. The Nash (1950, 1953) bargaining solution is a solution for

non-transferable payoff cooperative games. Strategic interactions involving

national security, social issues and political gains fall into the category of

non-transferrable utility/payoff (NTU) games. In the case when payoffs are

nontransferable, transfer payments cannot be made and subgame consistent

solution mechanism becomes extremely complicated. In this Chapter, the issue

of subgame consistency in cooperative stochastic differential games with

nontransferable payoffs or utility is presented. In particular, the Chapter is an

integrated exposition of the works in Yeung and Petrosyan (2005) and Yeung

et al. (2007). The Chapter is organized as follows. The formulation of

non-transferrable utility cooperative stochastic differential games, the

corresponding Pareto optimal state trajectories and individual player’s payoffs

under cooperation are provided in Sect. 6.1. The notion of subgame consistency

in NTU cooperative stochastic differential games under time invariant payoff

weights is examined in Sect. 6.2. In Section 6.3, a class of cooperative stochastic

differential games with nontransferable payoffs is developed to illustrate the

derivation of subgame consistent solutions. Subgame consistent cooperative

solutions of the class of NTU games developed in Sect. 6.3 are investigated

in Sect. 6.4. Numerical delineations of the solutions presented in Sect. 6.4 are

given in Sect. 6.5. An analysis on infinite horizon NTU cooperative stochastic

differential games is provided in Sect. 6.6. A chapter appendices containing

proofs are given in Sect. 6.7. Chapter notes are given Sect. 6.8 and problems in

Sect. 6.9.
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6.1 NTU Cooperative Stochastic Differential Games

Consider the two-person cooperative stochastic differential game with initial state

x0 and durationT � t0. The state space of the game is X 2 Rn, with permissible state

trajectories {x(s), t0� s� T}. The state dynamics of the game is characterized by

the vector-valued stochastic differential equations:

dx sð Þ ¼ f s, x sð Þ, u1 sð Þ, u2 sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ, x t0ð Þ ¼ x0; ð1:1Þ

where σ[s, x(s)] is a n� Θ matrix and z(s) is a Θ-dimensional Wiener process and

the initial state x0 is given. LetΩ s, x sð Þ½ � ¼ σ s, x sð Þ½ �σ s, x sð Þ½ �0 denote the covariance
matrix with its element in row h and column ζ denoted by Ωhζ s, x sð Þ½ �, ui 2 Ui

� compR‘ is the control vector of player i, for i 2 1; 2f g.
At time instant s 2 t0; T½ �, the instantaneous payoff of player i, for i 2 1; 2f g, is

denoted by gi[s, x(s), u1(s), u2(s)], and when the game terminates at time T, player
i receives a terminal payment of qi(x(T )). Payoffs are nontransferable across

players. Given a time-varying instantaneous discount rate r(s), for s 2 t0; T½ �, values
received t time after t0 have to be discounted by the factor exp �

ðt
t0

r yð Þdy
� �

. Hence

at time t0, the expected payoff of player i, for i 2 1; 2f g, is given as:

Ji t0; x0ð Þ ¼ Et0

� ðT
t0

gi s, x sð Þ, u1 sð Þ, u2 sð Þ½ �exp �
ðs
t0

r yð Þdy
� �

ds

þ exp �
ðT
t0

r yð Þdy
� �

qi x Tð Þð Þ
���� x t0ð Þ ¼ x0

�
; ð1:2Þ

where Et0 denotes the expectation operator performed at time t0,
We use Γ x0,T � t0ð Þ to denote the game (1.1 and 1.2) and Γ xτ,T � τð Þ to denote

an alternative game with state dynamics (1.1) and payoff structure (1.2) which starts

at time τ 2 t0; T½ �with initial state xτ 2 X. The benchmark noncooperative feedback

Nash equilibrium solution can be characterized by Theorem 1.1 in Chap. 3.

6.1.1 Pareto Optimal Trajectories

Consider the situation when the players agree to cooperate. We useΓc x0,T � t0ð Þ to
denote a cooperative game with dynamics (1.1) and payoffs (1.2). To achieve group

optimality, the players have to consider cooperative outcomes belonging to the

Pareto optimal set. Pareto optimal trajectories forΓc x0,T � t0ð Þ can be identified by
choosing a specific weight α1 2 0;1ð Þ that solves the following stochastic control

problem (See Leitmann (1974), Dockner and Jørgensen (1984) and Jørgensen and

Zaccour (2001)):
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max
u1,u2

J1 t0;x0ð Þþα1J
2 t0;x0ð Þ� ��

max
u1,u2

Et0

�ðT
t0

g1 s,x sð Þ,u1 sð Þ,u2 sð Þ½ �þα1g
2 s,x sð Þ,u1 sð Þ,u2 sð Þ½ �	 


exp �
ðs
t0

r yð Þdy
� �

ds

þ q1 x Tð Þð Þþα1q
2 x Tð Þð Þ� �

exp �
ðT
t0

r yð Þdy
� �����x t0ð Þ¼x0

�
; ð1:3Þ

subject to dynamics (1.1). Note that the problem max
u1, u2

J1 t0; x0ð Þ þ αiJ
2 t0; x0ð Þ� �

is

identical to the problem max
u1, u2

J2 t0; x0ð Þ þ α2J
1 t0; x0ð Þ� �

when α1 ¼ 1=α2.

Invoking the technique developed by Fleming (1969) in Theorem A.3 of the

Technical Appendices, we have

Corollary 1.1 A set of controls u
α1 t0ð Þ
i tð Þ ¼ ψα1 t0ð Þ

i t; xð Þ
n

, for i 2 1; 2f gg provides

an optimal solution to the stochastic control problem (1.3), if there exists twice

continuously differentiable function Wα1 t0ð Þ t; xð Þ : t0; T½ � � Rn ! R satisfying the

partial differential equation:

�W
α1 t0ð Þ
t t; xð Þ � 1

2

Xn
h, ζ¼1

Ωhζ t; xð ÞWα1 t0ð Þ
xhxζ

t; xð Þ ¼

max
u1, u2

�
g1 t; x; u1; u2½ � þ α1g

2 t; x; u1; u2½ �	 

exp �

ðt
t0

r yð Þdy
� �

þWα1 t0ð Þ
x t; xð Þf t; x; u1; u2½ �

�
,

Wα1 t0ð Þ T; xð Þ ¼ exp �r T � t0ð Þ½ � q1 xð Þ þ α1q2 xð Þ½ �: ■

Substituting ψα1 t0ð Þ
1 t; xð Þ and ψα1 t0ð Þ

2 t; xð Þ into (1.1) yields the dynamics of the

Pareto optimal trajectory associated with weight α1:

dx sð Þ¼f s,x sð Þ,ψα1 t0ð Þ
1 s,x sð Þð Þ,ψα1 t0ð Þ

2 s,x sð Þð Þ
h i

dsþσ s,x sð Þ½ �dz sð Þ, x t0ð Þ¼x0: ð1:4Þ

We denote the set containing realizable values of xα1* tð Þ by X
α1 t0ð Þ
t , for t 2 	

t0,T
�
.

The solution to (1.4) yields a Pareto optimal trajectory, which can be expressed

as:

x tð Þ ¼ x0 þ
ðt
t0

f s, x sð Þ,ψα1 t0ð Þ
1 s, x sð Þð Þ,ψα1 t0ð Þ

2 s, x sð Þð Þ
h i

dsþ
ðt
t0

σ s, x sð Þ½ �dz sð Þ:

We denote the set containing realizable values of x(t) along the optimal trajectory

by X
α1 t0ð Þ
t , for t 2 	

t0,T
�
.

Now, consider the cooperative game Γc xτ,T � τð Þwith state dynamics (1.1) and

payoff structure (1.2), which starts at time τ 2 t0; T½ � with initial state xτ 2 Xα1 t0ð Þ
τ .

6.1 NTU Cooperative Stochastic Differential Games 137

http://dx.doi.org/10.1007/978-981-10-1545-8_BM1


We use ψα1 τð Þ
i t; xð Þ to denote the optimal control in Γc xτ,T � τð Þ, for τ 2 t0; T½ � and

t 2 τ; T½ �. Using Definition 1.1 we can characterize the solution of the control

problem max
u1, u2

J1 τ; xτð Þ þ α1J
2 τ; xτð Þ� �

in Γc xτ,T � τð Þ, for τ 2 t0; T½ � and

t 2 τ; T½ �. In particular, we use ψα1 τð Þ
1 t; xð Þ, ψα1 τð Þ

2 t; xð Þ
h i

to denote the optimal

control and Wα1 τð Þ t; xð Þ : τ; T½ � � Rn ! R the corresponding maximized value

function.

Remark 1.1 Invoking Definition 1.1, one can readily show that ψα1 τð Þ
i t; xð Þ ¼ ψα1 sð Þ

i

t; xð Þ at the point (t, x), for i 2 1; 2f g, t0 � τ � s � t � T and x 2 X
α1 t0ð Þ
t . ■

Remark 1.2 Invoking Definition 1.1, one can readily show that Wα1 τð Þ t; xð Þ ¼
Wα1 sð Þ t; xð Þexp �r τ � sð Þ½ �, for t0 � τ � s � t � T and x 2 X

α1 t0ð Þ
t : ■

6.1.2 Individual Player’s Payoffs Under Cooperation

In this section, we present a methodology for the derivation of individual player’s

payoff under cooperation. To do this, we first substitute the optimal controls ψα1 t0ð Þ
1

t; xð Þ and ψα1 t0ð Þ
2 t; xð Þ into the objective functions (1.2) to derive the players’

expected payoff under cooperation with α1 being chosen as the cooperative weight.
Given that x tð Þ ¼ x 2 Xα1*

t , for t 2 τ; T½ �, we define player 1’s expected cooper-

ative payoff over the interval [t, T] as:

Ŵ
α1 t0ð Þi

t; xð Þ ¼
Et0

� ðT
t

gi s, x sð Þ,ψα1 t0ð Þ
1 s, x sð Þð Þ,ψα1 t0ð Þ

2 s, x sð Þð Þ
h i

exp �
ðs
t0

r yð Þdy
� �

ds

þ exp �
ðT
t0

r yð Þdy
� �

qi x Tð Þð Þ
���� x tð Þ ¼ x

�
, for i 2 1; 2f g; ð1:5Þ

where

dx sð Þ ¼ f s, x sð Þ,ψα1 t0ð Þ
1 s, x sð Þð Þ,ψα1 t0ð Þ

2 s, x sð Þð Þ
h i

dsþ σ s, x sð Þ½ �dz sð Þ, x tð Þ ¼ x.

To facilitate the derivation individual players’ cooperative payoffs a mechanism

characterizing player i’s cooperative payoff under payoff weights α1 is given in the
theorem below.
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Theorem 1.1 If there exist continuously functions

Ŵ
α1 t0ð Þi

t; xð Þ : t0; T½ � � Rn ! R, i 2 1; 2f g; satisfying

� Ŵ
α1 t0ð Þi
t t; xð Þ � 1

2

Xn
h, ζ¼1

Ωhζ t; xð ÞŴ α1 t0ð Þi
xhxζ t; xð Þ ¼

gi t, x,ψα1 t0ð Þ
1 t; xð Þ,ψα1 t0ð Þ

2 t; xð Þ
h i

exp �
ðt
t0

r yð Þdy
� �

þ Ŵ
α1 t0ð Þi
x t; xð Þf t, x,ψα1 t0ð Þ

1 t; xð Þ,ψα1 t0ð Þ
2 t; xð Þ

h i
and

Ŵ
α1 t0ð Þi

T; xð Þ ¼ exp �
ðT
t0

r yð Þdy
� �

qi xð Þ

then Ŵ
α1 t0ð Þi

t; xð Þgives player i’s expected cooperative payoff over the interval [t,T]
with α1 being chosen as the weight.

Proof Note that for Δ t ! 0, we can express Ŵ
α1 t0ð Þi

t; xð Þ in (1.5) as:

Ŵ
α1 t0ð Þi

t; xð Þ ¼
Et0

� ðtþΔt

t

gi s, x sð Þ,ψα1 t0ð Þ
1 s, x sð Þð Þ,ψα1 t0ð Þ

2 s, x sð Þð Þ
h i

exp �
ðs
t0

r yð Þdy
� �

ds

þ Ŵ
α1 t0ð Þi

tþ Δ t, xþ Δxð Þ
���� x tð Þ ¼ x

�

¼ Et0

�
gi t, x,ψα1 t0ð Þ

1 t; xð Þ,ψα1 t0ð Þ
2 t; xð Þ

h i
exp �

ðt
t0

r yð Þdy
� �

Δ t

þ Ŵ
α1 t0ð Þi

t; xð Þ þ Ŵ
α1 t0ð Þi
t t; xð ÞΔ t

þ Ŵ
α1 t0ð Þi
x t; xð Þf t, x,ψα1 t0ð Þ

1 t; xð Þ,ψα1 t0ð Þ
2 t; xð Þ

h i
Δ t

þ Ŵ
α1 t0ð Þi
x t; xð Þσ t; xð ÞΔzþ 1

2

Xn
h, ζ¼1

Ωhζ t; xð ÞŴ α1 t0ð Þi
xhxζ t; xð Þ þ o Δ tð Þ

�
for i 2 1; 2f g; ð1:6Þ

where

Δx ¼ f t, x,ψα1 t0ð Þ
1 t; xð Þ,ψα1 t0ð Þ

2 t; xð Þ
h i

Δ tþ σ t; xð ÞΔzþ o Δ tð Þ,
Δz ¼ z tþ Δtð Þ � z tð Þ, andEt0 o Δtð Þ½ �=Δt ! 0 as Δt ! 0

Canceling terms, performing the expectation operator, dividing throughout by Δt
and taking Δt ! 0, we obtain:

6.1 NTU Cooperative Stochastic Differential Games 139



� Ŵ
α1 t0ð Þi
t t; xð Þ � 1

2

Xn
h, ζ¼1

Ωhζ t; xð ÞŴ α1 t0ð Þi
xhxζ t; xð Þ ¼

gi t, x,ψα1 t0ð Þ
1 t; xð Þ,ψα1 t0ð Þ

2 t; xð Þ
h i

exp �
ðt
t0

r yð Þdy
� �

þ Ŵ
α1 t0ð Þi
x t; xð Þf t, x,ψα1 t0ð Þ

1 t; xð Þ,ψα1 t0ð Þ
2 t; xð Þ

h i
, for i 2 1; 2f g: ð1:7Þ

Boundary conditions require:

Ŵ
α1 t0ð Þi

T; xð Þ ¼ exp �
ðT
t0

r yð Þdy
� �

qi x Tð Þð Þ, for i 2 1; 2f g: ð1:8Þ

Hence Theorem 1.1 follows. ■

6.2 Notion of Subgame Consistency

Under cooperation with nontransferable payoffs, the players negotiate to establish

an agreement (optimality principle) on how to play the cooperative game and how

to distribute the resulting payoff. In particular, the chosen optimality principle has

to satisfy group optimality and individual rationality. Subgame consistency requires

that the extension of the solution policy to a later starting time and any possible state

brought about by prior optimal behavior of the players would remain optimal.

Consider the cooperative game Γc x0, T � t0ð Þ in which the players agree to an

optimality principle. In particular, given x0 at time t0, according to the solution

optimality principle the players will adopt

(i) a weight α01 leading to a set of cooperative controls { ψ
α0
1
t0ð Þ

1 t; xð Þ,ψα0
1
t0ð Þ

2 t; xð Þ
h i

,

for t 2 t0; T½ �}, and
(ii) an imputation ξ t0ð Þ1 x0, T � t0; α01

	 

, ξ t0ð Þ2 x0, T � t0; α01

	 
� � ¼ Ŵ
t0 α0

1ð Þ1
t0; x0ð Þ,

�

Ŵ
t0 α0

1ð Þ2
t0; x0ð Þ

�
:

Now consider the game Γc xτ,T � τð Þwhere xτ 2 Xα1 t0ð Þ
τ and τ 2 t0; T½ �, under the

same solution optimality principle the players will adopt

(i) a weight ατ1 leading to a set of cooperative controls { ψ
α τ
1
τð Þ

1 t; xð Þ,ψα τ
1
τð Þ

2 t; xð Þ
h i

,

for t 2 τ; T½ �}, and
(ii) an imputation ξ τð Þ1 τ, T � τ; ατ

1

	 

, ξ τð Þ2 τ,T � τ; ατ

1

	 
� � ¼ Ŵ
τ α τ

1ð Þ1
τ; xτð Þ,

�

Ŵ
τ α τ

1ð Þ2
τ; xτð Þ

�
:
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A formal definition of subgame consistency can be stated as:

Definition 2.1 An optimality principle yielding imputations ξ τð Þ xτ, T � τ; ατ
1

	 

, for

τ 2 t0; T½ � and xτ 2 X
α0
1
t0ð Þ

τ , constitutes a subgame consistent solution to the game

Γc x0,T � t0; α01
	 


if the following conditions are satisfied:

(i) ξ τð Þ xτ,T�τ;ατ
1

	 
¼ ξ τð Þ1 xτ,T�τ;ατ
1

	 

,ξ τð Þ2 xτ,T�τ;ατ

1

	 
� �
; for t0�τ� t�T,

is Pareto optimal;

(ii) ξ τð Þi xτ, T � τ; ατ
1

	 
 � V τð Þi τ; xτð Þ, for i 2 1; 2f g, τ 2 t0; T½ � and xτ 2 X
α0
1
t0ð Þ

τ ; and

(iii)
ξ τð Þi xt, T � t; ατ

1

	 

exp r τ � tð Þ½ � ¼ ξ tð Þi xt, T � t; α t

1

	 

,

for i 2 1; 2f g, t0 � τ � t � T and xt 2 X
α0
1
t0ð Þ

t : ■

Part (i) of Definition 4.1 requires that according to the agreed upon optimality

principle Pareto optimality is maintained at every instant of time. Hence group

rationality is satisfied throughout the game interval. Part (ii) demands individual

rationality to be met throughout the entire game interval. Part (iii) guarantees the

consistency of the solution imputations throughout the game interval in the sense that

the extension of the solution policy to a situation with a later starting time and any

possible state brought about by prior optimal behavior of the players remains optimal.

6.3 A NTU Game for Illustration

Consider a two-person nonzero-sum stochastic differential game with initial state x0
and duration T � t0. The state space of the game is X � R, with permissible state

trajectories {x(s), t0� s� T}. The state dynamics of the game is characterized by

the stochastic differential equations:

dx sð Þ ¼ a� bx sð Þ � u1 sð Þ � u2 sð Þ½ �dsþ σ x sð Þdz sð Þ, x t0ð Þ ¼ x0 2 X; ð3:1Þ

where ui 2 Ui is the control vector of player i, for i 2 1; 2½ �, a, bandσ are positive

constants, and z(s) is a Wiener process. Equation (3.1) could be interpreted as the

stock dynamics of a biomass of renewable resource like forest or fresh water. The

state x(s) represents the resource size and ui(s) the (nonnegative) amount of

resource extracted by player i.
At time t0, the expected payoff of player i 2 1; 2f g is:

Ji t0; x0ð Þ ¼ Et0

� ðT
t0

hiui sð Þ � ciui sð Þ2x sð Þ�1 þ kix sð Þ
h i

exp �r s� t0ð Þ½ �ds

þ exp �r T � t0ð Þ½ �qix Tð Þ
���� x t0ð Þ ¼ x0

�
,

for i 2 1; 2f g; ð3:2Þ

where hi, ci, ki and qi are positive parameters.
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The term hiui(s) reflects player i’s satisfaction level obtained from the consump-

tion of the resource extracted, and ciui sð Þ2x sð Þ�1
measures the cost created in the

extraction process. kix(s) is the benefit to player i related to the existing level of

the resource. Total utility of player i is the aggregate level of satisfaction. Payoffs
in the form of utility are not transferable between players. There exists a time

discount rate r, and utility received at time t has to be discounted by the factor

exp �r t� t0ð Þ½ �. At time T, player i will receive a terminal benefit qix(T)
1/2, where

qi is nonnegative.

6.3.1 Noncooperative Outcome and Pareto Optimal
Trajectories

We use Γ x0,T � t0ð Þ to denote the game (3.1 and 3.2) and Γ xτ,T � τð Þ to denote an
alternative game with state dynamics (3.1) and payoff structure (3.2), which starts

at time τ 2 t0; T½ �with initial state xτ 2 X. Invoking the techniques of Isaacs (1965),
Bellman (1957) and Fleming (1969) as stated in Theorem 1.1 of Chap. 3 a

non-cooperative Nash equilibrium solution of the game Γ xτ,T � τð Þ can be char-

acterized as follows.

Corollary 3.1 A set of feedback strategies u
τð Þ*
i tð Þ ¼ ϕ τð Þ*

i t; xð Þ
n

, for i 2 1; 2f g
o

provides a Nash equilibrium solution to the game Γ xτ, T � τð Þ, if there exist twice
continuously differentiable functions V τð Þi t; xð Þ : τ; T½ � � R ! R, i 2 1; 2f g, satis-
fying the following partial differential equations:

�V
τð Þi
t t;xð Þ�1

2
σ2x2V τð Þi

xx t;xð Þ

¼max
ui

�
hiui�ciu

2
i x

�1þkix
� �

exp �r t�τð Þ½ �þV τð Þi
x t;xð Þ a�bx�ui�uj

� ��
, and

V τð Þi T; xð Þ ¼ exp �r T � τð Þ½ �qix, for i 2 1; 2f g, j 2 1; 2f g and j 6¼ i: ð3:3Þ

■

Performing the indicated maximization in Corollary 3.2 yields:

ϕ τð Þ*
i t; xð Þ ¼ hi � V τð Þi

x exp r t� τð Þð Þ� �
x

2ci
, for i 2 1; 2f gand x 2 X: ð3:4Þ

The feedback Nash equilibrium payoffs of the players in the game Γ xτ,T � τð Þ can
be obtained as:

Proposition 3.1 The value function representing the feedback Nash equilibrium

payoff of player i in the game Γ xτ,T � τð Þ is:
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V τð Þi t; xð Þ ¼ exp �r t� τð Þ½ � Ai tð Þxþ Bi tð Þ½ �, for i 2 1; 2f g and t 2 τ; T½ �; ð3:5Þ

where Ai(t),Bi(t),Aj(t) and Bj(t), for i 2 1; 2f g and j 2 1; 2f g and i 6¼ j, satisfy:

_A i tð Þ ¼ r þ bð ÞAi tð Þ � ki � hi � Ai tð Þ½ �2
4ci

þ Ai tð Þ hj � Aj tð Þ
� �
2cj

,

_B i tð Þ ¼ rBi tð Þ � aAi tð Þ,
Ai Tð Þ ¼ qi, Bi Tð Þ ¼ 0:

Proof Upon substitution of ϕðτÞ 	
i (t, x) from (3.4) into (3.3) yields a set of partial

differential equations. One can readily verify that (3.5) is a solution to this set of

equations. ■

Consider the case where the players agree to cooperate in order to enhance their

payoffs. Let Γc x0,T � t0ð Þ denote a cooperative game with payoff structure (3.1)

and dynamics (3.2) starting at time t0 with initial state x0. If the players agree to

adopt a weight α1 > 0, Pareto optimal trajectories for Γc x0, T � t0ð Þ can be

identified by solving the following stochastic control problem:

max
u1, u2

J1 t0; x0ð Þ þ α1J
2 t0; x0ð Þ� �

�max
u1, u2

Et0

� ðT
t0


h1u1 sð Þ � c1u1 sð Þ2x sð Þ�1 þ k1x sð Þ
h i

þ α1 h2u2 sð Þ � c2u2 sð Þ2x sð Þ�1 þ k2x sð Þ
h i �

exp �r s� t0ð Þ½ �ds

exp �r T � t0ð Þ½ � q1x Tð Þ þ q2x Tð Þ½ �
���� x t0ð Þ ¼ x0

�
; ð3:6Þ

subject to dynamics (3.1). Note that when α1 ¼ 1=α2, the problem

max
u1, u2

J1 t0; x0ð Þ þ α1J
2 t0; x0ð Þ� �

is identical to the problem max
u1, u2

J2 t0; x0ð Þ þ α2J
1

�
t0; x0ð Þg in the sense that max

u1, u2
J2 t0; x0ð Þ þ α2J

1 t0; x0ð Þ� ��max
u1, u2

α2 J1 t0; x0ð Þþ��
α1J

2 t0; x0ð Þ�g yields the same optimal controls as those from max
u1, u2

J1 t0; x0ð Þþ�
α1J

2 t0; x0ð Þg.
In Γc x0,T � t0ð Þ, let α01 be the selected weight according the agreed upon

optimality principle. Invoking Corollary 1.1 in Sect. 6.1 the optimal solution of

the stochastic control problem (3.1) and (3.6) can be characterized as:

Corollary 3.2 A set of controls { ψ
α0
1
t0ð Þ

1 t; xð Þ,ψα0
1
t0ð Þ

2 t; xð Þ
h i

, for t 2 t0; T½ �� provides
an optimal solution to the stochastic control problem max

u1, u2
J1 t0; x0ð Þþ�

α01J
2 t0; x0ð Þg, if there exists twice continuously differentiable function Wα0

1
t0ð Þ t; xð Þ

: t0; T½ � � R ! R satisfying the partial differential equation:
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�W
α0
1
t0ð Þ

t t;xð Þ�1

2
σ2x2W

α0
1
t0ð Þ

xx t;xð Þ¼

max
u1,u2

�
h1u1�c1u

2
1x

�1þk1x
� �	 þα01 h2u2�c2u

2
2x

�1þk2x
� �


exp �r t� t0ð Þ½ �

þW
α0
1
t0ð Þ

x t;xð Þ a�bx�ui�uj
� ��

,

Wα0
1
t0ð Þ T;xð Þ¼exp �r T� t0ð Þ½ � q1x Tð Þþα01q2x Tð Þ� � ð3:7Þ■

Performing the indicated maximization in Corollary 3.2 yields:

ψ
α0
1
t0ð Þ

1 t; xð Þ ¼
h1 �W

α0
1
t0ð Þ

x t; xð Þexp r t� t0ð Þð Þ
h i

x

2c1
, and

ψ
α0
1
t0ð Þ

2 t; xð Þ ¼
α01h2 �W

α0
1
t0ð Þ

x t; xð Þexp r t� t0ð Þð Þ
h i

x

2α01c2
, for t 2 t0; T½ �: ð3:8Þ

The maximized value function Wα0
1
t0ð Þ t; xð Þ of the control problem

max
u1, u2

J1 t0; x0ð Þ þ α01J
2 t0; x0ð Þ� �

can be obtained as:

Proposition 3.2

Wα0
1
t0ð Þ t; xð Þ ¼ exp �r t� t0ð Þ½ � Aα0

1 tð Þxþ Bα0
1 tð Þ

h i
, for t 2 t0; T½ �; ð3:9Þ

where Aα0
1 tð Þ and Bα0

1 tð Þ satisfy:

_A α0
1 tð Þ ¼ r þ bð ÞAα0

1 tð Þ �
h1 � Aα0

1 tð Þ
h i2

4c1

�
α01h2 � Aα0

1 tð Þ
h i2

4α01c2
� k1 � k2,

_B α0
1 tð Þ ¼ r Bα0

1 tð Þ � Aα0
1 tð Þa,

Aα0
1 Tð Þ ¼ q1 þ α01q2 and B

α0
1 Tð Þ ¼ 0: ð3:10Þ

Proof Upon substitution of ψ
α0
1
t0ð Þ

1 t; xð Þ and ψα0
1
t0ð Þ

2 t; xð Þ from (3.10) into (3.7) yields

a partial differential equation. One can readily verify that (3.9) is a solution to this

set of equations. ■

Substituting the partial derivativesW
α0
1
t0ð Þ

x t; xð Þ into ψα0
1
t0ð Þ

1 t; xð Þ and ψα0
1
t0ð Þ

2 t; xð Þ in
(3.9) yields the optimal controls of the problem max

u1, u2
J1 t0; x0ð Þ þ α01J

2 t0; x0ð Þ� �
as:

ψ
α0
1
t0ð Þ

1 t; xð Þ ¼
h1 � Aα0

1 tð Þ
h i

x

2c1
, and

ψ
α0
1
t0ð Þ

2 t; xð Þ ¼
α01h2 � Aα0

1 tð Þ
h i

x

2α01c2
, for t 2 t0; T½ �: ð3:11Þ

144 6 Subgame Consistent Cooperative Solution in NTU Differential Games



Substituting these controls into (3.1) yields the dynamics of the Pareto optimal

trajectory associated with a weight α01. The Pareto optimal trajectory then can be

solved as:

xα
0
1
t0ð Þ tð Þ ¼ Φ α01; t; t0

	 

x0 þ

ðt
t0

Φ�1 α01; s; t0
	 


ads

� �� �2

; ð3:12Þ

where

Φ α01; t; t0
	 
 ¼

exp

� ðt
t0


� b� h1 � Aα0

1 sð Þ
2c1

� α1h2 � Aα0
1 sð Þ

2α01c2
� σ2

2

�
dsþ

ðt
t0

σ dz sð Þ
�
:

We use X
α0
1
t0ð Þ

t to denote the set of realizable values of xα
0
1
t0ð Þ tð Þ generated by (3.12)

at t 2 	
t0,T

�
.

Now, consider the cooperative game Γc xτ,T � τð Þwith state dynamics (3.1) and

payoff structure (3.2), which starts at time τ 2 t0; T½ � with initial state xτ 2 Xα1 t0ð Þ
τ .

Let ατ1 be the selected weight according the agreed upon optimality principle.

Following previous analysis, we can obtain the maximized value function,

optimal controls and optimal trajectory of the control problem max
u1, u2

J1 τ; xτð Þþ�
ατ
1J

2 τ; xτð Þg.

Remark 3.1 One can readily show that when α01 ¼ ατ
1 ¼ α*1, then ψ

α*
1
t0ð Þ

i t; xtð Þ ¼
ψ
α*
1
τð Þ

i t; xtð Þ at the point (t, xt), for i 2 1; 2½ �, t0 � τ � t � T and xt 2 X
α*
1
t0ð Þ

t . ■

6.3.2 Individual Player’s Payoff Under Cooperation

In order to verify individual rationality, we have to derive the players’ expected
payoffs in the cooperative game Γc x*τ ,T � τ

	 

. Let ατ1 be the weight dictated by the

solution optimality principle. We substitute

ψ
ατ
1
τð Þ

1 t; xð Þ ¼ h1 � Aα τ
1 tð Þ� �

x

2c1
and ψ

ατ
1
τð Þ

2 t; xð Þ ¼ ατ
1h2 � Aα τ

1 tð Þ� �
x

2ατ
1c2

into the players’ payoffs and define the following functions.

Definition 3.1 Given that x tð Þ ¼ x
α τ
1
τð Þ

t 2 X
α τ
1
τð Þ

t , for t 2 τ; T½ �, player 1’s expected
payoff over the interval [t, T] under the control problem max

u1, u2
J1 τ; xτð Þþ�

ατ
1J

2 τ; xτð Þg as:
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Ŵ
τ α τ

1ð Þ1
t; xð Þ ¼

Eτ

� ðT
t

h1 h1 � Aα τ
1 sð Þ� �

x sð Þ
2c1

� h1 � Aα τ
1 sð Þ� �2

x sð Þ
4c1

þ k1x sð Þ
" #

exp �r s� τð Þ½ �ds

þ exp �r T � t0ð Þ½ �q1x Tð Þ
���� x tð Þ ¼ x

�
;

and the corresponding expected payoff of player 2 over the interval [t,T] as:

Ŵ
τ α τ

1ð Þ2
t; xð Þ ¼ Eτ

�
ðT
t

h2 ατ
1h2 � Aα τ

1 sð Þ� �
x sð Þ

2ατ
1c2

� ατ
1h2 � Aα τ

1 sð Þ� �2
x sð Þ

4 ατ
1

	 
2
c2

þ kix sð Þ
" #

exp �r s� τð Þ½ �ds

þ exp �r T � τð Þ½ �q2x Tð Þ
���� x tð Þ ¼ x

�
;

where

dx sð Þ ¼ a� bx sð Þ
�

� h1 � Aα τ
1 sð Þ�x	s� 


2c1
� ατ

1h2 � Aα τ
1 sð Þ�x	s� 


2ατ
1c2

�
ds

þ σ x sð Þdz sð Þ, x tð Þ ¼ x: ■

Invoking Theorem 1.1 in Sect. 6.1, player 1’s expected payoff Ŵ
τ α τ

1ð Þ1
t; xτð Þ can

be characterized as:

� Ŵ
τ α τ

1ð Þ1
t t; xtð Þ � 1

2
Ŵ

τ α τ
1ð Þ1

xtxt
t; xtð Þσ2 x2t ¼

h1 h1 � Aα τ
1 tð Þ� �

xt

2c1
� c1 h1 � Aα τ

1 tð Þ� �2
xt

4c21
þ k1xt

" #
exp �r t� τð Þ½ �

þ Ŵ
τ α τ

1ð Þ1
xt

t; xtð Þ a� bxt

�
� h1 � Aα τ

1 tð Þ� �
xt

2c1
� ατ

1h2 � Aα τ
1 tð Þ� �

xt

2ατ
1c2

�
: ð3:13Þ

Boundary conditions require:

Ŵ
τ α τ

1ð Þ1
T; xð Þ ¼ exp �r T � τð Þ½ �q1x: ð3:14Þ

If there exist continuously differentiable functions Ŵ
τ α τ

1ð Þ1
t; xð Þ : τ; T½ � � R ! R

satisfying (3.13) and (3.14), then player 1’s expected payoff in the cooperative

game Γ xτ,T � τð Þ under the cooperation scheme with weight ατ1 is indeed

Ŵ
τ α τ

1ð Þ1
t; xð Þ. The value function Ŵ

τ α τ
1ð Þ1

t; xð Þ indicating the expected payoff of

player 1 under cooperation can be obtained as:
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Proposition 3.3 The function Ŵ
τ α τ

1ð Þ1
t; xð Þ : t0; T½ � � R ! R satisfying (3.13) and

(3.14) can be solved as:

Ŵ
τ α τ

1ð Þ1
t; xð Þ ¼ exp �r t� τð Þ½ � Â

α τ
1

1 tð Þxþ B̂
α τ
1

1 tð Þ
h i

; ð3:15Þ

where Â
α τ
1

1 tð Þ and B̂
α τ
1

1 tð Þ satisfy:

_̂A
α τ
1

1 tð Þ ¼ r þ bþ h1 � Aα τ
1 tð Þ� �

2c1
þ α1h2 � Aα τ

1 tð Þ� �
2α1c2

� �
Â

α1
1 tð Þ

� h1 � Aα τ
1 tð Þ� �

h1 þ Aα τ
1 tð Þ� �

4c1
� k1;

_̂B
α τ
1

1 tð Þ ¼ rB̂
α τ
1

1 tð Þ � aÂ
α τ
1

1 tð Þ, Â
α τ
1

1 Tð Þ ¼ q1 and B̂
α τ
1

1 Tð Þ ¼ 0.

Proof Upon calculating the derivatives Ŵ
τ α τ

1ð Þ1
t t; xð Þ, Ŵ τ α τ

1ð Þ1
xx t; xð Þ, and Ŵ

τ α τ
1ð Þ1

x

t; xð Þ from (3.15) and then substituting them into (3.13) yield Proposition 3.3. ■

Following the above analysis, a continuously differentiable function Ŵ
τ α τ

1ð Þ2
t; xð Þ : τ; T½ � � R ! R giving the player 2’s expected payoff under cooperation can

be obtained as:

Proposition 3.4
Ŵ

α τ
1
τð Þ2

t; xð Þ ¼ exp �r t� τð Þ½ � Â
α τ
1

2 tð Þxþ B̂
α τ
1

2 tð Þ
h i

; ð3:16Þ

where Â
α τ
1

2 tð Þ and B̂
α τ
1

2 tð Þ has to satisfy:

_̂A
α τ
1

2
tð Þ ¼ r þ bþ h1 � Aα τ

1 tð Þ� �
2c1

þ α1h2 � Aα τ
1 tð Þ� �

2α1c2

� �
Â

α τ
1

2 tð Þ

� α1h2 � Aα τ
1 tð Þ� �

α1h2 þ Aα τ
1 tð Þ� �

4α21c2
� k2;

_̂B
α τ
1

2 tð Þ ¼ rB̂
α τ
1

2 tð Þ � aÂ
α τ
1

2 tð Þ, Â α τ
1

2 Tð Þ ¼ q2 and B̂
α τ
1

2 Tð Þ ¼ 0:

Proof Follow the proof of Proposition 3.3. ■

6.4 Subgame Consistent Cooperative Solutions
of the Game

In this section, we present subgame consistent solutions to the cooperative game

Γc x0,T � t0ð Þ. First note that group optimality will be maintained only if

the solution optimality principle selects the same weight α1 for all games
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Γc xτ,T � τð Þ, τ 2 t0; T½ � and xτ 2 Xα1 t0ð Þ
τ . For any chosen α1 to maintain individual

rationality throughout the game interval, the following condition must be satisfied.

ξ τð Þi xτ,T � τ; α1ð Þ ¼ Ŵ
τ α1ð Þi

τ; xτð Þ � V τð Þi τ; xτð Þ,
for i 2 1; 2f g, τ 2 t0; T½ � andxτ 2 Xα1 t0ð Þ

τ : ð4:1Þ

Definition 4.1 We define the set ST
τ ¼ \

τ �t<T
St, for τ 2

�
t0, T



: ■

St represents the set of α1 satisfying individual rationality at time t 2 �
t0, T



and

STτ represents the set of α1 satisfying individual rationality throughout the interval�
τ,T



. In general ST

τ 6¼ ST
t for τ, t 2 �

t0,T


where τ 6¼ t.

6.4.1 Typical Configurations of St

To find out typical configurations of the set St for t 2 �
t0,T



of the game

Γc x0,T � t0ð Þ, we perform extensive numerical simulations with a wide range of

parameter specifications for a, b, σ, h1, h2, k1, k2, c1, c2, q1, q2,T, r, x0. We calculate

the time paths of A1(t),B1(t),A2(t) and B2(t) in Proposition 3.1 for t 2 t0; T½ �. Then
we select weights α1 and calculate the time paths of Â

α1
1 tð Þ, Â α1

2 tð Þ, B̂ α1
1 tð Þ and B̂

α1
2

tð Þ in Propositions 3.3 and 3.4, for t 2 t0; T½ �. At each time instant t 2 t0; T½ �, we
derive the set of α1 that yields Â

α1
i tð Þ � Ai tð Þ and B̂

α1
i tð Þ � Bi tð Þ, for i 2 1; 2½ �, to

derive the set St, for t 2
�
t0, T



.

We denote the locus of the values of α t
1
along t 2 �

t0,T


as curve α

1
and the locus

of the values of α t
1 as curve α1. In particular, typical patterns include:

(i) The curves α
1
and α1 are continuous and move in the same direction over the

entire game duration: either both increase monotonically or both decrease

monotonically (see Fig. 6.1).

(ii) The curves α
1
and α1 are continuous. α1 declines and α1 rises over the entire

game duration (see Fig. 6.2).

(iii) The curves α
1
and α1 are continuous. One of these curves would rise/fall to a

peak/trough and then fall/rise (see Fig. 6.3).

(iv) The set ST
t0
can be nonempty or empty.

6.4.2 Examples of Subgame Consistent Solutions

In this subsection, we present some subgame consistent solutions to Γc x0,T � t0ð Þ.
Solution 4.1 Consider the cooperative differential game Γc x0,T � t0ð Þ with

parameters leading to a set of payoff weights as in Panel (b) of Fig. 6.1. In
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particular, there exist a set of weights ST
t0
6¼ ∅ under which individual rationality is

satisfied throughout the game horizon [0, T] and αT�
1

2 ST
t0
. At initial time 0, in the

cooperative Γc x0,T � t0ð Þ, an optimality principle under which the players to

choose the weight

α*1 ¼ αT�1 , in Γc xτ, T � τð Þ for τ 2 �
t0,T



yields a subgame consistent solution to the cooperative game Γc x0,T � t0ð Þ.

1α curve

1α curve

1α curve

1α curve

1α curve

1α curve

1α curve

1α curve

t0t0

t0 t0

T T

TT

a b

dc

Fig. 6.1 Both upward α
1
and α1 curves and both downward α

1
and α1 curves

T

curve

curve1

1

α

α

t0

Fig. 6.2 Declining α
1
curve

and rising α1 curve
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Proof According to the optimality principle in Solution 4.1, a uniqueα*1 ¼ αT�
1

will

be chosen for all the subgamesΓc xτ, T � τð Þ, for t0 � τ � t < T andxτ 2 X
α*
1
t0ð Þ

τ . The

vector ξ τð Þ xτ,T � τ; α*1
	 
 ¼ Ŵ

τ α*
1ð Þ1

τ; xτð Þ, Ŵ τ α*
1ð Þ2

τ; xτð Þ
� �

; for τ 2 t0; T½ �, yields a
Pareto optimal pair of imputations. Hence part (i) of Definition 2.1 is proved.

One can readily verify that Ŵ
τ α*

1ð Þi
t; xð Þexp r τ � tð Þ½ � ¼ Ŵ

t α*
1ð Þi

t; xð Þ, for

i 2 1; 2f g, t0 � τ � t � T and xt 2 X
α0
1
t0ð Þ

t . Hence part (ii) of Definition 2.1 is

satisfied.

Finally, from Definitions 4.1, one can verify that Ŵ
τ α*

1ð Þi
τ; xτð Þ ¼ exp �r t� τð Þ½ �

Â
α*
1

i tð Þx1=2 þ B̂
α*
1

i tð Þ
h i

� V τð Þi τ; xτð Þ ¼ exp �r½ t� τð Þ� Ai tð Þx1=2 þ Bi tð Þ
� �

; for i 2
1; 2f g, τ 2 t0; T½ � and xτ 2 X

α*
1
t0ð Þ

τ . Hence part (iii) of Definition 2.1 is fulfilled. ■

Solution 4.2 Consider the cooperative differential game Γc x0,T � t0ð Þ with

parameters leading to a set of payoff weights as in Panel (a) of Fig. 6.1. In

particular, there exist a set of weights ST
t0
6¼ ∅ under which individual rationality

is satisfied throughout the game horizon [0, T] andαT�1 2 ST
t0
. At initial time 0, in the

cooperative Γc x0,T � t0ð Þ, an optimality principle under which the players to

choose the weight

α*1 ¼ αT�1 , in Γc xτ,T � τð Þ for τ 2 �
t0, T



yields a subgame consistent solution to the cooperative game Γc x0,T � t0ð Þ.
Proof Follow the proof of Solution 4.1. ■

Solution 4.3 Consider the cooperative differential game Γc x0,T � t0ð Þ with

parameters leading to a set of payoff weights as in Fig. 6.2. In particular, there

exist a set of weights ST
t0
6¼ ∅ under which individual rationality is satisfied

throughout the game horizon [0,T] and αT�
1

	 
0:5
αT�1
	 
0:5 2 ST

t0
, At initial time 0, in

1α

1α

curve

1α curve

curve
1α curve

t0
t0T T

a b

Fig. 6.3 Rising to a peak and then fall curve and falling to a trough and then rise curve

150 6 Subgame Consistent Cooperative Solution in NTU Differential Games



the cooperative Γc x0,T � t0ð Þ, an optimality principle under which the players to

choose the weight

α*1 ¼ αT�
1

	 
0:5
αT�1
	 
0:5

in Γc xτ,T � τð Þ for τ 2 �
t0,T



yields a subgame consistent solution to the cooperative game Γc x0,T � t0ð Þ.
Proof Follow the proof of Solution 4.1. ■

6.5 Numerical Delineation

Numerical delineations of the 4 solutions presented in Sect. 6.4 are given in the

following 4 cases.

Case 5.1 Consider the cooperative game Γc x0,T � tð Þ with the following param-

eter specifications: a ¼ 10, b ¼ 1, σ ¼ 0:05, h1 ¼ 8, h2 ¼ 7, k1 ¼ 1, k2 ¼ 0:5, c1 ¼
1, c2 ¼ 1:2, q1 ¼ 0:8, q2 ¼ 0:4, T ¼ 6, r ¼ 0:02:

The numerical results are displayed in Fig. 6.4. The curve α
1
is the locus of the

values of α t
1 along t 2 �

t0,T


. The curve α1 is the locus of the values of α t

1 along

t 2 �
t0,T



. In particular, the setST

t0
¼ \

t0 �t<T
St ¼ αt01 ; α

T�
1

� � ¼ 1:182686, 1:450783½ �.
Note thatαT�1 2 ST

t0
and αT�1 =2ST

t0
, forτ 2 �

t0,T


. According to Solution 4.1, the players

would agree to the optimality principle of choosing a weight α*1 ¼ αT�
1

¼ 1:182686

throughout the game interval, and a subgame consistent solution to the cooperative

game Γc x0,T � t0ð Þ would result.
Case 5.2 Consider the cooperative game Γc x0,T � tð Þ with the following param-

eter specifications: a ¼ 6, b ¼ 0:8, σ ¼ 0:04, h1 ¼ 8, h2 ¼ 6, k1 ¼ 1, k2 ¼ 0:5, c1 ¼
1, c2 ¼ 1:5, q1 ¼ 3, q2 ¼ 2, T ¼ 3, r ¼ 0:02:

The numerical results are displayed in Fig. 6.5. In particular, the set ST
t0
¼

\
t0 �t<T

St ¼ αt01 ; α
T�
1

� � ¼ 1:246704, 1:443176½ �. Note that αT�1 2 ST
t0
and αT�

1
=2ST

t0
,

t0
1α

t0
1α

T-
1α

T-
1α

= 1.450783

= 1.024445

= 1.871887

*
1α= 1.182686 =

1α curve

1α curve

t0 T

Fig. 6.4 A subgame consistent solution with optimality principle of a weight α1* ¼
α
1
T� ¼ 1:182686
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for τ 2 �
t0,T



. According to Solution 4.2, the players would agree to the optimality

principle of choosing a weight α*1 ¼ αT�1 ¼ 1:443176 throughout the game interval,

and a subgame consistent solution to the cooperative gameΓc x0,T � t0ð Þwould result.
Case 5.3 Consider the cooperative game Γc x0,T � tð Þ with the following param-

eter specifications: a ¼ 10, b ¼ 1:1, σ ¼ 0:04, h1 ¼ 8, h2 ¼ 7, k1 ¼ 1, k2 ¼ 0:5,
c1 ¼ 1, c2 ¼ 1:2, q1 ¼ 3, q2 ¼ 2, T ¼ 3, r ¼ 0:02:

The numerical results are displayed in Fig. 6.6. In particular, the set

ST
t0
¼ \

t0 �t<T
St ¼ αt01 ; α

T�
1

� � ¼ 1:022675, 1:460205½ �. Note that αT�
1

=2ST
t0

and

αT�1 =2ST
t0
, for τ 2 �

t0, T


. According to Solution 4.3, the players would agree to the

optimality principle of choosing a weight α*1 ¼ αT�
1

	 
0:5
αT�1
	 
0:5 ¼ 1:232949

throughout the game interval, and a subgame consistent solution to the cooperative

game Γc x0, T � t0ð Þ would result.

t0
1α = 1.739807

curve
t0
1α = 1.246704

T-
1α = 1.443176 =

T-
1α = 0.910522 

1α

1α curve

t0 T

*
1α

Fig. 6.5 A subgame consistent solution with optimality principle of a weight α1* ¼
α1T� ¼ 1:443176

t0
1α = 1.460205

t0
1α = 1.022675

T-
1α = 1.552765

T-
1α = 0.979004

0.5
1

0.5
1 )()( −− TT αα = 1.232949

1α curve

1α curve

t0 T

Fig. 6.6 A subgame consistent solution with optimality principle of a weight α1* ¼ αT�
1

	 
0:5
αT�1
	 
0:5 ¼ 1:232949
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Case 5.4 Consider the cooperative game Γc x0,T � tð Þwith parameters: a ¼ 6, b ¼
1, σ ¼ 0:03, h1 ¼ 11, h2 ¼ 6, k1 ¼ 1, k2 ¼ 0:5, c1 ¼ 1, c2 ¼ 1:5, q1 ¼ 3, q2 ¼ 2,T ¼
6, r ¼ 0:02:

The numerical results are displayed in Fig. 6.7. In particular, the set

ST
t0
¼ \

t0 �t<T
St ¼ ∅. Hence there does not exist any candidate for a subgame

consistent solution for the game Γc x0,T � t0ð Þ.

6.6 Infinite Horizon Analysis

In this Section we examine the situation when the game horizon approaches

infinity. Consider an infinite-horizon cooperative stochastic differential game in

which player i’s payoff to be maximized is

Ji x0ð Þ
¼ Et0

� ð1
t0

kiui sð Þ½ �1=2 � ci

x sð Þ1=2
ui sð Þ

" #
exp �r s� t0ð Þ½ �ds

���� x t0ð Þ ¼ x0

�
; ð6:1Þ

for i 2 1; 2f g:
The state dynamics of the game is characterized by the stochastic differential

equations:

dx sð Þ ¼ ax sð Þ1=2 � bx sð Þ � u1 sð Þ � u2 sð Þ
h i

dsþ σ x sð Þdz sð Þ, x t0ð Þ ¼ x0 2 X

ð6:2Þ

where ui 2 Ui is the control vector of player i, for i 2 1; 2f g;

1α

1α

curve

curve

1
0tα

1
0tα = 2.559743

= 1.785097

t0

Fig. 6.7 The set ST
to ¼ \

to�t<T
St ¼ ∅ and no candidate for a subgame consistent solution
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a, b, and σ are positive constants, and z(s) is a Wiener process. Equation (6.2)

could be interpreted as the stock dynamics of a biomass of renewable resource (see

Jørgensen and Yeung (1996, 1999)).

Note that the infinite-horizon autonomous problem (6.1 and 6.2) is indepen-

dent of the choice of t0 and dependent only upon the state at the starting time,

that is x0. Hence, we use Γ x;1ð Þ and Γc x;1ð Þ to denote respectively a

noncooperative and a cooperative game with payoffs (6.1) and dynamics

(6.2) with starting state x. Following the previous analysis modified for an

infinite horizon problem, we can obtain the value function reflecting the

expected payoff (in current value) of player i 2 1; 2f g in the noncooperative

game Γ x;1ð Þ as
Proposition 6.1

Vi xð Þ ¼ Aix
1=2 þ Bi

h i
;

where Ai, Bi,Aj and Bj, for i 2 1; 2f g and j 2 1; 2f g and i 6¼ j, satisfy:

r þ 1

8
σ2 þ b

2

� �
Ai � ki

4 ci þ Ai=2
� �þ Aikj

8 cj þ Aj=2
� �2 ¼ 0 , and Bi ¼ a

2r
Ai:

Proof Applying Theorem 5.1 of Chap. 3 to the game (6.1 and 6.2) yields

Proposition 6.1. ■

In the case of cooperation where α1 is the chosen weight under the agreed

optimality principle, the maximized value function reflecting the maximized

expected weighted joint payoff of the stochastic control problem

max
u1, u2

J1 xð Þ þ α1J
2 xð Þ� �

subject to dynamics (6.1) can be obtained as:

Proposition 6.2 Wα1 xð Þ ¼ A
α1x1=2 þ B

α1� �
; where A

α1
and B

α1
satisfy:

r þ 1

8
σ2 þ b

2

� �
A
α1 � k1

4 c1 þ A
α1=2

� �� α1k2
4 c2 þ A

α1=2α1
� � ¼ 0, and B

α1 ¼ a

2r
A
α1 :

Proof Applying Theorem A.4 in the Technical Appendices to the stochastic

control problem max
u1, u2

J1 xð Þ þ α1J
2 xð Þ� �

subject to dynamics (6.1) yields

Proposition 6.2. ■
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The corresponding optimal controls are:

ψα1 1ð Þ
1 xð Þ ¼ k1x

4 c1 þ A
α1=2

� �2 and ψα1 1ð Þ
2 xð Þ ¼ k2x

4 c2 þ A
α1=2α1

� �2 , for x 2 X:

We define player 1’s expected payoff over the interval
�
0,1


under the control

problem max
u1, u2

J1 xð Þ þ α1J
2 xð Þ� �

as:

Ŵ
α1 1ð Þ

xð Þ ¼ E0

� ð1
0

k1x sð Þ1=2
2 c1 þ A

α1=2
� �� c1k1x sð Þ1=2

4 c1 þ A
α1
=2

� �2
" #

exp �rsð Þds
�
;

and the corresponding expected payoff of player 2 over the interval
�
0,1


as:

Ŵ
α1 2ð Þ

xð Þ ¼ E0

� ð1
0

k2x sð Þ1=2
2 c2 þ A

α1=2α1
� �� c2k2x sð Þ1=2

4 c2 þ A
α1=2α1

� �2
" #

exp �rsð Þds
�
;

where

dx sð Þ ¼ ax sð Þ1=2 � bþ


k1

4 c1 þ A
α1=2

� �2 þ k2

4 c2 þ A
α1=2α1

� �2
�
x sð Þ

" #
ds

þ σ x sð Þdz sð Þ, x tð Þ ¼ x:

An infinite-horizon counterpart of Theorem 1.1 characterizing player i’s coopera-
tive payoff under payoff weights α1 is given in the theorem below.

Theorem 6.1 If there exist continuously functions Ŵ
α1 ið Þ

xð Þ : Rn ! R, i 2 1; 2f g;
satisfying

rŴ
α1 ið Þ
t xð Þ � 1

2

Xn
h, ζ¼1

Ωhζ xð ÞŴ α1 ið Þ
xhxζ xð Þ ¼ gi x,ψα1

1 xð Þ,ψα1
2 xð Þ� �

þ Ŵ
α1 ið Þ
x t; xð Þf x,ψα1

1 xð Þ,ψα1
2 xð Þ� �

;

then Ŵ
α1 ið Þ

t; xð Þ gives player i’s expected cooperative payoff when the state is x and
α1 is chosen as the weight.

Proof Following the analysis of developing an infinite horizon counter of

the stochastic control leading to Theorem A.4 in the Technical appendices

one can obtain an infinite-horizon counterpart of Theorem 1.1 in Section as

Theorem 6.1. ■
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Using Theorem 6.1 the expected payoffs of Player 1 and Players 2 under

cooperation can be obtained as follows.

Proposition 6.3 The expected payoffs of Player 1 and Player 2 (in current-value)

under cooperation with bargaining weight α1 are respectively:

Ŵ
α1 1ð Þ

xð Þ ¼ Â
α1
1 x1=2 þ B̂

α1
1

h i
and Ŵ

α1 2ð Þ
xð Þ ¼ Â

α1
2 x1=2 þ B̂

α1
2

h i
;

where

r þ 1

8
σ2 þ b

2

� �
Â

α1
1 � k1

2 c1 þ A
α1=2

� �þ c1k1

4 c1 þ A
α1=2

� �2 þ Â
α1
1 k1

8 c1 þ A
α1=2

� �2
þ Â

α1
1 k2

8 c2 þ A
α1=2α1

� �2 ¼ 0, B̂
α1
1 tð Þ ¼ a

2r
Â

α1
1 ,

r þ 1

8
σ2 þ b

2

� �
Â

α1
2 � k2

2 c2 þ A
α1
=2α1

� �þ c2k2

4 c2 þ A
α1=2α1

� �2
þ Â

α1
2 k1

8 c1 þ A
α1=2

� �2 þ Â
α1
2 k2

8 c2 þ A
α1=2α1

� �2 ¼ 0, and B̂
α1
2 ¼ a

2r
Â

α1
2 :

Proof Follow the Proof of Proposition 3.3 yields Proposition 6.3. ■

Since the solution to the control problem max
u1, u2

J1 xð Þ þ α1J
2 xð Þ� �

yields a Pareto

optimal outcome there exist (i) an α1
1

such that Ŵ
α1
1

2ð Þ
xð Þ ¼ V2 xð Þ and Ŵ

α1
1

1ð Þ

xð Þ � V1 xð Þ, and (ii) an α11 such that Ŵ
α11 1ð Þ

xð Þ ¼ V1 xð Þ and Ŵ
α11 2ð Þ

xð Þ � V2 xð Þ.
Comparing Ŵ

α1 ið Þ
xð Þ in Proposition 6.3 with Vi(x) in Proposition 6.1 shows that

Ŵ
α1 ið Þ

xð Þ � Vi xð Þ if and only if Â
α1
i � Ai, for i 2 1; 2f g.

A condition that would be used in subsequent analysis is:

Condition 6.1 dÂ
α1
1 =dα1 < 0 and dÂ

α1
2 =dα1 > 0.

Proof See Appendix A. ■

Therefore there exists a nonempty set S1 of α1 such that Â
α1
i � Ai, for i 2 1; 2f g.

Using Condition 6.1, we can readily show that

Corollary 6.1 S1 ¼ α1
1
; α11

� �
, where α1

1
is the lowest value of α1 in S

1, and α11
the highest. Moreover, Â

α11
1 ¼ A1 and Â

α1
1

2 ¼ A2. ■

Now consider the case where the players agree to an optimality principle

which chooses the payoff weight α*1 ¼ α1
1

	 
0:5
α11
	 
0:5

. We then show that such

an optimality principle yields a subgame consistent solution in the following

Proposition.
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Proposition 6.4 An optimality principle under which the players agree to choose

the weight

α*1 ¼ α1
1

	 
0:5
α11
	 
0:5 ð6:3Þ

yields a subgame consistent solution to the cooperative game Γc x;1ð Þ:
Proof According to the optimality principle in Proposition 6.4 a unique weight α*1

¼ α1
1

	 
1=2
α11
	 
1=2

is chosen for any game Γc x;1ð Þ. Since α1
1

	 
1=2
α11
	 
1=2 2 S1,

the imputation vector ξ τð Þ x;1ð Þ ¼ Ŵ
α*
1ð Þ1

xð Þ, Ŵ α*
1ð Þ2

xð Þ
� �

yields a Pareto optimal

pair. Hence part (i) of Definition 3.2 is proved.

The present-value (at time τ < t ) counterpart of the current-value payoff

Ŵ
α*
1
ið Þ
xð Þ, i 2 1; 2f g, can be expressed as

Eτ

�
exp �r t� τð Þ½ �

ð1
t

kiψ
α*
1
1ð Þ

i x sð Þ½ �
n o1=2

� ci

x sð Þ1=2
ψ
α*
1
1ð Þ

i x sð Þ½ �
" #

exp �r s� tð Þ½ �ds
���� x tð Þ ¼ x

�
¼ exp �r t� τð Þ½ �Ŵ α*

1
ið Þ
xð Þ:

Hence, part (ii) of Definition 3.2 holds.

Since α1
1

	 
1=2
α11
	 
1=2 2 S1, Ŵ

α*
1
ið Þ
xð Þ � Vi xð Þ, for i 2 1; 2f gandx 2 X. Hence,

part (iii) of Definition 3.2 is satisfied. ■

In addition, the cooperative solution in Proposition 6.4 also satisfies the axioms

of symmetry in the following remark.

Remark 6.1 The Pareto optimal cooperative solution proposed in Proposition 6.4

also satisfies the axioms of symmetry. See Appendix B for proof details. ■

6.7 Chapter Appendices

Appendix A: Proof of Condition 6.1 Note thatWα1 xð Þ ¼ Ŵ
α1 1ð Þ

xð Þ þ α1 Ŵ
α1 2ð Þ

xð Þ,
therefore we haveA

α1 ¼ Â
α1
1 þ α1Â

α1
2 . Since u1 and u2 are nonnegative, Ŵ

α1 1ð Þ
xð Þ � 0

and Ŵ
α1 2ð Þ

xð Þ � 0. Hence A
α1
, Â

α1
1 and Â

α1
2 are nonnegative.

Define the equation r þ 1
8
σ2 þ b

2

� �
A
α1 � k1

4 c1þA
α1=2½ � �

α1k2
4 c2þA

α1=2α1½ � ¼ 0 in Proposi-

tion 6.2 as Ψ A
α1 ; α1

	 
 ¼ 0. Implicitly differentiating Ψ A
α1 ; α1

	 
 ¼ 0 yields:
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dA
α1

dα1
¼

k2 c2 þ A
α1=α1

� �
4 c2 þ A

α1
=2α1

� �2 = r þ 1

8
σ2 þ b

2

� �
þ k1

8 c1 þ A
α1
=2

� �2 þ k2

8 c2 þ A
α1
=2α1

� �2
( )

> 0

ð7:1Þ

Then we define the equation r þ 1
8
σ2 þ b

2

� �
Â

α1
1 � k1

2 c1þA
α1=2½ � þ

c1k1

4 c1þA
α1=2½ �2

þ Â
α1
1 k1

8 c1þA
α1=2½ �2 þ

Â
α1
1 k2

8 c2þA
α1=2α1½ �2 ¼ 0 in Proposition 6.3 as Ψ1 Â

α1
1 ; α1

� �
¼ 0:

The effect of a change in α1 on Â
α1
1 can be obtained as:

dÂ
α1
1

dα1
¼ �

∂Ψ1 Â
α1
1 ; α1

� �
=∂α1

∂Ψ1 Â
α1
1 ; α1

� �
=∂Â

α1
1

; ð7:2Þ

Where

∂Ψ1

∂Â
α1
1

¼ r þ 1

8
σ2 þ b

2

� �
þ k1

8 c1 þ A
α1=2

� �2 þ k2

8 c2 þ A
α1=2α1

� �2 > 0, and ð7:3Þ

∂Ψ1

∂α1
¼

k1 A
α1 � Â

α1
1

h i
8 c1 þ A

α1=2
� �3 dA

α1

dα1
þ Â

α1
1 k2=α12

8 c2 þ A
α1=2α1

� �3 A
α1 � α1

dA
α1

dα1

� �
ð7:4Þ

From Proposition 6.3, we obtain:

Â
α1
2 ¼

k2 c2 þ A
α1=α1

� �
4 c2 þ A

α1=2α1
� �2 = r þ 1

8
σ2 þ b

2

� �
þ k1

8 c1 þ A
α1=2

� �2 þ k2

8 c2 þ A
α1=2α1

� �2
( )

:

ð7:5Þ

Comparing (7.5) with (7.1) shows that dA
α1=dα1 ¼ Â

α1
2 . Upon substituting dA

α1=dα1
by Â

α1
2 and invoking the relation A

α1 ¼ Â
α1
1 þ α1Â

α1
2 , we have

∂Ψ1

∂α1
¼

k1α1 Â
α1
2

� �2

8 c1 þ A
α1
=2

� �3 þ Â
α1
1

� �2

k2=α12

8 c2 þ A
α1
=2α1

� �3 > 0: ð7:6Þ
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Therefore, dÂ
α1
1 =dα1 < 0. Following the above analysis, we have:

dÂ
α1
2

dα1
¼

k2 Â
α1
1

� �2

=α13

8 c2 þ A
α1=2α1

� �3 þ Â
α1
2

� �2

k1

8 c1 þ A
α1=2

� �3
8><
>:

9>=
>;


 r þ 1

8
σ2 þ b

2

� �
þ k1

8 c1 þ A
α1
=2

� �2 þ k2

8 c2 þ A
α1
=2α1

� �2
( )

> 0: ð7:7Þ

Hence Condition 6.1 follows. ■

Appendix B: Proof of Remark 6.1 Let [V(max)1(x),V2(x)] denote a payoff

pair along the Pareto optimal trajectory. From Condition 6.1 and Corollary 6.1,

in the problem max
u1, u2

J1 xð Þ þ α1J
2 xð Þ� �

if α1
1

is chosen, Ŵ
α1
1

2ð Þ
xð Þ ¼ V2 xð Þ and

Ŵ
α1
1

1ð Þ
xð Þ ¼ V maxð Þ1 xð Þ. On the other hand, in the problemmax

u1, u2
J2 xð Þ þ α2J

1 xð Þ� �
,

in order to have player 2’s expected payoff being V2(x) and player 1’s payoff being
V(max)1(x) the weight α12 has to be chosen. Recall that when α1 ¼ 1=α2, the problem

max
u1, u2

J1 xð Þ þ α1J
2 xð Þ� �

is identical to the problem max
u1, u2

J2 xð Þ þ α2J
1 xð Þ� �

. Since

max
u1, u2

J1 xð Þ þ α1
1
J2 xð Þ� �

and max
u1, u2

J2 xð Þ þ α12 J1 xð Þ� �
both yield V2(x) and V1(max)

(x), it is necessary that α1
1

¼ 1=α12 . With similar argument, α11 ¼ 1=α1
2
is verified.

According to Proposition 6.4, in the problem max
u1, u2

J1 xð Þ þ α1J
2 xð Þ� �

an opti-

mality principle under which the players agree to choose the weight α*1 ¼ α1
1

	 
0:5
α11
	 
0:5

yields a subgame consistent solution to the cooperative game Γc x;1ð Þ.
Following the same optimality principle in the problem max

u1, u2
J2 xð Þ þ α2J

1 xð Þ� �
under which the players agree to choose the weight α*2 ¼ α1

2

	 
0:5
α12
	 
0:5

, which is

equivalent to having 1=α*1 ¼ 1= α1
1

	 
0:5
α11
	 
0:5h i

.

Since α*2 ¼ 1=α*1, the controls in the problems max
u1, u2

J1 xð Þ þ α*1J
2 xð Þ� �

and max
u1, u2

J2 xð Þ þ α*2J
1 xð Þ� �

are identical. Hence the axiom of symmetry prevails. ■

6.8 Chapter Notes

The number of studies in cooperative dynamic games with non-transferrable utility/

payoff (NTU) is much less than that of cooperative dynamic games with transfer-

rable payoffs. Leitmann (1974), Dockner and Jørgensen (1984), Hamalainen

et al. (1986), Yeung and Petrosyan (2005), Yeung et al. (2007), de-Paz

et al. (2013), and Marin-Solano (2014) studied continuous-time cooperative
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differential games with non-transferable payoffs. The stringent requirement of

subgame consistency imposes additional hurdles to the derivation of solutions for

cooperative stochastic differential games. In the case when players’ payoffs are

nontransferable, the derivation of solution candidates becomes even more compli-

cated and intractable. In this Chapter, subgame consistent solutions of cooperative

stochastic differential games with nontransferable payoffs are examined and a class

of cooperative stochastic differential games with nontransferable payoffs is used to

illustrate some possible solutions. Theorem 1.1 characterizing the players’ expected
payoff under cooperation was developed by Yeung (2004). Finally, the analysis can

be applied to NTU cooperative differential games with the removal of the stochastic

term σ[s, x(s)]. Finally, the notion of cooperative subgame consistency under

variable payoff weights is examined in the discrete-time case in Chap. 11.

6.9 Problems

1. Consider a two-person stochastic differential game with initial state x 0ð Þ ¼ x0
¼ 14 and duration [0, 4]. The state dynamics of the game is characterized by the

stochastic differential equations:

dx sð Þ ¼ 15� x sð Þ � u1 sð Þ � u2 sð Þ½ �dsþ 0:01x sð Þdz sð Þ;

where ui 2 Ui is the control vector of player i, for i 2 1; 2½ �, and z(s) is a Wiener

process. The state dynamics is the stock dynamics of a biomass of renewable

resource like forest or fresh water. The state x(s) represents the resource size and
ui(s) the (nonnegative) amount of resource extracted by player i.

At time 0, the expected payoff of player 1 is:

J1 0; x0ð Þ ¼ E0

� ð4
0

4u1 sð Þ � u1 sð Þ2x sð Þ�1 þ 0:5x sð Þ
h i

exp �0:05½ �ds

þ 2exp �0:2½ �x Tð Þ
�
, and,

the expected payoff of player 2 is:

J2 0; x0ð Þ ¼ E0

� ð4
0

3u1 sð Þ � 2u1 sð Þ2x sð Þ�1 þ x sð Þ
h i

exp �0:05½ �ds

þ 3exp �0:2½ �x Tð Þ
�
:

If the payoff weight α1 ¼ 0:4 is chosen to maximize the expected weighted

payoff
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max
u1, u2

E0

�
J1 0; x0ð Þ þ α1J

2 0; x0ð Þ
�
; derive the individual payoffs of the players

under cooperation.

2. Consider an infinite horizon stochastic differential game with initial state

x 0ð Þ ¼ x0 ¼ 10. The state dynamics of the game is characterized by the stochas-

tic differential equations:

dx sð Þ ¼ 9� 2x sð Þ � u1 sð Þ � u2 sð Þ½ �dsþ 0:02x sð Þdz sð Þ;

where ui 2 Ui is the control vector of player i, for i 2 1; 2½ �, and z(s) is a Wiener

process.

At time 0, the expected payoff of player 1 is:

J1 0; x0ð Þ ¼ E0

� ð1
0

4u1 sð Þ � u1 sð Þ2x sð Þ�1 þ 0:2x sð Þ
h i

exp �0:05½ �ds
�
; and the

expected payoff of player 2 is:

J2 0; x0ð Þ ¼ E0

� ð1
0

4u1 sð Þ � 2u1 sð Þ2x sð Þ�1 þ 1:5x sð Þ
h i

exp �0:05½ �ds
�
:

If the payoff weight α1 ¼ 0:35 is chosen to maximize the expected weighted

payoff

max
u1, u2

E0

�
J1 0; x0ð Þ þ α1J

2 0; x0ð Þ
�
; derive the individual payoffs of the players

under cooperation.
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Part II

Discrete-Time Analysis



Chapter 7

Subgame Consistent Cooperative Solution
in Dynamic Games

In many game situations, the evolutionary process is in discrete time rather than in

continuous time. An extension of the analysis to a discrete-time dynamic frame-

work is provided in this chapter. In particular, it presents an analysis on subgame

consistent solutions which entail group optimality and individual rationality for

cooperative (deterministic and stochastic) dynamic games. It integrates the works

of Yeung and Petrosyan (2010) and Chapters 12 and 13 of Yeung and Petrosyan

(2012a). We first present in Sect. 7.1 a general formulation of cooperative dynamic

games in discrete time with the noncooperative outcomes, and the notions of group

optimality and individual rationality. Subgame consistent cooperative solutions

with corresponding payoff distribution procedures are derived in Sect. 7.2. An

illustration of cooperative resource extraction in discrete time is given in

Sect. 7.3. A general formulation of coopeartive stochastic dynamic games in

discrete time is given in Sect. 7.4. Subgame consistent cooperative solutions with

corresponding payoff distribution procedures are derived in Sect. 7.5. An illustra-

tion of cooperative resource extraction under uncertainty in discrete time is given in

Sect. 7.6. A heuristic approach to obtaining subgame consistent solutions for

cooperative dynamic games is provided in Sect. 7.7. Section 7.8 contains Appen-

dices of the Chapter. Chapter Notes are given in Sect. 7.9 and problems in

Sect. 7.10. In addition, to make the discrete-time analysis in this Chapter fully in

line with the continuous-time analyses presented in earlier chapters a terminal

condition is added to each player’s payoff in Yeung and Petrosyan (2010, 2012a).

7.1 Cooperative Dynamic Games

In this Section we present the basic framework of discrete-time cooperative

dynamic games.

© Springer Science+Business Media Singapore 2016

D.W.K. Yeung, L.A. Petrosyan, Subgame Consistent Cooperation,
Theory and Decision Library C 47, DOI 10.1007/978-981-10-1545-8_7
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7.1.1 Game Formulation

Consider the general T� stage n� person nonzero-sum discrete-time cooperative

dynamic game with initial state x0. The state space of the game is X2Rm and the

state dynamics of the game is characterized by the difference equation:

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �
; ð1:1Þ

for k2 1; 2; � � �; Tf g�κ and x1 ¼ x0,

where ui
k2Ui � Rmi is the control vector of player i at stage k, xk2X � Rm is the

state of the game.

The payoff of player i is

XT
ζ¼1

gi
ζ xζ; u

1
ζ ; u

2
ζ ; � � �; un

ζ

h i 1

1þ r

� �ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þ r

� �T

; ð1:2Þ

for i2 1; 2; � � �; nf g�N,

where r is the discount rate, and qi
Tþ1 xTþ1ð Þ is the terminal benefit that player

i received at stage T þ 1.

The payoffs of the players are transferable.

7.1.2 Noncooperative Outcome

In this subsection, we characterize the noncooperative outcome of the discrete-time

economic game (1.1 and 1.2). Let ϕ i
k xð Þ, for k2κ and i2N

� �
denote a set of

strategies that provides a feedback Nash equilibrium solution to the game (1.1 and

1.2), and

Vi k; xð Þ ¼
XT
ζ¼k

g i
ζ xζ,ϕ

1
ζ xζð Þ,ϕ2

ζ xζð Þ, � � �,ϕn
ζ xζð Þ

h i
1

1þr

� 	ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T
;

where xk ¼ x, for k2K and i2N, denote the value function indicating the game

equilibrium payoff to player i over the stages from k to T þ 1. A frequently used

way to characterize and derive a feedback Nash equilibrium of the game is provided

in the following theorem.
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Theorem 1.1 A set of strategies ϕ i
k xð Þ, fork2κ and i2N

� �
provides a feedback

Nash equilibrium solution to the game (1.1 and 1.2) if there exist functions Vi(k, x),
for k2K and i2N, such that the following recursive relations are satisfied:

Vi k; xð Þ ¼ max
u i
k



gi
k x,ϕ1

k xð Þ,ϕ2
k xð Þ, � � �,ϕi�1

k xð Þ, ui
k,ϕ

iþ1
k xð Þ, � � �,ϕn

k xð Þ� �
1

1þr

� 	k�1

þ Vi
�
k þ 1, f k x,ϕ1

k xð Þ,ϕ2
k xð Þ, � � �,ϕi�1

k xð Þ, ui
k,ϕ

iþ1
k xð Þ, � � �,ϕn

k xð Þ� � 
;

ð1:3Þ

Vi T þ 1, xð Þ ¼ qi
Tþ1 xð Þ 1

1þ r

� �T

; ð1:4Þ

for i2N and k2κ.

Proof Invoking the discrete-time dynamic programming technique in Theorem

A.5 of the Technical Appendices, Vi(k, x) is the maximized payoff of player i for

given strategies ϕ i
k xð Þ�

, for j2N and j 6¼ ig of the other n� 1 players. Hence a

Nash equilibrium appears. ■

For the sake of exposition, we sidestep the issue of multiple equilibria and focus

on solvable games in which a particular noncooperative Nash equilibrium is chosen

by the players in the entire subgame.

7.1.3 Dynamic Cooperation

Now consider the case when the players agree to cooperate and distribute the

payoff among themselves according to an optimality principle. Two essential

properties that a cooperative scheme has to satisfy are group optimality

and individual rationality. An agreed upon optimality principle entails group

optimality and an imputation to distribute the total cooperative payoff among the

players.

We first examine the group optimal solution and then the condition under which

individual rationality will be maintained.

7.1.3.1 Group Optimality

Maximizing the players’ joint payoff guarantees group optimality in a game where

payoffs are transferable. To maximize their joint payoff the players have to solve

the discrete-time dynamic programming problem of maximizing
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Xn
j¼1

XT
k¼1

�
gj
k xk; u

1
k ; u

2
k ; � � �; un

k

� � 1

1þ r

� �k�1 �
þ
Xn
j¼1

qj
Tþ1 xTþ1ð Þ 1

1þ r

� �T

; ð1:5Þ

subject to (1.1).

Invoking the discrete-time dynamic programming technique an optimal solution

to the control problem (1.1) and (1.5) can be characterized by the theorem below.

Theorem 1.2 A set of strategies ψ i
k xð Þ, fork2κ and i2N

� �
provides an optimal

solution to the problem (1.1) and (1.5) if there exist functionsW(k, x), fork2K, such
that the following recursive relations are satisfied:

W k; xð Þ ¼ max
u1
k
, u2

k
, ���, u n

k


 Xn
j¼1

gj
k xk; u

1
k ; u

2
k ; � � �; un

k

� � 1

1þ r

� �k�1

þW k þ 1, f k xk; u
1
k ; u

2
k ; � � �; un

k

� �� � 
¼
Xn
j¼1

gj
k x,ψ1

k xð Þ,ψ2
k xð Þ, � � �,ψ n

k xð Þ� �
1

1þr

� 	k�1

þW k þ 1, f k x,ψ1
k xð Þ,ψ2

k xð Þ, � � �,ψ n
k xð Þ� �� �

;

ð1:6Þ

W T þ 1, xð Þ ¼
Xn
j¼1

qj
Tþ1 xð Þ 1

1þ r

� �T

: ð1:7Þ

Proof Follow the proof of discrete-time dynamic programming technique in

Theorem A.5 of the Technical Appendices. ■

Substituting the optimal control ψ i
k xð Þ, for k2κ and i2N

� �
into the state

dynamics (1.1), one can obtain the dynamics of the cooperative trajectory as:

xkþ1 ¼ f k xk,ψ
1
k xkð Þ,ψ2

k xkð Þ, � � �,ψ n
k xkð Þ� �

; ð1:8Þ

for k2κ and x1 ¼ x0.

Let x*k
� �T

k¼1
denote the solution to (1.8) and hence the optimal cooperative

path. The total cooperative payoff over the stages from k to T þ 1 can be

expressed as:

W k; x*k
� � ¼XT

ζ¼k

Xn
j¼1

gj
ζ x*ξ ,ψ

1
ζ x*ζ

� 	
,ψ2

ζ x*ζ

� 	
,Λ,ψ n

ζ x*ζ

� 	h i
1

1þr

� 	ζ�1

þ
Xn
j¼1

qj
Tþ1 xTþ1ð Þ 1

1þr

� 	T
, for k2κ: ð1:9Þ

We then proceed to consider individual rationality.
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7.1.3.2 Individual Rationality

The players have to agree on an optimality principle in distributing the total

cooperative payoff among themselves. For individual rationality to be upheld the

payoffs an player receives under cooperation have to be no less than his noncoop-

erative payoff along the cooperative state trajectory. For instance, (i) the players

may share the excess of the total cooperative payoff over the sum of individual

noncooperative payoffs equally, or (ii) they may share the total cooperative payoff

proportionally to their noncooperative payoffs.

Let ξ �; �ð Þ denote the imputation vector guiding the distribution of the total

cooperative payoff under the agreed-upon optimality principle along the coopera-

tive trajectory x*k
� �T

k¼1
. At stage k, the imputation vector according to ξ �; �ð Þ is

ξ k; x*k
� � ¼ ξ1 k; x*k

� �
, ξ2 k; x*k
� �

, . . ., ξn k; x*k
� �� �

, for k2κ.
If for example, the optimality principle specifies that the players share the excess

of the total cooperative payoff over the sum of individual noncooperative payoffs

equally, then the imputation to player i becomes:

ξi k; x*k
� � ¼ Vi k; x*k

� �þ 1

n
W k; x*k
� ��Xn

j¼1

Vj k; x*k
� �" #

; ð1:10Þ

for i2N and k2κ.
If the optimality principle specifies that the players share the total cooperative

proportional to their noncooperative payoffs, then the imputation to player

i becomes:

ξi k; x*k
� � ¼ Vi k; x*k

� �
Xn
j¼1

Vj k; x*k
� �W k; x*k

� �
; ð1:11Þ

for i2N and k2κ.
For individual rationality to be maintained throughout all the stages k2κ, it is

required that:

ξi k; x*k
� � � Vi k; x*k

� �
, for i2N and k2κ: ð1:12Þ

In particular, the above condition guaranties that the payoff allocated to a player

under cooperation will be no less than its noncooperative payoff.

To satisfy group optimality, the imputation vector has to satisfy

W k; x*k
� � ¼Xn

j¼1

ξj k; x*k
� �

, for k2κ: ð1:13Þ

This condition guarantees the highest joint payoffs for the participating players.
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7.2 Subgame Consistent Solutions and Payment
Mechanism

To guarantee dynamical stability in a dynamic cooperation scheme, the solution has

to satisfy the property of subgame consistency. In particular, the specific agreed-

upon optimality principle must remain effective at any stage of the game along the

optimal state trajectory. Since at any stage of the game the players are guided by the

same optimality principles and hence do not have any ground for deviation from the

previously adopted optimal behavior throughout the game. Therefore for subgame

consistency to be satisfied, the imputation ξ �; �ð Þ according to the original optimality

principle has to be maintained at all the T stages along the cooperative trajectory

x*k
� �T

k¼1
. In other words, the imputation

ξ k; x*k
� � ¼ ξ1 k; x*k

� �
, ξ2 k; x*k
� �

, . . ., ξn k; x*k
� �� �

at stage k, ð2:1Þ

for k2 κ
has to be upheld.

Crucial to the analysis is the formulation of a payment mechanism so that the

imputation in (2.1) can be realized.

7.2.1 Payoff Distribution Procedure

Similar to the analysis of cooperative differential games, we first formulate a Payoff

Distribution Procedure (PDP) so that the agreed imputations (2.1) can be realized.

Let Bi
k(x

�
k) denote the payment that player i will receive at stage k under the

cooperative agreement along the cooperative trajectory x*k
� �T

k¼1
.

The payment scheme involving Bi
k(x

�
k) constitutes a PDP in the sense that the

imputation to player i over the stages from k to T can be expressed as:

ξi k; x*k
� � ¼ Bi

k x*k
� �

1
1þr

� 	k�1

þ

 XT

ζ¼kþ1

Bi
ζ x*ζ

� 	
1

1þr

� 	ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T 
ð2:2Þ

for i2N and k2κ.
Using (2.2) one can obtain

ξi k þ 1, x*kþ1

� � ¼ Bi
kþ1 x*kþ1

� �
1

1þr

� 	k
þ

 XT

ζ¼kþ2

Bi
ζ x*ζ

� 	
1

1þr

� 	ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T 
: ð2:3Þ
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Upon substituting (2.3) into (2.2) yields

ξi k; x*k
� � ¼ Bi

k x*k
� � 1

1þ r

� �k�1

þ ξi k þ 1, f k x*k ,ψ k x*k
� �� �� �

; ð2:4Þ

for i2N and k2κ.
A theorem characterizing a formula for Bi

k(x
�
k), for k2κ and i2N, which yields

(2.2) is provided below.

Theorem 2.1 A payment equaling

Bi
k x*k
� � ¼ 1þ rð Þk�1

�
ξi k; x*k
� �� ξi k þ 1, f k x*k ,ψk x*k

� �� �� � �
; ð2:5Þ

for i2N,

given to player i at stage k2 1; 2; � � �; Tf g along the cooperative trajectory x*k
� �T

k¼1

would lead to the realization of the imputation {ξ(k, x�k), for k2κ}.

Proof From (2.4), one can readily obtain (2.5). Theorem 2.1 can also be verified

alternatively by showing that from (2.2)

ξi k; x*k
� � ¼ Bi

k x*k
� �

1
1þr

� 	k�1

þ

 XT

ζ¼kþ1

Bi
ζ x*ζ

� 	
1

1þr

� 	ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T
¼


ξi k; x*k
� �� �ξi k þ 1, f k x*k ,ψ k x*k

� �� �� ��
þ
XT
ζ¼kþ1



ξi ζ; x*ζ

� 	
�
�
ξi ζ þ 1, f ζ x*ζ ,ψζ x*ζ

� 	� 	h i�
¼ ξi k; x*k

� �
;

and ξi T þ 1, x*Tþ1

� � ¼ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T
.

Hence Theorem 2.1 follows. ■

The payment scheme in Theorem 2.1 gives rise to the realization of the impu-

tation guided by the agreed-upon optimal principle and will be used to derive time

(optimal-trajectory-subgame) consistent solutions in the next subsection.

7.2.2 Subgame Consistent Solution

We denote the discrete-time cooperative game with dynamics (1.1) and payoff (1.2)

by Γc(1, x0). We then denote the game with dynamics (1.1) and payoff (1.2) which

starts at stage υ with initial state x�υ by Γc(υ, x�υ). Moreover, we let
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P 1; x0ð Þ ¼ ui
h and Bi

h for h2κ and i2N, ξ 1; x0ð Þ� �
denote the agreed-upon

optimality principle for the cooperative game Γc(1, x0). Let

P x*υ , υ
� � ¼ ui

h and Bi
h for h2 υ, υþ 1, . . ., Tf g and i2N, ξ υ; x*υ

� �� �
denote the

optimality principle of the cooperative game Γc(υ, x�υ) according to the original

agreement.

A theorem characterizing a subgame consistent solution for the discrete-time

cooperative game Γc(1, x0) is presented below.

Theorem 2.2 For the cooperative game Γc(1, x0) with optimality principle

P 1; x0ð Þ ¼ ui
h and Bi

h for h2κ and i2N, ξ 1; x0ð Þ� �
in which

(i) ui
h ¼ ψ i

h x*h
� �

, for h2κ and i2N, is the set of group optimal strategies for the

game Γc(1, x0), and
(ii) Bi

h ¼ Bi
h x*h
� �

, for h2κ and i2N, where

Bi
h x*h
� � ¼ 1þ rð Þh�1

�
ξi h; x*h
� �� ξi k þ 1, f h x*h,ψh x*h

� �� �� � �
; ð2:6Þ

and [ξ1(h, x�h), ξ
2(h, x�h), . . ., ξ

i(h, x�h)], is the imputation according to the optimality

principle P(h, x�h);
is subgame consistent.

Proof Follow the proof of the continuous-time analog in Theorem 2.2 of

Chap. 3. ■

When all players are using the cooperative strategies, the payoff that player iwill

directly receive at stage k given that along the cooperative trajectory x*k
� �T

k¼1
is

gi
k x*k ,ψ

1
k x*k
� �

,ψ2
k x*k
� �

, . . .,ψ n
k x*k
� �

, x*kþ1

� �
:

However, according to the agreed upon imputation, player i will receive Bi
k(x

�
k)

at stage k. Therefore a side-payment

ϖ i
k x*k
� � ¼ Bi

k x*k
� �� gi

k x*k ,ψ
1
k x*k
� �

,ψ2
k x*k
� �

, . . .,ψ n
k x*k
� �

, x*k
� �

; ð2:7Þ

for k2κ and i2N,

will be given to player i to yield the cooperative imputation ξi(k, x�k).

7.3 An Illustration in Cooperative Resource Extraction

Consider an economy endowed with a renewable resource and with two resource

extractors (firms). The lease for resource extraction begins at stage 1 and ends at

stage 3 for these two firms. Let uik denote the amount of resource extracted by firm

172 7 Subgame Consistent Cooperative Solution in Dynamic Games

http://dx.doi.org/10.1007/978-981-10-1545-8_3


i at stage k, for i2 1; 2f g. Let Ui be the set of admissible extraction rates, and

xk2X � Rþ the size of the resource stock at stage k. The extraction cost for firm

i2 1; 2f g depends on the quantity of resource extracted uik, the resource stock size

xk, and cost parameters c1 and c2. The extraction cost for firm i at stage k is specified

as ci(u
i
k)
2/xk. The price of the resource is P.

The profits that firm 1 and firm 2 will obtain at stage k are respectively:

Pu1k �
c1
xk

u1k
� �2� �

and Pu2k �
c2
xk

u2k
� �2� �

: ð3:1Þ

In stage 4, the firms will receive a salvage value equaling qx4.
The growth dynamics of the resource is governed by the difference equation:

xkþ1 ¼ xk þ a� bxk �
X2
j¼1

uj
k; ð3:2Þ

for k2 1; 2; 3f g and x1 ¼ x0.
There exists an extraction constraint that human harvesting can at most exploit

Y proportion of the existing biomass, hence u1k þ u2k � Yxk. Moreover b < 1� Y.
The payoff of extractor i2 1; 2f g is to maximize the present value of the stream of

future profits:

X3
k¼1

Pui
k �

ci
xk

u i
k

� �2� �
1

1þ r

� �k�1

þ 1

1þ r

� �3

qx4, for i2 1; 2f g; ð3:3Þ

subject to (3.2).

Invoking Theorem 1.1, one can characterize the noncooperative equilibrium

strategies in a feedback solution for game (3.2 and 3.3). In particular, a set of

strategies ϕ i
k xð Þ, for k2 1; 2; 3f g and i2 1; 2f g� �

provides a Nash equilibrium

solution to the game (3.2 and 3.3) if there exist functions Vi(k, x), for i2 1; 2f g
and k2 1; 2; 3f g, such that the following recursive relations are satisfied:

Vi k; xð Þ ¼ max
u i
k



Pui

k �
ci
x

u i
k

� �2h i 1

1þ r

� �k�1

þVi k þ 1, xþ a� bx� ui
k � ϕ j

k xð Þ
h i 

, for k2 1; 2; 3f g;

Vi 4; xð Þ ¼ 1
1þr

� 	3
qx: ð3:4Þ

Performing the indicated maximization in (3.4) yields:

P� 2ciu
i
k

x

� �
1

1þ r

� �k�1

� V i
xkþ1

k þ 1, xþ a� bx� ui
k � ϕ j

k xð Þ
h i

¼ 0; ð3:5Þ

for i2 1; 2f g and k2 1; 2; 3f g.
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From (3.5), the game equilibrium strategies can be expressed as:

ϕ i
k xð Þ ¼

�
P� V i

xkþ1
k þ 1, xþ a� bx�

X2
‘¼1

ϕ ‘
k xð Þ

" #
1þ rð Þk�1

�
x

2ci
; ð3:6Þ

for i2 1; 2f g and k2 1; 2; 3f g.
The game equilibrium profits of the firms can be obtained as:

Proposition 3.1 The value function indicating the game equilibrium profit of

firm i is:

Vi k; xð Þ ¼ Ai
kxþ Ci

k

� �
, for i2 1; 2f g and k2 1; 2; 3f g; ð3:7Þ

where Ai
k and Ci

k, for i2 1; 2f g and k2 1; 2; 3f g, are constants in terms of the

parameters of the game (3.2 and 3.3).

Proof See Appendix A of this Chapter. ■

Substituting the relevant derivatives of the value functions in Proposition 3.1

into the game equilibrium strategies (3.6) yields a noncooperative feedback

equilibrium solution of the game (3.2 and 3.3).

Now consider the case when the extractors agree to maximize their joint

profit and share the excess of cooperative gains over their noncooperative

payoffs equally. To maximize their joint payoff, they solve the problem of

maximizing

X2
j¼1

X3
k¼1

Puj
k �

cj
xk

u j
k

� 	2� �
1

1þ r

� �k�1

þ 2
1

1þ r

� �3

qx4 ð3:8Þ

subject to (3.2).

Invoking Theorem 1.2, one can characterize the optimal controls in the dynamic

programming problem (3.2) and (3.8). In particular, a set of control strategies

ψ i
k xð Þ, for k2 1; 2; 3f g and i2 1; 2f g� �

provides an optimal solution to the problem

(3.2) and (3.8) if there exist functionsW(k, x):R ! R, for k2 1; 2; 3f g, such that the
following recursive relations are satisfied:

W k; xð Þ ¼ max
u1
k
, u2

k


 X2
j¼1

Puj
k �

cj
x

u j
k

� 	2� �
1

1þ r

� �k�1

þW k þ 1, xþ a� bx�
X2
j¼1

uj
k

" # 
, for k2 1; 2; 3f g:

W 4; xð Þ ¼ 2 1
1þr

� 	3
qx: ð3:9Þ
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Performing the indicated maximization in (3.9) yields:

P� 2ciu
i
k

x

� �
1

1þ r

� �k�1

�Wxkþ1
k þ 1, xþ a� bx�

X2
j¼1

uj
k

" #
¼ 0; ð3:10Þ

for i2 1; 2f g and k2 1; 2; 3f g.
In particular, the optimal cooperative strategies can be obtained from (3.10) as:

ui
k ¼

�
P�Wxkþ1

k þ 1, xþ a� bx�
X2
j¼1

uj
k

" #
1þ rð Þk�1

�
x

2ci
; ð3:11Þ

for i2 1; 2f g and k2 1; 2; 3f g.
The firms’ joint profit under cooperation can be obtained as:

Proposition 3.2 The value function indicating the maximized joint payoff is

W k; xð Þ ¼ Akxþ Ck½ 	, for k2 1; 2; 3f g; ð3:12Þ

where Ak and Ck, for k2 1; 2; 3f g, are constants in terms of the parameters of the

problem (3.8) and (3.2).

Proof See Appendix B of this Chapter. ■

Using (3.11) and Proposition 3.2, the optimal cooperative strategies of the

players can be expressed as:

ψ i
k xð Þ ¼ P� Akþ1 1þ rð Þk�1

h i x

2ci
, for i2 1; 2f g and k2 1; 2; 3f g: ð3:13Þ

Substituting ψ i
k(x) from (3.13) into (3.2) yields the optimal cooperative state

trajectory:

xkþ1 ¼ xk þ a� bxk �
X2
j¼1

P� Akþ1 1þ rð Þk�1
h i xk

2cj
; ð3:14Þ

for k2 1; 2; 3f g and x1 ¼ x0.
Dynamics (3.14) is a linear difference equation readily solvable by standard

techniques. Let x*k , for k2 1; 2; 3f g� �
denote the solution to (3.14).

Since the extractors agree to share the excess of cooperative gains over their

noncooperative payoffs equally, an imputation

ξi k; x*k
� � ¼ Vi k; x*k

� �þ 1

2
W k; x*k
� ��X2

j¼1

Vj k; x*k
� �" #

¼ Ai
kx

*
k þ Ci

k

� �þ 1

2
Akx

*
k þ Ck

� ��X2
j¼1

Aj
kx

*
k þ Cj

k

� 	" #
; ð3:15Þ

for k2 1; 2; 3f g and i2 1; 2f g has to be maintained.
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Invoking Theorem 2.1, if x*k2X is realized at stage k a payment equaling

Bi
k x*k
� � ¼ 1þ rð Þk�1

�
ξi k; x*k
� �� ξi k þ 1, f k x*k ,ψ k x*k

� �� �� ��
¼ 1þ rð Þk�1



Ai
kx

*
k þ Ci

k

� �þ 1

2
Akx

*
k þ Ck

� ��X2
j¼1

Aj
kx

*
k þ Cj

k

� 	 !

�
�
Ai
kþ1x

*
kþ1þ Ci

kþ1

� �þ 1

2
Akþ1x

*
kþ1þ Ckþ1

� ��X2
j¼1

Aj
kþ1x

*
kþ1þ Cj

kþ1

� 	 !�
,

ð3:16Þ

for i2 {1,2};

given to player i at stage k2κ would lead to the realization of the imputation(3.15).

A subgame consistent solution can be readily obtained from (3.13), (3.15) and

(3.16).

7.4 Cooperative Stochastic Dynamic Games

In this Section we present the basic framework of discrete-time cooperative sto-

chastic dynamic games.

7.4.1 Game Formulation

Consider the general T� stage n� person nonzero-sum discrete-time cooperative

stochastic dynamic game with initial state x0. The state space of the game is X2Rm

and the state dynamics of the game is characterized by the stochastic difference

equation:

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �þ Gk xkð Þθk; ð4:1Þ

for k2 1; 2; � � �; Tf g�κ and x1 ¼ x0;

where ui
k2Rmi is the control vector of player i at stage k, xk2X is the state, and θk

is a set of statistically independent random variables.

The objective of player i is

Eθ1,θ2, ���,θT


 XT
ζ¼1

gi
ζ xζ; u

1
ζ ; u

2
ζ ; . . .; u

n
ζ

h i
1

1þr

� 	ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T 
,

for i2 1; 2; . . .; nf g�N; ð4:2Þ

where r is the discount rate and Eθ1,θ2, ���,θT is the expectation operation with respect

to the statistics of θ1, θ2, � � �, θT .
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The payoffs of the players are transferable.

We then characterize the noncooperative outcome of the discrete-time stochastic

economic game (4.1 and 4.2). Let ϕ i
k xð Þ, for k2κ and i2N

� �
denote a set of

strategies that provides a feedback Nash equilibrium solution (if it exists) to the

game (4.1 and 4.2), and

Vi k; xð Þ ¼ Eθk ,θkþ1, ���,θT


 XT
ζ¼k

g i
ζ xζ,ϕ

1
ζ xζð Þ,ϕ2

ζ xζð Þ, . . .,ϕn
ζ xζð Þ

h i 1

1þ r

� �ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þ r

� �T 
;

where xk ¼ x, for k2K and i2N, denote the value function indicating the expected

game equilibrium payoff to player i over the stages from k to T þ 1.

A frequently used way to characterize and derive a feedback Nash equilibrium of

the game is provided in the theorem below.

Theorem 4.1 A set of strategies ϕ i
k xð Þ, for k2κ and i2N

� �
provides a feedback

Nash equilibrium solution to the game (4.1 and 4.2) if there exist functions Vi(k, x),
for k2K and i2N, such that the following recursive relations are satisfied:

Vi k; xð Þ ¼ max
u i
k

Eθk



gi
k

�
x,ϕ1

k xð Þ,ϕ2
k xð Þ, . . .,ϕi�1

k xð Þ, ui
k,ϕ

iþ1
k xð Þ, . . .

� � �,ϕn
k xð Þ� 1

1þr

� 	k�1

þ Vi k þ 1,ef i
k x; ui

k

� �þ Gk xð Þθk
h i

¼ Eθk



gi
k

�
x,ϕ1

k xð Þ,ϕ2
k xð Þ, . . .,ϕn

k xð Þ 1
1þr

� 	k�1

þVi k þ 1, f k x,ϕ1
k xð Þ,ϕ2

k xð Þ, . . .,ϕn
k xð Þ� �þ Gk xð Þθk

� � ð4:3Þ

Vi T þ 1, xð Þ ¼ qi
Tþ1 xð Þ 1

1þ r

� �T

; ð4:4Þ

for i2N and k2κ,

where ef i
k x; ui

k

� � ¼ f k x,ϕ1
k xð Þ,ϕ2

k xð Þ, . . .,ϕi�1
k xð Þ, ui

k,ϕ
iþ1
k xð Þ, . . .,ϕn

k xð Þ� �
and Eθk

is the expectation operation with respect to the statistics of θk.

Proof Invoking the discrete-time stochastic dynamic programming technique in

Theorem A.6 of the Technical Appendices, Vi(k, x) is the maximized payoff of

player i for given strategies ϕ i
k xð Þ�

, for j2N and j 6¼ ig of the other n� 1 players.

Hence a Nash equilibrium appears. ■

Again, for the sake of exposition, we sidestep the issue of multiple equilibria and

focus on solvable games in which a particular noncooperative Nash equilibrium is

chosen by the players in the entire subgame.
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7.4.2 Dynamic Cooperation under Uncertainty

Now consider the case when the players agree to cooperate and distribute the payoff

among themselves according to an optimality principle. Once again, the essential

properties of group optimality and individual rationality have to be satisfied. An

agreed upon optimality principle entails group optimality and an imputation to

distribute the total cooperative payoff among the players.

We first examine the group optimal solution and then the condition under which

individual rationality will be maintained.

7.4.2.1 Group Optimality

Maximizing the players’ expected joint payoff guarantees group optimality in a

game where payoffs are transferable. To maximize their expected joint payoff the

players have to solve the discrete-time stochastic dynamic programming problem of

maximizing

Eθ1,θ2, ���,θT


Xn
j¼1

XT
k¼1

�
gj
k xk; u

1
k ; u

2
k ; . . .; u

n
k

� �
1

1þr

� 	k�1
�

þ
Xn
j¼1

qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T 
ð4:5Þ

subject to (4.1).

Invoking the discrete-time stochastic dynamic programming technique an opti-

mal solution to the problem (4.1) and (4.5) can be characterized in the following

theorem.

Theorem 4.2 A set of strategies ψ i
k xð Þ, for k2κ and i2N

� �
, provides an optimal

solution to the problem (4.1) and (4.5) if there exist functionsW(k, x), fork2K, such
that the following recursive relations are satisfied:

W k; xð Þ ¼ max
u1
k
, u2

k
, ..., u n

k

Eθk


Xn
j¼1

gj
k x; u1k ; u

2
k ; . . .; u

n
k

� � 1

1þ r

� �k�1

þW k þ 1, f k x; u1k ; u
2
k ; . . .; u

n
k

� �þ Gk xð Þθk
� � 

¼ Eθk


 Xn
j¼1

gj
k x,ψ1

k xð Þ,ψ2
k xð Þ, . . .,ψ n

k xð Þ� �
 1

1þ r

� �k�1

þW k þ 1, f k x,ψ1
k xð Þ,ψ2

k xð Þ, . . .,ψ n
k xð Þ� �þ Gk xð Þθk

� � 
, ð4:6Þ

W T þ 1, xð Þ ¼
Xn
j¼1

qj
Tþ1 xð Þ 1

1þ r

� �T

: ð4:7Þ
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Proof Follow the proof of the discrete-time stochastic dynamic programming

technique in Theorem A.6 of the Technical Appendices. ■

Substituting the optimal control ψ i
k xð Þ, for k2κ and i2N

� �
into the state

dynamics (4.1), one can obtain the dynamics of the cooperative trajectory as:

xkþ1 ¼ f k xk,ψ
1
k xkð Þ,ψ2

k xkð Þ, . . .,ψ n
k xkð Þ� �þ Gk xkð Þθk; ð4:8Þ

for k2κ and x1 ¼ x0.
We use X�

k to denote the set of realizable values of xk at stage k generated by

(4.8). The term x*k 2X*
k is used to denote an element in X�

k .

The term W(k, x�k) gives the expected total cooperative payoff over the stages

from k to T þ 1 if x*k 2X*
k is realized at stage k2κ.We then proceed to consider

individual rationality.

7.4.2.2 Individual Rationality

The players have to agree to an optimality principle in distributing the total

cooperative payoff among themselves. For individual rationality to be upheld the

expected payoffs an player receives under cooperation have to be no less than his

expected noncooperative payoff along the cooperative state trajectory. Let ξ �; �ð Þ
denote the imputation vector guiding the distribution of the total cooperative

payoff under the agreed-upon optimality principle along the cooperative trajectory

x*k
� �T

k¼1
. At stage k, the imputation vector according to ξ �; �ð Þ is

ξ k; x*k
� � ¼ ξ1 k; x*k

� �
, ξ2 k; x*k
� �

, . . ., ξn k; x*k
� �� �

, for k2κ.
For individual rationality to be maintained throughout all the stages k2κ, it is

required that:

ξi k; x*k
� � � Vi k; x*k

� �
, for i2N and k2κ:

In particular, the above condition guaranties that the expected payoff allocated to

any player under cooperation will be no less than its expected noncooperative

payoff.

To satisfy group optimality, the imputation vector has to satisfy

W k; x*k
� � ¼Xn

j¼1

ξj k; x*k
� �

, for k2κ:

This condition guarantees the highest expected joint payoffs for the participating

players.

If the optimality principle specifies that the players share the excess of the

expected total cooperative payoff over the sum of expected individual noncooper-

ative payoffs equally, then the imputation to player i becomes:
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ξi k; x*k
� � ¼ Vi k; x*k

� �þ 1

n
W k; x*k
� ��Xn

j¼1

Vj k; x*k
� �" #

;

for i2N and k2κ.
If the optimality principle specifies that the players share the expected total

cooperative proportional to their expected noncooperative payoffs, then the impu-

tation to player i becomes:

ξi k; x*k
� � ¼ Vi k; x*k

� �
Xn
j¼1

Vj k; x*k
� �W k; x*k

� �
;

for i2N and k2κ.

7.5 Subgame Consistent Solutions and Payment
Mechanism

Now, we proceed to consider dynamically stable solutions in cooperative stochastic

dynamic games. To guarantee dynamical stability in a stochastic dynamic cooper-

ation scheme, the solution has to satisfy the property of subgame consistency. A

cooperative solution is subgame-consistent if an extension of the solution policy to

a subgame starting at a later time with any realizable state brought about by prior

optimal behavior would remain optimal under the agreed upon optimality principle.

In particular, subgame consistency ensures that as the game proceeds players are

guided by the same optimality principle at each stage of the game, and hence do not

possess incentives to deviate from the previously adopted optimal behavior. Yeung

and Petrosyan (2010) developed conditions leading to subgame consistent solutions

in stochastic differential games.

For subgame consistency to be satisfied, the imputation ξ �; �ð Þ according to the

original optimality principle has to be maintained at all the T stages along the

cooperative trajectory x*k
� �T

k¼1
. In other words, the imputation

ξ k; x*k
� � ¼ ξ1 k; x*k

� �
, ξ2 k; x*k
� �

, . . ., ξn k; x*k
� �� �

at stage k, for k2κ; ð5:1Þ

has to be upheld.

Crucial to the analysis is the formulation of a payment mechanism so that the

imputation in (5.1) can be realized.
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7.5.1 Payoff Distribution Procedure

Following the analysis of Yeung and Petrosyan (2010), we formulate a discrete-

time Payoff Distribution Procedure (PDP) so that the agreed imputations(5.1) can

be realized. Let Bi
k(x

�
k) denote the payment that player i will receive at stage k under

the cooperative agreement if x*k 2X*
k is realized at stage k2κ.

The payment scheme involving Bi
k(x

�
k) constitutes a PDP in the sense that if

x*k2X*
k is realized at stage k the imputation to player i over the stages from k to T can

be expressed as:

ξi k; x*k
� � ¼ Bi

k x*k
� �

1
1þr

� 	k�1

þEθk ,θkþ1, ...,θT


 XT
ζ¼kþ1

Bi
ζ x*ζ

� 	
1

1þr

� 	ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T 
ð5:2Þ

for i2N and k2κ.
A theorem characterizing a formula for Bi

k(x
�
k), for k2κ and i2N, which yields

(5.2) is provided below.

Theorem 5.1 A payment equaling

Bi
k x*k
� � ¼ 1þ rð Þk�1



ξi k; x*k
� ��Eθk

�
ξi k þ 1, f k x*k ,ψ k x*k

� �� �þ Gk x*k
� �

θk
� ��

;

ð5:3Þ

for i2N,

given to player i at stage k2κ, if x*k 2X*
k would lead to the realization of the

imputation ξ k; x*k
� �

, for k2κ
� �

.

Proof Using (5.2) one can obtain

ξi k þ 1, x*kþ1

� � ¼ Bi
kþ1 x*kþ1

� �
1

1þr

� 	k
þEθkþ1,θkþ3, ...,θT


 XT
ζ¼kþ2

Bi
ζ x*ζ

� 	
1

1þr

� 	ζ�1

þ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T 
:

ð5:4Þ

Upon substituting (5.4) into (5.2) yields

ξi k; x*k
� � ¼ Bi

k x*k
� �

1
1þr

� 	k�1

þEθk

�
ξi k þ 1, f k x*k ,ψ k x*k

� �� �þ Gk x*k
� �

θk
� �� ð5:5Þ

for i2N and k2κ.
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Hence Theorem 5.1 follows. ■

The payment scheme in Theorem 5.1 gives rise to the realization of the impu-

tation guided by the agreed-upon optimal principle and will be used to derive

subgame consistent solutions in the next subsection.

7.5.2 Subgame Consistent Solution

We denote the discrete-time cooperative game with dynamics (4.1) and payoff (4.2)

by Γc(1, x0). Then we denote the game with dynamics (4.1) and payoff (4.2)

which starts at stage υ � 1 with initial state x*υ2X*
υ by Γc(υ, x�υ). Moreover, we

let P 1; x0ð Þ ¼ ui
h and Bi

h for h2κ and i2N, ξ 1; x0ð Þ� �
denote the agreed-upon

optimality principle for the cooperative game Γc(1, x0). Let

P x*υ , υ
� � ¼ ui

h and Bi
h for h2 υ, υþ 1, . . ., Tf g and i2N, ξ υ; x*υ

� �� �
denote the opti-

mality principle of the cooperative game Γc(υ, x�υ) according to the original

agreement.

A theorem characterizing a subgame consistent solution for the discrete-time

cooperative game Γc(1, x0) is presented below.

Theorem 5.2 For the cooperative game Γc(1, x0) with optimality principle

P 1; x0ð Þ ¼ ui
h x*h
� �

and Bi
h x*h
� �

for h2κ and i2N and x*h2X*
h, ξ 1; x0ð Þ� �

in which

(i) ui
h x*h
� � ¼ ψ i

h x*h
� �

, for h2κ and i2N and x*h2X*
h, is the set of group optimal

strategies for the game Γc(1, x0), and
(ii) Bi

h x*h
� � ¼ Bi

h x*h
� �

, for h2κ and i2N and x*h2X*
h, where

Bi
h x*h
� � ¼ 1þ rð Þh�1



ξi h; x*h
� �� Eθh

�
ξi hþ 1, f h x*h,ψh x*h

� �� �þ Gh x*h
� �

θh
� ��

;

ð5:6Þ

and ξ1 h; x*h
� �

, ξ2 h; x*h
� �

, . . ., ξi h; x*h
� �� �2P h; x*h

� �
is the imputation according to

optimality principle P(h, x�h);
is subgame consistent.

Proof Follow the proof of the continuous-time analog in Theorem 5.2 of

Chap. 7. ■

When all players are using the cooperative strategies, the payoff that player iwill

directly receive at stage k given that x*k 2X*
k is

gi
k x*k ,ψ

1
k x*k
� �

,ψ2
k x*k
� �

, � � �,ψ n
k x*k
� �� �

:

182 7 Subgame Consistent Cooperative Solution in Dynamic Games

http://dx.doi.org/10.1007/978-981-10-1545-8_7


However, according to the agreed upon imputation, player i will receive Bi
k(x

�
k)

at stage k. Therefore a side-payment

ϖ i
k x*k
� � ¼ Bi

k x*k
� �� gi

k x*k ,ψ
1
k x*k
� �

,ψ2
k x*k
� �

, . . .,ψ n
k x*k
� �� �

; ð5:7Þ

for k2κ and i2N,

will be given to player i to yield the cooperative imputation ξi(k, x�k).

7.6 Cooperative Resource Extraction under Uncertainty

Consider an economy endowed with a renewable resource and with two resource

extractors (firms). The lease for resource extraction begins at stage 1 and ends at

stage 3 for these two firms. Let uik denote the rate of resource extraction of firm i at

stage k, for i2 1; 2f g. Let Ui be the set of admissible extraction rates, and xk2X
� Rþ the size of the resource stock at stage k. The extraction cost for firm i2 1; 2f g
depends on the quantity of resource extracted uik, the resource stock size xk, and cost
parameters c1 and c2. In particular, extraction cost for firm i at stage k is specified as

ci(u
i
k)
2/xk. The price of the resource is P.

The profits that firm 1 and firm 2 will obtain at stage k are respectively:

Pu1k �
c1
xk

u1k
� �2� �

and Pu2k �
c2
xk

u2k
� �2� �

: ð6:1Þ

In stage 4, the firms will receive a salvage value equaling qx4. The growth dynamics

of the resource is governed by the stochastic difference equation:

xkþ1 ¼ xk þ a� θkxk �
X2
j¼1

uj
k; ð6:2Þ

for k2 1; 2; 3f g and x1 ¼ x0,

where θk is a random variable with non-negative range {θ1k , θ
2
k , θ

3
k} and

corresponding probabilities {λ1k , λ
2
k , λ

3
k}.

With no human harvesting, the natural growth of the resource stock is

xkþ1 � xk ¼ a� θkxk. The natural growth of the resource is while the death rate

exhibits stochasticity. There exists an extraction constraint that human harvesting

can at most exploit b proportion of the existing biomass, hence u1k þ u2k � bxk. In

addition, the highest value of θ y
k < 1� bð Þ for k2 1; 2; 3f g and y2 1; 2; 3f g.
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The objective of extractor i2 1; 2f g is to maximize the present value of the

expected stream of future profits:

Eθ1θ2θ3


X3
k¼1

Pui
k �

ci
xk

u i
k

� �2� �
1

1þ r

� �k�1

þ 1

1þ r

� �3

qx4


, for i2 1; 2f g; ð6:3Þ

subject to (6.2).

Invoking Theorem 4.2, one can characterize the noncooperative equilibrium

strategies in a feedback solution for game (6.2 and 6.3). In particular, a set of

strategies ϕ i
k xð Þ, for k2 1; 2; 3f g and i2 1; 2f g� �

provides a Nash equilibrium

solution to the game (6.2 and 6.3) if there exist functions Vi(k, x), for i2 1; 2f g
and k2 1; 2; 3f g, such that the following recursive relations are satisfied:

Vi k; xð Þ ¼ max
u i
k

Eθk



Pui

k �
ci
x

u i
k

� �2h i 1

1þ r

� �k�1

þ Vi k þ 1, xþ a� θkx� ui
k � ϕ j

k xð Þ
h i

¼ max
u i
k



Pui

k �
ci
x

u i
k

� �2h i 1

1þ r

� �k�1

þ
X3
y¼1

λ yk V
i k þ 1, xþ a� θ y

k x� ui
k � ϕ j

k xð Þ
h i

;

Vi T þ 1, xð Þ ¼ 1
1þr

� 	3
qx4: ð6:4Þ

Performing the indicated maximization in (6.4) yields:

P� 2ciu
i
k

x

� �
1

1þ r

� �k�1

�
X3
y¼1

λ yk V
i
xkþ1

k þ 1, xþ a� θ y
k x� ui

k � ϕ j
k xð Þ

h i
¼ 0;

ð6:5Þ

for i2 1; 2f g and k2 1; 2; 3f g.
From (6.5), the game equilibrium strategies can be expressed as:

ϕ i
k xð Þ ¼

�
P�
X3
y¼1

λ yk V
i
xkþ1

k þ 1, xþ a� θ y
k x�

X2
‘¼1

ϕ ‘
k xð Þ

" #
1þ rð Þk�1

�
x

2ci
; ð6:6Þ

for i2 1; 2f g and k2 1; 2; 3f g.
The expected game equilibrium profits of the firms can be obtained as:

Proposition 6.1 The value function indicating the expected game equilibrium

profit of firm i is

Vi k; xð Þ ¼ Ai
kxþ Ci

k

� �
, for i2 1; 2f g and k2 1; 2; 3f g; ð6:7Þ
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where Ai
k and Ci

k, for i2 1; 2f g and k2 1; 2; 3f g, are constants in terms of the

parameters of the game (6.2 and 6.3).

Proof See Appendix C of this Chapter. ■

Substituting the relevant derivatives of the value functions in Proposition 6.1

into the game equilibrium strategies (6.6) yields a noncooperative feedback equi-

librium solution of the game (6.2 and 6.3).

Now consider the case when the extractors agree to maximize their expected

joint profit and share the excess of cooperative gains over their expected noncoop-

erative payoffs equally. To maximize their expected joint payoff, they solve the

problem of maximizing

Eθ1θ2θ3


X2
j¼1

X3
k¼1

Puj
k �

cj
xk

u j
k

� 	2� �
1

1þ r

� �k�1

þ 2
1

1þ r

� �3

qx4


ð6:8Þ

subject to (6.2).

Invoking Theorem 4.2, one can characterize the optimal controls in the stochas-

tic dynamic programming problem (6.2) and (6.8). In particular, a set of control

strategies ψ i
k xð Þ, for k2 1; 2; 3f g and i2 1; 2f g� �

provides an optimal solution to

the problem (6.2) and (6.8) if there exist functionsW k; xð Þ : R ! R, for k2 1; 2; 3f g,
such that the following recursive relations are satisfied:

W k; xð Þ ¼ max
u1
k
, u2

k

Eθkþ1


X2
j¼1

Puj
k �

cj
x

u j
k

� 	2� �
1

1þ r

� �k�1

þW k þ 1, xþ a� θkx�
X2
j¼1

uj
k

" #
¼ max

u1
k
, u2

k


X2
j¼1

Puj
k �

cj
x

u j
k

� 	2� �
1

1þ r

� �k�1

þ
X3
y¼1

λ yk W k þ 1, xþ a� θ y
k x�

X2
j¼1

uj
k

" #
, for k2 1; 2; 3f g:

W T þ 1, xð Þ ¼ 2 1
1þr

� 	3
qx4: ð6:9Þ

Performing the indicated maximization in (6.9) yields:

P� 2ciu
i
k

x

� �
1

1þ r

� �k�1

�
X3
y¼1

λ yk Wxkþ1
k þ 1, xþ a� θ y

k x�
X2
j¼1

uj
k

" #
¼ 0;

ð6:10Þ

for i2 1; 2f g and k2 1; 2; 3f g.
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In particular, the optimal cooperative strategies can be obtained from (6.10) as:

ui
k

�
P�

X3
y¼1

λ yk Wxkþ1
k þ 1, xþ a� θ y

k x�
X2
j¼1

uj
k

" #
1þ rð Þk�1

�
x

2ci
; ð6:11Þ

for i2 1; 2f g and k2 1; 2; 3f g.
The expected joint profit under cooperation is given below.

Proposition 6.2 The value function indicating the maximized expected joint

payoff is

W k; xð Þ ¼ Akxþ Ck½ 	, for k2 1; 2; 3f g; ð6:12Þ

where Ak and Ck, for k2 1; 2; 3f g, are constants in terms of the parameters of the

problem (6.8) and (6.2).

Proof See Appendix D of this Chapter. ■

Using (6.11) and Proposition 6.2, the optimal cooperative strategies of the

extracting firms can be expressed as:

ψ i
k xð Þ ¼ P� Akþ1 1þ rð Þk�1

h i x

2ci
, for i2 1; 2f g and k2 1; 2; 3f g: ð6:13Þ

Substituting ψ i
k(x) from (6.13) into (6.2) yields the optimal cooperative state

trajectory:

xkþ1 ¼ xk þ a� θkxk �
X2
j¼1

P� Akþ1 1þ rð Þk�1
h i xk

2cj
; ð6:14Þ

for k2 1; 2; 3f g and x1 ¼ x0.
Dynamics (6.14) is a linear stochastic difference equation readily solvable by

standard techniques. Let x*k , for k2 1; 2; 3f g� �
denote the solution to (6.14).

Since the extractors agree to share the excess of cooperative gains over their

expected noncooperative payoffs equally, an imputation

ξi k; x*k
� � ¼ Vi k; x*k

� �þ 1

2
W k; x*k
� ��X2

j¼1

Vj k; x*k
� �" #

¼ Ai
kx

*
k þ Ci

k

� �þ 1

2
Akx

*
k þ Ck

� ��X2
j¼1

Aj
kx

*
k þ Cj

k

� 	" #
; ð6:15Þ

for k2 1; 2; 3f g and i2 1; 2f g has to be maintained.
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Invoking Theorem 4.1, if x*k2X is realized at stage k a payment equaling

Bi
k x*k
� � ¼ 1þ rð Þk�1

�
ξi k; x*k
� �� Eθk

�
ξi k þ 1, x

θyð Þ*
kþ1

� ���
¼ 1þ rð Þk�1



Ai
kx

*
k þ Ci

k

� �þ 1

2
Akx

*
k þ Ck

� ��X2
j¼1

Aj
kx

*
k þ Cj

k

� 	 !

�
X3
y¼1

λ yk

�
Ai
kþ1x

* θ y
kð Þ

kþ1 þ Ci
kþ1

� �
þ 1

2
Akþ1x

* θ y
kð Þ

kþ1 þ Ckþ1

� �
�
X2
j¼1

Aj
kþ1x

* θ y
kð Þ

kþ1 þ Cj
kþ1

� � !�
,

for i2 1; 2f g; ð6:16Þ

where x
* θ y

kð Þ
kþ1 ¼ x*k þ a� θ y

k x
*
k �

X2
j¼1

P� Akþ1 1þ rð Þk�1
h i

x*k
2cj
, for y2 1; 2; 3f g,

given to firm i at stage k2κ would lead to the realization of the imputation (6.15).

A subgame consistent solution can be readily obtained from (6.13), (6.15) and

(6.16).

7.7 A Heuristic Approach

In some game situations it may not be possible or practical to obtain all the

information needed in this Chapter. Therefore a heuristic method may have to be

considered to resolve the problem. To solve the problem in concern a heuristic

method employs a practical methodology not guaranteed to be optimal or perfect,

but sufficient for the immediate goals. Where finding an optimal solution is

impossible or impractical, heuristic methods often prove to be able to speed up

the process of finding a satisfactory solution. In particular, heuristic methods use

strategies and information that are readily accessible (though not a 100% exact and

accurate) to obtain a solution.

Consider the case of a heuristic approach to solving a subgame consistent

solution in a situation where the differentiable functions

f k xk; u
1
k ; u

2
k ; � � �; un

k

� �
;

Gk(xk)θk, and

gi
k xk; u

1
k ; u

2
k ; � � �; un

k

� �
, for i2 1; 2; � � �; nf g�N and k2 1; 2; � � �; Tf g�κ, in (4.1 and

4.2)

are not available.
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However, the players concur with the adoption of a set of cooperative strategies�
ψ̂ i

k xkð Þ, for k2κ and i2N
�
. Though the cooperative strategies may not be the set

of theoretically optimal controls they are perceived to be certainly beneficial to the

joint well-being of all players.

In addition, with expert knowledge and statistical techniques the expected value

of cooperative payment
Xn
j¼1

ĝ j
τ x̂ τ, ψ̂

1
τ x̂ τð Þ, ψ̂ 2

τ x̂ τð Þ, � � �, ψ̂ n
τ x̂ τð Þ� �

received in each

stage τ2 k, k þ 1, k þ 2, � � �,Tf g can be estimated with acceptable degrees of

accuracy. The value Ŵ k; x̂kð Þ can be obtained by summing the cooperative

payments
Xn
j¼1

ĝ j
τ x̂ τ, ψ̂

1
τ x̂ τð Þ, ψ̂ 2

τ x̂ τð Þ, � � �, ψ̂ n
τ x̂ τð Þ� �

expected to be received in each

stage from stage k to stage T for k2κ along the cooperation path x̂ τf g T
τ¼k, that is:

Ŵ k; x̂kð Þ ¼
XT
τ¼k

Xn
j¼1

ĝ j
τ x̂ τ, ψ̂

1
τ x̂ τð Þ, ψ̂ 2

τ x̂ τð Þ, . . ., ψ̂ n
τ x̂ τð Þ� �

þ
Xn
j¼1

qj
Tþ1 x̂ Tþ1ð Þ 1

1þr

� 	T
, for k2κ: ð7:1Þ

Again, with expert knowledge and statistical techniques the expected value of

non-cooperative payment gi
τ xτ,ϕ

1

τ xτð Þ,ϕ1

τ xτð Þ, � � �,ϕ1

τ xτð Þ
h i

of player i2N received

in each stage τ2 k, k þ 1, k þ 2, � � �, Tf g if the players revert to non-cooperation

from stage k to stage T for k2κ can be estimated with acceptable degrees of

accuracy. The value V
i
k; x̂kð Þ can be obtained by summing of the expected

payments to be received by player i in each stage from stage k to stage T for k

2κ along the non-cooperation path xτf g T
τ¼k where xk ¼ x̂ k, that is

V
i
k; x̂kð Þ ¼

XT
τ¼k

g i
τ xτ,ϕ

1

τ xτð Þ,ϕ1

τ xτð Þ, . . .,ϕ1

τ xτð Þ
h i

þ qi
Tþ1 xTþ1ð Þ 1

1þr

� 	T
for i2N: ð7:2Þ

If the agreed upon optimality principle specifies that the players share the expected

total cooperative proportional to their expected noncooperative payoffs, then the

imputation to player i becomes:

ξ̂
i
k; x̂kð Þ ¼ V

i
k; x̂kð ÞXn

j¼1

V
j
k; x̂kð Þ

Ŵ k; x̂kð Þ; ð7:3Þ

for i2N and k2κ.
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Invoking Theorem 5.1 a theoretically subgame consistent payment distribution

procedure can be obtained with:

Bi
k x*k
� � ¼ 1þ rð Þk�1



ξi k; x*k
� �� Eθk

�
ξi k þ 1, f k x*k ,ψ k x*k

� �� �þ Gk x*k
� �

θk
� ��

;

ð7:4Þ

for i2N,

given to player i at stage k2κ, if x*k 2X*
k .

Using (7.1, 7.2, 7.3 and 7.4) a subgame consistent PDP under a heuristic scheme

can be obtained with:

Bi
k x̂ kð Þ ¼ 1þ rð Þk�1



V
i
k; x̂kð ÞXn

j¼1

V
j
k; x̂kð Þ

Ŵ k; x̂kð Þ

� V
i
k þ 1, x̂ kþ1ð ÞXn

j¼1

V
j
k þ 1, x̂ kþ1ð Þ

Ŵ k þ 1, x̂ kþ1ð Þ


ð7:5Þ

given to player i2N at stage k2κ, along the cooperation path x̂ kf g T
k¼1.

The heuristic approach allows the application of subgame consistent solution in

dynamic game situations if estimates of the expected cooperative payoffs and

individual non-cooperative payoffs with acceptable degrees of accuracy are avail-

able. This approach would be helpful to resolving the unstable elements in coop-

erative schemes for a wide range of game theoretic real-world problems.

7.8 Chapter Appendices

Appendix A. Proof of Proposition 3.1

Consider first the last stage, that is stage 3. Invoking that Vi 3; xð Þ ¼ Ai
3xþ Ci

3

� �
from Proposition 3.1 and Vi 4; xð Þ ¼ 1

1þr

� 	3
qx, the conditions in Eq. (3.4) become

Vi 3; xð Þ ¼ Ai
3xþ Ci

3

� � ¼ max
u i
3



Pui

3 �
ci
x

u i
3

� �2h i 1

1þ r

� �2

þ 1
1þr

� 	3
q xþ a� bx� ui

3 � ϕ j
3 xð Þ

h i
, for i2 1; 2f g: ð8:1Þ

Performing the indicated maximization in (8.1) yields the game equilibrium strat-

egies in stage 3 as:
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ϕ i
3 xð Þ ¼

P� 1þ rð Þ�1q
h i

x

2ci
, for i2 1; 2f g: ð8:2Þ

Substituting (8.2) into (8.1) yields:

Vi 3; xð Þ ¼ Ai
3xþ Ci

3

� � ¼ 1
1þr

� 	2�
P� 1þ rð Þ�1q
h i P

2ci
x

� P� 1þ rð Þ�1q
h i2 1

4ci
x

�
þ q

�
xþ a� bx� P� 1þ rð Þ�1q

h i 1
2ci

x

� P� 1þ rð Þ�1q
h i 1

2cj
x

�
1

1þ r

� �3

for i, j2 1; 2f g and i 6¼ j: ð8:3Þ

Using (8.3), we can obtain Ai
3 and Ci

3, for i2 1; 2f g.
Now we proceed to stage 2, the conditions in Eq. (3.4) become

Vi 2; xð Þ ¼ Ai
2xþ Ci

2

� � ¼ max
u i
2



Pui

2 �
ci
x

u i
2

� �2h i 1

1þ r

� �
þ Ai

3 xþ a� bx� ui
2 � ϕ j

2 xð Þ
h i

, for i, j2 1; 2f g and i 6¼ j: ð8:4Þ

Performing the indicated maximization in (8.4) yields the game equilibrium strat-

egies in stage 2 as:

ϕ i
2 xð Þ ¼ P� 1þ rð ÞAi

3

� � x
2ci

, for i2 1; 2f g: ð8:5Þ

Substituting (8.5) into (8.4) yields

Vi 2; xð Þ ¼ Ai
2xþ Ci

2

� � ¼ 
 1

1þ r

� �
P� 1þ rð ÞAi

3

� �Pþ 1þ rð ÞAi
3

4ci

þAi
3 1� bð Þ � P� 1þ rð ÞAi

3

� � Ai
3

2ci
� P� 1þ rð ÞAj

3

h i Ai
3

2cj


xþ aAi

3,

for i, j2 1; 2f g and i 6¼ j: ð8:6Þ

Substituting Ai
3 for i2 1; 2f g into (8.6), Ai

2 and Ci
2 for i2 1; 2f g are obtained in

explicit terms.

Finally, we proceed to the first stage, the conditions in Eq. (3.4) become

Vi 1; xð Þ ¼ Ai
1xþ Ci

1

� � ¼ max
u i
1



Pui

1 �
ci
x

u i
1

� �2h i
þ
�

Ai
2 xþ a� bx� ui

1 � ϕ j
1 xð Þ

h i
þ Ci

2

� 
, for i, j2 1; 2f g and i 6¼ j: ð8:7Þ
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Performing the indicated maximization in (8.7) yields the game equilibrium strat-

egies in stage 1 as:

ϕ i
1 xð Þ ¼ P� Ai

2

� � x
2ci

, for i2 1; 2f g: ð8:8Þ

Substituting (8.8) into (8.7) yields:

Vi 3; xð Þ ¼ Ai
1xþ Ci

1

� � ¼�
P� Ai

2

� �Pþ Ai
2

4ci
þ Ai

2 1� bð Þ � P� Ai
2

� � Ai
2

2ci
� P� Aj

2

� 	 Ai
2

2cj

�
x

þ aAi
2 þ Ci

2, for i, j2 1; 2f g and i 6¼ j: ð8:9Þ

Substituting the explicit terms for Ai
2, A

j
2, C

i
2 and C

j
2 from (8.6) into (8.9), Ai

1 and C
i
1

for i2 1; 2f g are obtained in explicit terms. ■

Appendix B. Proof of Proposition 3.2

Consider first the last stage, that is stage 3. Invoking thatW 3; xð Þ ¼ A3xþ C3½ 	 from
Proposition 3.2 and W 4; xð Þ ¼ 2 1

1þr

� 	3
qx, the conditions in Eq. (3.9) become

W 3; xð Þ ¼ A3xþ C3½ 	 ¼ max
u1
3
, u2

3


 X2
j¼1

Puj
3 �

cj
x

u j
3

� 	2� �
1

1þ r

� �2

þ 2 1
1þr

� 	3
q xþ a� bx� u13 � u23
� � 

: ð8:10Þ

Performing the indicated maximization in (8.10) yields the optimal cooperative

strategies in stage 3 as:

ψ i
3 xð Þ ¼

P� 1þ rð Þ�1
2q

h i
x

2ci
, for i2 1; 2f g: ð8:11Þ

Substituting (8.11) into (8.10) yields:

W 3; xð Þ ¼ A3xþ C3½ 	 ¼ 1
1þr

� 	2X2
j¼1

f P� 1þ rð Þ�1q
h i P

2cj
x

� P� 1þ rð Þ�1q
h i2 1

4cj
xg þ 2q

�
xþ a� bx� P� 1þ rð Þ�1q

h i 1
2ci

x

� P� 1þ rð Þ�1q
h i 1

2cj
x

�
1

1þ r

� �3

: ð8:12Þ

Using (8.12), we obtain A3 and C3.
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Now we proceed to stage 2, the conditions in Eq. (3.9) become

W 2; xð Þ ¼ A2xþ C2½ 	 ¼ max
u1
2
, u2

2

( X2
j¼1

Puj
2 �

cj
x

u j
2

� 	2� �
1

1þ r

� �

þA3 xþ a� bx�
X2
j¼1

uj
2

" # )
ð8:13Þ

Performing the indicated maximization in (8.13) yields the optimal cooperative

strategies in stage 2 as:

ψ i
2 xð Þ ¼ P� 1þ rð ÞA3½ 	 x

2ci
, for i2 1; 2f g: ð8:14Þ

Substituting (8.14) into (8.13) yields:

W 2; xð Þ ¼ A2xþ C2½ 	 ¼
�

1

1þ r

� �X2
j¼1

P� 1þ rð ÞA3½ 	Pþ 1þ rð ÞA3

4cj

þA3 1� bð Þ � P� 1þ rð ÞA3½ 	 A3

2c1
� P� 1þ rð ÞA3½ 	 A

i
3

2c2

�
xþ aA3

�
: ð8:15Þ

Substituting A3 into (8.15), A2 and C2 are obtained in explicit terms.

Finally, we proceed to the first stage, the conditions in Eq. (3.9) become

W 1; xð Þ ¼ A1xþ C1½ 	 ¼ max
u1
1
, u2

1

( X2
j¼1

Puj
1 �

cj
x

u j
1

� 	2� �

þ
 

A2 xþ a� bx�
X2
j¼1

uj
1

" #
þ C2

! )
: ð8:16Þ

Performing the indicated maximization in (8.16) yields the optimal cooperative

strategies in stage 1 as:

ψ i
1 xð Þ ¼ P� A2ð Þ x

2ci
, for i2 1; 2f g: ð8:17Þ

Substituting (8.17) into (8.16) yields:

W 1; xð Þ ¼ A1xþ C1½ 	 ¼� X2
j¼1

P� A2ð ÞPþ A2

4cj
þ A2 1� bð Þ � P� A2ð ÞA2

2c1
� P� A2ð ÞA2

2c2

�
x

þ aA2 þ C2: ð8:18Þ

Substituting the explicit terms for A2 and C2 from (8.15) into (8.18), A1 and C1 are

obtained in explicit terms. ■
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Appendix C. Proof of Proposition 6.1

Consider first the last operating stage, that is stage 3. Invoking that Vi 3; xð Þ ¼
Ai
3xþ Ci

3

� �
from Proposition 6.1 and Vi 4; xð Þ ¼ 1

1þr

� 	3
qx4; the conditions in

Eq. (6.4) become

Vi 3; xð Þ ¼ Ai
3xþ Ci

3

� � ¼ max
u i
3



Pui

3 �
ci
x

u i
3

� �2h i 1

1þ r

� �2

þ
X3
y¼1

λ y3
1

1þr

� 	3
q xþ a� θ y

3x� ui
3 � ϕ j

3 xð Þ
h i 

, for i2 1; 2f g: ð8:19Þ

Performing the indicated maximization in (8.19) yields the game equilibrium

strategies in stage 3 as:

ϕ i
3 xð Þ ¼

P� 1þ rð Þ�1q
h i

x

2ci
, for i2 1; 2f g: ð8:20Þ

Substituting (8.20) into (8.19) yields:

Vi 3; xð Þ ¼ Ai
3xþ Ci

3

� � ¼ 1
1þr

� 	2�
P� 1þ rð Þ�1q
h i P

2ci
x

� P� 1þ rð Þ�1q
h i2 1

4ci
x

�
þ q

�
xþ a�

X3
y¼1

λ y3θ
y
3x

� P� 1þ rð Þ�1q
h i 1

2ci
x� P� 1þ rð Þ�1q

h i 1
2cj

x

�
1

1þ r

� �3

for i, j2 1; 2f g and i 6¼ j: ð8:21Þ

Using (8.21), we can obtain Ai
3 and Ci

3, for i2 1; 2f g.
Now we proceed to stage 2, the conditions in Eq. (6.4) become

Vi 2; xð Þ ¼ Ai
2xþ Ci

2

� � ¼ max
u i
2



Pui

2 �
ci
x

u i
2

� �2h i 1

1þ r

� �
þ
X3
y¼1

λ y2A
i
3 xþ a� θ y

2x� ui
2 � ϕ j

2 xð Þ
h i 

,

for i, j2 1; 2f g and i 6¼ j: ð8:22Þ

Performing the indicated maximization in (8.22) yields the game equilibrium

strategies in stage 2 as:

ϕ i
2 xð Þ ¼ P� 1þ rð ÞAi

3

� � x
2ci

, for i2 1; 2f g: ð8:23Þ
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Substituting (8.23) into (8.22) yields:

Vi 2; xð Þ ¼ Ai
2xþ Ci

2

� � ¼ 
 1

1þ r

� �
P� 1þ rð ÞAi

3

� �Pþ 1þ rð ÞAi
3

4ci

þAi
3 1�

X3
y¼1

λ y2θ
y
2

 !
� P� 1þ rð ÞAi

3

� � Ai
3

2ci
� P� 1þ rð ÞAj

3

h i Ai
3

2cj


xþ aAi

3,

for i, j2 1; 2f g and i 6¼ j: ð8:24Þ

Substituting Ai
3 for i2 1; 2f g into (8.24), Ai

2 and Ci
2 for i2 1; 2f g are obtained in

explicit terms.

Finally, we proceed to the first stage, the conditions in Eq. (6.4) become

Vi 1; xð Þ ¼ Ai
1xþ Ci

1

� � ¼ max
u i
1

(
Pui

1 �
ci
x

u i
1

� �2h i
þ
X3
y¼1

λ y1

 
Ai
2 xþ a� θ y

1x� ui
1 � ϕ j

1 xð Þ
h i

þ Ci
2

! )
,

for i, j2 1; 2f g and i 6¼ j: ð8:25Þ

Performing the indicated maximization in (8.25) yields the game equilibrium

strategies in stage 1 as:

ϕ i
1 xð Þ ¼ P� Ai

2

� � x
2ci

, for i2 1; 2f g: ð8:26Þ

Substituting (8.26) into (8.25) yields:

Vi 3; xð Þ ¼ Ai
1xþ Ci

1

� � ¼"
P� Ai

2

� �Pþ Ai
2

4ci
þ Ai

2 1�
X3
y¼1

λ y1θ
y
1

 !
� P� Ai

2

� � Ai
2

2ci
� P� Aj

2

� 	 Ai
2

2cj

#
x

þ aAi
2 þ Ci

2, for i, j2 1; 2f g and i 6¼ j: ð8:27Þ

Substituting the explicit terms for Ai
2, A

j
2, C

i
2 and C

j
2 from (8.24) into (8.27), Ai

1 and

Ci
1 for i2 1; 2f g are obtained in explicit terms.

Appendix D. Proof of Proposition 6.2
Consider first the last stage, that is stage 3. Invoking thatW 3; xð Þ ¼ A3xþ C3½ 	 from
Proposition 6.2 and W 4; xð Þ ¼ 2 1

1þr

� 	3
qx4, the conditions in Eq. (6.9) become
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W 3; xð Þ ¼ A3xþ C3½ 	 ¼ max
u1
3
, u2

3

( X2
j¼1

Puj
3 �

cj
x

u j
3

� 	2� �
1

1þ r

� �2

þ
X3
y¼1

λ y3 2 1
1þr

� 	3
q xþ a� θ y

3x�
X2
j¼1

uj
3

" # )
: ð8:28Þ

Performing the indicated maximization in (8.28) yields the optimal cooperative

strategies in stage 3 as:

ψ i
3 xð Þ ¼

P� 1þ rð Þ�1
2q

h i
x

2ci
, for i2 1; 2f g: ð8:29Þ

Substituting (8.29) into (8.28) yields:

W 3; xð Þ ¼ A3xþ C3½ 	 ¼ 1
1þr

� 	2X2
j¼1



P� 1þ rð Þ�1q
h i P

2cj
x

� P� 1þ rð Þ�1q
h i2 1

4cj
x


þ 2q

�
xþ a�

X3
y¼1

λ y3θ
y
3x� P� 1þ rð Þ�1q

h i 1
2ci

x

� P� 1þ rð Þ�1q
h i 1

2cj
x

�
1

1þ r

� �3

: ð8:30Þ

Using (8.30), we obtain A3 and C3.

Now we proceed to stage 2, the conditions in Eq. (6.9) become

W 2; xð Þ ¼ A2xþ C2½ 	 ¼ max
u1
2
, u2

2

( X2
j¼1

Puj
2 �

cj
x

u j
2

� 	2� �
1

1þ r

� �

þ
X3
y¼1

λ y2A3 xþ a� θ y
2x�

X2
j¼1

uj
2

" # )
: ð8:31Þ

Performing the indicated maximization in (8.31) yields the optimal cooperative

strategies in stage 2 as:

ψ i
2 xð Þ ¼ P� 1þ rð ÞA3½ 	 x

2ci
, for i2 1; 2f g: ð8:32Þ
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Substituting (8.32) into (8.31) yields:

W 2; xð Þ ¼ A2xþ C2½ 	 ¼
�

1

1þ r

� �X2
j¼1

P� 1þ rð ÞA3½ 	Pþ 1þ rð ÞA3

4cj

þA3 1�
X3
y¼1

λ y2θ
y
2

 !
� P� 1þ rð ÞA3½ 	 A3

2c1
� P� 1þ rð ÞA3½ 	 A

i
3

2c2

�
x

þ aA3: ð8:33Þ

Substituting A3 into (8.33), A2 and C2 are obtained in explicit terms.

Finally, we proceed to the first stage, the conditions in Eq. (6.9) become

W 1; xð Þ ¼ A1xþ C1½ 	 ¼ max
u1
1
, u2

1


 X2
j¼1

Puj
1 �

cj
x

u j
1

� 	2� �
þ
X3
y¼1

λ y1

�
A2 xþ a� θ y

1x�
X2
j¼1

uj
1

" #
þ C2

� 
: ð8:34Þ

Performing the indicated maximization in (8.34) yields the optimal cooperative

strategies in stage 1 as:

ψ i
1 xð Þ ¼ P� A2ð Þ x

2ci
, for i2 1; 2f g: ð8:35Þ

Substituting (8.35) into (8.34) yields:

W 1; xð Þ ¼ A1xþ C1½ 	 ¼
� X2

j¼1

P� A2ð ÞPþ A2

4cj
þ A2 1�

X3
y¼1

λ y1θ
y
1

 !
� P� A2ð ÞA2

2c1
� P� A2ð ÞA2

2c2

�
xþ aA2 þ C2: ð8:36Þ

Substituting the explicit terms for A2 and C2 from (8.33) into (8.36), A1 and C1 are

obtained in explicit terms.

7.9 Chapter Notes

Discrete-time dynamic games often are more suitable for real-life applications and

operations research analyses. Properties of Nash equilibria in dynamic games are

examined in Basar (1974, 1976). Solution algorithm for solving dynamic games can

be found in Basar (1977a, b). Petrosyan and Zenkevich (1996) presented an analysis

on cooperative dynamic games in discrete time framework. The SIAM Classics on

Dynamic Noncoperative Game Theory by Basar and Olsder (1995) gave a
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comprehensive treatment of discrete-time noncooperative dynamic games. Bylka

et al. (2000) analyzed oligopolistic price competition in a dynamic game model.

Wie and Choi (2000) examined discrete-time traffic network. Beard and McDonald

(2007) investigated water sharing agreements, and Amir and Nannerup (2006)

considered resource extraction problems in a discrete-time dynamic framework.

Krawczyk and Tidball (2006) considered a dynamic game of water allocation. Nie

et al. (2006) considered dynamic programmingapproach to discrete time dynamic

Stackelberg games. Dockner and Nishimura (1999) and Rubio and Ulph (2007)

presented discrete-time dynamic game for pollution management. Dutta and

Radner (2006) presented a discrete-time dynamic game to study global warming.

Ehtamo and Hamalainen (1993) examined cooperative incentive equilibrium for a

dynamic resource game. Yeung (2014) examined dynamically consistent collabo-

rative environmental management with technology selection in a discrete-time

dynamic game framework. Lehrer and Scarsini (2013) considered the core of

dynamic cooperative games.

Discrete-time stochastic differential game analyses are less frequent than its

continuous-time counterpart. Basar and Ho (1974) examined informational prop-

erties of the Nash solutions of stochastic nonzero-sum games. Elimination of

informational nonuiqueness in Nash equilibrium through a stochastic formulation

was first discussed in Basar (1976) and further examined in Basar (1975, 1979,

1989). Basar and Mintz (1972, 1973) and Basar (1978) developed equilibrium

solution of linear-quadratic stochastic dynamic games with noisy observation.

Bauso and Timmer (2009) considered robust dynamic cooperative games where

at each point in time the coalitional values are unknown but bounded by a polyhe-

dron. Smith and Zenou (2003) considered a discrete-time stochastic job searching

model. Esteban-Bravo and Nogales (2008) analyzed mathematical programming

for stochastic discrete-time dynamics arising in economic systems including exam-

ples in a stochastic national growth model and international growth model with

uncertainty. Basar and Olsder (1995) gave a comprehensive treatment of noncoop-

erative stochastic dynamic games. Yeung and Petrosyan (2010) provided the

techniques in characterizing subgame consistent solutions for stochastic dynamic

gamessubgame consistent solutions for stochastic dynamic games. Finally, a heu-

ristic approach of obtaining subgame consistent solutions is provided in Sect. 7.7 to

widen the application to a wide range of cooperative game problems in which only

estimates of the expected cooperative payoffs and individual non-cooperative

payoffs with acceptable degrees of accuracy are available.

7.10 Problems

(1) Consider an economy endowed with a renewable resource and with 2 resource

extractors (firms). The lease for resource extraction begins at stage 1 and ends at

stage 3 for these two firms. Let uik denote the rate of resource extraction of firm
i at stage k, for i2 1; 2f g. Let Ui be the set of admissible extraction rates, and
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xk2X � Rþ the size of the resource stock at stage k. In particular, we have Ui 2
R+and u1k þ u2k � xk. The extraction cost for firms 1 and 2 are respectively

(u1k)
2/xk and 1.5(uik)

2/xk.
The profits that firm 1 and firm 2 will obtain at stage k are respectively:

10u1k �
4

xk
u1k
� �2� �

and 4u2k �
2

xk
u2k
� �2� �

:

A terminal payment of 4x4 will be given to each firm after stage 3.

The growth dynamics of the resource is governed by the difference equation:

xkþ1 ¼ xk þ 20� 0:1xk �
X2
j¼1

uj
k, for k2 1; 2; 3f g and x1 ¼ 24:

Characterize the feedback Nash equilibriumsolution for the above resource

economy.

(2) If the extractors agree to cooperate and maximize their joint payoff, derive the

optimal cooperative strategies and the optimal resource trajectory.

(3) Consider the case when the extractors agree to share the excess of cooperative

gains over their noncooperative payoffs equally. Derive a subgame consistent

solution.

(4) Consider an economy endowed with a renewable resource and with two

resource extractors (firms). The lease for resource extraction begins at stage

1 and ends at stage 4 for these two firms. Let uik denote the rate of resource

extraction of firm i at stage k, for i2 1; 2f g. Let Ui be the set of admissible

extraction rates, and xk2X � Rþ the size of the resource stock at stage k. In

particular, we have Ui 2 R+ and u1k þ u2k � xk.
The profits that firm 1 and firm 2 will obtain at stage k are respectively:

5u1k �
2

xk
u1k
� �2� �

and 3u2k �
1

xk
u2k
� �2� �

:

A terminal payment of 3x4 will be given to each firm after stage 4.

The growth dynamics of the resource is governed by the stochastic differ-

ence equation:

xkþ1 ¼ xk þ 15� 0:1xk �
X2
j¼1

uj
k þ θkxk;

for k2 1; 2; 3; 4f g and x1 ¼ 55,

where θk is a random variable with range {0, 0.1, 0.2} and corresponding

probabilities {0.3, 0.5, 0.2}
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Characterize a Nash equilibrium solution for the above discrete-time sto-

chastic market game.

(5) If the extractors agree to cooperate and maximize their expected joint payoff,

derive the group optimal cooperative strategies.

(6) Consider the case when the extractors agree to share the excess of expected

cooperative gains proportional to their expected noncooperative payoffs.

Derive a subgame consistent solution.
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Chapter 8

Subgame Consistent Cooperative Solution
in Random Horizon Dynamic Games

In many game situations, the terminal time of the game is not known with certainty.

Examples of this kind of problems include uncertainty in the renewal of lease, the

terms of offices of elected authorities, contract renewal and continuation of agree-

ments subjected to periodic negotiations. This Chapter presents subgame consistent

solutions in discrete-time cooperative dynamic cooperative games with random

horizon. The analysis is based on the work in Yeung and Petrosyan (2011). In

Sect. 8.1, a discrete-time dynamic games with random duration is formulated and a

dynamic programming technique for solving inter-temporal problems with random

horizon is developed to serve as the foundation of solving the game problem. In

Sect. 8.2, the noncooperative equilibrium is characterized with a set of random

duration discrete-time Isaacs-Bellman equations. Dynamic cooperation under ran-

dom horizon, group optimality and individual rationality are analyzed in Sect. 8.3.

Subgame consistent solutions and their corresponding payment mechanism are

presented in Sect. 8.4. An illustration in a resource extraction game with random

duration lease is provided. The chapter appendices are given in Sect. 8.6.

Chapter notes are provided in Sect. 8.7 and problems in Sect. 8.8.

8.1 Random Horizon Dynamic Games

In this section, we first formulate a class of dynamic gameswith randomduration. Then

we develop a dynamic programming technique for solving inter-temporal problems

with random horizon which will serve as the foundation of solving the game problem.

8.1.1 Game Formulation

Consider the n�person dynamic game with T̂ stages where T̂ is a random variable

with range 1; 2; � � �; Tf g and corresponding probabilities θ1; θ2; � � �; θTf g.

© Springer Science+Business Media Singapore 2016

D.W.K. Yeung, L.A. Petrosyan, Subgame Consistent Cooperation,
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Conditional upon the reaching of stage τ, the probability of the game would last up

to stages τ, τ þ 1, � � �,T becomes respectively

θτXT
ζ¼τ

θζ

,
θτþ1XT
ζ¼τ

θζ

, � � �, θTXT
ζ¼τ

θζ

:

The payoff of player i at stage k2 1; 2; � � �; Tf g is gi
k xk; u

1
k ; u

2
k ; � � �; un

k

� �
. When the

game ends after stage T̂ , player i will receive a terminal payment qi
T̂ þ1

xT̂ þ1

� �
in

stage T̂ þ 1.

The state space of the game is X2Rm and the state dynamics of the game is

characterized by the difference equation:

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �
; ð1:1Þ

for k2 1; 2; � � �; Tf g�T and x1 ¼ x0;

where ui
k2Rmi is the control vector of player i at stage k and xk2X is the state.

The objective of player i is

E
XT̂
k¼1

gi
k xk; u

1
k ; u

2
k ; � � �; un

k

� �þ qi
T̂ þ1

xT̂ þ1

� �( )

¼
XT
T̂ ¼1

θT̂
XT̂
k¼1

gi
k xk; u

1
k ; u

2
k ; � � �; un

k

� �þ qi
T̂ þ1

xT̂ þ1

� �( )
,

for i2 1; 2; � � �; nf g�N: ð1:2Þ
To solve the game (1.1) and (1.2), we first develop a dynamic programming

technique for solving a random horizon problem.

8.1.2 Dynamic Programming for Random Horizon Problem

Consider the case when n ¼ 1 in the system (1.1) and (1.2). The payoff at stage

k2 1; 2; � � �; Tf g is gk[xk, uk]. If the game ends after stage T̂ , the decision maker will

receive a terminal payment qT̂ þ1 xT̂ þ1

� �
in stage T̂ þ 1.

The problem can be formulized as the maximization of the expected payoff:

E
XT̂
k¼1

gk xk; uk½ � þ qT̂ þ1 xT̂ þ1

� �( )
¼

XT
T̂ ¼1

θT̂
X
k¼1T̂

gk xk; uk½ � þ qT̂ þ1 xT̂ þ1

� �( )
; ð1:3Þ
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subject to the dynamics

xkþ1 ¼ f k xk; ukð Þ, x1 ¼ x0: ð1:4Þ

Now consider the case when stage τ has arrived and the state is xτ:The problem can

formulized as the maximization of the payoff:

E
XT̂
k¼τ

gk xk; uk½ � þ qT̂ þ1 xT̂ þ1

� �( )

¼
XT
T̂ ¼τ

θT̂XT
ζ¼τ

θζ

� XT̂
k¼τ

gk xk; uk½ � þ qT̂ þ1 xT̂ þ1

� ��
; ð1:5Þ

subject to the dynamics

xkþ1 ¼ f k xk; ukð Þ, xτ ¼ xτ: ð1:6Þ

We define the value function V(τ, x) and the set of strategies fuk ¼ ψ k xð Þ, for
k2 τ, τ þ 1, � � �, Tf gg which provides an optimal solution to (1.5) and (1.6) as

follows:

V τ; xð Þ ¼ max
uτ, uτþ1, ���, uT̂ E

�XT̂
k¼τ

gk xk; uk½ � þ qT̂ þ1 xT̂ þ1

� �
xτ ¼ xj

�

¼ max
uτ, uτþ1, ���, uT̂

XT
T̂ ¼τ

θT̂XT
ζ¼τ

θζ

�XT̂
k¼τ

gk xk; uk½ � þ qT̂ þ1 xT̂ þ1

� �
xτ ¼ xj

�

¼
XT
T̂ ¼τ

θT̂XT
ζ¼τ

θζ

�XT̂
k¼τ

gk x*k ,ψ k xkð Þ� �þ qT̂ þ1 x*
T̂ þ1

� 	
x*τ ¼ x


 �

; ð1:7Þ

for τ2T, where x*kþ1 ¼ f k x*k ,ψ k x*k
� �� �

, x*1 ¼ x0:

A theorem characterizing an optimal solution to the random-horizon problem

(1.3) and (1.4) is provided below.

Theorem 1.1 A set of strategies
�
uk ¼ ψ k xð Þ, for k2T

�
provides an optimal

solution to the problem (1.3) and (1.4) if there exist functions V(k, x), for k2T, such

that the following recursive relations are satisfied:
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V T þ 1, xð Þ ¼ qTþ1 xð Þ,
V T; xð Þ ¼ max

uT

�
gT x; uT½ � þ V T þ 1, f T x; uTð Þ½ �

�
,

V τ; xð Þ ¼ max
uτ

�
gτ x; uτ½ � þ θτXT

ζ¼τ

θζ

qτþ1 f τ x; uτð Þ½ �

þ

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

V τ þ 1, f τ x; uτð Þ½ �
�
, for τ2 1, 2, � � �,T � 1f g: ð1:8Þ

Proof By definition, the value function at stage T þ 1 is

V T þ 1, xð Þ ¼ qTþ1 xð Þ:
We first consider the case when the last stage T has arrived.

The problem then becomes

max
uT

�
gT xT ; uT½ � þ qTþ1 xTþ1ð Þ

�
subject to xTþ1 ¼ f T xT ; uTð Þ, xT ¼ xT : ð1:9Þ

Using V T þ 1, xð Þ ¼ qTþ1 xð Þ; the problem in (1.9) can be formulated as a single

stage problem

max
uT

�
gT xT ; uT½ � þ V

�
T þ 1, f T x; uTð Þ

�
;

with xT ¼ x:

Hence we have V T; xð Þ ¼ max
uT

�
gT x; uT½ � þ V T þ 1, f T x; uTð Þ½ �

�
:

Now consider the problem in stage τ2 1, 2, � � �,T � 1f g in which one have to

maximize

XT
T̂ ¼τ

θT̂XT
ζ¼τ

θζ

�XT̂
k¼τ

gk xk; uk½ � þ qT̂ þ1 xT̂ þ1

� ��

¼ gτ xτ; uτ½ � þ θτXT
ζ¼τ

θζ

qτþ1 xτþ1ð Þ

204 8 Subgame Consistent Cooperative Solution in Random Horizon Dynamic Games



þ

XT
T̂ ¼τþ1

θT̂

XT
ζ¼τ

θζ

� XT̂
k¼τþ1

gk xk; uk½ � þ qT̂ þ1 xT̂ þ1

� ��

¼ gτ xτ; uτ½ � þ θτXT
ζ¼τ

θζ

qτþ1 xτþ1ð Þ

þ

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

XT
T̂ ¼τþ1

θT̂

XT
ζ¼τþ1

θζ

� XT̂
k¼τþ1

gk xk; uk½ � þ qT̂ þ1 xT̂ þ1

� ��
: ð1:10Þ

Characterizing V τ þ 1, xð Þ according to (1.7), the problem (1.10) can be expressed

as a single stage problem

max
uτ

�
gτ x; uτ½ � þ θτXT

ζ¼τ

θζ

qτþ1 f τ x; uτð Þ½ � þ

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

V τ þ 1, f τ x; uτð Þ½ �
�
; ð1:11Þ

with xτ ¼ x:
Hence we have

V τ; xð Þ ¼ max
uτ

(
gτ x; uτ½ � þ θτXT

ζ¼τ

θζ

qτþ1 f τ x; uτð Þ½ �

þ

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

V τ þ 1, f τ x; uτð Þ½ �
�
, forτ2 1, 2, � � �, T � 2f g: ð1:12Þ

and Theorem 1.1 follows. ■

Theorem 1.1 yields a set of Bellman equations for random horizon problems

(1.3) and (1.4).
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8.2 Random Horizon Feedback Nash Equilibrium

In this subsection, we investigate the noncooperative outcome of the random

horizon discrete-time game (1.1) and (1.2). In particular, a feedback Nash equilib-

rium of the game can be characterized by the following theorem.

Theorem 2.1 A set of strategies
�
ϕ i
k xð Þ, for k2T and i2N

�
provides a feedback

Nash equilibrium solution to the game (1.1) and (1.2) if there exist functions Vi(k,
x), for k2T and i2N, such that the following recursive relations are satisfied:

Vi T; xð Þ ¼ max
u i
T

�
gi
T x,ϕ1

T xð Þ,ϕ2
T xð Þ, � � �,ϕi�1

T xð Þ, ui
T ,ϕ

iþ1
T xð Þ, � � �,ϕn

T xð Þ� �
þ qi

Tþ1
ef i
T x; ui

T

� �h i
,

Vi τ; xð Þ ¼ max
u i
τ

�
gi
τ x,ϕ1

τ xð Þ,ϕ2
τ xð Þ, � � �,ϕi�1

τ xð Þ, ui
τ,ϕ

iþ1
τ xð Þ, � � �,ϕn

τ xð Þ� �
þ θτXT

ζ¼τ

θζ

qi
τþ1

ef i
τ x; ui

τ

� �h i

þ

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Vi τ þ 1, f k x,ϕ1
k xð Þ,ϕ2

k xð Þ, � � �,ϕi�1
k xð Þ, ui

k,ϕ
iþ1
k xð Þ, � � �,ϕn

k xð Þ� �� ��
,

for τ2 1, 2, � � �,T � 1f g: ð2:1Þ

Proof The conditions in (2.1) shows that the random horizon dynamic program-

ming result in Theorem 1.1 holds for each player given other players’ equilibrium
strategies. Hence the conditions of a Nash (1951) equilibrium are satisfied and

Theorem 2.1 follows. ■

The set of equations in (2.1) represents the discrete analogue of the Isaacs-

Bellman equations under random horizon.

Substituting the set of feedback Nash equilibrium strategies
�
ϕ i
k xð Þ, for k2T and

i2N
�
into the players’ payoff yields

Vi τ; xð Þ ¼ E

�XT̂
k¼τ

gi
k xk,ϕ

1
k xkð Þ,ϕ2

k xkð Þ, � � �,ϕn
k xkð Þ� �þ qi

T̂ þ1
xT̂ þ1

� ��
¼

XT
T̂ ¼τ

θT̂XT
ζ¼τ

θζ

�XT̂
k¼τ

gi
k xk,ϕ

1
k xkð Þ,ϕ2

k xkð Þ, � � �,ϕn
k xkð Þ� �þ qi

T̂ þ1
xT̂ þ1

� ��
, i2N;

ð2:2Þ
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where xτ ¼ x. The Vi(τ, x) value function gives the expected game equilibrium

payoff to player i from stage τ to the end of the game.

8.3 Dynamic Cooperation under Random Horizon

Now consider the case when the players agree to cooperate and distribute the payoff

among themselves according to an optimality principle. Two essential properties

that a cooperative scheme has to satisfy are group optimality and individual

rationality.

8.3.1 Group Optimality

Maximizing the players’ expected joint payoff guarantees group optimality in a

game where payoffs are transferable. To maximize their expected joint payoff the

players have to solve the discrete-time dynamic programming problem of

maximizing

E

(Xn
j¼1

" XT̂
k¼1

gj
k xk; u

1
k ; u

2
k ; � � �; un

k

� �þ qj

T̂ þ1
xT̂ þ1

� � #)

¼
Xn
j¼1

XT
T̂ ¼1

θT̂

(XT̂
k¼1

gj
k xk; u

1
k ; u

2
k ; � � �; un

k

� �þ qj

T̂ þ1
xT̂ þ1

� �)
ð3:1Þ

subject to (1.1).

Invoking the random horizon dynamic programming method in Theorem 1.1 we

can characterize an optimal solution to the problem (3.1) to (1.1) as

Corollary 3.1 A set of strategies
�
ui*k ¼ ψ i

k xð Þ, for k2κ and i2N
�
provides an

optimal solution to the problem (3.1) to (1.1) if there exist functions W(k, x), for
k2T, such that the following recursive relations are satisfied:

V T þ 1, xð Þ ¼
Xn
j¼1

qj
Tþ1 xð Þ,

W T; xð Þ ¼ max
u1
T
, u2

T
, ���, u n

T

�Xn
j¼1

gj
T x; u1T ; u

2
T ; � � �; un

T

� �
þ qTþ1 f T x; uT ; u

1
T ; u

2
T ; � � �; un

T

� �� ��
,
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W τ; xð Þ ¼ max
u1τ , u2τ , ���, u n

τ

�Xn
j¼1


gj
τ x; u1τ ; u

2
τ ; � � �; un

τ

� �
þ θτXT

ζ¼τ

θζ

qj
τþ1 f τ x; u1τ ; u

2
τ ; � � �; un

τ

� �� � �

þ

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

W τ þ 1, f τ x; u1τ ; u
2
τ ; � � �; un

τ

� �� ��
, for τ2 1, 2, � � �,T � 1f g: ð3:2Þ■

Substituting the optimal control
�
ψ i
k xð Þ, for k2T and i2N

�
into the state

dynamics (1.1), one can obtain the dynamics of the cooperative trajectory as:

xkþ1 ¼ f k xk,ψ
1
k xkð Þ,ψ2

k xkð Þ, � � �,ψ n
k xkð Þ� �

; ð3:3Þ

for k2T and x1 ¼ x0.
We use x�k to denote the solution generated by (3.3).

Using the set of optimal strategies
�
ψ i
k x*k
� �

, for k2T and i2N
�
one can obtain

the expected cooperative payoff as

W τ; xð Þ ¼ E

�
Xn
j¼1

 XT̂
k¼τ

gj
k x*k ,ψ

1
k x*k
� �

,ψ2
k x*k
� �

, � � �,ψ n
k x*k
� �� �þ qj

T̂ þ1
x*
T̂ þ1

� 	 ��

¼
Xn
j¼1

XT
T̂ ¼τ

θT̂XT
ζ¼τ

θζ

� XT̂
k¼τ

gj
k x*k ,ψ

1
k x*k
� �

,ψ2
k x*k
� �

, � � �,ψ n
k x*k
� �� �þ qj

T̂ þ1
x*
T̂ þ1

� 	�
;

ð3:4Þ

for τ2 1; 2; � � �; tf g.

8.3.2 Individual Rationality

The players then have to agree to an optimality principle in distributing the total

cooperative payoff among themselves. For individual rationality to be upheld the

imputation (see von Neumann and Morgenstern 1944) a player receives under
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cooperation have to be no less than his expected noncooperative payoff along the

cooperative state trajectory.

Let ξ �; �ð Þ denote the imputation vector guiding the distribution of the total

cooperative payoff under the agreed-upon optimality principle along the coopera-

tive trajectory x*k
� �T

k¼1
. At stage τ, the imputation vector according to ξ �; �ð Þ is

ξ τ; x*τ
� � ¼ ξ1 τ; x*τ

� �
, ξ2 τ; x*τ

� �
, � � �, ξn τ; x*τ

� �� �
; for τ2T:

There is a variety of imputations that the players can agree upon. For examples,

(i) the players may share the excess of the total cooperative payoff over the sum of

individual noncooperative payoffs equally, or (ii) they may share the total cooper-

ative payoff proportional to their noncooperative payoffs or a linear combination of

(i) and (ii).

For individual rationality to be maintained throughout all the stages τ2T, it is

required that:

ξi τ; x*τ
� � � Vi τ; x*τ

� �
, for i2N and τ2T.

To satisfy group optimality, the imputation vector has to satisfy

W τ; x*τ
� � ¼ Xn

j¼1

ξj τ; x*τ
� �

, for τ2T:

8.4 Subgame Consistent Solutions and Payment
Mechanism

To guarantee dynamical stability in a dynamic cooperation scheme, the solution has to

satisfy the property of subgame consistency. A cooperative solution is subgame-

consistent if an extension of the solution policy to a subgame starting at a later time

with a state along the optimal cooperative trajectory would remain optimal. In

particular, subgame consistency ensures that as the game proceeds players are guided

by the same optimality principle at each stage of the game, and hence do not possess

incentives to deviate from the previously adopted optimal behavior. Therefore for

subgame consistency to be satisfied, the imputation ξ �; �ð Þ according to the original

optimality principle has to be maintained along the cooperative trajectory x*k
� �T

k¼1
.

Let the imputation governed by the agreed upon optimality principle be

ξ k; x*k
� � ¼ ξ1 k; x*k

� �
, ξ2 k; x*k

� �
, � � �, ξn k; x*k

� �� �
at stage k, for k2T: ð4:1Þ

Crucial to the analysis is the formulation of a payment mechanism so that the

imputation in (4.1) can be realized as the game proceeds.

Following the analysis of Yeung and Petrosyan (2010), we formulate a discrete-

time random-horizon Payoff Distribution Procedure (PDP) so that the agreed-upon

imputations (4.1) can be realized. Let Bi
k(x

�
k) denote the payment that player i will

received at stage k under the cooperative agreement.
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The payment scheme involving Bi
k(x

�
k) constitutes a PDP in the sense that along

the cooperative trajectory x*k
� �T

k¼1
the imputation to player i over the stages from

k to T can be expressed as:

ξi τ; x*τ
� � ¼ E

�XT̂
k¼τ

Bi
k x*k
� �þ qi

T̂ þ1
x*
T̂ þ1

� 	�
¼

XT
T̂ ¼τ

θT̂XT
ζ¼τ

θζ

�XT̂
k¼τ

Bi
k x*k
� �þ qi

T̂ þ1
x*
T̂ þ1

� 	�
, i2N andk2T: ð4:2Þ

If the game lasts up to stage T, then at stage T þ 1, player i will receive a terminal

payment qi
Tþ1 x*Tþ1

� �
and Bi

Tþ1 x*Tþ1

� � ¼ 0. Hence the imputation ξi T þ 1, x*Tþ1

� �
equals qi

Tþ1 x*Tþ1

� �
.

A theorem characterizing a formula for Bi
k(x

�
k), for k2T and i2N, which yields

(4.2) is provided below.

Theorem 4.1 A payment equaling

Bi
τ x*τ
� � ¼ ξi τ; x*τ

� ��
XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

ξi τ þ 1, f τ xτ,ψ
1
τ xτð Þ,ψ2

τ xτð Þ, � � �,ψ n
τ xτð Þ� �� �

� θτXT
ζ¼τ

θζ

qi
τþ1 f τ xτ,ψ

1
τ xτð Þ,ψ2

τ xτð Þ, � � �,ψ n
τ xτð Þ� �� �

, for i2N; ð4:3Þ

given to player i at stage τ2Twould lead to the realization of the imputation ξ(τ, x�τ )
in (4.1).

Proof Using (4.2) we obtain

ξi τ; x*τ
� � ¼ Bi

τ x*τ
� �þ θτXT

ζ¼τ

θζ

qi
τþ1 x*τþ1

� �þ
XT
ζ¼τþ1

θT̂

XT
ζ¼τ

θζ

� XT̂
k¼τþ1

Bi
k x*k
� �þ qi

T̂þ1
x*
T̂þ1

� 	�

¼ Bi
τ x*τ
� �þ θτXT

ζ¼τ

θζ

qi
τþ1 x*τþ1

� �þ
XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

XT
ζ¼τþ1

θT̂

XT
ζ¼τþ1

θζ

� XT̂
k¼τþ1

Bi
k x*k
� �þ qi

T̂þ1
x*
T̂þ1

� 	�
:

ð4:4Þ
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Invoking x*τþ1 ¼ f τ xτ,ψ1
τ xτð Þ,ψ2

τ xτð Þ, � � �,ψ n
τ xτð Þ� �

and the definition of ξi(τ, x�τ ) in
(4.2), we can express (4.4) as

ξi τ; x*τ
� � ¼ Bi

τ x*τ
� �þ θτXT

ζ¼τ

θζ

qi
τþ1 f τ xτ,ψ

1
τ xτð Þ,ψ2

τ xτð Þ, � � �,ψ n
τ xτð Þ� �� �

þ

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

ξi τ þ 1, f τ xτ,ψ
1
τ xτð Þ,ψ2

τ xτð Þ, � � �,ψ n
τ xτð Þ� �� �

: ð4:5Þ

Hence Theorem 4.1 follows. ■

Note that the payoff distribution procedure Bi
τ(x

�
τ ) in (4.3) would give rise to the

agreed-upon imputation

ξ k; x*k
� � ¼ ξ1 k; x*k

� �
, ξ2 k; x*k

� �
, � � �, ξn k; x*k

� �� �
at stage k, for k2T.

Therefore subgame consistency is satisfied,

When all players are using the cooperative strategies, the payoff that player iwill
directly receive at stage k2T is

gi
k x*k ,ψ

1
k x*k
� �

,ψ2
k x*k
� �

, � � �,ψ n
k x*k
� �� �

:

However, according to the agreed upon imputation, player i is to receive Bi
k(x

�
k)

at stage k. Therefore a side-payment

ϖ i
k x*k
� � ¼ Bi

k x*k
� �� gi

k x*k ,ψ
1
k x*k
� �

,ψ2
k x*k
� �

, � � �,ψ n
k x*k
� �� �

, f or k2T and

i2N; ð4:6Þ

will be given to player i.

8.5 An Illustration in Random Duration Lease

Consider the case when two firms are given the lease to extract a renewable

resource from a resource pool. The lease for resource extraction has to be renewed

after each stage (year) for up to a maximum of 4 stages. At stage 1, it is known that

the probabilities that the lease will be 1,2,3 or 4 years long are respectively θ1, θ2, θ3
and θ4. Conditional upon the of reaching stage τ > 1, the probability of the game

would last up to stages τ, τ þ 1; to 4 are

θτX4
ζ¼τ

θζ

,
θτþ1X4
ζ¼τ

θζ

,
θ4X4

ζ¼τ

θζ

:
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Let uik denote the amount of resource extraction of firm i at stage k, for i2 1; 2f g and
xk2X � Rþ the size of the resource stock at stage k. The extraction cost for firm

i2 1; 2f g depends on the quantity of resource extracted uik, the resource stock size

xk, and cost parameters ci. In particular, extraction cost for firm i at stage k is ci(u
i
k)
2/

xk. The price of the resource is P.
The profits that firm 1 and firm 2 will obtain at stage k are respectively:

Pu1k �
c1
xk

u1k
� �2 �

and Pu2k �
c2
xk

u2k
� �2 �

: ð5:1Þ

If the game ends after stage τ, a terminal paymentqixτþ1 will be received by firm i in
stage τ þ 1. The growth dynamics of the resource is governed by the difference

equation:

xkþ1 ¼ xk þ a� bxk �
X2
j¼1

uj
k, x1 ¼ x0 ð5:2Þ

for k2 1; 2; 3; 4f g.
In particular, there is an extraction constraint u1k þ u2k 	 1� bð Þxk þ a.The

discount rate is r. The objective of extractor i2 1; 2f g is to maximize the present

value of the expected stream of future profits:

E

�XT̂
k¼1

Pui
k �

ci
xk

u i
k

� �2 �
1

1þr

� 	k�1

þ qixT̂ þ1
1

1þr

� 	T̂
�

¼
X4
T̂ ¼1

θT̂

�XT̂
k¼1

Pui
k �

ci
xk

u i
k

� �2 �
1

1þ r

� �k�1

þ qixT̂ þ1

1

1þ r

� �T̂ �
; ð5:3Þ

subject to (5.2).

Invoking Theorem 2.1, one can characterize the noncooperative equilibrium

strategies in a feedback solution for game (5.2) and (5.3). In particular, a set of

strategies
�
ϕ i
k xð Þ, for k2 1; 2; 3; 4f g and i2 1; 2f g� provides a Nash equilibrium

solution to the game (5.2) and (5.3) if there exist functions Vi(k, x), for i2
1; 2f g and k2 1; 2; 3; 4; 5f g, such that the following recursive relations are

satisfied:

Vi 5; xð Þ ¼ qix 1
1þr

� 	4

,

Vi 4; xð Þ ¼ max
u i
4

�
Pui

4 �
ci
x

u i
4

� �2h i 1

1þ r

� �3

þ qi xþ a� bx� ui
4 � ϕ j

4 xð Þ
h i

1
1þr

� 	4
�
,
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Vi τ; xð Þ ¼ max
u i
τ

�
Pui

τ �
ci
x

u i
τ

� �2h i 1

1þ r

� �τ�1

þ θτXT
ζ¼τ

θζ

qi xþ a� bx� ui
τ � ϕ j

τ xð Þ� � 1

1þ r

� �τ

þ

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Vi τ þ 1, xþ a� bx� ui
τ � ϕ j

τ xð Þ� ��
, for τ2 1; 2; 3f g: ð5:4Þ

Performing the indicated maximization in (5.4) yields:

P� 2ciϕ
i
4 xð Þ
x

� �
� qi

1

1þ r

� �
¼ 0,

P� 2ciϕ
i
τ xð Þ
x

� �
1

1þr

� 	τ�1

� θτXT
ζ¼τ

θζ

qi
1

1þ r

� �τ

�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

V i
xτþ1

τ þ 1, xþ a� bx� ϕ i
τ xð Þ � ϕ j

τ xð Þ� � ¼ 0, for τ2 1; 2; 3f g:

ð5:5Þ

From (5.5), the game equilibrium strategies can be expressed as:

ϕ i
4 xð Þ ¼


P� qi

1

1þ r

� ��
x

2ci
, for i2 1; 2f g:

ϕ i
τ xð Þ ¼


P� θτXT

ζ¼τ

θζ

qi
1

1þ r

� �

�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

V i
xτþ1

τ þ 1, xþ a� bx� ϕ i
τ xð Þ � ϕ j

τ xð Þ� �
1þ rð Þτ�1

�
x

2ci
; ð5:6Þ

for i2 1; 2f g and τ2 1; 2; 3f g:
The value function Vi(τ, x) indicating the game equilibrium payoff of firm i

2 1; 2f g and τ2 1; 2; 3; 4f g can be obtained as:
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Proposition 5.1

Vi τ; xð Þ ¼ Ai
τxþ Ci

τ

� �
, for i2 1; 2f gand τ2 1; 2; 3; 4f g; ð5:7Þ

where Ai
τ and Ci

τ, for i2 1; 2f g and τ2 1; 2; 3; 4f g, are constants in terms of the

parameters of the game (5.2) and (5.3).

Proof See Appendix A. ■

Now consider the case when the extractors agree to maximize their expected

joint profit and share the excess of cooperative gains over their expected noncoop-

erative payoffs equally. To maximize their expected joint payoff, they solve the

problem of maximizing

E

�X2
j¼1

 XT̂
k¼1

Puj
k �

cj
xk

u j
k

� 	2
 �

1
1þr

� 	k�1

þ qjxT̂ þ1
1

1þr

� 	T̂
��

¼
X2
j¼1

X4
T̂ ¼1

θT̂

�XT̂
k¼1

Puj
k �

cj
xk

u j
k

� 	2
 �

1

1þ r

� �k�1

þ qjxT̂ þ1

1

1þ r

� �T̂ �
ð5:8Þ

subject to (5.2).

Invoking Theorem 1.1, one can characterize the optimal controls in the dynamic

programming problem (5.2) and (5.8). In particular, a set of control strategies�
ψ i
k xð Þ, for k2 1; 2; 3; 4f g and i2 1; 2f g� provides an optimal solution to the control

problem (5.2) and (5.8) if there exist functionsW k; xð Þ : R ! R, for k2 1; 2; 3; 4f g,
such that the following recursive relations are satisfied:

W 5; xð Þ ¼
Xn
j¼1

qj
Tþ1 xð Þ,

W 4; xð Þ ¼ max
u1
4
, u2

4

�Xn
j¼1


Puj

4 �
cj
x

u j
4

� 	2
 �

1

1þ r

� �3

þ qj xþ a� bx� u14 � u24
� �

1
1þr

� 	4
��

,

W τ; xð Þ ¼ max
u1τ , u2τ

�Xn
j¼1


Puj

τ �
cj
x

u j
τ

� �2h i 1

1þ r

� �τ�1

þ θτXT
ζ¼τ

θζ

qj xþ a� bx� u1τ � u2τ
� � 1

1þ r

� �τ �

þ

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

W τ þ 1, xþ a� bx� u1τ � u2τ
� ��

, for τ2 1; 2; 3f g: ð5:9Þ
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Performing the indicated maximization in (5.9) yields:

P� 2ciψ i
4 xð Þ
x

� �
� q1 þ q2ð Þ 1

1þ r

� �
¼ 0, for i2 1; 2f g

P� 2ciψ i
τ xð Þ
x

� �
1

1þr

� 	τ�1

� θτXT
ζ¼τ

θζ

q1 þ q2
� � 1

1þ r

� �τ

�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Wxτþ1
τ þ 1, xþ a� bx� ψ1

τ xð Þ � ψ2
τ xð Þ� � ¼ 0; ð5:10Þ

for i2 1; 2f g and τ2 1; 2; 3f g:
In particular, the optimal cooperative strategies can be obtained from

(5.10) as:

ψ i
4 xð Þ ¼


P� q1 þ q2ð Þ 1

1þ r

� � �
x

2ci
, for i2 1; 2f g:

ψ i
τ xð Þ ¼


P� θτXT

ζ¼τ

θζ

q1 þ q2
� � 1

1þ r

� �

�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Wxτþ1
τ þ 1, xþ a� bx� ψ1

τ xð Þ � ψ2
τ xð Þ� �

1þ rð Þτ�1

�
x

2ci
;

ð5:11Þ

for i2 1; 2f g and τ2 1; 2; 3f g.
The joint payoff of the firms under cooperation can be obtained as:

Proposition 5.2 The value function indicating the maximized joint payoff is

W τ; xð Þ ¼ Aτxþ Cτ½ �, for τ2 1; 2; 3; 4f g; ð5:12Þ

where Aτ and Cτ, for τ2 1; 2; 3; 4f g, are constants in terms of the parameters of the

problem (5.8) and (5.2).

Proof See Appendix B. ■

Using (5.11) and Proposition 5.2, the optimal cooperative strategies of the

players can be expressed as:
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ψ i
4 xð Þ ¼


P� q1 þ q2ð Þ 1

1þ r

� ��
x

2ci
, for i2 1; 2f g, and

ψ i
τ xð Þ ¼


P� θτXT

ζ¼τ

θζ

q1 þ q2
� � 1

1þ r

� �
�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Axτþ1
1þ rð Þτ�1

�
x

2ci
; ð5:13Þ

for i2 1; 2f g and τ2 1; 2; 3f g.
Substituting ψ i

k(x) from (5.13) into (5.2) yields the optimal cooperative state

trajectory:

x5 ¼ x4 þ a� bx4 �
X2
j¼1


P� q1 þ q2ð Þ 1

1þ r

� ��
x4
2cj

,

xτþ1 ¼ xτ þ a� bxτ �
X2
j¼1


P� θτXT

ζ¼τ

θζ

q1 þ q2
� � 1

1þ r

� �
�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Axτþ1

1þ rð Þτ�1

�
xτ
2cj

, for τ2 1; 2; 3f g and x1 ¼ x0: ð5:14Þ

Dynamics (5.14) is a linear first-order difference equation which is readily solvable

by standard techniques. Let
�
x*k , for k2 1; 2; � � �; 5f g� denote the solution to (5.14).

Since the extractors agree to share the excess of cooperative gains over their

expected noncooperative payoffs equally, an imputation

ξi τ; x*τ
� � ¼ Vi τ; x*k

� �þ 1

2
W τ; x*τ
� ��X2

j¼1

Vj τ; x*τ
� �" #

¼ Ai
τx

*
τ þ Ci

τ

� �þ 1

2
Aτx

*
τ þ Cτ

� ��X2
j¼1

Aj
τx

*
τ þ Cj

τ

� �" #
; ð5:15Þ

for τ2 1; 2; 3; 4f g and i2 1; 2f g has to be maintained.

Invoking Theorem 4.1, a payment equaling

Bi
τ x*τ
� � ¼ ξi τ; x*τ

� ��
XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

ξi τ þ 1, x*τþ1

� �� θτXT
ζ¼τ

θζ

qi
τþ1 x*τþ1

� �
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¼ Ai
τx

*
τ þ Ci

τ

� �þ 1

2
Aτx

*
τ þ Cτ

� ��X2
j¼1

Aj
τx

*
τ þ Cj

τ

� �" #

�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

�
Ai
τþ1x

*
τþ1 þ Ci

τþ1

� �

þ 1

2
Aτþ1x

*
τþ1 þ Cτþ1

� ��X2
j¼1

Aj
τþ1x

*
τþ1 þ Cj

τþ1

� 	" #�
� θτXT

ζ¼τ

θζ

qi x*τþ1

� � 1

1þ r

� �τ

;

ð5:16Þ

given to player i2 1; 2f g at stage τ2 1; 2; 3; 4f g would lead to the realization of the

imputation in (5.15).

8.6 Chapter Appendices

Appendix A: Proof of Proposition 5.1 Consider first the last stage, that is stage

4. Invoking that Vi 4; xð Þ ¼ Ai
4xþ Ci

4

� �
from Proposition 5.1 and Vi 5; xð Þ ¼ qix

1
1þr

� 	4

and (5.6), the second equation in (5.4) become

Ai
4xþ Ci

4

� � ¼ (
P

"
P� qi

1

1þ r

� � #
x

2ci

�
"
P� qi

1

1þ r

� � #2
x

4ci

)
1

1þ r

� �3

þ qi

(
xþ a� bx�

"
P� qi

1

1þ r

� � #
x

2ci

�
"
P� qj

1

1þ r

� � #
x

2cj

)
1

1þ r

� �4

: ð6:1Þ

Note that the expressions on both the left-hand-side and right-hand-side of equation

(6.1) are linear in x, one can readily obtain Ai
4 and Ci

4 explicitly as:
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Ai
4 ¼

�
P


P� qi

1

1þ r

� � �
1

2ci
�

P� qi

1

1þ r

� � �2
1

4ci

�
1

1þ r

� �3

þ qi
�
1� b�


P� qi

1

1þ r

� � �
1

2ci
�

P� qj

1

1þ r

� � �
1

2cj

�
1

1þ r

� �4

,

and

Ci
4 ¼ qia: ð6:2Þ

Using (5.6) and Proposition 5.1, the game equilibrium strategy of player i in
stage τ2 1; 2; 3f g can be obtained as:

ϕ i
τ xð Þ ¼


P� θτXT

ζ¼τ

θζ

qi
1

1þ r

� �
�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Ai
xτþ1

1þ rð Þτ�1

�
x

2ci
, i2 1; 2f g: ð6:3Þ

Once again invoking Proposition 5.1 the third set of equations in (5.4) can be

expressed as:

Ai
τxþ Ci

τ

� � ¼ �
P


P� θτXT

ζ¼τ

θζ

qi
1

1þ r

� �
�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Ai
xτþ1

1þ rð Þτ�1

�
x

2ci

�

P� θτXT

ζ¼τ

θζ

qi
1

1þ r

� �
�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Ai
xτþ1

1þ rð Þτ�1

�2 x

4ci

�
1

1þ r

� �τ�1

þ θτXT
ζ¼τ

θζ

qi
�
xþ a� bx�


P� θτXT

ζ¼τ

θζ

qi
1

1þ r

� �

�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Ai
xτþ1

1þ rð Þτ�1

�
x

2ci

�

P� θτXT

ζ¼τ

θζ

qj
1

1þ r

� �
�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Aj
xτþ1

1þ rð Þτ�1

�
x

2cj

�
1

1þ r

� �τ
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þ

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

�
Ai
τþ1

�
xþ a� bx�


P� θτXT

ζ¼τ

θζ

qi
1

1þ r

� �

�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Ai
xτþ1

1þ rð Þτ�1

�
x

2ci

�

P� θτXT

ζ¼τ

θζ

qj
1

1þ r

� �
�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Aj
xτþ1

1þ rð Þτ�1

�
x

2cj

�
þ Ci

τþ1

�
: ð6:4Þ

Once again, both the left-hand-side and right-hand-side of equation (6.4) are linear

in x, one can readily obtain Ai
τ and Ci

τ in terms of the model parameters and Ai
τþ1

and Ci
τþ1.

Using Ai
4 and Ci

4 in (6.2), one can obtain Ai
3 and Ci

3 explicitly. Using Ai
3 and Ci

3,

one can obtain Ai
2 and Ci

2 explicitly. Using Ai
2 and Ci

2, one can obtain Ai
1 and Ci

1

explicitly. Hence Proposition 5.1 follows. Q.E.D.

Appendix B: Proof of Proposition 5.2 Consider first the last stage, that is stage

4. Invoking that W 4; xð Þ ¼ A4xþ C4½ � from Proposition 5.2 and W 5; xð Þ ¼
X2
j¼1

qjx

1
1þr

� 	4

and (5.11), the second equation in (5.9) become

A4xþ C4½ � ¼
X2
j¼1

�
P


P� q1 þ q2ð Þ 1

1þ r

� ��
x

2cj

�

P� q1 þ q2ð Þ 1

1þ r

� � �2
x

4cj

�
1

1þ r

� �3

þ
X2
j¼1

qj
�
xþ a� bx�


P� q1 þ q2ð Þ 1

1þ r

� ��
x

2c1

�

P� q1 þ q2ð Þ 1

1þ r

� ��
x

2c2

�
1

1þ r

� �4

: ð6:5Þ

Note that the expressions on both the left-hand-side and right-hand-side of equation

(6.5) are linear in x, one can readily obtain A4 and C4 explicitly as:
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A4 ¼
X2
j¼1

�
P


P� q1 þ q2ð Þ 1

1þ r

� ��
1

2cj

�

P� q1 þ q2ð Þ 1

1þ r

� � �2
1

4cj

�
1

1þ r

� �3

þ
X2
j¼1

qj
�
1� b�


P� q1 þ q2ð Þ 1

1þ r

� ��
1

2c1

�

P� q1 þ q2ð Þ 1

1þ r

� ��
1

2c2

�
1

1þ r

� �4

, and

C4 ¼ q1 þ q2ð Þa: ð6:6Þ

Using (5.11) and Proposition 5.2, the cooperative strategy of player i in stage

τ2 1; 2; 3f g can be obtained as:

ψ i
τ xð Þ ¼


P� θτXT

ζ¼τ

θζ

q1 þ q2
� � 1

1þ r

� �
�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Axτþ1
1þ rð Þτ�1

�
x

2ci
; ð6:7Þ

for i2 1; 2f g and τ2 1; 2; 3f g.
Invoking Proposition 5.2 the third set of equations in (5.9) can be expressed

as:

Aτxþ Cτ½ � ¼
Xn
j¼1

�
P


P� θτXT

ζ¼τ

θζ

q1 þ q2
� � 1

1þ r

� �

�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Axτþ1
1þ rð Þτ�1

�
x

2cj

�

P� θτXT

ζ¼τ

θζ

q1 þ q2
� � 1

1þ r

� �
�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Axτþ1
1þ rð Þτ�1

�2 x

4cj

�
1

1þ r

� �τ�1

þ
Xn
j¼1

θτXT
ζ¼τ

θζ

qj
�
xþ a� bx

220 8 Subgame Consistent Cooperative Solution in Random Horizon Dynamic Games



�

P� θτXT

ζ¼τ

θζ

q1 þ q2
� � 1

1þ r

� �
�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Axτþ1
1þ rð Þτ�1

�
x

2c1

�

P� θτXT

ζ¼τ

θζ

q1 þ q2
� � 1

1þ r

� �
�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Axτþ1
1þ rð Þτ�1

�
x

2c2

�
1

1þ r

� �τ

þ

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

�
Aτþ1

�
xþ a� bx

�

P� θτXT

ζ¼τ

θζ

q1 þ q2
� � 1

1þ r

� �
�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Axτþ1
1þ rð Þτ�1

�
x

2c1

�

P� θτXT

ζ¼τ

θζ

q1 þ q2
� � 1

1þ r

� �
�

XT
ζ¼τþ1

θζ

XT
ζ¼τ

θζ

Axτþ1
1þ rð Þτ�1

�
x

2c2

�
þ Cτþ1

�
;

ð6:8Þ

for τ2 1; 2; 3f g.
Both the left-hand-side and right-hand-side of equation (6.8) are linear in x, one

can readily obtain Aτ and Cτ in terms of the model parameters and Aτþ1 and Cτþ1.

Using A4 and C4 in (6.6), one can obtain A3 and C3 explicitly. Using A3 and C3,

one can obtain A2 and C2 explicitly. Using A2 and C2, one can obtain A1 and C1

explicitly. Hence Proposition 5.2 follows. Q.E.D.

8.7 Chapter Notes

Petrosyan and Murzov (1966) first developed the Bellman Isaacs equations under

random horizon for zero-sum differential games. Petrosyan and Shevkoplyas

(2003) gave the first analysis of dynamically consistent solutions for cooperative
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differential with random duration. Shevkoplyas (2011) considered Shapley value in

cooperative differential games with random horizon in an infinite horizon frame-

work. In this Chapter, we extend subgame consistent solutions to dynamic cooper-

ative games with random horizon. Random horizon Bellman equation and the

Isaacs-Bellman equations are derived. Subgame consistent cooperative solutions

are derived for dynamic games with random horizon. Analytically tractable payoff

distribution mechanisms which lead to the realization of these solutions are derived.

The analysis widens the application of cooperative dynamic game theory to prob-

lems where the game horizon is random.

8.8 Problems

1. Consider the case when two firms are given the lease to extract a renewable

resource from a resource pool. The lease for resource extraction has to be

renewed after each stage (year) for up to a maximum of 4 stages. At stage 1, it

is known that the probabilities that the lease will be 1,2,3 or 4 years long are

respectively 0.1, 0.3, 0.5 and 0.2.

Let uik denote the amount of resource extraction of firm i at stage k, for i

2 1; 2f g and xk2X � Rþ the size of the resource stock at stage k.
The profits that firm 1 and firm 2 will obtain at stage k are respectively:

2u1k �
1

xk
u1k
� �2 �

and u2k �
1

xk
u2k
� �2 �

:

If the game ends after stage τ2 1; 2; 3; 4f g, a terminal payment 1:5xτþ1 will be

received by firm 1 and a terminal payment xτþ1 will be received by firm 2 in stage

τ þ 1. The growth dynamics of the resource is governed by the difference

equation:

xkþ1 ¼ xk þ 10� 0:1xk �
X2
j¼1

uj
k, x1 ¼ x0

for k2 1; 2; 3; 4f g.
In particular, there is an extraction constraint u1k þ u2k 	 0:9xk þ 10. The

discount rate is 0.05.

Characterize the feedback Nash equilibrium.

2. Obtain a group optimal solution that maximizes the joint expected payoff.

3. Consider the case when the extractors agree to share the excess of cooperative

gains over their noncooperative payoffs equally. Derive a subgame consistent

solution.
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Chapter 9

Subgame Consistency in Randomly-
Furcating Cooperative Stochastic Dynamic
Games

This Chapter considers subgame consistent cooperative solutions in randomly

furcating stochastic discrete-time dynamic games. In particular, in this type of

games the evolution of the state is stochastic and future payoff structures are not

known with certainty. The presence of random elements in future payoff structures

and stock dynamics are prevalent in many practical game situations like regional

economic cooperation, corporate joint ventures and transboundary environmental

management. The analysis is based on Yeung and Petrosyan (2013a). It first

develops a class of randomly furcating stochastic dynamic games in which future

payoff structures of the game furcates or branches out randomly and the discrete-

time game dynamics evolves stochastically. Nash equilibria of this class of games

are characterized for non-cooperative outcomes and subgame-consistent solutions

are derived for cooperative paradigms. A discrete-time analytically tractable payoff

distribution procedure contingent upon specific random realizations of the state and

payoff structure is derived. Worth mentioning is that in computer modeling and

operations research discrete-time analysis often proved to be more applicable and

compatible with actual data than continuous-time analysis. The Chapter is orga-

nized as follows. The game formulation and non-cooperative equilibria are given in

Sect. 9.1. Group optimality and individual rationality under dynamic cooperation

are discussed in Sect. 9.2. Subgame consistent solutions and payment mechanism

leading to the realization of these solutions are obtained in Sect. 9.3. Section 9.4

presents an illustration in cooperative resource extraction. Extensions of the model

are provided in Sect. 9.5. Chapter appendices, chapter notes and problems are

presented in Sect. 9.6, Sect. 9.7, and Sect. 9.8 respectively.

9.1 Game Formulation and Non-cooperative Outcome

In this Section, we first consider the formulation of a general class of randomly-

furcating stochastic dynamic games and then derive the non-cooperative outcome.

© Springer Science+Business Media Singapore 2016
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9.1.1 Randomly-Furcating Stochastic Dynamic Games

Consider the T� stage n� person nonzero-sum dynamic game with initial state x0.
The state space of the game is X2Rm and the state dynamics of the game is

characterized by the stochastic difference equation:

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �þ ϑk; ð1:1Þ

for k2 1; 2; � � �; Tf g and x1 ¼ x0;

where ui
k2Ui � Rmi is the control vector of player i at stage k, xk2X is the state, and

ϑk is a sequence of statistically independent random variables.

The payoff of player i at stage k is gi
k xk; u

1
k ; u

2
k ; � � �; un

k ; θk
� �

which is affected by a

random variable θk. In particular, θk for k2 1; 2; � � �; Tf g are independent discrete

random variables with range θ1k ; θ
2
k ; � � �; θηkk

� �
and corresponding probabilities

λ1k ; λ
2
k ; � � �; ληkk

� �
, where ηk is a positive integer for k2 1; 2; � � �; Tf g. In stage 1, it

is known that θ1 equals θ11 with probability λ11 ¼ 1.

The objective that player i seeks to maximize is

Eθ1,θ2, ���,θT ;ϑ1,ϑ2, ���,ϑT

�XT
k¼1

gi
k xk; u

1
k ; u

2
k ; � � �; un

k ; θk
� �þ qi xTþ1ð Þ

�
,

for i2 1; 2; � � �; nf g�N; ð1:2Þ

where Eθ1,θ2, ���,θT ;ϑ1,ϑ2, ���,ϑT is the expectation operation with respect to the random

variables θ1, θ2, � � �, θT and ϑ1,ϑ2, � � �,ϑT , and qi xTþ1ð Þ is a terminal payment given

at stage T þ 1. The payoffs of the players are transferable.

9.1.2 Noncooperative Equilibria

Let u
σtð Þi
t denote the strategy of player i at stage t given that the realized random

variable affecting the players’ payoffs is θσtt . In a stochastic dynamic game frame-

work, a strategy space with state-dependent property has to be considered. In

particular, a pre-specified class Γi of mapping ϕ σtð Þi
t �ð Þ : X ! Ui with the property

u
σtð Þi
t ¼ ϕ σtð Þi

t xð Þ2Γi is the strategy space of player i and each of its elements is a

permissible strategy.

To solve the game, we invoke the principle of optimality in Bellman’s (1957)
technique of dynamic programming and begin with the subgame starting at the last

operating stage, that is stage T. If θσTT 2 θ1T ; θ
2
T ; � � �; θηTT

� �
has occurred at stage T and

the state xT ¼ x, the subgame becomes:
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max
u i
T

EϑT

�
gi
T x; u1T ; u

2
T ; � � �; un

T ; θ
σT
T

� �þ qi xTþ1ð Þ
�
, for i2N;

subject to

xTþ1 ¼ f T x; u1T ; u
2
T ; � � �; un

T

� �þ ϑT : ð1:3Þ

A set of state-dependent strategiesϕ σTð Þ*
T xð Þ ¼ ϕ σTð Þ1*

T xð Þ,ϕ σTð Þ2*
T xð Þ, � � �,ϕ σTð Þn*

T xð Þ
n o

constitutes a Nash equilibrium solution to the subgame (1.3) if the following

conditions are satisfied:

V σTð Þi T; xð Þ ¼ EϑT

�
gi
T x,ϕ σTð Þ*

T xð Þ; θσTT
h i

þ qi xTþ1ð Þ
�

� EϑT

�
gi
T x,ϕ σTð Þ6¼i*

T xð Þ; θσTT
h i

þ qi exTþ1ð Þ
�
, for i2N;

where xTþ1 ¼ f T x,ϕ σTð Þ*
T xð Þ

h i
þ ϑT ,

ϕ σTð Þ6¼i*
T xð Þ
¼ ϕ σTð Þ1*

T xð Þ,ϕ σTð Þ2*
T xð Þ, � � �,ϕ σTð Þi�1*

T xð Þ, u σTð Þi
T ,ϕ σTð Þiþ1*

T xð Þ, � � �,ϕ σTð Þn*
T xð Þ

h i
;

and exTþ1 ¼ f T x,ϕ σTð Þ6¼i*
T xð Þ

h i
þ ϑT .

A characterization of the Nash equilibrium of the subgame (1.3) is provided in

the following lemma.

Lemma 1.1 A set of strategies ϕ σTð Þ*
T xð Þ ¼ ϕ σTð Þ1*

T xð Þ,ϕ σTð Þ2*
T xð Þ, � � �,ϕ σTð Þn*

T xð Þ
n o

provides a Nash equilibrium solution to the subgame (1.3) if there exist functions

V σTð Þi T; xð Þ, for i2N, such that the following conditions are satisfied:

V σTð Þi T; xð Þ ¼ max
u

σTð Þi
T

EϑT

�
gi
T x,ϕ σTð Þ6¼i*

T xð Þ; θσTT
h i

þV σTþ1ð Þi T þ 1, f T x,ϕ σTð Þ6¼i*
T xð Þ

� 	
þ ϑT

h i�
,

V σTð Þi T þ 1, xð Þ ¼ qi xð Þ; for i2N : ð1:4Þ

Proof The system of equations in (1.4) satisfies the standard stochastic dynamic

programming property and the Nash property for each player i2N. Hence a Nash
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(1951) equilibrium of the subgame (1.3) is characterized. Details of the proof of the

results can be found in Theorem 6.10 in Basar and Olsder (1999). ■

For the sake of exposition, we sidestep the issue of multiple equilibria and focus

on games in which there is a unique noncooperative Nash equilibrium in each

subgame. Using Lemma 1.1, one can characterize the value functions V σTð Þi T; xð Þ
for all σT 2 1; 2; � � �; ηTf g if they exist. In particular, V σTð Þi T; xð Þ yields player i’s
expected game equilibrium payoff in the subgame starting at stage T given that θσTT
occurs and xT ¼ x.

Then we proceed to the subgame starting at stage T � 1 when θσT�1

T�1

2 θ1T�1; θ
2
T�1; � � �; θηT�1

T�1

� �
occurs and xT�1 ¼ x. In this subgame player i2N seeks

to maximize his expected payoff

EθT ;ϑT�1,ϑT

�
gi
T�1 x; u1T�1; u

2
T�1; � � �; un

T�1; θ
σT�1

T�1

� �
þ gi

T xT ; u
1
T ; u

2
T ; � � �; un

T ; θT
� �þ qi xTþ1ð Þ

�
¼ EϑT�1,ϑT

�
gi
T�1 x; u1T�1; u

2
T�1; � � �; un

T�1; θ
σT�1

T�1

� �
þ
XηT
σT¼1

λσTT g i
T xT ; u

1
T ; u

2
T ; � � �; un

T ; θ
σT
T

� �þ qi xTþ1ð Þ
�
, for i2N; ð1:5Þ

subject to

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �þ ϑk, for k2 T � 1, Tf gand xT�1 ¼ x: ð1:6Þ

If the functions V σTð Þi T; xð Þ for all σT2 1; 2; � � �; ηTf g characterized in Lemma 1.1

exist, the subgame (1.5 and 1.6) can be expressed as a game in which player i seeks
to maximize the expected payoff

EϑT�1

�
gi
T�1 x; u1T�1; u

2
T�1; � � �; un

T�1; θ
σT�1

T�1

� �
þ
XηT
σT¼1

λσTT V σTð Þi T, f T�1 x; u1T�1; u
2
T�1; � � �; un

T�1

� �þ ϑT�1


 ��
, for i2N; ð1:7Þ

using his control ui
T�1.

A set of strategies ϕ σT�1ð Þ*
T�1 xð Þ ¼ ϕ σT�1ð Þ1*

T�1 xð Þ,ϕ σT�1ð Þ2*
T�1 xð Þ, � � �,ϕ σT�1ð Þn*

T�1 xð Þ
n o

con-

stitutes a Nash equilibrium solution to the subgame (1.7) if the following conditions

are satisfied:
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V σT�1ð Þi T � 1, xð Þ ¼ EϑT�1

�
gi
T�1 x,ϕ σT�1ð Þ*

T�1 xð Þ; θσT�1

T�1

h i
þ
XηT
σT¼1

λσTT V σTð Þi T, f T�1 x,ϕ σT�1ð Þ*
T�1 xð Þ

h i
þ ϑT�1

h i�
� EϑT�1

�
gi
T�1 x,ϕ σT�1ð Þ6¼i*

T�1 xð Þ; θσT�1

T�1

h i
þ
XηT
σT¼1

λσTT V σTð Þi T, f T�1 x,ϕ σT�1ð Þ6¼i*
T�1 xð Þ

� 	
þ ϑT�1

h i�
, for i2N; ð1:8Þ

where

ϕ σT�1ð Þ6¼i*
T�1 xð Þ ¼
ϕ σT�1ð Þ1*
T�1 xð Þ,ϕ σT�1ð Þ2*

T�1 xð Þ, � � �,ϕ σT�1ð Þi�1*
T�1 xð Þ, u σT�1ð Þi

T�1 ,ϕ σT�1ð Þiþ1*
T�1 xð Þ, � � �,ϕ σT�1ð Þn*

T�1 xð Þ
h i

:

A characterization of the Nash equilibrium of the subgame (1.7) is provided in the

following lemma.

Lemma 1.2 A set of strategies ϕ σT�1ð Þ*
T�1 xð Þ ¼ ϕ σT�1ð Þ1*

T�1 xð Þ,ϕ σT�1ð Þ2*
T�1 xð Þ, � � �,

n
ϕ σT�1ð Þn*
T�1 xð Þg provides a Nash equilibrium solution to the subgame (1.7) if there

exist functions V σTð Þi T; xTð Þ for i2N and σT ¼ 1; 2; � � �; ηTf g characterized in

Lemma 1.1, and functions V σT�1ð Þi T � 1, xð Þ, for i2N, such that the following

conditions are satisfied:

V σT�1ð Þi T � 1, xð Þ ¼ max
u

σT�1ð Þi
T�1

EϑT�1

�
gi
T�1 x,ϕ σT�1ð Þ6¼i*

T�1 xð Þ; θσT�1

T�1

h i
þ
XηT
σT¼1

λσTT V σTð Þi T, f T�1 x;ϕ σT�1ð Þ6¼i*
T�1

� 	
þ ϑT�1

h i�
, for i2N: ð1:9Þ

Proof The conditions in Lemma 1.1 and the system of equations in (1.9) satisfies

the standard discrete-time stochastic dynamic programming property and the Nash

property for each player i2N. Hence a Nash equilibrium of the subgame (1.7) is

characterized. ■

In particular, V σT�1ð Þi T � 1, xð Þ, if it exists, yields player i’s expected game

equilibrium payoff in the subgame starting at stage T � 1 given that θσT�1

T�1 occurs

and xT�1 ¼ x.

Consider the subgame starting at stage t2 T � 2, T � 3, � � �, 1f g when θσtt 2
θ1t ; θ

2
t ; � � �; θηtt

� �
occurs and xt ¼ x, in which player i2N maximizes his expected

payoff
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Eθtþ1;ϑt,ϑtþ1, ���,ϑT

�
gi
t x; u1t ; u

2
t ; � � �; un

t ; θ
σt
t

� �
þ
XT
ζ¼tþ1

gi
ζ xζ; u

1
ζ ; u

2
ζ ; � � �; un

ζ ; θζ
� 	

þ qi xTþ1ð Þ
�
, for i2N; ð1:10Þ

subject to

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �þ ϑk, for k2 t, tþ 1, � � �,Tf g and xt ¼ x: ð1:11Þ

Following the above analysis, the subgame (1.10 and 1.11) can be expressed as a

game in which player i2N maximizes his expected payoff

Eϑt

�
gi
t x; u1t ; u

2
t ; � � �; un

t ; θ
σt
t

� �
þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi tþ 1, f t x; u

1
t ; u

2
t ; � � �; un

t

� �þ ϑt

 ��

, for i2N; ð1:12Þ

with his control uit,

where V σtþ1ð Þi tþ 1, f t x; u
1
t ; u

2
t ; � � �; un

t

� �þ ϑt

 �

is player i’s expected game equilib-

rium payoff in the subgame starting at stage tþ 1 given that θσtþ1

tþ1 occurs and

xtþ1 ¼ f t x; u
1
t ; u

2
t ; � � �; un

t

� �þ ϑt.

A set of strategiesϕ σtð Þ*
t xð Þ ¼ ϕ σtð Þ1*

t xð Þ,ϕ σtð Þ2*
t xð Þ, � � �,ϕ σtð Þn*

t xð Þ
n o

, constitutes a

Nash equilibrium solution to the subgame (1.12) if the following conditions are

satisfied:

V σtð Þi t; xð Þ ¼ Eϑt

�
gi
t x,ϕ σtð Þ*

t xð Þ; θσtt
h i

þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi tþ 1, f t x,ϕ σtð Þ*

t xð Þ
h i

þ ϑt
h i�

� Eϑt

�
gi
t x,ϕ σtð Þ6¼i*

t xð Þ; θσtt
h i

þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi tþ 1, f t x,ϕ σtð Þ6¼i*

t xð Þ
� 	

þ ϑt
h i�

where

ϕ σtð Þ6¼i*
t xð Þ ¼

n
ϕ σtð Þ1*
t xð Þ,ϕ σtð Þ2*

t xð Þ, � � �,ϕ σtð Þi�1*
t xð Þ,u σtð Þi

t ,ϕ σtð Þiþ1*
t xð Þ, � � �,ϕ σtð Þn*

t xð Þ
o
:

A Nash equilibrium solution for the game (1.1 and 1.2) can be characterized by the

following theorem.
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Theorem 1.1 A set of strategies ϕ σtð Þ*
t xð Þ ¼ ϕ σtð Þ1*

t xð Þ,ϕ σtð Þ2*
t xð Þ, � � �,ϕ σtð Þn*

t xð Þ
n o

;

for σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g, constitutes a Nash equilibrium solution

to the game (1.1 and 1.2) if there exist functions V σtð Þi t; xð Þ, for σt2 1; 2; � � �; ηtf g,
t2 1; 2; � � �; Tf g and i2N, such that the following recursive relations are satisfied:

V σTð Þi T þ 1, xð Þ ¼ qi xð Þ,
V σTð Þi T; xð Þ ¼ max

u
σTð Þi

T

EϑT

�
gi
T x,ϕ σTð Þ6¼i*

T xð Þ; θσTT
h i

þV σTþ1ð Þi T þ 1, f T x,ϕ σTð Þ6¼i*
T xð Þ

� 	
þ ϑT

h i�
,

V σtð Þi t; xð Þ ¼ max
u

σtð Þi
t

Eϑt

�
gi
t x,ϕ σtð Þ6¼i*

t xð Þ; θσtt
h i

þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi tþ 1, f t x,ϕ σtð Þ6¼i*

t xð Þ
� 	

þ ϑt
h i�

;

for σt2 1; 2; � � �; ηtf g, t2 1, 2, � � �,T � 1f gand i2N: ð1:13Þ

Proof The results in (1.13) characterizing the game equilibrium in stage T and

stage T � 1 are proved in Lemma 1.1 and 1.2. Invoking the subgame in stage t
2 1, 2, � � �, T � 2f g as expressed in (1.12), the results in (1.13) satisfy the optimality

conditions in stochastic dynamic programming and the Nash equilibrium property

for each player in each of these subgames. Therefore, a feedback Nash equilibrium

of the game (1.1 and 1.2) is characterized. ■

Theorem 1.1 is the discrete-time analog of the Nash equilibrium in the

continuous-time randomly furcating stochastic differential games in Chap. 4.

9.2 Dynamic Cooperation

Now consider the case when the players agree to cooperate and distribute the joint

payoff among themselves according to an optimality principle. As pointed out

before two essential properties that a cooperative scheme has to satisfy are group

optimality and individual rationality.

9.2.1 Group Optimality

In this subsection, we consider the issue of ensuring group optimality in a cooper-

ative scheme. To achieve group optimality by maximizing their expected joint
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payoff the players have to solve the discrete-time stochastic dynamic programming

problem of maximizing

Eθ1,θ2, ���,θT ;ϑ1,ϑ2, ���,ϑT

�Xn
j¼1

XT
k¼1

gj
k xk; u

1
k ; u

2
k ; � � �; un

k ; θk
� �h i

þ
Xn
j¼1

qj xTþ1ð Þ
�

ð2:1Þ

subject to (1.1).

The stochastic dynamic programming problem (1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,

1.8, 1.9, 1.10, 1.11, 1.12, 1.13 and 2.1) can be regarded as a single-player case of the

game problem (1.1 and 1.2) with n ¼ 1 and the payoff being the sum of the all the

players’ payoffs. In a stochastic dynamic framework, again strategy space with

state-dependent property has to be considered. In particular, a pre-specified class Γ̂ i

of mapping ψ σtð Þi
i �ð Þ : X ! Ui with the property u

σtð Þi
t ¼ ψ σtð Þi

t xð Þ2 Γ̂ i
, for

σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g, is the strategy space of player i and each of

its elements is a permissible strategy.

To solve the dynamic programming problem (1.1) and (2.1), we first consider the

problem starting at stage T. If θσTT 2 θ1T ; θ
2
T ; � � �; θηTT

� �
has occurred at stage T and the

state xT ¼ x, the problem becomes:

max
u1T , u

2
T , ���, u n

T

EϑT

�Xn
j¼1

gj
T x; u1T ; u

2
T ; � � �; un

T ; θ
σT
T

� �þXn
j¼1

qj xTþ1ð Þ
�

ð2:2Þ

subject to

xTþ1 ¼ f T x; u1T ; u
2
T ; � � �; un

T

� �þ ϑT : ð2:3Þ

An optimal solution to the stochastic control problem (2.2 and 2.3) is character-

ized by the following lemma.

Lemma 2.1 A set of controls u
σTð Þ*
T ¼ ψ σTð Þ*

T xð Þ ¼ ψ σTð Þ1*
T xð Þ, ψ σTð Þ2*

T xð Þ, � � �� � �,
n

ψ σTð Þn*
T xð Þg provides an optimal solution to the stochastic control problem (2.2 and

2.3) if there exist functions W σTþ1ð Þ T; xð Þ, for i2N, such that the following condi-

tions are satisfied:

W σTð Þ T;xð Þ ¼ max
u

σTð Þ1
T ,u σTð Þ2

T , ���,u σTð Þn
T

EϑT

�Xn
j¼1

gj
T x;u

σTð Þ1
T ;u

σTð Þ2
T ; � � �;u σTð Þn

T ;θσTT

h i
þW σTþ1ð Þ T þ 1, f T x;u

σTð Þ1
T ;u

σTð Þ2
T ; � � �;u σTð Þn

T

� 	
þ ϑT

h i�
,

W σTð Þ T þ 1,xð Þ þ
Xn
j¼1

qj xð Þ: ð2:4Þ
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Proof The system of equations in (2.4) satisfies the standard discrete-time sto-

chastic dynamic programming property. Details of the proof of the results can be

found in Basar and Olsder (1999). ■

Note that W σTð Þ T; xð Þ yields the expected cooperative payoff starting at stage

T given that θσTT occurs and xT ¼ x according to the dynamic programming

problem (2.2 and 2.3) if θσTT . Using Lemma 2.1, one can characterize the functions

W σTð Þ T; xð Þ for all θσTT 2 θ1T ; θ
2
T ; � � �; θηTT

� �
, if they exist. Following the analysis in

Sect. 9.2, the control problem starting at stage t when θσtt 2 θ1t ; θ
2
t ; � � �; θηtt

� �
occurs

and xt ¼ x can be expressed as:

max
ut

Eϑt

�Xn
j¼1

gj
t x; u1t ; u

2
t ; � � �; un

t ; θ
σt
t

� �
þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1W
σtþ1ð Þ tþ 1, f t x; u

1
t ; u

2
t ; � � �; un

t

� �þ ϑt

 ��

; ð2:5Þ

where W σtþ1ð Þ tþ 1, f t x; u
1
t ; u

2
t ; � � �; un

t

� �þ ϑt

 �

is the expected optimal

cooperative payoff in the control problem starting at stage tþ 1 when

θσtþ1

tþ1 2 θ1tþ1; θ
2
tþ1; � � �; θηtþ1

tþ1

� �
occurs and xtþ1 ¼ f t x; u

1
t ; u

2
t ; � � �; un

t

� �þ ϑt.
An optimal solution for the stochastic control problem (1.1) and (2.1) can be

characterized by the following theorem.

Theorem 2.1 A set of controls u
σtð Þi*
t ¼ ψ σtð Þ*

t xð Þ ¼ �ψ σtð Þ1*
t xð Þ, ψ σtð Þ2*

t xð Þ, � � �� � �,
ψ σtð Þn*
t xð Þ�, forσt2 1; 2; � � �; ηtf gand t2 1; 2; � � �; Tf gprovides an optimal solution to

the stochastic control problem (1.1) and (2.1) if there exist functionsW σtð Þ t; xð Þ, for
σt2 1; 2; � � �; ηtf gand t2 1; 2; � � �; Tf g, such that the following recursive relations are
satisfied:

W σTð Þ T þ 1, xð Þ ¼
Xn
j¼1

qj xð Þ,

W σTð Þ T; xð Þ ¼ max
u

σTð Þ1
T

, u σTð Þ2
T

, ���, u σTð Þn
T

EϑT

�Xn
j¼1

gj
T x; u

σTð Þ1
T ; u

σTð Þ2
T ; � � �; u σTð Þn

T ; θσTT

h i
þW σTþ1ð Þ T þ 1, f T x; u

σTð Þ1
T ; u

σTð Þ2
T ; � � �; u σTð Þn

T

� 	
þ ϑT

h i�
,

W σtð Þ t; xð Þ ¼ max
u

σtð Þ1
t , u σtð Þ2

t , ���, u σtð Þn
t

Eϑt

�Xn
j¼1

gj
t x; u

σtð Þ1
t ; u

σtð Þ2
t ; � � �; u σtð Þn

t ; θσtt

h i
þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1W
σtþ1ð Þ tþ 1, f t x; u

σtð Þ1
t ; u

σtð Þ2
t ; � � �; u σtð Þn

t

� 	
þ ϑt

h i�
,

for σt2 1; 2; � � �; ηtf g and t2 1, 2, � � �,T � 1f g: ð2:6Þ
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Proof The results in (2.6) characterizing the optimal solution in stage T is proved

in Lemma 2.1. Invoking the specification of the control problem starting in stage

t2 1, 2, � � �, T � 1f g as expressed in (2.5), the results in (2.6) satisfy the optimality

conditions in stochastic dynamic programming. Therefore, an optimal solution of

the stochastic control problem (1.1) and (2.1) is characterized. ■
Theorem 2.1 is the discrete-time analog of the optimal cooperative scheme in

randomly furcating stochastic differential games in Petrosyan and Yeung (2007).

Substituting the optimal control
�
ψ σkð Þi*
k xð Þ, for k2 1, 2, � � �Tf g and i2N

�
into the

state dynamics (1.1), one can obtain the dynamics of the cooperative trajectory as:

xkþ1 ¼ f k xk,ψ
σkð Þ1*
k xkð Þ,ψ σkð Þ2*

k xkð Þ, � � �,ψ σkð Þn*
k xkð Þ

� 	
þ ϑk, if θ

σk
k occurs ; ð2:7Þ

for k2 1; 2; � � �; Tf g, σk2 1; 2; � � �; ηkf g and x1 ¼ x0.
We use X�

k to denote the set of realizable values of x�k at stage k generated by

(2.7). The term x*k 2X*
k is used to denote an element in X�

k .

The termW σkð Þ k; x*k
� �

gives the expected total cooperative payoff over the stages

from k to T if θσkk occurs and x*k 2X*
k is realized at stage k.

9.2.2 Individual Rationality

The players then have to agree to an optimality principle in distributing the total

cooperative payoff among themselves. For individual rationality to be upheld the

expected payoffs a player receives under cooperation have to be no less than his

expected noncooperative payoff along the cooperative state trajectory x*k
� � Tþ1

k¼1
. The

players may (i) share the excess of the total expected cooperative payoff over the

expected sum of individual noncooperative payoffs equally, or (ii) share the total

expected cooperative payoff proportional to their expected noncooperative payoffs.

Let ξ σkð Þ k; x*k
� � ¼ ξ σkð Þ1 k; x*k

� �
, ξ σkð Þ2 k; x*k

� �
, � � �, ξ σkð Þn k; x*k

� �
 �
denote the impu-

tation vector guiding the distribution of the total expected cooperative payoff under

the agreed-upon optimality principle along the cooperative trajectory given that θσkk
has occurred in stage k, for σk2 1; 2; � � �; ηkf g and k2 1; 2; � � �; Tf g. In particular, the
imputation ξ σkð Þi k; x*k

� �
gives the expected cumulative payments that player i will

receive from stage k to stage T þ 1 under cooperation.

If for example, the optimality principle specifies that the players share the excess

of the total cooperative payoff over the sum of individual noncooperative payoffs

equally, then the imputation to player i becomes:

ξ σkð Þi k; x*k
� � ¼ V σkð Þi k; x*k

� �þ 1

n
W σkð Þ k; x*k

� ��Xn
j¼1

V σkð Þj k; x*k
� �" #

; ð2:8Þ

for i2N and k2 1; 2; � � �; Tf g.
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For individual rationality to be maintained throughout all the stages

k2 1; 2; � � �; Tf g, it is required that the imputation satisfies:

ξ σkð Þi k; x*k
� � � V σkð Þi k; x*k

� �
,

for i2N, σk2 1; 2; � � �; ηkf g and k2 1; 2; � � �; Tf g: ð2:9Þ

To guarantee group optimality, the imputation vector has to satisfy

W σkð Þ k; x*k
� � ¼Xn

j¼1

ξ σkð Þj k; x*k
� �

,

for σk2 1; 2; � � �; ηkf g and k2 1; 2; � � �; Tf g: ð2:10Þ

Hence, a valid imputation ξ σkð Þi k; x*k
� �

, for i2N, σk2 1; 2; � � �; ηkf g and

k2 1; 2; � � �; Tf g, has to satisfy conditions (2.9) and (2.10).

9.3 Subgame Consistent Solutions and Payment
Mechanism

As demonstrated in Chap. 7, to guarantee dynamical stability in a stochastic

dynamic cooperation scheme, the solution has to satisfy the property of subgame

consistency in addition to group optimality and individual rationality. In particular,

an extension of a subgame-consistent cooperative solution policy to a subgame

starting at a later time with a feasible state brought about by prior optimal behavior

would remain optimal. Thus subgame consistency ensures that as the game pro-

ceeds players are guided by the same optimality principle at each stage of the game,

and hence do not possess incentives to deviate from the previously adopted optimal

behavior. For subgame consistency to be satisfied, the imputation according to the

original optimality principle has to be maintained at all the T stages along the

cooperative trajectory x*k
� �T

k¼1
. In other words, the imputation

ξ σkð Þ k; x*k
� � ¼ ξ σkð Þ1 k; x*k

� �
, ξ σkð Þ2 k; x*k

� �
, � � �, ξ σkð Þn k; x*k

� �h i
; ð3:1Þ

for σk2 1; 2; � � �; ηkf g, x*k 2X*
k and k2 1; 2; � � �; Tf g, has to be upheld.

9.3.1 Payoff Distribution Procedure

Following the analysis of Yeung and Petrosyan (2010 and 2011), we formulate a

Payoff Distribution Procedure (PDP) so that the agreed-upon imputation (3.1) can

be realized. Let B
σkð Þi
k x*k
� �

denote the payment that player i will received at stage
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k under the cooperative agreement if θσkk 2 θ1k ; θ
2
k ; � � �; θηkk

� �
occurs and x*k 2X*

k is

realized at stage k2 1; 2; � � �; Tf g. The payment scheme
�
B

σkð Þi
k x*k
� �

contingent upon

the event θσkk and state x�k , for k2 1; 2; � � �; Tf g� constitutes a PDP in the sense that

the imputation to player i over the stages 1 to T þ 1 can be expressed as:

ξ σ1ð Þi 1; x1 0ð Þ
� � ¼ B

σ1ð Þi
1 x1 0ð Þ
� �

þ Eθ2, ���,θT ;ϑ1,ϑ2, ���,ϑT
XT
ζ¼2

B
σζð Þi
ζ x*ζ

� 	
þ qi x*Tþ1

� � !
; ð3:2Þ

for i2N.
Moreover, according to the agreed-upon optimality principle in (3.1), if θσkk

occurs and x*k 2X*
k is realized at stage k the imputation to player i is ξ σkð Þi k; x*k

� �
. For

subgame consistency to be satisfied, the imputation according to the agreed-upon

optimality principle has to be maintained at all the T stages along the cooperative

trajectory x*k
� �T

k¼1
. Therefore to guarantee subgame consistency, the payment

scheme B
σkð Þi
k x*k
� �n o

has to satisfy the conditions

ξ σkð Þi k; x*k
� � ¼ B

σkð Þi
k x*k
� �

þEθkþ1,θkþ2, ���,θT ;ϑk ,ϑkþ1, ���,ϑT

� XT
ζ¼kþ1

B
σζð Þi
ζ x*ζ

� 	
þ qi x*Tþ1

� �
ð3:3Þ

for i2N and k2 1; 2; � � �; Tf g.
Using (3.3) one can readily obtain ξ σTþ1ð Þi T þ 1, x*Tþ1

� �
equals qi x*Tþ1

� �
with

probability 1. Crucial to the formulation of a subgame consistent solution is the

derivation of a payment scheme
�
B

σkð Þi
k x*k
� �

, for i2N, σk2 1; 2; � � �; ηkf g, x*k 2X*
k and

k2 1; 2; � � �; Tf g so that the imputation in (3.3) can be realized. This will be done in

the sequel.

A theorem for the derivation of a subgame consistent PDP can be established as

follows.

Theorem 3.1 A payment equaling

B
σkð Þi
k x*k
� �¼ ξ σkð Þi k;x*k

� �
�Eϑk

� Xηkþ1

σkþ1¼1

λσkþ1

kþ1

�
ξ σkþ1ð Þi kþ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �� 	
þ ϑk

h i�
; ð3:4Þ

for i2N,
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given to player i at stage k2 1; 2; � � �; Tf g, if θσkk occurs and x*k 2X*
k , leads to the

realization of the imputation in (3.3).

Proof To construct the proof of Theorem 3.1, we first consider the imputation

Eθkþ1,θkþ2, ���,θT ;ϑk ,ϑkþ1, ���,ϑT

� XT
ζ¼kþ1

B
σζð Þi
ζ x*ζ

� 	
þ qi x*Tþ1

� �
¼ Eϑk

� Xηkþ1

σkþ1¼1

λσkþ1

kþ1

�
B

σkþ1ð Þi
kþ1 x*kþ1

� �
þEθkþ2,θkþ3, ���,θT ;ϑkþ2,ϑkþ3, ���,ϑT

� XT
ζ¼kþ2

B
σζð Þi
ζ x*ζ

� 	
þ qi x*Tþ1

� ���
: ð3:5Þ

Then, using (3.3) we can derive the term ξ σkþ1ð Þi k þ 1, x*kþ1

� �
as

ξ σkþ1ð Þi k þ 1, x*kþ1

� � ¼ B
σkþ1ð Þi
kþ1 x*kþ1

� �
þEθkþ2,θkþ3, ���,θT ;ϑkþ2,ϑkþ3, ���,ϑT

� XT
ζ¼kþ2

B
σζð Þi
ζ x*ζ

� 	
þ qi x*Tþ1

� �
ð3:6Þ

The expression on the right-hand-side of equation (3.6) is the same as the expres-

sion inside the square brackets of (3.5). Invoking equation (3.6) we can replace the

expression inside the square brackets of (3.5) by ξ σkþ1ð Þi k þ 1, x*kþ1

� �
and obtain:

Eθkþ1,θkþ2, ���,θT ;ϑk ,ϑkþ1, ���,ϑT

� XT
ζ¼kþ1

B
σζð Þi
ζ x*ζ

� 	
þ qi x*Tþ1

� �
¼ Eϑk

� Xηkþ1

σkþ1¼1

λσkþ1

kþ1

�
ξ σkþ1ð Þi k þ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �� 	
þ ϑk

h i�
:

Substituting the termEθkþ1,θkþ2, ���,θT ;ϑk ,ϑkþ1, ���,ϑT

� XT
ζ¼kþ1

B
σζð Þi
ζ x*ζ

� 	
þ qi x*Tþ1

� �
byEϑk� Xηkþ1

σkþ1¼1

λσkþ1

kþ1

�
ξ σkþ1ð Þi k þ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �� 	
þ ϑk

h i�
in (3.3) we can express

(3.3) as:

ξ σkð Þi k; x*k
� � ¼ B

σkð Þi
k x*k
� �

þEϑk

� Xηkþ1

σkþ1¼1

λσkþ1

kþ1

�
ξ σkþ1ð Þi k þ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �� 	
þ ϑk

h i�
: ð3:7Þ
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For condition (3.7), which is an alternative form of (3.3), to hold it is required that:

B
σkð Þi
k x*k
� � ¼ ξ σkð Þi k; x*k

� �
�Eϑk

� Xηkþ1

σkþ1¼1

λσkþ1

kþ1

�
ξ σkþ1ð Þi k þ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �� 	
þ ϑk

h i�
; ð3:8Þ

for i2N and k2 1; 2; � � �; Tf g.
Therefore by paying B

σkð Þi
k x*k
� �

to player i2N at stage k2 1; 2; � � �; Tf g, if θσkk
occurs and x*k 2X*

k , leads to the realization of the imputation in (3.3). Hence

Theorem 3.1 follows. ■

For a given imputation vector

ξ σkð Þ k; x*k
� � ¼ ξ σkð Þ1 k; x*k

� �
, ξ σkð Þ2 k; x*k

� �
, � � �, ξ σkð Þn k; x*k

� �h i
;

for σk2 1; 2; � � �; ηkf g and k2 1; 2; � � �; Tf g,
Theorem 3.1 can be used to derive the PDP that leads to the realization this

vector.

9.3.2 Transfer Payments

When all players are using the cooperative strategies, the payoff that player i will

directly received at stage k given that x*k 2X*
k and θσkk occurs becomes

gi
k x*k ,ψ

σkð Þ1*
k x*k

� �
,ψ σkð Þ2*

k x*k
� �

, � � �,ψ σkð Þn*
k x*k

� �
; θσkk

h i
.

However, according to the agreed upon imputation, player i is supposed to

receivedB
σkð Þi
k x*k
� �

at stage k as given in Theorem 3.1. Therefore a transfer payment

(which can be positive or negative)

ϖ σkð Þi
k x*k
� � ¼ B

σkð Þi
k x*k
� �

� gi
k x*k ,ψ

σkð Þ1*
k x*k

� �
,ψ σkð Þ2*

k x*k
� �

, � � �,ψ σkð Þn*
k x*k

� �
; θσkk

h i
; ð3:9Þ

for k2 1; 2; � � �; Tf g and i2N,

will be assigned to player i to yield the cooperative imputation ξi(k, x�k).
The transfer payments system in (3.9) constitutes an instrument to guide the

execution of the agreed-upon payoff sharing mechanism. Coordination of payments

is jointly performed by the participating players.
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9.4 An Illustration in Cooperative Resource Extraction
Under Uncertainty

Consider an economy endowed with a renewable resource and with 2 resource

extractors (firms). The lease for resource extraction begins at stage 1 and ends at

stage 3 for these two firms. Let uik denote the resource extracted by firm i at stage k,
for i2 1; 2f g. Let Ui be the set of admissible amount of resource extracted by firm i,
and xk2X � Rþ be the size of the resource stock at stage k.

It is known at each stage there is a random element, θk for k2 1; 2; 3f g, affecting
the prices of the outputs produced by these firms and their costs of extraction. If

θσkk 2 θ1k ; θ
2
k

� �
happens at stage k2 2; 3f g the profits (in present-value) that firm

1 and firm 2 will obtain at stage k are respectively:

P
σkð Þ1
k u1k �

c
σkð Þ1
k

xk
u1k
� �2" #

1
1þr

� 	k�1

and P
σkð Þ2
k u2k �

c
σkð Þ2
k

xk
u2k
� �2" #

1
1þr

� 	k�1

; ð4:1Þ

where P
σkð Þi
k is the price of the resource extracted and processed by firm i, and c

σkð Þi
k

u i
k

� �2
=xk is the production cost of firm i in stage k if θσkk occurs.

It is known in stage 1 that θ1 is θ11 with probability λ11 ¼ 1. The probability that

θσkk 2 θ1k ; θ
2
k

� �
will occur at stage k2 2; 3f g is λσkk . In stage 4, a terminal payment

(again in present-value) contingent upon the resource size equaling qix4
1

1þr

� 	3
will

be paid to firm i.
The growth dynamics of the resource is governed by the stochastic difference

equation:

xkþ1 ¼ xk þ a� bxk �
X2
j¼1

uj
k þ ϑk; ð4:2Þ

for k2 1; 2; 3f g and x1 ¼ x0,

where ϑk is a random variable with non-negative range {ϑ1k , ϑ
2
k , ϑ

3
k} and

corresponding probabilities {γ1k , γ
2
k , γ

3
k}; moreover ϑ1,ϑ2, ϑ3 are independent. More-

over, we have the constraint u1k þ u2k � 1� bð Þxk þ a.
The objective of extractor i2 1; 2f g is to maximize the present value of the

expected stream of future profits:
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Eθ1,θ2,θ3;ϑ1,ϑ2,ϑ3

�X3
k¼1

P
σkð Þi
k u i

k �
c

σkð Þi
k

xk
u i
k

� �2" #
1

1þ r

� k�1

þ qix4
1

1þ r

� 3�
ð4:3Þ

subject to the stochastic dynamics (4.2).

Invoking Lemma 1.2, one can characterize the noncooperative Nash equilibrium

strategies for the game (4.2 and 4.3) as follows. In particular, a set of strategies�
u

σkð Þi*
k ¼ ϕ σkð Þi*

k xð Þ2Γi, for σ12 1f g, σ2, σ32 1; 2f g, k2 1; 2; 3f g and i2 1; 2f g�
provides a Nash equilibrium solution to the game (4.2 and 4.3) if there exist

functionsV σkð Þi k; xð Þ, for i2 1; 2f gandk2 1; 2; 3f g, such that the following recursive
relations are satisfied:

V σkð Þi k;xð Þ ¼max
u

σkð Þi
k

Eϑk

�
P

σkð Þi
k u

σkð Þi
k � c

σkð Þi
k

x
u

σkð Þi
k

� 	2" #
1

1þ r

� k�1

þ
X2

σkþ1¼1

λσkþ1

kþ1V
σkþ1ð Þi kþ 1,xþ a� bx� u

σkð Þi
k �ϕ σkð Þj*

k xð Þþϑk
h i�

¼max
u

σkð Þi
k

�
P

σkð Þi
k u

σkð Þi
k � c

σkð Þi
k

x
u

σkð Þi
k

� 	2" #
1

1þ r

� k�1

þ
X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1V
σkþ1ð Þi kþ 1,xþ a� bx� u

σkð Þi
k �ϕ σkð Þj*

k xð Þþϑ y
k

h i�
;

V σ3ð Þi 4;xð Þ ¼ qix 1
1þr

� 	3
: ð4:4Þ

Performing the indicated maximization in (4.4) yields:

P
σkð Þi
k � 2c

σkð Þi
k u

σkð Þi
k

x

" #
1

1þr

� 	k�1

�
X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1V
σkþ1ð Þi
xkþ1

kþ 1,xþ a� bx� u
σkð Þi
k �ϕ σkð Þj*

k xð Þþ ϑ y
k

h i
¼ 0; ð4:5Þ

for i2 1; 2f g and k2 1; 2; 3f g.
From (4.5), the game equilibrium strategies can be expressed as:

ϕ σkð Þi*
k xð Þ ¼ x

2c
σkð Þi
k

�
P

σkð Þi
k � 1þ rð Þk�1

X3
y¼1

γ yk

X2
σkþ1¼1

λσkþ1

kþ1V
σkþ1ð Þi
xkþ1

k þ 1, xþ a� bx� ϕ σkð Þ1*
k xð Þ � ϕ σkð Þ2*

k xð Þ þ ϑ y
k

h i
; ð4:6Þ

for i2 1; 2f g and k2 1; 2; 3f g.
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The expected game equilibrium payoffs of the extractors can be obtained as:

Proposition 4.1 The value function indicating the expected game equilibrium

payoff of player i is

V σkð Þi k; xð Þ ¼ A
σkð Þi
k xþ C

σkð Þi
k

h i
, for i2 1; 2f g and k2 1; 2; 3f g; ð4:7Þ

where A
σkð Þi
k and C

σkð Þi
k , for i2 1; 2f g and k2 1; 2; 3f g, are constants in terms of the

parameters of the game (4.2 and 4.3).

Proof See Appendix A. ■

Substituting the relevant derivatives of the value functions in Proposition 4.1

into the game equilibrium strategies (4.6) yields a noncooperative Nash equilibrium

solution of the game (4.2 and 4.3).

Now consider the case when the extractors agree to maximize their expected

joint profit and share the excess of cooperative gains over their expected noncoop-

erative payoffs equally. To maximize their expected joint payoff, they solve the

problem of maximizing

Eθ1,θ2,θ3;ϑ1,ϑ2,ϑ3

X2
j¼1

� X3
k¼1

P
σkð Þj
k u j

k �
c

σkð Þj
k

xk
u j
k

� 	2 !
1

1þr

� 	k�1

þ qjx4
1

1þr

� 	3 �( )
ð4:8Þ

subject to (4.2).

Invoking Theorem 2.1, one can characterize the optimal controls in the stochas-

tic dynamic programming problem (4.2) and (4.8). In particular, a set of control

strategies
�
u

σkð Þi*
k ¼ ψ σkð Þi*

k xð Þ2 Γ̂ i
, for σk2 1; 2f g, k2 1; 2; 3f g and i2 1; 2f g�

provides an optimal solution to the problem (4.2) and (4.8) if there exist functions

W σkð Þ k; xð Þ, for k2 1; 2; 3f g, such that the following recursive relations are satisfied:

W σ4ð Þ 4;xð Þ ¼
X2
j¼1

qjx 1
1þr

� 	3
,

W σkð Þ k;xð Þ ¼max
u1
k
,u2

k

Eϑk

�X2
j¼1

P
σkð Þj
k u j

k �
c

σkð Þj
k

x
u j
k

� 	2 !
1

1þ r

� k�1

þ
X2

σkþ1¼1

λσkþ1

kþ1W
σkþ1ð Þ kþ 1,xþ a� bx� u1k � u2k þϑk


 ��
¼max

u1
k
,u2

k

�X2
j¼1

P
σkð Þj
k u j

k �
c

σkð Þj
k

x
u j
k

� 	2 !
1

1þ r

� k�1

þ
X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1W
σkþ1ð Þ kþ 1,xþ a� bx� u1k � u2k þϑ y

k


 ��
,

for k2 1;2;3f gandσk2 1;2f g: ð4:9Þ
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Performing the indicated maximization in (4.9) yields:

P
σkð Þj
k � 2c

σkð Þj
k u j

k

xk

 !
1

1þr

� 	k�1

�
X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1W
σkþ1ð Þ
xkþ1

k þ 1, xþ a� bx� u1k � u2k þ ϑ y
k


 � ¼ 0; ð4:10Þ

for k2 1; 2; 3f g and σk2 1; 2f g.
In particular, the optimal cooperative strategies can be obtained from (4.10) as:

ψ σkð Þi*
k xð Þ ¼ x

2c
σkð Þi
k

�
P

σkð Þi
k �

X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1W
σkþ1ð Þ
xkþ1



k þ 1, xþ a� bx

�ψ σkð Þ1*
k xð Þ � ψ σkð Þ2*

k xð Þ þ ϑ y
k

�
1þ rð Þk�1


; ð4:11Þ

for k2 1; 2; 3f g and σk2 1; 2f g.
The expected joint payoff under cooperation can be obtained as:

Proposition 4.2 The value function indicating the maximized expected joint

payoff is

W σkð Þ k; xð Þ ¼ eA σkð Þ
k xþ eC σkð Þ

k

h i
, for k2 1; 2; 3f g and σk2 1; 2f g; ð4:12Þ

where eA σkð Þ
k and eC σkð Þ

k , for k2 1; 2; 3f g and σk2 1; 2f g, are constants in terms of the

parameters of the problem (4.8) and (4.2).

Proof See Appendix B. ■

Using (4.11) and Proposition 4.2, the optimal cooperative strategies of the agents

can be expressed as:

ψ σkð Þi*
k xð Þ ¼ x

2c
σkð Þi
k

�
P

σkð Þi
k �

X2
σkþ1¼1

λσkþ1

kþ1A
σkþ1ð Þ
kþ1 1þ rð Þk�1


; ð4:13Þ

for i2 1; 2f g, k2 1; 2; 3f g and σk2 1; 2f g.
Substituting ψ σkð Þi

k xð Þ from (4.13) into (4.2) yields the optimal cooperative state

trajectory:

xkþ1 ¼ xk þ a� bxk

�
X2
j¼1

x

2c
σkð Þj
k

�
P

σkð Þj
k �

X2
σkþ1¼1

λσkþ1

kþ1
eA σkþ1ð Þ
kþ1 1þ rð Þk�1


þ ϑk; ð4:14Þ
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if θσkk occurs at stage k for k2 1; 2; 3f g and x1 ¼ x0.
Dynamics (4.14) is a linear stochastic difference equation readily solvable by

standard techniques. Let
�
x*k , for k2 1; 2; 3f g� denote the solution to (4.14).

Since the extractors agree to share the excess of cooperative gains over their

expected noncooperative payoffs equally, an imputation

ξ σkð Þi k; x*k
� � ¼ V σkð Þi k; x*k

� �þ 1

2
W σkð Þ k; x*k

� ��X2
j¼1

V σkð Þj k; x*k
� �" #

¼ A
σkð Þi
k x*k þ C

σkð Þi
k

� 	
þ 1

2
eA σkð Þ
k x*k þ eC σkð Þ

k

� 	
�
X2
j¼1

A
σkð Þj
k x*k þ C

σkð Þj
k

� 	" #
; ð4:15Þ

if θσkk occurs at stage k for k2 1; 2; 3f g, σk2 1; 2f g and i2 1; 2f g has to be maintained.

Invoking Theorem 3.1, if θσkk occurs and x*k 2X is realized at stage k a payment

equaling

B
σkð Þi
k x*k
� � ¼ 1þ rð Þk�1

�
ξi k; x*k
� �

�Eθkþ1

�
ξi k þ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �� 	
þ θk

h i�
¼ 1þ rð Þk�1

�
A

σkð Þi
k x*k þ C

σkð Þi
k

� 	
þ 1

2
eA σkð Þ
k x*k þ eC σkð Þ

k

� 	
�
X2
j¼1

A
σkð Þj
k x*k þ C

σkð Þj
k

� 	 !

�
X3
y¼1

γ yk
Xηkþ1

σkþ1¼1

λσkþ1

kþ1

�
A

σkþ1ð Þi
kþ1 x

* ϑ y
kð Þ

kþ1 þ C
σk¼1ð Þi
kþ1

� 
þ 1

2
eA σkþ1ð Þ
kþ1 x

* ϑ y
kð Þ

kþ1 þ eC σkþ1ð Þ
kþ1

� 
�
X2
j¼1

A
σkþ1ð Þj
kþ1 x

* ϑ y
kð Þ

kþ1 þ C
σkþ1ð Þj
kþ1

�  !��
;

ð4:16Þ

where

x
* ϑ y

kð Þ
kþ1 ¼ x*k þ a� bx*k �

X2
j¼1

x*k

2c
σkð Þj
k

�
P

σkð Þj
k �

X2
σkþ1¼1

λσkþ1

kþ1
eA σkþ1ð Þ
kþ1 1þ rð Þk�1


þ ϑ*k

for y2 1; 2; 3f g,
given to firm i at stage k2 1; 2; 3f g would lead to the realization of the imputation

(4.15).

A subgame consistent solution can be readily obtained using (4.13), (4.15) and

(4.16).
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9.5 Extensions

The analysis can be expanded in a few directions.

Case 1: Random Changes in the State Dynamics Structures

Following Yeung (2011) one allow the structure of the state dynamics in (1.1) be

affected by the random variable θk for k2 1; 2; � � �; Tf g. In particular the state

dynamics become:

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k ; θk
� �þ ϑk; ð5:1Þ

for k2 1; 2; � � �; Tf g and x1 ¼ x0,

where ui
k2Ui � Rmi is the control vector of player i at stage k, xk2X is the state, ϑk

is a sequence of statistically independent random variables, and θk is an indepen-

dent discrete random variables with range θ1k ; θ
2
k ; � � �; θηkk

� �
and corresponding

probabilities λ1k ; λ
2
k ; � � �; ληkk

� �
.

Following the analyses in Sects. 9.1, 9.2 and 9.3, a theorem deriving a subgame

consistent PDP can be established as follows.

Theorem 5.1 A payment equaling

B
σkð Þi
k x*k
� � ¼ ξ σkð Þi k; x*k

� �
�Eϑk

" Xηkþ1

σkþ1¼1

λσkþ1

kþ1

 
ξ σkþ1ð Þi k þ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �
; θσkk

� 	
þ ϑk

h i!#
;

ð5:2Þ

for i2N,

given to player i at stage k2 1; 2; � � �; Tf g, if θσkk occurs and x*k 2X*
k , leads to the

realization of the imputation according to the agreed upon optimality principle. ■

Case 2: More Complex Branching Processes

The random event θk affecting the payoff structures of the players in stage kmay be

more complex branching processes. For instance, the random variables may not be

independent and may stem from a branching process in which the random variable

θk for k2 1; 2; � � �; Tf g is conditional upon the realization of the random variables in

its preceding stages. An example of this type of processes is the one adopted in

Yeung (2003) as a random variable stemming from the branching process as

described below.

θ1 ¼ θ11, θ
1
2, . . . , θ1η1

n o
with corresponding probabilities λ11, λ

1
2, . . . , λ1η1

n o
.

Given that θ1a1 is realized in time interval [t1, t2), for a1 ¼ 1, 2, . . . , η1,
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θ2 ¼ θ2 1;a1ð Þ½ 	
1 , θ2 1;a1ð Þ½ 	

2 , . . . , θ2 1;a1ð Þ½ 	
η2 1;a1ð Þ½ 	

� �
would be realized with the corresponding

probabilities λ2 1;a1ð Þ½ 	
1 , λ2 1;a1ð Þ½ 	

2 , . . . , λ2 1;a1ð Þ½ 	
η2 1;a1ð Þ½ 	

� �
.

Given that θ1a1 is realized in time interval [t1, t2) and θ2 1;a1ð Þ½ 	
a2

is realized in time

interval [t2, t3), for a1 ¼ 1, 2, . . . , η1 and a2 ¼ 1, 2, . . . , η2 1;a1ð Þ½ 	,

θ3 ¼ θ3 1;a1ð Þ 2;a2ð Þ½ 	
1 , θ3 1;a1ð Þ 2;a2ð Þ½ 	

2 , . . . , θ3 1;a1ð Þ 2;a2ð Þ½ 	
η3 1;a1ð Þ 2;a2ð Þ½ 	

� �
would be realized with the

corresponding probabilities

λ3 1;a1ð Þ 2;a2ð Þ½ 	
1 , λ3 1;a1ð Þ 2;a2ð Þ½ 	

2 , . . . , λ3 1;a1ð Þ 2;a2ð Þ½ 	
η3 1;a1ð Þ 2;a2ð Þ½ 	

� �
.

In general, given thatθ1a1 is realized in time interval [t1, t2),θ
2 1;a1ð Þ½ 	
a2

is realized in time

interval [t2, t3), . . ., andθ
k�1 1;a1ð Þ 2;a2ð Þ... k�2,ak�2ð Þ½ 	
ak�1

is realized in time interval [tk-1, tk), for

a1 ¼ 1, 2, . . . , η1, a2 ¼ 1, 2, . . . , η2 1;a1ð Þ½ 	, . . . , ak�1 ¼ 1, 2, . . . , ηk�1 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	,

θk ¼ θk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	
1 , θk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	

2 , . . . , θk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	
ηk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	

� �
would be realized with the corresponding probabilities

λk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	
1 , λk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	

2 , . . . , λk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	
ηk 1;a1ð Þ 2;a2ð Þ... k�1,ak�1ð Þ½ 	

� �
for k¼ 1, 2, . . ., τ.

Applying the techniques derived in the analysis in this paper, subgame consis-

tent solutions can be derived accordingly.

Case 3: Games with Deterministic Dynamics

The analysis can be readily applied to derive subgame consistent solutions in

randomly-furcating dynamic games in which the random variables ϑk in the stock

dynamics are not present. In particular, the objective that player i seeks to maximize

becomes

Eθ1,θ2, ���,θT

�XT
k¼1

gi
k xk; u

1
k ; u

2
k ; � � �; un

k ; θk

 �þ qi xTþ1ð Þ

�
, for i2N ð5:3Þ

subject to the deterministic dynamics:

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �
: ð5:4Þ

Following the analysis in Sects 9.3 and 9.4 and the proof of Theorem 3.1, a

theorem deriving a subgame consistent PDP for the randomly-furcating dynamic

game (5.3 and 5.4) can be established as follows.
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Theorem 5.2 A payment equaling

B
σkð Þi
k x*k
� � ¼ ξ σkð Þi k; x*k

� �� � Xηkþ1

σkþ1¼1

λσkþ1

kþ1

�
ξ σkþ1ð Þi k þ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �� 	h i�
;

ð5:5Þ

for i2N,

given to player i at stage k2 1; 2; � � �; Tf g, if θσkk occurs and2X*
k , would yield the

PDP leading to a subgame consistent solution of the game (5.3 and 5.4). ■

9.6 Chapter Appendices

Appendix A. Proof of Proposition 4.1 Consider first the last stage, that is stage

3, when θσ33 occurs. Invoking that V σ3ð Þi 3; xð Þ ¼ A
σ3ð Þi
3 xþ C

σ3ð Þi
3

h i
from Proposition

4.1 and V σ3ð Þi 4; xð Þ ¼ qix 1
1þr

� 	3
, the conditions in equation (4.4) become

A
σ3ð Þi
3 xþ C

σ3ð Þi
3

h i
¼ max

u
σ3ð Þi

3

�
P

σ3ð Þi
3 u

σ3ð Þi
3 � c

σ3ð Þi
3

x
u

σ3ð Þi
3

� 	2" #
1

1þ r

� k�1

þ
X3
y¼1

γ y3q
i xþ a� bx� u

σ3ð Þi
3 � ϕ σ3ð Þj*

3 xð Þ þ ϑ y
3

h i�
, for i2 1; 2f g: ðA:1Þ

Performing the indicated maximization in (A.1) yields:

P
σ3ð Þi
3 � 2c

σ3ð Þi
3 u

σ3ð Þi
3

x

" #
1

1þ r

� k�1

�
X3
y¼1

γ y3q
i ¼ 0, for i2 1; 2f g: ðA:2Þ

The game equilibrium strategies in stage 3 can then be expressed as:

ϕ σ3ð Þi*
3 xð Þ ¼ P

σ3ð Þi
3 � 1þ rð Þ2qi

h i x

2c
σ3ð Þi
3

, for i2 1; 2f g: ðA:3Þ

Substituting (A.3) into (A.1) yields:

A
σ3ð Þi
3 xþ C

σ3ð Þi
3

h i
¼
�
P

σ3ð Þi
3 P

σ3ð Þi
3 � 1þ rð Þ2qi

h i x

2c
σ3ð Þi
3

� 1

4c
σ3ð Þi
3

P
σ3ð Þi
3 � 1þ rð Þ2qi

h i2
x

�
1

1þ r

� k�1

þ
X3
y¼1

γ y3q
i

�
xþ a� bx�

X2
j¼1

P
σ3ð Þj
3 � 1þ rð Þ2qj

h i x

2c
σ3ð Þj
3

þ ϑ y
3


; ðA:4Þ

for i2 1; 2f g.
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Note that both sides of equation (A.4) are linear expression of x, the termsA
σ3ð Þi
3 and

C
σ3ð Þi
3 , for i2 1; 2f g and σ32 1; 2f g, are explicitly given in (A.4).

Now we proceed to stage 2, the conditions in equation (4.4) become

A
σ2ð Þi
2 xþ C

σ2ð Þi
2

h i
¼ max

u
σ2ð Þi

2

�
P

σ2ð Þi
2 u

σ2ð Þi
2 � c

σ2ð Þi
2

x
u

σ2ð Þi
2

� 	2" #
1

1þ r

� 

þ
X3
y¼1

γ y2
X2
σ3¼1

λσ33

�
A

σ3ð Þi
3 xþ a� bx� u

σ2ð Þi
2 � ϕ σ2ð Þj*

2 xð Þ þ ϑ y
2

h i
þ C

σ3ð Þi
3

��
; ðA:5Þ

for i2 1; 2f g.
Performing the indicated maximization in (A.5) yields:

P
σ2ð Þi
2 � 2c

σ2ð Þi
2 u

σ2ð Þi
2

x

" #
1

1þ r

� 
�
X3
y¼1

γ y2
X2
σ3¼1

λσ33 A
σ3ð Þi
3 ¼ 0, for i2 1; 2f g: ðA:6Þ

The game equilibrium strategies in stage 2 can then be expressed as:

ϕ σ2ð Þi*
2 xð Þ ¼ P

σ2ð Þi
2 � 1þ rð Þ

X2
σ3¼1

λσ33 A
σ3ð Þi
3

" #
x

2c
σ2ð Þi
2

, for i2 1; 2f g: ðA:7Þ

Substituting (A.7) into (A.5) yields:

A
σ2ð Þi
2 xþ C

σ2ð Þi
2

h i
¼
�
P

σ2ð Þi
2 P

σ2ð Þi
2 � 1þ rð Þ

X2
σ3¼1

λσ33 A
σ3ð Þi
3

" #
x

2c
σ2ð Þi
2

� 1

4c
σ2ð Þi
2

P
σ2ð Þi
2 � 1þ rð Þ

X2
σ3¼1

λσ33 A
σ3ð Þi
3

" #2
x

�
1

1þ r

� 
þ
X3
y¼1

γ y2
X2
σ3¼1

λσ33

�
A

σ3ð Þi
3

�
xþ a� bx

�
X2
j¼1

P
σ2ð Þj
2 � 1þ rð Þ

X2
σ3¼1

λσ33 A
σ3ð Þi
3

" #
x

2c
σ2ð Þj
2

þ ϑ y
2


þ C

σ3ð Þi
3

�
;

ðA:8Þ

for i2 1; 2f g.
Once again, both sides of equation (A.8) are linear expression of x, the terms

A
σ2ð Þi
2 and C

σ2ð Þi
2 , for i2 1; 2f g and σ22 1; 2f g, can be obtained explicitly using

(A.8).
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Finally, we proceed to the first stage, the conditions in equation (4.4) become

A
σ1ð Þi
1 xþ C

σ1ð Þi
1

h i
¼ max

u
σ1ð Þi

1

�
P

σ1ð Þi
1 u

σ1ð Þi
1 � c

σ1ð Þi
1

x
u

σ1ð Þi
1

� 	2" #

þ
X3
y¼1

γ y1
X2
σ2¼1

λσ22

�
A

σ2ð Þi
2 xþ a� bx� u

σ1ð Þi
1 � ϕ σ1ð Þj

1 xð Þ þ ϑ y
1

h i
þ C

σ2ð Þi
2

��
ðA:9Þ

for i2 1; 2f g.
Following the analysis in (A.6 and A.7), the game equilibrium strategies in stage

1 can then be expressed as:

ϕ σ1ð Þi*
1 xð Þ ¼ P

σ1ð Þi
1 �

X2
σ2¼1

λσ22 A
σ2ð Þi
2

" #
x

2c
σ1ð Þi
1

, for i2 1; 2f g: ðA:10Þ

Substituting (A.10) into (A.9) yields:

A
σ1ð Þi
1 xþ C

σ1ð Þi
1

h i
¼
�
P

σ1ð Þi
1 P

σ1ð Þi
1 �

X2
σ2¼1

λσ22 A
σ2ð Þi
2

" #
x

2c
σ1ð Þi
1

� 1

4c
σ1ð Þi
1

P
σ1ð Þi
1 �

X2
σ2¼1

λσ22 A
σ2ð Þi
2

" #2
x

�
þ
X3
y¼1

γ y1
X2
σ3¼1

λσ22�
A

σ2ð Þi
2

�
xþ a� bx

�
X2
j¼1

P
σ1ð Þj
1 � 1þ rð Þ

X2
σ2¼1

λσ22 A
σ2ð Þi
2

" #
x

2c
σ1ð Þj
1

þ ϑ y
1


þ C

σ2ð Þi
2

�
; ðA:11Þ

for i2 1; 2f g.
Once again, both sides of equation (A.11) are linear expression of x, the terms

A
σ1ð Þi
1 and C

σ1ð Þi
1 , for i2 1; 2f g and σ1 ¼ 1, can be obtained explicitly using (A.11).

Appendix B. Proof of Proposition 4.2 Consider first the last stage, that is stage

3, when θσ33 occurs. Invoking that W σ3ð Þ 3; xð Þ ¼ eA σ3ð Þ
3 xþ eC σ3ð Þ

3

h i
from Proposition

4.2 and W σ3ð Þ 4; xð Þ ¼
X2
j¼1

qjx 1
1þr

� 	3
, the condition in equation (4.9) becomes

eA σ3ð Þ
3 xþ eC σ3ð Þ

3

h i
¼ max

u
σ3ð Þ1

3
, u σ3ð Þ2

3

�X2
j¼1

P
σ3ð Þj
3 u

σ3ð Þj
3 � c

σ3ð Þj
3

x
u

σ3ð Þj
3

� 	2" #
1

1þ r

� k�1

þ
X3
y¼1

γ y3
X2
j¼1

qj xþ a� bx�
X2
‘¼1

u
σ3ð Þ‘
3 þ ϑ y

3

" #�
: ðB:1Þ
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Performing the indicated maximization in (B.1) yields:

P
σ3ð Þi
3 � 2c

σ3ð Þi
3 u

σ3ð Þi
3

x

" #
1

1þ r

� k�1

�
X3
y¼1

γ y3
X2
j¼1

qj ¼ 0, for i2 1; 2f g: ðB:2Þ

The optimal cooperative strategies in stage 3 can then be expressed as:

ψ σ3ð Þi*
3 xð Þ ¼ P

σ3ð Þi
3 � 1þ rð Þ2

X2
j¼1

qj

" #
x

2c
σ3ð Þi
3

, for i2 1; 2f g: ðB:3Þ

Substituting (B.3) into (B.1) yields:

eA σ3ð Þ
3 xþ eC σ3ð Þ

3

h i
¼
X2
j¼1

�
P

σ3ð Þj
3 P

σ3ð Þj
3 � 1þ rð Þ2

X2
‘¼1

q‘

" #
x

2c
σ3ð Þj
3

� 1

4c
σ3ð Þj
3

P
σ3ð Þj
3 � 1þ rð Þ2

X2
‘¼1

q‘

" #2
x

�
1

1þ r

� k�1

þ
X3
y¼1

γ y3
X2
j¼1

qj
�
xþ a� bx

�
X2
‘¼1

P
σ3ð Þ‘
3 � 1þ rð Þ2

X2
ζ¼1

qζ

" #
x

2c
σ3ð Þj
3

þ ϑ y
3


; ðB:4Þ

for i2 1; 2f g.
Note that both sides of equation (B.4) are linear expression of x, the terms eA σ3ð Þ

3

and eC σ3ð Þ
3 , for σ32 1; 2f g, are explicitly given in (B.4).

Now we proceed to stage 2, the condition in equation (4.9) becomes

eA σ2ð Þ
2 xþ eC σ2ð Þ

2

h i
¼ max

u
σ2ð Þ1

2
, u σ2ð Þ2

2

�X2
j¼1

P
σ2ð Þj
2 u

σ2ð Þj
2 � c

σ2ð Þj
2

x
u

σ2ð Þj
2

� 	2" #
1

1þ r

� 

þ
X3
y¼1

γ y2
X2
σ3¼1

λσ33

�eA σ3ð Þ
3 xþ a� bx�

X2
j¼1

u
σ2ð Þj
2 þ ϑ y

2

" #
þ eC σ3ð Þ

3

��
: ðB:5Þ

Performing the indicated maximization in (B.5) yields:

P
σ2ð Þi
2 � 2c

σ2ð Þi
2 u

σ2ð Þi
2

x

" #
1

1þ r

� 
�
X3
y¼1

γ y2
X2
σ3¼1

λσ33 eA σ3ð Þ
3 ¼ 0, for i2 1; 2f g: ðB:6Þ

The optimal cooperative strategies in stage 2 can then be expressed as:
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ψ σ2ð Þi*
2 xð Þ ¼ P

σ2ð Þi
2 � 1þ rð Þ

X2
σ3¼1

λσ33 eA σ3ð Þ
3

" #
x

2c
σ2ð Þi
2

, for i2 1; 2f g: ðB:7Þ

Substituting (B.7) into (B.5) yields:

eA σ2ð Þ
2 xþ eC σ2ð Þ

2

h i
¼
X2
j¼1

�
P

σ2ð Þj
2 P

σ2ð Þj
2 � 1þ rð Þ

X2
σ3¼1

λσ33 eA σ3ð Þ
3

" #
x

2c
σ2ð Þj
2

� 1

4c
σ2ð Þj
2

P
σ2ð Þj
2 � 1þ rð Þ

X2
σ3¼1

λσ33 eA σ3ð Þ
3

" #2
x

�
1

1þ r

� 
þ
X3
y¼1

γ y2
X2
σ3¼1

λσ33

�eA σ3ð Þ
3

�
xþ a� bx

�
X2
j¼1

P
σ2ð Þj
2 � 1þ rð Þ

X2
σ3¼1

λσ33 eA σ3ð Þ
3

" #
x

2c
σ2ð Þj
2

þ ϑ y
2


þ eC σ3ð Þ

3

�
:

ðB:8Þ

Once again, both sides of equation (B.8) are linear expression of x, the terms eA σ2ð Þ
2

and eC σ2ð Þ
2 , for σ22 1; 2f g, can be obtained explicitly using (B.8).

Finally, we proceed to the first stage, the conditions in equation (4.9) become

eA σ1ð Þ
1 xþ eC σ1ð Þ

1

h i
¼ max

u
σ1ð Þ1

1
, u σ1ð Þ2

1

�X2
j¼1

P
σ1ð Þj
1 u

σ1ð Þj
1 � c

σ1ð Þj
1

x
u

σ1ð Þj
1

� 	2" #

þ
X3
y¼1

γ y1
X2
σ2¼1

λσ22

�eA σ2ð Þ
2 xþ a� bx�

X2
j¼1

u
σ1ð Þj
1 þ ϑ y

1

" #
þ eC σ2ð Þ

2

��
: ðB:9Þ

Following the analysis in (B.6 and B.7), the optimal cooperative strategies in stage

1 can then be expressed as:

ψ σ1ð Þi*
1 xð Þ ¼ P

σ1ð Þi
1 �

X2
σ1¼1

λσ22 eA σ2ð Þ
2

" #
x

2c
σ1ð Þi
1

, for i2 1; 2f g: ðB:10Þ

Substituting (B.10) into (B.9) yields:

eA σ1ð Þ
1 xþ eC σ1ð Þ

1

h i
¼
X2
j¼1

�
P

σ1ð Þj
1 P

σ1ð Þj
1 �

X2
σ2¼1

λσ22 eA σ2ð Þ
2

" #
x

2c
σ1ð Þj
1

� 1

4c
σ1ð Þj
1

P
σ1ð Þj
1 �

X2
σ2¼1

λσ22 eA σ2ð Þ
2

" #2
x

�
þ
X3
y¼1

γ y1
X2
σ2¼1

λσ22

�eA σ2ð Þ
2

�
xþ a� bx

�
X2
j¼1

P
σ1ð Þj
1 �

X2
σ2¼1

λσ22 eA σ2ð Þ
2

" #
x

2c
σ1ð Þj
1

þ ϑ y
1


þ eC σ2ð Þ

2

�
: ðB:11Þ
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Once again, both sides of equation (B.11) are linear expression of x, the termseA σ1ð Þ
1 and eC σ1ð Þ

1 , for σ1 ¼ 1, can be obtained explicitly using (B.11).

9.7 Chapter Notes

This Chapter considers subgame-consistent cooperative solutions in randomly

furcating stochastic dynamic games developed by Yeung and Petrosyan (2013a).

The extension of continuous-time randomly furcating stochastic differential games

to an analysis in discrete time is not just of theoretical interest but also for practical

reasons in applications in operations research. In the process of obtaining the main

results for subgame consistent solution, Nash equilibrium for randomly furcating

stochastic dynamic games and optimal control for randomly furcating stochastic

control problems are also derived. Yeung and Petrosyan (2014b) considered

subgame consistent cooperative provision of public goods under accumulation

and payoff uncertainties. Yeung and Petrosyan (2014a) examined subgame consis-

tent solution for a dynamic game of pollution management in which future envi-

ronmental costs are not known with certainty.

9.8 Problems

1. Consider an economy endowed with a renewable resource and with 2 resource

extractors (firms). The lease for resource extraction begins at stage 1 and ends at

stage 3 for these two firms. Let uik denote the resource extracted by firm i at stage
k, for i2 1; 2f g. Let Ui be the set of admissible amount of resource extracted by

firm i, and xk2X � Rþ be the size of the resource stock at stage k.
It is known at each stage there is a random element, θk for k2 1; 2; 3f g,

affecting the revenues of the outputs produced by these firms and their costs of

extraction. If θ1k happens at stage k2 2; 3f g the profits (in present-value) that firm
1 and firm 2 will obtain at stage k are respectively:

4u1k �
2

xk
u1k
� �2� �

1

1þ r

� k�1

and 2u2k �
1

xk
u2k
� �2� �

1

1þ r

� k�1

;

where r ¼ 0:05 is the discount rate.

If θ2k happens at stage k2 2; 3f g the profits (in present-value) that firm 1 and

firm 2 will obtain at stage k are respectively:

2u1k �
2

xk
u1k
� �2� �

1

1þ r

� k�1

and 3u2k �
2

xk
u2k
� �2� �

1

1þ r

� k�1

:
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It is known in stage 1 that θ11 has occurred. The probability that θ1k will occur at
stage k2 2; 3f g is 0.6 and the probability that θ2k will occur at stage k2 2; 3f g is

0.4. In stage 4, a terminal payment (again in present-value) equaling x4
1

1þr

� 	3
will be paid to firm 1 and a terminal payment (again in present-value) equaling

0:5x4
1

1þr

� 	3
will be paid to firm 2.

The growth dynamics of the resource is governed by the stochastic difference

equation:

xkþ1 ¼ xk þ 15� 0:1xk �
X2
j¼1

uj
k þ ϑk;

for k2 1; 2; 3f g and x1 ¼ 12,

where ϑk is a random variable with non-negative range {0, 1, 2} and

corresponding probabilities {0.1, 0.7, 0.2}; moreover ϑ1,ϑ2,ϑ3 are independent.
Moreover, we have the constraint u1k þ u2k � 0:9xk þ 15.

The objective of extractor i2 1; 2f g is to maximize the present value of the

expected stream of future profits:

Characterize the feedback Nash equilibrium.

2. Obtain a group optimal solution that maximizes the joint expected profit.

3. Consider the case when the extractors agree to share the excess of cooperative

gains over their expected noncooperative profits equally. Derive a subgame

consistent solution.
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Chapter 10

Subgame Consistency Under Furcating
Payoffs, Stochastic Dynamics and Random
Horizon

This Chapter investigates the class of randomly furcating stochastic dynamic games

with uncertain game horizon. In particular, in this class of games, there exist

uncertainties in the state dynamics, future payoff structures and game horizon.

The non-cooperative Nash equilibrium is characterized and subgame-consistent

cooperative solutions is derived. A discrete-time analytically tractable payoff

distribution procedures contingent upon specific random realizations of the state

and payoff structure are derived. This approach widens the application of cooper-

ative dynamic game theory to discrete-time random horizon problems where the

evolution of the state and future environments are not known with certainty. In

addition, a corresponding form of Bellman equations for solving inter-temporal

problems with randomly furcating payoffs and random horizon is developed to

serve as the foundation of solving the game problem. To characterize a noncoop-

erative game equilibrium, a set of random duration discrete-time Hamilton-Jacobi-

Bellman equations is presented. Subgame consistent solution and corresponding

Payoff Distribution Procedures are provided. The analysis is developed along the

work of Yeung and Petrosyan (2014c).

The Chapter is organized as follows. The game formulation and the development

of a Bellman equation to characterize the stochastic control problem are provided

in Sect. 10.1. The non-cooperative game outcome is derived in Sect. 10.2. The

issues of group optimality and individual rationality in dynamic cooperation are

discussed in Sect. 10.3. Subgame consistent solutions and payment mechanism

leading to the realization of these solutions are analyzed in Sect. 10.4. Section 10.5

presents an illustration in cooperative resource extraction under uncertainty.

Chapter appendices are provided in Sect. 10.6. Chapter notes are given in

Sect. 10.7 and problems in Sect. 10.8.
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10.1 Game Formulation and Control Techniques

In this section, we first present the formulation of a stochastic dynamic game with

randomly furcating future payoffs and random horizon. Then we develop a sto-

chastic control technique for solving intertemporal problem with randomly

furcating payoffs and uncertain horizon to serve as the foundation of solving the

game problem.

10.1.1 Game Formulation

Consider the discrete time T̂� stage dynamic optimization problem where T̂ is a

random variable with range 1; 2; � � �; Tf g and corresponding probabilities

ϖ1;ϖ2; � � �;ϖTf g. Conditional upon the reaching of stage τ, the probability of

the game would last up to stages τ, τ þ 1, � � �,T becomes respectively

ϖτXT
ζ¼τ

ϖζ

,
ϖτþ1XT
ζ¼τ

ϖζ

, � � �, ϖTXT
ζ¼τ

ϖζ

: ð1:1Þ

The state space of the game is X 2 Rm and the state dynamics of the game is

characterized by the stochastic difference equation:

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �þ ϑk; ð1:2Þ

for k 2 1; 2; � � �; Tf g and x1 ¼ x0,

where ui
k 2 Ui � Rmi is the control vector of player i at stage k, xk 2 X is the state,

and ϑk is a sequence of statistically independent random variables.

The payoff of player i at stage k is gi
k xk; u

1
k ; u

2
k ; � � �; un

k ; θk
� �

which is affected by a

random variable θk. In particular, θk for k 2 1; 2; � � �; Tf g are independent random

variables with range θ1k ; θ
2
k ; � � �; θηkk

� �
and corresponding probabilities

λ1k ; λ
2
k ; � � �; ληkk

� �
. In stage 1, it is known that θ1 equals θ11 with probability λ11 ¼ 1.

When the game ends after stage T̂ , a terminal payment qi
T̂ þ1

xT̂ þ1

� �
will be given to

player i in stage T̂ þ 1.

The objective that player i seeks to maximize is

Eθ1,θ2, ���,θT ;ϑ1,ϑ2, ���,ϑT

�XT
T̂ ¼1

ϖT̂

	 XT̂
k¼1

gi
k xk; u

1
k ; u

2
k ; � � �; un

k ; θk
� �þ qi xT̂ þ1

� �
�
;

for i 2 1; 2; � � �; nf g�N;
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where Eθ1,θ2, ���,θT ;ϑ1,ϑ2, ���,ϑT is the expectation operation with respect to the random

variables θ1, θ2, � � �, θT and ϑ1,ϑ2, � � �,ϑT . Since there is no uncertainty in the

payoff structure in stage T þ 1, we denote σTþ1 ¼ 1, θσTþ1

Tþ1 ¼ θ1Tþ1 with probability

λσTþ1

Tþ1 ¼ λ1Tþ1 ¼ 1 for notational convenience. The payoffs of the players are

transferable.

The objective function of player i can be expressed as

Eϑ1,ϑ2, ���,ϑT

�XT
T̂ ¼1

ϖT̂

	
gi
1 x1; u

1
1; u

2
1; � � �; un

1 ; θ
1
1

� �

þ
XT̂
k¼2

Xηk
σk¼1

λσkk g
i
k xk; u

1
k ; u

2
k ; � � �; un

k ; θ
σk
k

� �þ qi xT̂ þ1

� �
�
¼ Eϑ1,ϑ2, ���,ϑT

�
gi
1 x1; u

1
1; u

2
1; � � �; un

1 ; θ
1
1

� �þ ϖ1XT
ζ¼1

ϖζ

qi
2 xτþ1ð Þ

þ

XT
T̂ ¼2

ϖT̂

XT
ζ¼1

ϖζ

	XT̂
k¼2

Xηk
σk¼1

λσkk g
i
k xk; u

1
k ; u

2
k ; � � �; un

k ; θ
σk
k

� �þ qi xT̂ þ1

� �
�
; ð1:3Þ

where the notation of the sum
Xτ
k¼τþ1

being an empty sum is adopted.

The game (1.2 and 1.3) is a randomly furcating stochastic dynamic game with

random horizon. To solve the game (1.2 and 1.3), we first have to derive a stochastic

dynamic programming technique for solving a stochastic dynamic programming

problem with random horizon and randomly furcating payoffs.

10.1.2 Random Horizon Stochastic Dynamic Programming
with Uncertain Payoffs

Consider the case when n ¼ 1 in the system (1.2 and 1.3). The problem can be

formulized as the maximization of the expected payoff:
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Eϑ1,ϑ2, ���,ϑT

�
g1 x1; u1; θ

1
1

� �þ ϖ1XT
ζ¼1

ϖζ

q2 x2ð Þ

þ

XT
T̂ ¼2

ϖT̂

XT
ζ¼1

ϖζ

	XT̂
k¼2

Xηk
σk¼1

λσkk gk xk; uk; θ
σk
k

� �þ q xT̂ þ1

� �
� ð1:4Þ

subject to

xkþ1 ¼ f k xk; ukð Þ þ ϑk; ð1:5Þ

for k 2 1; 2; � � �; Tf g and x1 ¼ x0.

Now consider the case when stage τ has arrived, if θσττ 2 θ1τ ; θ
2
τ ; � � �; θηττ

� �
occurs

and the state xτ ¼ x, the problem can be formulized as the maximization of the

expected payoff:

Eϑτ ,ϑτþ1, ���,ϑT

�XT
T̂ ¼τ

ϖT̂XT
ζ¼τ

ϖζ

	
gτ x; uτ; θ

στ
τ

� �

þ
XT̂
k¼τþ1

Xηk
σk¼1

λσkk gk xk; uk; θkð Þ þ qT̂ þ1 xT̂ þ1

� �
�
¼ Eϑτ ,ϑτþ1, ���,ϑT

�
gτ xτ; uτ; θ

στ
τ

� �þ ϖτXT
ζ¼τ

ϖζ

qτþ1 xτþ1ð Þ

þ

XT
T̂ ¼τþ1

ϖT̂

XT
ζ¼τ

ϖζ

	 XT̂
k¼τþ1

Xηk
σk¼1

λσkk gk xk; uk; θ
σk
k

� �þ q xT̂ þ1

� �
� ð1:6Þ

subject to the dynamics

xkþ1 ¼ f k xk; ukð Þ þ ϑk, xτ ¼ x, fork 2 τ, τ þ 1, � � �, Tf g: ð1:7Þ

We use V σtð Þ τ; xð Þ to denote the value function (if it exist)
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max
uτ, uτþ1, ���, uT

Eϑτ ,ϑτþ1, ���,ϑT

�
gτ xτ; uτ; θ

στ
τ

� �þ ϖτXT
ζ¼τ

ϖζ

qτþ1 xτþ1ð Þ

þ

XT
T̂ ¼τþ1

ϖT̂

XT
ζ¼τ

ϖζ

	 XT̂
k¼τþ1

Xηk
σk¼1

λσkk gk xk; uk; θ
σk
k

� �þ q xT̂ þ1

� �
�
ð1:8Þ

A theorem characterizing a solution to the stochastic dynamic programming problem

with uncertain future payoffs and randomhorizon in (1.4 and 1.5) is provided as follows.

Theorem 1.1 A set of strategies
�
u

σkð Þ*
k ¼ ϕ σkð Þ*

k xð Þ 2 Γ, for σk 2 1; 2; � � �; ηkf g and
k 2 1; 2; � � �; Tf g� provides an optimal solution to the problem (1.4 and 1.5) if there

exist functions V σkð Þ k; xð Þ, for k 2 1; 2; � � �; Tf g, such that the following recursive

relations are satisfied:

V σTþ1ð Þ T þ 1, xð Þ ¼ qTþ1 xð Þ,
V σTð Þ T; xð Þ ¼ max

uT
EϑT

�
gT x; uT ; θ

σT
Tð Þ þ V σTþ1ð Þ T þ 1, f T x; uTð Þ þ ϑT½ �

�
¼ EϑT

�
gT x,ϕ σTð Þ*

T xð Þ; θσTT
� 

þ V σTþ1ð Þ T þ 1, f T x,ϕ σTð Þ*
T xð Þ

� 
þ ϑT

h i�
,

V στð Þ τ; xð Þ ¼ max
uτ

Eϑτ

�
gτ x; uτ; θ

στ
τ

� �þ ϖτXT
ζ¼τ

ϖζ

qτþ1 f τ x; uτð Þ þ ϑτ½ �

þ

XT
ζ¼τþ1

ϖζ

XT
ζ¼τ

ϖζ

Xητþ1

στþ1¼1

λστþ1

τþ1V
στþ1ð Þ τ þ 1, f τ x; uτð Þ þ ϑτ½ �

�

¼ Eϑτ

�
gτ x,ϕ στð Þ*

τ xð Þ; θσττ
� �þ ϖτXT

ζ¼τ

ϖζ

qτþ1 f τ x,ϕ στð Þ*
τ xð Þ

� 
þ ϑτ

h i

þ

XT
ζ¼τþ1

ϖζ

XT
ζ¼τ

ϖζ

Xητþ1

στþ1¼1

λστþ1

τþ1V
στþ1ð Þ τ þ 1, f τ x,ϕ στð Þ*

τ xð Þ� �þ ϑτ
� ��

, for τ 2 1, 2, � � �, T � 1f g:

ð1:9Þ
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Proof See Appendix A. ■

Theorem 1.1 yields a set of optimality equations for discrete-time random

horizon stochastic dynamic programming problem with uncertain future payoffs.

10.2 Noncooperative Outcome

To solve the noncoperative outcome of the game (1.2 and 1.3), we invoke the

technique of backward induction and begin with the subgame starting at last

operating stages, that is stage T. If θσTT 2 θ1T ; θ
2
T ; � � �; θηTT

� �
has occurred at stage

T and the state xT ¼ x, the subgame becomes:

max
u i
T

EϑT

�
gi
T x; u1T ; u

2
T ; � � �; un

T ; θ
σT
T

� �þ qi xTþ1ð Þ
�
, for i 2 N;

subject to

xTþ1 ¼ f T x; u1T ; u
2
T ; � � �; un

T

� �þ ϑT : ð2:1Þ

A set of state-dependent strategies
�
ϕ σTð Þi*
T xð Þ 2 Γi, for i 2 N

�
constitutes a Nash

equilibrium solution to the subgame (2.1) if the following conditions are satisfied:

V σTð Þi T; xð Þ ¼
EϑT

�
gi
T x,ϕ σTð Þ1*

T xð Þ,ϕ σTð Þ2*
T xð Þ, � � �,ϕ σTð Þn*

T xð Þ; θσTT
h i

þ qi xTþ1ð Þ
�

� EϑT

�
gi
T

�
x,ϕ σTð Þ1*

T xð Þ,ϕ σTð Þ2*
T xð Þ, � � �,ϕ σTð Þi�1*

T xð Þ,ϕ σTð Þi*
T xð Þ,ϕ σTð Þiþ1*

T xð Þ, � � �

� � �,ϕ σTð Þn*
T xð Þ; θσTT

�þ qi exTþ1ð Þ
�
;

for i 2 N,

where xTþ1 ¼ f T x,ϕ σTð Þ1*
T xð Þ,ϕ σTð Þ2*

T xð Þ, � � �,ϕ σTð Þn*
T xð Þ

h i
þ ϑT

exTþ1 ¼ f T
�
x,ϕ σTð Þ1*

T xð Þ,ϕ σTð Þ2*
T xð Þ, � � �,ϕ σTð Þi�1*

T xð Þ,ϕ σTð Þi
T xð Þ,ϕ σTð Þiþ1*

T xð Þ, � � �
� � �,ϕ σTð Þn*

T xð Þ�þ ϑT :

A characterization of the Nash equilibrium of the subgame (2.1) is provided in the

following lemma.

Lemma 2.1 A set of strategies
�
ui*T ¼ ϕ σTð Þi*

T xð Þ 2 Γi, for i 2 N
�
provides a Nash

equilibrium solution to the subgame (2.1) if there exist functions V σTð Þi T; xð Þ, for
i 2 N, such that the following conditions are satisfied:
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V σTð Þi T; xð Þ ¼ max
u i
T

EϑT

�
gi
T

�
x,ϕ σTð Þ1*

T xð Þ,ϕ σTð Þ2*
T xð Þ, � � �,ϕ σTð Þi�1*

T xð Þ, ui
T ,ϕ

σTð Þiþ1*
T xð Þ, � � �

� � �,ϕ σTð Þn*
T xð Þ; θσTT

�þ V σTþ1ð Þi T þ 1, f T x,ϕ σTð Þ* 6¼i

T
xð Þ

� 
þ ϑT

h i�
,

V σTð Þi T þ 1, xð Þ ¼ qi xð Þ; for i 2 N; ð2:2Þ

where ϕ σTð Þ* 6¼i

T
xð Þ

¼ ϕ σTð Þ1*
T xð Þ,ϕ σTð Þ2*

T xð Þ, � � �,ϕ σTð Þi�1*
T xð Þ, ui

T xð Þ,ϕ σTð Þiþ1*
T xð Þ, � � �,ϕ σTð Þn

T xð Þ
h i

:

Proof The system of equations in (2.2) satisfies the standard stochastic dynamic

programming property in Theorem A.6 of the technical Appendices and the Nash

equilibrium (1951) property for each player i 2 N. Hence a Nash equilibrium of the

subgame (2.1) is characterized. ■

For the sake of exposition, we sidestep the issue of multiple equilibria and focus

on playable games in which a particular noncooperative Nash equilibrium is chosen

by the players in the subgame. Using Lemma 2.1, one can characterize the value

functions V σTð Þi T; xð Þ for all σT 2 1; 2; � � �; ηTf g if they exist. In particular, V σTð Þi

T; xð Þ yields player i’s expected game equilibrium payoff in the subgame starting at

stage T given that θσTT occurs and xT ¼ x.
Then we proceed to the subgame starting at stage T � 1 when θσT�1

T�1

2 θ1T�1; θ
2
T�1; � � �; θηT�1

T�1

� �
occurs and xT�1 ¼ x. In this subgame player i 2 N

seeks to maximize his expected payoff

EϑT�1,ϑT

�
gi
T�1 xT�1; u

1
T�1; u

2
T�1; � � �; un

T�1; θ
σT�1

T�1

� �þ ϖT�1XT
ζ¼T�1

ϖζ

qi
T xTð Þ

þ ϖTXT
ζ¼T�1

ϖζ

XηT
σT¼1

λσTT

	
gi
T xT ; u

1
T ; u

2
T ; � � �; un

T ; θ
σT
T

� �þ qi
Tþ1 xTþ1ð Þ


�
ð2:3Þ

subject to

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �þ ϑk, for k 2 T � 1, Tf gand xT�1 ¼ x: ð2:4Þ

If the functions V σTð Þi T; xð Þ for all σT 2 1; 2; � � �; ηTf g characterized in Lemma 2.1

exist, the subgame (2.3 and 2.4) can be expressed as a game in which player i 2 N
seeks to maximize the expected payoff
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EϑT�1

�
gi
T�1 xT�1; u

1
T�1; u

2
T�1; � � �; un

T�1; θ
σT�1

T�1

� �þ ϖT�1XT
ζ¼T�1

ϖζ

qi
T xTð Þ

þ ϖTXT
ζ¼T�1

ϖζ

XηT
σT¼1

λσTT V σTð Þi T, f T�1 x; u1T�1; u
2
T�1; � � �; un

T�1

� �þ ϑT�1

� �� ð2:5Þ

using his control ui
T�1.

A characterization of the Nash equilibrium of the subgame (2.5) is provided in

the following lemma.

Lemma 2.2 A set of strategies
�
ui*T�1 ¼ ϕ σT�1ð Þi*

T�1 xð Þ 2 Γi, for i 2 N
�

provides a

Nash equilibrium solution to the subgame (2.5) if there exist functions V σTð Þi T; xTð Þ
for i 2 N and σT ¼ 1; 2; � � �; ηTf g characterized in Lemma 2.1, and functions

V σT�1ð Þi T � 1, xð Þ, for i 2 N, such that the following conditions are satisfied:

V σT�1ð Þi T � 1, xð Þ ¼ max
u i
T�1

EϑT�1

(
gi
T�1

�
x,ϕ σT�1ð Þ1*

T�1 xð Þ,ϕ σT�1ð Þ2*
T�1 xð Þ, � � �

� � �,ϕ σT�1ð Þi�1*
T�1 xð Þ, ui

T�1,ϕ
σT�1ð Þiþ1*
T�1 xð Þ, � � �,ϕ σT�1ð Þn*

T�1 xð Þ; θσT�1

T�1

�
þ ϖT�1XT

ζ¼T�1

ϖζ

qi
T T, f T�1 x;ϕ σT�1ð Þ* 6¼i

T�1

� 
þ ϑT�1

h i

þ ϖTXT
ζ¼T�1

ϖζ

XηT
σT¼1

λσTT V σTð Þi T, f T�1 x;ϕ σT�1ð Þ* 6¼i

T�1

� 
þ ϑT�1

h i)
; ð2:6Þ

for i 2 N,

where ϕ σT�1ð Þ* 6¼i

T�1

¼ ϕ σT�1ð Þ1*
T�1 xð Þ,ϕ σT�1ð Þ2*

T�1 xð Þ, � � �,ϕ σT�1ð Þi�1*
T�1 xð Þ, ui

T�1,ϕ
σT�1ð Þiþ1*
T�1 xð Þ, � � �,ϕ σT�1ð Þn*

T�1 xð Þ
h i

:

Proof The conditions in Lemma 2.1 and the system of equations in (2.6) satisfies

the random horizon dynamic programming property in Theorem 1.1 of Chap. 7 and

the discrete-time stochastic dynamic programming property in Theorem A.6 in the

Technical Appendices and the Nash equilibrium property for each player i 2 N.
Hence a Nash equilibrium of the subgame (2.5) is characterized. ■

In particular, V σT�1ð Þi T � 1, xð Þ yields player i’s expected game equilibrium

payoff in the subgame starting at stage T � 1 given that θσT�1

T�1 occurs and xT�1 ¼ x.
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Consider the subgame starting at stage τ 2 T � 2, T � 3, � � �, 1f g when θσττ 2
θ1τ ; θ

2
τ ; � � �; θηττ

� �
occurs and xτ ¼ x, in which player i 2 N maximizes his expected

payoff

Eϑτ ,ϑτþ1, ���,ϑT

�
gi
τ x; u1τ ; u

2
τ ; � � �; un

τ ; θ
στ
τ

� �þ ϖτXT
ζ¼τ

ϖζ

qi
τþ1 xτþ1ð Þ

þ

XT
T̂ ¼τþ1

ϖT̂

XT
ζ¼τ

ϖζ

	 XT̂
k¼τþ1

Xηk
σk¼1

λσkk g
i
k xk; u

1
k ; u

2
k ; � � �; un

k ; θ
σk
k

� �þ qi
T̂ þ1

xT̂ þ1

� �
� ð2:7Þ

subject to

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �þ ϑk, for k 2 τ, τ þ 1, � � �,Tf g and xτ ¼ x ð2:8Þ

Following the above analysis, the subgame (2.7 and 2.8) can be expressed as a game

in which player i 2 N maximizes his expected payoff

Eϑτ

�
gi
τ x; u1τ ; u

2
τ ; � � �; un

τ ; θ
στ
τ

� �þ ϖτXT
ζ¼τ

ϖζ

qi
τþ1 f τ x; u1τ ; u

2
τ ; � � �; un

τ

� �þ ϑτ
� �

þ

XT
T̂ ¼τþ1

ϖT̂

XT
ζ¼τ

ϖζ

Xητþ1

στþ1¼1

λστþ1

τþ1V
στþ1ð Þi τ þ 1, f τ x; u1τ ; u

2
τ ; � � �; un

τ

� �þ ϑτ
� �� ð2:9Þ

with his control uit.
A Nash equilibrium solution for the randomly furcating stochastic dynamic

games with random horizon (1.2 and 1.3) can be characterized by the following

theorem.

Theorem 2.1 A set of strategies
�
ui*τ ¼ ϕ σtð Þi*

t xð Þ 2 Γi, for σt 2 1; 2; � � �; ηtf g, t
2 1; 2; � � �; Tf g and i 2 N

�
constitutes a Nash equilibrium solution to the game (1.2

and 1.3) if there exist functions V στð Þi τ; xð Þ, for σt 2 1; 2; � � �; ηtf g, t 2 1; 2; � � �; Tf g
and i 2 N, such that the following recursive relations are satisfied:
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V σTþ1ð Þi T þ 1, xð Þ ¼ qTþ1 xð Þ,
V σTð Þi T; xð Þ ¼
max
u i
T

EϑT

�
gi
T

�
x,ϕ σTð Þ1*

T xð Þ,ϕ σTð Þ2*
T xð Þ, � � �,ϕ σTð Þi�1*

T xð Þ, u σTð Þi
T ,ϕ σTð Þiþ1*

T xð Þ, � � �

� � �,ϕ σTð Þn*
T xð Þ; θσTT

�þ V σTþ1ð Þi T þ 1, f T x;ϕ σTð Þ* 6¼i

T

� 
þ ϑT

h i�
,

V στð Þi τ; xð Þ ¼ max
u i
τ

Eϑτ

�
gi
τ

�
x,ϕ στð Þ1*

τ xð Þ,ϕ στð Þ2*
τ xð Þ, � � �,ϕ στð Þi�1*

τ xð Þ, u στð Þi
τ ,

ϕ στð Þiþ1*
τ xð Þ, � � � � � �,ϕ στð Þn*

τ xð Þ; θσττ
�

þ ϖτXT
ζ¼τ

ϖζ

qτþ1 f τ x,ϕ στð Þ*6¼i

τ
xð Þ

� 
þ ϑτ

h i

þ

XT
ζ¼τþ1

ϖζ

XT
ζ¼τ

ϖζ

Xητþ1

στþ1¼1

λστþ1

τþ1V
στþ1ð Þ τ þ 1, f τ x,ϕ στð Þ*6¼i

τ
xð Þ

� 
þ ϑτ

h i�
,

τ 2 1, 2, � � �,T � 1f g; forσt 2 1; 2; � � �; ηtf g, t 2 1; 2; � � �; Tf gand i 2 N; ð2:10Þ

where ϕ σtð Þ* 6¼i

t
xð Þ

¼ ϕ σtð Þ1*
t xð Þ,ϕ σtð Þ2*

t xð Þ, � � �,ϕ σtð Þi�1*
t xð Þ, u σtð Þi

t ,ϕ σtð Þiþ1*
t xð Þ, � � �,ϕ σtð Þn*

t xð Þ
h i

;

for t 2 1; 2; � � �; Tf g.
Proof The results in (2.10) characterizing the game equilibrium in stage T and

stage T � 1 are proved in Lemma 2.1 and Lemma 2.2. Invoking the subgame in

stage τ 2 1, 2, � � �, T � 2f g as expressed in (2.5), the results in (2.10) satisfy the

optimality conditions in stochastic dynamic programming and the property of

random horizon dynamic programming and the Nash (1951) equilibrium property

for each player in each of these subgames. Therefore, a feedback Nash equilibrium

of the game (1.2 and 1.3) is characterized. ■
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10.3 Dynamic Cooperation

Now consider the case where the players agree to cooperate and distribute the joint

payoff among themselves according to an optimality principle. As pointed out in

earlier Chapters two essential properties that a cooperative scheme has to satisfy are

group optimality and individual rationality.

10.3.1 Group Optimality

To achieve group optimality the players have to solve the random horizon stochas-

tic dynamic programming problem with uncertain future payoffs and horizon in

which they jointly maximizes the expected payoff

Eϑ1,ϑ2, ���,ϑT

�Xn
j¼1

gj
1 x1; u

1
1; u

2
1; � � �; un

1 ; θ
1
1

� �þ ϖ1XT
ζ¼1

ϖζ

Xn
j¼1

qj
2 xτþ1ð Þ

þ

XT
T̂ ¼2

ϖT̂

XT
ζ¼1

ϖζ

Xn
j¼1

	XT̂
k¼2

Xηk
σk¼1

λσkk g
j
k xk; u

1
k ; u

2
k ; � � �; un

k ; θ
σk
k

� �þ qj xT̂ þ1

� �
� ð3:1Þ

subject to the stochastic dynamics (1.2).

Again, in a stochastic dynamic framework, strategy space with state-dependent

property has to be considered. In particular, a pre-specified class Γ̂ i
of mapping

ψ σtð Þi
t �ð Þ : X ! Uiwith the propertyu

σtð Þi
t ¼ ψ σtð Þi

t xð Þ 2 Γ̂ i
, forσt 2 1; 2; � � �; ηtf gand

t 2 1; 2; � � �; Tf g, is the strategy space of player i and each of its elements is a

permissible strategy.

Invoking Theorem 1.1 which characterizes the solution to stochastic dynamic

programming problem with uncertain future payoffs and random horizon we have

the following Corollary:

Corollary 3.1 A set of controls u*t ¼ ψ σtð Þ*
t xð Þ ¼ �ψ σtð Þ1*

t xð Þ, ψ σtð Þ2*
t xð Þ, � � �

� � �,ψ σtð Þn*
t xð Þ� 2 Γ̂ i

, forσt 2 1; 2; � � �; ηtf gand t 2 1; 2; � � �; Tf gprovides an optimal

solution to the stochastic control problem (1.2) and (3.1) if there exist functions

W σtð Þ t; xð Þ, for σt 2 1; 2; � � �; ηtf g and t 2 1; 2; � � �; Tf g, such that the following

recursive relations are satisfied:
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W σTþ1ð Þ T þ 1, xð Þ ¼
Xn
j¼1

qj
Tþ1 xð Þ,

W σTð Þ T; xð Þ ¼ max
u1
T
, u2

T
, ���, u n

T

EϑT

�Xn
j¼1

gj
T x; u1T ; u

2
T ; � � �; un

T ; θ
σT
T

� �
þW σTþ1ð Þ T þ 1, f T x; u1T ; u

2
T ; � � �; un

T

� �þ ϑT
� ��

,

W στð Þ τ; xð Þ ¼ max
u1τ , u2τ , ���, u n

τ

Eϑτ

�Xn
j¼1

gj
τ x; u1τ ; u

2
τ ; � � �; un

τ ; θ
στ
τ

� �
þ
Xn
j¼1

ϖτXT
ζ¼τ

ϖζ

qj
τþ1 f τ x; u1τ ; u

2
τ ; � � �; un

τ

� �þ ϑτ
� �

þ

XT
ζ¼τþ1

ϖζ

XT
ζ¼τ

ϖζ

Xητþ1

στþ1¼1

λστþ1

τþ1W
στþ1ð Þ τ þ 1, f τ x; u1τ ; u

2
τ ; � � �; un

τ

� �þ ϑτ
� �� ð3:2Þ

for τ 2 1, 2, � � �,T � 1f g. ■

Substituting the optimal control

ψ σkð Þ*
k xð Þ ¼ ψ σkð Þ1*

k xkð Þ,ψ σkð Þ2*
k xkð Þ, � � �,ψ σkð Þn*

k xkð Þ
h i

into the state dynamics (1.2), one can obtain the dynamics of the cooperative

trajectory as:

xkþ1 ¼ f k xk,ψ
σkð Þ1*
k xkð Þ,ψ σkð Þ2*

k xkð Þ, � � �,ψ σkð Þn*
k xkð Þ

� 
þ ϑk if θσkk occurs; ð3:3Þ

for k 2 1; 2; � � �; Tf g, σk 2 1; 2; � � �; ηkf g and x1 ¼ x0.
We use X�

k to denote the set of realizable values of x�k at stage k generated by

(3.3). The term x*k 2 X*
k is used to denote an element in X�

k .

The termW σkð Þ k; x*k
� �

gives the expected total cooperative payoff over the stages

from k to T if θσkk occurs and x*k 2 X*
k is realized at stage k.

10.3.2 Individual Rationality

The players then have to agree to an optimality principle in distributing the total

cooperative payoff among themselves. For individual rationality to be upheld the
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expected payoffs a player receives under cooperation have to be no less than his

expected noncooperative payoff along the cooperative state trajectory x*k
� � Tþ1

k¼1
.

For instance, the players may (i) share the excess of the total expected cooperative

payoff over the expected sum of individual noncooperative payoffs equally, or

(ii) share the total expected cooperative payoff proportional to their expected

noncooperative payoffs.

Let ξ σkð Þ k; x*k
� � ¼ ξ σkð Þ1 k; x*k

� �
, ξ σkð Þ2 k; x*k

� �
, � � �, ξ σkð Þn k; x*k

� �� �
denote the impu-

tation vector guiding the distribution of the total expected cooperative payoff under

the agreed-upon optimality principle along the cooperative trajectory given that θσkk
has occurred in stage k, for σk 2 1; 2; � � �; ηkf g and k 2 1; 2; � � �; Tf g. In particular,

the imputation ξ σkð Þi k; x*k
� �

gives the expected cumulative payments that player

i will receive from stage k to stage T þ 1 under cooperation.

If for example, the optimality principle specifies that the players share the excess

of the total cooperative payoff over the sum of individual noncooperative payoffs

equally, then the imputation to player i becomes:

ξ σkð Þi k; x*k
� � ¼ V σkð Þi k; x*k

� �þ 1

n
W σkð Þ k; x*k

� ��Xn
j¼1

V σkð Þj k; x*k
� �" #

; ð3:4Þ

for i 2 N and k 2 1; 2; � � �; Tf g.
For individual rationality to be maintained throughout all the stages

k 2 1; 2; � � �; Tf g, it is required that the imputation satisfies:

ξ σkð Þi k; x*k
� � � V σkð Þi k; x*k

� �
,

for i 2 N, σk 2 1; 2; � � �; ηkf g and k 2 1; 2; � � �; Tf g: ð3:5Þ

To guarantee group optimality, the imputation vector has to satisfy

W σkð Þ k; x*k
� � ¼Xn

j¼1

ξ σkð Þj k; x*k
� �

,

forσk 2 1; 2; � � �; ηkf g and k 2 1; 2; � � �; Tf g: ð3:6Þ

Hence, a valid imputation ξ σkð Þi k; x*k
� �

, for i 2 N, σk 2 1; 2; � � �; ηkf g and

k 2 1; 2; � � �; Tf g, has to satisfy conditions (3.5) and (3.6).

10.4 Subgame Consistent Solutions and Payment
Mechanism

As demonstrated in Chap. 7, to guarantee dynamical stability in a stochastic

dynamic cooperation scheme, the solution has to satisfy the property of subgame

consistency in addition to group optimality and individual rationality. In particular,
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an extension of a subgame-consistent cooperative solution policy to a subgame

starting at a later time with a feasible state brought about by prior optimal

behavior would remain optimal. For subgame consistency to be satisfied, the

imputation according to the original optimality principle has to be maintained at

all the T stages along the cooperative trajectory x*k
� �T

k¼1
. In other words, the

imputation

ξ σkð Þ k; x*k
� � ¼ ξ σkð Þ1 k; x*k

� �
, ξ σkð Þ2 k; x*k

� �
, � � �, ξ σkð Þn k; x*k

� �h i
; ð4:1Þ

for σk 2 1; 2; � � �; ηkf g, x*k 2 X*
k and k 2 1; 2; � � �; Tf g, has to be upheld.

10.4.1 Payoff Distribution Procedure

Following the analyses in Chaps. 8 and 9, we formulate a Payoff Distribution

Procedure (PDP) so that the agreed-upon imputation (4.1) can be realized. LetB
σkð Þi
k

x*k
� �

denote the payment that player i will received at stage k under the cooperative

agreement if θσkk 2 θ1k ; θ
2
k ; � � �; θηkk

� �
occurs and x*k 2 X*

k is realized at stage

k 2 1; 2; � � �; Tf g. The payment scheme B
σkð Þi
k x*k
� �n oT

k¼1
contingent upon the

event θσkk and state x�k , for k 2 1; 2; � � �; Tf g� constitutes a PDP in the sense that

the imputation to player i can be expressed as:

ξ σkð Þi k; x*k
� � ¼ B

σkð Þi
k x*k
� �þ Eϑk ,ϑkþ1, ���,ϑT

�
ϖkXT

ζ¼k

ϖζ

qi
kþ1 x*kþ1

� �

þ

XT
T̂ ¼kþ1

ϖT̂

XT
ζ¼k

ϖζ

	 XT̂
τ¼kþ1

Xητ
στ¼1

λσττ B
στð Þi
τ x*τ
� �þ qi

T̂ þ1
x*
T̂ þ1

� 
�
,

for i 2 N: ð4:2Þ

For subgame consistency to be satisfied, ξ σkð Þi k; x*k
� �

in (4.2) must be the same as the

imputation in (4.1). Crucial to the formulation of a subgame consistent solution is

the derivation of a payment scheme B
σkð Þi
k x*k
� �n o

, for i 2 N, σk 2 1; 2; � � �; ηkf g, x*k
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2 X*
k and k 2 1; 2; � � �; Tf g� so that the imputation in (4.1) can be realized. This is

derived in the following Theorem.

Theorem 4.1 A payment equaling

B
σkð Þi
k x*k
� � ¼ ξ σkð Þi k; x*k

� �� Eϑk

�
ϖkXT

ζ¼k

ϖζ

qi
kþ1 f k x*k ,ψ

σkð Þ*
k x*k

� �� 
þ ϑk

h i

þ

XT
μ¼kþ1

ϖμ

XT
ζ¼k

ϖζ

Xηk
σkþ1¼1

λσkþ1

kþ1ξ
σkþ1ð Þi k þ 1, f k x*k ,ψ

σkð Þ*
k x*k

� �� 
þ ϑk

h i�
; ð4:3Þ

given to player i 2 N at stage k 2 1; 2; � � �; Tf g if θσkk 2 θ1k ; θ
2
k ; � � �; θηkk

� �
occurs

would lead to the realization of the imputation in (4.1).

Proof To guarantee subgame consistency, the payment scheme B
σkð Þi
k x*k
� �n o

defined in (4.2) has also to satisfy the conditions

ξ σkð Þi k; x*k
� � ¼ B

σkð Þi
k x*k
� �þ Eϑk ,ϑkþ1, ���,ϑT

�
ϖkXT

ζ¼k

ϖζ

qi
kþ1 x*kþ1

� �

þ

XT
T̂ ¼kþ1

ϖT̂

XT
ζ¼k

ϖζ

	 XT̂
τ¼kþ1

Xητ
στ¼1

λσττ B
στð Þi
τ xτð Þ þ qi

T̂ þ1
xT̂ þ1

� �
�
;

for i 2 N ð4:4Þ

for i 2 N, x*k 2 X*
k , σk 2 1; 2; � � �; ηkf g and k 2 1; 2; � � �; Tf g.

First we consider the case when the game lasts up to the final operation stage T,

then at stage T þ 1, player i will receive a terminal payment qi
Tþ1 x*Tþ1

� �
with

probability one if the state is x*Tþ1 2 X*
Tþ1. Hence we would have

ξ σTþ1ð Þi T þ 1, x*Tþ1

� �
equals qi x*Tþ1

� �
with probability one.

Next, note that using (4.4) we can express ξ σkþ1ð Þi k þ 1, x*kþ1

� �
as
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ξ σkþ1ð Þi k þ 1, x*kþ1

� � ¼ B
σkþ1ð Þi
kþ1 x*kþ1

� �þ Eϑkþ1,ϑkþ2, ���,ϑT

�
ϖkþ1XT

ζ¼kþ1

ϖkþ1
ζ

qi
kþ1 x*kþ1

� �

þ

XT
T̂ ¼kþ2

ϖT̂

XT
ζ¼kþ1

ϖζ

	 XT̂
τ¼kþ2

Xητ
στ¼1

λσττ B
στð Þi
τ xτð Þ þ qi

T̂ þ1
xT̂ þ1

� �
�
; ð4:5Þ

for σkþ1 2 1; 2; � � �; ηkþ1

� �
and i 2 N.

Using (4.5), we can obtain:

Xηkþ1

σkþ1¼1

λσkþ1

kþ1ξ
σkþ1ð Þi k þ 1, x*kþ1

� � ¼ XT̂
τ¼kþ1

Xητ
στ¼1

λσττ B
στð Þi
τ xτð Þ þ qi

T̂ þ1
xT̂ þ1

� �
: ð4:6Þ

The expression on the right-hand-side of (4.6) is the same as the term in square-

brackets in (4.4). Substituting the term in square-brackets in (4.4) by the expression

on the left-hand-side of (4.6) yields:

ξ σkð Þi k; x*k
� � ¼ B

σkð Þi
k x*k
� �þ Eϑk

�
ϖkXT

ζ¼k

ϖ k
ζ

qi
kþ1 x*kþ1

� �

þ

XT
T̂ ¼kþ1

ϖT̂

XT
ζ¼k

ϖζ

Xηkþ1

σkþ1¼1

λσkþ1

kþ1ξ
σkþ1ð Þi k þ 1, x*kþ1

� ��
, for i 2 N: ð4:7Þ

Replacing x*kþ1 in (4.7) by f k x*k ,ψ
σkð Þ*
k x*k

� �� 
þ ϑk yields (4.3). Hence Theorem 4.1

follows. ■

For a given imputation vector

ξ σkð Þ k; x*k
� � ¼ ξ σkð Þ1 k; x*k

� �
, ξ σkð Þ2 k; x*k

� �
, � � �, ξ σkð Þn k; x*k

� �h i
;

for σk 2 1; 2; � � �; ηkf g and k 2 1; 2; � � �; Tf g,
Theorem 4.1 can be used to derive the corresponding PDP leading to the

realization of the imputation vector.
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10.4.2 Transfer Payments

When all players are using the cooperative strategies, the payoff that player i will

directly receive at stage k given that x*k 2 X*
k and θσkk occurs becomes

gi
k x*k ,ψ

σkð Þ1*
k x*k

� �
,ψ σkð Þ2*

k x*k
� �

, � � �,ψ σkð Þn*
k x*k

� �
; θσkk

h i
:

However, according to the agreed upon imputation, player i is supposed to receive

B
σkð Þi
k x*k
� �

at stage k as given in Theorem 4.1. Therefore a transfer payment (which

can be positive or negative)

ϖ σkð Þi
k x*k
� � ¼ B

σkð Þi
k x*k
� �� gi

k x*k ,ψ
σkð Þ1*
k x*k

� �
,ψ σkð Þ2*

k x*k
� �

, � � �,ψ σkð Þn*
k x*k

� �
; θσkk

h i
; ð4:8Þ

for k 2 1; 2; � � �; Tf g and i 2 N,
will be assigned to player i to yield the cooperative imputation ξi(k, x�k).
The transfer payments system in (4.8) constitutes an instrument to guide the

execution of the agreed-upon payoff sharing mechanism.

10.5 Random Lease Cooperative Resource Extraction
under Uncertainty

Consider an economy endowed with a renewable resource and there are two

resource extractors (firms). These firms are given the lease to extract the resource.

The lease for resource extraction has to be renewed after each stage (year) for up to

a maximum of four stages. At stage 1, it is known that the probabilities that the lease

will last up to 1, 2, 3 or 4 years long are respectively ϖ1,ϖ2,ϖ3 and ϖ4.

Conditional upon the of reaching stage τ > 1, the probability of the game would

last up to stages τ, τ þ 1; to four are

ϖτX4
ζ¼τ

ϖζ

,
ϖτþ1X4
ζ¼τ

ϖζ

,
ϖ4X4

ζ¼τ

ϖζ

:

Let uik denote the resource extracted by firm i at stage k, for i 2 1; 2f g. Let Ui be

the set of admissible amount of resource extracted by firm i, and xk 2 X � Rþ be the

size of the resource stock at stage k.
It is known at each stage there is a random element, θk for k 2 1; 2; 3; 4f g,

affecting the prices of the outputs produced by these firms and their costs of

extraction. If θσkk 2 θ1k ; θ
2
k

� �
happens at stage k 2 2; 3; 4f g the profits that firm

1 and firm 2 will obtain at stage k are respectively:
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P
σkð Þ1
k u1k �

c
σkð Þ1
k

xk
u1k
� �2" #

and P
σkð Þ2
k u2k �

c
σkð Þ2
k

xk
u2k
� �2" #

; ð5:1Þ

where P
σkð Þi
k is the price of the resource extracted and processed by firm i, and c

σkð Þi
k

u i
k

� �2
=xk is the production cost of firm i in stage k if θσkk occurs.

It is known in stage 1 that θ1 is θ11 with probability λ11 ¼ 1. The probability that

θσkk 2 θ1k ; θ
2
k

� �
will occur at stagek 2 2; 3; 4f g isλσkk . A terminal payment contingent

upon the resource size equalingqixkþ1 will be paid to firm i in stage k þ 1 if the lease

ends at stage k.
The growth dynamics of the resource is governed by the stochastic difference

equation:

xkþ1 ¼ xk þ a� bxk �
X2
j¼1

uj
k þ ϑk; ð5:2Þ

for k 2 1; 2; 3; 4f g and x1 ¼ x0,

where ϑk is a random variable with non-negative range {ϑ1k , ϑ
2
k , ϑ

3
k}

and corresponding probabilities {γ1k , γ
2
k , γ

3
k}; moreover ϑ1, ϑ2, ϑ3 are

independent.

There is an extraction constraint u1k þ u2k 	 1� bð Þxk. Moreover, ϑw
k

�� �� 	 a for

k 2 1; 2; 3; 4f g and w 2 1; 2; 3f g, and
X3
w¼1

γ wk ϑ
w
k ¼ ϑk. The discount rate is r. The

objective of the firm is to maximize the present value of the expected stream of

future profits:

Eϑ1,ϑ2,ϑ3,ϑ4

�
P

1ð Þi
1 ui

1 �
c

σ1ð Þi
1

x1
u i
1

� �2" #
þ ϖ1X4

ζ¼1

ϖζ

qi
2 x2ð Þ

þ

X4
T̂ ¼2

ϖT̂

X4
ζ¼1

ϖζ

	XT̂
k¼2

Xηk
σk¼1

λσkk P
σkð Þi
k u i

k �
c

σkð Þi
k

xk
u i
k

� �2 !
1

1þr

� k�1

þ qi
T̂ þ1

xT̂ þ1

� �
�
ð5:3Þ

subject to the stochastic dynamics (5.2).
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10.5.1 Noncooperative Market Outcome

Invoking Theorem 2.1, one can characterize the noncooperative Nash equilib-

rium strategies for the game (5.2 and 5.3) as follows. In particular, a set

of strategies
�
u

σkð Þi*
k ¼ ϕ σkð Þi*

k xð Þ 2 Γi, for σ1, σ5 2 1f g, σ2, σ3, σ4 2 1; 2f g, k 2
1; 2; 3; 4f g and i 2 1; 2f g provides a Nash equilibrium solution to the game (5.2

and 5.3) if there exist functions V σkð Þi k; xð Þ, for i 2 1; 2f g, σ1, σ5 2 1f g,
σ2, σ3, σ4 2 1; 2f g, and k 2 1; 2; 3; 4f g, such that the following recursive relations
are satisfied:

V σ5ð Þi 5; xð Þ ¼ qix 1
1þr

� 4
,

V σkð Þi k; xð Þ ¼ max
u

σkð Þi
k

�
P

σkð Þi
k u i

k �
c

σkð Þi
k

xk
u i
k

� �2" #
1

1þ r

� �k�1

þ ϖkX4
ζ¼k

ϖζ

X3
y¼1

γ yk q
i xþ a� bx� u

σkð Þi
k � ϕ σkð Þj*

k xð Þ þ ϑ y
k

h i 1

1þ r

� �k

þ

X4
μ¼kþ1

ϖμ

X4
ζ¼k

ϖζ

X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1V
σkþ1ð Þi k þ 1, xþ a� bx� u

σkð Þi
k � ϕ σkð Þj*

k xð Þ þ ϑ y
k

h i�
:

ð5:4Þ

Performing the indicated maximization in (5.4) yields:

P
σkð Þi
k � 2c

σkð Þi
k u

σkð Þi
k

x

" #
1

1þr

� k�1

� ϖkX4
ζ¼k

ϖζ

qi
1

1þ r

� �k

�

X4
μ¼kþ1

ϖμ

X4
ζ¼k

ϖζ

X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1V
σkþ1ð Þi
xkþ1

k þ 1, xþ a�bx� u
σkð Þi
k � ϕ σkð Þj*

k xð Þ þ ϑ y
k

h i
¼ 0;

ð5:5Þ

for i 2 1; 2f g, σ1, σ5 2 1f g, σ2, σ3, σ4 2 1; 2f g, and k 2 1; 2; 3; 4f g.
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From (5.5), the game equilibrium strategies can be expressed as:

ϕ σkð Þi*
k xð Þ ¼ x

2c
σkð Þi
k

�
P

σkð Þi
k � ϖkX4

ζ¼k

ϖζ

qi 1þ rð Þ�1 � 1þ rð Þk�1

X4
μ¼kþ1

ϖμ

X4
ζ¼k

ϖζ

X3
y¼1

γ yk



X2

σkþ1¼1

λσkþ1

kþ1V
σkþ1ð Þi
xkþ1

k þ 1, xþ a� bx� ϕ σkð Þ1*
k xð Þ � ϕ σkð Þ2*

k xð Þ þ ϑ y
k

h i�
; ð5:6Þ

for i 2 1; 2f g, σ1, σ5 2 1f g, σ2, σ3, σ4 2 1; 2f g, and k 2 1; 2; 3; 4f g.
The expected game equilibrium payoffs can be obtained as:

Proposition 5.1 The value function indicating the expected game equilibrium

payoff of player i is

V σkð Þi k; xð Þ ¼ A
σkð Þi
k xþ C

σkð Þi
k

h i 1

1þ r

� �k�1

, for i 2 1; 2f gand

k 2 1; 2; 3; 4f g; ð5:7Þ

where A
σkð Þi
k and C

σkð Þi
k , for i 2 1; 2f g and k 2 1; 2; 3; 4f g, are constants in terms of

the parameters of the game given in Appendix B.

Proof See Appendix B. ■

Substituting the relevant derivatives of the value functions in Proposition 5.1

into the game equilibrium strategies (5.6) yields a noncooperative Nash equilibrium

solution of the game (5.2 and 5.3).

10.5.2 Subgame Consistent Cooperative Extraction

Now consider the case where the extractors collaborate to maximize their expected

joint profit and share the excess of cooperative gains over their expected noncoop-

erative payoffs equally. To maximize their expected joint payoff, they solve the

problem of maximizing
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Eϑ1,ϑ2,ϑ3,ϑ4

�X2
j¼1

P
1ð Þj
1 uj

1 �
c

σ1ð Þi
1

x1
uj
1

� 2" #
þ ϖ1X4

ζ¼1

ϖζ

X2
j¼1

qj
2 x2ð Þ

þ

X4
T̂ ¼2

ϖT̂

X4
ζ¼1

ϖζ

	X2
j¼1

XT̂
k¼2

Xηk
σk¼1

λσkk P
σkð Þj
k u j

k �
c

σkð Þj
k

xk
u j
k

� 2 !
1

1þr

� k�1

þ
X2
j¼1

qj

T̂ þ1
xT̂ þ1

� �
�
; ð5:8Þ

subject to (5.2).

Invoking Theorem 1.1, one can characterize the optimal controls in the random

horizon stochastic dynamic programming problem (5.2) and (5.8) as follows. In

particular, a set of control strategies
�
u

σkð Þi*
k ¼ ψ σkð Þi*

k xð Þ 2 Γ̂ i
, for σ1, σ5 2 1f g,

σ2, σ3, σ4 2 1; 2f g, k 2 1; 2; 3; 4f g and i 2 1; 2f gprovides an optimal solution to the

problem (5.2) and (5.8) if there exist functionsW σkð Þ k; xð Þ, for k 2 1; 2; 3; 4f g, such
that the following recursive relations are satisfied:

W σ5ð Þ 5; xð Þ ¼
X2
j¼1

qjx 1
1þr

� 4
,

W σkð Þ k; xð Þ ¼ max
u1
k
, u1

k

�X2
j¼1

P
σkð Þj
k u j

k �
c

σkð Þj
k

xk
u j
k

� 2" #
1

1þ r

� �k�1

þ ϖkX4
ζ¼k

ϖζ

X3
y¼1

γ yk
X2
j¼1

qj xþ a� bx� u1k � u2k þ ϑ y
k

� � 1

1þ r

� �k

þ

X4
μ¼kþ1

ϖμ

X4
ζ¼k

ϖζ

X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1W
σkþ1ð Þ k þ 1, xþ a� bx� u1k � u2k þ ϑ y

k

� ��
: ð5:9Þ

Performing the indicated maximization in (5.9) yields:
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P
σkð Þi
k � 2c

σkð Þi
k u i

k

x

" #
1

1þr

� k�1

� ϖkX4
ζ¼k

ϖζ

X2
j¼1

qj
1

1þ r

� �k

�

X4
μ¼kþ1

ϖμ

X4
ζ¼k

ϖζ

X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1W
σkþ1ð Þ
xkþ1

k þ 1, xþ a� bx� u1k � u2k xð Þ þ ϑ y
k

� � ¼ 0;

ð5:10Þ

for i 2 1; 2f g, σ1, σ5 2 1f g, σ2, σ3, σ4 2 1; 2f g, and k 2 1; 2; 3; 4f g.
From (5.10), the game equilibrium strategies can be expressed as:

ψ σkð Þi*
k xð Þ ¼ x

2c
σkð Þi
k

�
P

σkð Þi
k � ϖkX4

ζ¼k

ϖζ

X2
j¼1

qj 1þ rð Þ�1 � 1þ rð Þk�1

X4
μ¼kþ1

ϖμ

X4
ζ¼k

ϖζ

X3
y¼1

γ yk



X2

σkþ1¼1

λσkþ1

kþ1W
σkþ1ð Þ
xkþ1

k þ 1, xþ a� bx� ψ σkð Þ1*
k xð Þ � ψ σkð Þ2*

k xð Þ þ ϑ y
k

h i�
;

ð5:11Þ

for i 2 1; 2f g, σ1, σ5 2 1f g, σ2, σ3, σ4 2 1; 2f g, and k 2 1; 2; 3; 4f g.
The value function W σkð Þ k; xð Þ representing the maximized expected joint profit

can be obtained as:

Proposition 5.2 The value function

W σkð Þ k; xð Þ ¼ A
σkð Þ
k xþ C

σkð Þ
k

h i 1

1þ r

� �k�1

; ð5:12Þ

for σ1 2 1f g, σ2, σ3, σ4 2 1; 2f g, and k 2 1; 2; 3; 4f g,
where A

σkð Þ
k and C

σkð Þ
k , for σ1 2 1f g, σ2, σ3, σ4 2 1; 2f g, and k 2 1; 2; 3; 4f g , are

constants in terms of the parameters of the problem (5.2) and (5.8).

Proof Follow the proof of Proposition 5.1 in Appendix B. ■

Using (5.11) and Proposition 5.2, the optimal cooperative strategies of the agents

can be expressed as:
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ψ σkð Þi*
k xð Þ ¼ x

2c
σkð Þi
k

�
P

σkð Þi
k � ϖkX4

ζ¼k

ϖζ

X2
j¼1

qj 1þ rð Þ�1

� 1þ rð Þ�1

X4
μ¼kþ1

ϖμ

X4
ζ¼k

ϖζ

X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1A
σkþ1ð Þ
kþ1

�
; ð5:13Þ

for i 2 1; 2f g, σ1, σ5 2 1f g, σ2, σ3, σ4 2 1; 2f g, and k 2 1; 2; 3; 4f g.
Substituting ψ σkð Þi

k xð Þ from (5.13) into (5.2) yields the optimal cooperative state

trajectory:

xkþ1 ¼ xk þ a� bxk �
X2
‘¼1

xk

2c
σkð Þ‘
k

�
P

σkð Þ‘
k � ϖkX4

ζ¼k

ϖζ

X2
j¼1

qj 1þ rð Þ�1

� 1þ rð Þ�1

X4
μ¼kþ1

ϖμ

X4
ζ¼k

ϖζ

X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1A
σkþ1ð Þ
kþ1

�
þ ϑk: ð5:14Þ

if θσkk occurs at stage k for k 2 1; 2; 3; 4f g and x1 ¼ x0.
Dynamics (5.14) is a linear stochastic difference equation readily solvable by

standard techniques. We use X�
k to denote the set of realizable values of x�k at stage

k generated by (5.14). The term x*k 2 X*
k is used to denote an element in X�

k .

Since the extractors agree to share the excess of cooperative gains over their

expected noncooperative payoffs equally, an imputation

ξ σkð Þi k; x*k
� � ¼ V σkð Þi k; x*k

� �þ 1

2
W σkð Þ k; x*k

� ��X2
j¼1

V σkð Þj k; x*k
� �" #

¼ A
σkð Þi
k x*k þ C

σkð Þi
k

� 
1

1þr

� k�1

þ 1

2
A

σkð Þ
k x*k þ C

σkð Þ
k

� 
�
X2
j¼1

A
σkð Þj
k x*k þ C

σkð Þj
k

� " #
1

1þ r

� �k�1

; ð5:15Þ

if θσkk occurs at stage k for k 2 1; 2; 3; 4f g, σ1 2 1f g, σ2, σ3, σ4 2 1; 2f g and i
2 1; 2f g has to be maintained.

Invoking Theorem 4.1, if θσkk occurs and x*k 2 X is realized at stage k the payment

scheme
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B
σkð Þi
k x*k
� � ¼ A

σkð Þi
k x*k þ C

σkð Þi
k

� 
þ 1

2
A

σkð Þ
k x*k þ C

σkð Þ
k

� 
�
X2
j¼1

A
σkð Þj
k x*k þ C

σkð Þj
k

�  !

�
�

ϖkXT
ζ¼k

ϖζ

X3
y¼1

γ yk q
i x

* ϑ y
kð Þ

kþ1

� �
þ

XT
μ¼kþ1

ϖμ

XT
ζ¼k

ϖζ

Xηk
σkþ1¼1

λσkþ1

kþ1

X3
y¼1

γ yk

	
A

σkþ1ð Þi
kþ1 x

* ϑ y
kð Þ

kþ1 þC
σkþ1ð Þi
kþ1

� �

þ 1

2
A

σkþ1ð Þ
kþ1 x

* ϑ y
kð Þ

kþ1 þ C
σkþ1ð Þ
kþ1

� �
�
X2
j¼1

A
σkþ1ð Þj
kþ1 x

* ϑ y
kð Þ

kþ1 þ C
σkþ1ð Þj
kþ1

� � !

1

1þ r

� ��
ð5:16Þ

where

x
* ϑ y

kð Þ
kþ1 ¼ x*k þ a� bx*k �

X2
‘¼1

x*k

2c
σkð Þ‘
k

�
P

σkð Þ‘
k � ϖkX4

ζ¼k

ϖζ

X2
j¼1

qj 1þ rð Þ�1

� 1þ rð Þ�1

X4
μ¼kþ1

ϖμ

X4
ζ¼k

ϖζ

X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1A
σkþ1ð Þ
kþ1

�
þ ϑ y

k ;

for k 2 1; 2; 3; 4f g, σ1 2 1f g, σ2, σ3, σ4 2 1; 2f g and i 2 1; 2f g.
A subgame consistent solution is then obtained.

10.6 Chapter Appendices

Appendix A: Proof of Theorem 1.1

The proof follows the standard analysis in stochastic dynamic programming (see

Bertsekas and Shreve (1996), Puterman (1994) and Fleming and Rishel (1975)). By

definition, the value function at stage T þ 1 is

V σTþ1ð Þ T þ 1, xð Þ ¼ qTþ1 xð Þ:

We first consider the case when the last operation stage T has arrived and θσTT 2
θ1T ; θ

2
T ; � � �; θηTT

� �
occurs and the state is xT ¼ x. The problem then becomes
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max
uT

EϑT

	
gT x; uT ; θ

σT
Tð Þ þ qTþ1 xTþ1ð Þ



ð6:1Þ

subject to

xTþ1 ¼ f T x; uTð Þ þ ϑT , xT ¼ x: ð6:2Þ

Using V σTþ1ð Þ T þ 1, xð Þ ¼ qTþ1 xTþ1ð Þ, the problem in (6.1 and 6.2) can be formu-

lated as a single stage problem

max
uT

EϑT

	
gT x; uT ; θ

σT
Tð Þ þ V σTþ1ð Þ T þ 1, f T x; uTð Þ þ ϑT½ �



: ð6:3Þ

If the value function V σTð Þ T; xð Þ, for θσTT 2 θ1T ; θ
2
T ; � � �; θηTT

� �
, characterizing the

solution to the problem in (6.1 and 6.2) exists, we have

V σTð Þ T; xð Þ ¼ max
uT

EϑT

	
gT x; uT ; θ

σT
Tð Þ þ V σTþ1ð Þ T þ 1, f T x; uTð Þ þ ϑT½ �



; ð6:4Þ

for θσTT 2 θ1T ; θ
2
T ; � � �; θητT

� �
.

Equation (6.4) yields the optimality equation in a standard stochastic optimal

control problem.

Now consider the problem in stage T � 1. Invoking the probabilities that the

game would last up to stages T � 1 and T conditional upon the reaching of stage

T � 1 and θσT�1

T�1 2 θ1T�1; θ
2
T�1; � � �; θηT�1

T�1

� �
occurs and xT�1 ¼ x, the problem in stage

T � 1 can be expressed as maximizing

EϑT�1,ϑT

�
gT�1 x; uT�1; θ

σT�1

T�1

� �þ ϖT�1XT
ζ¼T�1

ϖζ

qT xTð Þ

þ ϖTXT
ζ¼T�1

ϖζ

XηT
σT¼1

λσTT

	
gT xT ; uT ; θ

σT
Tð Þ þ qTþ1 xTþ1ð Þ


�
ð6:5Þ

subject to

xkþ1 ¼ f k xk; ukð Þ þ ϑk, for k 2 T � 1, Tf g and xT�1 ¼ x: ð6:6Þ

Using (6.4), the problem (6.5 and 6.6) can be expressed as a single stage problem of

maximizing the expected payoff
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EϑT�1

�
gT�1 x; uT�1; θ

σT�1

T�1

� �þ ϖT�1XT
ζ¼T�1

ϖζ

qT f T�1 x; uT�1ð Þ þ ϑT�1½ �

þ ϖTXT
ζ¼T�1

ϖζ

XηT
σT¼1

λσTT V σTð Þ T, f T�1 x; uT�1ð Þ þ ϑT�1½ �
�
: ð6:7Þ

If the value function V σT�1ð Þ T � 1, xð Þ , for θσT�1

T�1 2 θ1T�1; θ
2
T�1; � � �; θηT�1

T�1

� �
charac-

terizing the solution to problem (6.5 and 6.6) exists, we have

V σT�1ð Þ T � 1, xð Þ ¼ max
uT�1

EϑT�1

(
gT�1 x; uT�1; θ

σT�1

T�1

� �
þ ϖT�1XT

ζ¼T�1

ϖζ

qT f T�1 x; uT�1ð Þ þ ϑT�1½ �

þ ϖTXT
ζ¼T�1

ϖζ

XηT
σT¼1

λσTT V σTð Þ T, f T�1 x; uT�1ð Þ þ ϑT�1½ �
�
: ð6:8Þ

Now consider the problem in stage τ 2 1, 2, � � �,T � 2f g. Following the analysis

above, given that θσττ 2 θ1τ ; θ
2
τ ; � � �; θηττ

� �
occurs, the problem in stage τ becomes the

maximization of the expected payoff

Eϑτ ,ϑτþ1, ���,ϑT

�
gτ x; uτ; θ

στ
τ

� �þ ϖτXT
ζ¼τ

ϖζ

qτþ1 xτþ1ð Þ

þ

XT
T̂ ¼τþ1

ϖT̂

XT
ζ¼τ

ϖζ

	 XT̂
k¼τþ1

Xηk
σk¼1

λσkk gk xk; uk; θ
σk
k

� �þ qT̂ þ1 xT̂ þ1

� �
� ð6:9Þ

subject to

xkþ1 ¼ f k xk; ukð Þ þ ϑk, fork 2 τ, τ þ 1, � � �, Tf gandxτ ¼ x: ð6:10Þ

Note that the maximized value function representing the term
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Eϑτþ1,ϑτþ2, ���,ϑT

� XT
T̂ ¼τþ1

ϖT̂

XT
ζ¼τþ1

ϖζ

	 XT̂
k¼τþ1

Xηk
σk¼1

λσkk gk xk; uk; θ
σk
k

� �þ qT̂ þ1 xT̂ þ1

� �
�

can be expressed as

XT
T̂ ¼τþ1

ϖT̂

XT
ζ¼τ

ϖζ

Xητþ1

στþ1¼1

λστþ1

τþ1V
σtþ1ð Þ τ þ 1, xð Þ: ð6:11Þ

If the value functions V σtþ1ð Þ τ þ 1, xð Þ, for θστþ1

τþ1 2 θ1τþ1; θ
2
τþ1; � � �; θητþ1

τþ1

� �
, exist, we

can expressed the expected payoff to be maximized in (6.9) as

Eϑτ

�
gτ x; uτ; θ

στ
τ

� �þ ϖτXT
ζ¼τ

ϖζ

qτþ1 f τ x; uτð Þ þ ϑτ½ �

þ

XT
T̂ ¼τþ1

ϖT̂

XT
ζ¼τ

ϖζ

Xητþ1

στþ1¼1

λστþ1

τþ1V
στþ1ð Þ τ þ 1, f τ x; uτð Þ þ ϑτ½ �

�
ð6:12Þ

If V στð Þ τ; xð Þ exists, we have

V στð Þ τ; xð Þ ¼ max
uτ

Eϑτ

�
gτ x; uτ; θ

στ
τ

� �þ ϖτXT
ζ¼τ

ϖζ

qτþ1 f τ x; uτð Þ þ ϑτ½ �

þ

XT
T̂ ¼τþ1

ϖT̂

XT
ζ¼τ

ϖζ

Xητþ1

στþ1¼1

λστþ1

τþ1V
στþ1ð Þ τ þ 1, f τ x; uτð Þ þ ϑτ½ �

�
; ð6:13Þ

for θσττ 2 θ1τ ; θ
2
τ ; � � �; θηττ

� �
and τ 2 1, 2, � � �, T � 2f g.

Hence Theorem 1.1 follows. ■
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Appendix B. Proof of Proposition 5.1

Consider first the last stage of operation, that is stage 4, when θσ44 occurs. Invoking

Proposition 5.1,V σ4ð Þi 4; xð Þ ¼ A
σ4ð Þi
4 xþ C

σ4ð Þi
4

h i
1

1þr

� 3
andV σ5ð Þi 5; xð Þ ¼ qix 1

1þr

� 4
,

the conditions in Eq. (5.4) become

A
σ4ð Þi
4 xþ C

σ4ð Þi
4

h i
¼ max

u
σ4ð Þi

4

�
P

σ4ð Þi
4 ui

4 �
c

σ4ð Þi
4

x
u i
4

� �2" #

þ ϖ4X4
ζ¼4

ϖζ

X3
y¼1

γ y4q
i xþ a� bx� u

σ4ð Þi
4 � ϕ σ4ð Þj*

4 xð Þ þ ϑ y
4

h i 1

1þ r

� �

þ

X4
μ¼4þ1

ϖμ

X4
ζ¼4

ϖζ

X3
y¼1

γ y4q
i xþ a� bx� u

σ4ð Þi
4 � ϕ σ4ð Þj*

4 xð Þ þ ϑ y
4

h i 1

1þ r

� ��
; ð6:14Þ

for i 2 1; 2f g and σ4 2 1; 2f g.
Performing the indicated maximization in (6.14) yields:

P
σ4ð Þi
4 � 2c

σ4ð Þi
4 u

σ4ð Þi
4

x

" #
� qi

1

1þ r

� �
¼ 0, for i 2 1; 2f g ð6:15Þ

The game equilibrium strategies in stage 4 can then be expressed as:

ϕ σ4ð Þi*
4 xð Þ ¼ P

σ4ð Þi
4 � 1þ rð Þ�1qi

h i x

2c
σ4ð Þi
4

, for i 2 1; 2f g ð6:16Þ

Substituting (6.16) into (6.14) yields:

A
σ4ð Þi
4 xþ C

σ4ð Þi
4

h i
¼ P

σ4ð Þi
4 P

σ4ð Þi
4 � 1þ rð Þ�1qi

h i x

2c
σ4ð Þi
4

� P
σ4ð Þi
4 � 1þ rð Þ�1qi

h i2 x

4c
σ4ð Þi
4

þ qi

"
xþ a� bx� P

σ4ð Þ1
4 � 1þ rð Þ�1q1

h i x

2c
σ4ð Þ1
4

� P
σ4ð Þ2
4 � 1þ rð Þ�1q2

h i x

2c
σ4ð Þ2
4

þ ϑ4

#
1

1þ r

� �
, for i 2 1; 2f gandσ4 2 1; 2f g:

ð6:17Þ
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Note that both sides of Eq. (6.17) are linear expression of x, the terms A
σ4ð Þi
4 and

C
σ4ð Þi
4 , for i 2 1; 2f g and σ3 2 1; 2f g, can be readily obtained as constants:

A
σ4ð Þi
4 ¼ P

σ4ð Þi
4 P

σ4ð Þi
4 � 1þ rð Þ�1qi

h i 1

2c
σ4ð Þi
4

� P
σ4ð Þi
4 � 1þ rð Þ�1qi

h i2 1

4c
σ4ð Þi
4

þ qi

"
1� b

� P
σ4ð Þ1
4 � 1þ rð Þ�1q1

h i 1

2c
σ4ð Þ1
4

� P
σ4ð Þ2
4 � 1þ rð Þ�1q2

h i 1

2c
σ4ð Þ2
4

#
1

1þ r

� �
,

andC
σ4ð Þi
4 ¼ qia

1

1þ r

� �
, for i 2 1; 2f gandσ4 2 1; 2f g: ð6:18Þ

Now we proceed to stage 3, Invoking Proposition 5.1 the conditions in Eq. (6.17)

become

A
σ3ð Þi
3 xþ C

σ3ð Þi
3

h i
¼ max

u
σ3ð Þi

3

(
P

σ3ð Þi
3 ui

3 �
c

σ3ð Þi
3

x
u i
3

� �2" #

þ ϖ3X4
ζ¼3

ϖζ

X3
y¼1

γ y3q
i xþ a� bx� u

σ3ð Þi
3 � ϕ σ3ð Þj*

3 xð Þ þ ϑ y
3

h i 1

1þ r

� �

þ ϖ4X4
ζ¼3

ϖζ

X3
y¼1

γ y3
X2
σ4¼1

λσ44

 
A

σ4ð Þi
4 xþ a� bx� u

σkð Þi
k � ϕ σkð Þj*

k xð Þ þ ϑ y
k

h i
þ C

σ4ð Þi
4

!

1

1þ r

� �
, for i 2 1; 2f g and σ3 2 1; 2f g: ð6:19Þ

Performing the indicated maximization in (6.19) yields:

P
σ3ð Þi
3 � 2c

σ3ð Þi
3 u

σ3ð Þi
3

x

" #
� ϖ3X4

ζ¼3

ϖζ

qi
1

1þ r

� �
� ϖ4X4

ζ¼3

ϖζ

X2
σ4¼1

λσ44 A
σ4ð Þi
4

1

1þ r

� �
¼ 0,

for i 2 1; 2f gandσ3 2 1; 2f g: ð6:20Þ

The game equilibrium strategies in stage 3 can then be expressed as:
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ϕ σ3ð Þi*
3 xð Þ ¼

	
P

σ3ð Þi
3 � ϖ3X4

ζ¼3

ϖζ

qi
1

1þ r

� �

� ϖ4X4
ζ¼3

ϖζ

X2
σ4¼1

λσ44 A
σ4ð Þi
4

1

1þ r

� �

x

2c
σ3ð Þi
3

; ð6:21Þ

for i 2 1; 2f g and σ3 2 1; 2f g.
Substituting (6.21) into (6.19) yields:

A
σ3ð Þi
3 xþ C

σ3ð Þi
3

h i
¼ P

σ3ð Þi
3

	
P

σ3ð Þi
3 � ϖ3X4

ζ¼3

ϖζ

qi
1

1þ r

� �

� ϖ4X4
ζ¼3

ϖζ

X2
σ4¼1

λσ44 A
σ4ð Þi
4

1

1þ r

� �

x

2c
σ3ð Þi
3

�
	
P

σ3ð Þi
3 � ϖ3X4

ζ¼3

ϖζ

qi
1

1þ r

� �

� ϖ4X4
ζ¼3

ϖζ

X2
σ4¼1

λσ44 A
σ4ð Þi
4

1

1þ r

� �
2 x

4c
σ3ð Þi
3

þ ϖ3X4
ζ¼3

ϖζ

X3
y¼1

γ y3q
i

�
xþ a� bx�

	
P

σ3ð Þ1
3 � ϖ3X4

ζ¼3

ϖζ

q1
1

1þ r

� �

� ϖ4X4
ζ¼3

ϖζ

X2
σ4¼1

λσ44 A
σ4ð Þ1
4

1

1þ r

� �

x

2c
σ3ð Þ1
3

�
	
P

σ3ð Þ2
3 � ϖ3X4

ζ¼3

ϖζ

q2
1

1þ r

� �
� ϖ4X4

ζ¼3

ϖζ

X2
σ4¼1

λσ44 A
σ4ð Þ2
4

1

1þ r

� �

x

2c
σ3ð Þ
3

þϑ y
3

�
1

1þ r

� �
þ ϖ4X4

ζ¼3

ϖζ

X3
y¼1

γ y3
X2
σ4¼1

λσ44

�
A

σ4ð Þi
4

	
xþ a� bx

�
	
P

σ3ð Þ1
3 � ϖ3X4

ζ¼3

ϖζ

q1
1

1þ r

� �
� ϖ4X4

ζ¼3

ϖζ

X2
σ4¼1

λσ44 A
σ4ð Þ1
4

1

1þ r

� �

x

2c
σ3ð Þ1
3

�
	
P

σ3ð Þ2
3 � ϖ3X4

ζ¼3

ϖζ

q2
1

1þ r

� �
� ϖ4X4

ζ¼3

ϖζ

X2
σ4¼1

λσ44 A
σ4ð Þ2
4

1

1þ r

� �

x

2c
σ3ð Þ
3

þϑ y
3



þ C

σ4ð Þi
4

�
1

1þ r

� �
, for i 2 1; 2f gandσ3 2 1; 2f g: ð6:22Þ
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Once again, both sides of Eq. (6.22) are linear expression of x. The term A
σ3ð Þi
3

equals the coefficient of x on the right-hand-side of (6.22). The termC
σ3ð Þi
3 equals the

rest of the expression on the right-hand-side of (6.22).

Following the above analysis for stages k 2 1; 2f g, one can obtain:

A
σkð Þi
k xþ C

σkð Þi
k

h i
¼ P

σkð Þi
k

	
P

σkð Þi
k � ϖkX4

ζ¼k

ϖζ

qi
1

1þ r

� �

�

X4
μ¼τþ1

ϖμ

X4
ζ¼τ

ϖζ

X2
σkþ1¼1

λσkþ1

τþ1A
σkþ1ð Þi
kþ1

1

1þ r

� �

x

2c
σkð Þi
k

�
	
P

σ3ð Þi
3 � ϖ3X4

ζ¼4

ϖζ

qi
1

1þ r

� �
�

X4
μ¼τþ1

ϖμ

X4
ζ¼τ

ϖζ

X2
σkþ1¼1

λσkþ1

τþ1A
σkþ1ð Þi
kþ1

1

1þ r

� �
2 x

4c
σkð Þi
k

þ ϖkX4
ζ¼k

ϖζ

X3
y¼1

γ yk q
i

�
xþ a� bx�

X2
j¼1

	
P

σkð Þj
k � ϖkX4

ζ¼k

ϖζ

qj 1

1þ r

� �

�

X4
μ¼τþ1

ϖμ

X4
ζ¼τ

ϖζ

X2
σkþ1¼1

λσkþ1

τþ1A
σkþ1ð Þj
kþ1

1

1þ r

� �

x

2c
σkð Þj
k

þ ϑ y
k

�
1

1þ r

� �

þ

X4
μ¼kþ1

ϖμ

X4
ζ¼k

ϖζ

X3
y¼1

γ yk
X2

σkþ1¼1

λσkþ1

kþ1

�
A

σkþ1ð Þi
kþ1

	
xþ a� bx
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�
X2
j¼1

	
P

σkð Þj
k � ϖkX4

ζ¼k

ϖζ

q j
1

1þ r

� �

�

X4
μ¼τþ1

ϖμ

X4
ζ¼τ

ϖζ

X2
σkþ1¼1

λσkþ1

τþ1A
σkþ1ð Þj
kþ1

1

1þ r

� �

x

2c
σkð Þj
k

þ ϑ y
k




þ C
σ4ð Þi
4

�
1

1þ r

� �
, for i

2 1; 2f g, σ1 2 1f gσ2 2 1; 2f gandk 2 1; 2f g: ð6:23Þ

Once again, both sides of Eq. (6.23) are linear expression of x. The termA
σkð Þi
k equals

the coefficient of x on the right-hand-side of (6.23). The termC
σkð Þi
k equals the rest of

the expression on the right-hand-side of (6.23). ■

10.7 Chapter Notes

This Chapter considers subgame-consistent cooperative solutions in randomly

furcating stochastic dynamic games with random horizon. In the process of

obtaining the main results for subgame consistent solution, the forms of Bellman

equations and Hamilton-Jacobi-Bellman equations for solving inter-temporal prob-

lems with randomly furcating payoffs and random horizon were developed in

Yeung and Petrosyan (2014c). They are random horizon versions of the Bellman

equations and Hamilton-Jacobi-Bellman equations in Chap. 9. By removing uncer-

tainties in the state dynamics the analysis can be readily applied to randomly

furcating dynamic games with random horizon. In particular, the PDP in Theorem

4.1 becomes

ξ σkð Þi k; x*k
� � ¼ B

σkð Þi
k x*k
� �þ ϖkXT

ζ¼k

ϖζ

qi
kþ1 x*kþ1

� �

þ

XT
T̂ ¼kþ1

ϖT̂

XT
ζ¼k

ϖζ

	 XT̂
τ¼kþ1

Xητ
στ¼1

λσττ B
στð Þi
τ xτð Þ þ qi

T̂ þ1
xT̂ þ1

� �

, for i 2 N: ð7:1Þ
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10.8 Problems

1. Consider an economy endowed with a renewable resource and there are two

resource extractors (firms). These firms are given the lease to extract the

resource. The lease for resource extraction has to be renewed after each stage

(year) for up to a maximum of four stages. At stage 1, it is known that the

probabilities that the lease will last up to 1, 2, 3 or 4 years long are respectively

0.1, 0.2, 0.5 and 0.2.

Let uik denote the resource extracted by firm i at stage k, for i 2 1; 2f g. Let Ui

be the set of admissible amount of resource extracted by firm i, and xk 2 X � Rþ

be the size of the resource stock at stage k.
It is known at each stage there is a random element, θk for k 2 1; 2; 3; 4f g,

affecting the revenues of these firms and their costs of extraction.

If θ1k happens at stage k 2 2; 3; 4f g the profits (in present-value) that firm

1 and firm 2 will obtain at stage k are respectively:

3u1k �
2

xk
u1k
� �2	 


1

1þ r

� �k�1

and 1:5u2k �
1

xk
u2k
� �2	 


1

1þ r

� �k�1

;

where r ¼ 0:05 is the discount rate.

If θ2k happens at stage k 2 2; 3; 4f g the profits (in present-value) that firm

1 and firm 2 will obtain at stage k are respectively:

2:5u1k �
1

xk
u1k
� �2	 


1

1þ r

� �k�1

and 2u2k �
2

xk
u2k
� �2	 


1

1þ r

� �k�1

:

It is known in stage 1 that θ11 has occurred. The probability that θ1k will occur at
stage k 2 2; 3; 4f g is 0.3 and the probability that θ2k will occur at stage k 2
2; 3; 4f g is 0.7. In stage 5, a terminal payment (again in present-value) equaling

1:5x5
1

1þr

� 3
will be paid to firm 1 and a terminal payment (again in present-

value) equaling 0:5x5
1

1þr

� 3
will be paid to firm 2.

The growth dynamics of the resource is governed by the stochastic difference

equation:

xkþ1 ¼ xk þ 16� 0:15xk �
X2
j¼1

uj
k þ ϑk;

for k 2 1; 2; 3; 4f g and x1 ¼ 12,

where ϑk is a random variable with non-negative range {0, 2, 3} and

corresponding probabilities {0.2, 0.4, 0.4}; moreover ϑ1, ϑ2, ϑ3 are independent.
Moreover, we have the constraint u1k þ u2k 	 0:85xk þ 16.
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The objective of extractor i 2 1; 2f g is to maximize the present value of the

expected stream of future profits:

Characterize the feedback Nash equilibrium.

(2) Obtain a group optimal solution that maximizes the joint expected profit.

(3) Consider the case when the extractors agree to share the excess of cooperative

gains over their expected noncooperative profits equally. Derive a subgame

consistent solution.
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Chapter 11

Subgame Consistency in NTU Cooperative
Dynamic Games

Cooperative games suggest the possibility of enhancing the participants’well-being
in situations involving strategic interactions. Various cooperative solutions have

been presented, like the Nash (1950, 1953) bargaining solution, the Shapley (1953)

value, and the stable set of von Neumann and Morgenstern (1944). Frequently, the

lack of sustainability of the cooperation scheme leads to break-ups of the scheme as

the game evolves or even to the outright rejection of the cooperation scheme. One

of the ways to uphold sustainability of a cooperation scheme is to maintain the

condition of subgame consistency. In non-transferrable utility/payoff (NTU) coop-

erative dynamic games, the inapplicability of transfer payments makes the deriva-

tion of subgame consistent solutions extremely strenuous. In Chap. 6 subgame

consistent solution in cooperative differential games with non-transferable payoffs

under a constant weight scheme is provided. However, the result is confined to a

specific class of games under a very restrictive set of optimality principles. Crucial

problems of using constant payoff weights include the possibility of the failure of

individual rationality to be fulfilled throughout the cooperative duration and the

deviation from the original optimality principle as the game evolves. The use of

variable payoff weights provides an effective way in achieving subgame consis-

tency and preserving individual rationality under a wide range of optimality

principles.

This Chapter considers subgame consistency in NTU cooperative dynamic

games with the use of variable payoff weights. It is based on an elaborated

exposition of the analyses in Yeung and Petrosyan (2015a, b). Section 11.1 presents

the game formulation and provides the mathematical preliminaries for deriving

subgame consistent solutions. The notion of subgame consistency in NTU dynamic

games under a variable weights scheme is presented in Sect. 11.2. Derivation of

subgame consistent cooperative strategies via variable weights is shown in

Sect. 11.3. Section 11.4 gives an illustration in public capital build-up. Section 11.5

provides an extension the analysis to NTU cooperative stochastic dynamic games.

Section 11.6 supplies an illustration in stochastic build-up of public capital.

Chapter notes are given in Sect. 11.7 and problems in Sect. 11.8.

© Springer Science+Business Media Singapore 2016
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11.1 Game Formulation and Mathematical Preliminaries

Consider the generalT� stage n� person nonzero-sum discrete-time dynamic game

with initial state x01. The state space of the game isX 2 Rm and the state dynamics of

the game is characterized by the difference equation:

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �
; ð1:1Þ

for k 2 1; 2; � � �; Tf g�κ and x1 ¼ x01,

where ui
k 2 Rmi is the control vector of player i at stage k, and xk 2 X is the state of

the game. The payoff that player i seeks to maximize is

XT
k¼1

gi
k xk; u

1
k ; u

2
k ; � � �; un

k

� �þ qi xTþ1ð Þ; ð1:2Þ

for i 2 1; 2; � � �; nf g�N,

where qi xTþ1ð Þ is the terminal payoff that player i will received in stage T þ 1.

The payoffs of the players are not transferable. Let ϕ i
k xð Þ, for k 2 κ and i 2 N

� �
denote a set of strategies that provides a feedback Nash equilibrium solution (if it

exists) to the game (1.1 and 1.2), and Vi k; xð Þ, for k 2 κ and i 2 N
� �

denote the

value functions yielding the payoff to player i over the stages from k to T. A way

to characterize a feedback Nash equilibrium of the game is given in the Theorem

below.

Theorem 1.1 A set of strategies ϕ i
k xð Þ, for k 2 κ and i 2 N

� �
provides a feedback

Nash equilibrium solution to the game (1.1 and 1.2) if there exist functions Vi(k, x),
for k 2 K and i 2 N, satisfying the following recursive relations:

Vi T þ 1, xð Þ ¼ qi xTþ1ð Þ,
Vi k; xð Þ ¼ max

u i
k

�
gi
k x,ϕ1

k xð Þ,ϕ2
k xð Þ, � � �,ϕi�1

k xð Þ, ui
k,ϕ

iþ1
k xð Þ, � � �,ϕn

k xð Þ� �
þVi k þ 1, f k x,ϕ1

k xð Þ,ϕ2
k xð Þ, � � �,ϕi�1

k xð Þ, ui
k,ϕ

iþ1
k xð Þ, � � �,ϕn

k xð Þ� �� � 	
ð1:3Þ

for i 2 N and k 2 κ.

Proof Follow the proof of Theorem 1.1 in Chap. 7. ■

Since the analysis is on cooperative schemes for improving the non-cooperative

outcomes in NTU dynamic games, we would consider games with non-cooperative

Nash equilibrium outcomes.
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11.1.1 Cooperation Under Constant Weights

To enhance their payoffs the players would consider formulating a cooperative

scheme. In particular, the players agree to cooperate and enhance their payoffs

according to an agreed-upon optimality principle. Since payoffs are

non-transferable the payoffs of individual players are directly determined by the

optimal cooperative strategies adopted. Pareto efficient cooperative strategies can

be derived from the maximization of the weighted sum of payoffs of the players

under a set of agreed-upon payoff weights.

To establish the optimization foundation of the variable weights scheme we

consider first the case in which the players adopt a vector of constant payoff weights

α ¼ α1; α2; � � �; αnð Þ in all stages, where
Xn
j¼1

αj ¼ 1. Conditional upon the vector of

weights α, the players’ optimal cooperative strategies can be generated by solving

the dynamic programming problem of maximizing the weighted sum of payoffs

(see Leitmann (1974), Dockner and Jørgensen (1984), Hamalainen et al (1986),

Yeung and Petrosyan (2005) and Yeung et al. (2007)):

Xn
j¼1


 XT
k¼1

αjg j
k xk; u

1
k ; u

2
k ; � � �; un

k

� �þ αjqj xTþ1ð Þ
�

ð1:4Þ

subject to (1.1).

An optimal solution to the problem (1.1) and (1.4) can be characterized by the

following theorem.

Theorem 1.2 A set of strategies ψ αð Þi
k xð Þ, for k 2 κ and i 2 N

n o
provides an

optimal solution to the problem (1.1) and (1.4) if there exist functions W(α)(k, x),
for k 2 K, such that the following recursive relations are satisfied:

W αð Þ T þ 1, xð Þ ¼
Xn
j¼1

αjqj xTþ1ð Þ; ð1:5Þ

W αð Þ k; xð Þ ¼ max
u1
k
, u2

k
, ���, u n

k

� Xn
j¼1

αjg j
k xk; u

1
k ; u

2
k ; � � �; un

k

� �
þW αð Þ k þ 1, f k xk; u

1
k ; u

2
k ; � � �; un

k

� �� � 	 ¼
Xn
j¼1

αjg j
k x,ψ αð Þ1

k xð Þ,ψ αð Þ2
k xð Þ, � � �,ψ αð Þn

k xð Þ
h i

þW αð Þ k þ 1, f k x,ψ αð Þ1
k xð Þ,ψ αð Þ2

k xð Þ, � � �,ψ αð Þn
k xð Þ

� h i
;

ð1:6Þ

Proof The conditions in (1.5 and 1.6) stem directly from the results in discrete-

time dynamic programming in Theorem A.5 of the Technical Appendices. ■
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Substituting the optimal control ψ αð Þi
k xð Þ, for k 2 κ and i 2 N

n o
into the state

dynamics (1.1), one can obtain the dynamics of the cooperative trajectory as:

xkþ1 ¼ f k xk,ψ
αð Þ1
k xkð Þ,ψ αð Þ2

k xkð Þ, � � �,ψ αð Þn
k xkð Þ

� 
; ð1:7Þ

for k 2 κ and x1 ¼ x0.

We use x
αð Þ
k 2 X

αð Þ
k to denote the value of the state at stage k generated by (1.7).

The value function W(α)(k, x) gives the maximized weighted cooperative payoff

over the stages from k to T.

11.1.2 Individual Payoffs and Individual Rationality

Given that all players are adopting the cooperative strategies the payoff of player

i under cooperation can be obtained as:

W αð Þi t; xð Þ ¼
XT
k¼t

g i
k

�
x

αð Þ
k ,ψ αð Þ1

k x
αð Þ
k

� 
,ψ αð Þ2

k x
αð Þ
k

� 
, � � �

� � �,ψ αð Þn
k x

αð Þ
k

� �þ qi x
αð Þ
Tþ1

� 
x

αð Þ
t ¼ x

���� ð1:8Þ

for i 2 N and t 2 κ.
To allow the derivation of the functions W(α)i(t,K) in a more direct way we

derive a deterministic counterpart of the analysis in Yeung (2013) and characterize

individual player’s payoffs under cooperation by the following Theorem.

Theorem 1.3 The payoff of player i over the stages from t to T þ 1 can be

characterized as the value function W(α)i(t, x) satisfying the following recursive

system of equations:

W αð Þi T þ 1, xð Þ ¼ qi xTþ1ð Þ
W αð Þi t; xð Þ ¼ gi

t x,ψ αð Þ1
t xð Þ,ψ αð Þ2

t xð Þ, � � �,ψ αð Þn
t xð Þ

h i
þW αð Þi tþ 1, f t t,ψ αð Þ1

t xð Þ,ψ αð Þ2
t xð Þ, � � �,ψ αð Þn

t xð Þ
� h i

,

for i 2 N and t 2 κ

ð1:9Þ

Proof The term W(α)i(t, x) in (1.8) can be expressed as:

W αð Þi k; xð Þ ¼ gi
k x,ψ αð Þ1

k xð Þ,ψ αð Þ2
k xð Þ, � � �,ψ αð Þn

k xð Þ
h i

þ
XT
τ¼kþ1

gi
τ x αð Þ

τ ,ψ αð Þ1
τ x αð Þ

τ

� �
,ψ αð Þ2

τ x αð Þ
τ

� �
, � � �,ψ αð Þn

τ x αð Þ
τ

� �� �þ qi x
αð Þ
Tþ1

� 
:

ð1:10Þ
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Invoking (1.8) again, we have:

W αð Þi k þ 1, x
αð Þ
kþ1

� 
¼
XT
τ¼kþ1

gi
τ x αð Þ

τ ,ψ αð Þ1
τ x αð Þ

τ

� 
,ψ αð Þ2

τ x αð Þ
τ

� 
, � � �,ψ αð Þn

τ x αð Þ
τ

� h i

þ qi x
αð Þ
Tþ1

� 
:

ð1:11Þ

Using (1.11) one express (1.10) as:

W αð Þi k; xð Þ ¼ gi
k x,ψ αð Þ1

k xð Þ,ψ αð Þ2
k xð Þ, � � �,ψ αð Þn

k xð Þ
h i

þW αð Þi k þ 1, f k x,ψ αð Þ1
k xð Þ,ψ αð Þ2

k xð Þ, � � �,ψ αð Þn
k xð Þ

� h i
,

for i 2 N and k 2 κ:

ð1:12Þ

Hence Theorem 1.3 follows. ■

For individual rationality to be maintained throughout all the stages t 2 κ, it is
required that:

W αð Þi t; x
αð Þ
t

� 
� Vi t; x

αð Þ
t

� 
, for i 2 N and t 2 κ: ð1:13Þ

Let the set of weights α that satisfies (1.13) be denoted by Λ. If Λ is not an empty

set, a vector α̂ ¼ α̂1; α̂2; � � �� � �; α̂n
� � 2 Λ agreed upon by all players would yield a

cooperative solution which satisfies both individual rationality and Pareto optimal-

ity throughout the cooperation duration.

Remark 1.1 The pros of the constant payoff weights scheme is that full Pareto

efficiency is satisfied in the sense that there does not exist any strategy path which

would enhance the cooperative payoff of a player without lowering the cooperative

payoff of at least one of the other players in all stages.

The cons of the constant payoff weights scheme include the inflexibility in

accommodating the preferences of the players according to the initial cooperative

agreement and the high possibility of the non-existence of the set of weights Λ that

satisfies individual rationality throughout the cooperation duration. ■

In the existing literature on NTU cooperative dynamic games only Sorger (2006)

and Marin-Solano (2014) adopted a variable payoff weights scheme.

11.2 Subgame Consistent Cooperative Solution Via
Variable Weights

Now, we proceed to consider subgame consistent solutions in NTU cooperative

dynamic games. A salient property of a subgame consistent solution is that the

agreed-upon optimality principle remains in effect at each stage of the game and

11.2 Subgame Consistent Cooperative Solution Via Variable Weights 289



hence the players do not possess incentives to deviate from the solution plan. Let

Γ(t, xt) denote the cooperative game in which the objective of player i is

XT
k¼t

g i
k xk; u

1
k ; u

2
k ; � � �; un

k

� �þ qi xTþ1ð Þ, for i 2 N; ð2:1Þ

and the state dynamics is

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �
; ð2:2Þ

for k 2 t, tþ 1, � � �, Tf g and the state at stage t is xt.
Let the agreed-upon optimality principle be denoted by P(t, xt). For subgame

consistency to be maintained the agreed-upon optimality principle P(t, xt) must be

satisfied in the subgame Γ(t, xt) for t 2 1; 2; � � �; Tf g. Hence, when the game

proceeds to any stage t, the agreed-upon solution policy remains effective. Exam-

ples of optimality principles P(t, xt) include criteria like the Nash bargaining

solution, cooperative gains proportional to non-cooperatives payoffs and the

mid-value of feasible payoff weights.

A time-invariant weights scheme is usually hardly applicable for the derivation

of a subgame consistent solution in general. As stated in Remark 1.1, the set Λ
which satisfies individual rationality throughout the game duration is often empty.

In general, typical optimality principles in classical game theory could not be

maintained as the game proceeds under a time-invariant payoff weights cooperative

scheme. To derive a set of subgame consistent strategies in a cooperative solution

with optimality principle P(t, xt) a variable payoff weight scheme has to be adopted.

In particular, at each stage t 2 κ the players would adopt a vector of payoff weights

α̂ t ¼ α̂1
t ; α̂

2
t ; � � �; α̂ n

t

� �
for

Xn
j¼1

α̂ j
t ¼ 1 which satisfies the agreed-upon optimality

principle. The chosen set of weights α̂ t ¼ α̂1
t ; α̂

2
t ; � � �; α̂ n

t

� �
must lead to the

satisfaction of the optimality principle P(t, xt) in the subgame Γ(t, xt) for

t 2 1, 2, � � �Tf g.

11.3 Derivation of Subgame Consistent Cooperative
Strategies

To derive the optimal cooperative strategies in a subgame consistent solution for

NTU cooperative dynamic games with variable payoff weights we invoke the

principle of optimality in dynamic programming and begin with the final stage of

the cooperative game. Section 11.3.1 derived the optimal cooperative strategies in

the last two stages and Sect. 11.3.2 presents the analysis for all the preceding stages.
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11.3.1 Optimal Cooperative Strategies in Ending Stages

Consider first the last operation stage, that is stage T, with the state xT ¼ x 2 X. The

players will select a set of payoff weight αT ¼ α1T ; α
2
T ; � � �; αn

T

� �
which satisfies the

optimality principle P(T, x). The players’ optimal cooperative strategies can be

generated by solving the dynamic programming problem of maximizing the

weighted sum of their payoffs

Xn
j¼1



α j
Tg

j
T xT ; u

1
T ; u

2
T ; � � �; un

T

� �þ α j
Tq

j xTþ1ð Þ
�

ð3:1Þ

subject to

xTþ1 ¼ f T xT ; u
1
T ; u

2
T ; � � �; un

T

� �
, xT ¼ x: ð3:2Þ

Invoking Theorem 1.2, given the payoff weights being αT the optimal cooperative

strategies ui
T ¼ ψ αTð Þi

T , for i 2 N
n o

in stage T are characterized by the conditions

W αTð Þ T þ 1, xð Þ ¼
Xn
j¼1

α j
Tq

j xTþ1ð Þ,

W T; xð Þ ¼ max
u1
T
, u2

T
, ���, u n

T

� Xn
j¼1

α j
Tg

j
T xT ; u

1
T ; u

2
T ; � � �; un

T

� �
þW αTð Þ T þ 1, f T xT ; u

1
T ; u

2
T ; � � �; un

T

� �� � 	 ð3:3Þ

Given that all players are adopting the cooperative strategies the payoff of player

i under cooperation covering stages T and T þ 1 can be obtained as:

W αTð Þi T; xð Þ ¼ gi
T x,ψ αTð Þ1

T xð Þ,ψ αTð Þ2
T xð Þ, � � �,ψ αTð Þn

T xð Þ
h i

þ qi x
αTð Þ
Tþ1

� 
for i 2 N:

ð3:4Þ

Invoking Theorem 1.3 one can characterizeW αTð Þi T; xð Þ by the following equations

W αTð Þi T þ 1, xð Þ ¼ qi xð Þ
W αTð Þi T; xð Þ ¼ gi

T x,ψ αTð Þ1
T xð Þ,ψ αTð Þ2

T xð Þ, � � �,ψ αTð Þn
T xð Þ

h i
þW αTð Þi T þ 1, f T x,ψ αTð Þ1

T xð Þ,ψ αTð Þ2
T xð Þ, � � �,ψ αTð Þn

T xð Þ
� h i

, for i 2 N:

ð3:5Þ

For individual rationality to be maintained, it is required that:
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W αTð Þi T; xð Þ � Vi T; xð Þ, for i 2 N: ð3:6Þ

We use ΛT to denote the set of weights αT that satisfies (3.6). Let

α̂ T ¼ α̂1
T ; α̂

2
T ; � � �; α̂ n

T

� � 2 ΛT denote the payoff weights in stage T that leads to the

satisfaction of the optimality principle P(T, x).
Now we proceed to cooperative scheme in the second last stage. Given that the

payoff of player i in stage T is W α̂ Tð Þi T; xð Þ, his payoff in stage T � 1 can be

expressed as:

gi
T�1 xT�1; u

1
T�1; u

2
T�1; � � �; un

T�1

� �
þgi

T xT ,ψ
α̂ Tð Þ1
T xTð Þ,ψ α̂ Tð Þ2

T xTð Þ, � � �,ψ α̂ Tð Þn
T xTð Þ

h i
þ qi xTþ1ð Þ

¼ gi
T�1 xT�1; u

1
T�1; u

2
T�1; � � �; un

T�1

� �þW α̂ Tð Þi T; xTð Þ, for i 2 N: ð3:7Þ

In this stage the players will select payoff weights αT�1 ¼ α1T�1; α
2
T�1; � � �; αn

T�1

� �
which satisfy optimality principle P T � 1, xð Þ. The players’ optimal cooperative

strategies can be generated by solving the following dynamic programming prob-

lem of maximizing the weighted sum of payoffs

Xn
j¼1

α j
T�1



gj
T�1 xT�1; u

1
T�1; u

2
T�1; � � �; un

T�1

� �þW α̂ Tð Þj T; xTð Þ
�

ð3:8Þ

subject to

xT ¼ f T�1 xT�1; u
1
T�1; u

2
T�1; � � �; un

T�1

� �
, xT�1 ¼ x ð3:9Þ

Invoking Theorem 1.2, given the payoff weights being αT�1 the optimal

cooperative strategies ui
T�1 ¼ ψ αT�1ð Þi

T�1 , for i 2 N
n o

in stage T � 1 are characterized

by the conditions

W αT�1ð Þ T; xð Þ ¼
Xn
j¼1

α j
T�1W

α̂ Tð Þj T; xð Þ

W αT�1ð Þ T � 1, xð Þ ¼ max
u1
T�1
, u2

T�1
, ���, u n

T�1

� Xn
j¼1

α j
T�1g

j
T�1 xT�1; u

1
T�1; u

2
T�1; � � �; un

T�1

� �
þW αT�1ð Þ T, f T�1 xT�1; u

1
T�1; u

2
T�1; � � �; un

T�1

� �� � 	
ð3:10Þ

Invoking Theorem 1.3 one can characterize the payoff of player i under coop-
eration covering the stages T � 1 to T þ 1 by:
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W αT�1ð Þi T; xð Þ ¼ W α̂ Tð Þi T; xTð Þ,
W αT�1ð Þi T � 1, xð Þ ¼ gi

T�1 x,ψ αT�1ð Þ1
T�1 xð Þ,ψ αT�1ð Þ2

T�1 xð Þ, � � �,ψ αT�1ð Þn
T�1 xð Þ

h i
þW αT�1ð Þi T, f T�1 x,ψ αT�1ð Þ1

T�1 xð Þ,ψ αT�1ð Þ2
T�1 xð Þ, � � �,ψ αT�1ð Þn

T�1 xð Þ
� h i

, for i 2 N: ð3:11Þ

For individual rationality to be maintained, it is required that:

W αT�1ð Þi T � 1, xð Þ � Vi T � 1, xð Þ, for i 2 N: ð3:12Þ

We use ΛT�1 to denote the set of weights αT�1 that satisfies (3.12). Let the vector

α̂ T�1 ¼ α̂1
T�1; α̂

2
T�1; � � �; α̂ n

T�1

� � 2 ΛT�1 be the set of payoff weights that leads to

satisfaction of the optimality principle Γ T � 1, xð Þ.

11.3.2 Optimal Cooperative Strategies in Preceding Stages

Now we proceed to characterize the cooperative scheme in stage

k 2 1, 2, � � �,T � 1f g. Following the analysis in Sect. 11.3.1, the payoff of player

i in stage k þ 1 is W α̂ kþ1ð Þi k þ 1, xð Þ and his payoff in stage k can be expressed as:

gi
k xk; u

1
k ; u

2
k ; � � �; un

k

� �
þ
XT
h¼k

g i
h xh,ψ

α̂ hð Þ1
h xhð Þ,ψ α̂ hð Þ2

h xhð Þ, � � �,ψ α̂ hð Þn
h xhð Þ

h i
þ qi xTþ1ð Þ

¼ gi
k xk; u

1
k ; u

2
k ; � � �; un

k

� �þW α̂ kþ1ð Þi k; xkþ1ð Þ, for i 2 N: ð3:13Þ

In this stage the players will select a set of weights αk ¼ α1k ; α
2
k ; � � �; αn

k

� �
which

satisfies the optimality principle P(k, x). The players’ optimal cooperative strategies

can be generated by solving the following dynamic programming problem of

maximizing the weighted sum of payoffs

Xn
j¼1

α j
k



gj
k xk; u

1
k ; u

2
k ; � � �; un

k

� �þW α̂ kþ1ð Þj k þ 1, xkþ1ð Þ
�
; ð3:14Þ

subject to

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �
, xk ¼ x ; ð3:15Þ

Invoking Theorem 1.2, given the payoff weights being αk the optimal cooperative

strategies ui
k ¼ ψ αkð Þi

k , for i 2 N
n o

in stage k are characterized by the conditions
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W αkð Þ k þ 1, xð Þ ¼
Xn
j¼1

α j
kW

α̂ kþ1ð Þj k þ 1, xð Þ

W αkð Þ k; xð Þ ¼ max
u1
k
, u2

k
, ���, u n

k

� Xn
j¼1

α j
kg

j
k xk; u

1
k ; u

2
k ; � � �; un

k

� �
þW αkð Þ k þ 1, f k xk; u

1
k ; u

2
k ; � � �; un

k

� �� � 	
; ð3:16Þ

The payoff of player i under cooperation can be obtained as:

W αkð Þi k; xð Þ ¼ gi
k x,ψ αkð Þ1

k xð Þ,ψ αkð Þ2
k xð Þ, � � �,ψ αkð Þn

k xð Þ
h i

þW α̂ kþ1ð Þi k þ 1, xkþ1ð Þ;
ð3:17Þ

for i 2 N.

Invoking Theorem 1.3 one can characterize W αkð Þi k; xð Þ by the following

equations

W αkð Þi k þ 1, xð Þ ¼ W α̂ kþ1ð Þi k þ 1, xð Þ,
W αkð Þi k; xð Þ ¼ gi

k x,ψ αkð Þ1
k xð Þ,ψ αkð Þ2

k xð Þ, � � �,ψ αkð Þn
k xð Þ

h i
þW αkð Þi k þ 1, f k x,ψ αkð Þ1

k xð Þ,ψ αkð Þ2
k xð Þ, � � �,ψ αkð Þn

k xð Þ
� h i

,

for i 2 N:

ð3:18Þ

For individual rationality to be maintained in stage k, it is required that:

W αkð Þi k; xð Þ � Vi k; xð Þ, for i 2 N: ð3:19Þ

We use Λk to denote the set of weights αk that satisfies (3.19). Again, we use α̂ k

¼ α̂1
k ; α̂

2
k ; � � �; α̂ n

k

� � 2 Λk to denote the set of payoff weights that leads to the

satisfaction of the optimal principle P(k, x), for k 2 κ.

11.3.3 Subgame Consistent Solution: A Mathematical
Theorem

In this subsection, we consider subgame consistents under viable payoff weights.

A theorem characterizing a subgame consistent solution of the cooperative

dynamic game (1.1–1.2) with the optimality principle P(k, xk) can be obtained

as follows.

Theorem 3.1 A set of payoff weights α̂ k ¼ α̂1
k ; α̂

2
k ; � � �; α̂ n

k

� �
, for k 2 κ

� �
and a set

of strategies ψ α̂ kð Þi
k xð Þ, for k 2 κ and i 2 N

n o
provides a subgame consistent
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solution to the cooperative dynamic game (1.1) and (1.2) with optimality principle

P(k, x) if there exist functions W α̂ kð Þ k; xð Þ and W α̂ kð Þi k; xð Þ, for i 2 N, k 2 κ, which
satisfy the following recursive relations:

W α̂ Tþ1ð Þi T þ 1, xð Þ ¼ qi xTþ1ð Þ
W α̂ kð Þ k; xð Þ ¼ max

u1
k
, u2

k
, ���, u n

k

� Xn
j¼1

α̂ jg j
k x; u1k ; u

2
k ; � � �; un

k

� �

þ
Xn
j¼1

α̂ j
kW

α̂ kþ1ð Þj k þ 1, f k x; u1k ; u
2
k ; � � �; un

k

� �� � 	
;

W α̂ kð Þi k; xð Þ ¼ gj
k x,ψ α̂ kð Þ1

k xð Þ,ψ α̂ kð Þ2
k xð Þ, � � �,ψ α̂ kð Þn

k xð Þ
� 

þW α̂ kþ1ð Þi k þ 1, f k x,ψ α̂ kð Þ1
k xð Þ,ψ α̂ kð Þ2

k xð Þ, � � �,ψ α̂ kð Þn
k xð Þ

� h i
,

for i 2 N and k 2 κ;

ð3:20Þ

and the optimality principle

P k; xð Þ in all stages k 2 κ: ð3:21Þ

Proof See the exposition from equation (3.1) to equation (3.19) in Sects. 11.3.1

and 11.3.2. ■

In the case when the agreed-upon optimality principle requires the proportion

each player’s cooperative payoff to his non-cooperative payoff being equal, condi-

tion (3.21) in Theorem 3.1 becomes

W α̂ tð Þi t; xð Þ
Vi t; xð Þ ¼ W α̂ tð Þj t; xð Þ

Vj t; xð Þ , for i, j 2 N and t 2 κ:

If the optimality principle requires the satisfaction of the Nash bargaining solution,

condition (3.21) in Theorem 3.1 becomes

α̂ t ¼ arg max
αt

� Yn
j¼1

W αtð Þj t; xð Þ � Vj t; xð Þ
h i 	

; for t 2 κ:

In the two-player case, if the optimality principle requires the chosen payoff

weights α̂ t ¼ α̂1
t ; α̂

2
t

� �
to be the mid-value of the maximum and minimum of the

payoff weight α1t and that of the payoff weights α2t in the set Λ, condition (3.21) in

Theorem 3.1 becomes:

α̂ i
t ¼

α i
t
þα i

t

2
,W α i

t
, 1�α i

tð Þi t; xð Þ ¼ Vi t; xð Þ and W α i
t , 1�α i

tð Þj t; xð Þ ¼ Vj t; xð Þ ,for

i, j 2 1; 2f g, i 6¼ j and t 2 κ.
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Substituting the optimal control ψ α̂ kð Þi
k xð Þ for i 2 N and k 2 κ

n o
into the state

dynamics (1.1), one can obtain the dynamics of the cooperative trajectory as:

xkþ1 ¼ f k xk,ψ
α̂ kð Þ1
k xkð Þ,ψ α̂ kð Þ2

k xkð Þ, � � �,ψ α̂ kð Þn
k xkð Þ

� 
x1 ¼ x01 and k 2 κ ð3:22Þ

The cooperative trajectory x*k for k 2 κ
� �

is the solution generated by (3.22).

Remark 3.1 The subgame consistent solution presented in Theorem 3.1 is condi-

tional Pareto efficient in the sense that the solution is a Pareto efficient outcome

satisfying the condition that the agreed-upon optimality principle is maintained in

all stages. ■

In particular, there does not any exist any strategies paths fulfilling the agreed-

upon optimality principle in every stage that would lead to the payoff for any player

i Wi k; xð Þ > W α̂ tð Þi k; xð Þ, while the payoffs of other players remains no less than

W α̂ tð Þj k; xð Þ, for i, j 2 N and j 6¼ i and k 2 κ.

Remark 3.2 A subgame consistent solution is fully Pareto efficient only if the

optimality principle P(t, x) requires the choice of a set of time-invariant payoff

weights. ■

A special example of the optimality principle in a two-player differential game

leading to the choice of a set of constant weights for a subgame consistent solution

can be found in Yeung and Petrosyan (2005). The optimality principle requires the

chosen payoff weights α̂ t ¼ α̂1
t ; α̂

2
t

� �
equals an average value of the maximum and

minimum of stage T’s payoff weight α1T and that of α
2
T in the set ΛT, for t 2 κ, under

the pre-condition that α̂ t 2 Λt. Note that a subgame consistent solution under this

restricted optimality principle exists in very limited situations.

In cooperative dynamic games with transferable payoffs, subgame consistent

solution satisfying dynamic consistency and full Pareto efficiency can be obtained

with the use of side-payments (see analysis in Chap. 7). However in dynamic games

with non-transferable payoffs, it often not possible to reach a cooperative solution

satisfying full Pareto efficiency and individual rationality in all stages because of

the absence of side-payments. Since the issue of full Pareto efficiency is of less

importance than that of the reaching of a cooperative solution, achieving the latter

at the expense of the former is a practical way out.

11.4 An Illustration in Public Capital Build-up

In this section, we provide an illustration of the derivation of subgame consistent

solutions of public goods provision in a 2-player cooperative dynamic game with

non-transferable payoffs.
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11.4.1 Game Formulation and Noncooperative Outcome

Consider an economic region with 2 asymmetric agents. These agents receive

benefits from an existing public capital stock xt at each stage t 2 1; 2; 3; 4f g. The
accumulation dynamics of the public capital stock is governed by the difference

equation:

xkþ1 ¼ xk þ
X2
j¼1

uj
k � δxk , x¼x01, for t 2 1; 2; 3f g; ð4:1Þ

where uik is the physical amount of investment in the public good and δ is the rate of
depreciation.

The objective of agent i 2 1; 2f g is to maximize the payoff:

X3
k¼1

ai
kxk � c ik u i

k

� �2h i
1þ rð Þ� k�1ð Þ þ qix4 þ mi

� �
1þ rð Þ�3; ð4:2Þ

subject to the dynamics (4.1),

where αikxk gives the gain that agent i derives from the public capital at stage

t 2 1; 2; 3f g, cik(uik)2 is the cost of investing uik in the public capital, r is the discount
rate and qix4 þ mið Þ is the terminal payoff of agent i at stage 4.

The payoffs of the agent are not transferable. We first derive the noncooperative

outcome of the game. Invoking Theorem 1.1, one can characterize the noncooper-

ative Nash equilibrium for the game (4.1 and 4.2) as follows. In particular, a set of

strategies ui*t ¼ ϕ i
t xð Þ, for t 2 1; 2; 3f g and i 2 1; 2f g� �

provides a Nash equilib-

rium solution to the game (4.1 and 4.2) if there exist functions Vi(t, x), for i 2 1; 2f g
and t 2 1; 2; 3f g, such that the following recursive relations are satisfied:

Vi t; xð Þ ¼ max
u i
t

�
ai
t x� c it u i

t

� �2h i
1þ rð Þ� t�1ð Þ

þVi tþ 1, xþ ϕ j
t xð Þ þ ui

t � δx
h i 	

for t 2 1; 2; 3f g; ð4:3Þ

Vi 4; xð Þ ¼ qixþ mið Þ 1þ rð Þ�3
, for i 2 1; 2f g : ð4:4Þ

Performing the indicated maximization in (4.3) yields:

ϕ i
t xð Þ ¼ 1þ rð Þt�1

2c it
V i
xtþ1

tþ 1, xþ
X2
j¼1

ϕ j
t xð Þ � δx

" #
; ð4:5Þ

for i 2 1; 2f g and t 2 1; 2; 3f g.
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The game equilibrium payoffs of the agents can be obtained as:

Proposition 4.1 The value function which represents the game equilibrium payoff

of agent i is:

Vi t; xð Þ ¼ Ai
t xþ Ci

t

� �
1þ rð Þ� t�1ð Þ

, for i 2 1; 2f g and t 2 1; 2; 3f g; ð4:6Þ

where

Ai
3 ¼ ai

3 þ qi 1� δð Þ 1þ rð Þ�1
, and

Ci
3 ¼ � qið Þ2 1þ rð Þ�2

4c i3
þ
"
qi
X2
j¼1

qj 1þ rð Þ�1

2c j3
þ mi

#
1þ rð Þ�1;

Ai
2 ¼ ai

2 þ Ai
3 1� δð Þ 1þ rð Þ�1

, and

Ci
2 ¼ � 1

4c i2

 
Ai
3 1þ rð Þ�1

!2

þ
"
A

σ3ð Þi
3

 X2
j¼1

Aj
3 1þ rð Þ�1

2c j2

!
þ Ci

3

#
1þ rð Þ�1

)
;

Ai
1 ¼ ai

1 þ Ai
2 1� δð Þ 1þ rð Þ�1

, and

Ci
1 ¼ � 1

4c i1

 
Ai
2 1þ rð Þ�1

!2

þ
"
Ai
2

 X2
j¼1

Aj
2 1þ rð Þ�1

2c j1

!
þ Ci

2

#
1þ rð Þ�1

)
; for i 2 1; 2f g: ð4:7Þ

Proof Using (4.5) and (4.6) to evaluate the system (4.3 and 4.4) yields the results

in (4.6 and 4.7). ■

11.4.2 Cooperative Solution

Now consider first the case when the agents agree to cooperate and maintain an

optimality principle P(t, xt) requiring the adoption of the mid values of the maxi-

mum and minimum of the payoff weight αit in the set Λt, for i 2 1; 2f g and

t 2 1; 2; 3f g.
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In view of Theorem 3.1, to obtain the maximum and minimum values of αiT , we
first consider deriving the optimal cooperative strategies in stage T ¼ 3 by solving

the problem:

W α4ð Þ 4; xð Þ ¼
X2
j¼1

qjxþ mjð Þ 1þ rð Þ�3

W α3ð Þ 3; xð Þ ¼ max
u1
3
, u2

3

� X2
j¼1

α j
3 aj

3x� c j3 uj
3

� 2
 �
1þ rð Þ�2

þ
X2
j¼1

α j
3 qj xþ

X2
j¼1

uj
3 � δx

 !
þ mj

" #
1þ rð Þ�3

	
: ð4:8Þ

Performing the indicated maximization in (4.8) yields:

ψ α3ð Þi
3 xð Þ ¼ 1þ rð Þ�1

2α i
3c

i
3

Xn
j¼1

α j
3q

j, for i 2 1; 2f g: ð4:9Þ

The maximized weighted joint payoff under payoff weights α3 at stage 3 can be

obtained as:

Proposition 4.2
W α3ð Þ 3; xð Þ ¼ A

α3ð Þ
3 xþ C

α3ð Þ
3

h i
1þ rð Þ�2; ð4:10Þ

where

A
α3ð Þ
3 ¼

X2
j¼1

α j
3

"
aj
3 þ qj 1� δð Þ 1þ rð Þ�1

#
, and

C
α3ð Þ
3 ¼ �

X2
j¼1

α j
3

"
1þ rð Þ�2

4α j
3c

j
3

 X2
‘¼1

α ‘
3q

‘
3

!2 #

þ
X2
j¼1

α j
3

"
qj

 X2
j¼1

1þ rð Þ�1

2α j
3c

j
3

X2
‘¼1

α ‘
3q

‘
3

 ! !
þ mj

#
1þ rð Þ�1

)
: ð4:11Þ

Proof Substitute the cooperative strategies from (4.9) into (4.8) yields the function

W α3ð Þ 3; xð Þ in (4.10). ■

Invoking Theorem 1.3, the payoff of player i under cooperation can be charac-

terized as:
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W α3ð Þi 3; xð Þ ¼


ai
3x�

1þ rð Þ�2

4α i
3c

i
3

� X2
‘¼1

α ‘
3q

‘
3

�2 �
1þ rð Þ�2

þ


qi
�

xþ
X2
j¼1

1þ rð Þ�1

2c j3

X2
‘¼1

α ‘
3q

‘
3

 !

�δx

�
þ mi

�
1þ rð Þ�3

	
,

for i 2 1; 2f g:
ð4:12Þ

The value function W α3ð Þi 3; xð Þ reflecting the cooperative payoff of player i under
payoff weights α3 at stage 3 can be obtained as:

Proposition 4.3
W α3ð Þi 3; xð Þ ¼ A

α3ð Þi
3 xþ C

α3ð Þi
3

h i
1þ rð Þ�2

, for i 2 1; 2f g; ð4:13Þ

where

A
α3ð Þi
3 ¼

2
4 aj

3 þ qj 1� δð Þ 1þ rð Þ�1

3
5, and

C
α3ð Þi
3 ¼ �

2
4 1þ rð Þ�2

4α i
3c

i
3

0
@X2

‘¼1

α ‘
3q

‘
3

1
A

2 3
5

þ
2
4 qi

0
@X2

j¼1

1þ rð Þ�1

2α j
3c

j
3

X2
‘¼1

α ‘
3q

‘
3

 ! 1Aþ mi

3
5 1þ rð Þ�1

9=
; ð4:14Þ

Proof The right-hand-side of equation (4.12) is a linear function with coefficients

A
α3ð Þi
3 and A

α3ð Þi
3 in (4.14). Hence Proposition 4.3 follows. ■

To identify the range of α3 that satisfies individual rationality we examine the

functions which gives the excess of agent i’s cooperative over his non-cooperative
payoff:

W α3ð Þi 3; xð Þ � Vi 3; xð Þ ¼ C
α3ð Þi
3 � Ci

3

h i
1þ rð Þ�2

, for i 2 1; 2f g: ð4:15Þ

For individual rationality to be satisfied, it is required that W α3ð Þi 3; xð Þ � Vi 3; xð Þ
� 0 for i 2 1; 2f g. Using α j

3 ¼ 1� α i
3 and upon rearranging terms C

α3ð Þi
3 can be

expressed as:
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C
α3ð Þi
3 ¼ qi



1þ rð Þ�2

2c i3

�
α i
3q

i þ 1� α i
3

� �
qj

α13

�

þ 1þ rð Þ�2

2c j3

�
α i
3q

i þ 1� α i
3

� �
qj

1� α i
3

� �
þ mi 1þ rð Þ�1

� 1þ rð Þ�2

4c i3

�
α i
3q

i þ 1� α i
3

� �
qj

α i
3

�2

, for i, j 2 1; 2f g and i 6¼ j: ð4:16Þ

Differentiating C
α3ð Þi
3 with respect to αi3 yields

∂C α3ð Þi
3

∂α i
3

¼ 1þ rð Þ�2

2c j3

�
qið Þ2

1� α i
3

� �2
�

þ 1þ rð Þ�2

2c i3

�
1� α i

3

� �
qj

α i
3

��
qj

α i
3

� �2
�
; ð4:17Þ

which is positive for α i
3 2 0; 1ð Þ.

One can readily observed that lim
α i
3
!0

C
α3ð Þi
3 ! �1 and lim

α i
3
!1

C
α3ð Þi
3 ! 1. Therefore

anα i
3
2 0; 1ð Þ can be obtained such thatW α i

3
, 1�α i

3
ð Þi 3; xð Þ ¼ Vi 3; xð Þand yields agent

i’s minimum payoff weight value satisfying his own individual rationality. Simi-

larly there exist anα i
3 2 0; 1ð Þ such thatW α i

3, 1�α i
3ð Þj 3; xð Þ ¼ Vj 3; xð Þ and yields agent

i’s maximum payoff weight value while maintaining agent j’s individual rationality.
Since the maximization of the sum of weighted payoffs in stage 3 yields a Pareto

optimum, there exist a non-empty set of α3 satisfying individual rationality for

both agents. Given that the agreed-upon optimality principle P(t, xt) requires

the adoption of the mid values of the maximum and minimum of the payoff weight

αit in the set Λt, for t 2 1; 2; 3f g, the cooperative weights in stage 3 is

α̂ 3 ¼ α i
3
þα i

3

2
, 1� α i

3
þα i

3

2

� �
.

Now consider the stage 2 problem, we derive the optimal cooperative strategies

in stage 2 by solving the problem:

W α2ð Þ 2; xð Þ ¼ max
u1
2
, u2

2

� X2
j¼1

α j
2 aj

2x� c j2 uj
2

� 2
 �
1þ rð Þ�1

þ
X2
j¼1

α j
2W

α̂ 3ð Þj 3, xþ
X2
j¼1

uj
2 � δx

" # 	
ð4:18Þ

Performing the indicated maximization in (4.18) yields:
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ψ α2ð Þi
2 xð Þ ¼ 1þ rð Þ�1

2α i
2c

i
2

Xn
j¼1

α j
2A

α̂ 3ð Þj
3 , for i 2 1; 2f g:

Following the analysis in stage 3, one can obtain

W α2ð Þ 2; xð Þ ¼ A
α2ð Þ
2 xþ C

α2ð Þ
2

h i
1þ rð Þ�1

,

W α2ð Þi 2; xð Þ ¼ A
α2ð Þi
2 xþ C

α2ð Þi
2

h i
1þ rð Þ�1

, for i 2 1; 2f g; ð4:19Þ

where A
α2ð Þ
2 , C

α2ð Þ
2 , A

α2ð Þi
2 and C

α2ð Þi
2 are functions that depend on α2.

Similarly, one can readily show that
∂C

α2ð Þi
2

∂α i
2

is positive and lim
α i
2
!0

C
α2ð Þi
2 ! �1 and

lim
α i
2
!1

C
α2ð Þi
2 ! 1. Agent i’s minimum payoff weight is α i

2 2 0; 1ð Þ which leads to

W α i
2
, 1�α i

2
ð Þi 2; xð Þ ¼ Vi 2; xð Þ,

and his maximum payoff weight is α i
2 2 0; 1ð Þ which leads to

W α i
2, 1�α i

2ð Þj 2; xð Þ ¼ Vj 2; xð Þ:

Invoking the agreed-upon optimality principle P(t, xt) the cooperative weights in

stage 2 is α̂ 2 ¼ α i
2
þα i

2

2
, 1� α i

2
þα i

2

2

� 
.

Finally, following the analysis in stages 2 and 3, one can obtain the cooperative

weights in stage 1 as α̂ 1 ¼ α i
1
þα i

1

2
, 1� α i

1
þα i

1

2

� 
.

In general, there is no guarantee for the existence of a constant payoff weight

such that the basic requirement of individual rationality is satisfied in all subsequent

stages. An example is provided below.

Example 4.1 Consider the case in which q1 ¼ 3, q2 ¼ 4, m1 ¼ 10, m2 ¼ 20,

r ¼ 0:05, δ ¼ 0:02, c13 ¼ 2, c23 ¼ 4, a13 ¼ 4, a23 ¼ 1, c12 ¼ 7, c22 ¼ 2, a12 ¼ 1, a22 ¼ 2,

c11 ¼ 1, c21 ¼ 4, a11 ¼ 2, a21 ¼ 1. In stage 1, a constant α11 has to be between α11
¼ 0:435 and α11 ¼ 0:545. In stage 2, a constant α12 has to be between α1

2
¼ 0:33 and

α12 ¼ 0:43. In stage 3, α13 has to be between α1
3
¼ 0:55 and α13 ¼ 0:655. Therefore

there does not exist a constant choice of α1t for t 2 1; 2; 3f g such that individual

rationality is satisfied in all the subsequent subgame stages. ■

11.4.3 Other Optimality Principles

In this section, we consider deriving subgame consistent solutions for the cooper-

ative dynamic game (4.1 and 4.2) under two other optimality principles.
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11.4.3.1 Proportional Cooperative Gains

We first consider the optimality principle P(t, xt) which requires the proportion of

each player’s cooperative payoff to his non-cooperative payoff to be equal. In

particular, a subgame consistent solution requires payoff weights α̂ 1, α̂ 2 and α̂ 3

leading to

W α̂ tð Þ1 t; xtð Þ
V1 t; xtð Þ ¼ W α̂ tð Þ2 t; xtð Þ

V2 t; xtð Þ , for t 2 12; 3f g;

along the cooperation trajectory.

Invoking the value functions Vi(t, x) and W α̂ tð Þi t; xð Þ, for i 2 1; 2f g and

t 2 12; 3f g, a subgame consistent solution to the problem can be obtained with

the payoff weights α̂ 1, α̂ 2 and α̂ 3 which satisfy:

A
α̂ tð Þ1
t xt þ C

α̂ tð Þ1
t

A1
t xt þ C1

t

¼ A
α̂ tð Þ2
t xt þ C

α̂ tð Þ2
t

A2
t xt þ C2

t

, for t 2 12; 3f g; ð4:20Þ

and

xtþ1 ¼ xt
X2
j¼1



1þ rð Þ�1

2α̂ j
t c

i
t

X2
‘¼1

α̂ ‘
t A

α̂ tþ1ð Þ‘
tþ1

�
� δxt, x1 ¼ x01; ð4:21Þ

for t 2 12; 3f g and A
α̂ 4ð Þ‘
4 ¼ q‘.

Note that from (4.14), A
αtð Þi
t is independent of αt. Moreover, C

αtð Þi
t is strictly

increasing in αit and C
αtð Þj
t is strictly decreasing in αit for α

i
t 2 α i

t ; α
i
t

� �
, therefore one

can readily identify payoff weights α̂ i
t such that (4.20) is satisfied.

11.4.3.2 Dynamic Nash Bargaining Solution

Now, consider the case where the agents agree with an optimality principle P(t, xt)
that requires the excess of the players’ cooperative payoffs over their respective

non-cooperative payoffs satisfies the Nash bargaining solution. As Haurie (1976)

pointed out that the property of dynamic consistency, which is crucial in

maintaining sustainability in cooperation, is absent in the direct application of the

Nash bargaining solution in dynamic games. To overcome this problem, a dynamic

Nash bargaining solution can be represented by the subgame consistent solution to

the cooperative dynamic game problem in which the optimality principle requires

the satisfaction of the Nash bargaining solution in every stage of the game. To

obtain such a solution, the players would first search for an α3 in stage 3 to

maximize the Nash product
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Y2
j¼1

W α3ð Þj 3; xð Þ � Vj 3; xð Þ� �
.

Invoking (4.15) and (4.16), the dynamic Nash bargaining solution has to solve

the problem

max
α i
3

Y2
j¼1

C
α3ð Þj
3 � Cj

3

h i
1þ rð Þ�2; ð4:22Þ

in the range of α i
3 2 α i

3
; α i

3

� �
.

Invoking the derivative property of C
α3ð Þi
3 in (4.17) a solution weight α̂ i

3 2
α i
3
; α i

3

� �
can be obtained. Then one can use W α̂ 3ð Þj 3; xð Þ for j 2 1; 2f g to form the

terminal payoff
X2
j¼1

α j
2W

α̂ 3ð Þj 3; xð Þ for the cooperation scheme in stage 2. Repeating

the above analysis, one can identify α̂ 2 which yields the Nash bargaining solution in

stage 2. Finally, in a similar manner, α̂ 1 which yields the Nash bargaining solution

in stage 1 can be obtained.

11.5 Stochastic Extension

Consider the general T� stage n� person nonzero-sum discrete-time stochastic

dynamic game with initial state x01. The state space of the game is X 2 Rm and the

state dynamics of the game is characterized by the stochastic difference equation:

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �þ Gk xkð Þθk; ð5:1Þ

for k 2 1; 2; � � �; Tf g�κ and x1 ¼ x01,

whereui
k 2 Rmi is the control vector of player i at stage k, andxk 2 X is the state of

the game and θk is a set of independent random variable. The payoff that player

i seeks to maximize is

Eθ1,θ2, ���,θT

� XT
ζ¼1

gi
ζ xζ; u

1
ζ ; u

2
ζ ; � � �; un

ζ ; xζþ1

h i
þ qi xTþ1ð Þ

	
; ð5:2Þ

for i 2 1; 2; � � �; nf g�N,

where qi xTþ1ð Þ is the terminal payoff that player i will received in stage

T þ 1, and Eθ1,θ2, ���,θT is the expectation operation with respect to the statistics

of θ1, θ2, � � �, θT .
The payoffs of the players are not transferable.
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11.5.1 Non-cooperative Outcome and Optima Under
Constant Weights

Using Theorem 4.1 in Chap. 7 a feedback Nash equilibrium of the game (5.1 and

5.2) can be characterized as follows. A set of strategies

ϕ i
k xð Þ, for k 2 κ and i 2 N

� �
provides a feedback Nash equilibrium solution to

the game (5.1 and 5.2) if there exist functions Vi(k, x), for k 2 K and i 2 N, such
that the following recursive relations are satisfied:

Vi k; xð Þ ¼ max
u i
k

Eθk

�
gi
k x,ϕ1

k xð Þ,ϕ2
k xð Þ, � � �,ϕi�1

k xð Þ, ui
k,ϕ

iþ1
k xð Þ, � � �,ϕn

k xð Þ� �
þVi

�
k þ 1, f k x,ϕ1

k xð Þ,ϕ2
k xð Þ, � � �,ϕi�1

k xð Þ, ui
k,ϕ

iþ1
k xð Þ, � � �,ϕn

k xð Þ� � 	

Vi T þ 1, xð Þ ¼ qi
Tþ1 xð Þ; for i 2 N and k 2 κ.

Again, to establish the optimization foundation of the variable weights scheme

we consider first the case in which the players adopt a vector of constant payoff

weights α ¼ α1; α2; � � �; αnð Þ in all stages, where
Xn
j¼1

αj ¼ 1. Conditional upon the

vector of weights α, the players’ optimal cooperative strategies can be generated by

solving the stochastic dynamic programming problem of maximizing the expected

weighted sum of payoffs:

Eθ1,θ2, ���,θT

� Xn
j¼1


 XT
k¼1

αjg j
k xk; u

1
k ; u

2
k ; � � �; un

k

� �þ αjqj xTþ1ð Þ
� 	

ð5:3Þ

subject to (5.1).

An optimal solution to the problem (5.1) and (5.3) can be characterized by the

following theorem.

Theorem 5.1 A set of strategies ψ αð Þi
k xð Þ, for k 2 κ and i 2 N

n o
provides an

optimal solution to the problem (1.1) and (1.4) if there exist functions W(α)(k, x),
for k 2 K, such that the following recursive relations are satisfied:

W αð Þ T þ 1, xð Þ ¼
Xn
j¼1

αjqj xTþ1ð Þ;

W αð Þ k; xð Þ ¼ max
u1
k
, u2

k
, ���, u n

k

Eθk

� Xn
j¼1

αjg j
k xk; u

1
k ; u

2
k ; � � �; un

k

� �

þW αð Þ k þ 1, f k xk; u
1
k ; u

2
k ; � � �; un

k

� �� � ) ð5:4Þ
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Proof The conditions in (5.4) stem directly from the results in discrete-time

stochastic dynamic programming in Theorem A.6 of the Technical Appendices. ■

Substituting the optimal control ψ αð Þi
k xð Þ, for k 2 κ and i 2 N

n o
into the state

dynamics (5.1), one can obtain the dynamics of the cooperative trajectory as:

xkþ1 ¼ f k xk,ψ
αð Þ1
k xkð Þ,ψ αð Þ2

k xkð Þ, � � �,ψ αð Þn
k xkð Þ

� 
þ Gk xkð Þθk; ð5:5Þ

for k 2 κ and x1 ¼ x0.

We use X
ðαÞ
k to denote the set of possible values of the state at stage k generated

by (5.5). We use x
αð Þ
k 2 X

αð Þ
k to denote an element in the set X

ðαÞ
k . The termW(α)(k, x)

gives the weighted cooperative payoff over the stages from k to T.
Given that all players are adopting the cooperative strategies the payoff of

player i under cooperation can be obtained as:

W αð Þi t; xð Þ ¼ Eθt,θtþ1, ���,θT

� XT
k¼t

g i
k

�
x

αð Þ
k ,ψ αð Þ1

k x
αð Þ
k

� 
,ψ αð Þ2

k x
αð Þ
k

� 
, � � �

� � �,ψ αð Þn
k x

αð Þ
k

� �þ qi x
αð Þ
Tþ1

� 
x

αð Þ
t ¼ x

����
	
; ð5:6Þ

for i 2 N and t 2 κ.
To allow the derivation of the functions W(α)i(t,K) in a more direct way we

follow the analysis in Yeung (2013) and characterize individual player’s payoffs
under cooperation by the following Theorem.

Theorem 5.2 The payoff of player i over the stages from t to T þ 1 can be

characterized as the value function W(α)i(t, x) satisfying the following recursive

system of equations:

W αð Þi Tþ 1,xð Þ ¼ qi xTþ1ð Þ,
W αð Þi t;xð Þ ¼ Eθt

�
gi
t x,ψ αð Þ1

t xð Þ,ψ αð Þ2
t xð Þ, � � �,ψ αð Þn

t xð Þ
h i

þW αð Þi tþ 1, f t t,ψ αð Þ1
t xð Þ,ψ αð Þ2

t xð Þ, � � �,ψ αð Þn
t xð Þ

� 
þG xð Þθt

h i 	
, ð5:7Þ

for i 2 N and t 2 κ.

Proof W(α)i(t, x) in (5.6) can be expressed as:

W αð Þi t; xð Þ ¼ Eθt,θtþ1, ���,θT

�
gi
t x,ψ αð Þ1

t xð Þ,ψ αð Þ2
t xð Þ, � � �,ψ αð Þn

t xð Þ
h i

þ
XT
k¼tþ1

gi
k x

αð Þ
k ,ψ αð Þ1

k x
αð Þ
k

� 
,ψ αð Þ2

k x
αð Þ
k

� 
, � � �,ψ αð Þn

k x
αð Þ
k

� h i
þ qi x

αð Þ
Tþ1

�  	
ð5:8Þ

Invoking (5.6) again, we have:
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W αð Þi tþ 1, x
αð Þ
tþ1

� 
¼ Eθtþ1,θtþ2, ���,θT

� XT
k¼tþ1

gi
k

�
x

αð Þ
k ,ψ αð Þ1

k x
αð Þ
k

� 
,ψ αð Þ2

k x
αð Þ
k

� 
, � � �

� � �,ψ αð Þn
k x

αð Þ
k

� �þ qi x
αð Þ
Tþ1

�  	
ð5:9Þ

Using (5.8) and (5.9), one can obtain (5.7). ■

For individual rationality to be maintained throughout all the stages t 2 κ, it is
required that:

W αð Þi t; x
αð Þ
t

� 
� Vi t; x

αð Þ
t

� 
, for i 2 N and t 2 κ: ð5:10Þ

Let the set of weights α that satisfies (5.10) be denoted by Λ. If Λ is not an empty

set, a vector α̂ ¼ α̂ 1, α̂ 2, � � � � � �, α̂ n
� � 2 Λ agreed upon by all players would yield a

cooperative solution which satisfies both individual rationality and Pareto optimal-

ity throughout the cooperation duration.

11.5.2 Subgame Consistent Cooperative Solution

Now, we proceed to consider subgame consistent solutions in NTU cooperative

stochastic dynamic games. Let Γ(t, xt) denote the cooperative game in which the

objective of player i is

Eθt,θtþ1, ���,θT

� XT
k¼t

g i
k xk; u

1
k ; u

2
k ; � � �; un

k

� �þ qi xTþ1ð Þ
	
, for i 2 N; ð5:11Þ

and the state dynamics is

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �þ Gk xkð Þθk; ð5:12Þ

for k 2 t, tþ 1, � � �, Tf g and the state at stage t is xt.
Let the agreed-upon optimality principle be denoted by P(t, xt). For subgame

consistency to be maintained the agreed-upon optimality principle P(t, xt) must be

satisfied in the subgame Γ(t, xt) for t 2 1; 2; � � �; Tf g. Hence, when the game

proceeds to any stage t, the agreed-upon solution policy remains effective. Since

in general, typical optimality principles in classical game theory could not be

maintained as the game proceeds under a time-invariant payoff weights cooperative

scheme we consider deriving a set of subgame consistent strategies in a cooperative

solution with a variable payoff weight scheme.
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11.5.2.1 Cooperative Strategies in Ending Stages

Invoking the principle of backward induction we begin with the last operation stage,

that is stage T, with the statexT ¼ x 2 X. The players will select a set of payoff weight

αT ¼ α1T ; α
2
T ; � � �; αn

T

� �
which satisfies the optimality principle P(T, x). The players’

optimal cooperative strategies can be generated by solving the stochastic dynamic

programming problem of maximizing the weighted sum of their payoffs

EθT

� Xn
j¼1



α j
Tg

j
T xT ; u

1
T ; u

2
T ; � � �; un

T

� �þ α j
Tq

j xTþ1ð Þ
� 	

ð5:13Þ

subject to

xTþ1 ¼ f T xT ; u
1
T ; u

2
T ; � � �; un

T

� �þ GT xTð ÞθT , xT ¼ x : ð5:14Þ

Let ui
T ¼ ψ αTð Þi

T , for i 2 N
n o

denote the optimal cooperative strategies in stage

T that solves the stochastic dynamic programming problem (5.13 and 5.14). When

all players are adopting the cooperative strategies the payoff of player i under
cooperation covering stages T and T þ 1 can be obtained as:

W αTð Þi T;xð Þ¼ EθT

�
gi
T x,ψ αTð Þ1

T xð Þ,ψ αTð Þ2
T xð Þ, � � �,ψ αTð Þn

T xð Þ
h i

þ qi x
αTð Þ
Tþ1

�  	
for i 2 N:

ð5:15Þ

Invoking Theorem 5.2 one can characterize player i’s payoff W αTð Þi T; xð Þ by the

following equations

W αTð Þi Tþ 1,xð Þ ¼ qi xð Þ,
W αTð Þi T;xð Þ ¼ EθT

�
gi
T x,ψ αTð Þ1

T xð Þ,ψ αTð Þ2
T xð Þ, � � �,ψ αTð Þn

T xð Þ
h i

þW αTð Þi Tþ 1, f T x,ψ αTð Þ1
T xð Þ,ψ αTð Þ2

T xð Þ, � � �,ψ αTð Þn
T xð Þ

� 
þGT xð ÞθT

h i 	
for i2N:

ð5:16Þ

For individual rationality to be maintained, it is required that:

W αTð Þi T; xð Þ � Vi T; xð Þ, for i 2 N: ð5:17Þ

Since the maximization problem (5.13 and 5.14) with payoff weight αT yields a

Pareto optimal cooperative solution and the non-cooperative outcome is

(in general) suboptimal there always exists a set of weights that satisfies (5.17).
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We use ΛT to denote the set of weights αT that satisfies (5.17). Then we use α̂ T

¼ α̂1
T ; α̂

2
T ; � � �; α̂ n

T

� � 2 ΛT to denote the payoff weights in stage T that leads to the

satisfaction of the optimality principle P(T, x).
Now we proceed to cooperative scheme in the second to last stage. Given that the

payoff of player i in stage T is W α̂ Tð Þi T; xð Þ, his payoff covering stages T � 1 to

T þ 1 can be expressed as:

EθT�1

�
gi
T�1 xT�1; u

1
T�1; u

2
T�1; � � �; un

T�1

� �þW α̂ Tð Þi T; xTð Þ
	
, for i 2 N: ð5:18Þ

In this stage the players will select payoff weights αT�1 ¼ α1T�1; α
2
T�1; � � �; αn

T�1

� �
which satisfy optimality principle Γ T � 1, xð Þ. The players’ optimal cooperative

strategies ui
T�1 ¼ ψ αT�1ð Þi

T�1 , for i 2 N
n o

in stage T � 1 can be generated by solving

the stochastic dynamic programming problem of maximizing

EθT�1

� Xn
j¼1

α j
T�1



gj
T�1 xT�1; u

1
T�1; u

2
T�1; � � �; un

T�1

� �þW α̂ Tð Þj T; xTð Þ
� 	

ð5:19Þ

subject to

xT ¼ f T�1 xT�1; u
1
T�1; u

2
T�1; � � �; un

T�1

� �þ GT�1 xT�1ð ÞθT�1, xT�1 ¼ x: ð5:20Þ

Invoking Theorem 5.2 one can characterize the payoff of player i under coop-
eration covering the stages T � 1 to T þ 1 by:

W αT�1ð Þi T; xð Þ ¼ W α̂ Tð Þi T; xTð Þ,
W αT�1ð Þi T � 1, xð Þ ¼ EθT�1

�
gi
T�1 x,ψ αT�1ð Þ1

T�1 xð Þ,ψ αT�1ð Þ2
T�1 xð Þ, � � �,ψ αT�1ð Þn

T�1 xð Þ
h i

þW αT�1ð Þi T, f T�1 x,ψ αT�1ð Þ1
T�1 xð Þ,ψ αT�1ð Þ2

T�1 xð Þ, � � �,ψ αT�1ð Þn
T�1 xð Þ

� 
þ GT�1 xð ÞθT�1

h i 	
,

for i 2 N:

ð5:21Þ

For individual rationality to be maintained, it is required that:

W αT�1ð Þi T � 1, xð Þ � Vi T � 1, xð Þ, for i 2 N: ð5:22Þ

We use ΛT�1 to denote the set of weights αT�1 that satisfies (5.22).

We use the vector α̂ T�1 ¼ α̂1
T�1; α̂

2
T�1; � � �� � �; α̂ n

T�1

� � 2 ΛT�1 to denote the set

of payoff weights that leads to satisfaction of the optimality principle

Γ T � 1, xð Þ.
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11.5.2.2 Cooperative Strategies in Preceding Stages

Now we proceed to characterize the cooperative scheme in stage

k 2 1, 2, � � �,T � 2f g. Following the analysis in Sect. 11.4.1, the players will select

a set of weights αk ¼ α1k ; α
2
k ; � � �; αn

k

� �
which satisfies the optimality principle P(k,

x). The players’ optimal cooperative strategies ui
k ¼ ψ αkð Þi

k , for i 2 N
n o

in stage

k can be generated by solving the following stochastic dynamic programming

problem of maximizing

Eθk

� Xn
j¼1

α j
k



gj
k xk; u

1
k ; u

2
k ; � � �; un

k

� �þW α̂ kþ1ð Þj k þ 1, xkþ1ð Þ
� 	

; ð5:23Þ

subject to

xkþ1 ¼ f k xk; u
1
k ; u

2
k ; � � �; un

k

� �þ θk, xk ¼ x: ð5:24Þ

Invoking Theorem 5.2 the payoff of player i under cooperation can be characterized
by the following equations

W αkð Þi kþ 1, xð Þ ¼W α̂ kþ1ð Þi kþ 1, xð Þ,
W αkð Þi k; xð Þ ¼ Eθk

�
gi
k x,ψ αkð Þ1

k xð Þ,ψ αkð Þ2
k xð Þ, � � �,ψ αkð Þn

k xð Þ
h i

þW αkð Þi kþ 1, f k x,ψ αkð Þ1
k xð Þ,ψ αkð Þ2

k xð Þ, � � �,ψ αkð Þn
k xð Þ

� 
þGk xð Þθk

h i 	
for i 2 N:

ð5:25Þ

For individual rationality to be maintained in stage k, it is required that:

W αkð Þi k; xð Þ � Vi k; xð Þ, for i 2 N: ð5:26Þ

We use Λk to denote the set of weights αk that satisfies (5.26). Again, we use α̂ k

¼ α̂1
k ; α̂

2
k ; � � �; α̂ n

k

� � 2 Λk to denote the set of payoff weights that leads to the

satisfaction of the optimal principle P(k, x), for k 2 κ.

11.5.2.3 A Solution Theorem

Similar to the deterministic analysis we consider subgame consistent solutions

under variable payoff weights in a stochastic environment. A theorem characteriz-

ing a subgame consistent solution of the cooperative stochastic dynamic game (5.1

and 5.2) with the optimality principle P(k, xk) can be obtained as follows.
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Theorem 5.3 A set of payoff weights α̂ k ¼ α̂1
k ; α̂

2
k ; � � �; α̂ n

k

� �
, for k 2 κ

� �
and a set

of strategies ψ α̂ kð Þi
k xð Þ, for k 2 κ and i 2 N

n o
provides a subgame consistent solu-

tion to the cooperative stochastic dynamic game (5.1 and 5.2) with optimality

principle P(k, x) if there exist functions W α̂ kð Þ k; xð Þ and W α̂ kð Þi k; xð Þ, for i 2 N,
k 2 κ, which satisfy the following recursive relations:

W α̂ Tþ1ð Þi Tþ 1,xð Þ ¼ qi xTþ1ð Þ,

W α̂ kð Þ k;xð Þ ¼ max
u1
k
,u2

k
, ���,u n

k

�
Eθk


Xn
j¼1

α̂ jg j
k x;u1k ;u

2
k ; � � �;un

k

� �

þ
Xn
j¼1

α̂ j
kW

α̂ kþ1ð Þj kþ 1, f k x;u1k ;u
2
k ; � � �;un

k

� �þGk xð Þθk
� � � 	

;

W α̂ kð Þi k;xð Þ ¼ Eθk

�
gj
k x,ψ α̂ kð Þ1

k xð Þ,ψ α̂ kð Þ2
k xð Þ, � � �,ψ α̂ kð Þn

k xð Þ
� 

þW α̂ kþ1ð Þi kþ 1, f k x,ψ α̂ kð Þ1
k xð Þ,ψ α̂ kð Þ2

k xð Þ, � � �,ψ α̂ kð Þn
k xð Þ

� 
þGk xð Þθk

h i 	
,

for i 2 N and k 2 κ; and the optimality principle P k;xð Þ in all stages k 2 κ:

ð5:27Þ

Proof Follow the analysis from equation (5.13) to equation (5.25) in Sects. 11.4.1

and 11.4.2. ■

Again, agreed-upon optimality principles may include (i) the proportion each

player’s cooperative payoff to his non-cooperative payoff being equal, (ii) the

satisfaction of the Nash bargaining solution, or (iii) the chosen payoff weights α̂ k

¼ α̂1
k ; α̂

2
k

� �
in a 2-player case to be the mid-value of the maximum and minimum of

the payoff weight α1k and that of the payoff weights α2k in the set Λ. Like in the

deterministic case the subgame consistent solution presented in Theorem 5.3 is

conditional Pareto efficient in the sense that the solution is a Pareto efficient

outcome satisfying the condition that the agreed-upon optimality principle is

maintained in all stages.

11.6 An Illustration in Stochastic Build-up of Capital

Consider a stochastic version of the example in Sect. 11.4 in which there are

2 asymmetric agents. These agents receive benefits from an existing public capital

stock xt at each stage t 2 1; 2; 3; 4f g. The accumulation dynamics of the public

capital stock is governed by the stochastic difference equation:
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xkþ1 ¼ xk þ
X2
j¼1

uj
k � δxk þ θkxk, x¼x01, for t 2 1; 2; 3f g; ð6:1Þ

where uik is the physical amount of investment in the public good and δ is the rate of
obsolescence and θk is a random variable affecting the rate of obsolescence with range

{θ1k , θ
2
k , θ

3
k , θ

4
k} and corresponding probabilities {λ

1
k , λ

2
k , λ

3
k , λ

4
k}. In particular, δ� θ y

k

� �
is non-negative and not greater than one for y 2 1; 2; 3; 4f g and t 2 1; 2; 3f g.

The objective of agent i 2 1; 2f g is to maximize the payoff:

Eθ1,θ2,θ3

� X3
k¼1

ai
kxk � c ik u i

k

� �2h i
1þ rð Þ� k�1ð Þ þ qix4 þ mi

� �
1þ rð Þ�3

	
; ð6:2Þ

subject to the dynamics (6.1),

where aik, c
i
k, r, q

i and mi are positive model parameters.

The payoffs of the agents are not transferable and the non-cooperative payoffs of

agent i can be obtained as:

Vi t; xð Þ ¼ Ai
t xþ Ci

t

� �
1þ rð Þ� t�1ð Þ

,

for i 2 1; 2f g and t 2 1; 2; 3f g; ð6:3Þ
where

Ai
3 ¼ ai

3 þ qi 1� δþ
X4
‘¼1

λ ‘3θ
‘
3

 !
1þ rð Þ�1

, and

Ci
3 ¼ � qið Þ2 1þ rð Þ�2

4c i3
þ


qi
� X2

j¼1

qj 1þ rð Þ�1

2c j3

�
þ mi

�
1þ rð Þ�1

,

Ai
2 ¼ ai

2 þ Ai
3 1� δþ

X4
‘¼1

λ ‘2θ
‘
2

 !
1þ rð Þ�1

, and

Ci
2 ¼ � 1

4c i2

�
Ai
3 1þ rð Þ�1

�2

þ


Ai
3

� X2
j¼1

Aj
3 1þ rð Þ�1

2c j2

�
þ Ci

3

�
1þ rð Þ�1

	

Ai
1 ¼ ai

1 þ Ai
2 1� δþ

X4
‘¼1

λ ‘1θ
‘
1

 !
1þ rð Þ�1 Ci

1 ¼ � 1

4c i1

�
Ai
2 1þ rð Þ�1

�2

þ


Ai
2

� X2
j¼1

Aj
2 1þ rð Þ�1

2c j1

�
þ Ci

2

�
1þ rð Þ�1

	
; for i 2 1; 2f g:

11.6.1 Cooperative Solution

Now consider first the case when the agents agree to cooperate and maintain an

optimality principle P(t, xt) requiring the adoption of the mid values of the
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maximum and minimum of the payoff weight αit in the set Λt, for i 2 1; 2f g and

t 2 1; 2; 3f g.
Invoking the technique of stochastic dynamic programming the value function

W α3ð Þ 3; xð Þ in stage 3 can be obtained as:

W α3ð Þ 3; xð Þ ¼ A
α3ð Þ
3 xþ C

α3ð Þ
3

h i
1þ rð Þ�2; ð6:4Þ

where

A
α3ð Þ
3 ¼

X2
j¼1

α j
3



aj
3 þ qj 1� δþ

X4
‘¼1

λ ‘3θ
‘
3

 !
1þ rð Þ�1

�
, and

C
α3ð Þ
3 ¼ �

X2
j¼1

α j
3



1þ rð Þ�2

4α j
3c

j
3

� X2
‘¼1

α ‘
3q

‘
3

�2 �

þ
X2
j¼1

α j
3



qj
� X2

j¼1

1þ rð Þ�1

2α j
3c

j
3

X2
‘¼1

α ‘
3q

‘

 ! �
þ mj

�
1þ rð Þ�1

	

Invoking Theorem 5.2, the payoff of player i under cooperation can be obtained as:

W α3ð Þi 3; xð Þ ¼ A
α3ð Þi
3 xþ C

α3ð Þi
3

h i
1þ rð Þ�2; ð6:5Þ

for i 2 1; 2f g,

where

A
α3ð Þi
3 ¼

"
aj
3 þ qj 1� δþ

X4
‘¼1

λ ‘3θ
‘
3

 !
1þ rð Þ�1

#
, and

C
α3ð Þi
3 ¼ �

"
1þ rð Þ�2

4α i
3c

i
3

 X2
‘¼1

α ‘
3q

‘
3

!2 #

þ
"
qi

 X2
j¼1

1þ rð Þ�1

2α j
3c

j
3

X2
‘¼1

α ‘
3q

‘

 ! !
þ mi

#
1þ rð Þ�1

)

To identify the range of α3 that satisfies individual rationality we examine the

functions which gives the excess of agent i’s cooperative over his non-cooperative
payoff, that is

W α3ð Þi 3; xð Þ � Vi 3; xð Þ ¼ C
α3ð Þi
3 � Ci

3

h i
1þ rð Þ�2

, for i 2 1; 2f g; ð6:6Þ

because A
α3ð Þi
3 ¼ Ai

3.
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For individual rationality to be satisfied, it is required thatW α3ð Þi 3; xð Þ � Vi 3; xð Þ
� 0 for i 2 1; 2f g. Using α j

3 ¼ 1� α i
3 and upon rearranging terms C

α3ð Þi
3 can be

expressed as:

C
α3ð Þi
3

¼ qi



1þ rð Þ�2

2c i3

�
α i
3q

i þ 1� α i
3

� �
qj

α13

�

þ 1þ rð Þ�2

2c j3

�
α i
3q

i þ 1� α i
3

� �
qj

1� α i
3

� �
þ mi 1þ rð Þ�1

� 1þ rð Þ�2

4c i3

�
α i
3q

i þ 1� α i
3

� �
qj

α i
3

�2

; ð6:7Þ

for i, j 2 1; 2f g and i 6¼ j.

Following the analysis in Sect. 11.4we differentiateC
α3ð Þi
3 with respect toαi3 to obtain

∂C α3ð Þi
3

∂α i
3

¼ 1þ rð Þ�2

2c j3

�
qið Þ2

1� α i
3

� �2
�

þ 1þ rð Þ�2

2c i3

�
1� α i

3

� �
qj

α i
3

��
qj

α i
3

� �2
�
; ð6:8Þ

which is positive for α i
3 2 0; 1ð Þ.

Given that lim
α i
3
!0

C
α3ð Þi
3 ! �1 and lim

α i
3
!1

C
α3ð Þi
3 ! 1, while the cooperative

solution is Pareto optimal and the non-cooperative outcome is (in general)

suboptimal an α i
3
2 0; 1ð Þ can be obtained such that

W α i
3
, 1�α i

3
ð Þi 3; xð Þ ¼ Vi 3; xð Þ

and yields agent i’s minimum payoff weight value satisfying his own individual

rationality. Similarly there exist an α i
3 2 0; 1ð Þ such that

W α i
3, 1�α i

3ð Þj 3; xð Þ ¼ Vj 3; xð Þ

and yields agent i’s maximum payoff weight value while maintaining agent j’s
individual rationality. According to the agreed-upon optimality principle P(t, xt),

the cooperative weights in stage 3 is α̂ 3 ¼
α i
3
þ α i

3

2
, 1� α i

3
þ α i

3

2

� �
.

Now consider the stage 2 problem. We useW α̂ 3ð Þj 3; xð Þ for j 2 1; 2f g to form the

terminal payoff
X2
j¼1

α j
2W

α̂ 3ð Þj 3; xð Þ for the cooperation scheme in stage 2. Following

the analysis in stage 3, one can obtain
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W α2ð Þ 2; xð Þ ¼ A
α2ð Þ
2 xþ C

α2ð Þ
2

h i
1þ rð Þ�1

,

W α2ð Þi 2; xð Þ ¼ A
α3ð Þi
3 xþ C

α3ð Þi
3

h i
1þ rð Þ�2

, for i 2 1; 2f g;

where A
α2ð Þ
2 , C

α2ð Þ
2 , A

α3ð Þi
3 and C

α3ð Þi
3 are functions that depend on α2.

One can readily verified that A
αtð Þi
t ¼ Ai

t is independent of αt and C
αtð Þi
t is strictly

increasing in αit and C
αtð Þj
t is strictly decreasing in αit. Hence agent i’s minimum

payoff weight is α i
2
2 0; 1ð Þ which leads to

W α i
2
, 1�α i

2
ð Þi 2; xð Þ ¼ Vi 2; xð Þ;

and his maximum payoff weight is α i
2 2 0; 1ð Þ which leads to

W α i
2, 1�α i

2ð Þj 2; xð Þ ¼ Vj 2; xð Þ:

Invoking the agreed-upon optimality principle P(t, xt) the cooperative weights in

stage 2 is α̂ 2 ¼
α i
2 þ α i

2

2
, 1� α i

2 þ α i
2

2

� �
. Finally, following the analysis in stages

2 and 3, one can obtain the cooperative weights in stage 1 as

α̂ 1 ¼
α i
1
þ α i

1

2
, 1� α i

1
þ α i

1

2

� �
.

As shown in Sect. 11.4 for the deterministic case, α i
t and α i

t would change as

t changes and in general, there is no guarantee for the existence of a constant payoff
weight such that the basic requirement of individual rationality is satisfied in all

subsequent stages.

11.6.2 Other Optimality Principles

Consider first the case where the agents agree with an optimality principle P(t, xt)
that requires the satisfaction of the Nash bargaining solution. They would first

search for an α3 in stage 3 to maximize the Nash product. The issue becomes

solving the problem

max
α i
3

Y2
j¼1

C
α3ð Þj
3 � Cj

3

h i
1þ rð Þ�2; ð6:9Þ

in the range of α i
3 2 α i

3
; α i

3

� �
.

Invoking the property of C
α3ð Þi
3 a solution weight α̂ i

3 2 α i
3
; α i

3

� �
can be obtained.

Then one can use W α̂ 3ð Þj 3; xð Þ for j 2 1; 2f g to form the terminal payoff
X2
j¼1

α j
2
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W α̂ 3ð Þj 3; xð Þ for the cooperation scheme in stage 2. Repeating the above analysis,

one can identify α̂ 2 which yields the Nash bargaining solution in stage 2. Finally, in

a similar manner, α̂ 1 which yields the Nash bargaining solution in stage 1 can be

obtained.

Now consider another optimality principle P(t, xt) which requires the proportion

of each player’s cooperative payoff to his non-cooperative payoff to be equal. In

particular, a subgame consistent solution requires payoff weights α̂ 1, α̂ 2 and α̂ 3

leading to

A
α̂ tð Þ1
t xt þ C

α̂ tð Þ1
t

A1
t xt þ C1

t

¼ A
α̂ tð Þ2
t xt þ C

α̂ tð Þ2
t

A2
t xt þ C2

t

, for t 2 1; 2; 3f g; ð6:10Þ

and

xtþ1 ¼ xt
X2
j¼1



1þ rð Þ�1

2α̂ j
t c

i
t

X2
‘¼1

α̂ ‘
t A

α̂ tþ1ð Þ‘
tþ1

�
� δxt, x1 ¼ x01; ð6:11Þ

for t 2 12; 3f g and A
α̂ 4ð Þ‘
4 ¼ q‘.

Again withA
αtð Þi
t ¼ Ai

t being independent of αt andC
αtð Þi
t being strictly increasing

in αit and C
αtð Þj
t being strictly decreasing in αit for α

i
t 2 α i

t ; α
i
t

� �
, therefore one can

readily identify payoff weights α̂ i
t such that (6.10) is satisfied.

11.7 Chapter Notes

The number of studies in cooperative dynamic games with non-transferrable utility/

payoff (NTU) is very scantly. On top of Yeung and Petrosyan (2015a, b), Sorger

(2006) presented a recursive Nash bargaining solution for a discrete-time NTU

cooperative dynamic game involving a productive asset. Predtetchinski (2007)

considered the strong sequential core for stationary NTU cooperative dynamic

games. In a two-person dynamic game where the game structures are time invariant

and the game horizon approaches infinity the payoff allocations under the set of

weights Λk that satisfyingW
αkð Þi k; xð Þ � Vi k; xð Þ in the steady state converges to the

strong sequential core in Predtetchinski (2007).

11.8 Problems

1. Consider an economic region with 2 asymmetric agents. These agents receive

benefits from an existing public capital stock xt at each stage t 2 1; 2; 3; 4f g. The
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accumulation dynamics of the public capital stock is governed by the difference

equation:

xkþ1 ¼ xk þ
X2
j¼1

uj
k � 0:1xk , x1¼1x01, for t 2 1; 2; 3f g;

where uik is the physical amount of investment in the public good and δ is the rate
of depreciation.

The objective of agent 1 is to maximize the payoff

X3
k¼1

2xk � ui
k

� �2h i
1þ rð Þ� k�1ð Þ þ x4 þ 5ð Þ 1þ rð Þ�3;

and the objective of agent 1 is to maximize the payoff:

X3
k¼1

1xk � ui
k

� �2h i
1þ rð Þ� k�1ð Þ þ 0:5x4 þ 6ð Þ 1þ rð Þ�3:

The payoffs of the agent are not transferable.

Characterize the feedback Nash equilibrium.

2. Consider the case when the agents agree to cooperate and maintain an optimality

principle P(t, xt) requiring the adoption of the mid values of the maximum and

minimum of the payoff weight αit in the set Λt, for i 2 1; 2f g and t 2 1; 2; 3f g.
Characterize the maximum and minimum values of αit, in the set Λt, for

i 2 1; 2f g and t 2 1; 2; 3f g.
3. Derive a subgame consistent solution.
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Part III

Applications



Chapter 12

Applications in Cooperative Public Goods
Provision

The notion of public goods, which are non-rival and non-excludable, was first

introduced by Samuelson (1954). Examples of public goods include clean environ-

ment, national security, scientific knowledge, accessible public capital, technical

know-how and public information. The non-exclusiveness and positive externali-

ties of public goods constitutes major factors for market failure in their provision.

The provision of public goods constitutes a classic case of market failure which

calls for cooperative optimization. However, cooperation cannot be sustainable

unless there is guarantee that the agreed-upon optimality principle can be

maintained throughout the planning duration.

This Chapter presents two sets of applications in subgame consistent cooperative

provision of public goods to solve the problem. The first application is based on

Yeung and Petrosyan (2013b) in which the analysis is based on a cooperative

stochastic differential game framework. The second application is based on

Yeung and Petrosyan (2014b) in which the analysis is conducted in a randomly-

furcating stochastic dynamic game framework. The continuous-time differential

game analysis is provided in Sects. 12.1, 12.2, 12.3 and 12.4. Section 12.1 provides

an analytical framework of cooperative public goods provision. An application in

multiple asymmetric agents public capital build-up in given in Sect. 12.2. An

application in the development of technical knowledge as a public good in an

industry is provided in Sect. 12.3. In Sect. 12.4 application in infinite horizon

cooperative public capital goods provision is examined. The discrete-time dynamic

game analysis is provided in Sects. 12.5 and 12.6. Cooperative public goods

provision under accumulation and payoff uncertainties is presented in Sect. 12.5

and an illustration is given in Sect. 12.6. Appendices of the chapter and chapter

notes are contained in Sects. 12.7, 12.8 and 12.9 respectively.
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12.1 Cooperative Public Goods Provision: An Analytical
Framework

In this Section we set up an analytical framework to study collaborative public

goods provision. In particular, group optimal strategies, subgame consistent coop-

erative schemes and payoff distribution procedures are investigated.

12.1.1 Game Formulation and Non-cooperative Outcome

Consider the case of the provision of a public good in which a group of n agents

carry out a project by making continuous contributions of some inputs or invest-

ments to build up a productive stock of a public good. Let K(s) denote the level of
the productive stock and Ii(s) denote the contribution or investment by agent i at
time s, the stock accumulation dynamics is governed by

dK sð Þ ¼
� Xn

j¼1

Ij sð Þ � δK sð Þ
�
dsþ σK sð Þdz sð Þ, K 0ð Þ ¼ K0; ð1:1Þ

where δ is the rate of decay of the productive stock, z(s) is Wiener process and σ is a
scaling constant.

The instantaneous payoff to agent i at time instant s is

Ri K sð Þ½ � � Ci Ii sð Þ½ �, i2 1; 2; � � �; nf g ¼ N; ð1:2Þ

where Ri(K ) is the revenue/payoff to agent i if the productive stock is K and Ci[Ii] is
the cost of investing Ii by agent i. Marginal cost of investment is increasing in Ii.
Marginal revenue product of the productive stock is non-negative, that is

R0
i Kð Þ � 0, before a saturation level K has been reached; and marginal cost of

investment is positive and non-decreasing, that is C0
i Ii½ � > 0 and C

00
i Ii½ � � 0.

Moreover, the payoffs of the players are transferable.

The objective of agent i2N is to maximize its expected net revenue over the

planning horizon T, that is

E

�ð T
0

Ri K sð Þ½ � � Ci Ii sð Þ½ �f ge�rsdsþ qi K Tð Þ½ �e�rT

�
ð1:3Þ

subject to the stock accumulation dynamics (1.1), where r is the discount rate, and
qi K Tð Þ½ � � 0 is an amount conditional on the productive stock that agent i would
receive at time T.

Acting for individual interests, the agents are involved in a stochastic differential

game. In such a framework, a feedback Nash equilibrium has to be sought. Let
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�
ϕi s;Kð Þ ¼ I*i sð Þ2 Ii, for i2N and s2 0; T½ �� denote a set of feedback strategies that

brings about a feedback Nash equilibrium of the game (1.1) and (1.3). Invoking

Theorem 1.1 in Chap. 3 for solving stochastic differential games, a feedback

solution to the problem (1.1) and (1.3) can characterized by the following set of

Hamilton-Jacobi-Bellman equations:

�V i
t t;Kð Þ � 1

2
V i
KK t;Kð Þσ2K2 ¼ max

Ii

�
Ri Kð Þ � Ci Iið Þ½ �e�rt

þV i
K t;Kð Þ

� Xn
j ¼ 1

j 6¼ i

ϕj t;Kð Þ þ Ii � δK

��
; ð1:4Þ

Vi T;Kð Þ ¼ qi Kð Þe�rT , for i2N: ð1:5Þ

A Nash equilibrium non-cooperative outcome of public goods provision by the

n agents is characterized by the solution of the system of partial differential

equations (1.4 and 1.5).

12.1.2 Subgame Consistent Cooperative Scheme

It is well-known problem that noncooperative provision of goods with externalities,

in general, would lead to dynamic inefficiency. Cooperative games suggest the

possibility of socially optimal and group efficient solutions to decision problems

involving strategic action. Now consider the case when the agents agree to coop-

erate and extract gains from cooperation. In particular, they act cooperatively and

agree to distribute the joint payoff among themselves according to an optimality

principle. If any agent disagrees and deviates from the cooperation scheme, all

agents will revert to the noncooperative framework to counteract the free-rider

problem in public goods provision. In particular, free-riding would lead to a lower

future payoff due to the loss of cooperative gains. Thus a credible threat is in place.

As stated before group optimality, individual rationality and subgame consistency

are three crucial properties that sustainable cooperative scheme has to satisfy.

To fulfil group optimality the agents would seek to maximize their expected joint

payoff. To maximize their expected joint payoff the agents have to solve the

stochastic dynamic programming problem

max
I1 sð Þ, I2 sð Þ, ���, In sð Þf g

E

�Xn
j¼1

� ð T
0

Rj K sð Þ½ � � Cj Ij sð Þ� 	� �
e�rsds

þ qj K Tð Þ½ �e�rT

��
ð1:6Þ

subject to the stock dynamics (1.1).
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Let
�
ψ i s;Kð Þ, for i2N and denote a set of strategies that brings about an optimal

solution to the stochastic control problem (1.1) and (1.6). Invoking the standard

stochastic dynamic programming technique in Theorem A.3 of the Technical

Appendices an optimal solution to the stochastic control problem (1.1) and (1.6)

can characterized by the following set of equations (see also Fleming and Rishel

1975; Ross 1983):

�Wt t;Kð Þ � 1

2
WKK t;Kð Þσ2K2

¼ max
I1, I2, ���, In

(Xn
j¼1

"
Rj Kð Þ � Cj Ij


 �� 	
e�rt

#
þWK t;Kð Þ

 Xn
j¼1

Ij � δK

!)
; ð1:7Þ

W T;Kð Þ ¼
Xn
j¼1

qj K Tð Þ½ �e�rT : ð1:8Þ

A group optimal solution of public goods provision by the n agents is character-

ized by the solution of the partial differential equation (1.7 and 1.8). In particular,

W(t,K ) gives the maximized joint payoff of the n players at time t2 0; T½ � given
that the state is x.

Substituting the optimal strategies
�
ψ i s;Kð Þ, for i2N and s2 0; T½ �� into (1.1)

yields the optimal path of productive stock dynamics:

dK sð Þ ¼
�Xn
j¼1

ψ j s,K sð Þð Þ � δK sð Þ
�
dsþ σK sð Þdz sð Þ, K 0ð Þ ¼ K0: ð1:9Þ

We use X�
s to denote the set of realizable values of K(s) generated by (1.9) at time s.

The term K*
s 2X*

s is used to denote and element in X�
s .

Let ξ �; �ð Þ denote the agreed-upon imputation vector guiding the distribution of

the total cooperative payoff under the agreed-upon optimality principle along the

cooperative trajectory K* sð Þ� �
s2 0;T½ �. At time s and if the productive stock is K�

s , the

imputation vector according to ξ �; �ð Þ is

ξ s;K*
s


 � ¼ ξ1 s;K*
s


 �
, ξ2 s;K*

s


 �
, � � �, ξn s;K*

s


 �� 	
for s2 0; T½ �: ð1:10Þ

A variety of examples of imputations ξ(s,K�
s ) can be found in Chap. 2. For

individual rationality to be maintained throughout all time s2 0; T½ �, it is required
that:

ξi s;K*
s


 � � Vi s;K*
s


 �
, for i2N and s2 0; T½ �:

To satisfy group optimality, the imputation vector has to satisfy
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W s;K*
s


 � ¼Xn
j¼1

ξi s;K*
s


 �
, for s2 0; T½ �:

12.1.3 Payoff Distribution Procedure

Following the analysis in Chap. 3, we formulate a Payoff Distribution Procedure so

that the agreed-upon imputations (1.10) can be realized. Let Bi(s,K*(s)) for s2�0, T�
denote the payment that agent i will received at time s under the cooperative

agreement if K*(s) is realized at that time.

The payment scheme involving Bi(s,K*(s)) constitutes a PDP in the sense that

along the cooperative trajectory K* sð Þ� �
s20;T½ � the imputation to agent i covering the

duration [τ,T] can be expressed as:

ξi τ;K*
τ


 � ¼ E

�ðT
τ
Bi s,K* sð Þ
 �

e�rsdsþ qi K
* Tð Þ� 	

e�rT

����K* τð Þ ¼ K*
τ

�
; ð1:11Þ

for i2N and τ2 0; T½ �.
The values of Bi(s,K*(s)) for i2N and s2�τ,T�, which leads to the realization of

imputation (1.10) and hence a subgame consistent cooperative solution can be

obtained by the following theorem.

Theorem 1.1 A PDP for agent i2N with a terminal payment qi(K
�
T) at time T and

an instantaneous payment at time s2 0; T½ � which present value is:

Bi s;K
*
s


 �
e�rs ¼ �ξ is s;K*

s


 �� 1

2
σ2 K*

s


 �2
ξ iKsKs

s;K*
s


 �
� ξ iKs

s;K*
s


 �� Xn
j¼1

ψ*
j s;K*

s


 �� δK*
s

�
, for i2N and K*

s 2X*
s ; ð1:12Þ

would lead to the realization of the imputation ξ(s,K�
s ) in (1.10).

Proof See Appendix A. ■

Note that the payoff distribution procedure in Theorem 1.1 would give rise to

the agreed-upon imputation in (1.10) and therefore subgame consistency is

satisfied.

When all agents are using the cooperative strategies, the payoff that player i will
directly receive at time s is

Ri K
*
s


 �� Ci ψ
*
i s;K*

s


 �� 	
:

However, according to the agreed upon imputation, agent i is supposed to receive Bi
i

(s,K�
s ). Therefore a transfer payment (which could be positive or negative)
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ϖi s;K
*
s


 � ¼ Bi s;K
*
s


 �� Ri K
*
s


 �� Ci ψ
*
i s;K*

s


 �� 	� � ð1:13Þ

will be imputed to agent i2N at time s2 0; T½ �.

12.2 An Application in Asymmetric Agents Public Capital
Build-up

In this section, we examine an application of the analysis in the build-up of public

capital by multiple asymmetric agents.

12.2.1 Game Model

Consider an economic region with n asymmetric agents. These agents receive

benefits from an existing public capital stock K(s). The accumulation dynamics of

the public capital stock is governed by

dK sð Þ ¼
� Xn

j¼1

Ij sð Þ � δK sð Þ
�
dsþ σK sð Þdz sð Þ, K 0ð Þ ¼ K0; ð2:1Þ

where δ is the depreciation rate of the public capital and Ii sð Þ2 0; I
� 	

is the

investment made by the ith agent in the public capital.

Each agent gains from the existing level of public capital and the ith agent seeks
to maximize its expected stream of monetary gains:

E

�ðT
0

αiK sð Þ � ci Ii sð Þ½ �2
n o

e�rsds

þ qi
1K Tð Þ þ qi

2

� 	
e�rT

����K 0ð Þ ¼ K0

�
, for i2N; ð2:2Þ

subject to (2.1);

where αi, ci, qi1 and qi2 are positive constants, and αi 6¼ αj, ci 6¼ cj, q
i
1 6¼ qj

1 and

qi
2 6¼ qj

2, for i, j2N and i 6¼ j.
In particular, αiK(s) gives the gain that agent i derives from the public capital,

ci[Ii(s)]
2 is the cost of investing Ii(s) in the public capital, and qi

1K Tð Þ þ qi
2

� 	
is the

terminal valuation of the public capital at time T. Invoking the analysis in (1.5 and

1.6) in Sect. 12.1 we obtain the corresponding Hamilton-Jacobi-Bellman equations

characterizing a non-cooperative outcome as:
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�V i
t t;Kð Þ � 1

2
V i
KK t;Kð Þσ2K2 ¼ max

Ii

�
αiK � ci Iið Þ2
n o

e�rt

þV i
K t;Kð Þ

� Xn
j¼1

j 6¼i

ϕj t;Kð Þ þ Ii � δK

��
; ð2:3Þ

Vi T;Kð Þ ¼ qi
1K Tð Þ þ qi

2

� 	
e�rT , for i2N; ð2:4Þ

Performing the maximization operator in (2.4) yields:

Ii ¼ V i
K t;Kð Þ
2ci

ert, for i2N: ð2:5Þ

To solve the game (2.1 and 2.2) we first obtain the value functions indicating the

game equilibrium payoffs of the agents as follows.

Proposition 2.1 The value function Vi(t,K) of agent i can be obtained as:

Vi t;Kð Þ ¼ Ai tð ÞK þ Ci tð Þ½ �e�rt for i2N; ð2:6Þ

where

Ai tð Þ ¼ qi
1 �

αi
r þ δ

 �
e� rþδð Þ T�tð Þ þ αi

r þ δ
;

and the value of Ci(t) is generated by the following first order linear differential

equation:

_C i tð Þ ¼ rCi tð Þ þ Ai tð Þ½ �2
4ci

�
h Xn

j¼1

Ai tð ÞAj tð Þ
2cj

i
,

Ci Tð Þ ¼ qi
2, for i2N; ð2:7Þ

Proof See Appendix B. ■

Using Proposition 2.1 and (2.5) the game equilibrium strategies can be obtained

to characterize the market equilibrium. The asymmetry of agents brings about

different payoffs and investment levels in public capital investments.

12.2.2 Cooperative Provision of Public Capital

Now we consider the case when the agents agree to act cooperatively and seek

higher gains. They agree to maximize their expected joint gain and distribute the

12.2 An Application in Asymmetric Agents Public Capital Build-up 327



cooperative gain proportional to their non-cooperative gains. To maximize their

expected joint gains the agents maximize

E

�ðT
0

Xn
j¼1

αjK sð Þ � cj Ij sð Þ� 	2n o
e�rsds

þ
Xn
j¼1

qj
1K Tð Þ þ qj

2

h i
e�rT

����K 0ð Þ ¼ K0

�
ð2:8Þ

subject to dynamics (2.1).

Following the analysis in (1.7 and 1.8) in Sect. 12.1, the corresponding stochas-

tic dynamic programming equation can be obtained as:

�Wt t;Kð Þ � 1

2
WKK t;Kð Þσ2K2

¼ max
I1, I2, ���, In

�Xn
j¼1

αjK � cj Ij

 �2h i

e�rt þWK t;Kð Þ
 Xn

j¼1

Ij � δK

��
; ð2:9Þ

W T;Kð Þ ¼
Xn
j¼1

qj
1K þ qj

2

� �
e�rT : ð2:10Þ

Performing the maximization operator in (2.9) yields:

Ii ¼ WK t;Kð Þ
2ci

ert, for i2N: ð2:11Þ

Themaximized expected joint profit of the n participating firms can be obtained as:

Proposition 2.2 The value function W(t,K ) indicating the maximized expected

joint payoff is

W t;Kð Þ ¼ A tð ÞK þ C tð Þ½ �e�rt; ð2:12Þ

where

A tð Þ ¼
Xn
j¼1

qj
1 �

Xn
j¼1

αj

r þ δ

0
BBBB@

1
CCCCAe� rþδð Þ T�tð Þ þ

Xn
j¼1

αj

r þ δ
, and

and the value ofC(t) is generated by the followingfirst order linear differential equation:

_C tð Þ ¼ rC tð Þ �
Xn
j¼1

A tð Þ½ �2
4cj

, C Tð Þ ¼
Xn
j¼1

qj
2:
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Proof Follow the proof of Proposition 2.1. ■

Using (2.11) and Proposition 2.2 the optimal trajectory of public capital stock

can be expressed as:

dK sð Þ ¼
�Xn

j¼1

A sð Þ
2cj

� δK sð Þ
�
dsþ σK sð Þdz sð Þ, K 0ð Þ ¼ K0: ð2:13Þ

We use X�
s to denote the set of realizable values of K* sð Þ generated by (2.13) at

time s. The term K*
s 2X*

s is used to denote and element in X�
s .

12.2.3 Subgame Consistent Payoff Distribution

Under cooperation every agent will be using the Pareto optimal strategies in (2.11)

and the expected payoff that agent iwill receive over the cooperative duration [0, T]
becomes:

E

�ðT
0


αiK

* sð Þ � A sð Þ½ �2
4ci

�
e�rsdsþ

Xn
j¼1

qi
1K

* Tð Þ þ qi
2

� 	
e�rT

�
, i2N:

At initial time 0, the agents agree to distribute the cooperative gain proportional to

their non-cooperative gains. Therefore agent i will receive an imputation

ζi 0;K0ð Þ ¼ Vi 0;K0ð ÞXn
j¼1

Vj 0;K0ð Þ
W 0;K0ð Þ

¼ Ai 0ð ÞK0 þ Ci 0ð ÞXn
j¼1

Aj 0ð ÞK0 þ Cj 0ð Þ
A 0ð ÞK0 þ C 0ð Þ½ �, for i2N:

With the agents agreeing to distribute their gains proportional to their

non-cooperative gains, the imputation vector becomes

ξi s;K*
s


 � ¼ Vi s;K*
s


 �
Xn
j¼1

Vj s;K*
s


 �W s;K*
s


 �

¼ Ai tð ÞK þ Ci tð Þ½ �Xn
j¼1

Aj tð ÞK þ Cj tð Þ
� 	 A tð ÞK þ C tð Þ½ �e�rt; ð2:14Þ

for i2N and s2 0; T½ � if the public capital stock is K*
s 2X*

s .
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To guarantee dynamical stability in a dynamic cooperation scheme, the solution

has to satisfy the property of subgame consistency which requires the satisfaction of

(2.14). Invoking Theorem 1.1, a PDP for agent i2N with a terminal payment

qi
1K Tð Þ þ qi

2

� 	
at time T and an instantaneous payment (in present value) at time

s2 0; T½ �

Bi s;K
*
s


 �
e�rs ¼ r

Ai sð ÞK*
s þ Ci sð Þ� 	

Xn
j¼1

Aj sð ÞK*
s þ Cj sð Þ� 	 A sð ÞK*

s þ C sð Þ� 	
e�rs

� Ai sð ÞK*
s þ Ci sð Þ� 	

Xn
j¼1

Aj sð ÞK*
s þ Cj sð Þ� 	 _A sð ÞK*

s þ _C sð Þ� 	
e�rs

� A sð ÞK*
s þ C sð Þ� 	

e�rs

Xn
j¼1

Aj sð ÞK*
s þ Cj sð Þ� 	 !2

�Xn
j¼1

Aj sð ÞK*
s þ Cj sð Þ� 	

_A i sð ÞK*
s þ _C i sð Þ� 	

� Ai sð ÞK*
s þ Ci sð Þ� 	Xn

j¼1

_A j sð ÞKs* þ _C j sð Þ� 	�

� ξ iKs
s;K*

s


 ��Xn
j¼1

A sð Þ
2cj

� δK*
s

�
� 1

2
σ2 K*

s


 �2
ξ iKsKs

s;K*
s


 �
; ð2:15Þ

where

ξ iKs
s;K*

s


 � ¼
2
4 Ai sð ÞK*

s þ Ci sð Þ� 	
Xn
j¼1

Aj sð ÞK*
s þ Cj sð Þ� 	A sð Þe�rs

þ
Ai sð Þ

Xn
j¼1

Aj sð ÞK*
s þ Cj sð Þ� 	� Ai sð ÞK*

s þ Ci sð Þ� 	Xn
j¼1

Aj sð Þ

Xn
j¼1

Aj sð ÞK*
s þ Cj sð Þ� 	 !2

A sð ÞK*
s þ C sð Þ� 	

e�rs

3
5;

and ξ iKsKs
s;K*

s


 � ¼ ∂ξ iKs
s;K*

s


 �
=∂Ks;

for i2N and K*
s 2X*

s ,

would lead to the realization of the imputation ξ(s,K�
s ) in (2.14).

The values of the terms Aj sð Þ, _A j sð Þ,Cj sð Þ and _C j sð Þ are given in Proposition 2.2
and its proof.

Finally, when all agents are using the cooperative strategies, the payoff that

player i will directly receive at time s is

αiK
*
s �

A sð Þ½ �2
4ci

.
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However, according to the agreed upon imputation, agent i is to receive Bi(s,K
�
s )

in (2.15). Therefore a transfer payment

ϖ i
i s;K*

s


 � ¼ Bi s;K
*
s


 �� �αiK*
s �

A sð Þ½ �2
4ci

�
ð2:16Þ

will be imputed to agent i2N at time s2 0; T½ �.

12.3 An Application in the Development of Technical
Knowledge

In this section, we examine the application of the analysis in the development of

technical knowledge as a public good in an industry.

12.3.1 Game Formulation and Noncooperative Market
Outcome

Consider an industry with two types of firms using a common type of technology.

There are n1 type 1 firms and n2 type 2 firms and the planning horizon is [0, T]. We

use I
1ð Þ
i sð Þ2 0; I

� 	
to denote the technology investment of the ith type 1 firm, for

i2 1; 2; � � �; n1f g�N1. Similarly, I
2ð Þ
j sð Þ2 0; I

� 	
is used to denote the technology

investment of the jth type 2 firm, for j2 n1 þ 1, n1 þ 2, � � �, n1 þ n2f g�N2. The

technology accumulation dynamics is governed by

dK sð Þ ¼
�X
i2N1

I
1ð Þ
i sð Þ þ

X
j2N2

I
2ð Þ
j sð Þ � δK sð Þ

�
dsþ σK sð Þdz sð Þ, K 0ð Þ ¼ K0; ð3:1Þ

where δ is the depreciation rate of technology.

Each firm benefits from the existing level of technology. The ith type 1 firm

seeks to maximize its expected stream of profits:

E

�ðT
0

α1K sð Þ � b1 K sð Þ½ �2 � ρ1I
1ð Þ
i sð Þ � c1=2ð Þ I

1ð Þ
i sð Þ

h i2� �
e�rsds

þ e�rT q1 K Tð Þð Þ2 þ q2K Tð Þ þ q3

h i ����K 0ð Þ ¼ K0

�
, for i2N1; ð3:2Þ

subject to (3.1).

In particular, given the technology level K(s), the instantaneous revenue of a type

1 firm isK sð Þ α1 � b1K sð Þ½ �. The cost of investment is ρ1I
1ð Þ
i sð Þ � 1=2ð Þ I

1ð Þ
i sð Þ

h i2
. For
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each firm, there is a terminal valuation e�rT q1 K Tð Þð Þ2 þ q2K Tð Þ þ q3

h i
with q1 < 0,

q2 > 0 and q3 > 0.

The jth type 2 firm seeks to maximize its expected stream of profits:

E

�ðT
0

α2K sð Þ � b2 K sð Þ½ �2 � ρ2I
2ð Þ
i sð Þ � c2=2ð Þ I

2ð Þ
i sð Þ

h i2� �
e�rsds

þ e�rT q1 K Tð Þð Þ2 þ q2K Tð Þ þ q3

h i ����K 0ð Þ ¼ K0

�
, for j2N2; ð3:3Þ

subject to (3.1).

To derive the noncooperative market outcome of the industry we invoke the

analysis in (1.4 and 1.5) in Sect. 12.1 and obtain the corresponding Hamilton-

Jacobi-Bellman equations

�V
1ð Þi
t t;Kð Þ � 1

2
V

1ð Þi
KK t;Kð Þσ2K2

¼ max
I
1ð Þ
i

�
α1K � b1K

2 � ρ1I
1ð Þ
i � c1=2ð Þ I

1ð Þ
i

� �2� �
e�rt

þV
1ð Þi
K t;Kð Þ

� X
‘2N1

‘ 6¼ i

ϕ 1ð Þ
‘ t;Kð Þ þ

X
‘2N2

ϕ 2ð Þ
‘ t;Kð Þ þ I

1ð Þ
i � δK

��
,

V 1ð Þi T;Kð Þ ¼ e�rT q1K
2 þ q2K þ q3


 �
, for i2N1; ð3:4Þ

�V
2ð Þj
t t;Kð Þ � 1

2
V

2ð Þj
KK t;Kð Þσ2K2

¼ max
I
2ð Þ
j

�
α2K � b2K

2 � ρ2I
2ð Þ
j � c2=2ð Þ I

2ð Þ
j

� �2� �
e�rt

þV
2ð Þj
K t;Kð Þ

� X
‘2N1

ϕ 1ð Þ
‘ t;Kð Þ þ

X
‘2N2

‘ 6¼ j

ϕ 2ð Þ
‘ t;Kð Þ þ I

2ð Þ
j � δK

�
s

�
,

V 2ð Þj T;Kð Þ ¼ e�rT q1K
2 þ q2K þ q3


 �
, for j2N2: ð3:5Þ

Performing the maximization operator in (3.4) and (3.5) yields game equilibrium

investment strategies of the type 1 firm and the type 2 firms as:

I
1ð Þ
i ¼ V

1ð Þi
K t;Kð Þert � ρ1

c1
, for i2N1; ð3:6Þ
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and

I
2ð Þ
j ¼ V

2ð Þj
K t;Kð Þert � ρ2

c2
, for j2N2: ð3:7Þ

To solve the game we first obtain the value functions indicating the game equilib-

rium payoffs of the firms as follows.

Proposition 3.1 The value functions indicating the game equilibrium payoffs of

the firms are

V 1ð Þi t;Kð Þ ¼ A1 tð ÞK2 þ B1 tð ÞK þ C1 tð Þ� 	
e�rt for i2N1; and

V 2ð Þj t;Kð Þ ¼ A2 tð ÞK2 þ B2 tð ÞK þ C2 tð Þ� 	
e�rt, for j2N2; ð3:8Þ

where the values of A1(t),A2(t),B1(t),B2(t),C1(t) and C2(t) are generated by the

following block-recursive ordinary differential equations:

_A 1 tð Þ ¼ 2� 4n1ð Þ
c1

A1 tð Þ½ �2 � 4n2
c2

A1 tð ÞA2 tð Þ þ r þ 2δ� σ2

 �

A1 tð Þ þ b1,

_A 2 tð Þ ¼ 2� 4n2ð Þ
c2

A2 tð Þ½ �2 � 4n1
c1

A1 tð ÞA2 tð Þ þ r þ 2δ� σ2

 �

A2 tð Þ þ b2,

A1 Tð Þ ¼ q1 and A2 Tð Þ ¼ q1; ð3:9Þ
_B 1 tð Þ ¼ r þ δð Þ � 4n1

c1
� 2

c1

 �
A1 tð Þ � 2

n2
c2
A2 tð Þ

� �
B1 tð Þ � 2

n2
c2
A1 tð ÞB2 tð Þ

þ 2
n1ρ1
c1

þ n2ρ2
c2

 �
A1 tð Þ � α1:

_B 2 tð Þ ¼ r þ δð Þ � 4n2
c2

� 2

c2

 �
A2 tð Þ � 2

n1
c1
A1 tð Þ

� �
B2 tð Þ � 2

n1
c1
A2 tð ÞB1 tð Þ

þ 2
n1ρ1
c1

þ n2ρ2
c2

 �
A2 tð Þ � α2:

B1 Tð Þ ¼ q2 and B2 Tð Þ ¼ q2; ð3:10Þ
_C 1 tð Þ ¼ rC1 tð Þ� n1

c1
� 1

2c1

 �
B1 tð Þ½ �2 � n2

c2
B1 tð ÞB2 tð Þþ n1ρ1

c1
þ n2ρ2

c2

 �
B1 tð Þ� ρ21

2c1
;

_C 2 tð Þ ¼ rC2 tð Þ� n2
c2

� 1

2c2

 �
B2 tð Þ½ �2 � n1

c1
B1 tð ÞB2 tð Þ

þ n1ρ1
c1

þ n2ρ2
c2

 �
B2 tð Þ� ρ22

2c2
;

C1 Tð Þ ¼ q3 andC2 Tð Þ ¼ q3: ð3:11Þ
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Proof See Appendix C. ■

System (3.9, 3.10 and 3.11) is a block-recursive system of ordinary differential

equations. In particular, (3.9) is a system which involves A1(t) and A2(t); (3.10) is a
system which involves A1(t),A2(t),B1(t) and B2(t); and (3.11) is a system which

involves B1(t),B2(t),C1(t) and C2(t).
A convenient way to solve the problem numerically is to express system (3.9) as

an initial value problem with the variablesA*
1 tð Þ ¼ A1 T � tð Þ andA*

2 tð Þ ¼ A2 T � tð Þ
where:

_A *
1 tð Þ ¼ 4n1 � 2ð Þ

c1
A*
1 tð Þ� 	2 þ 4n2

c2
A*
1 tð ÞA*

2 tð Þ � r þ 2δ� σ2

 �

A*
1 tð Þ � b1,

_A *
2 tð Þ ¼ 4n2 � 2ð Þ

c2
A*
2 tð Þ� 	2 þ 4n1

c1
A*
1 tð ÞA*

2 tð Þ � r þ 2δ� σ2

 �

A*
2 tð Þ � b2,

A*
1 0ð Þ ¼ q1 and A

*
2 0ð Þ ¼ q1: ð3:12Þ

Using Euler’s method, the numerical solution of (3.12) could be readily evaluated as:

A*
1 tþ Δtð Þ ¼ A*

1 tð Þ þ
�

4n1 � 2ð Þ
c1

A*
1 tð Þ� 	2 þ 4n2

c2
A*
1 tð ÞA*

2 tð Þ

� r þ 2δ� σ2ð ÞA*
1 tð Þ � b1

�
Δt,

A*
2 tþ Δtð Þ ¼ A*

2 tð Þ þ
�

4n2 � 2ð Þ
c2

A*
2 tð Þ� 	2 þ 4n1

c1
A*
1 tð ÞA*

2 tð Þ

� r þ 2δ� σ2ð ÞA*
2 tð Þ � b2

�
Δt; ð3:13Þ

The numerical values generated in (3.13) yields A*
1 tð Þ ¼ A1 T � tð Þ and

A*
2 tð Þ ¼ A2 T � tð Þ. Substituting A1(t) and A2(t) into (3.10) yields a pair of linear

differential equations in B1(t) and B2(t) which could readily be solved numerically.

Substituting B1(t) and B2(t) into (3.11) yields a pair of independent linear differen-

tial equations in C1(t) and C2(t), which once again is readily solvable numerically.

Using Proposition 3.1 and (3.6 and 3.7) the game equilibrium strategies can be

obtained and the market equilibrium be characterized.

12.3.2 Cooperative Development of Technical Knowledge

Now we consider the case when the firms agree to act cooperatively and seek higher

expected profits. They agree to maximize their expected joint profit and share the

excess of cooperative profits over noncooperative profits equally. To maximize

their expected joint profits the firms maximize
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E

�ðT
0

X
h2N1

α1K sð Þ � b1 K sð Þ½ �2 � ρ1I
1ð Þ
h sð Þ � c1=2ð Þ I

1ð Þ
h sð Þ

h i2� �
e�rsds

þ
ðT
0

X
k2N2

α2K sð Þ � b2 K sð Þ½ �2 � ρ2I
2ð Þ
k sð Þ � c2=2ð Þ I

2ð Þ
k sð Þ

h i2� �
e�rsds

þ n1 þ n2ð Þe�rT q1 K Tð Þð Þ2 þ q2K Tð Þ þ q3

h i ����K 0ð Þ ¼ K0

�
; ð3:14Þ

subject to dynamics (3.1).

Following the analysis in (1.6, 1.7, 1.8, 1.9 and 1.10) in Sect. 12.1, the

corresponding stochastic dynamic programming equation can be obtained as:

�Wt t;Kð Þ � 1

2
WKK t;Kð Þσ2K2

¼ max
I
1ð Þ
1
, I 1ð Þ

2
, ���, I 1ð Þ

n1
;I

2ð Þ
n1þ1

, I 2ð Þ
n1þ2

, ���, I 2ð Þ
n1þn2

� X
h2N1

α1K � b1K
2 � ρ1I

1ð Þ
h � c1=2ð Þ I

1ð Þ
h

� �2� �
e�rt

þ
X
k2N2

α2K � b2K
2 � ρ2I

2ð Þ
k � c2=2ð Þ I

2ð Þ
k

� �2� �
e�rt

þWK t;Kð Þ
� X

h2N1

I
1ð Þ
h sð Þ þ

X
k2N2

I
2ð Þ
k sð Þ � δK sð Þ

� �
; ð3:15Þ

W T;Kð Þ ¼ n1 þ n2ð Þe�rT q1K
2 þ q2K þ q3


 �
: ð3:16Þ

Performing the maximization operator in (3.15) yields:

I
1ð Þ
i ¼ W t;Kð Þert � ρ1

c1
, for i2N1; and

I
2ð Þ
j ¼ W t;Kð Þert � ρ2

c2
, for j2N2: ð3:17Þ

The expected joint payoff of the firms can be obtained as:

Proposition 3.2 The value function W(t,K ), which reflects the maximized

expected joint payoff at time t given the level of technology K is

W t;Kð Þ ¼ A tð ÞK2 þ B tð ÞK þ C tð Þ� 	
e�rt; ð3:18Þ

where the values of A(t),B(t) and C(t) are generated by the following block

recursive ordinary differential equations:

_A tð Þ ¼ r þ 2δ� σ2ð ÞA tð Þ � 2
n1
c1

þ n2
c2

 �
A tð Þ½ �2 þ n1b1 þ n2b2,

A Tð Þ ¼ n1 þ n2ð Þq1; ð3:19Þ
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_B tð Þ ¼ r þ δ� 2
n1
c1

þ n2
c2

 �
A tð Þ

� �
B tð Þ þ 2

n1ρ1
c1

þ n2ρ2
c2

� �
A tð Þ � n1α1 � n2α2,

B Tð Þ ¼ n1 þ n2ð Þq2; ð3:20Þ
_C tð Þ ¼ rC tð Þ � n1

2c1
B tð Þ � ρ1½ �2 � n2

2c2
B tð Þ � ρ2½ �2,

C Tð Þ ¼ n1 þ n2ð Þq3: ð3:21Þ

Proof Follow the proof of Proposition 3.1. ■

Using (3.17) and Proposition 3.2 the optimal technology accumulation dynamics

can be expressed as:

dK sð Þ ¼
�

n1
c1

�
2A sð ÞK sð Þ þ B sð Þ � ρ1

	þ n2
c2

�
2A sð ÞK sð Þ þ B sð Þ � ρ2

	
� δK sð Þ

�
dsþ σK sð Þdz sð Þ, K 0ð Þ ¼ K0 ð3:22Þ

We use X�
s to denote the set of realizable values of K*(s) generated by (3.22) at

time s. The term K*
s 2X*

s is used to denote and element in X�
s .

With the firms agreeing to share the excess of cooperative profits over nonco-

operative profits equally the imputation vector becomes

ξ 1ð Þi s;K*
s


 � ¼ V 1ð Þi s;K*
s


 �þ 1

n1 þ n2

"
W s;K*

s


 �

�
X
h2N1

V 1ð Þh s;K*
s


 ��X
k2N2

V 2ð Þk s;K*
s


 � #
, for type1firm i2N1;

ξ 2ð Þj s;K*
s


 � ¼ V 2ð Þj s;K*
s


 �þ 1

n1 þ n2

�
W s;K*

s


 �
�
X
h2N1

V 1ð Þh s;K*
s


 ��X
k2N2

V 2ð Þk s;K*
s


 � �
, for type 2 firm j2N2;

ð3:23Þ

at time instant s2 0; T½ � if the state of technology is K*
s 2X*

s .

Invoking Theorem 1.1, a PDP for firm i2N1 and firm j2N2 with a terminal

payment q1 K*
T


 �2 þ q2K
*
T þ q3

h i
at time T and an instantaneous payment (in present

value) at time s2 0; T½ � equalling
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B
1ð Þ
i s;K*

s


 �
e�rs ¼ �ξ 1ð Þi

s s;K*
s


 �
� ξ 1ð Þi

Ks
s;K*

s


 � n1
c1

�
2A sð ÞK*

s þ B sð Þ � ρ1
� 	þ n2 2A sð ÞK*

s þ B sð Þ � ρ2
� 	

� δK*
s

�
� 1

2
σ2 K*

s


 �2
ξ 1ð Þi
KsKs

s;K*
s


 �
; given to the type 1 firm i2N1;

and

B
2ð Þ
j s;K*

s


 �
e�rs ¼ �ξ 2ð Þj

s s;K*
s


 �
� ξ 2ð Þj

Ks
s;K*

s


 � n1
c1

�
2A sð ÞK*

s þ B sð Þ � ρ1
� 	þ n2 2A sð ÞK*

s þ B sð Þ � ρ2
� 	

� δK*
s

�
� 1

2
σ2 K*

s


 �2
ξ 2ð Þj
KsKs

s;K*
s


 �
; given to the type 2 firm j2N2;

would lead to the realization of the imputation ξ(s,K�
s ) in (3.23) and hence a

subgame consistent scheme.

The terms ξ ωð Þiω
s s;K*

s


 �
, ξ ωð Þiω

Ks
s;K*

s


 �
and ξ ωð Þiω

KsKs
s;K*

s


 �
, forω2 1; 2f g and iω2Nω,

can be obtained readily using Proposition 3.1, Proposition 3.2 and (3.23).

Moreover, the game (3.1, 3.2 and 3.3) can be extended to include the case with

more than 2 types of firms. Finally, worth-noting is that the payoff structures and

state dynamics of the game (3.1, 3.2 and 3.3) encompass those of the existing

dynamic games of public goods provision. For instance, Fershtman and Nitzan

(1991) is case where n1 ¼ n, n2 ¼ 0, ρ1 ¼ ρ2 ¼ 0 and σ ¼ 0. Wirl (1996) is the

case where n1 ¼ 2, n2 ¼ 0, ρ1 ¼ ρ2 ¼ 0 and σ ¼ 0. Wang and Ewald (2010) is the

case where n1 ¼ 2, n2 ¼ 0 and ρ1 ¼ ρ2 ¼ 0. Dockner et al. (2000) is case where

n1 ¼ 1, n2 ¼ 1, b1 ¼ b2 ¼ 1, ρ1 ¼ ρ2 ¼ ρ, c1 ¼ c2 ¼ 1 and σ ¼ 0.

12.4 Infinite Horizon Analysis

In this section, we consider the case when the planning horizon approaches infinity,

that is T ! 1. The objective of agent i2N is to maximize its expected payoff

E

� ð1
0

Ri K sð Þ½ � � Ci Ii sð Þ½ �f ge�rsds

���� K 0ð Þ ¼ K0

�
ð4:1Þ

subject to dynamics (1.1).

The corresponding Hamilton-Jacobi-Bellman equations in current value formu-

lation characterizing a feedback solution of the infinite horizon problem (1.1) and

(4.1) are (see Theorem 5.1 in Chap. 3):

rVi Kð Þ � 1

2
V i
KK Kð Þσ2K2 ¼ max

Ii

�
Ri Kð Þ � Ci Iið Þ½ �

þV i
K Kð Þ

� Xn
j ¼ 1

j 6¼ i

ϕj Kð Þ þ Ii � δK

��
, for i2N; ð4:2Þ
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Performing the maximization operator in (4.2) yields:

dCi Iið Þ=dIi ¼ V i
K Kð Þ, for i2N ð4:3Þ

Condition (4.3) reflects that in a non-cooperative equilibrium the marginal cost of

investment of agent iwill be equal to the agent’s implicit marginal valuation/benefit

of the productive stock in the infinite horizon case.

12.4.1 Subgame Consistent Cooperative Provision

Consider the case when the agents agree to act cooperatively and seek higher gains.

They agree to maximize their expected joint gain and distribute the cooperative

gain according to the imputation vector

ξ Kð Þ ¼ ξ1 Kð Þ, ξ2 Kð Þ, � � �, ξn Kð Þ� 	
when the state isK: ð4:4Þ

To maximize their expected joint gains the agents maximize

max
I1 sð Þ, I2 sð Þ, ���, In sð Þf g

E

�Xn
j¼1

� ð1
0

Rj K sð Þ½ � � Cj Ij sð Þ� 	� �
e�rsds

��
ð4:5Þ

subject to dynamics (1.1).

Invoking stochastic dynamic programming techniques an optimal solution to the

stochastic control problem (1.1) and (4.5) can characterized by the following set of

equations (see Theorem A.4 in the Technical Appendices):

rW Kð Þ � 1

2
WKK Kð Þσ2K2

¼ max
I1, I2, ���, In

�Xn
j¼1

�
Rj Kð Þ � Cj Ij


 �� 	þWK Kð Þ
 Xn

j¼1

Ij � δK

� ��
: ð4:6Þ

In particular, W(K ) gives the maximized expected joint payoff of the n players at

time given that the level of technology is K. Let ψ�
j (K ), for j2N, denote the game

equilibrium investment strategy of agent i, the optimal trajectory of the public

goods can be expressed as:

dK sð Þ ¼
�Xn
j¼1

ψ j K sð Þð Þ � δK sð Þ
�
dsþ σK sð Þdz sð Þ; ð4:7Þ

for K 0ð Þ ¼ Ko,
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We use X* to denote the set of realizable values of K generated by (4.7). The

term K*2X* is used to denote an element in X*.
Following the analysis in Theorem 5.3 in Chap. 3, we formulate a Payoff

Distribution Procedure (PDP) so that the agreed-upon imputations (4.4) can be

realized. Let Bi(K*) denote the payment that agent i will received under the

cooperative agreement if K* is realized.

A theorem characterizing a formula for Bi(K*), for i2N, which yields (4.4) is

provided below.

Theorem 4.1 A PDP with an instantaneous payment equaling

Bi K
*


 � ¼ rξi K*

 �� ξ iK K*


 ��Xn
j¼1

ψ*
j K*

 �� δK*

�

� 1

2
σ2 K*

 �2

ξ iKK K*

 �

, for i2N, given that the state isK*2X* ð4:8Þ

would lead to the realization of the imputation ξ(K*) in (4.4).

Proof See Theorem 5.3 in Chap. 3. ■

Note that the payoff distribution procedure in Theorem 4.1 would give rise to the

agreed-upon imputation in (4.4) and therefore subgame consistency is satisfied.

When all agents are using the cooperative strategies and the state equals K*, the
payoff that player i will directly receive is

Ri K
*


 �� Ci ψ i K
*


 �� 	
:

However, according to the agreed upon imputation, agent i is to receive Bi(K*).
Therefore a transfer payment

ϖi K
*


 � ¼ Bi K
*


 �� Ri K
*


 �� Ci ψ i K
*


 �� 	� �
: ð4:9Þ

will be imputed to agent i2N.

12.4.2 Infinite Horizon Public Capital Goods Provision: An
Illustration

In this section we consider the infinite horizon game of public capital goods

provision in which the expected payoff to agent i2N is:

E

�ð1
0

αiK sð Þ � ci Ii sð Þ½ �2
n o

e�rsds

����K 0ð Þ ¼ K0

�
, for i2N: ð4:10Þ

12.4 Infinite Horizon Analysis 339

http://dx.doi.org/10.1007/978-981-10-1545-8_3
http://dx.doi.org/10.1007/978-981-10-1545-8_3
http://dx.doi.org/10.1007/978-981-10-1545-8_3
http://dx.doi.org/10.1007/978-981-10-1545-8_3


The accumulation dynamics of the public capital stock is governed by (2.1).

Setting up the corresponding Hamilton-Jacobi-Bellman equations according to

(4.2) and performing the maximization operator yields:

Ii ¼ V i
K Kð Þ
2ci

, for i2N:

The value functions which reflect the expected noncooperative payoffs of the

agents can be obtained as:

Proposition 4.1 The value function reflecting the expected noncooperative payoff

of agent i is:

Vi Kð Þ ¼ AiK þ Cið Þ, for i2N; ð4:11Þ

where Ai ¼ αi
r þ δð Þ, and

Ci ¼
� Xn

j¼1

AiAj

2cjr

�
� Aið Þ2

4cir
:

Proof Following the derivation of Proposition 2.1, one can obtain the value

function as in (4.11). ■

Consider the case when the agents agree to act cooperatively and seek higher

gains. They agree to maximize their expected joint gain and distribute the cooper-

ative gain proportional to their non-cooperative gains. To maximize their expected

joint gains the agents maximize

E

�ð1
0

Xn
j¼1

αjK sð Þ � cj Ij sð Þ� 	2n o
e�rsds

����K 0ð Þ ¼ K0

�
ð4:12Þ

subject to dynamics (2.1).

Performing the maximization operator in (4.12) yields:

Ii ¼ WK Kð Þ
2ci

, for i2N:

The value functionW(K ) which reflects the maximized expected joint profits of the

nwould lead to the realization of the imputation as:

Proposition 4.2
W Kð Þ ¼ AK þ C½ �; ð4:13Þ

where A ¼
Xn
j¼1

αj
rþδð Þ and C ¼

Xn
j¼1

Að Þ2
4cjr

:
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Proof Following the derivation of Proposition 2.2, one can obtain the value

function as in (4.13). ■

With the agents agreeing to distribute their gains proportional to their

non-cooperative gains, the imputation vector becomes

ξi K*

 � ¼ Vi K*


 �
Xn
j¼1

Vj K*

 �W K*


 � ¼ AiK þ Cið ÞXn
j¼1

AjK þ Cj


 � AK þ Cð Þ; ð4:14Þ

for i2N if the public capital stock is K*2X*.

To guarantee dynamical stability in a dynamic cooperation scheme, the solution

has to satisfy the property of subgame consistency which requires the satisfaction of

(4.14). Following Theorem 4.1 we can obtain the PDP that brings about a subgame

consistent solution with instantaneous payments:

Bi K
*


 � ¼ r AiK
* þ Ci


 �
Xn
j¼1

AjK
* þ Cj


 � AK* þ C

 �

� ξ iK K*

 ��Xn

j¼1

A

2cj
� δK*

�
� 1

2
σ2 K*

 �2

ξ iKK K*

 �

; ð4:15Þ

where

ξ iK K*

 � ¼

8>>><
>>>:

�

Ai AK

* þ C

 �þ AiK

* þ Ci


 �
A
	Xn
j¼1

AjK
* þ Cj


 �
Xn
j¼1

AjK
* þ Cj


 �" #2

�
AiK

* þ Ci


 �
AK* þ C

 �Xn

j¼1

Aj

Xn
j¼1

AjK
* þ Cj


 �" #2
9>>>=
>>>;
� Xn

j¼1

A

2cj
� δK*

�
, and

ξ iKK K*

 � ¼ dξ iK K*


 �
=dK;

for i2N if the public capital stock is K*2X*.

Therefore a transfer payment

ϖi K
*


 � ¼ Bi K
*


 �� αiK
* � A2=ci


 �� 	
will be imputed to agent i2N.
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12.5 Public Goods Provision Under Accumulation
and Payoff Uncertainties

This Section considers cooperative provision of public goods by asymmetric agents

in a discrete-time dynamic game framework with uncertainties in stock accumula-

tion dynamics and future payoff structures. One of the major hindrances for

dynamic cooperation in public goods provision is the uncertainty in the future

gains. This section resolves the problem with subgame consistent schemes. The

analytical framework and the non-cooperative outcome of public goods provision

are provided in Sect. 12.5.1. Details of a Pareto optimal cooperative scheme are

presented in Sect. 12.5.2. A payment mechanism ensuring subgame consistency is

derived in Sect. 12.5.3.

12.5.1 Analytical Framework and Non-cooperative Outcome

Consider the case of the provision of a public good in which a group of n agents

carry out a project by making contributions to the building up of the stock of a

productive public good. The game involves T stages of operation and after the

T stages each agent received a terminal payment in stageT þ 1. We use Kt to denote

the level of the productive stock and Iit the public capital investment by agent i at
stage t2 1; 2; � � �; Tf g. The stock accumulation dynamics is governed by the sto-

chastic difference equation:

Ktþ1 ¼ Kt þ
Xn
j¼1

I jt � δKt þ ϑt , K1¼1K0; ð5:1Þ

for t2 1; 2; � � �; Tf g,
where δ is the depreciation rate and ϑt is a sequence of statistically independent

random variables.

The payoff of agent i at stage t is affected by a random variable θt. In particular,
the payoff to agent i at stage t is

Ri Kt; θtð Þ � Ci I it ; θt

 �

, i2 1; 2; � � �; nf g ¼ N; ð5:2Þ

where Ri(Kt, θt) is the revenue/payoff to agent i, Ci(Iit, θt) is the cost of investing

I it 2Xi, and θt for t2 1; 2; � � �; Tf g are independent discrete random variables with

range θ1t ; θ
2
t ; � � �; θηtt

� �
and corresponding probabilities λ1t ; λ

2
t ; � � �; ληtt

� �
, where ηt is

a positive integer for t2 1; 2; � � �; Tf g. In stage 1, it is known that θ1 equals θ11 with

probability λ11 ¼ 1.

Marginal revenue product of the productive stock is positive, that is

∂Ri Kt; θtð Þ=∂Kt > 0, before a saturation level K has been reached; and marginal
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cost of investment is positive and non-decreasing, that is ∂Ci I it ; θt

 �

=∂I it
�
> 0 and

∂2
Ci I it ; θt

 �

=∂I it
2 � 0.

The objective of agent i2N is to maximize its expected net revenue over the

planning horizon, that is

Eθ1,θ2, ���,θT ;ϑ1,ϑ2, ���,ϑT

�XT
s¼1

Ri Ks; θsð Þ � Ci I is; θs

 �� 	

1þ rð Þ� s�1ð Þ

þ qi KTþ1ð Þ 1þ rð Þ�T

�
ð5:3Þ

subject to the stock accumulation dynamics (5.1),

where Eθ1,θ2, ���,θT ;ϑ1,ϑ2, ���,ϑT is the expectation operation with respect to the

random variables θ1, θ2, � � �, θT and ϑ1, ϑ2, � � �, ϑT ; r is the discount rate, and qi KTð Þ
� 0 is an amount conditional on the productive stock that agent i would receive at

stage T þ 1. Since there is no uncertainty in stage T þ 1, we use θ1Tþ1 to denote the

condition in stage T þ 1 with probability λ1Tþ1 ¼ 1.

To solve the game, we follow the analysis in Chap. 9 and begin with the

subgame starting at the last operating stage, that is stage T. If

θσTT 2 θ1T ; θ
2
T ; � � �; θηTT

� �
has occurred at stage T and the public capital stock is

KT ¼ K, the subgame becomes:

max
I iT

EϑT

�
Ri KT ; θ

σT
Tð Þ � Ci I iT ; θ

σT
T


 �� 	
1þ rð Þ� T�1ð Þ

þ qi KTþ1ð Þ 1þ rð Þ�T

�
, for i2N ð5:4Þ

subject to

KTþ1 ¼ KT þ
Xn
j¼1

I jT � δKT þ ϑT ,KT ¼ K: ð5:5Þ

The subgame (5.4 and 5.5) is a stochastic dynamic game. Invoking the standard

techniques for solving stochastic dynamic games, a characterization the feedback

Nash equilibrium is provided in the following lemma.

Lemma 5.1 A set of strategies ϕ σTð Þ*
T Kð Þ ¼ ϕ σTð Þ1*

T Kð Þ,ϕ σTð Þ2*
T Kð Þ, � � �� � �,ϕ σTð Þn*

T Kð Þ
n o

provides a Nash equilibrium solution to the subgame (5.4 and 5.5) if there exist

functions V σTð Þi t;Kð Þ, for i2N and t2 1; 2f g, such that the following conditions are

satisfied:
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V σTð Þi T;Kð Þ ¼ max
I iT

EϑT

�
Ri KT ; θ

σT
Tð Þ � Ci I iT ; θ

σT
T


 �� 	
1þ rð Þ� T�1ð Þ

þV σTþ1ð Þi T þ 1,K þ
Xn
j ¼ 1

j 6¼ i

ϕ σTð Þj*
T Kð Þ þ I iT � δK þ ϑT

2
66664

3
77775
�
,

V σTþ1ð Þi T þ 1,Kð Þ ¼ qi Kð Þ 1þ rð Þ�T ; for i2N ð5:6Þ

Proof The system of equations in (5.6) satisfies the standard stochastic dynamic

programming property and the Nash property for each agent i2N. Hence a Nash

equilibrium of the subgame (5.4 and 5.5) is characterized. Details of the proof of the

results can be found in Theorem 4.1 in Chap. 7. ■

Using Lemma 5.1, one can characterize the value functions V σTð Þi T;Kð Þ for all
σT 2 1; 2; � � �; ηTf g if they exist. In particular, V σTð Þi T;Kð Þ yields agent i’s expected
game equilibrium payoff in the subgame starting at stage T given thatθσTT occurs and

KT ¼ K.
Then we proceed to the subgame starting at stage T � 1 when

θσT�1

T�1 2 θ1T�1; θ
2
T�1; � � �; θηT�1

T�1

� �
occurs and KT�1 ¼ K. In this subgame agent i2N

seeks to maximize his expected payoff

EθT ;ϑT�1,ϑT

� XT
s¼T�1

Ri Ks; θsð Þ � Ci I is; θs

 �� 	

1þ rð Þ� s�1ð Þ

þ qi KTþ1ð Þ 1þ rð Þ�T

�

¼ EϑT�1

�
Ri KT�1; θ

σT�1

T�1


 �� Ci I iT�1; θ
σT�1

T�1


 �� 	
1þ rð Þ� T�2ð Þ

þ
XηT
σT¼1

λσTT Ri KT ; θ
σT
Tð Þ � Ci I iT ; θ

σT
T


 �� 	
1þ rð Þ� T�2ð Þ

þ qi KTþ1ð Þ 1þ rð Þ�T

�
; ð5:7Þ

subject to the capital accumulation dynamics

Ktþ1 ¼ Kt þ
Xn
j¼1

I jt � δKt þ ϑt,KT�1 ¼ K, for t2 T � 1, Tf g: ð5:8Þ
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If the functions V σTð Þi T;Kð Þ for all σT 2 1; 2; � � �; ηTf g characterized in Lemma 5.1

exist, the subgame (5.7 and 5.8) can be expressed as a game in which agent i seeks
to maximize the expected payoff

EϑT�1

�
Ri KT�1; θT�1ð Þ � Ci I iT�1; θT�1


 �� 	
1þ rð Þ� T�2ð Þ

þ
XηT
σT¼1

λσTT V σTð Þi T,KT�1 þ
Xn
j¼1

I jT�1 � δKT�1 þ ϑT�1

" #�
, for i2N; ð5:9Þ

using his control I iT�1.

A Nash equilibrium of the subgame (5.9) can be characterized by the following

lemma.

Lemma 5.2 A set of strategies

ϕ σT�1ð Þ*
T�1 Kð Þ ¼ ϕ σT�1ð Þ1*

T�1 Kð Þ,ϕ σT�1ð Þ2*
T�1 Kð Þ, � � �,ϕ σT�1ð Þn*

T�1 Kð Þ
n o

provides a Nash

equilibrium solution to the subgame (5.9) if there exist functions V σTð Þi T;KTð Þ for
i2N and σT ¼ 1; 2; � � �; ηTf g characterized in Lemma 5.1, and functions

V σT�1ð Þi T � 1,Kð Þ, for i2N, such that the following conditions are satisfied:

V σT�1ð Þi T�1,Kð Þ¼max
I iT�1

EϑT�1

�
Ri KT�1;θ

σT�1

T�1


 ��Ci I iT�1;θ
σT�1

T�1


 �� 	
1þ rð Þ� T�2ð Þ

þ
XηT
σT¼1

λσTT V σTð Þi T,Kþ
Xn
j¼ 1

j 6¼ i

ϕ σT�1ð Þj*
T�1 Kð Þþ I iT�1�δKþϑT�1

2
666664

3
777775
�
, for i2N:

ð5:10Þ

Proof The conditions in Lemma 5.1 and the system of equations in (5.10) satisfies

the standard discrete-time stochastic dynamic programming property and the Nash

property for each agent i2N. Hence a Nash equilibrium of the subgame (5.9) is

characterized. ■

Using Lemma 5.2, one can characterize the functions V σTð Þi T � 1,Kð Þ for all

θσT�1

T�1 2 θ1T�1; θ
2
T�1; � � �; θηT�1

T�1

� �
, if they exist. In particular, V σT�1ð Þi T � 1,Kð Þ yields

agent i’s expected game equilibrium payoff in the subgame starting at stage T � 1

given that θσT�1

T�1 occurs and KT�1 ¼ K.
Consider the subgame starting at stage t2 T � 2, T � 3, � � �, 1f g when

θσtt 2 θ1t ; θ
2
t ; � � �; θηtt

� �
occurs and Kt ¼ K, in which agent i2N maximizes his

expected payoff
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Eϑt

�
Ri K; θσtt

 �� Ci I it ; θ

σt
t


 �� 	
1þ rð Þ� t�1ð Þ

þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi tþ 1,K þ

Xn
j¼1

I jt � δK þ ϑt

" #�
, for i2N; ð5:11Þ

subject to the public capital accumulation dynamics

Ktþ1 ¼ Kt þ
Xn
j¼1

I jt � δKt þ ϑt,Kt ¼ K: ð5:12Þ

A Nash equilibrium solution for the game (5.1, 5.2 and 5.3) can be characterized by

the following theorem.

Theorem 5.1 A set of strategies ϕ σtð Þ*
t Kð Þ¼ ϕ σtð Þ1*

t Kð Þ,ϕ σtð Þ2*
t Kð Þ, � � �� � �,ϕ σtð Þn*

t Kð Þ
n o

;,

for σt2 1;2; � � �;ηtf g and t2 1;2; � � �;Tf g, constitutes a Nash equilibrium solution to

the game (5.1, 5.2 and 5.3) if there exist functions V σtð Þi t;Kð Þ, for σt2 1;2; � � �;ηtf g,
t2 1;2; � � �;Tf g and i2N, such that the following recursive relations are satisfied:

V σTð Þi T þ 1,Kð Þ ¼ qi KTþ1ð Þ 1þ rð Þ�T
,

V σtð Þi t;Kð Þ ¼ max
I it

Eϑt

�
Ri Kt; θ

σt
t


 �� Ci I it ; θ
σt
t


 �� 	
1þ rð Þ� t�1ð Þ

þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi tþ 1,K þ

Xn
j ¼ 1

j 6¼ i

ϕ σtð Þj*
t Kð Þ þ I it � δKt þ ϑt

2
66664

3
77775
�
,

for σt2 1; 2; � � �; ηtf g, t2 1; 2; � � �; Tf gand i2N: ð5:13Þ

Proof The results in (5.13) characterizing the game equilibrium in stage T and

stage T � 1 are proved in Lemma 5.1 and Lemma 5.2. Invoking the subgame in

stage t2 1, 2, � � �,T � 1f g as expressed in (5.11 and 5.12), the results in (5.13)

satisfy the optimality conditions in stochastic dynamic programming and the Nash

equilibrium property for each agent in each of these subgames. Therefore, a

feedback Nash equilibrium of the game (5.1, 5.2 and 5.3) is characterized. ■

Hence, the noncooperative outcome of the public capital provision game (5.1,

5.2 and 5.3) can be obtained.
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12.5.2 Optimal Cooperative Scheme

Now consider the case when the agents agree to cooperate and enhance their gains

from cooperation. In particular, they act cooperatively to maximize their expected

joint payoff and distribute the joint payoff among themselves according to an

agreed-upon optimality principle. If any agent deviates from the cooperation

scheme, all agents will revert to the noncooperative framework to counteract the

free-rider problem in public goods provision. As stated before, group optimality,

individual rationality and subgame consistency are three crucial properties that

sustainable cooperative scheme has to satisfy.

12.5.2.1 Pareto Optimal Provision

To fulfil group optimality the agents would seek to maximize their expected joint

payoff. In particular, they have to solve the discrete-time stochastic dynamic

programming problem of maximizing

Eθ1,θ2, ���,θT ;ϑ1,ϑ2, ���,ϑT

�Xn
j¼1

XT
s¼1

Rj Ks; θsð Þ � Cj I js; θs

 �� 	

1þ rð Þ� s�1ð Þ

þ
Xn
j¼1

qj KTþ1ð Þ 1þ rð Þ�T

�
ð5:14Þ

subject to dynamics (5.1).

To solve the dynamic programming problem (5.1) and (5.14), we first consider

the problem starting at stage T. If θσTT 2 θ1T ; θ
2
T ; � � �; θηTT

� �
has occurred at stage T and

the state KT ¼ K, the problem becomes:

max
I1T , I

2
T , ���, I nT

EϑT

�Xn
j¼1

Rj K; θσTTð Þ � Cj I jT ; θ
σT
T

� �h i
1þ rð Þ� T�1ð Þ

þ
Xn
j¼1

qj KTþ1ð Þ 1þ rð Þ�T

�
; ð5:15Þ

subject to KTþ1 ¼ KT ¼
Xn
j¼1

I jT � δKT þ ϑT ,KT ¼ K: ð5:16Þ

A characterization of an optimal solution to the stochastic control problem (5.15

and 5.16) is provided in the following lemma.
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Lemma 5.3 A set of controls I
σTð Þ*
T ¼ψ σTð Þ*

T Kð Þ¼ ψ σTð Þ1*
T Kð Þ,ψ σTð Þ2*

T Kð Þ, � � �� � �,ψ σTð Þn*
T Kð Þ

n o
provides an optimal solution to the stochastic control problem (5.15 and 5.16) if

there exist functions W σTþ1ð Þ T;Kð Þ such that the following conditions are satisfied:

W σTð Þ T;Kð Þ

¼ max
I

σTð Þ1
T

, I σTð Þ2
T

, ���, I σTð Þn
T

EϑT

�Xn
j¼1

Rj K; θσTTð Þ � Cj I jT ; θ
σT
T

� �h i
1þ rð Þ� T�1ð Þ

þ
Xn
j¼1

qj


K þ
Xn
h¼1

I hT � δK þ ϑT

�
1þ rð Þ�T

�
,

W σTþ1ð Þi T þ 1,Kð Þ ¼
Xn
j¼1

qj Kð Þ 1þ rð Þ�T : ð5:17Þ

Proof The system of equations in (5.17) satisfies the standard discrete-time sto-

chastic dynamic programming property. See Theorem A.6 in the Technical Appen-

dices for details of the proof of the results. ■

Using Lemma 5.3, one can characterize the functions W σTð Þ T;Kð Þ for all

θσTT 2 θ1T ; θ
2
T ; � � �; θηTT

� �
, if they exist. In particular, W σTð Þ T;Kð Þ yields the expected

cooperative payoff starting at stage T given that θσTT occurs and KT ¼ K.
Following the analysis in Sect. 12.5.1, the control problem starting at stage

t when θσtt 2 θ1t ; θ
2
t ; � � �; θηtt

� �
occurs and Kt ¼ K can be expressed as:

max
I
σtð Þ1
t , I σtð Þ2

t , ���, I σtð Þn
t

Eϑt

�Xn
j¼1

Rj K; θσtt

 �� Cj I jt ; θ

σt
t

� �h i
1þ rð Þ� t�1ð Þ

þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1W
σtþ1ð Þ


tþ 1,K þ
Xn
h¼1

I ht � δK þ ϑt

��
; ð5:18Þ

where W σtþ1ð Þ


tþ 1,K þ
Xn
h¼1

I ht � δK þ ϑt

�
is the expected optimal cooperative

payoff in the control problem starting at stage tþ 1 when

θσtþ1

tþ1 2 θ1tþ1; θ
2
tþ1; � � �; θηtþ1

tþ1

� �
occurs.

An optimal solution for the stochastic control problem (5.14) can be character-

ized by the following theorem.

Theorem 5.2 A set of controls ψ σtð Þ*
t Kð Þ¼ ψ σtð Þ1*

t Kð Þ,ψ σtð Þ2*
t Kð Þ, � � �� � �,ψ σtð Þn*

t Kð Þ
n o

, for

σt2 1;2; � � �;ηtf g and t2 1;2; � � �;Tf g provides an optimal solution to the stochastic

control problem (5.1) and (5.14) if there exist functions W σtð Þ t;Kð Þ, for
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σt2 1;2; � � �;ηtf g and t2 1;2; � � �;Tf g, such that the following recursive relations are

satisfied:

W σTð Þ T þ 1,Kð Þ ¼
Xn
j¼1

qj Kð Þ 1þ rð Þ�T
,

W σTð Þ t;Kð Þ ¼
max

I
σtð Þ1
t , I σtð Þ2

t , ���, I σtð Þn
t

Eϑt

�Xn
j¼1

Rj K; θσtt

 �� Cj I jt ; θ

σt
t

� �h i
1þ rð Þ� t�1ð Þ

þ
Xηtþ1

σtþ1¼1

λσtþ1

tþ1W
σtþ1ð Þ


tþ 1,K þ
Xn
h¼1

I ht � δK þ ϑt

��
; ð5:19Þ

for σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g.
Proof Invoking Lemma 5.3 and the specification of the control problem starting in

stage t2 1, 2, � � �,T � 1f g as expressed in (5.18), the results in (5.19) satisfy the

optimality conditions in discrete-time stochastic dynamic programming. Therefore, an

optimal solution of the stochastic control problem is characterized in Theorem 5.2. ■

Substituting the optimal control
�
ψ σtð Þi*
t Kð Þ, for t2 1, 2, � � �Tf g and i2N

�
into

(5.1), one can obtain the dynamics of the cooperative trajectory of public capital

accumulation as:

Ktþ1 ¼ Kt þ
Xn
j¼1

ψ σtð Þj*
t Ktð Þ � δKt þ ϑt, K1¼1K if θσtt occurs at stage t; ð5:20Þ

for t2 1; 2; � � �; Tf g, σt2 1; 2; � � �; ηtf g
We use X�

t to denote the set of realizable values of Kt at stage t generated by

(5.20). The term K*
t 2X*

t is used to denote an element in X�
t .

The termW σtð Þ t;K*
t


 �
gives the expected total cooperative payoff over the stages

from t to T if θσtt occurs and K*
t 2X*

t is realized at stage t.

12.5.2.2 Individually Rational Condition

The agents then have to agree to an optimality principle in distributing the total

cooperative payoff among themselves. For individual rationality to be upheld the

expected payoffs an agent receives under cooperation have to be no less than his

expected noncooperative payoff along the cooperative state trajectory K*
t

� � Tþ1

t¼1
.

Let ξ σtð Þ t;K*
t


 � ¼ ξ σtð Þ1 t;K*
t


 �
, ξ σtð Þ2 t;K*

t


 �
, � � �, ξ σtð Þn t;K*

t


 �� 	
denote the imputation

vector guiding the distribution of the total expected cooperative payoff under the
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agreed-upon optimality principle along the cooperative trajectory given that θσtt has

occurred in stage t, for σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g.
If for example, the optimality principle specifies that the agents share the

expected total cooperative payoff proportional to their non-cooperative payoffs,

then the imputation to agent i becomes:

ξ σtð Þi t;K*
t


 � ¼ V σtð Þi t;K*
t


 �
Xn
j¼1

V σtð Þj t;K*
t


 �W σtð Þ t;K*
t


 �
; ð5:21Þ

for i2N, σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g.
For individual rationality to be guaranteed in every stage k2 1; 2; � � �; Tf g, it is

required that the imputation satisfies:

ξ σtð Þi t;K*
t


 � � V σtð Þi t;K*
t


 �
; ð5:22Þ

for i2N, σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g.
To ensure group optimality, the imputation vector has to satisfy

W σtð Þ t;K*
t


 � ¼Xn
j¼1

ξ σtð Þj t;K*
t


 �
; ð5:23Þ

for σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g.
Hence, a valid imputation scheme ξ σtð Þi t;K*

t


 �
, for i2N and σt2 1; 2; � � �; ηtf g and

t2 1; 2; � � �; Tf g, has to satisfy conditions (5.22) and (5.23).

12.5.3 Subgame Consistent Payment Mechanism

To guarantee dynamical stability in a stochastic dynamic cooperation scheme, the

solution has to satisfy the property of subgame consistency in addition to group

optimality and individual rationality. For subgame consistency to be satisfied, the

imputation according to the original optimality principle has to be maintained in all

the T stages along the cooperative trajectory K*
t

� �T

t¼1
. In other words, the

imputation

ξ σtð Þ t;K*
t


 � ¼ ξ σtð Þ1 t;K*
t


 �
, ξ σtð Þ2 t;K*

t


 �
, � � �, ξ σtð Þn t;K*

t


 �h i
ð5:24Þ

has to be upheld for σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g and K*
t 2X*

t .
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12.5.3.1 Payoff Distribution Procedure

We first formulate a Payoff Distribution Procedure (PDP) so that the agreed-upon

imputation (5.24) can be realized. LetB
σtð Þi
t K*

t


 �
denote the payment that agent iwill

received at stage t under the cooperative agreement if θσtt 2 θ1t ; θ
2
t ; � � �; θηtt

� �
occurs

andK*
t 2X*

t is realized at stage t2 1; 2; � � �; Tf g. The payment scheme
�
B

σtð Þi
t K*

t


 �
for

i2N contingent upon the event θσtt and state K�
t , for t2 1; 2; � � �; Tf g� constitutes a

PDP in the sense that the imputation to agent i over the stages 1 to T can be

expressed as:

ξ σ1ð Þi 1;K0

 � ¼ B

σ1ð Þi
1 K0

 �

þEθ2, ���,θT ;ϑ1,ϑ2, ���,ϑT

 XT
ζ¼2

B
σζð Þi
ζ K*

ζ

� �
þ qi K*

Tþ1


 �
1þ rð Þ�T

�
; ð5:25Þ

for i2N.
Moreover, according to the agreed-upon optimality principle in (5.24), if θσtt

occurs and K*
t 2X*

t is realized at stage t the imputation to agent i is ξ σtð Þi t;K*
t


 �
.

Therefore the payment scheme B
σtð Þ
t K*

t


 �
has to satisfy the conditions

ξ σtð Þi t;K*
t


 � ¼ B
σtð Þi
t K*

t


 �
þEθtþ1,θtþ2, ���,θT ;ϑt,ϑtþ1, ���,ϑT

 XT
ζ¼tþ1

B
σζð Þi
ζ K*

ζ

� �
þ qi K*

Tþ1


 �
1þ rð Þ�T

�
ð5:26Þ

for i2N and all t2 1; 2; � � �; Tf g.
For notational convenience the term ξ σTþ1ð Þi T þ 1,K*

Tþ1


 �
is used to denote

qi K*
Tþ1


 �
1þ rð Þ�T

. Crucial to the formulation of a subgame consistent solution is

the derivation of a payment scheme
�
B

σtð Þi
t K*

t


 �
, for i2N, σt2 1; 2; � � �; ηtf g, K*

t

2X*
t and t2 1; 2; � � �; Tf g � so that the imputation in (5.26) can be realized.

A theorem for the derivation of a subgame consistent payment scheme can be

established as follows.

Theorem 5.3 A payment equaling

B
σtð Þi
t K*

t


 � ¼ 1þ rð Þ t�1ð Þ
�
ξ σtð Þi t;K*

t


 �
�Eϑt

� Xηtþ1

σtþ1¼1

λσtþ1

tþ1


ξ σtþ1ð Þi tþ 1,K*

t þ
Xn
h¼1

ψ σtð Þh*
t K*

t


 �� δK*
t þ ϑt

" #���
; ð5:27Þ

given to agent i2N at stage t2 1; 2; � � �; Tf g, if θσtt occurs and K*
t 2X*

t , leads to the

realization of the imputation in (5.26).
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Proof To construct the proof of Theorem 5.3, we first express the term

Eθtþ1,θtþ2, ���,θT ;ϑt,ϑtþ1, ���,ϑT

 XT
ζ¼tþ1

B
σζð Þi
ζ K*

ζ

� �
1þ rð Þ� ζ�1ð Þþqi K*

Tþ1


 �
1þ rð Þ�T

�

¼ Eϑtþ1

� Xηtþ1

σtþ1¼1

λσtþ1

tþ1

�
B

σtþ1ð Þi
tþ1 K*

tþ1


 �
1þ rð Þ� t�1ð Þ

þ Eθtþ2,θtþ3, ���,θT ;ϑtþ2,ϑtþ3, ���,ϑT

 XT
ζ¼tþ2

B
σζð Þi
ζ K*

ζ

� �
1þ rð Þ� ζ�1ð Þ

þ qi K*
Tþ1


 �
1þ rð Þ�T

� � �
ð5:28Þ

Then, using (5.26) we can express the term ξ σtþ1ð Þi tþ 1,K*
tþ1


 �
as

ξ σtþ1ð Þi tþ 1,K*
tþ1


 � ¼ B
σtþ1ð Þi
tþ1 K*

tþ1


 �
1þ rð Þ�t

þEθtþ2,θtþ3, ���,θT ;ϑtþ2,ϑtþ3, ���,ϑT

 XT
ζ¼tþ2

B
σζð Þi
ζ K*

ζ

� �
þ qi K*

Tþ1


 �
1þ rð Þ�T

�
: ð5:29Þ

The expression on the right-hand-side of equation (5.29) is the same as the

expression inside the square brackets of (5.28). Invoking equation (5.29) we can

replace the expression inside the square brackets of (5.28) by ξ σtþ1ð Þi tþ 1,K*
tþ1


 �
and obtain:

Eθtþ1,θtþ2, ���,θT ;ϑt,ϑtþ1, ���,ϑT

 XT
ζ¼tþ1

B
σζð Þi
ζ K*

ζ

� �
1þ rð Þ� ζ�1ð Þ þ qi K*

Tþ1


 �
1þ rð Þ�T

�

¼ Eϑt

� Xηtþ1

σtþ1¼1

λσtþ1

tþ1


ξ σtþ1ð Þi tþ 1,K*

tþ1


 � � �

¼ Eϑt

� Xηtþ1

σtþ1¼1

λσtþ1

tþ1


ξ σtþ1ð Þi tþ 1,K*

t þ
Xn
h¼1

ψ σtð Þh*
t K*

t


 �� δK*
t þ ϑt

" # � �
.

Substituting the term

Eθtþ1,θtþ2, ���,θT ;ϑt,ϑtþ1, ���,ϑT

 XT
ζ¼tþ1

B
σζð Þi
ζ K*

ζ

� �
1þ rð Þ� ζ�1ð Þ þ qi K*

Tþ1


 �
1þ rð Þ�T

�

by Eϑt

� Xηtþ1

σtþ1¼1

λσtþ1

tþ1


ξ σtþ1ð Þi tþ 1,K*

t þ
Xn
h¼1

ψ σtð Þh*
t K*

t


 �� δK*
t þ ϑt

" # � �
in (5.26)

we can express (5.26) as:
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ξ σtð Þi t;K*
t


 � ¼ B
σtð Þi
t K*

t


 �
1þ rð Þ� t�1ð Þ

þEϑt

� Xηtþ1

σtþ1¼1

λσtþ1

tþ1


ξ σtþ1ð Þi tþ 1,K*

t þ
Xn
h¼1

ψ σtð Þh*
t K*

t


 �� δK*
t þ ϑt

" # � �
:

ð5:30Þ

For condition (5.30), which is an alternative form of (5.26), to hold it is required

that:

B
σtð Þi
t K*

t


 � ¼ 1þ rð Þ t�1ð Þ
�

ξ σtð Þi t;K*
t


 �
�Eϑt

� Xηtþ1

σtþ1¼1

λσtþ1

tþ1


ξ σtþ1ð Þi tþ 1,K*

t þ
Xn
h¼1

ψ σtð Þh*
t K*

t


 �� δK*
t þ ϑt

" # � � �
;

ð5:31Þ

for i2N and t2 1; 2; � � �; Tf g.
Therefore by payingB

σtð Þi
t K*

t


 �
to agent i2N at stage t2 1; 2; � � �; Tf g, ifθσtt occurs

and K*
t 2X*

t is realized, leads to the realization of the imputation in (5.26). Hence

Theorem 5.3 follows. ■

For a given imputation vector

ξ σtð Þ t;K*
t


 � ¼ ξ σtð Þ1 t;K*
t


 �
, ξ σtð Þ2 t;K*

t


 �
, � � �, ξ σtð Þn t;K*

t


 �h i
;

for σt2 1; 2; � � �; ηtf g and t2 1; 2; � � �; Tf g, Theorem 5.3 can be used to derive the

PDP that leads to the realization this vector.

12.5.3.2 Transfer Payments

When all agents are using the cooperative strategies given that K*
t 2X*

t , and θσtt
occur, the payoff that agent i will directly receive at stage t becomes

Ri K*
t ; θ

σt
t


 �� Ci ψ σtð Þi*
t K*

t


 �
, θσtt

� �h i
1þ rð Þ� t�1ð Þ ð5:32Þ

However, according to the agreed upon imputation, agent i is supposed to receive

B
σtð Þi
t K*

t


 �
at stage t as given in Theorem 5.3. Therefore a transfer payment (which

can be positive or negative)
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ϖ σtð Þi
t K*

t


 � ¼ B
σtð Þi
t K*

t


 �� Ri K*
t ; θ

σt
t


 �� Ci ψ σtð Þi*
t K*

t


 �
, θσtt

� �h i
1þ rð Þ� t�1ð Þ;

ð5:33Þ

for t2 1; 2; � � �; Tf g and i2N,

will be assigned to agent i to yield the cooperative imputation ξ σtð Þ t;K*
t


 �
.

12.6 An Illustration

In this section, we provide an illustration of the derivation of a subgame con-

sistent solution of public goods provision under accumulation and payoff uncer-

tainties in a multiple asymmetric agents situation. The basic game structure is a

discrete-time analog of an example in Yeung and Petrosyan (2013b) but with

the crucial addition of uncertain future payoff structures to reflect probable

changes in preferences, technologies, demographic structures and institutional

arrangements.

12.6.1 Public Capital Build-up Amid Uncertainties

We consider an n asymmetric agents economic region in which the agents receive

benefits from an existing public capital stock Kt at each stage t2 1; 2; � � �; Tf g. The
accumulation dynamics of the public capital stock is governed by the stochastic

difference equation:

Ktþ1 ¼ Kt þ
Xn
j¼1

I jt � δKt þ ϑt , K1¼1K0, for t2 1; 2; 3f g; ð6:1Þ

where ϑt is a discrete random variable with non-negative range {ϑ1t ,ϑ
2
t ,ϑ

3
t } and

corresponding probabilities {γ1t , γ
2
t , γ

3
t }, and

X3
j¼1

γ jtϑ
j
t ¼ ϖt > 0.

At stage 1, it is known that θσ11 ¼ θ11 has happened with probability λ11 ¼ 1, and

the payoff of agent i is

α σ1ð Þi
1 K1 � c

σ1ð Þi
1 I i1

 �2

;
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At stage t2 2; 3f g, the payoff of agent i is

α σtð Þi
t Kt � c

σtð Þi
t I it

 �2

;

if θσtt 2 θ1t ; θ
2
t ; θ

3
t ; θ

4
t

� �
occurs.

In particular, α σtð Þi
t Kt gives the gain that agent i derives from the public capital at

stage t2 1; 2; 3f g, and c
σtð Þi
t I it

 �2

is the cost of investing Iit in the public capital.

The probability that θσtt 2 θ1t ; θ
2
t ; θ

3
t ; θ

4
t

� �
will occur at stage t2 2; 3f g is

λσtt 2 λ1t ; λ
2
t ; λ

3
t ; λ

4
t

� �
. In stage 4, a terminal payment contingent upon the size of

the capital stock equaling qiK4 þ mið Þ 1þ rð Þ�3
will be paid to agent i. Since there is

no uncertainty in stage 4, we use θ14 to denote the condition in stage 4 with

probability λ14 ¼ 1.

The objective of agent i2N is to maximize the expected payoff:

Eθ1,θ2,θ3;ϑ1,ϑ2,ϑ3

� X3
τ¼1

α στð Þi
τ Kτ � c στð Þi

τ I iτ

 �2h i

1þ rð Þ� τ�1ð Þ

þ qiK4 þ mið Þ 1þ rð Þ�3

�
; ð6:2Þ

subject to the public capital accumulation dynamics (6.1).

The noncooperative outcome will be examined in the next subsection.

12.6.2 Noncooperative Outcome

Invoking Theorem 5.1, one can characterize the noncooperative Nash equilibrium

strategies for the game (6.1 and 6.2) as follows. In particular, a set of strategies�
I
σtð Þi*
t ¼ ϕ σtð Þi*

t Kð Þ, for σ12 1f g, σ2, σ32 1; 2; 3; 4f g, t2 1; 2; 3f g and i2N
�

pro-

vides a Nash equilibrium solution to the game (6.1 and 6.2) if there exist functions

V σtð Þi t;Kð Þ, for i2N and t2 1; 2; 3f g, such that the following recursive relations are

satisfied:
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V σtð Þi t;Kð Þ¼max
I it

Eϑt

�
α σtð Þi
t K�c

σtð Þi
t I it

 �2h i

1þrð Þ� t�1ð Þ

þ
X4
σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi tþ1,Kþ

Xn
j¼1

j 6¼ i

ϕ σtð Þj*
t Kð Þþ I it �δKþϑt

2
66664

3
77775
�

¼max
I it

�
α σtð Þi
t K�c

σtð Þi
t I it

 �2h i

1þrð Þ� t�1ð Þ

þ
X3
y¼1

γ yt
X4
σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi tþ1,Kþ

Xn
j¼1

j 6¼ i

ϕ σtð Þj*
t Kð Þþ I it �δKþϑ y

t

2
66664

3
77775
�
,

for t2 1;2;3f g; ð6:3Þ
V σ4ð Þi 4;Kð Þ ¼ qiK þ mi


 �
1þ rð Þ�3: ð6:4Þ

Performing the indicated maximization in (6.3) yields:

I it ¼ ϕ σtð Þi*
t Kð Þ

¼ 1þ rð Þt�1

2c
σtð Þi
t

X3
y¼1

γ yt
X4
σtþ1¼1

λσtþ1

tþ1V
σtþ1ð Þi
Ktþ1

tþ 1,K þ
Xn
j¼1

ϕ σtð Þj*
t Kð Þ � δK þ ϑ y

t

" #
;

ð6:5Þ

for i2N, t2 1; 2; 3f g, σ1 ¼ 1, and στ2 1; 2; 3; 4f g for τ2 2; 3f g.
The game equilibrium payoffs of the agents can be obtained as:

Proposition 6.1 The value function which represents the expected payoff of

agent i is:

V σtð Þi t;Kð Þ ¼ A
σtð Þi
t K þ C

σtð Þi
t

h i
1þ rð Þ� t�1ð Þ; ð6:6Þ

for i2N, t2 1; 2; 3f g, σ1 ¼ 1; and στ2 1; 2; 3; 4f g for τ2 2; 3f g;
where

A
σ3ð Þi
3 ¼ α σ3ð Þi

3 þ qi 1� δð Þ 1þ rð Þ�1
, and
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C
σ3ð Þi
3 ¼ � qið Þ2 1þ rð Þ�2

4c
σ3ð Þi
3

þ
2
4 qi

Xn
j¼1

qj 1þ rð Þ�1

2c
σ3ð Þj
3

þ qiϖ3 þ mi

3
5 1þ rð Þ�1;

A
σ2ð Þi
2 ¼ α σ2ð Þi

2 þ
X4
σ3¼1

λσ33 A
σ3ð Þi
3 1� δð Þ 1þ rð Þ�1

, and

C
σ2ð Þi
2 ¼ � 1

4c
σ2ð Þi
2

0
@ X4

σ3¼1

λσ33 A
σ3ð Þi
3

� �
1þ rð Þ�1

1
A

2

þ
X4
σ3¼1

λσ33

2
4 A

σ3ð Þi
3

0
@Xn

j¼1

X4
ρ3¼1

λρ33
A

ρ3ð Þj
3 1þ rð Þ�1

2c
σ2ð Þj
2

þϖ2

1
Aþ C

σ3ð Þi
3

3
5 1þ rð Þ�1

9=
;;

A
σ1ð Þi
1 ¼ α σ1ð Þi

1 þ
X4
σ2¼1

λσ22 A
σ2ð Þi
2 1� δð Þ 1þ rð Þ�1

, and

C
σ1ð Þi
1 ¼ � 1

4c
σ1ð Þi
1

0
@ X4

σ2¼1

λσ22 A
σ2ð Þi
2

� �
1þ rð Þ�1

1
A

2

þ
X4
σ2¼1

λσ22

2
4 A

σ2ð Þi
2

0
@Xn

j¼1

X4
ρ2¼1

λρ22
A

ρ2ð Þj
2 1þ rð Þ�1

2c
σ1ð Þj
1

þϖ1

1
Aþ C

σ2ð Þi
2

3
5 1þ rð Þ�1

9=
;;

for i2N.

Proof See Appendix D. ■

Substituting the relevant derivatives of the value functions V σtð Þi t;Kð Þ in Prop-

osition 6.1 into the game equilibrium strategies (6.5) yields a noncooperative Nash

equilibrium solution of the game (6.1 and 6.2).

12.6.3 Cooperative Provision of Public Capital

Now we consider the case when the agents agree to cooperate and seek to enhance

their gains. They agree to maximize their expected joint gain and distribute the

cooperative gain proportional to their expected non-cooperative gains. The agents

would first maximize their expected joint payoff
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Eθ1,θ2,θ3;ϑ1,ϑ2,ϑ3

� Xn
j¼1

X3
τ¼1

α στð Þj
τ Kτ � c στð Þj

τ I jτ

 �2h i

1þ rð Þ� τ�1ð Þ

þ
Xn
j¼1

qjK4 þ mjð Þ 1þ rð Þ�3

�
; ð6:7Þ

subject to the stochastic dynamics (6.1).

Invoking Theorem 5.2, one can characterize the solution of the stochastic

dynamic programming problem (6.1) and (6.7) as follows. In particular, a set of

control strategies
�
u

σtð Þi*
t ¼ ψ σtð Þi*

t Kð Þ, for t2 1; 2; 3f g and

i2N, σ1 ¼ 1, στ2 1; 2; 3; 4f g for τ2 2; 3f g�, provides an optimal solution to the

problem (6.1) and (6.7) if there exist functionsW σtð Þ t;Kð Þ, for t2 1; 2; 3f g, such that
the following recursive relations are satisfied:

W σtð Þ t;Kð Þ ¼ max
I1t , I2t ���, I nt

Eϑt

( Xn
j¼1

α σtð Þj
t K � c

σtð Þj
t I jt

� �2� �
1þ rð Þ� t�1ð Þ

þ
X4
σtþ1¼1

λσtþ1

tþ1W
σtþ1ð Þ tþ 1,K þ

Xn
j¼1

I jt � δK þ ϑt

" # )

¼ max
I it

( Xn
j¼1

α σtð Þj
t K � c

σtð Þj
t I jt

� �2� �
1þ rð Þ� t�1ð Þ

þ
X3
y¼1

γ yt
X4
σtþ1¼1

λσtþ1

tþ1W
σtþ1ð Þi tþ 1,K þ

Xn
j¼1

I jt � δK þ ϑ y
t

" # )
,

for t2 1; 2; 3f g; ð6:8Þ
W σ4ð Þ 4;Kð Þ ¼

Xn
j¼1

qjK þ mj

 �

1þ rð Þ�3 ð6:9Þ

Performing the indicated maximization in (6.8) yields:

I it ¼ψ σtð Þi*
t Kð Þ

¼ 1þrð Þt�1

2c
σtð Þi
t

X3
y¼1

γ yt
X4
σtþ1¼1

λσtþ1

tþ1W
σtþ1ð Þ
Ktþ1

tþ1,Kþ
Xn
j¼1

ψ σtð Þj*
t Kð Þ�δKþϑ y

t

" #
; ð6:10Þ

for i2N, t2 1; 2; 3f g, σ1 ¼ 1, and στ2 1; 2; 3; 4f g for τ2 2; 3f g.
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The expected joint payoff under cooperation can be obtained as:

Proposition 6.2 The value function which represents the expected joint payoff is

W σtð Þ t;Kð Þ ¼ A
σtð Þ
t K þ C

σtð Þ
t

h i
1þ rð Þ� t�1ð Þ; ð6:11Þ

for t2 1; 2; 3f g, σ1 ¼ 1, and στ2 1; 2; 3; 4f g for τ2 2; 3f g;
where

A
σ3ð Þ
3 ¼

Xn
j¼1

α σ3ð Þj
3 þ

Xn
j¼1

qj 1� δð Þ 1þ rð Þ�1
, and

C
σ3ð Þ
3 ¼ �

Xn
j¼1

Xn

h¼1
qh 1þ rð Þ�1

� � 2

4c
σ3ð Þj
3

þ
Xn
j¼1

"
qj

 Xn
‘¼1

X n

h¼1
qh 1þ rð Þ�1

2c
σ3ð Þ‘
3

þϖ3

!
þ mj

#
1þ rð Þ�1;

A
σ2ð Þ
2 ¼

Xn
j¼1

α σ2ð Þj
2 þ

X4
σ3¼1

λσ33 A
σ3ð Þ
3 1� δð Þ 1þ rð Þ�1

, and

C
σ2ð Þ
2 ¼ �

Xn
j¼1

1

4c
σ2ð Þj
2

 X4
σ3¼1

λσ33 A
σ3ð Þ
3 1þ rð Þ�1

!2

þ
X4
σ3¼1

λσ33

"
A

σ3ð Þi
3

 Xn
j¼1

X4
ρ3¼1

λρ33
A

ρ3ð Þj
3 1þ rð Þ�1

2c
σ2ð Þj
2

þϖ2

!
þ C

σ3ð Þi
3

#
1þ rð Þ�1

)
;

A
σ1ð Þ
1 ¼

Xn
j¼1

α σ1ð Þj
1 þ

X4
σ2¼1

λσ22 A
σ2ð Þ
2 1� δð Þ 1þ rð Þ�1

, and

C
σ1ð Þ
1 ¼ �

Xn
j¼1

1

4c
σ1ð Þj
1

 X4
σ2¼1

λσ22 A
σ2ð Þ
2 1þ rð Þ�1

!2

þ
X4
σ2¼1

λσ22

"
A

σ2ð Þ
2

 Xn
j¼1

X4
ρ2¼1

λρ22
A

ρ2ð Þ
2 1þ rð Þ�1

2c
σ1ð Þj
1

þϖ1

!
þ C

σ2ð Þ
2

#
1þ rð Þ�1

)
:

Proof Follow the proof of Proposition 6.1. ■

Using (6.10) and Proposition 6.2, the optimal cooperative strategies of the agents

can be obtained as:
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ψ σ3ð Þi*
3 Kð Þ ¼

Xn

h¼1
qh 1þ rð Þ�1

2c
σ3ð Þi
3

,

ψ σ2ð Þi*
2 Kð Þ ¼

X4
σ3¼1

λσ33
A

σ3ð Þ
3 1þ rð Þ�1

2c
σ2ð Þi
2

,

ψ σ1ð Þi*
1 Kð Þ ¼

X4
σ2¼1

λσ22
A

σ2ð Þ
2 1þ rð Þ�1

2c
σ1ð Þi
1

, for i2N: ð6:12Þ

Substituting ψ σtð Þi*
t Kð Þ from (6.12) into (6.1) yields the optimal cooperative accu-

mulation dynamics:

Ktþ1 ¼ Kt þ
Xn
j¼1

X4
σtþ1¼1

λσtþ1

tþ1

A
σtþ1ð Þ
tþ1 1þ rð Þ�1

2c
σtð Þj
t

� δKt þ ϑt , K1¼1K0; ð6:13Þ

if θσtt occurs at stage t, for t2 1; 2; 3f g.

12.6.4 Subgame Consistent Cooperative Solution

Given that the agents agree to share the cooperative gain proportional to their

expected non-cooperative payoffs, an imputation

ξ σtð Þi t;K*
t


 �¼ V σtð Þi t;K*
t


 �
Xn
j¼1

V σtð Þj t;K*
t


 �W σtð Þ t;K*
t


 �

¼
A

σtð Þi
t K*

t þC
σtð Þi
t

h i
Xn
j¼1

A
σtð Þi
t K*

t þC
σtð Þi
t

h i A
σtð Þ
t K*

t þC
σtð Þ
t

h i
1þrð Þ� t�1ð Þ

, for i2N; ð6:14Þ

if θσtt occurs at stage t for t2 1; 2; 3f g has to be maintained.

Invoking Theorem 5.3, if θσtt occurs and K*
t 2X*

t is realized at stage t a payment

equaling
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B
σtð Þi
t K*

t


 �¼ 1þrð Þ t�1ð Þ
�
ξ σtð Þi t;K*

t


 �

�
�X3

y¼1

γ yt
Xηtþ1

σtþ1¼1

λσtþ1

tþ1


ξ σtþ1ð Þi�tþ1,K*

t þ
Xn
h¼1

ψ σtð Þh*
t K*

t


 ��δK*
t þϑ y

t

�� �

¼
A

σtð Þi
t K*

t þC
σtð Þi
t

h i
Xn
j¼1

A
σtð Þi
t K*

t þC
σtð Þi
t

h i A
σtð Þ
t K*

t þC
σtð Þ
t

h i

�
X3
y¼1

γ yt
Xηtþ1

σtþ1¼1

λσtþ1

tþ1

A
σtþ1ð Þi
tþ1 Ktþ1 σtþ1;ϑ

y
tð ÞþC

σtþ1ð Þi
tþ1

h i
Xn
j¼1

A
σtþ1ð Þi
tþ1 Ktþ1 σtþ1;ϑ

y
tð ÞþC

σtþ1ð Þi
tþ1

h i
�
A

σtþ1ð Þ
tþ1 Ktþ1 σtþ1;ϑ

y
tð Þ

þC
σtð Þ
tþ1

�
1þrð Þ�1; ð6:15Þ

where Ktþ1 σtþ1; ϑ
y
tð Þ ¼ K*

t þ
Xn
j¼1

X4
σtþ1¼1

λσtþ1

tþ1

A
σtþ1ð Þ

tþ1
1þrð Þ�1

2c
σtð Þj
t

� δK*
t þ ϑ y

t ;

given to agent i at stage t2 1; 2; 3f g if θσtt occurs would lead to the realization of the

imputation (6.14).

A subgame consistent solution and the corresponding payment schemes can be

obtained using Propositions 5.1 and 5.2 and conditions (6.12, 6.13, 6.14 and 6.15).

Finally, since all agents are adopting the cooperative strategies, the payoff that

agent i will directly receive at stage t is

α σtð Þi
t K*

t �
1

4c
σtð Þi
t

 X4
σtþ1¼1

λσtþ1

tþ1A
σtþ1ð Þ
tþ1 1þ rð Þ�1

�2

; ð6:16Þ

if θσtt occurs at stage t.
However, according to the agreed upon imputation, agent i is supposed to

receive ξ σtð Þi t;K*
t


 �
in (6.15), therefore a transfer payment (which can be positive

or negative) equalling

π σtð Þi t;K*
t


 � ¼ ξ σtð Þi t;K*
t


 �� α σtð Þi
t K*

t

þ 1

4c
σtð Þi
t

 X4
σtþ1¼1

λσtþ1

tþ1A
σtþ1ð Þ
tþ1 1þ rð Þ�1

�2

ð6:17Þ

will be given to agent i2N at stage t.
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12.7 Appendices

Appendix A. Proof of Theorem 1.1 Invoking (1.11), one can obtain

ξi τ;K*
τ


 � ¼ E

� ðT
τ
Bi s,K

* sð Þ
 �
e�rsdsþ qi K

* Tð Þ� 	
e�rT

����K* τð Þ ¼ K*
τ

�
,

¼ E

� ðτþΔt

τ
Bi s,K

* sð Þ
 �
e�rsds

þ ξ τþΔtð Þi τ þ Δt,K*
τ þ ΔK*

τ


 �
K* τð Þ ¼ K*

τ

����
�
; ð7:1Þ

i2N and τ2 0; T½ �,
where

ΔK*
τ ¼

� Xn
j¼1

ψ*
j τ;K*

τ


 �� δK*
τ

�
Δtþ σK*

τΔzτ þ o Δtð Þ, and

Δzτ ¼ Z τ þ Δtð Þ � z τð Þ, and Eτ o Δtð Þ½ �=Δt ! 0 as Δt ! 0.

Using (7.1), one obtains

E

� ðτþΔt

τ
Bi s,K

* sð Þ
 �
e�rsds K* τð Þ ¼ K*

τ

����
�

¼ E

�
ξi τ;K*

τ


 �� ξ τþΔtð Þi τ þ Δt,K*
τ þ ΔK*

τ


 �
K* τð Þ ¼ K*

τ

����
�
,

for all τ2 0; T½ � and i2N: ð7:2Þ

If the imputations ξi(τ,K�
τ ) are continuous and differentiable, as Δt ! 0, one can

express condition (7.2) as:

E

�
Bi s;K

*
s


 �
e�rtΔtþ o Δtð Þ

�
¼ E

�
� ξ iτ τ;K*

τ


 �
Δt

� ξ iKτ
τ;K*

τ


 �� Xn
j¼1

ψ*
j τ;K*

τ


 �� δK*
τ

�
Δt

� 1

2
ξ iKτ

τ;K*
τ


 �
σK*

τΔzτ �
1

2
ξ iKτKτ

τ;K*
τ


 �
σ2 K*

τ


 �2Δto Δtð Þ
�

for i2N: ð7:3Þ

Dividing (7.3) throughout by Δt, with Δt ! 0, and taking expectation yield (1.12).

Thus the payoff distribution procedure in Bi
i(s,K

�
s ) in (1.12) would lead to the

realization of ξ(s,K�
s ) in (1.10). ■
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Appendix B. Proof of Proposition 2.1 Using the value functions in Proposition

2.1 and the optimal strategies in (2.5) the Hamilton-Jacobi-Bellman equations (2.4)

reduces to:

r Ai tð ÞK þ Ci tð Þ½ � � _A i tð ÞK þ _C i tð Þ
� 	 ¼ αiK � Ai tð Þ½ �2

4ci
þ Ai tð Þ

� Xn
j¼1

Aj tð Þ
2cj

� δK

�
,

Ai Tð ÞK þ Ci Tð Þ½ � ¼ qi
1K þ qi

2, for i2N; ð7:4Þ

For (7.4) to hold it is required that

_A i tð Þ ¼ r þ δð ÞAi tð Þ � αi, Ai Tð Þ ¼ qi
1; and ð7:5Þ

_C i tð Þ ¼ rCi tð Þ þ Ai tð Þ½ �2
4ci

�
� Xn

j¼1

Ai tð ÞAj tð Þ
2cj

�
, Ci Tð Þ ¼ qi

2; for i2N: ð7:6Þ

The differential equation system (7.5 and 7.6) is a block-recursive system with Ai(t)
in (7.5) being independent of Aj(t) for j 6¼ i and all Cj(t) for j2N.

Solving each of the n independent constant-coefficient linear differential equa-

tion in (7.5) yields:

Ai tð Þ ¼ qi
1 �

αi
r þ δ

 �
e� rþδð Þ T�tð Þ þ αi

r þ δ
, for i2N: ð7:7Þ

Substituting the explicit solution of Ai(t) from (7.7) into (7.6) yields:

_C i tð Þ ¼ rCi tð Þ þ 1

4ci

"
qi
1 �

αi
r þ δ

 �
e� rþδð Þ T�tð Þ þ αi

r þ δ

#2

�
Xn
j¼1

1

2cj

"
qi
1 �

αi
r þ δ

 �
e� rþδð Þ T�tð Þ þ αi

r þ δ

#
"

qj
1 �

αj
r þ δ

 �
e� rþδð Þ T�tð Þ þ αj

r þ δ

#
,

Ci Tð Þ ¼ qi
2, for i2N; ð7:8Þ

which is a system of independent linear differential equations in Ci(t). Note that the
coefficients are integrable functions; hence the solution of Ci(t) could be readily

obtained. Q.E.D.

Appendix C. Proof of Proposition 3.1 Invoking the fact that firms of the same

type are identical, we have ϕ 1ð Þ
i t;Kð Þ ¼ ϕ 1ð Þ

h t;Kð Þ and V 1ð Þi t;Kð Þ ¼ V 1ð Þh t;Kð Þ for
i, h2N1 ; and similarly ϕ 2ð Þ

j t;Kð Þ ¼ ϕ 2ð Þ
‘ t;Kð Þ and V 2ð Þj t;Kð Þ ¼ V 2ð Þ‘ t;Kð Þ for

j, ‘2N2. Using the value functions in Proposition 3.1 and the optimal strategies
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in (3.6 and 3.7), one can express Hamilton-Jacobi-Bellman equations (3.4 and 3.5)

as:

r A1 tð ÞK2 þ B1 tð ÞK þ C1 tð Þ� 	� _A 1 tð ÞK2 þ _B 1 tð ÞK þ _C 1 tð Þ� 	
� A1 tð Þσ2K2

¼
�

α1K � b1K
2 � ρ1 2A1 tð ÞK þ B1 tð Þ � ρ1½ �

� c1=2ð Þ 2A1 tð ÞK þ B1 tð Þ � ρ1½ �2
�

þ 2A1 tð ÞK þ B1 tð Þ½ �
�
n1 2A1 tð ÞK þ B1 tð Þ � ρ1½ �

þ n2 2A2 tð ÞK þ B2 tð Þ � ρ2½ � � δK

�
, A1 Tð ÞK2 þ B1 Tð ÞK þ C1 Tð Þ� 	

¼ q1K
2 þ q2K þ q3

� 	
; r A2 tð ÞK2 þ B2 tð ÞK þ C2 tð Þ� 	

� _A 2 tð ÞK2 þ _B 2 tð ÞK þ _C 2 tð Þ� 	� A2 tð Þσ2K2

¼
�

α2K � b2K
2 � ρ2 2A2 tð ÞK þ B2 tð Þ � ρ2½ �

� c2=2ð Þ 2A2 tð ÞK þ B2 tð Þ � ρ2½ �2
�

þ 2A2 tð ÞK þ B2 tð Þ½ �
�
n1 2A1 tð ÞK þ B1 tð Þ � ρ1½ �

þ n2 2A2 tð ÞK þ B2 tð Þ � ρ2½ � � δK

�
, A2 Tð ÞK2 þ B2 Tð ÞK þ C2 Tð Þ� 	

¼ q1K
2 þ q2K þ q3

� 	
: ð7:9Þ

For system (7.9) to hold it is required that

(i) the coefficients multiplying with K2 and K have to agree with system, and

(ii) the equalities of the other terms as indicated by the system.

These required conditions are given in (3.9, 3.10 and 3.11).

Hence Proposition 3.1 follows. Q.E.D.

Appendix D. Proof of Proposition 6.1 Consider first the last stage, that is stage

3, when θσ33 occurs. Invoking that V σ3ð Þi 3;Kð Þ ¼ A
σ3ð Þi
3 K þ C

σ3ð Þi
3

h i
1þ rð Þ�2

and

V σ4ð Þi 4;K4ð Þ ¼ qiK þ mið Þ 1þ rð Þ�3
from Proposition 6.1, the condition governing

t ¼ 3 in equation (6.3) becomes
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A
σ3ð Þi
3 K þ C

σ3ð Þi
3

h i
1þ rð Þ�2 ¼ max

I i3

�
α σ3ð Þi
3 K � c

σ3ð Þi
3 I i3

 �2h i

1þ rð Þ�2

þ
X3
y¼1

γ y3
X1
σ4¼1

λσ44�
qi


K þ
Xn
j ¼ 1

j 6¼ i

ϕ σ3ð Þj*
3 Kð Þ þ I i3 � δK þ ϑ y

3

�
þ mi

�
1þ rð Þ�3

�
, for i2N:

ð7:10Þ

Performing the indicated maximization in (7.10) yields the game equilibrium

strategies in stage 3 as:

ϕ σ3ð Þi*
3 Kð Þ ¼ qi 1þ rð Þ�1

2c
σ3ð Þi
3

, for i2N: ð7:11Þ

Substituting (7.11) into (7.10) yields:

A
σ3ð Þi
3 K þ C

σ3ð Þi
3

h i
¼ α σ3ð Þi

3 K � qið Þ2 1þ rð Þ�2

4c
σ3ð Þi
3

þ
X3
y¼1

γ y3

�
qi


K þ
Xn
j¼1

qj 1þ rð Þ�1

2c
σ3ð Þj
3

� δK þ ϑ y
t

�
þ mi

�
1þ rð Þ�1

�
; ð7:12Þ

for i2N.
Note that both sides of equation (7.12) are linear expressions of K. For (7.12) to

hold it is required that:

A
σ3ð Þi
3 ¼ α σ3ð Þi

3 þ qi 1� δð Þ 1þ rð Þ�1
, and

C
σ3ð Þi
3 ¼ � qið Þ2 1þ rð Þ�2

4c
σ3ð Þi
3

þ
"
qi
Xn
j¼1

qj 1þ rð Þ�1

2c
σ3ð Þj
3

þ qiϖ3 þ mi

#
1þ rð Þ�1; ð7:13Þ

for i2N.

Now we proceed to stage 2, usingV σ3ð Þi 3;Kð Þ ¼ A
σ3ð Þi
3 K þ C

σ3ð Þi
3

h i
1þ rð Þ�2

with

A
σ3ð Þi
3 and C

σ3ð Þi
3 given in (7.13), the conditions in equation (6.3) become
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A
σ2ð Þi
2 K þ C

σ2ð Þi
2

h i
1þ rð Þ�1 ¼ max

I i2

(
α σ2ð Þi
2 K � c

σ2ð Þi
2 I i2

 �2h i

1þ rð Þ�1

þ
X3
y¼1

γ y2
X4
σ3¼1

λσ33

"
A

σ3ð Þi
3

 
K þ

Xn
j ¼ 1

j 6¼ i

ϕ σ2ð Þj*
2 Kð Þ þ I i2 � δK þ ϑ y

2

!
þ C

σ3ð Þi
3

#
1þ rð Þ�2

)
,

for i2N: ð7:14Þ

Performing the indicated maximization in (7.14) yields the game equilibrium

strategies in stage 2 as:

ϕ σ2ð Þi*
2 Kð Þ ¼

X4
σ3¼1

λσ33
A

σ3ð Þi
3 1þ rð Þ�1

2c
σ2ð Þi
2

, for i2N: ð7:15Þ

Substituting (7.15) into (7.14) yields:

A
σ2ð Þi
2 K þ C

σ2ð Þi
2

h i
¼ α σ2ð Þi

2 K � 1

4c
σ2ð Þi
2

 X4
σ3¼1

λσ33 A
σ3ð Þi
3 1þ rð Þ�1

!2

þ
X3
y¼1

γ y2
X4
σ3¼1

λσ33

"
A

σ3ð Þi
3

 
K þ

Xn
j¼1

X4
ρ3¼1

λρ33
A

ρ3ð Þj
3 1þ rð Þ�1

2c
σ2ð Þj
2

� δK þ ϑ y
2

!
þ C

σ3ð Þi
3

#
1þ rð Þ�1

)
, for i2N: ð7:16Þ

Both sides of equation (7.16) are linear expressions of K. For (7.16) to hold it is

required that:

A
σ2ð Þi
2 ¼ α σ2ð Þi

2 þ
X4
σ3¼1

λσ33 A
σ3ð Þi
3 1� δð Þ 1þ rð Þ�1

, and

C
σ2ð Þi
2 ¼ � 1

4c
σ2ð Þi
2

 X4
σ3¼1

λσ33 A
σ3ð Þi
3 1þ rð Þ�1

!2

þ
X4
σ3¼1

λσ33

"
A

σ3ð Þi
3

 Xn
j¼1

X4
ρ3¼1

λρ33
A

ρ3ð Þj
3 1þ rð Þ�1

2c
σ2ð Þj
2

þϖ2

!
þ C

σ3ð Þi
3

#
1þ rð Þ�1

)
,

for i2N: ð7:17Þ
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Now we proceed to stage 1, using V σ2ð Þi 2;Kð Þ ¼ A
σ2ð Þi
2 K þ C

σ2ð Þi
2

h i
1þ rð Þ�1

with

A
σ2ð Þi
2 and C

σ2ð Þi
2 given in (7.17), the conditions in equation (6.3) become

A
σ1ð Þi
1 K þ C

σ1ð Þi
1

h i
¼ max

I i1

�
α σ1ð Þi
1 K � c

σ1ð Þi
1 I i1

 �2h i

þ
X3
y¼1

γ y1
X4
σ2¼1

λσ22�
A

σ2ð Þi
2


K þ

Xn
j ¼ 1

j 6¼ i

ϕ σ1ð Þj*
1 Kð Þ þ I i1 � δK þ ϑ y

1

�
þ C

σ2ð Þi
2

�
1þ rð Þ�1

�
,

for i2N: ð7:18Þ

Performing the indicated maximization in (7.18) yields the game equilibrium

strategies in stage 1 as:

ϕ σ1ð Þi*
1 Kð Þ ¼

X4
σ2¼1

λσ22
A

σ2ð Þi
2 1þ rð Þ�1

2c
σ1ð Þi
1

, for i2N ð7:19Þ

Substituting (7.19) into (7.18) yields:

A
σ1ð Þi
1 K þ C

σ1ð Þi
1

h i
¼ α σ1ð Þi

1 K � 1

4c
σ1ð Þi
1

 X4
σ2¼1

λσ22 A
σ2ð Þi
2 1þ rð Þ�1

!2

þ
X3
y¼1

γ y1
X4
σ2¼1

λσ22

"
A

σ2ð Þi
2

 
K þ

Xn
j¼1

X4
ρ2¼1

λρ22
A

ρ2ð Þj
2 1þ rð Þ�1

2c
σ1ð Þj
1

� δK þ ϑ y
1

!
þ C

σ2ð Þi
2

#
1þ rð Þ�1

)
, for i2N: ð7:20Þ

Both sides of equation (7.20) are linear expressions of K. For (7.20) to hold it is

required that:
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A
σ1ð Þi
1 ¼ α σ1ð Þi

1 þ
X4
σ2¼1

λσ22 A
σ2ð Þi
2 1� δð Þ 1þ rð Þ�1

, and

C
σ1ð Þi
1 ¼ � 1

4c
σ1ð Þi
1

 X4
σ1¼1

λσ22 A
σ2ð Þi
2 1þ rð Þ�1

!2

þ
X4
σ2¼1

λσ22

"
A

σ2ð Þi
2

 Xn
j¼1

X4
ρ2¼1

λρ22
A

ρ2ð Þj
2 1þ rð Þ�1

2c
σ1ð Þj
1

þϖ1

!
þ C

σ2ð Þi
2

#
1þ rð Þ�1

)
,

for i2N: ð7:21Þ

Hence Proposition 6.1 follows. Q.E.D.

12.8 Chapter Notes

Though cooperative provision of public goods is the key to a socially optimal

solution one may find it hard to be convinced that dynamic cooperation can offer a

long-term solution unless the agreed-upon optimality principle can be maintained

from the beginning to the end. The notion of public goods, which are non-rival and

non-excludable, was first introduced by Samuelson (1954). Problems concerning

private provision of public goods are studied in Bergstrom et al. (1986). Static

analysis on provision of public goods are found in Chamberlin (1974), McGuire

(1974) and Gradstein and Nitzan (1989). In many contexts, the provision and use of

public goods are carried out in an intertemporal framework. Fershtman and Nitzan

(1991) and Wirl (1996) considered differential games of public goods provision

with symmetric agents. Wang and Ewald (2010) introduced stochastic elements

into these games. Dockner et al. (2000) presented a game model with two asym-

metric agents in which knowledge is a public good. These studies on dynamic game

analysis focus on the noncooperative equilibria and the collusive solution that

maximizes the joint payoffs of all agents.

This Chapter provides applications of cooperative provision of public goods

with a subgame consistent cooperative scheme. The analysis can be readily

extended into a multiple public capital goods paradigm. In addition, more compli-

cated stochastic disturbances in the public goods dynamics, like

σ I1 sð Þ, I2 sð Þ, � � �, In sð Þ,K sð Þ½ �, can be adopted.

12.9 Problems

1. Consider a 4-stage 3 asymmetric agents economic game in which the agents

receive benefits from an existing public capital stock Kt. The accumulation
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dynamics of the public capital stock is governed by the stochastic difference

equation:

Ktþ1 ¼ Kt þ
X5
j¼1

I jt � 0:1Kt þ ϑt , K1¼120, for t2 1; 2; 3; 4f g;

where ϑt is a discrete random variable with range {1, 2, 3} and corresponding

probabilities {0.7, 0.2, 0.1}.

At stage 1, it is known that θ11 has happened, and the payoffs of agents 1, 2 and
3 are respectively:

5K1 � 2 I1ð Þ2, 3K1 � I1ð Þ2 and 6K1 � 3 I1ð Þ2:

At stage t2 2; 3; 4f g, the payoffs of agent 1, 2 and 3 are respectively

5K1 � 2 I1ð Þ2, 3K1 � I1ð Þ2 and6K1 � 3 I1ð Þ2

if θ1t occurs; and the payoffs of agent 1, 2 and 3 are respectively

6K1 � 2 I1ð Þ2, 3K1 � 2 I1ð Þ2, 4K1 � 2 I1ð Þ2

if θ2t occurs.
The probability that θ1t would occur is 0.6 and the probability that θ2t would

occur is 0.4.

In stage 5, the terminal valuations of the agent 1, 2 and 3 are respectively:

2K5 þ 10ð Þ 1þ rð Þ�4
, K5 þ 15ð Þ 1þ rð Þ�4

and 3K5 þ 5ð Þ 1þ rð Þ�4:

Characterize the feedback Nash equilibrium.

2. Obtain a group optimal solution that maximizes the joint expected profit.

3. Consider the case when the agents agree to share the cooperative gain propor-

tional to their expected non-cooperative payoffs in providing the public good

jointly. Derive a subgame consistent solution.
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Chapter 13

Collaborative Environmental Management

After several decades of rapid technological advancement and economic

growth, alarming levels of pollutions and environmental degradation are

emerging all over the world. Due to the geographical diffusion of pollutants,

unilateral response on the part of one country or region is often ineffective.

Though cooperation in environmental control holds out the best promise of

effective action, limited success has been observed. Existing multinational

joint initiatives like the Kyoto Protocol or pollution permit trading can hardly

be expected to offer a long-term solution because there is no guarantee that

participants will always be better off within the entire duration of the agree-

ment. This Chapter presents collaborative schemes in a cooperative differen-

tial game framework and derives subgame consistent solutions for the

schemes.

Sections 13.1, 13.2, 13.3, and 13.4 of this Chapter give an integrated exposition

of the work of Yeung and Petrosyan (2008) on a cooperative stochastic differential

game of transboundary industrial pollution. The game formulation is provided in

Sect. 13.1 and noncooperative outcomes are characterized in Sect. 13.2. Coopera-

tive arrangements, subgame-consistent imputations and payment distribution

mechanism are provided in Sect. 13.3. A numerical example is given in

Sect. 13.4. In Sect. 13.5, an extension of the Yeung and Petrosyan (2008) analysis

to incorporate uncertainties in future payoffs is presented. Section 13.6 contains the

chapter appendices. Chapter notes are given in Sect. 13.7 and problems in

Sect. 13.8.

13.1 Game Formulation

In this section we present a stochastic differential game model of environmental

with n asymmetric nations or regions.

© Springer Science+Business Media Singapore 2016
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13.1.1 The Industrial Sector

Consider a multinational economy which is comprised of n nations. To allow

different degrees of substitutability among the nations’ outputs a differentiated

products oligopoly model has to be adopted. The differentiated oligopoly model

used by Dixit (1979) and Singh and Vives (1984) in industrial organizations is

adopted to characterize the interactions in this international market. In particular,

the nations’ outputs may range from a homogeneous product to n unrelated prod-

ucts. Specifically, the inverse demand function of the output of nation i 2 N�
1; 2; � � �; nf g at time instant s is

Pi sð Þ ¼ αi �
Xn
j¼1

β i
j qj sð Þ; ð1:1Þ

where Pi(s) is the price of the output of nation i, qj(s), is the output of nation j, α
i and

βij for i 2 N and j 2 N are positive constants. The output choice qj sð Þ 2 0; qj
� �

is

nonnegative and bounded by a maximum output constraint qj. Output price equals

zero if the right-hand-side of (1.1) becomes negative. The demand system (1.1)

shows that the economy is a form of differentiated products oligopoly with substi-

tute goods. In the case when αi ¼ αj and β i
j ¼ β j

i for all i 2 N and j 2 N, the

industrial outputs resemble a homogeneous good. In the case when β i
j ¼ 0 for i 6¼ j,

the n nations produce n unrelated products. Moreover, the industry equilibrium

generated by this oligopoly model is computable and fully tractable.

Industrial profits of nation i at time s can be expressed as:

πi sð Þ ¼ αi �
Xn
j¼1

β i
j qj sð Þ

" #
qi sð Þ � ciqi sð Þ � vi sð Þqi sð Þ, for i 2 N: ð1:2Þ

where vi sð Þ � 0 is the tax rate imposed by government i on its industrial output at
time s and ci is the unit cost of production. At each time instant s, the industrial
sector of nation i 2 N seeks to maximize (1.2). Note that each industrial sector

would consider the information on the demand structure, each other’s cost

structures and tax policies. In a competitive market equilibrium firms will

produce up to a point where marginal cost of production equals marginal revenue

and the first order condition for a Nash equilibrium for the n nations economy

yields

Xn
j¼1

β i
j qj sð Þ þ β i

i qi sð Þ ¼ αi � ci � vi sð Þ, for i 2 N: ð1:3Þ

With output tax rates v sð Þ ¼ v1 sð Þ, v2 sð Þ, � � �, vn sð Þf g being regarded as parameters

by the industrial sectors (1.3) becomes a system of equations linear in
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q sð Þ ¼ q1 sð Þ, q2 sð Þ, � � �, qn sð Þf g. Solving (1.3) yields an industry equilibrium with

output in industry i being

qi sð Þ ¼ ϕi v sð Þð Þ ¼ αi þ
X
j2N

β
i

j vj sð Þ; ð1:4Þ

where αi and β
i

j , for i 2 N and j 2 N, are constants involving the model parameters

β11;β
1
2; � � �;β1n;β21;β22; � � �;β2n; � � �;β n

1 ;β
n
2 ; � � �;β n

n

� �
, α1;α2; � � �;αn� �

and c1;c2; � � �;cnf g.
One can readily observe from (1.3) that an increase in the tax rate has the same

effect of an increase in cost. Ceteris paribus, an increase in nation i’s tax rate would
depress the output of industrial sector i and vice versa.

13.1.2 Local and Global Environmental Impacts

Industrial production emits pollutants into the environment. The emitted pollutants

cause short term local impacts on neighboring areas of the origin of production in

forms like passing-by waste in waterways, wind-driven suspended particles in air,

unpleasant odour, noise, dust and heat. For an output of qi(s) produced by nation i,

there will be a short-term local environmental impact (cost) of εiiqi(s) on nation

i itself and a local impact of εijqi(s) on its neighbor nation j. Nation i will receive

short-term local environmental impacts from its adjacent nations measured as

εjiqj(s) for j 2 K
i
. Thus K

i
is the subset of nations whose outputs produce local

environmental impacts to nation i. Moreover, industrial production would also

create long-term global environmental impacts by building up existing pollution

stocks like Green-house-gas, CFC and atmospheric particulates. Each government

adopts its own pollution abatement policy to reduce the pollution stock. Let x sð Þ
� Rþ denote the level of pollution at time s, the dynamics of pollution stock is

governed by the stochastic differential equation:

dx sð Þ ¼
� Xn

j¼1

ajqj sð Þ �
Xn
j¼1

bjuj sð Þ x sð Þ½ �1=2 � δx sð Þ
�
dsþ σ x sð Þdz sð Þ, x t0ð Þ ¼ xt0 ;

ð1:5Þ

where σ is a noise parameter and z(s) is a Wiener process, ajqj is the amount added

to the pollution stock by a unit of nation j’s output, uj(s) is the pollution abatement

effort of nation j, bjuj(s)[x(s)]
1/2 is the amount of pollution removed by uj(s) unit of

abatement effort of nation j, and δ is the natural rate of decay of the pollutants.

Short term local impacts are closely related to the level of production activities

and hence are characterized by a deterministic scheme. On the other hand, the

accumulation of pollution stock like greenhouse gas often involves the interactions

between the natural environment and the pollutants emitted and hence stochastic
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elements would appear. For instance, nature’s capability to replenish the environ-

ment, the rate of pollution degradation and climate change are subject to certain

degrees of uncertainty. Hence a stochastic dynamic game is used to model the

evolution of pollution stock (1.5). Finally the damage (cost) of the pollution stock in

the environment to nation i at time s is hix(s).

13.1.3 The Governments’ Objectives

The governments have to promote business interests and at the same time handle

the financing of the costs brought about by pollution. In particular, each government

maximizes the net gains in the industrial sector minus the sum of expenditures on

pollution abatement and damages from pollution. The instantaneous objective of

government i at time s can be expressed as:

αi �
Xn
j¼1

β i
j qj sð Þ

" #
qi sð Þ � ciqi sð Þ � cai ui sð Þ½ �2 �

X
j2Ki

ε ji qj sð Þ� �� hix sð Þ, i 2 N;

ð1:6Þ

where cai [ui(s)]
2 is the cost of employing ui amount of pollution abatement

effort, and hix(s) is the value of damage to country i from x(s) amount of

pollution.

The governments’ planning horizon is [t0,T]. It is possible that T may be very

large. At time T, the terminal appraisal associated with the state of pollution is gi

xi � x Tð Þ½ � where gi � 0 and xi � 0. The discount rate is r. Each one of the

n governments seeks to maximize the integral of its instantaneous objective (1.6)

over the planning horizon subject to pollution dynamics (1.5) with controls on the

level of abatement effort and output tax.

By substituting qi(s), for i 2 N, from (1.4) into (1.5) and (1.6) one obtains a

stochastic differential game in which government i 2 N seeks to:
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max
vi sð Þ, ui sð Þ

Et0

� ðT
t0

� 	
αi �

Xn
j¼1

β i
j αj þ

X
h2N

β
j

h vh sð Þ
" # 


αi þ
X
h2N

β
i

h vh sð Þ
" #

�ci αi þ
X
j2N

β
i

j vj sð Þ
" #

� cai ui sð Þ½ �2 �
X
j2Ki

ε ji αj þ
X
‘2N

β
j

‘ v‘ sð Þ
" #

�hix sð Þ
�
e�r s�t0ð Þds� gi x Tð Þ � xi½ �e�r T�t0ð Þ

�
ð1:7Þ

subject to

dx sð Þ ¼
� Xn

j¼1

aj αj þ
X
h2N

β
j

h vh sð Þ
" #

�
Xn
j¼1

bjuj sð Þ x sð Þ½ �1=2 � δx sð Þ
�
ds

þ σ x sð Þdz sð Þ, x t0ð Þ ¼ xt0 : ð1:8Þ

In the game (1.7 and 1.8) one can readily observe that government i’s tax policy
vi sð Þ is not only explicitly reflected in its own output but also on the outputs of other
nations. This modeling formulation allows some intriguing scenario to arise. For

instance, an increase of vi sð Þ may just cause a minor drop in nation i’s industrial
profit but may cause significant increases in its neighbors’ outputs which produce

large local negative environmental impacts to nation i. This results in nations’
reluctance to increase or impose taxes on industrial outputs.

13.2 Noncooperative Outcomes

In this section we discuss the solution to the noncooperative game (1.7) and (1.8).

Since the payoffs of nations are measured in monetary terms, the game is a

transferable payoff game. Under a noncooperative framework, a feedback Nash

equilibrium solution can be characterized as (see Basar and Olsder (1995)):
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Definition 2.1 A set of feedback strategies
�
u*i tð Þ ¼ μi t; xð Þ, v*i tð Þ ¼ ϕi t; xð Þ; for

i 2 N
�
provides a Nash equilibrium solution to the game (1.7 and 1.8) if there exist

suitably smooth functionsVi t; xð Þ : t0; T½ � � R ! R, i 2 N, satisfying the following
partial differential equations:

�V i
t t; xð Þ � σ2x2

2
V i
xx t; xð Þ ¼ max

vi,ui

�
� 	

αi �
Xn
j¼1

β i
j

αj þ
Xn
h 2 N
h 6¼ i

β
j

h ϕh t; xð Þ þ β
j

i vi

2
664

3
775
!

αi þ
X
h 2 N
h 6¼ i

β
i

h ϕh t; xð Þ þ β
i

i vi

2
664

3
775

�ci
αi þ

X
j 2 N
j 6¼ i

β
i

j
ϕj t; xð Þ þ β

i

i vi

2
664

3
775� cai ui½ �2

�
X
j2Ki

ε ji
αj þ

X
‘ 2 N
‘ 6¼ i

β
j

‘
ϕ‘ t; xð Þ þ β

j

i vi

2
664

3
775� hix

�
e�r t�t0ð Þ

þV i
x

� Xn
j¼1

aj
αj þ

X
h 2 N
h 6¼ i

β
j

h
ϕh t; xð Þ þ β

j

i vi

2
664

3
775

�
Xn
j ¼ 1

j 6¼ i

bjμj t; xð Þx1=2 � biuix
1=2 � δx

� �
;

ð2:1Þ
Vi T; xð Þ ¼ �gi x� xi

� �
e�r T�t0ð Þ: ð2:2Þ

Performing the indicated maximization in (2.1) yields:

μi t; xð Þ ¼ � bi
2cai

V i
x t; xð Þer t�t0ð Þx1=2; ð2:3Þ

	
αi �

Xn
j¼1

β i
j αj þ

Xn
h2N

β
j

h ϕh t; xð Þ
" # 


β
i

i �
"Xn

j¼1

β i
j β

j

i

#
αi þ

X
h2N

β
i

h ϕh t; xð Þ
" #

�ciβ
i

i �
X
j2Ki

ε ji β
j

i þ V i
x

Xn
j¼1

ajβ
j

i e
r t�t0ð Þ ¼ 0;

ð2:4Þ

for t 2 t0 < T½ � and i 2 N.
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System (2.4) forms a set of equations linear in ϕ1 t; xð Þ,ϕ2 t; xð Þ, � � �,ϕn t; xð Þf g
with V1

x t; xð Þer t�t0ð Þ,V2
x t; xð Þer t�t0ð Þ, � � �,V n

x t; xð Þer t�t0ð Þ� �
being taken as a set of

parameters. Solving (2.4) yields:

ϕi t; xð Þ ¼ α̂ i þ
X
j2N

β̂
i

j V j
x t; xð Þer t�t0ð Þ, i 2 N; ð2:5Þ

where α̂ i and β̂
i

j , for i 2 N and j 2 N, are constants involving the constant

coefficients in (2.4). Substituting the results in (2.3) and (2.5) into (2.1 and 2.2)

we obtain game equilibrium expected payoffs of the nations as:

Proposition 2.1
Vi t; xð Þ ¼ Ai tð Þxþ Ci tð Þ½ � e�r t�t0ð Þ, for i 2 N; ð2:6Þ

where A1 tð Þ,A2 tð Þ, � � �,An tð Þf g satisfying the following set of constant coefficient

quadratic ordinary differential equations:

_A i tð Þ ¼ r þ δð Þ Ai tð Þ � b2i
4cai

Ai tð Þ½ �2 � Ai tð Þ
Xn
j ¼ 1

j 6¼ i

b2j
2caj

Aj tð Þ þ hi ,

Ai Tð Þ ¼ �gi; for i 2 N; ð2:7Þ

and Ci tð Þ; i 2 Nf g isgivenby Ci tð Þ ¼ er t�t0ð Þ
� ðt

t0

Fi yð Þe�r y�t0ð Þdyþ C0
i

�
; ð2:8Þ

where C0
i ¼ gixie�r T�t0ð Þ �

ðT
t0

Fi yð Þe�r y�t0ð Þdy

Fi tð Þ ¼ �
	

αi �
Xn
j¼1

β i
j αj þ

Xn
h2Ni

β
j

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" #( ) 


	
αi þ

X
h2N

β
i

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" # 


þci αi �
X
j2N

β
i

j α̂ j þ
X
k2N

β̂
j

k Ak tð Þ
" #( )

þ
X
j2Ki

ε ji αj þ
X
‘2N

β
j

‘ α̂ ‘ þ
X
k2N

β̂
‘

k Ak tð Þ
" #( )

�Ai tð Þ
� Xn

j¼1

aj αj þ
X
h2N

β
j

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" #( ) �

:
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Proof See Appendix A. ■

The corresponding feedback Nash equilibrium strategies of the game (1.7 and

1.8) can be obtained as:

μi t; xð Þ ¼ � bi
2cai

Ai tð Þx1=2 andϕi t; xð Þ ¼ α̂ i þ
X
j2N

β̂
i

j Aj tð Þ

for i 2 N and t 2 t0; T½ �:
ð2:9Þ

A remark that will be utilized in subsequent analysis is given below.

Remark 2.1 Let V(τ)i(t, xt) denote the value function indicating the game equilib-

rium payoff of nation i in a game with payoffs (1.7) and dynamics (1.8) which starts

at time τ. One can readily verify that V τð Þi t; xtð Þ ¼ Vi t; xtð Þer τ�t0ð Þ, for τ 2 t0; T½ �. ■

13.3 Cooperative Arrangement

Now consider the case when all the nations want to cooperate and agree to act so that

an international optimum could be achieved. For the cooperative scheme to be upheld

throughout the game horizon both group rationality and individual rationality are

required to be satisfied at any time. In addition, to ensure that the cooperative solution

is dynamically stable, the agreement must be subgame-consistent. The cooperative

plan will dissolve if any of the nations deviates from the agreed-upon plan.

13.3.1 Group Optimality and Cooperative State Trajectory

Consider the cooperative stochastic differential games with payoff structure (1.5) and

dynamics (1.3). To secure group optimality the participating nations seek to maximize

their joint expected payoff by solving the following stochastic control problem:

max
v1, v2, ���, vn; u1, u2, ���, un

Et0

�
ðT
t0

Xn
‘¼1

� 	
α‘ �

Xn
j¼1

β ‘
j αj þ

X
h2N

β
j

h vh sð Þ
" # 


α‘ þ
X
h2N

β
‘

h vh sð Þ
" #

�c‘ α‘ þ
X
j2N

β
‘

j vj sð Þ
" #

� ca‘ u‘ sð Þ½ �2 �
X
j2K‘

ε j‘ αj þ
X
k2N

β
j

k vk sð Þ
" #

�h‘x sð Þ
�
e�r s�t0ð Þds�

Xn
‘¼1

g‘ x Tð Þ � x‘
� �

e�r T�t0ð Þ
�

ð3:1Þ

subject to (1.8).
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Invoking Fleming’s (1969) technique in stochastic control in Theorem A.3 of the

Technical Appendices a set of controls v**i tð Þ, u**i tð Þ� � ¼ ψ i t; xð Þ,ϖi t; xð Þ½ ��
, for i

2 Ng constitutes an optimal solution to the stochastic control problem (3.1) and

(1.8) if there exists continuously differentiable function W t; xð Þ : t0; T½ � � R ! R,
i 2 N; satisfying the following partial differential equations:

�Wt t; xð Þ � σ2x2

2
Wxx t; xð Þ ¼

max
v1, v2, ���, vn; u1, u2, ���, un

( Xn
‘¼1

"  
α‘ �

Xn
j¼1

β ‘
j αj þ

X
h2N

β
j

h vh

" # !
α‘ þ

X
h2N

β
‘

h vh

" #

�c‘ α‘ þ
X
j2N

β
‘

j vj

" #
� ca‘ u‘½ �2 �

X
j2K‘

ε j‘ αj þ
X
k2N

β
j

k vk

" #
� h‘x

#
e�r s�t0ð Þ

þWx t; xð Þ
" Xn

j¼1

aj αj þ
X
h2N

β
j

h vh

" #
�
Xn
j¼1

bjujx
1=2 � δx

# )
;

ð3:2Þ

W T; xð Þ ¼ �
Xn
i¼1

gi x Tð Þ � xi
� �

e�r T�t0ð Þ: ð3:3Þ

Performing the indicated maximization in (3.2) yields the optimal controls under

cooperation as:

ϖi t; xð Þ ¼ � bi
2cai

Wx t; xð Þer t�t0ð Þx1=2, for i 2 N; ð3:4Þ

Xn
‘¼1

"  
α‘ �

Xn
j¼1

β ‘
j αj þ

X
h2N

β
j

h ψh t; xð Þ
" # !

β
‘

i

��Xn
j¼1

β ‘
j β

j

i

�
α‘ þ

X
h2N

β
‘

h ψh t; xð Þ
" # #

�
Xn
‘¼1

"
c‘β

‘

i þ
X
j2Ki

ε j‘β
j

i

#
þ V i

x

Xn
j¼1

ajβ
j

i e
r t�t0ð Þ ¼ 0, for i 2 N:

ð3:5Þ

System (3.5) can be viewed as a set of equations linear in

ψ1 t; xð Þ,ψ2 t; xð Þ, � � �,ψn t; xð Þf g with Wx t; xð Þer t�t0ð Þ being taken as a parameter.

Solving (3.5) yields:
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ψ i t; xð Þ ¼ ^̂α
i þ ^̂β

i

Wx t; xð Þer t�t0ð Þ; ð3:6Þ

where ^̂α
i
and

^̂β
i

, for i 2 N, are constants involving the model parameters.

The expected joint payoff of the nations under cooperation can be obtained as:

Proposition 3.1 System (3.2 and 3.3) admits a solution

W t; xð Þ ¼ A* tð Þxþ C* tð Þ� �
e�r t�t0ð Þ; ð3:7Þ

with

A* tð Þ ¼ AP
* þΦ* tð Þ

�
C
* �

ðt
t0

Xn
j¼1

b2j
2caj

Φ* yð Þdy
��1

, and

C* tð Þ ¼ er t�t0ð Þ
� ðt

t0

F* yð Þe�r y�t0ð Þdyþ C0
*

�
,

where Φ* tð Þ ¼ exp

� ðt
t0

� Xn
j¼1

b2j
2caj

AP
* þ r þ δð Þ

�
dy

�
;

C
* ¼ �Φ* Tð Þ

AP
* þ

Xn
j¼1

gj

 !þ
ðT
t0

Xn
j¼1

b2j
2caj

Φ* yð Þdy,

AP
* tð Þ ¼

�
r þ δð Þ �

�
r þ δð Þ2 þ 4

Xn
j¼1

b2j
2caj

Xn
j¼1

hj

�1=2 �.Xn
j¼1

b2j
c aj
,

F* tð Þ ¼ �
Xn
‘¼1

� 	
α‘ �

Xn
j¼1

β ‘
j αj þ

X
h2N

β
j

h
^̂α

h þ ^̂β
h

A* tð Þ
� �( ) 
�

α‘

þ
X
h2N

β
‘

h
^̂α

h þ ^̂β
h

A* tð Þ
� �)

� c‘ α‘ þ
X
j2N

β
‘

j
^̂α

j þ ^̂β
j

A* tð Þ
� �( )

�
X
j2K‘

ε j‘ αj þ
X
k2N

β
j

k
^̂α

k þ ^̂β
kj

A* tð Þ
� �( ) �

� A*
x tð Þ
� Xn

j¼1

aj αj þ
X
h2N

β
j

h
^̂α

h þ ^̂β
h

A* tð Þ
� �( ) �

, and

C0
* ¼

Xn
j¼1

gjxje�r T�t0ð Þ �
ðT
t0

F* yð Þe�r y�t0ð Þdy:
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Proof See Appendix B. ■

Using (3.4), (3.6) and (3.7), the control strategy under cooperation can be

obtained as:

ψ i t; xð Þ ¼ ^̂α
i þ ^̂β

i

A* tð Þ and ϖi t; xð Þ ¼ � bi
2cai

A* tð Þx1=2; ð3:8Þ

for t 2 t0 < T½ � and i ¼ 1, 2, � � �, n.
Substituting the optimal control strategy from (3.8) into (1.3) yields the dynam-

ics of pollution accumulation under cooperation. Solving the stochastic cooperative

pollution dynamics yields the cooperative state trajectory:

x* tð Þ ¼ e

� ð t
t0

�Xn
j¼1

b2j
2c a

j
A* sð Þ � δ� σ2

2

�
ds þ

ð t
t0

σ dz sð Þ
�

�
xt0 þ

ð t
t0

Xn
j¼1

aj αj þ
X
h2N

β
j

h
^̂α

h þ ^̂β
h

A* sð Þ
� �( )

e

� ð s
t0

�
σ2

2
þδ�
Xn
j¼1

b2j
2c a

j
A* τð Þ

�
dτ�
ð s
t0

σ dz τð Þ
�
ds

�
; ð3:9Þ

for t 2 t0; T½ �.
We use X	

t to denote the set of realizable values of x*(t) at time t generated by

(3.9). The term x	t is used to denote an element in the set X	
t .

A remark that will be utilized in subsequent analysis is given below.

Remark 3.1 Let W(τ)(t, xt) denote the value function indicating the maximized

joint payoff of the stochastic control problem with objective (3.1) and dynamics

(1.8) which starts at time τ. One can readily verify that

W τð Þ t; x*t
�  ¼ W t; x*t

� 
er τ�t0ð Þ, for τ 2 t0; T½ �: ■

13.3.2 Individually Rational and Subgame-Consistent
Imputation

An agreed upon optimality principle must be sought to allocate the cooperative

payoff. In a dynamic framework individual rationality has to be maintained at every

instant of time within the cooperative duration [t0,T] given any feasible state

generated by the cooperative trajectory (3.9). For τ 2 t0; T½ �, let ξ(τ)i(τ, x	τ ) denote
the solution imputation (payoff under cooperation) over the period [τ, T] to player

i 2 N given that the state is x*τ 2 X*
τ . Individual rationality along the cooperative

trajectory requires:
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ξ τð Þi τ; x*τ
�  � V τð Þi τ; x*τ

� 
, for i 2 N, x*τ 2 X*

τ and τ 2 t0; T½ �: ð3:10Þ

Since nations are asymmetric and the number of nations may be large, a reasonable

solution optimality principle for gain distribution is to share the expected gain from

cooperation proportional to the nations’ relative sizes of expected noncooperative

payoffs. As mentioned before, a stringent condition – subgame consistency – is

required for a credible cooperative solution. In order to satisfy the property of

subgame consistency, this optimality principle has to remain in effect throughout

the cooperation period. Hence the solution imputation scheme
�
ξ τð Þi τ; x*τ
� 

; for i

2 N
�
has to satisfy:

Condition 4.1

ξ τð Þi τ; x*τ
�  ¼ V τð Þi τ; x*τ

� þ V τð Þi τ; x*τ
� 

Xn
j¼1

V τð Þj τ; x*τ
�  W τð Þ τ; x*τ

� �Xn
j¼1

V τð Þj τ; x*τ
� " #

¼ V τð Þi τ; x*τ
� 

Xn
j¼1

V τð Þj τ; x*τ
� W τð Þ τ; x*τ

� 
;

ð3:11Þ

for i 2 N, x*τ 2 X*
τ and τ 2 t0; T½ �. ■

One can easily verify that the imputation scheme in Condition 4.1 satisfies

individual rationality. Crucial to the analysis is the formulation of a payment

distribution mechanism that would lead to the realization of Condition 4.1. This

will be done in the next Section.

13.3.3 Payment Distribution Mechanism

To formulate a payment distribution scheme over time so that the agreed upon

imputation (3.11) can be realized for any time instant τ 2 t0; T½ � we apply the

techniques developed in Chap. 3. Let the vectors

B s; x*s
�  ¼ B1 s; x*s

� 
,B2 s; x*s
� 

, � � �,Bn s; x*s
� � �

denote the instantaneous payment

to the n nations at time instant s when the state is x*s 2 X*
s . A terminal value of gi

xi � x*T
� �

is realized by nation i at time T.

To satisfy (3.11) it is required that
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ξ τð Þi τ; x*τ
�  ¼ V τð Þi τ; x*τ

� 
Xn
j¼1

V τð Þj τ; x*τ
� W τð Þ τ; x*τ

�  ¼

Eτ

0
@

8<
:

ð T

τ
Bi s, x

* sð Þ� 
e�r s�τð Þds� gi x*T � xi

� �
e�r T�τð Þ

������ x τð Þ ¼ x*τ

9=
;,

for i 2 N, x*τ 2 X*
τ and τ 2 t0; T½ �:

ð3:12Þ

To facilitate further exposition, we use the term ξ(τ)i(t, x	t ) which equals

Eτ

0
@

8<
:

ð T

t

Bi s, x
* sð Þ� 

e�r s�τð Þds� gi x*T � xi
� �

e�r T�τð Þ

������ x tð Þ ¼ x*t

9=
;

¼ V τð Þi t; x*t
� 

Xn
j¼1

V τð Þj t; x*t
� W τð Þ t; x*t

�  ¼ V tð Þi t; x*t
� 

Xn
j¼1

V tð Þj t; x*t
� W tð Þ t; x*t

� 
e�r t�τð Þ

ξ tð Þi t; x*t
� 

e�r t�τð Þ,

for x*t 2 X*
t and t 2 τ; T½ �;

ð3:13Þ

to denote the expected present value (with initial time set at τ) of nation i’s
cooperative payoff over the time interval [t,T].

A theorem characterizing a formula for Bi(τ, x	τ ), for τ 2 t0; T½ � and i 2 N, which
yields Condition 4.1 is provided below.

Theorem 3.1 A distribution scheme with a terminal payment�gi x*T � xi
� �

at time

T and an instantaneous payment at time τ 2 t0; T½ � when x τð Þ ¼ x*τ :

Bi τ; x
*
τ

�  ¼ � ξ τð Þi
t t; x*t
� ���

t¼τ

h i
� σ2x2

2
ξ τð Þi
x*t x

*
t
t; x*t
� ���

t¼τ

h i

� ξ τð Þi
x*t

t; x*t
� ���

t¼τ

h i� Xn
j¼1

aj αj þ
X
h2N

β
j

h ψh τ; x*τ
� " #

�
Xn
j¼1

bjϖj τ; x
*
τ

� 
x*τ
� 1=2 � δx*τ

�
, for i 2 N; ð3:14Þ

yield Condition 4.1.
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Proof Since ξ(τ)i(t, x	t ) is continuously differentiable in t and x	t , using (3.13) and

Remarks 2.1 and 3.1 one can obtain:

Eτ

8<
:
ð τþΔt

τ
Bi s, x

* sð Þ� 
e�r s�τð Þds

������ x τð Þ ¼ x*τ

9=
;

¼ Eτ

8<
: ξ τð Þi τ; x*τ

� � e�rΔ tξ τþΔtð Þi τ þ Δt, x*τþΔ t

� ������ x τð Þ ¼ x*τ

9=
;

¼ Eτ

8<
: ξ τð Þi τ; x*τ

� � ξ τð Þi τ þ Δt, x*τþΔ t

� ������ x τð Þ ¼ x*τ

9=
;;

ð3:15Þ

for i 2 N and τ 2 t0; T½ �,
where

Δxτ ¼
� Xn

j¼1

aj αj þ
X
h2N

β
j

h ψh τ; x*τ
� " #

�
Xn
j¼1

bjϖj τ; x
*
τ

� �
x*τ

1=2 � δx*τ

�
Δ t

þσ x*τΔ zτ þ o Δtð Þ;

Δzτ ¼ z τ þ Δtð Þ � z τð Þ; and Eτ o Δtð Þ½ �=Δt ! 0 as Δt ! 0.

With Δt ! 0, condition (3.15) can be expressed as:

Eτ

8<
: Bi τ; x

*
τ

� 
Δtþ o Δ tð Þ

9=
; ¼ Eτ

8<
: � ξ τð Þi

t t; x*t
� ���

t¼τ

h i
Δt

� ξ τð Þi
x*t

t; x*t
� ���

t¼τ

h i24 Xn
j¼1

ajψ
q
j τ; x*τ
� 

�
Xn
j¼1

bjψ
u
j τ; x*τ
� 

x*τ
� 1=2 � δx*τ

3
5Δt

� σ2x2

2
ξ τð Þi
x*t x

*
t
t; x*t
� ���

t¼τ

h i
Δt

� ξ τð Þi
x*t

t; x*t
� ���

t¼τ

h i
σ xΔ zτ � o Δtð Þ

9=
;; ð3:16Þ

Taking expectation and dividing (3.16) throughout by Δt, with Δt ! 0, yields

(3.14). Hence Theorem 3.1 follows. ■
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When all nations are adopting the cooperative strategies the rate of instantaneous

payment that nation ‘ 2 N will realize at time t with the state being x	t can be

expressed as (see derivation in Appendix II):

ℜ‘ t; x*t
�  ¼ 	

α‘ �
Xn
j¼1

β ‘
j αj þ

X
h2N

β
j

h
^̂α

h þ ^̂β
h

A* tð Þ
� �( ) 


α‘ þ
X
h2N

β
‘

h
^̂α

h þ ^̂β
h

A* tð Þ
� �( )

�c‘ α‘ þ
X
j2N

β
‘

j
^̂α

j þ ^̂β
j

A* tð Þ
� �( )

� ca‘
b‘
2c a

‘
A* tð Þ

h i2
x*t

�
X
j2K‘

ε j‘ αj þ
X
k2N

β
j

k
^̂α

k þ ^̂β
kj

A* tð Þ
� �( )

� h‘x
*
t :

ð3:17Þ

Since according to Theorem 3.1 under the cooperative scheme an instantaneous

payment to nation ‘ equaling B‘(t, x
	
t ) at time t with the state being x	t , a side

payment of the value B‘ t; x*t
� �ℜ‘ t; x*t

� 
will be offered to nation ‘.

13.4 A Numerical Example

Consider a multinational economy which is comprised of 2 nations. At time instant

s the demand functions of the output of nations 1 and 2 are respectively

P1 sð Þ ¼ 50� q1 sð Þ � 0:5q2 sð Þ and P2 sð Þ ¼ 90� 2q2 sð Þ � q1 sð Þ: ð4:1Þ

The cost of production of a unit of output in nation 1 and nation 2 are respectively

2 and 1. Industrial profits of these nations at time s can be expressed as:

π1 sð Þ ¼ 50� q1 sð Þ � 0:2q2 sð Þ½ �q1 sð Þ � 2q1 sð Þ � v1 sð Þq1 sð Þ and
π2 sð Þ ¼ 90� 2q2 sð Þ � 0:6q1 sð Þ½ �q2 sð Þ � q2 � v2 sð Þq2 sð Þ: ð4:2Þ

where vi sð Þ is the tax rate imposed by the government of nation i on its industrial

output.

An industry equilibrium can be obtained as:

q1 sð Þ ¼ 4355

197
� 100

197
v1 sð Þ þ 5

197
v2 sð Þ and

q2 sð Þ ¼ 3730

197
þ 15

197
v1 sð Þ � 50

197
v2 sð Þ:

ð4:3Þ

The short-term local environmental impact (cost) of nation 1’s output on itself is

0.5q1(s) and that on nation 2 is 0.4q1(s). The short-term local environmental

impact (cost) of nation 2’s output on itself is 0.8q2(s) and that on nation 1 is

0.6q2(s).
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The dynamics of pollution stock is governed by the stochastic differential

equation:

dx sð Þ ¼
�
0:5q1 sð Þ þ q2 sð Þ � 0:4u1 sð Þx sð Þ1=2 � 0:2u2 sð Þx sð Þ1=2 � 0:01x sð Þ

�
ds

þ0:05x sð Þdz sð Þ, x t0ð Þ ¼ 20:

ð4:4Þ

The damage (cost) of the pollution stock in the environment to nations 1 and 2 are

respectively 4x(s) and 5x(s). The abatement costs are 0.5[u1(s)]
2 and [u2(s)]

2 for

nations 1 and 2 respectively. The instantaneous objectives of the governments in

nations 1 and 2 at time s are respectively:

50� q1 sð Þ � 0:2q2 sð Þ½ �q1 sð Þ � 2q1 sð Þ � 0:5 u1 sð Þ½ �2 � 0:5q1 sð Þ � 0:6q2 sð Þ � 4x sð Þ
ð4:5Þ

and

90� 2q2 sð Þ � 0:6q1 sð Þ½ �q2 sð Þ � q2 sð Þ � u2 sð Þ½ �2 � 0:8q2 sð Þ � 0:4q1 sð Þ � 5x sð Þ
ð4:6Þ

At time T ¼ 5 (decades), the terminal value associated with the state of pollution is

2 100� x Tð Þ½ � for nation 1 and 3 60� x Tð Þ½ � for nation 2.

Substituting qi(s), for i 2 1; 2f g, from (4.3) into (4.4, 4.5, and 4.6) one obtains a

stochastic differential game in which government 1 seeks to:

max
v1 sð Þ, u1 sð Þ

E0

� ð5
0

�
20668769:5

38809
� 4988

38809
v1 sð Þ þ 48967

38809
v2 sð Þ

� 15

38809
v1 sð Þv2 sð Þ � 9700

38809
v1 sð Þ½ �2 þ 25

38809
v2 sð Þ½ �2 � 0:5 u1 sð Þ½ �2

�4x sð Þ
�
e�0:05sds� 2 x Tð Þ � 100½ �e�0:25

�
;

ð4:7Þ

and government 2 seeks to

max
v2 sð Þ, u2 sð Þ

E0

� ð5
0

�
26894778

38809
þ 229316

38809
v1 sð Þ � 3704

38809
v2 sð Þ

þ 450

38809
v1 sð Þ½ �2 � 4850

38809
v2 sð Þ½ �2 � 45

38809
v1 sð Þv2 sð Þ � u2 sð Þ½ �2

�5x sð Þ
�
e�0:05sds� 3 x Tð Þ � 60½ �e�0:25

�
;

ð4:8Þ

subject to
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dx sð Þ ¼
�
5907:5

197
� 35

197
v1 sð Þ�47:5

197
v2 sð Þ

�0:4u1 sð Þx sð Þ1=2�0:2u2 sð Þx sð Þ1=2�0:01x sð Þ
�
dsþ0:05x sð Þdz sð Þ,x t0ð Þ¼10:

ð4:9Þ

Solving the game yields:

V1 t; xð Þ ¼ A1 tð Þxþ C1 tð Þ½ � e�0:05 t and V2 t; xð Þ
¼ A2 tð Þxþ C2 tð Þ½ � e�0:05 t; ð4:10Þ

where

_A 1 tð Þ ¼ 0:06A1 tð Þ � 0:08 A1 tð Þð Þ2 � 0:02A1 tð ÞA2 tð Þ þ 4,

_A 2 tð Þ ¼ 0:06A2 tð Þ � 0:01 A2 tð Þð Þ2 � 0:16A1 tð ÞA2 tð Þ þ 5,

A1 5ð Þ ¼ �2, A2 5ð Þ ¼ �3;
_C 1 tð Þ ¼ 0:05C1 tð Þ � 532:1129418� 30:12271238A1 tð Þ þ 1:216826461A2 tð Þ

�0:031957733 A1 tð Þ½ �2 � 0:0005996 A2 tð Þ½ �2 � 0:232474798A1 tð ÞA2 tð Þ,
_C 2 tð Þ ¼ 0:05C2 tð Þ � 691:5051178þ 2:098040543A1 tð Þ � 30:12885088A2 tð Þ

�0:0014636068 A1 tð Þ½ �2 � 0:116177969 A2 tð Þ½ �2 � 0:062738812A1 tð ÞA2 tð Þ,
C1 5ð Þ ¼ 200 and C2 5ð Þ ¼ 180:

The values of A1(t),A2(t),C1(t) and C2(t) over the time interval [0, 5] are computed

and presented in Figs. 13.1a, b.

Now consider the case when all the nations want to cooperate and agree to act

so that an international optimum could be achieved. The instantaneous objective

of the cooperative scheme is the sum of the individual objectives (4.5) and (4.6).

The terminal value associated with the state of pollution is

2 100� x Tð Þ½ � þ 3 60� x Tð Þ½ �.
To secure group optimality the participating nations seek to maximize their joint

expected payoff by solving the following stochastic control problem:

max
v1 sð Þ, v2 sð Þ, u1 sð Þ, μ2 sð Þ

E0

� ð5
0

� �
47563547:5

38809
þ 224328

38809
v1 sð Þ þ 45263

38809
v2 sð Þ

� 60

38809
v1 sð Þv2 sð Þ � 9250

38809
v1 sð Þ½ �2:� 4825

38809
v2 sð Þ½ �2 � 0:5 u1 sð Þ½ �2

� u2 sð Þ½ �2 � 9x sð Þ
�
e�0:05sds� 5 x Tð Þ � 76½ �e�0:25

�
ð4:11Þ

subject to (4.9).
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Solving the stochastic control problem (4.11) and (4.9) yields

W t; xð Þ ¼ A tð Þxþ C tð Þ½ � e�0:05 t ð4:12Þ

where

_A tð Þ ¼ 0:06A tð Þ � 0:09 A tð Þð Þ2 þ 9,
_C tð Þ ¼ 0:05C tð Þ � 1263:273926� 26:72283855A tð Þ � 0:149456522 A tð Þ½ �2,
A 5ð Þ ¼ �5, and C 5ð Þ ¼ 380:

The values of A(t) and C(t) over the time interval [0, 5] are computed and presented

in Figs. 13.2a, b.

The cooperative strategies are:

u*1 tð Þ ¼ ϖ1 t; xð Þ ¼ �0:4A tð Þx1=2, u*2 tð Þ ¼ ϖ2 t; xð Þ ¼ �0:1A tð Þx1=2,
v*1 tð Þ ¼ ψ1 t; xð Þ ¼ 216204942

17852140
� 6597530

17852140
A tð Þ,

v*2 tð Þ ¼ ψ2 t; xð Þ ¼ 41195291

8926070
� 8635002:5

8926070
A tð Þ:

ð4:13Þ

Fig. 13.1 The values of

A1(t), A2(t), C1(t) and C2(t)
over the time interval [0,5]
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Substituting the cooperative strategies into (4.13) yields the dynamics of pollution

accumulation under cooperation as:

dx tð Þ ¼
�
5907:5

197
� 35

197

216204942

17852140
� 6597530

17852140
A tð Þ

� �

� 47:5

197

41195291

8926070
� 8635002:5

8926070
A tð Þ

� �
þ 0:16A tð Þxþ 0:02A tð Þx

� 0:01x

�
dtþ 0:05x sð Þdz sð Þ:

Sharing the expected gain from cooperation proportional to the nations’ relative
sizes of expected noncooperative payoffs yields:

ξ τð Þi τ; x*τ
�  ¼ Ai τð Þx*τ þ Ci τð Þ� �

X2
j¼1

Aj τð Þx*τ þ Cj τð Þ� � A τð Þx*τ þ C τð Þ� � ð4:14Þ

for i 2 1; 2f g, x*τ 2 X*
τ and τ 2 t0; T½ �.

Fig. 13.2 The values of

A(t) and C(t) over the time

interval [0,5]
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Following Theorem 3.1, a subgame consistent payment distribution procedure

consists of a terminal payment 2 100� x*T
� �

to nation 1 and a terminal payment

3 60� x*T
� �

to nation 2 at time T and an instantaneous payment at time τ 2 t0; T½ �:

Bi τ;x*τ
�  ¼ � Ai τð Þx*τ þCi τð Þ� �

X2
j¼1

Aj τð Þx*τ þCj τð Þ� � ! _A τð Þx*τ þ _C τð Þ� ��0:05 A τð Þx*τ þC τð Þ� �� �

� A τð Þx*τ þC τð Þ� �
X2
j¼1

Aj τð Þx*τ þCj τð Þ� � ! _A i τð Þx*τ þ _Ci τð Þ� ��0:05 Ai τð Þx*τ þCi τð Þ� �� �

þ Ai τð Þx*τ þCi τð Þ��A τð Þx*τ þC τð Þ� �
X2
j¼1

Aj τð Þx*τ þCj τð Þ� � !2

X2
j¼1

_Aj τð Þx*τ þ _Cj τð Þ� ��0:05 Aj τð Þx*τ þCj τð Þ� �� �

þ
�

Ai τð Þx*τ þCi τð Þ��A τð Þx*τ þC τð Þ� �
X2
j¼1

Aj τð Þx*τ þCj τð Þ� � !2

X2
j¼1

Aj τð Þ
 !

� Ai τð Þx*τ þCi τð Þ�A τð Þþ A τð Þx*τ þC τð Þ� �
Ai

�
τ

� 
X2
j¼1

Aj τð Þx*τ þCj τð Þ� �
�
�
�
5907:5

197

� 35

197

216204942

17852140
� 6597530

17852140
A τð Þ

� �
�47:5

197

41195291

8926070
�8635002:5

8926070
A τð Þ

� �

þ0:16A τð Þx*τ þ0:02A τð Þx*τ �0:01x*τ

�
, for i2 1;2f g:

When both nations are adopting the cooperative strategies the rate of instantaneous

payment that nation 1 will realize at time t with the state being x	t can be expressed

as

ℜ1 t; x*t
�  ¼ 763:0983415� 1:063694026A tð Þ � 0:115784499 A tð Þ½ �2

� 0:08 A tð Þ½ �2x*t � 4x*t : ð4:15Þ

Similarly, the rate of instantaneous payment that nation 2 will realize at time t with
the state being x	t can be expressed as
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ℜ2 t; x*t
�  ¼ 500:175621þ 1:063674026A tð Þ � 0:033672022 A tð Þ½ �2

� 0:01 A tð Þ½ �2x*t � 5x*t : ð4:16Þ

A side payment of the value B‘ t; x*t
� �ℜ‘ t; x*t

� 
will be offered to nation

‘ 2 1; 2f g. The values of B1(t, x
	
t ),B2(t, x

	
t ),ℜ1(t, x

	
t ),ℜ2(t, x

	
t ) together with the

side payment nation 1 and nation 2 will receive at different time t with given x	t
are given in Table 13.1 below.

13.5 Extension to Uncertainty in Payoffs

In this section we incorporate uncertainty in future payoffs into the cooperative

environmental management presented in the previous sections. Uncertainties in

future payoffs are prevalent in fast developing countries. This type of uncertainties

often hinders the reaching of cooperative agreements in joint pollution control

initiatives. Subgame consistent cooperative schemes provide an effective mean to

resolve the problem.

13.5.1 Game Formulation and Non-cooperative Outcome

Consider a randomly furcating counterpart of the stochastic differential game of

environmental management in Sect. 13.1 in which the future payoffs are not known

with certainty. The game horizon is [t0, T]. When the game commences at t0, the
demand structures, production costs and impacts of the pollution stock of the

nations are known. In future instants of time tk k ¼ 1, 2, � � �, mð Þ, where

t0 < tm < T�tmþ1, the demand structures, production costs and pollution impacts

in the time interval
�
tk, tkþ1


are affected by a series of random events Θk. In

particular, Θk for k 2 1, 2, � � �, mf g, are independent and identically distributed

random variables with range {θ1, θ2, . . ., θη} and corresponding probabilities

Table 13.1 PDP and transfer payments of nations 1 and 2

t x	t B1(t, x
	
t ) ℜ1(t, x

	
t )

Nation 1

side-pay B2(t, x
	
t ) ℜ2(t, x

	
t )

Nation 2

side-pay

0.5 16.274 417.369 575.71 �158.341 638.585 390.152 248.433

1 14.723 403.075 593.578 �190.503 627.295 399.367 227.928

2 13.825 398.045 604.409 �206.364 616.929 404.801 212.128

3 13.773 404.331 608.059 �203.728 606.139 405.705 200.434

3.5 13.941 409.816 611.371 �201.555 597.160 405.729 191.431

4 14.396 415.961 618.542 �202.581 583.725 405.439 178.286

4.5 15.532 421.425 633.153 �211.728 564.143 404.029 160.114
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{λ1, λ2, . . ., λη}. Changes in preference, legal arrangements, technology and the

physical environments are examples of factors which constitute to these

uncertainties.

In the time interval
�
tk, tkþ1


for k ¼ 1, 2, � � �, mð Þ if the random event θak for

ak 2 1; 2; � � �; ηf g is realized the demand function of the output of nation i 2 N�
1; 2; � � �; nf g at time instant s is Pi sð Þ ¼ α i

θak
�
Xn
j¼1

β i
j qj sð Þ, the unit cost of produc-

tion is ci θakð Þ, and the value of damage to country i from x(s) amount of pollution is

h
θak
i x sð Þ. When the game commences at t0, the demand structures, production

costs and pollution impact in the interval
�
t0, t1


are known to be Pi sð Þ ¼ α i

θ1

�
Xn
j¼1

β i
j qj sð Þ, ci θ1ð Þ and hθ1i x sð Þ.

Industrial profits of nation i at time s 2 �tk, tkþ1


if θak is realized can be

expressed as:

π
θak
i sð Þ ¼ �α i

θak
�
Xn
j¼1

β i
j qj sð Þ�qi sð Þ � c

θak
i qi sð Þ � v

θak
i sð Þqi sð Þ, for i 2 N; ð5:1Þ

where v
θak
i sð Þ � 0 is the tax rate imposed by government i on its industrial output at

time s 2 �tk, tkþ1


.

In a competitive market equilibrium firms will produce up to a point where

marginal cost of production equals marginal revenue and the first order condition

for a Nash equilibrium for the n nations economy yields

Xn
j¼1

β i
j qj sð Þ þ β i

i qi sð Þ ¼ α i
θak

� c
θak
i � v

θak
i sð Þ, for i 2 N: ð5:2Þ

With output tax rates vθak sð Þ ¼ v
θak
1 sð Þ, vθak2 sð Þ, � � �, vθakn sð Þ

n o
being regarded as

parameters by firms (5.2) becomes a system of equations linear in

q sð Þ ¼ q1 sð Þ, q2 sð Þ, � � �, qn sð Þf g. Solving (1.3) yields an industry equilibrium with

output in industry i being

qi sð Þ ¼ ϕi v
θak sð Þ�  ¼ α i

θak
þ
X
j2N

β
i θakð Þ
j v

θak
j sð Þ; ð5:3Þ

where α i
θak

and β
i θakð Þ
j , for i 2 N and j 2 N, are constants involving the model

parameters

β11;β
1
2; � ��;β1n;β21;β22; � � �;β2n; � ��;β n

1 ;β
n
2 ; � � �;β n

n

� �
, α1θak

;α2θak
; �� �;αn

θak

n o
and c

θak
1 ;c

θak
2 ; � � �;cθakn

n o
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The instantaneous objective of government i at time s 2 �tk, tkþ1


can be

expressed as:

�
α i
θak

�
Xn
j¼1

β i
j qj sð Þ�qi sð Þ� c

θak
i qi sð Þ� cai u

θak
i sð Þ

h i2
�
X
j2Ki

ε ji qj sð Þ� �� h
θak
i x sð Þ, i2N

ð5:4Þ

By substituting qi(s), for i 2 N, from (5.3) into (5.4) and (1.5) one obtains a

randomly furcating stochastic differential game in which government i 2 N seeks to

maximize its payoff:

Et0

(ðt1
t0

" 
α i
θ1
�
Xn
j¼1

β i
j α j

θ1
þ
X
h2N

β
j θ1ð Þ
h vθ1h sð Þ

" #!
α i
θ1
þ
X
h2N

β
i θ1ð Þ
h vθ1h sð Þ

" #

�cθ1i α i
θ1
þ
X
j2N

β
i θ1ð Þ
j vθ1j sð Þ

" #
�cai uθ1i sð Þ� �2�X

j2Ki

ε ji α j
θ1
þ
X
‘2N

β
j θ1ð Þ
‘ vθ1‘ sð Þ

" #

�hθ1i x sð Þ
#
e�r s�t0ð Þds

þ
Xm
k¼1

Xη
ak¼1

λak

ðtkþ1

tk

" 
α i
θak
�
Xn
j¼1

β i
j α j

θak
þ
X
h2N

β
j θakð Þ
h v

θak
h sð Þ

" #!
α i
θak

þ
X
h2N

β
i θakð Þ
h v

θak
h sð Þ

" #

�c
θak
i α i

θak
þ
X
j2N

β
i θakð Þ
j v

θak
j sð Þ

" #
�cai u

θak
i sð Þ

h i2
�
X
j2Ki

ε ji α j
θak

þ
X
‘2N

β
j θakð Þ
‘ v

θak
‘ sð Þ

" #

�h
θak
i x sð Þ

#
e�r s�t0ð Þds�gi x Tð Þ�xi

� �
e�r T�t0ð Þ

)
ð5:5Þ

subject to

dx sð Þ¼
�Xn

j¼1

aj α j
θak

þ
X
h2N

β
j θakð Þ
h v

θak
h sð Þ

" #
�
Xn
j¼1

bju
θak
j sð Þ x sð Þ½ �1=2�δx sð Þ

�
ds

þσx sð Þdz sð Þ, fors2 �tk, tkþ1


ifθak occurs in the interval

�
tk, tkþ1


,

and x t0ð Þ¼ xt0 ð5:6Þ

Invoking 1.1 in Chap. 4 a Nash equilibrium of the randomly furcating stochastic

differential game (5.5 and 5.6) can be characterized by the following theorem.
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Theorem 5.1 A set of feedback strategies fu mð Þθam*

i tð Þ ¼ μ mð Þθam
i t; xð Þ, v mð Þθam*

i tð Þ
¼ ϕ mð Þθam

i t; xð Þ; for t 2 tm; T½ �; u kð Þθak*
i tð Þ ¼ μ

kð Þθak
i t; xð Þ, v kð Þθak*

i tð Þ ¼ ϕ
kð Þθαk
i t; xð Þ; for

t 2 �tk, tkþ1


, k 2 0, 1, 2, � � �,m� 1f g and i 2 Ng, contingent upon the events θam

2 θ1, θ2, . . . , θη
� �

and θak 2 θ1, θ2, . . . , θη
� �

for k 2 1, 2, � � �,m� 1f g consti-

tutes a Nash equilibrium solution for the game (5.5 and 5.6), if there exist contin-

uously differentiable functions Vi θam½ � mð Þ t; xð Þ : tm;T½ � � R ! R and

Vi θαk½ � kð Þ t; xð Þ : tk; tkþ1½ � � R ! R, for k 2 1, 2, � � �,m� 1f g and i 2 N, which satisfy
the following partial differential equations:

�V
i θam½ � mð Þ
t t; xð Þ � σ2x2

2
Vi θam½ � mð Þ
xx t; xð Þ

¼ max
vi, ui

� � 	
α i
θam

�
Xn
j¼1

β i
j α j

θam
þ

Xn
h 2 N
h 6¼ i

β
j θamð Þ
h ϕm θamð Þ

h t; xð Þ þ β
j θamð Þ
i vi

2
66664

3
77775



� α i
θam

þ
X
h 2 N
h 6¼ i

β
i θamð Þ
h ϕm θamð Þ

h t; xð Þ þ β
i θamð Þ
i vi

2
66664

3
77775

�c
θam
i α i

θam
þ
X
j 2 N
j 6¼ i

β
i θamð Þ
j ϕm θamð Þ

j t; xð Þ þ β
i θamð Þ
i vi

2
66664

3
77775� cai ui½ �2

�
X
j2Ki

ε ji α j
θam

þ
X
‘ 2 N
‘ 6¼ i

β
j θamð Þ
‘ ϕm θamð Þ

‘ t; xð Þ þ β
j θamð Þ
i vi

2
66664

3
77775�h

θam
i x

�
e�r t�t0ð Þ

þVi θam½ � mð Þ
x t; xð Þ

� Xn
j¼1

aj α j
θam

þ
X
h 2 N
h 6¼ i

β
j θamð Þ
h ϕm θamð Þ

h t; xð Þ þ β
j θamð Þ
i vi

2
66664

3
77775

�
Xn
j ¼ 1

j 6¼ i

bjμ
m θamð Þ
j t; xð Þx1=2 � biuix

1=2 � δx

� �
,

Vi θam½ � mð Þ T; xð Þ ¼ �gi x� xi½ �e�r T�t0ð Þ; ð5:7Þ

394 13 Collaborative Environmental Management



�V
i θak½ � kð Þ
t t; xð Þ � σ2x2

2
V
i θak½ � kð Þ
xx t; xð Þ

¼ max
vi, ui

� � 	
α i
θak

�
Xn
j¼1

β i
j α j

θak
þ

Xn
h 2 N
h 6¼ i

β
j θakð Þ
h ϕ

k θakð Þ
h t; xð Þ þ β

j θakð Þ
i vi

2
66664

3
77775



� α i
θak

þ
X
h 2 N
h 6¼ i

β
i θakð Þ
h ϕ

k θakð Þ
h t; xð Þ þ β

i θakð Þ
i vi

2
66664

3
77775

�c
θak
i α i

θak
þ
X
j 2 N
j 6¼ i

β
i θakð Þ
j ϕ

k θakð Þ
j t; xð Þ þ β

i θakð Þ
i vi

2
66664

3
77775� cai ui½ �2

�
X
j2Ki

ε ji α j
θak

þ
X
‘ 2 N
‘ 6¼ i

β
j θakð Þ
‘ ϕ

k θakð Þ
‘ t; xð Þ þ β

j θakð Þ
i vi

2
66664

3
77775� h

θam
i x

�
e�r t�t0ð Þ

þV
i θak½ � kð Þ
x t; xð Þ

� Xn
j¼1

aj α j
θak

þ
X
h 2 N
h 6¼ i

β
j θakð Þ
h ϕ

k θakð Þ
h t; xð Þ þ β

j θakð Þ
i vi

2
66664

3
77775

�
Xn
j ¼ 1

j 6¼ i

bjμ
k θakð Þ
j t; xð Þx1=2 � biuix

1=2�δx

� �
,

Vi θak½ � kð Þ tkþ1; xð Þ ¼
Xη

akþ1¼1

λakþ1
Vi θakþ1½ � kþ1ð Þ tkþ1; xð Þ, for i 2 N and

k 2 0, 1, 2, � � �,m� 1f g ð5:8Þ

Proof Follow the proof of Theorem 1.1 in Chap. 4. ■

Following the analysis in Sect. 13.2 we perform the indicated maximizations in

(5.7 and 5.8) to obtain the game equilibrium strategies and the value functions:

Vi θαk½ � kð Þ t; xð Þ ¼ Ai
k θakð Þ tð Þxþ Ci

k θakð Þ tð Þ
� �

e�r t�t0ð Þ; ð5:9Þ

for i 2 N and k 2 0, 1, 2, � � �,m� 1f g,
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whereAi
k θakð Þ tð Þ andCi

k θakð Þ tð Þ, for i 2 N and k 2 0, 1, 2, � � �,m� 1f g satisfy a set
of constant coefficient quadratic ordinary differential equations similar to that in

Proposition 2.1.

13.5.2 Cooperative Arrangement

Now consider the case when all the nations want to cooperate and agree to act so

that an international optimum could be achieved. For the cooperative scheme to be

upheld throughout the game horizon both group rationality and individual rational-

ity are required to be satisfied at any time. In addition, to ensure that the cooperative

solution is dynamically stable, the agreement must be subgame-consistent.

13.5.2.1 Group Optimality and Individual Rationality

To secure group optimality the participating nations seek to maximize their joint

expected payoff

Et0

� ðt1
t0

Xn
i¼1

� 	
α i
θ1
�
Xn
j¼1

β i
j α j

θ1
þ
X
h2N

β
j θ1ð Þ
h vθ1h sð Þ

" # 

α i
θ1
þ
X
h2N

β
i θ1ð Þ
h vθ1h sð Þ

" #

� cθ1i α i
θ1
þ
X
j2N

β
i θ1ð Þ
j vθ1j sð Þ

" #
� cai uθ1i sð Þ� �2 �X

j2Ki

ε ji α j
θ1
þ
X
‘2N

β
j θ1ð Þ
‘ vθ1‘ sð Þ

" #

� hθ1i x sð Þ
�
e�r s�t0ð Þds

þ
Xm
k¼1

Xη
ak¼1

λak

ðthþ1

th

Xn
i¼1

� 	
α i
θak

�
Xn
j¼1

β i
j α j

θak
þ
X
h2N

β
j θakð Þ
h v

θak
h sð Þ

" # 

α i
θak

þ
X
h2N

β
i θakð Þ
h v

θak
h sð Þ

" #

� c
θak
i α i

θak
þ
X
j2N

β
i θakð Þ
j v

θak
j sð Þ

" #
� cai u

θak
i sð Þ

h i2

�
X
j2Ki

ε ji α j
θak

þ
X
‘2N

β
j θakð Þ
‘ v

θak
‘ sð Þ

" #
� h

θak
i x sð Þ

�
e�r s�t0ð Þds

�
Xn
i¼1

gi x Tð Þ � xi
� �

e�r T�t0ð Þ
�

ð5:10Þ

subject to (5.6)

396 13 Collaborative Environmental Management



Invoking Theorem 2.1 in Chap. 4 an optimal solution to the randomly furcating

stochastic control problem (5.6) and (5.10) can be characterized by the theorem

below.

Theorem 5.2 A set of control strategies fu mð Þθam*

i tð Þ ¼ ϖ mð Þθam
i t; xð Þ, v mð Þθam*

i tð Þ ¼
ψ

mð Þθam
i t; xð Þ; for t 2 tm; T½ �; u kð Þθak*

i tð Þ ¼ ϖ
kð Þθak
i t; xð Þ, v kð Þθak*

i tð Þ ¼ ψ
kð Þθαk
i t; xð Þ; for t

2 �tk, tkþ1


, k 2 0, 1, 2, � � �,m� 1f g and i 2 Ng, contingent upon the events θam

2 θ1, θ2, . . . , θη
� �

and θak 2 θ1, θ2, . . . , θη
� �

for k 2 1, 2, � � �,m� 1f g consti-

tutes a Nash equilibrium solution for the game (5.5 and 5.6), if there exist contin-

uously differentiable functions W θam½ � mð Þ t; xð Þ : tm; T½ � � R ! R and

W θαk½ � kð Þ t; xð Þ : tk; tkþ1½ � � R ! R, for k 2 1, 2, � � �,m� 1f g and i 2 N, which satisfy
the following partial differential equations:

�W
θam½ � mð Þ
t t; xð Þ � σ2x2

2
W θam½ � mð Þ

xx t; xð Þ ¼

max
v1, v2, ���, vn; u1, u2, ���, un

�
Xn
i¼1

� 	
α i
θam

�
Xn
j¼1

β i
j α j

θam
þ
X
h2N

β
j θamð Þ
h vh

" # 

α i
θam

þ
X
h2N

β
i θamð Þ
h vh

" #

�c
θam
i α i

θak
þ
X
j2N

β
i θamð Þ
j vj

" #
� cai ui½ �2 �

X
j2Ki

ε ji α j
θam

þ
X
‘2N

β
j θamð Þ
‘ v‘

" #

�h
θam
i x

�

þW θam½ � mð Þ
x t; xð Þ

� Xn
j¼1

aj α j
θam

þ
X
h2N

β
j θamð Þ
h vh

" #
�
Xn
j¼1

bjujx
1=2 � δx

� �
,

W θam½ � mð Þ T; xð Þ ¼ �
Xn
i¼1

gi x� xi½ �e�r T�t0ð Þ;

�W
θak½ � kð Þ
t t; xð Þ � σ2x2

2
W

θak½ � kð Þ
xx t; xð Þ ¼

max
v1, v2, ���, vn; u1, u2, ���, un� Xn

i¼1

� 	
α i
θak

�
Xn
j¼1

β i
j α j

θak
þ
X
h2N

β
j θakð Þ
h vh

" # 

α i
θak

þ
X
h2N

β
i θakð Þ
h vh

" #

�c
θak
i α i

θak
þ
X
j2N

β
i θakð Þ
j vj

" #
� cai ui½ �2 �

X
j2Ki

ε ji α j
θak

þ
X
‘2N

β
j θakð Þ
‘ v‘

" #
� h

θak
i x

�

þW
θak½ � kð Þ
x t; xð Þ

� Xn
j¼1

aj α j
θak

þ
X
h2N

β
j θakð Þ
h vh

" #
�
Xn
j ¼ 1

j 6¼ i

bjujx
1=2 � δx

� �
,

W θak½ � kð Þ tkþ1; xð Þ ¼
Xη

akþ1¼1

λakþ1
W θakþ1½ � kþ1ð Þ tkþ1; xð Þ, for k 2 0, 1, 2, � � �,m� 1f g:

Proof Follow the proof of Theorem 2.1 in Chap. 4. ■
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Following the analysis in Sect. 13.3 we perform the indicated maximizations in

Theorem 5.2 to obtain the game equilibrium strategies and the value functions:

W θαk½ � kð Þ t; xð Þ ¼ Ak θakð Þ tð Þxþ Ck θakð Þ tð Þ
h i

e�r t�t0ð Þ; ð5:11Þ

for k 2 0, 1, 2, � � �,m� 1f g,
where Ak θakð Þ tð Þ and Ck θakð Þ tð Þ, for k 2 0, 1, 2, � � �,m� 1f g satisfy a set of

ordinary differential equations similar to that in Proposition 3.1.

Assume that at time t0 when the initial state is x0 the agreed upon optimality

principle assigns a set of imputation vectors contingent upon the events θ1 and θak
for θak 2 θ1, θ2, . . . , θη

� �
and k 2 1; 2; � � �;mf g. We use

ξ1 θ1½ � 0ð Þ t0; x0ð Þ, ξ2 θ01½ � 0ð Þ t0; x0ð Þ, � � �, ξn θ1½ � 0ð Þ t0; x0ð Þ
h i

to denote an imputation vector of the gains in such a way that the share of the ith

player over the time interval [t0,T] is equal to ξi θ1½ � 0ð Þ t0; x0ð Þ.
Individual rationality requires that

ξi θ1½ � 0ð Þ t0; x0ð Þ � Vi θ1½ � 0ð Þ t0; x0ð Þ, for i 2 N:

In a dynamic framework, individual rationality has to be maintained at every instant

of time t 2 t0; T½ � along the cooperative trajectory. At time t, for t 2 �t0, t1,
individual rationality requires:

ξi θ1½ � 0ð Þ t; x*t
�  � Vi θ1½ � 0ð Þ t; x*t

� 
, for i 2 N:

At time tk, for k 2 1; 2; � � �;mf g, if θak 2 θ1, θ2, . . . , θη
� �

has occurred and the

state is x*tk , the same optimality principle assigns an imputation vector

ξ1 θak½ � kð Þ tk; x
*
tk

� �
, ξ2 θak½ � kð Þ tk; x

*
tk

� �
, � � �, ξn θak½ � kð Þ tk; x

*
tk

� �h i
(in current value at time

tk). Individual rationality is satisfied if:

ξi θak½ � kð Þ tk; x
*
tk

� �
� Vi θak½ � kð Þ tk; x

*
tk

� �
: for i 2 N:

At time t, for t 2 �tk, tkþ1


, individual rationality requires:

ξi θak½ � kð Þ t; x*t
�  � Vi θak½ � kð Þ t; x*t

� 
: for i 2 N:

13.5.2.2 Subgame-Consistent Imputation

Finally, we would derive a set of imputation that would like to a subgame consistent

solution. Invoking Theorem 3.1 in Chap. 4, a subgame consistent PDP can be

derived with the theorem below.
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Theorem 5.3 A PDP with a terminal payment qi x*T
� 

at time T and an instanta-

neous payment (in present value) at time τ 2 tk; tkþ1½ �:

B
θakð Þk

i τð Þ ¼ � ξ
i θak½ � kð Þ
t t; x*t

� 
t¼τj

� �
� σ2 x*τ

� 2
2

ξ
i θak½ � kð Þ
x*t x

*
t

t; x*t
� 

t¼τj
� �

� ξ
i θak½ � kð Þ
x*t

t; x*t
� 

t¼τj
� �

�
� Xn

j¼1

aj α j
θak

þ
X
h2N

β
j θakð Þ
h ψ

kð Þθak
h τ; x*τ

� " #
�
Xn
j¼1

bjϖ
kð Þθak
j τ; x*τ

� �
x*τ

1=2 � δx*τ

�
;

ð5:12Þ

for i 2 N and k 2 1; 2; � � �;mf g,
contingent upon θ k

ak
2 θ1, θ2, . . . , θη
� �

has occurred at time tk,

yields a subgame-consistent cooperative solution to the randomly furcating

stochastic differential game (5.1 and 5.2).

Proof Follow the proof of Theorem 3.1 in Chap. 4. ■

Thus a subgame consistent cooperative solution is established.

13.6 Appendices

Appendix A: Proof of Proposition 2.1

Using (2.3), (2.5) and (2.6), system (2.1 and 2.2) can be expressed as:

r Ai tð Þxþ Ci tð Þ½ � � _A i tð Þxþ _C i tð Þ
� �

¼
� 	

αi �
Xn
j¼1

β i
j αj þ

Xn
h2Ni

β
j

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" #( ) 


	
αi þ

X
h2N

β
i

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" # 


�ci αi þ
X
j2N

β
i

j α̂ j þ
X
k2N

β̂
j

k Ak tð Þ
" #( )

�cai
bi
2c a

i
Ai tð Þ

h i2
x�

X
j2Ki

ε ji αj þ
X
‘2N

β
j

‘ α̂ ‘ þ
X
k2N

β̂
‘

k Ak tð Þ
" #( )

� hix

�

þAi tð Þ
� Xn

j¼1

aj αj þ
X
h2N

β
j

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" #( )

þ
Xn
j¼1

bj
bj
2caj

Aj tð Þx� δx

�
;

ð6:1Þ
Ai Tð Þxþ Ci Tð Þ½ � ¼ �gi x� xi

� 
, for i 2 N: ð6:2Þ

For (6.1) and (6.2) to hold, it is required that
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_A i tð Þ ¼ r þ δð Þ Ai tð Þ � Ai tð Þ
Xn
j ¼ 1

j 6¼ i

b2j
2caj

Aj tð Þ � b2i
4cai

Ai tð Þ½ �2 þ hi ; ð6:3Þ

Ai Tð Þ ¼ �gi; ð6:4Þ

_C i tð Þ ¼ rCi tð Þ �
	

αi �
Xn
j¼1

β i
j αj þ

Xn
h2Ni

β
j

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" #( ) 


	
αi þ

X
h2N

β
i

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" # 


þci αi �
X
j2N

β
i

j α̂ j þ
X
k2N

β̂
j

k Ak tð Þ
" #( )

þ
X
j2Ki

ε ji αj þ
X
‘2N

β
j

‘ α̂ ‘ þ
X
k2N

β̂
‘

k Ak tð Þ
" #( )

�Ai tð Þ
� Xn

j¼1

aj αj þ
X
h2N

β
j

h α̂ h þ
X
k2N

β̂
h

k Ak tð Þ
" #( ) �

¼ rCi tð Þ þ Fi tð Þ;

ð6:5Þ

Ci Tð Þ ¼ gixi: ð6:6Þ

Equations (6.3, 6.4, 6.5, and 6.6) forms a block recursive system of differential

equations with (6.3) and (6.4) being independent of (6.5) and (6.6).

Solving A1 tð Þ,A2 tð Þ, � � �,An tð Þf g in (6.3 and 6.4) and upon substituting them into

(6.5) and (6.6) yield a system of linear first order differential equations:

_C i tð Þ ¼ rCi tð Þ þ Fi tð Þ; ð6:7Þ
Ci Tð Þ ¼ gixi, and i 2 N: ð6:8Þ

Since Ci(t) is independent of Cj(t) for i 6¼ j, Ci tð Þ can be solved as:

Ci tð Þ ¼ er t�t0ð Þ
� ðt

t0

Fi yð Þe�r y�t0ð Þdyþ C0
i

�
; ð6:9Þ

whereC0
i ¼ gixie�r T�t0ð Þ �

ðT
t0

Fi yð Þe�r y�t0ð Þdy: ð6:10Þ

Hence Proposition 2.1 follows. Q.E.D.

Appendix B: Proof of Proposition 3.1
Substituting (3.4) and (3.6) into (3.2) and using (3.7) one obtains:
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r A* tð ÞxþC* tð Þ� �� _A* tð Þxþ _C* tð Þ� �¼Xn
‘¼1

�	
α‘�

Xn
j¼1

β ‘
j αjþ

X
h2N

β
j

h
^̂α
hþ ^̂β

h

A* tð Þ
� �( )


α‘þ
X
h2N

β
‘

h
^̂α
hþ ^̂β

h

A* tð Þ
� �( )

�c‘ α‘þ
X
j2N

β
‘

j
^̂α
jþ ^̂β

j

A* tð Þ
� �( )

�ca‘
b‘
2c a

‘
A* tð Þ

h i2
x

�
X
j2K‘

ε j‘ αjþ
X
k2N

β
j

k
^̂α
kþ ^̂β

kj

A* tð Þ
� �( )

�h‘x

�

þA*
x tð Þ
�Xn

j¼1

aj αjþ
X
h2N

β
j

h
^̂α
hþ ^̂β

h

A* tð Þ
� �( )

þ
Xn
j¼1

b2j
2caj

A* tð Þx�δx

�
,

ð6:11Þ

A* Tð Þxþ C* Tð Þ� � ¼ �
Xn
i¼1

gi x Tð Þ � xi
� �

: ð6:12Þ

For (6.11) and (6.12) to hold, it is required that

_A * tð Þ ¼ r þ δð Þ A* tð Þ �
Xn
j¼1

b2j
2caj

A* tð Þ� �2 þXn
j¼1

hj ; ð6:13Þ

A* Tð Þ ¼ �
Xn
j¼1

gj; ð6:14Þ

_C * tð Þ ¼ rC* tð Þ �
Xn
‘¼1

� 	
α‘ �

Xn
j¼1

β ‘
j αj þ

X
h2N

β
j

h
^̂α

h þ ^̂β
h

A* tð Þ
� �( ) 
�

α‘

þ
X
h2N

β
‘

h
^̂α

h þ ^̂β
h

A* tð Þ
� ��� c‘ α‘ þ

X
j2N

β
‘

j
^̂α

j þ ^̂β
j

A* tð Þ
� �( )

�
X
j2K‘

ε j‘ αj þ
X
k2N

β
j

k
^̂α

k þ ^̂β
kj

A* tð Þ
� �( ) �

�A*
x tð Þ
� Xn

j¼1

aj αj þ
X
h2N

β
j

h
^̂α

h þ ^̂β
h

A* tð Þ
� �( ) �

¼ rC* tð Þ þ F* tð Þ;

ð6:15Þ

C* Tð Þ ¼
Xn
j¼1

gjxj: ð6:16Þ

Equations (6.13, 6.14, 6.15, and 6.16) forms a block recursive system of differential

equations with (6.13 and 6.14) being independent of (6.15 and 6.16). Moreover,
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(6.15 and 6.16) is a Riccati equation with constant coefficients which solution can

be obtained by standard methods as:

A* tð Þ ¼ AP
* þΦ* tð Þ

�
C
* �

ðt
t0

Xn
j¼1

b2j
2caj

Φ* yð Þdy
��1

; ð6:17Þ

where Φ* tð Þ ¼ exp

� ðt
t0

� Xn
j¼1

b2j
2caj

AP
* þ r þ δð Þ

�
dy

�
;

C
* ¼ �Φ* Tð Þ

AP
* þ
Xn
j¼1

gj

 !þ
ðT
t0

Xn
j¼1

b2j
2caj

Φ* yð Þdy; and

AP
* tð Þ ¼

�
r þ δð Þ �

�
r þ δð Þ2 þ 4

Xn
j¼1

b2j
2caj

Xn
j¼1

hj

�1=2 �
=
Xn
j¼1

b2j
c aj

is a particu-

lar solution of the (6.13).

Upon substituting A*(t) above into (6.15), the system (6.15 and 6.16) becomes a

system of linear first order differential equations:

_C * tð Þ ¼ rC* tð Þ þ þF* tð Þ; ð6:18Þ

C* Tð Þ ¼
Xn
j¼1

gjxj: ð6:19Þ

Solving (6.18 and 6.19) yields:

C* tð Þ ¼ er t�t0ð Þ
� ðt

t0

F* yð Þe�r y�t0ð Þdyþ C0
*

�
; ð6:20Þ

where C0
* ¼

Xn
j¼1

gjxje�r T�t0ð Þ �
ðT
t0

F* yð Þe�r y�t0ð Þdy:

Hence Proposition 3.1 follows. Q.E.D.

13.7 Chapter Notes

Though cooperation in environmental control holds out the best promise of effec-

tive action, limited success has been observed because existing multinational joint

initiatives fail to satisfy the property of subgame consistency. In this Chapter we
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present a cooperative stochastic differential game of transboundary industrial

pollution with industries and governments being separate entities. In particular,

industrial production creates two types of negative environmental externalities – a

short-term local impact and a long-term global impact. Given these impacts the

individual government tax policy has to take into consideration the tax policies of

other nations and these policies’ intricate effects on outputs and environmental

effects. A subgame consistent cooperative solution is derived in this stochastic

differential game. A payment distribution mechanism is provided to support the

subgame consistent solution under which the expected gain from cooperation is

shared proportionally to the nations’ relative sizes of expected noncooperative

payoffs. The incorporation of uncertainties in future payoffs in Sect. 13.5 enriches

the analysis with consideration of a realistic concern.

Applications of noncooperative differential games in environmental studies can

be found in Yeung (1992); Dockner and Long (1993); Tahvonen (1994); Stimming

(1999); Feenstra et al. (2001) and Dockner and Leitmann (2001). Cooperative

differential games in environmental control have been presented by Dockner and

Long (1993); Jørgensen and Zaccour (2001); Petrosyan and Zaccour (2003); Fredj

et al. (2004); Breton et al. (2005, 2006), Yeung (2007a, 2008), Yeung and Petrosyan

(2007a, 2012c) and Li (2014).

13.8 Problems

1. Consider an economy which is comprised of 2 nations and the planning horizon

is [0, 4]. At time instant s the demand functions of the output of nations 1 and

2 are respectively

P1 sð Þ ¼ 60� 1:5q1 sð Þ � 0:2q2 sð Þ and P2 sð Þ ¼ 75� 3q2 sð Þ � 0:5q1 sð Þ:

The dynamics of pollution stock is governed by the stochastic differential

equation:

dx sð Þ ¼
�
q1 sð Þ þ 0:5q2 sð Þ � 0:4u1 sð Þx sð Þ1=2 � 0:3u2 sð Þx sð Þ1=2 � 0:02x sð Þ

�
ds

þ 0:04x sð Þdz sð Þ, x 0Þ ¼ 25:ð

The damage (cost) of the pollution stock in the environment to nations 1 and

2 are respectively 3x(s) and 4x(s). The abatement costs are [u1(s)]
2 and 0.4[u2(s)]

2

for nations 1 and 2 respectively. The instantaneous objectives of the governments

in nations 1 and 2 at time s are respectively:

60� 1:5q1 sð Þ � 0:2q2 sð Þ½ �q1 sð Þ � 2q1 sð Þ � u1 sð Þ½ �2 � 0:5q1 sð Þ � 0:6q2 sð Þ � 3x sð Þ
and
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75� 3q2 sð Þ � 0:5q1 sð Þ½ �q2 sð Þ � 2q2 sð Þ � u2 sð Þ½ �2 � 0:8q2 sð Þ � 0:4q1 sð Þ � 4x sð Þ:

At terminal time 4, the terminal value associated with the state of pollution is

2 90� x Tð Þ½ � for nation 1 and 2 70� x Tð Þ½ � for nation 2.

Characterize a feedback Nash equilibrium solution for this fishery game.

2. If these nations agree to cooperate and maximize their joint payoff, obtain a

group optimal cooperative solution.

3. Furthermore, if these nations agree to share their cooperative gain proportional

to their expected payoffs, derive a subgame consistent cooperative solution.
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Chapter 14

Cooperation with Technology Switching

Under the current situation of environmental degradation, even substantial reduc-

tion in industrial production using conventional production technique would only

slow down the rate of increase and not be able to reverse the trend of continual

pollution accumulation. Adoption of environment-preserving technique plays a

central role to solving the problem effectively. Due to the geographical diffusion of

pollutants and the globalization of trade, unilateral response on the part of one

country or region is often ineffective. Though cooperation in environmental

control holds out the best promise of effective action, limited success has been

observed. Conventional multinational joint initiatives like the Kyoto Protocol or

the Copenhagen Accord can hardly be expected to offer a long-term solution

because (i) the plans which focus mainly on emissions reduction would unlikely

be able to offer an effective mean to halt the accelerating trend of environmental

deterioration, (ii) environment-preserving technique has to be adopted to provide

an effective mean in solving the industrial pollution problem, and (iii) there is no

guarantee that agreed-upon optimality principle could be maintained throughout

the entire duration of cooperation. In this chapter, we present a cooperative

dynamic model of collaborative environmental management with production

technique choices.

Sections 14.1, 14.2, 14.3 and 14.4 of this Chapter is based on Yeung’s (2014)
work on subgame consistent collaborative environmental management with the

availability of environment-preserving production techniques. Section 14.1 pre-

sents a dynamic game model of environmental control with production technique

choices. Noncooperative outcomes are characterized in Sect. 14.2. Cooperative

arrangements, group optimal actions, solution state trajectories, and time consis-

tent payment distribution mechanism are examined in Sect. 14.3. A numerical

illustration is provided in Sect. 14.4. An extension of Yeung’s (2014) analysis to
multiple types of environment-preserving techniques is provided in Sect. 14.5.

Chapter appendices are provided in Sect. 14.6. Chapter notes are given in

Sect. 14.7 and problems in Sect. 14.8.
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14.1 Environmental Model with Production Technique
Choices

In this section we present a dynamic game model of transboundary pollution with

two production technique choices – a conventional technology and an environment-

preserving technology. The game involves T� stages and n asymmetric nations

(regions or jurisdictions).

14.1.1 The Industrial Sector

The industrial sectors of the n asymmetric nations form an international economy.

The demand for the output of nation i 2 1; 2; � � �; nf g�N at stage t 2 1; 2; � � �; Tf g
�κ is

Pi
t ¼ α i

t �
Xn
j¼1

β i
j Q

j
t ; ð1:1Þ

where Pi
t is the price of the output of nation i, Qj

t is the output of nation j, αit and βij

for i 2 N and j 2 N are positive parameters. The quantity of outputQj
t sð Þ 2 0;Q

j
h i

is

nonnegative and bounded by a maximum capacity constraint Q
j
. Output price

equals zero if the right-hand-side of (1.1) becomes negative. The demand system

(1.1) shows that the economy is a form of differentiated products oligopoly. In

the case when αi ¼ αj and β i
j ¼ β j

i for all i 2 N and j 2 N, the industrial output is a

homogeneous good. This type of model was first introduced by Dixit (1979) and

later used in analyses in industrial organizations (see for example, Singh and Vives

(1984)) and environmental games. In this analysis αit for i 2 N is allowed to change

over time to reflect different growth rates in different nations.

There are two types of production techniques available to each nation’s indus-
trial sector: conventional technique and environment-preserving technique. Indus-

trial sectors pay more for using environment-preserving technique. The amount of

pollutants emitted by environment-preserving technique is less than that emitted by

conventional technique.

We use qjt to denote the output of nation j if it uses conventional technique and

q̂ j
t to denote the output of nation j if it uses environment-preserving technique. The

average cost of producing a unit of output with conventional technique in nation j is
cj while that of producing a unit of output with environment-preserving technique

is ĉj.

Let vit denote the tax rate imposed by government i on industrial output produced

by conventional technique in stage t, and v̂ i
t denote the tax rate imposed on output
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produced by environment-preserving technique. Nation i’s industrial sector will

choose to use environment-preserving technique if ci þ v it > ĉ i þ v̂ i
t , otherwise it

would choose to use conventional technique. In stage t, let the set of nations using

conventional technique be denoted by S1t and the set of nations using environment-

preserving technique by S2t . The profit of industrial sector it 2 S1t and that of

industrial sector ‘t 2 S1t in stage t can be expressed respectively as

πitt ¼
�
αitt �

X
j2S1t

βitj q
j
t �

X
ζ2S2t

βitζ q̂
ζ
t

�
qitt � citqitt � vitt q

it
t , for it 2 S1t ; ð1:2Þ

and

π̂ ‘t
t ¼

�
α‘tt �

X
j2S1t

β‘tj q
j
t �

X
ζ2S2t

β‘tζ q̂
ζ
t

�
q̂ ‘t
t � c‘t q̂ ‘t

t � v‘tt q̂
‘t
t , for ‘t 2 S2t ð1:3Þ

In each stage t the industrial sector of nation it 2 S1t seeks to maximize (1.2) and the

industrial sector of nation ‘t 2 S1t seeks to maximize (1.3). The first order condition

for an industry equilibrium in stage t yields

αitt �
X
j2S1t

βitj q
j
t �

X
ζ2S2t

βitζ q̂
ζ
t � βititq

it
t ¼ cit þ vitt , for it 2 S1t ; and

α‘tt �
X
j2S1t

β‘tj q
j
t �

X
ζ2S2t

β‘tζ q̂
ζ
t �β‘t‘t q̂ ‘t

t ¼ ĉ ‘t þ v̂ ‘t
t , for ‘t 2 S2t : ð1:4Þ

Condition (1.4) shows that the industrial sectors will produce up to a point where

marginal revenue (the left-hand side of the equations) equals the cost plus tax of a

unit of output produced (the right-hand-side of the equations).

14.1.2 Pollution Dynamics

Industrial production creates long-term environmental impacts by building up

existing pollution stocks like green-house-gas, CFC and atmospheric particulates.

Each government adopts its own pollution abatement policy to reduce pollutants in

the environment. At the initial stage 1, the level of pollution is x1 ¼ x0. The
dynamics of pollution accumulation is governed by the difference equation:

xtþ1 ¼ xt þ
X
it2S1t

aitqitt þ
X
‘t2S2t

â ‘t q̂ ‘t
t �

Xn
j¼1

bju
j
t

�
xt
�
1=2 � δxt, x1 ¼ x0; ð1:5Þ

where ait is the amount of pollution created by a unit of nation ii’s output using
conventional technique,
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â ‘t is the amount of pollution created by a unit of nation ‘i’s output using

environment-preserving technique,

ujt is the pollution abatement effort of nation j at stage t,

bju
j
t(xt)

1/2 is the amount of pollution removed by ujt units of abatement effort of

nation j, δ is the natural rate of decay of the pollutants.

The damage (cost) of xt amount of pollution to nation is hjxt. The cost of u
j
t units

of abatement effort is cai (u
j
t)
2.

14.1.3 The Governments’ Objectives

The governments have to promote business interests and at the same time bear the

costs brought about by pollution. In particular, each government maximizes the

net gains in the industrial sector plus tax revenues minus the sum of expenditures

on pollution abatement and damages from pollution. The payoff of government

it 2 S1t at stage t can be expressed as:�
αitt �

X
j2S1t

βitj q
j
t �

X
ζ2S2t

βitζ q̂
ζ
t

�
qitt � citqitt � cait uitt

� �2 � hit xt; ð1:6Þ

and the payoff of government ‘t 2 S2t at stage t can be expressed as:�
α‘tt �

X
j2S1t

β‘tj q
j
t �

X
ζ2S2t

β‘tζ q̂
ζ
t

�
q̂ ‘t
t � ĉ ‘t q̂ ‘t

t � ca‘t u‘tt
� �2 � h‘t xt: ð1:7Þ

The governments’ planning horizon is from stage 1 to stage T. It is possible that

T may be very large. The discount rate is r. A terminal appraisal of pollution

damage is gi xi � xTþ1ð Þ will be given to government i at stage T þ 1, where

gi � 0. In particular, if the level of pollution at stage T þ 1 is higher (lower) than

xi, government i will receive a bonus (penalty) equaling gi xi � xTþ1ð Þ. Each one of

the n governments seeks to maximize the sum of the discounted payoffs over the

T stages plus the terminal appraisal. In particular, government i would seek to

maximize the objective

XT
t¼1

� �
α i
t �

X
j 2 S1t
j 6¼ i

β i
j q

j
t �

X
ζ 2 S2t
j 6¼ i

β i
ζq̂

ζ
t � β i

i q
i
t

�
qi
t � ciq i

t � cai u i
t

� �2

� hixt

�
1

1þ r

� 	t�1
þ gi xi � xTþ1

� � 1

1þ r

� 	T

; i 2 N ð1:8Þ
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where qi
t ¼ qi

t and qi
t ¼ qi

t if industrial sector i uses conventional technique;

and qi
t ¼ q̂ i

t and c it ¼ ĉ i
t if industrial sector i uses environment-preserving

technique.

Besides designing an optimal abatement policy, each of the governments also

has to design a tax scheme which would lead to the level of output that maximizes

its objective. The problem of maximizing objectives (1.8) subject to pollution

dynamics (1.5) is a dynamic game between these n governments.

14.2 Noncooperative Outcomes

In this section we discuss the solution to the noncooperative dynamic game

(1.5) and (1.8). Since under a noncooperative framework, pre-commitment is

not possible, a feedback Nash equilibrium solution is sought. A theorem char-

acterizing a feedback Nash equilibrium solution is presented in the following

theorem.

Theorem 2.1 A set of strategies qit*t ¼ ϕit
t xð Þ, q̂ î t*

t ¼ ϕ̂
î t
t xð Þ, uit*t ¼ υitt xð Þ, uî t*t ¼



υ̂ î t
t xð Þ, for t 2 κ and it 2 S1t and î t 2 S2t g provides a feedback Nash equilibrium

solution to the game (1.5) and (1.8) if there exist functions Vit t; xð Þ and V̂
î t
t; xð Þ,

for t 2 κ and it 2 S1t and î t 2 S2t , such that the following recursive relations are

satisfied:

Vit T þ 1, xð Þ ¼ V̂
î t
T þ 1, xð Þ ¼ Vi T þ 1, xð Þ ¼ gi xi � xð Þ 1

1þr
� �T

, for i 2 N,

Vit t; xð Þ ¼ max
q
it
t , ut


� �
αitt �

X
j 2 S1t

j 6¼ it

βitj ϕ
j
t xð Þ �

X
ζ2S2t

βitζ ϕ̂
ζ

t xð Þ � βititq
it
t

�
qitt � citqitt

� cait uitt
� �2 � hitx

�
1

1þr
� �t�1

þV
it

�
tþ 1, xþ

X
j 2 S1t

j 6¼ it

ajϕ j
t xð Þ þ

X
ζ2S2t

â ζϕ̂
ζ

t xð Þ þ aitqitt

�
X
j 2 S1t

j 6¼ it

bjυ
j
t xð Þx1=2 �

Xn
j2S2t

bjυ̂
j
t xð Þx1=2 � bitu

it
t x

1=2 � δx

�
;

for t 2 κ and it 2 S1t ; and
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V̂
î t
t; xð Þ ¼ max

q̂
ît
t , u

ît
t


� �
αî tt �

X
j2S1t

βî tj ϕ
j
t xð Þ �

X
ζ 2 S2t
ζ 6¼ î t

βîtζ ϕ̂
ζ

t xð Þ � βî t
ît
q̂ ît
t

�
q̂ ît
t

� ĉ ît q̂ ît
t � ca

î t
û ît
t

� �2
� hîtx

�
1

1þ r

� 	t�1

þV
ît

�
tþ 1, xþ

X
j2S1t

ajϕ j
t xð Þ þ

X
ζ 2 S2t
ζ 6¼ î t

â ζϕ̂
ζ

t xð Þ þ â ît q̂ ît
t

�
X
j2S1t

bjυ
j
t xð Þx1=2 �

Xn
j 2 S2t
j 6¼ î t

bjυ̂
j
t xð Þx1=2 � b̂i t û

î t
t x

1=2 � δx

�
,

for t 2 κ and î t 2 S2t ð2:1Þ

and

cit
1

1þ r

� 	t�1
� V

it
xtþ1 tþ 1, xtþ1ð Þait < ĉ it

1

1þ r

� 	t�1
� V

it
xtþ1 tþ 1, x

itð Þ
tþ1

� �
â it ;

for it 2 S1t ;

cî t 1
1þr
� �t�1

� V
î t
xtþ1 tþ 1, x

î tð Þ
tþ1

� 	
aî t � ĉ î t 1

1þr
� �t�1

� V
î t
xtþ1 tþ 1, xtþ1ð Þâ î t ,

for î t 2 S2t ð2:2Þ

where V
i
tþ 1, xtþ1ð Þ ¼ Vi tþ 1, xtþ1ð Þ if i uses conventional technology in stage

tþ 1 and V
i
tþ 1, xtþ1ð Þ ¼ V̂

i
tþ 1, xtþ1ð Þ if i uses environment preserving

technology in stage tþ 1, and

xtþ1 ¼ xþ
X
j2S1t

ajϕ j
t xð Þ þ

X
ζ2S2t

â ζϕ̂
ζ

t xð Þ �
X
j2S1t

bjυ
j
t xð Þx1=2 �

X
j2S2t

bjυ̂
j
t xð Þx1=2 � δx,

x
itð Þ
tþ1 ¼ xþ

X
j 2 S1t
j 6¼ it

ajϕ j
t xð Þ þ â it q̂ it

t þ
X
ζ2S2t

â ζϕ̂
ζ

t xð Þ

�
X
j 2 S1t
j 6¼ it

bjυ
j
t xð Þx1=2 � bitu

it
t �

X
j2S2t

bjυ̂
j
t xð Þx1=2 � δx, and

x
î tð Þ

tþ1 ¼ xþ
X
j2S1t

ajϕ j
t xð Þ þ

X
ζ 2 S2t
ζ 6¼ î t

â ζϕ̂
ζ

t xð Þ þ aî tqî tt

�
X
j2S1t

bjυ
j
t xð Þx1=2 �

X
j 2 S2t
j 6¼ î t

bjυ̂
j
t xð Þx1=2 � b̂i tu

î t
t � δx
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Proof If nation it 2 S1t adopts conventional technique and nation î t 2 S2t adopts

environment-preserving technique, the results in (2.1) satisfy the optimality condi-

tions in dynamic programming and the Nash equilibrium.

The inequalities in (2.2) yield the conditions justifying why nation it 2 S1t adopts

conventional technique and nation î t 2 S2t adopts environment-preserving tech-

nique. To prove this we perform the indicated maximization in (2.1) and obtain:

αitt �
X
j2S1t

βitj ϕ
j
t xð Þ �

X
ζ2S2t

βitζ ϕ̂
ζ

t xð Þ � βititϕ
it
t xð Þ

¼ cit � aitV
it
xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1; ð2:3Þ

for it 2 S1t ; and

αî tt �
X
j2S1t

βî tj ϕ
j
t xð Þ �

X
ζ2S2t

βî tζ ϕ
ζ
t xð Þ�βî t

î t
ϕ̂

î t
t xð Þ

¼ ĉ î t � â î tV
î t
xt¼1 tþ 1, xtþ1ð Þ 1þ rð Þt�1,

for î t 2 S2t ð2:4Þ

In view of (1.4), the left-hand-side of Eqs. (2.3) and that of (2.4) reflect the marginal

revenues to the industrial sectors. To motivate the industrial sectors to produce

outputs as given in (2.3) government it has to impose a tax vitt equaling �aitVit
xtþ1

tþ 1, xtþ1ð Þ 1þ rð Þt�1 on a unit of output produced with conventional technique.

Similarly, government ı̂t has to impose a tax v̂ î t
t equaling �â î tV

î t
xtþ1 tþ 1, xtþ1ð Þ

1þ rð Þt�1 on a unit of output produced with environment-preserving technique to

arrive at (2.4).

At stage t the unit cost plus unit tax to the industrial sector of nation i for using
conventional technique is

ci � aiV
i
xtþ1 tþ 1, xtþ1, ϑtþ1ð Þ 1þ rð Þt�1; ð2:5Þ

and the unit cost plus unit tax to the industrial sector of nation i for using

environment-preserving technique is

ĉ i � â iV
i
xtþ1 tþ 1, xtþ1,ϑtþ1ð Þ 1þ rð Þt�1: ð2:6Þ

The industrial sector of nation i would adopt the technique which costs (production

cost plus tax) less. Therefore for nation it 2 S1t the condition

cit 1
1þr
� �t�1

� V
it
xtþ1 tþ 1, xtþ1ð Þait < ĉ it 1

1þr
� �t�1

� V
it
xtþ1 tþ 1, x

itð Þ
tþ1

� �
â it has to be

satisfied.
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For nation î t 2 S2t the condition

cî t 1
1þr
� �t�1

� V
î t
xtþ1 tþ 1, x

î tð Þ
tþ1

� 	
aî t � ĉ î t 1

1þr
� �t�1

� V
î t
xtþ1 tþ 1, xtþ1ð Þâ î t has to

be satisfied.

Hence a feedback Nash equilibrium is characterized (see Theorem 1.1 in

Chap. 7) and Theorem 2.1 follows. ■

The term �aitVit
xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1 reflects the marginal social cost to

nation it brought about by a unit of output produced with conventional technique.

The term�â itV
î t
xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1 reflects the marginal social cost to nation ı̂t

brought about by a unit of output produced with environment-preserving technique.

Rearranging (2.3) and (2.4) we obtain the systemX
j2S1t

βitj ϕ
j
t xð Þ þ

X
ζ2S2t

βitζ ϕ̂
ζ

t xð Þ þ βititϕ
it
t xð Þ

¼ αitt � cit þ aitV
it
xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1, for it 2 S1t ; ð2:7ÞX

j2S1t
βî tj ϕ

j
t xð Þ þ

X
ζ2S2t

βî tζ ϕ̂
ζ

t xð Þþβî t
î t
ϕ̂

î t
t xð Þ

¼ αî tt � ĉ î t þ â î tV
î t
xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1, for î t 2 S2t : ð2:8Þ

System (2.7 and 2.8) can be viewed as a set of equations linear in

ϕit
t xð Þ for it 2 S1t and ϕ̂

î t
t xð Þ for î t 2 S2t ;

with V
it
xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1 for it 2 S1t and V

î t
xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1 for

î t 2 S2t being taken as a set of parameters. Solving (2.7 and 2.8) yields:

ϕit
t xð Þ ¼ αitt þ

X
j2S1t

β
itð Þj
t V j

xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1

þ
X
j2S2t

β
itð Þj
t V

j
xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1, for it 2 S1t ;

ϕ̂
î t
t xð Þ ¼ α̂

î t
t þ

X
j2S1t

β̂
î tð Þj

t V j
xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1

þ
X
j2S2t

β̂
î tð Þj

t V
j
xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1, for î t 2 S2t ; ð2:9Þ

where αitt and β
itð Þj
t for it 2 S1t , and α̂

î t
t and β̂

î tð Þj
t , î t 2 S2t , are constants involving the

model parameters.
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In addition, performing the maximization operator in (2.1) with respect to uitt and

uî tt yields

υitt xð Þ ¼ � bit
2cait

V
it
xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1x1=2, for it 2 S1t ; and

υ̂ ît
t xð Þ ¼ � bît

2ca
ît

V
ît
xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1x1=2, for î t 2 S2t : ð2:10Þ

The game equilibrium payoffs of the nations can be obtained as:

Proposition 2.1 System (2.1 and 2.2) admits a solution

Vit t; xð Þ ¼ Aii
t xþ Cit

t

� �
1

1þr
� �t�1

, for it 2 S1t

and V̂
î t
t; xð Þ ¼ Â

îi
t xþ Ĉ

ît
t

� 	
1

1þr
� �t�1

, for ît 2 S2t , for t 2 κ; ð2:11Þ

with Ait
t , C

it
t , Â

ît
t and Ĉ

ît
t being constants involving the model parameters.

Proof See Appendix A. ■

Though conventional technique emits higher level of pollutants, nations have no

incentive to switch to environment-preserving technique if the sum of marginal cost

of production and the nation’s social cost resulted from using conventional tech-

nique is lower than that resulted from using environment-preserving technique.

14.3 Cooperative Arrangements in Environmental Control

Now consider the case when all the nations want to collaborate and tackle the

pollution problem together. To ensure group optimality, the nations would seek to

maximize their joint payoff under cooperation. Since nations are asymmetric and

the number of nations may be large, a reasonable optimality principle for gain

distribution is to share the gain from cooperation proportional to the nations’
relative sizes of noncooperative payoffs. Cooperation will cease if any of the

nations refuses to act accordingly at any time within the game horizon.

14.3.1 Group Optimality and Cooperative State Trajectory

Consider the case when all the nations agree to act cooperatively so that the joint

payoff will be maximized. Since two technique choices are available they have to
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determine which nations would use which type of techniques over the T stages.

Let Mγ be a matrix reflecting the pattern of technique choices by the n nations

over the T stages. In particular, according to pattern Mγ, the set of nations that

use conventional technique is S
Mγ 1½ �
t and the set of nations that use environment-

preserving technique is S
Mγ 2½ �
t in stage t 2 κ. To select the controls which would

maximize joint payoff under pattern Mγ the nations have to solve the following

optimal control problem which maximizes

XT
t¼1

" X
it2SM

γ 1½ �
t

 �
αitt �

X
j2SMγ 1½ �

t

βitj q
j
t �

X
ζ2SMγ 2½ �

t

βitζ q̂
ζ
t

�
qitt

� citqitt � cait uitt
� �2 � hit xt

!
1

1þr
� �t�1

þ
X

î t2SM
γ 2½ �

t

 
αî tt �

X
j2SMγ 1½ �

t

βî tj q
j
t �

X
ζ2SMγ 2½ �

t

βî tζ q̂
ζ
t

24 35q̂ î t
t

� ĉ î t S
Mγ 2½ �
t

� �
q̂ î t
t � ca

î t
û î t
t

� �2
� hî txt

!
1

1þr
� �t�1 #

þ
Xn
i¼1

gi xi � xTþ1ð Þ 1
1þr
� �T )

; ð3:1Þ

subject to

xtþ1 ¼ xt þ
X

‘t2SM
γ 1½ �

t

a‘t q‘tt þ
X

‘̂ t2SM
γ 2½ �

t

â ‘̂ t q̂ ‘̂ t
t �

X
‘t2SM

γ 1½ �
t

b‘t u
‘t
t xtð Þ1=2

�
X

‘̂ t2SM
γ 2½ �

t

b‘̂ t
û ‘̂ t
t xtð Þ1=2 � δ xt, x1 ¼ x0: ð3:2Þ

The solution to the optimal control problem (3.1 and 3.2) is characterized in the

following theorem.

Theorem 3.1 A set of strategies q‘t*t ¼ ψ Mγð Þ‘t
t xð Þ, q̂ ‘̂ t*

t ¼ ψ̂ Mγð Þ‘̂ t
t xð Þ, u‘t*t ¼

n
ϖ Mγð Þ‘t

t xð Þ, û ‘̂ t*
t ¼ ϖ̂ Mγð Þ‘̂ t

t xð Þ, for t 2 κ and ‘t 2 S
Mγ 1½ �
t and ‘̂ t 2 S

Mγ 2½ �
t g constitutes

an optimal solution to the control problem (3.1) and (3.2) if there exist functions

WMγ
t; xð Þ : R! R, for t 2 κ, such that the following recursive relations are

satisfied:
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WMγ
t; xð Þ ¼ max

uitt , q
it
t , it2SM

γ 1½ �
t ; û ît

t q̂
ît
t , ît2SM

λ 2½ �
t


 X
it2SM

γ 1½ �
t

�
�
αitt �

X
j2SMγ 1½ �

t

βitj q
j
t �

X
ζ2SMγ 2½ �

t

βitζ q̂
ζ
t

�
qitt � citqitt � cait uitt

� �2 � hitxt

�
1

1þr
� �t�1

þ

X
î t2SM

γ 2½ �
t

� �
αîtt �

X
j2SMγ 1½ �

t

βîtj q
j
t �

X
ζ2SMγ 2½ �

t

βîtζ q̂
ζ
t

�
q̂ ît
t

�ĉ ît S
Mγ 2½ �
t

� �
q̂ ît
t � ca

ît
û ît
t

� �2
� hîtxt

�
1

1þr
� �t�1

þWMγ

�
tþ 1, xþ

X
‘t2SM

γ 1½ �
t

a‘t q‘tt þ
X

‘̂ t2SM
γ 2½ �

t

â ‘̂ t q̂ ‘̂ t
t �

X
‘t2SM

γ 1½ �
t

b‘t u
‘t
t xtð Þ1=2

�
X

‘̂ t2SM
γ 2½ �

t

b‘̂ t
û ‘̂ t
t xð Þ1=2 � δ x

� 
: for t 2 κ ;

WMγ
T þ 1, xð Þ ¼

Xn
i¼1

gi xi � xð Þ 1
1þr
� �T

ð3:3Þ

Proof The results in (3.3) satisfy the standard optimality conditions in discrete-

time dynamic programming. ■

Performing the indicated maximization in (3.3) yields

ϖ Mγð Þ‘t
t xð Þ ¼ � b‘t

2ca‘t
WMγ

xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1x1=2, for ‘t 2 S
Mγ 1½ �
t , and

ϖ̂ Mγð Þ‘̂ t
t xð Þ ¼ � b‘̂ t

2ca
‘̂ t

WMγ

xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1x1=2, for ‘̂ t 2 S
Mγ 2½ �
t ; ð3:4Þ

α‘tt �
X

j2SMγ 1½ �
t

β‘tj ψ
Mγð Þj
t xð Þ�

X
j2SMγ 2½ �

t

β‘tj ψ̂
Mγð Þj
t xð Þ �

X
ζ2SMγ 1½ �

t

βζ
‘t
ψ Mγð Þζ
t xð Þ

�
X

ζ2SMγ 2½ �
t

βζ
‘t
ψ̂ Mγð Þζ

t xð Þ ¼ c‘t � a‘tWMγ

xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1,

for ‘t 2 S
Mγ 1½ �
t ð3:5Þ

α‘̂ t
t �

X
j2SMγ 1½ �

t

β‘̂ t

j ψ
Mγð Þj
t xð Þ�

X
j2SMγ 2½ �

t

β‘̂ t

j ψ̂
Mγð Þj
t xð Þ �

X
ζ2SMγ 1½ �

t

βζ

‘̂ t
ψ Mγð Þζ
t xð Þ

�
X

ζ2SMγ 2½ �
t

βζ

‘̂ t
ψ̂ Mγð Þζ

t xð Þ ¼ c‘̂ t S
Mγ 2½ �
t

� �
� a‘̂ tWMγ

xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1,

for ‘̂ t 2 S
Mγ 2½ �
t ; ð3:6Þ
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where WMγ

xtþ1 tþ 1, xtþ1ð Þ is the short form for

WMγ

xtþ1

�
tþ 1, xþ

X
j2SMγ 1½ �

t

ajψ Mγð Þj
t xð Þ þ

X
j2SMγ 2½ �

t

â jψ̂ Mγð Þj
t xð Þ

�
X

j2SMγ 1½ �
t

bjϖ
Mγð Þj
t xð Þ �

X
j2SMγ 2½ �

t

bjϖ̂
Mγð Þj
t xð Þ � δx

�
:

System (3.5) and (3.6) can be viewed as a set of equations linear in ψ ‘t
t xð Þ and

ψ̂ ‘̂ t
t xð Þ for ‘t 2 S

Mγ 1½ �
t and ‘̂ t 2 S

Mγ 2½ �
t withWMγ

xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1 being taken a

parameter. Solving (3.5) and (3.6) yields:

ψ Mγð Þ‘t
t xð Þ ¼ eα Mγð Þ‘t

t þ eβ Mγð Þ‘t
t WMγ

xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1, for ‘t 2 S
Mγ 1½ �
t ;

ψ̂ Mγð Þ‘̂ t
t xð Þ ¼ êα Mγð Þ‘̂ t

t þ êβ Mγð Þ‘̂ t

t WMγ

xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1, for ‘̂ t 2 S
Mγ 2½ �
t ; ð3:7Þ

where eα Mγð Þ‘t
t and eβ Mγð Þ‘t

j for ‘t 2 S
Mγ 1½ �
t , and êα Mγð Þ‘̂ t

t and êβ Mγð Þ‘̂ t

j , ‘̂ t 2 S
Mγ 2½ �
t are

constants involving the model parameters.

The maximized joint payoff of the nations under technology pattern Mγ can be

obtained as:

Proposition 3.1 System (3.3) admits a solution

WMγ

t; xð Þ ¼ AMγ

t x þ CMγ

t

� � 1

1þ r

� 	t�1
, t 2 κ ð3:8Þ

where AMγ

t and CMγ

t are constants involving the model parameters.

Proof See Appendix B. ■

The technique pattern Mγ which yields the highest joint payoffWMγ
t; xð Þ will be

adopted in the cooperative scheme. Let us denote the technique pattern that yields

the highest joint payoff by M*.

Using (3.4), (3.7) and (3.8), the control strategy under cooperation with tech-

nique pattern M* can be obtained accordingly. To induce the industrial sector to

produce the socially optimal levels of output with the desired technique, we invoke

(1.4), (3.5), and (3.6) to obtain the optimal tax rates

v
M*ð Þ‘t

t ¼ �a‘tAM*

tþ1 1þ rð Þ�1 þ
X

ζ 2 S
M* 1½ �
t

ζ 6¼ ‘t

βζ
‘t
ψ

M*ð Þζ
t xð Þ þ

X
ζ2SM* 2½ �

t

βζ
‘t
ψ̂

M*ð Þζ
t xð Þ;

on conventional technique for ‘t 2 S
M* 1½ �
t ; and
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v̂
M*ð Þ‘̂ t

t ¼ �a‘̂ tAM*

tþ1 1þ rð Þ�1 þ
X

ζ2SM* 1½ �
t

βζ

‘̂ t
ψ

M*ð Þζ
t xð Þ þ

X
ζ 2 S

M* 2½ �
t

ζ 6¼ ‘̂ t

βζ

‘̂ t
ψ̂

M*ð Þζ
t xð Þ;

on environment-preserving techniques for ‘̂ t 2 S
M* 2½ �
t .

A lump-sum levy/subsidy will be given to each industrial sector to guarantee that

the same profit level as that under a noncooperative equilibrium is maintained.

Substituting the optimal control strategy into (3.2) yields the dynamics of

pollution accumulation under cooperation as:

xtþ1 ¼
X

j2SM* 1½ �
t

aj eα M*ð Þj
t þ eβ M*ð Þj

t AM*

tþ1 1þ rð Þ�1
� �

þ
X

j2SM* 2½ �
t

â j êα M*ð Þj
t þ êβ M*ð Þj

t AM*

tþ1 1þ rð Þ�1
" #

þ 1þ
� Xn

j¼1

bj
� �2
2caj

AM*

tþ1 1þ rð Þ�1 � δ

�
xt, x1 ¼ x0: ð3:9Þ

Equation (3.9) is a linear difference equation with time varying coefficients. We use

x*k
� �Tþ1

k¼1 to denote the solution path satisfying (3.9). Solving (3.9) gives

x*t ¼
Yt
ζ¼1

S1ζ

 !
x0 þ

Xt
k¼1

Yt
ζ¼kþ1

S1ζ

 !
S2k ; ð3:10Þ

where S1ζ ¼ 1þ
Xn
j¼1

bj
� �2
2caj

AM*

ζþ1 1þ rð Þ�1 � δ, and

S2ζ ¼
X

j2SM* 1½ �
t

aj eα M*ð Þj
ζ þ eβ M*ð Þj

ζ AM*

ζþ1 1þ rð Þ�1
� �

þ
X

j2SM* 2½ �
t

â j êα M*ð Þj
t þ êβ M*ð Þj

t AM*

tþ1 1þ rð Þ�1
" #

14.3.2 Subgame Consistent Collaborative Solution

To achieve dynamic consistency the agreed upon optimality principle must be

maintained at every stage of collaboration. In particular, the agreed-upon optimality

principle requires the nations to share the gain from cooperation proportional to the

nations’ relative sizes of noncooperative payoffs. Note that this optimality principle

satisfies individual rationality because each nation’s payoff under cooperation is
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higher than its payoff under non-cooperation. To achieve subgame consistency the

agreed-upon optimality principle must be maintained at every stage of collabora-

tion. Let ξ‘(t, x�t ) denote nation ‘’s imputation (payoff under cooperation) covering

the stages t to T under the agreed-upon optimality principle along the cooperative

trajectory x*k
� � Tþ1

k¼t . Hence the solution imputation scheme has to satisfy:

Condition 3.1

ξ‘ t; x*t
� � ¼ V

‘
t; x*t
� �X

i2S1t
Vi t; x*t
� �þX

j2S2t
V̂

j
t; x*t
� � WM*

t; x*t
� �

; ð3:11Þ

for all ‘ 2 N and all t 2 κ,

where V
‘
t; x*t
� � ¼ V‘ t; x*t

� �
if ‘ 2 S1t and V

‘
t; x*t
� � ¼ V̂

‘
t; x*t
� �

if ‘ 2 S2t .

Crucial to the analysis is the formulation of a payment distribution mechanism

that would lead to the realization of Condition 3.1. This will be done in the next

Section.

14.3.3 Payment Distribution Mechanism

To design a payment distribution scheme over time so that the agreed-upon

imputation in Condition 3.1 can be realized we apply the techniques developed in

Chap. 7. In formulating a Payoff Distribution Procedure (PDP) we let B‘
t (x
�
t ) denote

the payment that nation ‘ will received at stage t under the cooperative agreement

given the state x�t at stage t 2 κ.

The payment scheme involving B‘
t (x
�
t ) constitutes a PDP in the sense that along

the optimal state trajectory x*k
� � Tþ1

k¼t the imputation to nation ‘ over the stages from

t to T can be expressed as:

ξ‘ t; x*t
� � ¼XT

ζ¼t
B ‘
ζ x*ζ

� � 1

1þ r

� 	ζ�1
þ g‘ x‘ � xTþ1

� � 1

1þ r

� 	T

; ð3:12Þ

for ‘ 2 N and t 2 κ.
Making use of (3.12), one can arrive at:

ξ‘ t; x*t
� � ¼Xh�1

ζ¼t
B ‘
ζ x*ζ

� � 1

1þ r

� 	ζ�1
þ ξ‘ h; x*h

� �
; ð3:13Þ

for ‘ 2 N and t 2 κ and h 2 tþ 1, tþ 2, � � �,Tf g.
A theorem characterizing a formula for B‘

t (x
�
t ), for t 2 1, 2, � � �,T � 1f g and

‘ 2 N, which yields (3.12) is provided below.
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Theorem 3.2 A payment

B ‘
t x*t
� � ¼ 1þ rð Þ t�1 ξ‘ t; x*t

� �� ξ‘ tþ 1, x*tþ1
� �� �

, for ‘ 2 N

given to nation ‘ 2 N at stage t 2 1, 2, � � �,T � 1f g, and a payment

B ‘
T x*T
� � ¼ 1þ rð Þ T�1

�
ξ‘ T; x*T
� �� g‘ x‘ � x*Tþ1

� � 1

1þ r

� 	T �
; ð3:14Þ

given to nation ‘ 2 N at stage T would lead to the realization of the imputation

ξ‘ t; x*t
� �

, for t 2 κ and ‘ 2 N
� �

:

Proof From (3.13) one can obtain

B ‘
t x*t
� � 1

1þ r

� 	t�1
¼ ξ‘ t; x*t

� �� ξ‘ tþ 1, x*tþ1
� �

; ð3:15Þ

for ‘ 2 N and t 2 κ.

Note that B ‘
t x*t
� �

1
1þr
� �t�1

is the present value (as from initial stage 1) of a

payment B‘
t (x
�
t ) that will be given nation ‘ at stage t. Hence if a payment as specified

in (3.14) is given to nation ‘ at stage t 2 κ, the imputation ξ‘ t; x*t
� �

, for t 2 κ and
�

‘ 2 Ng can be realized by showing that

XT
ζ¼t

B ‘
ζ x*ζ

� �
1

1þr
� �ζ�1

þ g‘ x‘ � xTþ1
� �

1
1þr
� �T

¼
XT
ζ¼t

ξ‘ ζ; x*ζ

� �
� ξ‘ ζ þ 1, x*ζþ1

� �h i
¼ ξ‘ t; x*t

� �

for ‘ 2 N and t 2 κ, given that ξ‘ T þ 1, x*Tþ1
� � ¼ g‘ x‘ � x*Tþ1

� �
1

1þr
� �T

: ■

Invoking Condition 3.1 and Theorem 3.2 the payment (in present value terms) to

nation ‘ in stage t 2 κ can be obtained as:

B ‘
t x*t
� �

1
1þr
� �t�1

¼ ξ‘ t; x*t
� �� ξ‘ tþ 1, x*tþ1

� �
¼ V

‘
t; x*t
� �X

i2S1t
Vi t; x*t
� �þX

j2S2t
V̂

j
t; x*t
� �WM*

t; x*t
� �

� V
‘
tþ 1, x*tþ1
� �X

i2S1tþ1
Vi tþ 1, x*tþ1
� �þX

j2S2tþ1
V̂

j
tþ 1, x*tþ1
� �WM*

tþ 1, x*tþ1
� �

; ð3:16Þ
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for ‘ 2 N, t 2 κ,

where V
‘
t; x*t
� � ¼ V‘ t; x*t

� �
if ‘ 2 S

M* 1½ �
t and V

‘
t; x*t
� � ¼ V̂

‘
t; x*t
� �

if ‘ 2 S
M* 2½ �
t .

Formula (3.16) provides a payoff distribution procedure leading to the satisfac-

tion of Condition 3.1 and hence a time-consistent solution will be obtained.

14.4 Numerical Illustration

As a numerical illustration we consider the case where there are 3 nations which

have 3 stages of actions. The demand functions of these nations are respectively

P1
t ¼ 50� 2Q1

t � Q2
t � Q3

t , P
2
t ¼ 72� Q1

t � 4Q2
t � 2Q3

t , and

P3
t ¼ 60� 2Q1

t � Q2
t � 3Q3

t :

The costs of producing output with conventional technique are c1 ¼ 1, c2 ¼ 0:5,

c3 ¼ 1; and those of using environment-preserving technique are ĉ 1 ¼ 2:5, ĉ 2 ¼ 2,

ĉ 3 ¼ 2. The abatement costs are ca1 ¼ 2, ca2 ¼ 2, ca3 ¼ 2:5 ; and the abatement

parameters are b1 ¼ 1, b2 ¼ 1, b3 ¼ 1:5. The pollution dynamics parameters are

a1 ¼ 2, â 1 ¼ 0:5, a2 ¼ 2, â 2 ¼ 0:5, a3 ¼ 2, â 3 ¼ 1. The pollution decay rate

δ ¼ 0:05 and the pollution damage parameters are h1 ¼ 0:7, h2 ¼ 0:8, h3 ¼ 1:8.
The initial pollution stock is x1 ¼ 4 and the discount rate is r ¼ 0:04. The terminal

bonus (penalty) parameters are g1 ¼ 0:5, g2 ¼ 0:4, g3 ¼ 1:7; x1 ¼ 200, x2 ¼ 500,

x3 ¼ 100.

We first compute the outcome under non-cooperation. At stage T þ 1 ¼ 4,

invoking Proposition 3.1 we have

A1
4 ¼ �0:5,A2

4 ¼ �0:4,A3 ¼ �1:7;
C1
4 ¼ 100;C2

4 ¼ 200, andC3
4 ¼ 170:

Using Condition (2.2), one can show that industrial sectors 1 and 2 will use

conventional technique and sector 3 will use environment-preserving technique

in stage 3. Industrial outputs can be obtained as:

q13 ¼ 9:1169, q23 ¼ 6:3787, q̂ 3
3 ¼ 5:2921:

Invoking Conditions (6.4) and (6.5) in Appendix A we obtain:

A1
3 ¼ �0:727968, A2

3 ¼ �0:817751, Â
3

3 ¼ �2:398049,
C1
3 ¼ 252:8004, C2

3 ¼ 346:0104and Ĉ
3

3 ¼ 194:6502:

Using Condition (2.2), one can show that industrial sectors 1 and 2 will use

conventional technique and sector 3 will use environment-preserving technique in

stage 2. Industrial outputs can be obtained as:
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q12 ¼ 9:0168, q22 ¼ 6:3074, q̂ 3
2 ¼ 5:2255:

Invoking (6.4) and (6.5) in Appendix A we obtain:

A1
2 ¼ �0:43983, A2

2 ¼ �0:516227, Â
3

2 ¼ �1:937482,
C1
2 ¼ 393:1945, C2

2 ¼ 473:5493, and Ĉ
3

2 ¼ 196:2488:

According to Condition (2.2), industrial sectors 1 and 2 will use conventional

technique and sector 3 will use environment-preserving technique in stage 1. Indus-

trial outputs can be obtained as:

q11 ¼ 9:1361, q21 ¼ 6:3587, q31 ¼ 5:2510:

Invoking (6.4) and (6.5) in Appendix A we obtain:

A1
1 ¼ �0:672388, A2

1 ¼ �0:772149, Â
3

1 ¼ �2:360774,
C1
1 ¼ 537:4093, C2

1 ¼ 605:3887, and Ĉ
3

1 ¼ 211:4722:

The noncooperative state path can be obtained as:

x
1
¼ 4, x

2
¼ 42:0106, x

3
¼ 27:0039, x

4
¼ 41:0968:

Now consider the case that the 3 nations agree to collaborate so that they would

maximize their joint payoff and share the gain from cooperation proportional to the

nations’ relative sizes of noncooperative payoffs. The joint payoff maximizing

pattern of technique choices is that all 3 nations will adopt environment-preserving

technique.

First consider stage 4, from Condition (6.7) in Appendix B we obtain

AM*

Tþ1 ¼ �2:6 and CM*

4 ¼ 470:

Invoking Condition (6.8) in Appendix B we obtain:

AM*

3 ¼ �2:70625, AM*

2 ¼ �2:555709 and AM*

1 ¼ �2:766075:

The nations’ outputs in the 3 stages under cooperation are

q̂ 1
3 ¼ 6:2344, q̂ 2

3 ¼ 5:8281, q̂ 3
3 ¼ 3:2186 ; q̂ 1

2 ¼ 6:2325, q̂ 2
2 ¼ 5:8275

q̂ 3
2 ¼ 3:2050 ; q̂ 1

1 ¼ 6:2363, q̂ 2
1 ¼ 5:8288, q̂ 3

1 ¼ 3:2225:

Invoking (6.8) in Appendix B again we obtain:

CM*

3 ¼ 885:7551 , CM*

2 ¼ 1284:575 andCM*

1 ¼ 1684:066:
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Solving the optimal cooperative trajectory yields:

x*1 ¼ 4 , x*2 ¼ 3:7169, x*3 ¼ 3:5777, x*4 ¼ 4:1516:

The joint payoffs in stages 1–4 along the optimal cooperative trajectory can be

obtained as:

WM* 1; x*1
� � ¼ 1673:002, WM* 2; x*2

� � ¼ 1226:035,

WM* 3; x*3
� � ¼ 809:9787 and WM* 4; x*4

� � ¼ 408:2323:

The individual payoffs for the 3 nations along the optimal cooperative trajectory are

V1 1; x*1
� � ¼ 534:7198, V2 1; x*1

� � ¼ 602:3001, V3 1; x*1
� � ¼ 202:0292,

V1 2; x*2
� � ¼ 376:4998, V2 2; x*2

� � ¼ 453:4909, V3 2; x*2
� � ¼ 182:0357,

V1 3; x*3
� � ¼ 231:3202, V2 3; x*3

� � ¼ 317:2011, V3 3; x*3
� � ¼ 172:0328,

V1 4; x*4
� � ¼ 87:0542, V2 4; x*4

� � ¼ 176:323, V3 4; x*4
� � ¼ 144:8551:

To summarize the results we first present the technology patterns, national

outputs and levels of pollution stock under non-cooperation and collaboration in

Table 14.1. The technique pattern under noncooperation involves nation 3 adopting

environment-preserving techniques in stages 2 and 3. While under cooperation all

3 nations adopt environment-preserving techniques in all the 3 stages. The levels of

pollution under collaboration are below those with no cooperation.

Then we proceed to compute the imputations to the nations under collaboration

using Condition 4.1 and these figure are given in Table 14.2 along with the joint

payoff under cooperation.

Finally, payoff distribution procedures leading the realization of the imputations

in Table 14.2 are derived using Theorem 3.2 and displayed in Table 14.3. Note that

both the current value and present values of these payments in various stages are

provided.

Table 14.1 Technology patterns, national outputs and levels of pollution stock under non-

cooperation and collaboration

Stage Non-cooperation Collaboration

t Nation 1 Nation 2 Nation 3 xt Nation 1 Nation 2 Nation 3 x�t
1 q11 q21 q31 4 q̂11 q̂21 q̂31 4

9.1361 6.3587 5.2510 6.2363 5.8288 3.2225

2 q12 q22 q̂32 42.0106 q̂12 q̂22 q̂32 3.7169

9.0168 6.3074 5.2255 6.2325 5.8275 3.2050

3 q13 q23 q̂33 27.0039 q̂13 q̂23 q̂33 3.5777

9.1169 6.3787 5.2921 6.2344 5.8281 3.2186

4 41.0968 4.1516
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14.5 Multi Production Technique Choices

In this Section we consider the case where there are more than one type of

environmental-preserving techniques leading to different degrees of pollution. For

exposition sake we examine the situation where there are three types of production

techniques available to each nation’s industrial sector: a conventional technique and two
environment-preserving techniques. Industrial sectors pay more for using environment-

preserving techniques. The amounts of pollutants emitted by environment-preserving

techniques are less than that emitted by conventional technique. The first environment-

preserving technique costs less than the second environment-preserving technique but

emits more pollutants than that of the second technique.

14.5.1 Game Formulation and Non-cooperative Equilibria

We use qjt to denote the output of nation j if it uses conventional technique, q̂ j
t to

denote the output of nation j if it uses the first environment-preserving technique

and ^̂q
j

t to denote the output of nation j if it uses the second environment-preserving

technique. The average cost of producing a unit of output with conventional

technique in nation j is cj, that of producing a unit of output with the first

environment-preserving technique is ĉj and that with the second environment-

preserving technique is ^̂c
j
.

Table 14.2 Total collaborative payoff and nations’ imputations

t

Total collaborative

payment

Nation 1’s
imputation

Nation 2’s
imputation

Nation 3’s
imputation

WM *(t, x�t ) ξ1(t, x�t ) ξ2(t, x�t ) ξ3(t, x�t )
1 1673.002 668.0765 752.5111 252.4143

2 1226.035 456.1164 549.3885 220.5299

3 809.9787 260.0283 356.5674 193.383

4 408.2323 87.0542 176.323 144.8551

Table 14.3 Payments incurred to nations in each stage – present value and current value

t

Stage cooperative payment Stage cooperative payment

(in current value) (in present value)

B1
t (x
�
t ) B2

t (x
�
t ) B3

t (x
�
t ) RtB

1
t x*t
� �

RtB
2
t x*t
� �

RtB
3
t x*t
� �

1 211.9601 203.1226 31.8844 211.9601 203.1226 31.8844

2 203.9317 200.5339 28.2327 196.0882 192.8211 27.1469

3 187.0887 194.9524 52.4879 172.974 180.2445 48.528

4 97.9242 198.3393 162.9422 87.0542 176.323 144.8551

where Rt ¼ 1þ rð Þ� t�1ð Þ:
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Let vit denote the tax rate imposed by government i on industrial output produced

by conventional technique in stage t, v̂it denote the tax rate imposed on output

produced by the first environment-preserving technique and ^̂v it denote the tax rate

imposed on output produced by the second environment-preserving technique.

Nation i’s industrial sector will choose the technique that has the lowest value of

unit production cost plus unit tax. For instance, if ^̂c i þ ^̂v it < ĉi þ v̂it < ci þ v it
then the second environment-preserving technique will be used by nation i. In

stage t, let the set of nations using conventional technique be denoted by S1t , the

set of nations using the first environment-preserving technique by S2t , and the set of

nations using the second environment-preserving technique by S3t . The profits of the
industrial sectors in stage t can be expressed as

πitt ¼
�
αitt �

X
j2S1t

βitj q
j
t �

X
ζ2S2t

βitζ q̂
ζ
t �

X
ζ2S3t

βitζ
^̂q
ζ

t

�
qitt � citqitt � vitt q

it
t ,

for it 2 S1t ; ð5:1Þ
π̂ ‘t

t ¼
�
α‘tt �

X
j2S1t

β‘tj q
j
t �

X
ζ2S2t

β‘tζ q̂
ζ
t �

X
ζ2S3t

β‘tζ
^̂q
ζ

t

�
q̂ ‘t
t � c‘t q̂ ‘t

t � v‘tt q̂
‘t
t ,

for ‘t 2 S2t ; ð5:2Þ
πϖt
t ¼

�
αϖt
t �

X
j2S1t

βϖt
j q j

t �
X
ζ2S2t

βϖt

ζ q̂ ζ
t �

X
ζ2S3t

βϖt

ζ
^̂q
ζ

t

�
qϖt
t � cϖt qϖt

t � vϖt
t qϖt

t ,

forϖt 2 S3t ð5:3Þ

In each stage t the industrial sector of nation it 2 S1t seeks to maximize (5.1), the

industrial sector of nation ‘t 2 S2t seeks to maximize (5.2) and the industrial sector

of nation ϖt 2 S3t seeks to maximize (5.3). The first order condition for a Nash

equilibrium in stage t yields

αitt �
X
j2S1t

βitj q
j
t �

X
ζ2S2t

βitζ q̂
ζ
t �

X
ζ2S3t

βitζ
^̂q ζ
t � βititq

it
t ¼ cit þ vitt , for it 2 S1t ;

α‘tt �
X
j2S1t

β‘tj q
j
t �

X
ζ2S2t

β‘tζ q̂
ζ
t �

X
ζ2S3t

β‘tζ
^̂q
ζ

t �β‘t‘t q̂ ‘t
t ¼ ĉ ‘t þ v̂ ‘t

t , for ‘t 2 S2t ;

and

αϖt
t �

X
j2S1t

βϖt
j q j

t �
X
ζ2S2t

βϖt

ζ q̂ ζ
t �

X
ζ2S3t

βϖt

ζ
^̂q
ζ

t � βϖt
it
^̂q
ϖit

t ¼ ^̂c
ϖt þ ^̂v

it
t , for

ϖt 2 S3t ð5:4Þ

Condition (5.4) shows that the industrial sectors will produce up to a point where

marginal revenue (the left-hand side of the equations) equals the cost plus tax of a

unit of output produced (the right-hand-side of the equations).
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The dynamics of pollution accumulation is then governed by the difference

equation:

xtþ1 ¼ xt þ
X
it2S1t

aitqitt þ
X
‘t2S2t

â ‘t q̂‘t
t þ

X
ϖt2S3t

âϖt ^̂q
ϖt

t �
Xn
j¼1

bju
j
t

�
xt
�
1=2 � δxt; ð5:5Þ

x1 ¼ x0.

The payoff of government s it 2 S1t at stage t can be expressed as:

�
αitt �

X
j2S1t

βitj q
j
t �

X
ζ2S2t

βitζ q̂
ζ
t �

X
ζ2S3t

βitζ
^̂q
ζ

t

�
qitt � citqitt � cait uitt

� �2 � hit xt; ð5:6Þ

the payoff of government ‘t 2 S2t at stage t can be expressed as:

�
α‘tt �

X
j2S1t

β‘tj q
j
t �

X
ζ2S2t

β‘tζ q̂
ζ
t �

X
ζ2S3t

β‘tζ
^̂q
ζ

t

�
q̂ ‘t
t � ĉ ‘t q̂ ‘t

t � ca‘t u‘tt
� �2 � h‘t xt; ð5:7Þ

and the payoff of government ϖt 2 S3t at stage t can be expressed as:

�
αϖt
t �

X
j2S1t

βϖt

j q j
t �
X
ζ2S2t

βϖt

ζ q̂ ζ
t �
X
ζ2S3t

βϖt

ζ
^̂q
ζ

t

�
q̂ϖt
t �^̂c

ϖt ^̂q
ϖt

t �caϖt
uϖt
t

� �2�hϖt xt: ð5:8Þ

The governments’ planning horizon is from stage 1 to stage T. It is possible that

T may be very large. The discount rate is r. A terminal appraisal of pollution

damage is gi xi � xTþ1ð Þ will be given to government i at stage T þ 1, where

gi � 0. Each one of the n governments seeks to maximize the sum of the discounted

payoffs over the T stages plus the terminal appraisal. In particular, government

i would seek to maximize the objective

XT
t¼1

� �
α i
t �

X
j 2 S1t

j 6¼ i

β i
j q

j
t �

X
ζ 2 S2t

j 6¼ i

β i
ζq̂

ζ
t �

X
ζ 2 S3t

j 6¼ i

β i
ζ
^̂q
ζ

t � β i
i q

i
t

�
qi
t � ciq i

t � cai u i
t

� �2

� hixt

�
1

1þr
� �t�1

þ gi xi � xTþ1ð Þ 1
1þr
� �T

; for i 2 N; ð5:9Þ

where qi
t ¼ qi

t and qi
t ¼ qi

t if industrial sector i uses conventional technique; and

qi
t ¼ q̂ i

t and c it ¼ ĉ i
t if industrial sector i uses the first environment-preserving

technique; and qi
t ¼ ^̂qi

t and c it ¼ ^̂c it if industrial sector i uses the second

environment-preserving technique.

Following the proof of Theorem 2.1 a solution to the noncooperative dynamic

game (5.5) and (5.9) can be characterized by the following theorem.
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Theorem 5.1 A set of strategies fqit*t ¼ ϕit
t xð Þ, q̂ î t*

t ¼ ϕ̂
î t
t xð Þ, ^̂q ^̂i t

t * ¼ ^̂ϕ
^̂i t
t xð Þ,

uit*t ¼ υitt xð Þ, uît*t ¼ υ̂ î t
t xð Þ, u^̂itt * ¼ ^̂υ

^̂it
t xð Þ, for t 2 κ it 2 S1t , î t 2 S2t and

^̂i t 2 S3t g
provides a feedback Nash equilibrium solution to the game (5.5) and (5.9) if

there exist functions Vit t; xð Þ, V̂ ît t; xð Þ : R! R, and V̂
 

^̂i t t; xð Þ, for t 2 κ, it 2 S1t ,

î t 2 S2t and
^̂i t 2 S3t , such that the following recursive relations are satisfied:

Vit T þ 1, xð Þ ¼ Vî t T þ 1, xð Þ ¼ V
^̂i t T þ 1, xð Þ ¼ Vi T þ 1, xð Þ

¼ gi xi � x
� � 1

1þ r

� 	T

, for i 2 N;

Vit t;xð Þ¼max
qitt ,ut


� �
αitt �

X
j2 S1t
j 6¼ it

βitj ϕ
j
t xð Þ�

X
ζ2S2t

βitζ ϕ̂
ζ

t xð Þ�
X
ζ2S3t

βitζ
^̂ϕ
ζ

t xð Þ�βititq
it
t

�
qitt

�citqitt � cait uitt
� �2�hitx

�
1

1þr
� �t�1

þVit

�
tþ1,xþ

X
j2 S1t
j 6¼ it

ajϕ j
t xð Þþ

X
ζ2S2t

â ζϕ̂
ζ

t xð Þþ
X
ζ2S3t

^̂a
ζ ^̂ϕζ

t xð Þþaitqitt

�
X
j2 S1t
j 6¼ it

bjυ
j
t xð Þx1=2

�
Xn
j2S2t

bjυ̂
j
t xð Þx1=2�

Xn
j2S3t

bj ^̂υ
j

t xð Þx1=2�bitu
it
t x

1=2�δx

� 
;

for t 2 κ and it 2 S1t ;

V
î t t; xð Þ ¼ max

q̂ î t
t , u

î t
t



� �

αî tt �
X
j2S1t

βî tj ϕ
j
t xð Þ �

X
ζ 2 S2t
ζ 6¼ î t

βî tζ ϕ̂
ζ

t xð Þ �
X
ζ2S3t

βî tζ
^̂ϕ

ζ

t xð Þ � βî t
î t
q̂ î t
t

�
q̂ î t
t

� ĉ î t q̂ î t
t � ca

î t
uî tt

� �2
� hî tx

�
1

1þr
� �t�1

þV
î t

�
tþ 1, xþ

X
j2S1t

ajϕ j
t xð Þ þ

X
ζ 2 S2t
ζ 6¼ î t

â ζϕ̂
ζ

t xð Þ þ
X
ζ2S3t

^̂a
ζ ^̂ϕ

ζ

t xð Þ þ â î t q̂ î t
t

�
X
j2S1t

bjυ
j
t xð Þx1=2

�
Xn
j 2 S2t
j 6¼ î t

bjυ̂
j
t xð Þx1=2 �

Xn
j2S3t

bj ^̂υ
j

t xð Þx1=2 � b̂i tu
î t
t x

1=2 � δx

� 
;
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for t 2 κ and î t 2 S2t ; and

^̂V
^̂i t t; xð Þ ¼ max

q̂îtt , u
ît
t



� �

α
^̂i t
t �

X
j2S1t

β
^̂i t
j ϕ

j
t xð Þ �

X
ζ2S2t

β
^̂i t
ζ ϕ̂

ζ

t xð Þ �
X
ζ 2 S3t

ζ 6¼ ^̂i t

β
^̂i t
ζ
^̂ϕ

ζ

t xð Þ � β
^̂i t
^̂i t

^̂q
^̂it
t

�
^̂q
^̂it
t

� ^̂c
^̂i t ^̂q

^̂i t
t � ca^̂i t

u
^̂i t
t

� �2
� h

^̂i t x

�
1

1þ r

� 	t�1

þV
^̂i t

�
tþ 1, xþ

X
j2S1t

ajϕ j
t xð Þ þ

X
ζ2S2t

â ζϕ̂
ζ

t xð Þ þ
X
ζ 2 S3t

ζ 6¼ ^̂i t

^̂a
ζ ^̂ϕ

ζ

t xð Þ þ ^̂a
ît ^̂q

ît
t

�
X
j2S1t

bjυ
j
t xð Þx1=2

�
Xn
j2S2t

bjυ̂
j
t xð Þx1=2� Xn

j 2 S3t

j 6¼ ^̂i t

bj ^̂υ
j

t xð Þx1=2 � b^̂i t
u
^̂i t
t x

1=2 � δx

� 
,

for t 2 κ and ^̂i t 2 S3t ;

and

cit 1
1þr
� �t�1

� V
it
xtþ1 tþ 1, xtþ1ð Þait < ĉ it 1

1þr
� �t�1

� V
it
xtþ1 tþ 1, x

itð Þ1
tþ1

� �
â it ,

cit 1

1þ r

� 	t�1 � V
it
xtþ1 tþ 1, xtþ1ð Þait < ^̂c

it 1

1þ r

� 	t�1 � V
it
xtþ1 tþ 1, x

itð Þ2
tþ1

� �
^̂a

it
;

for it 2 S1t ;

ĉ î t 1
1þr
� �t�1

� V
î t
xtþ1 tþ 1, xtþ1ð Þâ î t � cî t 1

1þr
� �t�1

� V
î t
xtþ1 tþ 1, x

î tð Þ0
tþ1

� 	
aî t

ĉ î t 1

1þ r

� 	t�1
� V

î t
xtþ1 tþ 1, xtþ1ð Þâ î t < ^̂c

î t 1

1þ r

� 	t�1
� V

î t
xtþ1 tþ 1, x

î tð Þ2
tþ1

� 	
^̂a

î t
;

for î t 2 S2t ;

c
^̂i t

1

1þ r

� 	t�1
� V

^̂i t

xtþ1 tþ 1, xtþ1ð Þ ^̂a
^̂i t � c

^̂i t 1

1þ r

� 	t�1
� V

^̂i t

xtþ1 tþ 1, x
^̂i t

� �
0

tþ1

� 	
a
^̂i t ,

c
^̂i t 1

1þ r

� 	t�1
� V

^̂i t

xtþ1 tþ 1, xtþ1ð Þ ^̂a
^̂i t � ĉ

^̂i t 1

1þ r

� 	t�1
� V

^̂i t

xtþ1 tþ 1, x
^̂i t

� �
1

tþ1

� 	
â
^̂i t ;
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for
^̂i t 2 S3t ;

where V
i
tþ 1, xtþ1ð Þ ¼ Vi tþ 1, xtþ1ð Þ if i uses conventional technology in stage

tþ 1 and V
i
tþ 1, xtþ1ð Þ ¼ V̂

i
tþ 1, xtþ1ð Þ if i uses the first environment preserving

technology in stage tþ 1, V
i
tþ 1, xtþ1ð Þ ¼ ^̂V

i

tþ 1, xtþ1ð Þ if i uses the second

environment preserving technology in stage tþ 1, and

xtþ1 ¼ xþ
X
j2S1t

ajϕ j
t xð Þ þ

X
ζ2S2t

â ζϕ̂
ζ

t xð Þ þ
X
ζ2S3t

^̂a
ζ ^̂ϕ

ζ

t xð Þ �
X
j2S1t

bjυ
j
t xð Þx1=2

�
X
j2S2t

bjυ̂
j
t xð Þx1=2 �

X
j2S3t

bj ^̂υ
j

t xð Þx1=2 � δx;

x
itð Þ1
tþ1 ¼ xþ

X
j 2 S1t
j 6¼ it

ajϕ j
t xð Þ þ

X
ζ2S2t

â ζϕ̂
ζ

t xð Þ þ
X
ζ2S3t

^̂a
ζ ^̂ϕ

ζ

t xð Þ þ â it q̂ it
t �

X
j 2 S1t
j 6¼ it

bjυ
j
t xð Þx1=2

�
X
j2S2t

bjυ̂
j
t xð Þx1=2 �

X
j2S3t

bj ^̂υ
j

t xð Þx1=2 � bitu
it
t � δx;

x
itð Þ2
tþ1 ¼ xþ

X
j 2 S1t
j 6¼ it

ajϕ j
t xð Þ þ

X
ζ2S2t

â ζϕ̂
ζ

t xð Þ þ
X
ζ2S3t

^̂a
ζ ^̂ϕ

ζ

t xð Þ þ ^̂a
it ^̂q

it

t �
X
j 2 S1t
j 6¼ it

bjυ
j
t xð Þx1=2

�
X
j2S2t

bjυ̂
j
t xð Þx1=2 �

X
j2S3t

bj ^̂υ
j

t xð Þx1=2 � bitu
it
t � δx;

x
î tð Þ0

tþ1 ¼ xþ
X
j2 S1t

ajϕ j
t xð Þ þ

X
ζ 2 S2t
ζ 6¼ î t

â ζϕ̂
ζ

t xð Þ þ
X
ζ2 S3t

^̂a
ζ ^̂ϕζ

t xð Þ þ aîtqî tt �
X
j2 S1t

bjυ
j
t xð Þx1=2

�
X
j 2 S2t
j 6¼ î t

bjυ̂
j
t xð Þx1=2 �

X
j2S3t

bj ^̂υ
j

t xð Þx1=2 � b̂i tu
î t
t � δx;

x
î tð Þ2

tþ1 ¼ xþ
X
j2S1t

ajϕ j
t xð Þ þ

X
ζ 2 S2t
ζ 6¼ î t

â ζϕ̂
ζ

t xð Þ
þ
X
ζ2S3t

^̂a
ζ ^̂ϕ

ζ

t xð Þ þ ^̂a
î t ^̂q

î t
t

�
X
j2S1t

bjυ
j
t xð Þx1=2 �

X
j 2 S2t
j 6¼ î t

bjυ̂
j
t xð Þx1=2 �

X
j2S3t

bj ^̂υ
j

t

xð Þx1=2 � bî tu
î t
t � δx;
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x
^̂i t

� �
0

tþ1 ¼ xþ
X
j2S1t

ajϕ j
t xð Þ þ

X
ζ2S2t

â ζϕ̂
ζ

t xð Þ þ
X

ζ 2 S3t

ζ 6¼ ^̂it

^̂a ζ ^̂ϕ
ζ

t xð Þ þ a
^̂i tq

^̂i t
t

�
X
j2S1t

bjυ
j
t xð Þx1=2 �

X
j2S2t

bjυ̂
j
t xð Þx1=2 �

X
j 2 S3t

j 6¼ ^̂it

bj ^̂υ
j
t xð Þx1=2 � b^̂i t

u
^̂i t
t � δx;

x
^̂i t

� �
1

tþ1 ¼ xþ
X
j2S1t

ajϕ j
t xð Þ þ

X
ζ2S2t

â ζϕ̂
ζ

t xð Þ þ
X

ζ 2 S3t

ζ 6¼ ^̂it

^̂a
ζ ^̂ϕζ

t xð Þþâ ^̂it q̂
^̂it
t

�
X
j2S1t

bjυ
j
t xð Þx1=2 �

X
j2S2t

bjυ̂
j
t xð Þx1=2 �

X
j 2 S3t

j 6¼ ^̂it

bj ^̂υ
j
t xð Þx1=2 � b^̂it

u
^̂it
t � δx:

Proof Follow the proof of Theorem 2.1. ■

Following the analysis in Sect. 14.2 the value functions in Theorem 5.1 can be

obtained as:

Vit t; xð Þ ¼ Aii
t xþ Cit

t

� � 1

1þ r

� 	t�1
, for it 2 S1t and t 2 κ;

V̂
î t
t; xð Þ ¼ Â

î i
t xþ Ĉ

ît
t

� 	
1

1þ r

� 	t�1
, for î t 2 S2t and t 2 κ;

^̂V
^̂i t
t; xð Þ ¼ ^̂A

^̂i i

t xþ ^̂
C

^̂i t

t

 !
1

1þ r

� 	t�1
, for

^̂it 2 S3t and t 2 κ; ð5:10Þ

withAit
t ,C

it
t , Â

î t
t , Ĉ

î t
t ,

^̂A
^̂i t

t and
^̂
C

^̂i t

t being constants involving the model parameters.

14.5.2 Group Optimality and Subgame Consistent Payment
Scheme

Now consider the case when all the nations want to collaborate and tackle the

pollution problem together. To achieve group optimality all the nations would act
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cooperatively so that the joint payoff will be maximized. Since three technique

choices are available they have to determine which nations would use which type of

techniques over the T stages. Let Mγ be a matrix reflecting the pattern of technique

choices by the n nations over the T stages. In particular, according to patternMγ, the

set of nations that use conventional technique is S
Mγ 1½ �
t , the set of nations that use the

first environment-preserving technique is S
Mγ 2½ �
t and the set of nations that use the

second environment-preserving technique is S
Mγ 3½ �
t in stage t 2 κ. To select the

controls which would maximize joint payoff under pattern Mγ the nations have to

solve the following optimal control problem of maximizing

XT
t¼1

� X
it2 SM

γ 1½ �
t

� �
αitt �

X
j2 SMγ 1½ �

t

βitj q
j
t �

X
ζ2 SMγ 2½ �

t

βitζ q̂
ζ
t �

X
ζ2 SMγ 3½ �

t

βitζ
^̂q ζ
t

�
qitt

� citqitt � cait uitt
� �2 � hitxt

	
1

1þr
� �t�1

þ
X

î t2 SM
γ 2½ �

t

� �
αî tt �

X
j2 SMγ 1½ �

t

βî tj q
j
t �

X
ζ2 SMγ 2½ �

t

βî tζ q̂
ζ
t �

X
ζ2 SMγ 3½ �

t

βî tζ
^̂q ζ
t

�
q̂îtt

� ĉ ît S
Mγ 2½ �
t

� �
q̂îtt

� ca
î t

uîtt

� �2
� hît xt

	
1

1þ r

� 	t�1

þ
X

^̂it 2 SM
γ 3½ �

t

� �
α
^̂it
t �

X
j2 SMγ 1½ �

t

β
^̂it
j q

j
t �

X
ζ2 SMγ 2½ �

t

β
^̂it
ζ q̂

ζ
t �

X
ζ2 SMγ 3½ �

t

β
^̂it
ζ
^̂q
ζ

t

�
^̂q
^̂it
t �^̂c

^̂i t S
Mγ 2½ �
t

� �
^̂q
^̂it
t

� ca^̂it
u
^̂it
t

� �2
� h

^̂i t xt

	
1

1þ r

� 	t�1 �
þ
Xn
i¼1

gi xi � xTþ1
� � 1

1þ r

� 	T

ð5:11Þ

subject to

xtþ1 ¼ xt þ
X

‘t2 SM
γ 1½ �

t

a‘t q‘tt þ
X

‘̂t2 SM
γ 2½ �

t

â ‘̂t q̂ ‘̂t
t þ

X
^̂
‘t 2 SM

γ 3½ �
t

^̂a
^̂
‘t
^̂q
^̂
‘ t
t �

X
‘t2 SM

γ 1½ �
t

b‘t u
‘t
t xtð Þ1=2

�
X

‘̂ t2 SM
γ 2½ �

t

b‘̂ t
u‘̂ t
t xtð Þ1=2 �

X
^̂
‘t 2 SM

γ 3½ �
t

b^̂
‘t
u
^̂
‘t
t xtð Þ1=2 � δ xt,

x1 ¼ x0: ð5:12Þ

The solution to the optimal control problem (5.11 and 5.12) can be characterized by

the following theorem.

Theorem 5.2 A set of strategies
�
q‘t*t ¼ ψ Mγð Þ‘t

t xð Þ, q̂ ‘̂ t*
t ¼ ψ̂ Mγð Þ‘̂ t

t xð Þ, ^̂q ^̂
‘ t *
t ¼

^̂ψ
Mγð Þ^̂‘ t

t xð Þ, u‘t*t ¼ ϖ Mγð Þ‘t
t xð Þ, u‘̂ t*

t ¼ ϖ̂ Mγð Þ‘̂ t
t xð Þ, u^̂‘ t*

t ¼ ^̂ϖ
Mγð Þ‘̂ t

t xð Þ for t 2 κ and ‘t
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2 S
Mγ 1½ �
t , ‘̂ t 2 S

Mγ 2½ �
t and

^̂
‘ t 2 S

Mγ 3½ �
t

�
constitutes an optimal solution to the control

problem (5.11) and (5.12) if there exist functionsWMγ
t; xð Þ, for t 2 κ, such that the

following recursive relations are satisfied:

WMγ
t;xð Þ¼
max

uitt ,q
it
t ,it2SM

γ 1½ �
t ;

û î t
t q̂

î t
t ,̂it2SM

λ 2½ �
t ;

^̂u
^̂i t
t
^̂q
^̂i t
t ,
^̂i t2SM

λ 3½ �
t ,


 X
it2SM

γ 1½ �
t

��
αitt �

X
j2SMγ 1½ �

t

βitj q
j
t�

X
ζ2SMγ 2½ �

t

βitζ q̂
ζ
t �

X
ζ2SMγ 3½ �

t

βitζ
^̂q
ζ

t

�
qitt

�citqitt �cait uitt
� �2�hit xt	 1

1þr
� 	t�1

þ
X

î t2SM
γ 2½ �

t

��
αî tt �

X
j2SMγ 1½ �

t

βî tj q
j
t�

X
ζ2SMγ 2½ �

t

βî tζ q̂
ζ
t �

X
ζ2SMγ 3½ �

t

βî tζ
^̂q
ζ

t

�
q̂ î tt

�ĉ î t S
Mγ 2½ �
t

� �
q̂ î t
t �caî t û î t

t

� �2
�hîtxt

	
1

1þr
� 	t�1

þ
X

^̂i t2SM
γ 3½ �

t

��
α
^̂i t
t �

X
j2SMγ 1½ �

t

β
^̂i t
j q

j
t�

X
ζ2SMγ 2½ �

t

β
^̂i t
ζ q̂

ζ
t �

X
ζ2SMγ 3½ �

t

β
^̂i t
ζ
^̂q
ζ

t

�
^̂q
^̂i t

t �^̂c
^̂i t S

Mγ 2½ �
t

� �
^̂q
^̂i t

t

�ca^̂i t
^̂u
^̂i t
t

� 	2

�h^̂i t xt
	

1

1þr
� 	t�1�

þWMγ

�
tþ1,xþ

X
‘t2SM

γ 1½ �
t

a‘t q‘tt þ
X

‘̂ t2SM
γ 2½ �

t

â ‘̂ t q̂ ‘̂ t
t þ

X
^̂
‘ t2SM

γ 3½ �
t

^̂a
^̂
‘ t ^̂q

^̂
‘ t

t �
X

‘t2SM
γ 1½ �

t

b‘t u
‘t
t xtð Þ1=2

�
X

‘̂ t2SM
γ 2½ �

t

b‘̂ t û
‘̂ t
t xð Þ1=2�

X
^̂
‘ t2SM

γ 3½ �
t

b^̂
‘ t

^̂u
^̂
‘ t
t xð Þ1=2�δx

�
, for t2κ;

WMγ

Tþ1,xð Þ¼
Xn
i¼1

gi xi�x� � 1

1þr
� 	T

ð5:13Þ

Proof The results in (3.3) satisfy the standard optimality conditions in discrete-

time dynamic programming. ■

Following the analysis in Sect. 14.3 with the indicated maximization and solving

of (5.13) yields the value function indicating the maximized joint payoff under

pattern Mγ as
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WMγ

t; xð Þ ¼ AMγ

t xþ CMγ

t

� � 1

1þ r

� 	t�1
, t 2 κ ð5:14Þ

where AMγ

t and CMγ

t are constants involving the model parameters.

The technique pattern Mγ which yields the highest joint payoffWMγ
t; xð Þ will be

adopted in the cooperative scheme. Let us denote the technique pattern that yields

the highest joint payoff by M*. To achieve dynamic consistency the agreed upon

optimality principle must be maintained at every stage of collaboration.

The agreed-upon optimality principle requires the nations to share the gain from

cooperation proportional to the nations’ relative sizes of noncooperative payoffs. In
a dynamic framework this condition has to be maintained at every stage. Let ξ‘(t,
x�t ) denote nation ‘’s imputation (payoff under cooperation) covering the stages t to
T under the agreed-upon optimality principle along the cooperative trajectory

x*k
� � T

k¼t. Following Theorem 3.2, a payment

B ‘
t x*t
� � ¼ 1þ rð Þt�1 ξ‘ t; x*t

� �� ξ‘ tþ 1, x*tþ1
� �� �

, for ‘ 2 N

given to nation ‘ 2 N at stage t 2 1, 2, � � �,T � 1f g, and a payment

B ‘
T x*T
� � ¼ 1þ rð Þ T�1

�
ξ‘ T; x*T
� �� g‘ x‘ � x*Tþ1

� � 1

1þ r

� 	T �
; ð5:15Þ

given to nation ‘ 2 N at stage T would lead to the realization of the imputation

ξ‘ t; x*t
� �

, for t 2 κ and ‘ 2 N
� �

:

If the agreed-upon optimality principle requires the nations to share the gain

from cooperation proportional to the nations’ relative sizes of noncooperative

payoffs the payment (in present value terms) to nation ‘ in stage t 2 κ can be

obtained as:

B ‘
t x*t
� �

1
1þr
� �t�1

¼ ξ‘ t; x*t
� �� ξ‘ tþ 1, x*tþ1

� �
¼ V

‘
t; x*t
� �

Xn
j¼1

Vj t; x*t
� �WM*

t; x*t
� �� V

‘
tþ 1, x*tþ1
� �

Xn
j¼1

Vj tþ 1, x*tþ1
� �WM*

tþ 1, x*tþ1
� �

;

ð5:16Þ

for ‘ 2 N, t 2 κ,

where V
‘
t; x*t
� � ¼ V‘ t; x*t

� �
if ‘ 2 S1t , V

‘
t; x*t
� � ¼ V̂

‘
t; x*t
� �

if ‘ 2 S2t and

V
‘
t; x*t
� � ¼ ^̂V

‘

t; x*t
� �

if ‘ 2 S3t .

Finally, the analysis can readily be extended to the case where there are three or

more environmental-preserving techniques in a similar manner.
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14.6 Appendices

Appendix A: Proof of Proposition 2.1

From (2.11) we can obtain Vit
xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1 as Ait

tþ1 1þ rð Þ�1 and V
î t
xtþ1

tþ 1, xtþ1ð Þ 1þ rð Þt�1 as A
î t
tþ1 1þ rð Þ�1. Substituting these results into the game

equilibrium strategies (2.9) and (2.10), and then into (2.1) yield:

Ai
Tþ1xþ Ci

Tþ1 ¼ gi xi � xð Þ, i 2 N;

Ait
t xþ Cit

t ¼
� �

αitt �
X
j2S1t

βitj ϕ
j
t xð Þ �

X
j2S2t

βitj ϕ̂
j

t xð Þ
	
ϕit
t xð Þ

�citϕit
t xð Þ � bitð Þ2

4cait
A
it
tþ1 1þ rð Þ�1

h i2
x� hitx

�
þ 1þ rð Þ�1

�
A
it
tþ1

�
xþ

X
j2S1t

ajϕ j
t xð Þ þ

X
j2S2t

â jϕ̂
j

t xð Þ

þ
X
j2S1t

bj
� �2
2caj

A
j
tþ1 1þ rð Þ�1xþ

X
j2S2t

bj
� �2
2caj

A
j
tþ1 1þ rð Þ�1x� δx

	
þ C

it
tþ1

�
;

for t 2 κ and it 2 S1t ,

Â
î t
t xþ Ĉ

î t
t ¼

� �
αî tt �

X
j2S1t

βî tj ϕ
j
t xð Þ �

X
j2S2t

βî tj ϕ̂
j

t xð Þ
	
ϕ̂

î t
t xð Þ

� ĉ î t ϕ̂
î t
t xð Þ �

b̂i t

� �2
4ca

î t

A
î t
tþ1 1þ rð Þ�1

h i2
x� hî tx

�
þ 1þ rð Þ�1

�
A
î t
tþ1

�
xþ

X
j2S1t

ajϕ j
t xð Þ þ

X
j2S2t

â jϕ̂
j

t xð Þ

þ
X
j2S1t

bj
� �2
2caj

A
j

tþ1 1þ rð Þ�1xþ
X
j2S2t

bj
� �2
2caj

A
j

tþ1 1þ rð Þ�1x� δx

	
þC

î t
tþ1

�
; ð6:1Þ

for t 2 κ and î t 2 S2t ,
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A
it
tþ1 1þ rð Þ�1 > ĉ it � cit

� �
â it � ait
� � , for it 2 S1t and

A
î t
tþ1 1þ rð Þ�1 �

ĉ î t � cî t
� �
â î t � aî t
� � , for î t 2 S2t : ð6:2Þ

Where

ϕ j
t xð Þ ¼ α j

t þ
X
ζ2S1t

β
jð Þζ
t A

ζ
tþ1 1þ rð Þ�1 þ

X
ζ2S2t

β
jð Þζ
t Â

ζ
tþ1 1þ rð Þ�1

24 35 and

ϕ̂
k

t xð Þ ¼ α̂
k

t þ
X
ζ2S1t

β̂
kð Þζ
t A

ζ
tþ1 1þ rð Þ�1 þ

X
ζ2S2t

β̂
kð Þζ
t Â

ζ
tþ1 1þ rð Þ�1

24 35:
First consider the stage T þ 1, from (6.1) we obtain

Ai
Tþ1 ¼ �gi, Ci

Tþ1 ¼ gixi, for i 2 N: ð6:3Þ

At stage T, invoking (6.2), industrial sector i which has Ai
Tþ1 1þ rð Þ�1 > ĉ i�cið Þ

â i�aið Þ
would use conventional technique, otherwise it would use environment-preserving

technique.

Note that on the left-hand-side of (6.1) the expressions are Ait
t xþ Cit

t and

Â
î t
t xþ Ĉ

î t
t . On the right-hand-side there are expressions which are linear in

x with coefficients involving the terms Ait
tþ1, C

it
tþ1, Â

î t
tþ1, and Ĉ

î t
tþ1. The values of

Ait
T , C

it
T , Â

î t
T , and Ĉ

î t
T for it 2 S1t and î t 2 S2t can be obtained using the values of

Ait
Tþ1 ¼ Â

î t
Tþ1 ¼ �gi and Cit

Tþ1 ¼ Ĉ
î t
Tþ1 ¼ gixi in (6.3).

In stage τ 2 t, tþ 1, � � �, Tf g if nation it chooses to adopt conventional technique
at stage τ, one can invoke (6.1) to obtain the explicit solutions of Ait

τ and Cit
τ as:

Cit
τ ¼

�
αitτ �

X
j2S1τ

βiτj ϕ
j
τ xð Þ �

X
j2S2τ

βitj ϕ̂
j

τ xð Þ
	
ϕit
τ xð Þ � citϕit

τ xð Þ

þ 1þ rð Þ�1
�
A
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τþ1

� X
j2S1τ

ajϕ j
τ xð Þ þ

X
j2S2τ

â jϕ̂
j

τ xð Þ
	
þ Cit

τþ1

�
, and

Ait
τ ¼ �

bitð Þ2
4cait

A
it
τþ1 1þ rð Þ�1

h i2
� hit

þ 1þ rð Þ�1Ait
τþ1

�
1þ

X
j2S1τ

bj
� �2
2caj

A
j
τþ1 1þ rð Þ�1 þ

X
j2S2τ

bj
� �2
2caj

A
j
τþ1 1þ rð Þ�1 � δ

	
:

ð6:4Þ
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In stage τ 2 t, tþ 1, � � �, Tf g if nation it chooses to adopt environment-preserving

technique at stage τ, one can invoke (6.1) to obtain the explicit solutions of Â
î t
τ and

Ĉ
î t
τ as:

Ĉ
î t
τ ¼

�
αî tτ �

X
j2S1τ

βî tj ϕ
j
τ xð Þ �

X
j2S2τ

βî tj ϕ̂
j

τ

	
ϕ̂

it
τ xð Þ � ĉ î t ϕ̂

it
τ xð Þ

þ 1þ rð Þ�1
�
A
î t
τþ1

� X
j2S1τ

ajϕ j
τ xð Þ þ

X
j2S2τ

â jϕ̂
j

τ xð Þ
	
þ C

î t
τþ1

�
, and

Â
î t
τ ¼ �

b̂i t

� �2
4ca

î t

A
î t
τþ1 1þ rð Þ�1

h i2
� hî t

þ 1þ rð Þ�1Aî t
τþ1

�
1þ

X
j2S1τ

bj
� �2
2caj

A
j

τþ1 1þ rð Þ�1 þ
X
j2S2τ

bj
� �2
2caj

A
j

τþ1 1þ rð Þ�1 � δ

	
:

ð6:5Þ

Repeating the process for τ from T to t, one can obtainAit
t ,C

it
t , Â

î t
t and Ĉ

î t
t . A

i
t and

Ci
t, for it 2 S1t and î t 2 S2t explicitly as constants from the model parameters. Q.E.D.

Appendix B: Proof of Proposition 3.1

From (3.8) we can obtainWMγ

xtþ1 tþ 1, xtþ1ð Þ 1þ rð Þt�1 asAMγ

tþ1 1þ rð Þ�1. Substituting
this result into the optimal controls in (3.4) and (3.7), and then into (3.3) yields

AMγ

t xþ CMγ

t ¼
X

i2SMγ 1½ �
t

� �
α i
t �

X
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j ψ
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X
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β i
ζψ̂
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ψ̂ Mγð Þi

t xð Þ

� ĉ i S
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t

� �
ψ̂ Mγð Þi

t xð Þ � b̂ i
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4cai

AMγ
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h i2

x� hix
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�
AMγ
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�
xþ

X
j2SMγ 1½ �

t
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X
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t

â j ψ̂ Mγð Þj
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j¼1

b̂ i

� �2
2cai

AMγ

tþ1 1þ rð Þ�1x� δ x

	
þ CMγ

tþ1

�
, for t 2 κ;

AMγ

Tþ1xþ CMγ

Tþ1 ¼
Xn
i¼1

gi xi � xð Þ: ð6:6Þ
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Where

ψ Mγð Þj
t xð Þ ¼ eα Mγð Þj

t þ eβ Mγð Þj
t AMγ

tþ1 1þ rð Þ�1 and
ψ̂ Mγð Þζ

t xð Þ ¼ êα Mγð Þj
t þ êβ Mγð Þj

t AMγ

tþ1 1þ rð Þ�1:

First consider the stage T þ 1, from (6.6) we obtain

AMγ

Tþ1 ¼
Xn
i¼1
�gi andCMγ

Tþ1 ¼
Xn
i¼1

gixi: ð6:7Þ

Now we consider the stage T. Note that the left-hand-side of (6.6) consists of the

expression AMγ

T xþ CMγ

T . On the right-hand-side there is an expression which is

linear in x with coefficients involvingAMγ

Tþ1 andC
Mγ

Tþ1. The values ofA
Mγ

T andCMγ

T can

be obtained using AMγ

Tþ1 and C
Mγ

Tþ1 in (6.7). Using (6.6) yields the explicit solution of
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t and AMγ

t for t ¼ T as:
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 X
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t
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X
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t

â j ψ̂ Mγð Þj
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and

AMγ

t ¼
Xn
i¼1

�
� bið Þ2

4cai
AMγ

tþ1 1þ rð Þ�1
h i2

� hi
�

þ 1þ rð Þ�1
�
AMγ

tþ1

�
1þ

Xn
j¼1

bið Þ2
2cai

AMγ

tþ1 1þ rð Þ�1 � δ

	 �
: ð6:8Þ

Now consider stage T � 1. One can obtain AMγ

T�1 and CMγ

T�1 as in (6.8) by setting

t ¼ T � 1. Repeating the process, AMγ

t and CMγ

t for t 2 1, 2, � � �,T � 2f g can be

explicitly obtained. Q.E.D.
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14.7 Chapter Notes

Adoption of environment-preserving production technique plays a key role to

effectively solving the continual worsening global industrial pollution problem.

In this Chapter a dynamic game of collaborative pollution management with

production technique choices is presented. Various extensions can also be incor-

porated into the analysis readily. First, one may introduce costs of technique

switching. Second, the natural rate of decay may be related to the pattern of

technique choice. Finally, the number of industrial products produced by a nation

could be more than one.

14.8 Problems

1. Consider a 2-nation version of the dynamic game model of transboundary

pollution with two production technique choices in Sect. 14.1. The demand

functions of these nations are respectively

P1
t ¼ 40� 2Q1

t � Q2
t and P

2
t ¼ 65� 0:5Q1

t � 4Q2
t :

The costs of producing output with conventional technique are c1 ¼ 1:2, c2 ¼
0:8; and those of using environment-preserving technique are ĉ 1 ¼ 2:5, ĉ 2 ¼ 2:
The abatement costs are ca1 ¼ 2, ca2 ¼ 3 ; and the abatement parameters are

b1 ¼ 1:5, b2 ¼ 0:5. The pollution dynamics parameters are a1 ¼ 2, â 1 ¼ 0:5,

a2 ¼ 3, â 2 ¼ 1. The pollution decay rate δ ¼ 0:05 and the pollution damage

parameters are h1 ¼ 0:9, h2 ¼ 0:5. The initial pollution stock is x1 ¼ 3 and the

discount rate is r ¼ 0:05. The terminal bonus (penalty) parameters are g1 ¼ 0:8,

g2 ¼ 0:2; x1 ¼ 400, x2 ¼ 450.

Characterize a feedback Nash equilibrium solution and show the pattern of

technology used.

2. If these nations agree to cooperate and maximize their joint payoff, obtain a

group optimal cooperative solution.

3. Furthermore, if these nations agree to share their cooperative gain proportional

to their expected payoffs, derive a subgame consistent cooperative solution.
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Chapter 15

Applications in Business Collaboration

In this Chapter, we present two applications in business collaboration. The first one

is on corporate joint venture and the second one is on cartel. The joint venture

analysis is from Yeung and Petrosyan (2006a), Yeung (2010) and Chapter 9 of

Yeung and Petrosyan (2012a). The Cartel analysis is extracted from Yeung (2005)

and Chapter 11 of Yeung and Petrosyan (2012a). Sections 15.1, 15.2 and 15.3

contain the analysis of a corporate joint venture in which gains can be obtained

from cost saving cooperation. In section 15.1, a dynamic corporate joint venture

under uncertainty is formulated. The expected venture profit maximization,

subgame consistent PDP and an illustration are provided. In Sect. 15.2, the Shapley

Value Solution for the joint venture is derived. An analysis on joint venture under

an infinite horizon is given in Sect. 15.3. Sections 15.4, 15.5 and 15.6 present a

cartel analysis which contains dormant firms. Section 15.4 presents a stochastic

dynamic dormant-firm cartel. The basic settings, market outcome, optimal cartel

output and subgame-consistent cartel profit sharing are investigated. An illustration

with explicit functional forms is given in Sect. 15.5. An analysis on infinite horizon

cartel is provided in Sect. 15.6. An Appendix of the Chapter is given in Sect. 15.7.

Chapter notes are given in Sect. 15.8 and problems in Sect. 15.9.

15.1 Dynamic Corporate Joint Venture Under Uncertainty

As markets become increasingly globalized and firms become more multinational,

corporate joint ventures are likely to yield opportunities to quickly create econo-

mies of scale and critical mass, incorporate new skills and technology, and facilitate

rational resource sharing (see Bleeke and Ernst (1993)). With joint ventures

becoming a powerful force shaping global corporate strategy, partnerships between

firms have significantly increased. Despite their purported benefits, however, joint

ventures are highly unstable and have a consistently high rate of failure (Blodgett
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1992; Parkhe 1993). Subgame consistent solution for joint ventures would provide

a solution to the problem.

In this section, we present a general framework of a dynamic joint venture in

which there are n firms. The venture horizon is [t0, T]. The state dynamics of the ith
firm is characterized by the set of vector-valued stochastic differential equations:

dxi sð Þ ¼ f i s, xi sð Þ, ui sð Þ� �
dsþ σi s, x

i sð Þ� �
dzi sð Þ, xi t0ð Þ ¼ x i0, for i2N; ð1:1Þ

where xi sð Þ2Xi � Rmi denotes the technology state of firm i, ui2Ui � compRλ is

the control vector of firm i, σi[s, x
i(s)] is a mi � Θi and zi(s) is a Θi-dimensional

Wiener process and the initial state xi0 is given. Let

Ωi s, x
i sð Þ½ � ¼ σi s, xi sð Þ½ � σi s,xi sð Þ½ �T denote the covariance matrix with its element

in row h and column ζ denoted by Ωhζ
i [s, xi(s)]. For i 6¼ j, xi \ xj ¼ ∅, and zi(s)

and zj(s) are independent Wiener processes. We also used xN(s) to denote the vector

[x1(s), x2(s), . . ., xn(s)] and xN0 the vector [x10, x
2
0, . . ., x

n
0].

The expected profit of firm i is:

Et0

�ðT
t0

ðgi s, xi sð Þ� �� c
if g

i ui sð Þ�Þ exp �
ðs
t0

r yð Þdy
� �

ds,

þ exp �
ðT
t0

r yð Þdy
� �

qi xi Tð Þð Þ
�
, for i2 1; 2; . . .; n½ ��N; ð1:2Þ

where exp �
ðt
t0

r yð Þdy
� 	

is the discount factor, and qi(xi(T )) the terminal payoff. In

particular, gi[s, xi, ui] and qi(xi) are positively related to xi, reflecting the earning

potent of the technology.

A set of investment strategies ϕ*
i (t, x

i) for firm i constitutes a Nash equilibrium to

the stochastic differential game (1.1 and 1.2) if there exist continuously twice

differentiable function V t0ð Þi t; xið Þ : t0; T½ � � Rmi ! R satisfying the following

equations:

�V
t0ð Þi
t t; xið Þ � 1

2

Xmi

h, ζ¼1

Ωhζ
i t; xi

 �

V
t0ð Þi
xi hð Þxi ζð Þ t; xi


 � ¼
max
ui

g t; xi

 �� c

if g
i uið Þ

h i�
exp �

ðt
t0

r yð Þdy
� 	

þV t0ð Þi
x t; xð Þf i t; xi; ui

� ��
,

V t0ð Þi T; xið Þ ¼ qi xið Þ exp �
ðT
t0

r yð Þdy
� 	

, for i2N:

Let V(τ)i(t, xi) denote the game equilibrium payoff of firm i in a game with

dynamics (1.1) and payoff (1.2) which starts at time τ for τ2�t0,T�. One can

readily obtain
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exp

ðτ
t0

r yð Þdy
� 	

V t0ð Þi t; xi

 � ¼ V τð Þi t; xi


 �
;

for τ2 t0; T½ � and i2N.
For the sake of clarity in exposition, we consider the case where

mi¼ 1, for i2N.

15.1.1 Expected Venture Profit Maximization

Consider a joint venture consisting of all these n companies. The participating firms

can gain core skills and technology that would be impossible for them to obtain on

their own individually. Cost saving opportunities are created under joint venture,

for instance, savings in joint R&D, administration, marketing, customer services,

purchasing, financing, and economy of scales and scope. The cost of control of firm

j under the joint venture becomes cNj [uj(s)]. With absolute joint venture cost

advantage we have

cNj uj

 � � c

jf g
j uj

 �

, for j2N; ð1:3Þ

Moreover, marginal cost advantages lead to:

∂cNj uj

 �

=∂uj � ∂c jf g
j uj

 �

=∂uj , for j2N:

At time t0, the joint venture would maximize the expected joint venture profit:

Et0

�ðT
t0

Xn
j¼1

ðgj s, xj sð Þ� �� cNj uj sð Þ� �Þ exp �
ðs
t0

r yð Þdy
� �

ds

þ
Xn
j21

exp �
ðT
t0

r yð Þdy
� �

qj xj Tð Þð Þ
�

ð1:4Þ

subject to (1.3).

Invoking Fleming’s techniques of stochastic optimal control, the solution to the

problem (1.3 and 1.4) can be characterized as follows.

Corollary 1.1 A set of controls fψ*
i t; xð Þ, for i2N and t2 t0; T½ �g provides an

optimal solution to the control problem (1.3 and 1.4) if there exists continuously

twice differentiable function W t0ð Þ t; xð Þ : t0; T½ � � Rn ! R satisfying the following

Bellman equation:
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�W
t0ð Þ
t t; xð Þ � 1

2

Xn
h, ζ¼1

Ωhζ t; xð ÞW t0ð Þ
xhxζ

t; xð Þ ¼

¼ max
u1, u2, ���, un

Xn
j¼1

�
gj t; xj

 �� cNj uj


 ��(
exp �

ðt
t0

r yð Þdy
� �

þ
Xn
j¼1

W t0ð Þ
xj

t; xð Þ f j t; xj; uj

 ��

,

W t0ð Þ T; xð Þ ¼ exp �
ðT
t0

r yð Þdy
� �Xn

j¼1

qj xj

 �

; ð1:5Þ

where x ¼ x1; x2; . . .; xn
� 

. ■

Hence the firms will adopt the cooperative control fψ*
i t; xð Þ, for i2N and

t2 t0; T½ �g to obtain the maximized level of expected joint profit. Substituting

this set of control into (1.3) yields the dynamics of technology advancement

under cooperation as:

dxi sð Þ ¼ f i s, xi sð Þ,ψ*
i s, x sð Þð Þ� �

dsþ σi s, xi sð Þ½ � dzi sð Þ,
xi t0ð Þ ¼ x i0, for i2N: ð1:6Þ

Let x* tð Þ ¼ x1* tð Þ, x2* tð Þ, . . ., xn* tð Þ� 
denote the solution to (1.6). The optimal

cooperative trajectory can be expressed as:

xi* tð Þ ¼ x i0 þ
ðt
t0

f i s, xi* sð Þ,ψ*
i s, x* sð Þ
 �� �

dsþ
ðt
t0

σi s, x
i* sð Þ� �

dzi sð Þ, ð1:7Þ

for i2N.

We use X*
t to denote the set of realizable values of x**(t) at time t generated by

(1.6). The term x*t 2X*
t is used to denote an element in X*

t .

The cooperative investment strategies for the joint venture with dynamics (1.3)

and expected joint venture profit (1.4) over the time interval [t0,T] can be expressed
more precisely as

fψ*
i t, x* tð Þ
 �

, for i2N and t2 t0; T½ �g: ð1:8Þ

Note that for group optimality to be achievable, the cooperative investment

strategies fψ*
i t, x* tð Þ
 �

, for i2N and t2 t0; T½ �g must be exercised throughout

time interval [t0,T].

Along the cooperative investment path x* tð Þ� T

t¼t0
the present value of total

expected joint venture profit over the interval [t,T], for t2�t0, T�, can be expressed

as:
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W t0ð Þ t; x*t

 � ¼

Et0

�ðT
t

Xn
j¼1

ðgj s, xj* sð Þ� �� cNj ψ*
j s, x* sð Þ
 �h i

Þexp �
ðs
t0

r yð Þdy
� �

ds

þ exp �
ðT
t0

r yð Þdy
� �Xn

j¼1

qj xj* Tð Þ
 �
x* tð Þ ¼ x*t 2X*

t

����� : ð1:9Þ

Let W(τ)(t, x*t ) denote the total venture profit from the control problem with dynam-

ics (1.3) and payoff (1.4) which begins at time τ2 t0; T½ �with initial state x*τ . We can

readily have exp

ðτ
t0

r yð Þdy
� 	

W t0ð Þ t; x*t

 � ¼ W τð Þ t; x*t


 �
, for τ2 t0; T½ � and t2�τ,T�.

15.1.2 Subgame Consistent Venture PDP

Since the sizes and earning potentials of the firms in a corporate joint venture may

vary significantly, we consider the case when the venture agrees to share the excess

of the expected total cooperative payoff over the sum of expected individual

noncooperative payoffs proportionally to the firms’ expected noncooperative

payoffs.

The imputation scheme has to fulfil:

Condition 1.1 An imputation

ξ t0ð Þi t0; x0ð Þ ¼ V t0ð Þi t0; x i0

 �

Xn
j¼1

V t0ð Þj t0; x
j
0

� �W t0ð Þ t0; x0ð Þ

is assigned to firm i, for i2N at the outset;

and an imputation

ξ τð Þi τ; x*τ

 � ¼ V τð Þi τ; xi*τ


 �
Xn
j¼1

V τð Þj τ; xj*τ

 �W τð Þ τ; x*τ


 � ð1:10Þ

is assigned to firm i, for i2N at time τ2
t0,T�. ■

The imputation (1.10) satisfies

(i) ξ τð Þi τ; x*τ

 � 	 V τð Þi τ; xi*τ


 �
, for i2N and τ2 t0; T½ �; and

(ii)
Xn
j¼1

ξ τð Þj τ; x*τ

 � ¼ W τð Þ τ; x*τ


 �
, for τ2 t0; T½ �.
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Hence the imputation vector ξ(τ)(τ, x*τ ) in (1.10) satisfies individual rationality

and group optimality throughout the game horizon [t0,T]. Invoking Theorem 3.1 in

Chap. 3, a PDP with a terminal payment qi(x*T) at time T and an instantaneous

payment at time s2 τ;T½ �:

Bi s; x
*
s


 � ¼ � ξ sð Þi
t t; x*t

 ����

t¼s

h i
� 1

2

Xn
h, ζ¼1

Ωhζ s; x*s

 �

ξ sð Þi
x h
t x

ζ
t

t; x*t

 ����

t¼s

� �

�
Xn
h¼1

ξ sð Þi
xh*t

t; x*t

 ����

t¼s

h i
f h s, xh*s ,ψ*

h s; x*s

 �� �

¼ � ∂
∂t

2
4 V sð Þi t; xi*t


 �
Xn
j¼1

V sð Þj t; xj*t

� �W sð Þ t; x*t

 �

t ¼ s

������
3
5

� 1

2

Xn
h, ζ¼1

Ωhζ s; x*s

 � ∂2

∂xh*t ∂xζ*t

2
4 V sð Þi t; xi*t


 �
Xn
j¼1

V sð Þj t; xj*t

� �W sð Þ t; x*t

 � ������ t ¼ s

3
5

�
Xn
h¼1

∂
∂xh*t

2
4 V sð Þi t; xi*t


 �
Xn
j¼1

V tð Þj t; xj*t

� �W sð Þ t; x*t

 � ������ t ¼ s

3
5f h s, xh*s ,ψ*

h s; x*s

 �� �

,

ð1:11Þ

for i2N and x*s 2X*
s ;

yields imputation vectors which satisfy (1.10) and is hence subgame consistent. ■
With firms using the cooperative investment strategies

ψ*
i τ; x*τ

 �

, for τ2 t0; T½ � and i2N
� 

; the instantaneous receipt of firm i at time

instant τ is:

ζi τ; x
*
τ


 � ¼ gi τ; xi*τ

 �� cNi ψ*

i τ; x*τ

 �� �

, ð1:12Þ

for τ2 t0; T½ � and i2N:
According to (1.1), the instantaneous payment that firm i should receive under

the agreed-upon optimality principle is Bi(τ, x*τ ) as stated in (1.11). Hence an

instantaneous transfer payment

χi τ; x*τ

 � ¼ Bi τ; x

*
τ


 �� ζi τ; x
*
τ


 � ð1:13Þ

has to be given or charged to firm i at time τ, for i2N and τ2 t0; T½ �.
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15.1.3 An Illustration

Consider the case where there are three companies involved in a joint venture. The

planning period is [t0, T]. Company i’s expected profit is

Et0

�ðT
t0

Pi x
i sð Þ� �1=2 � c

if g
i ui sð Þ

h i
exp �r s� t0ð Þ½ � ds

þ exp �r T � t0ð Þ½ �qi xi Tð Þ½ �1=2
�
, for i2 1; 2; 3f g; ð1:14Þ

where Pi, c
i
i and qi are positive constants, r is the discount rate, xi sð Þ � Rþ is the

level of technology of company i at time s, andui sð Þ � Rþ is its physical investment

in technological advancement. The term Pi[x
i(s)]1/2 reflects the net operating

revenue of company i at technology level xi(s), and ciiui is the cost of investment

if firm i operates on its own. The term qi[x
i(T)]1/2 gives the salvage value of

company i’s technology at time T.
The dynamics of the technology level of company i follows the stochastic

differential equation:

dxi sð Þ ¼ αi ui sð Þxi sð Þ½ �1=2 � δ xi sð Þ
h i

dsþ σixi sð Þdzi sð Þ, xi t0ð Þ ¼ x i02Xi,

for i2 1; 2; 3f g; ð1:15Þ

where αi[ui(s)x
i(s)]1/2 is the addition to the technology brought about by ui(s)

amount of physical investment, δ is the rate of obsolescence, and z1(s), z2(s) and
z3(s) are independent Wiener processes.

In the case when each of these three firms acts independently we obtain the

corresponding partial differential equations characterizing a non-cooperative equi-

librium as:

�V
t0ð Þi
t t; xið Þ � σixið Þ2

2
V

t0ð Þi
xixi t; xi

 �

¼ max
ui

�
Pi x

i

 �1=2 � c

if g
i ui

h i
exp �r t� t0ð Þ½ �

þ V
t0ð Þi
xi t; xi

 �

αi u
ixi


 �1=2 � δ xi
h i�

,

V t0ð Þi T; xi

 � ¼ exp �r T � t0ð Þ½ � qi xi


 �1=2
, for i2 1; 2; 3f g:

Performing the indicated maximization yields

ui ¼ α2i

4 c
if g

i

� �2 V
t0ð Þi
xi t; xi

 �

exp r t� t0ð Þ½ �
h i2

xi, for i2 1; 2; 3f g:
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Substituting ui into the above partial differential equations yields:

�V
t0ð Þi
t t; xið Þ � σixið Þ2

2
V

t0ð Þi
xixi t; xi

 �

¼ Pi x
i


 �1=2
exp �r t� t0ð Þ½ � � α2i

4c
if g

i

V
t0ð Þi
xi t; xi

 �h i2

exp r t� t0ð Þ½ � xi

þ α2i

2c
if g
i

V
t0ð Þi
xi t; xi

 �h i2

exp r t� τð Þ½ � xi � δ V t0ð Þi
xi t; xi

 �

xi, for i2 1; 2; 3½ �:

Solving the above system of partial differential equations yields

V t0ð Þi t; xi

 � ¼ A

if g
i tð Þ xi


 �1=2 þ C
if g
i tð Þ

h i
exp �r τ � t0ð Þ½ �, for i2 1; 2; 3f g; ð1:16Þ

where

_A
if g
i tð Þ ¼ r þ δ

2
þ σ2i

8

� �
A

if g
i tð Þ � Pi, _C

if g
i tð Þ ¼ rC

if g
i tð Þ � α2i

16c
if g

i

A
if g

i tð Þ
h i2

,

A
if g

i Tð Þ ¼ qi and C
if g

i Tð Þ ¼ 0: ð1:17Þ

The first equation in the block-recursive system (1.17) is a first-order linear

differential equation in Ai
i(t) which can be solved independently by standard

techniques. Upon substituting the solution of Ai
i(t) into the second equation of

(1.17) yields a first-order linear differential equation in Ci
i(t). The solution of Ci

i(t)
can be readily obtained by standard techniques.

Moreover, one can easily derive for τ2 t0; T½ �

V τð Þi t; xið Þ ¼ A
if g
i tð Þ xið Þ1=2 þ C

if g
i tð Þ

h i
exp �r t� τð Þ½ �, for i2 1; 2; 3f g and

τ2 t0; T½ �:

15.1.3.1 Expected Venture Profit and Cost Savings

Consider the case when all these three firms agree to form a joint venture and

share their expected joint profit proportionally to their expected noncooperative

profits. Cost saving opportunities are created under joint venture from joint R&D,

administration, purchasing, financing, and economy of scales and scope. The cost of

control of firm j under the joint venture becomes c1;2;3j [uj(s)]. With joint venture cost

advantage

c
1;2;3f g

j � c
jf g
j , for j2N; ð1:18Þ

446 15 Applications in Business Collaboration



The expected profit of the joint venture is the sum of the participating firms’
expected profits:

Et0

�ðT
t0

X3
j¼1

Pj x
j sð Þ� �1=2 � c

1;2;3f g
j uj sð Þ

h i
exp �r s� t0ð Þ½ � ds

þ
X3
j¼1

exp �r T � t0ð Þ½ �qj xj Tð Þ½ �1=2
�
: ð1:19Þ

The firms in the joint venture then act cooperatively to maximize (1.19) subject to

(1.18). Invoking Theorem A.3 in the Technical Appendices, we obtain the equa-

tions characterizing an optimal solution of the stochastic control problem (1.18 and

1.19) as:

�W
t0ð Þ 1;2;3f g
t t; x1; x2; x3ð Þ �

X3
h, ζ¼1

σhxh

 �

σζxζ

 �
2

W
t0ð Þ 1;2;3f g
xhxζ

t; x1; x2; x3

 �

¼ max
u1, u2, u3

�X3
i¼1

Pi x
i


 �1=2 � c
1;2;3f g

i ui

h i
exp �r t� t0ð Þ½ �

þ
X3
i¼1

W
t0ð Þ 1;2;3f g
xi t; x1; x2; x3ð Þ

�
αi uixið Þ1=2 � δ xi

��
,

W t0ð Þ 1;2;3f g T; x1; x2; x3ð Þ ¼
X3
j¼1

exp �r T � t0ð Þ½ �qj xjð Þ1=2: ð1:20Þ

Performing the indicated maximization yields

ui ¼ α2i

4 c
1;2;3f g

i

� �2 W
t0ð Þ 1;2;3f g
xi t; x1; x2; x3


 �
exp r t� t0ð Þ½ �

h i2
xi, for i2 1; 2; 3f g:

ð1:21Þ

Substituting (1.21) into (1.20) and solving yields the value function reflecting the

expected joint maximized payoffs:

W t0ð Þ 1;2;3f g t; x1; x2; x3ð Þ
¼ A

1;2;3f g
1 tð Þ x1ð Þ1=2 þ A

1;2;3f g
2 tð Þ x2ð Þ1=2 þ A

1;2;3f g
3 tð Þ x3ð Þ1=2 þ C 1;2;3f g tð Þ

h i
exp �r t� t0ð Þ½ �;

ð1:22Þ

where A1;2;3
1 (t),A1;2;3

2 (t),A1;2;3
3 (t) and x3,C

{1,2,3}(t) satisfy

_A
1;2;3f g

i tð Þ ¼ r þ δ
2
þ σ2i

i

8

� �
A

1;2;3f g
i tð Þ � b

i;j½ �
i

2
A

1;2;3f g
j tð Þ � b

i;h½ �
i

2
A

1;2;3f g
h tð Þ � Pi for

i, j, h2 1; 2; 3f g and i 6¼ j 6¼ h,
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_C 1;2;3f g tð Þ ¼ rC 1;2;3f g tð Þ �
X3
i¼1

α2i
16c

1;2;3f g
i

A
1;2;3f g
i tð Þ

h i2
,

A
1;2;3f g

i Tð Þ ¼ qi for i2 1; 2; 3f g, and C 1;2;3f g Tð Þ ¼ 0: ð1:23Þ

The first three equations in the block recursive system (1.23) is a system of three

linear differential equations which can be solved explicitly by standard techniques.

Upon solving A1;2;3
i (t) for i2 1; 2; 3f g, and substituting them into the fourth equation

of (1.23), one has a linear differential equation in C{1,2,3}(t).
The investment strategies of the grand coalition joint venture can be derived as:

ψ 1;2;3f g
i t; xð Þ ¼ α2i

16 c
1;2;3f g
i

� �2 A
1;2;3f g

i tð Þ
h i2

, for i2 1; 2; 3f g: ð1:24Þ

The dynamics of technological progress of the joint venture over the time interval

s2 t0; T½ � can be expressed as:

dxi sð Þ ¼ α2i
4c

1;2;3f g
i

 
A

1;2;3f g
i tð Þ xi sð Þ� �1=2 � δ xi sð Þ

�
dsþ σix

i sð Þdzi sð Þ; ð1:25Þ

xi t0ð Þ ¼ x i0;

for i2 1; 2; 3f g.
Taking the transforming yi sð Þ ¼ xi sð Þ1=2, for i2 1; 2; 3f g, equation system (1.25)

can be expressed as:

dyi sð Þ ¼ α2i
8ci

�
A

1;2;3f g
i tð Þ � δ

2
yi sð Þ� σ2i

8
A

1;2;3f g
i sð Þyi sð Þ

�
dsþ 1

2
σiy

i sð Þdzi sð Þ,
yi t0ð Þ ¼ x i0


 �1=2
,

ð1:26Þ

for i2 1; 2; 3f g
Equation (1.26) is a system of linear stochastic differential equations which can

be solved by standard techniques. Solving (1.26) yields the joint venture’s state

trajectory. Let {y1 *(t), y2 *(t), y3 *(t)} denote the solution to (1.26). Transforming

xi ¼ yið Þ2, we obtain the state trajectories of the joint venture over the time interval

s2 t0; T½ � as

x* sð Þ ¼ x1* tð Þ,x2* tð Þ,x3* tð Þ� T

t¼t0
¼ y1* tð Þ� �2

; y2* tð Þ� �2
; y3* tð Þ� �2n oT

t¼t0
: ð1:27Þ

We use X*
t to denote the set of realizable values of x*(t) at time t and the term

x*t 2X*
t is used to denote an element in X*

t .
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Remark 1.1 One can readily verify that:

W t0ð Þ 1;2;3f g t; x1*; x2*; x3*

 � ¼ W tð Þ 1;2;3f g t; x1*; x2*; x3*


 �
exp �r t� t0ð Þ½ �, for

i2 1; 2; 3f g: ■

15.1.3.2 Subgame-Consistent Venture Profit Sharing

Since the firms agree to share their expected joint profit proportionally to their

expected noncooperative profits, the imputation scheme has to fulfill:

Condition 1.2 In the game Γc x0,T � t0ð Þ, an imputation

ξ t0ð Þi
t0, x0�0 ¼ V t0ð Þi t0; x i0

 �

Xn
j¼1

V t0ð Þj t0; x i0

 �W t0ð Þ 1;2;3f g t0; x

1
0; x

2
0; x

3
0


 �

is assigned to firm i, for i2 1; 2; 3f g;
and in the subgame Γc x*τ ,T � τ


 �
, for τ2
t0, T�, an imputation

ξ τð Þi τ; x*τ

 � ¼ V τð Þi τ; xi*τ


 �
Xn
j¼1

V τð Þj τ; xi*τ

 �W τð Þ 1;2;3f g τ; x1*τ ; x2*τ ; x3*τ


 � ð1:28Þ

is assigned to firm i, for i2 1; 2; 3f g. ■

To formulate a payoff distribution procedure over time so that the agreed-upon

imputation in Condition 1.2 is satisfied we invoke (1.11) to obtain:

Bi τ; x1*τ ; x2*τ ; x3*τ

 � ¼ � ∂

∂t

2
4 V τð Þi t; xi*t


 �
X3
j¼1

V τð Þj t; xj*t

� �W τð Þ 1;2;3f g t; x1*t ; x2*t ; x3*t

 �

t ¼ τ

������
3
5

� 1

2

X3
h, ζ¼1

σhx
hσζx

ζ ∂2

∂xh*τ ∂xζ*τ

2
4 V τð Þi τ; xi*τ


 �
X3
j¼1

V τð Þj τ; xj*τ

 �W τð Þ 1;2;3f g τ; x1*τ ; x2*τ ; x3*τ


 �35

�
X3
h¼1

∂
∂xh*τ

2
4 V τð Þi τ; xi*τ


 �
X3
j¼1

V τð Þj τ; xj*τ

 �W τð Þ 1;2;3f g τ; x1*τ ; x2*τ ; x3*τ


 �35

�
�

α2h

4c
1;2;3f g
h

A
1;2;3f g
h τð Þ xh*τ


 �1=2 � δ xh*τ sð Þ
�
,

for i2 1; 2; 3f g, x*τ 2X*
τ τ2 t0; T½ �: ð1:29Þ
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Finally, with firms using the cooperative investment strategies the instantaneous

receipt of firm i at time instant τ is:

ζi τ; x
*
τ


 � ¼ Pi x
i*
τ


 �1=2 � α2i

16 c
1;2;3f g

i

� � A
1;2;3f g
i τð Þ

h i2
,

for i2 1; 2; 3f g, x*τ 2X*
τ and τ2 t0; T½ �: ð1:30Þ

Under cooperation, the instantaneous payment that firm i should receive under the

agreed-upon optimality principle is Bi(τ, x*τ ) as stated in (1.29). Hence an instanta-

neous transfer payment

χi τ; x*τ

 � ¼ Bi τ; x

*
τ


 �� ζi τ; x
*
τ


 � ð1:31Þ

has to be given or charged to firm i at time τ, for i2 1; 2; 3f g, x*τ 2X*
τ and τ2 t0; T½ �.

15.2 Shapley Value Solution for a Joint Venture

Consider again the stochastic dynamic venture model (1.1 and 1.2). If firms are

allowed to form different coalitions consisting of a subset of companies K 
 N.
There are k firms in the subset K. The participating firms in a coalition can obtain

cost savings from cooperation. In particular, they can obtain cost reduction and with

joint venture cost advantage as below

cKj uj sð Þ� � � cLj uj sð Þ� �
, for j2L 
 K; ð2:1Þ

where cKj [uj(s)] represents the costs of the controls of the firm j in the subset K and

cLj [uj(s)] represents the costs of the controls of the firm j in the subset L.

Moreover, marginal cost advantages lead to:

∂cKj uj sð Þ� �
=∂uj sð Þ � ∂cLj uj sð Þ� �

=∂uj sð Þ, for j2L 
 K:

At time t0, the expected profit to the joint venture K becomes:

Et0

�ð T

t0

X
j2K

ðgj s, xj sð Þ� �� cKj uj sð Þ� �Þ exp �
ð s

t0

r yð Þdy
� �

ds

þ
X
j2K

exp �
ð T

t0

r yð Þdy
� �

qj xj Tð Þð Þ
�
, for K 
 N: ð2:2Þ
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15.2.1 Expected Joint Venture Profits

To compute the expected profit of the joint venture K we have to consider the

stochastic control problem ϖ[K; t0, x
K
0 ] which maximizes expected joint venture

profit (2.2) subject to technology accumulation dynamics (2.1).

Invoking Theorem A.3 in the Technical Appendices, the solution to the control

problem ϖ[K; t0, x
K
0 ] can be characterized as follows.

Corollary 2.1 A set of controls fψK*
i t; xKð Þ, for i2K and t2 t0; T½ �g provides an

optimal solution to the stochastic control problem ϖ[K; t0, x
K
0 ] if there exists

continuously twice differentiable function W t0ð ÞK t; xð Þ : t0; T½ � � Rk ! R satisfying

the following partial differential equation:

�W
t0ð ÞK
t t; xKð Þ � 1

2

X
h, ζ2K

Ωhζ t; xK

 �

W
t0ð ÞK
xhxζ

t; xK

 � ¼

max
uK

X
j2K

�
gj t; xj

 �� cKj uj


 ��(
exp �

ð t

t0

r yð Þdy
� �

þ
X
j2K

W t0ð ÞK
xj

t; xKð Þf j s; xj; uj

 ��

,

W t0ð ÞK T; xKð Þ ¼ exp �
ð T

t0

r yð Þdy
� �X

j2K

qj xj

 �

: ð2:3Þ■

Following Corollary 2.1, one can characterize the maximized expected payoff

W(τ)K(t, xK) to the optimal control problem ϖ[K; τ, xKτ ] which maximizes

Eτ

�ðT
τ

X
j2K

ðgj�
s, xj sð Þ�� cKj uj sð Þ� �Þ exp �
ðs
τ
r yð Þdy

� �
ds

þ
X
j2K

exp �
ðT
τ
r yð Þdy

� �
qj xj Tð Þð Þ

�

subject to dxj sð Þ ¼ f j s, xj sð Þ, uj sð Þ� �
dsþ σj s, xj sð Þ½ � dzj sð Þ, xj τð Þ ¼ x jτ; for j2K:

Superadditivity of the expected coalition payoffs is demonstrated in the condi-

tion below.

Condition 2.1 The expected coalition profits W(τ)K(t, xK) is superadditive, that is

W τð ÞK τ; xK

 � 	 W τð ÞL τ; xL


 �þW τð ÞK\ L τ; xK\ L

 �

, for L � K 
 N;

where K \ L is the relative complement of L in K.

Proof See Appendix. ■
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Now consider the case of a grand coalition N in which all the n firms are in the

coalition. Following Corollary 2.1, the solution to the stochastic control problem

ϖ[N; t0, x
N
0 ] can be characterized as in Corollary 1.1. The cooperative state dynamics

is (1.6), the optimal stochastic trajectory is (1.7) and the optimal cooperative

strategies are in (1.8). Along the cooperative investment path x* tð Þ� T

t¼t0
the expected

total venture profit over the interval [t,T], for t2�t0, T�, can be expressed as (1.9).
15.2.2 The PDP for Shapley Value

Consider the case where the participating firms agree to share their expected coop-

erative profits according to the Shapley Value (1953). The imputation has to satisfy

Condition 2.1 In the game Γc x0,T � t0ð Þ, an imputation

ξ t0ð Þi t0, xN0

 � ¼ X

K
N

k � 1ð Þ! n� kð Þ!
n!

W t0ð ÞK t0, x
K
0


 �h
�W t0ð ÞK\ i t0, xK\ i0


 �i
;

is assigned to firm i, for i2N;

and in the subgame Γc x*τ ,T � τ

 �

, for τ2
t0, T�, an imputation

ξ τð Þi τ; xN *
τ


 � ¼ X
K
N

k � 1ð Þ! n� kð Þ!
n!

W τð ÞK τ; xK *
τ


 �h
�W τð ÞK\ i τ; xK\ i *τ


 �i ð2:4Þ

is assigned to firm i, for i2N. ■

To formulate a payoff distribution procedure over time so that the agreed

imputations satisfy the Shapley Value in Condition 2.1 we invoke Theorem 3.1 in

Chap. 3 and obtain:

Corollary 2.2 A PDP with a terminal payment qi x*T

 ��

at time T and an instanta-

neous payment at time τ2 t0; T½ � when x* τð Þ ¼ x*τ 2X*
τ :

Bi τ; x*τ

 � ¼ �

X
K
N

k � 1ð Þ! n� kð Þ!
n!

W
τð ÞK
t t; xK*t

 �

t¼τj
h i�

� W
τð ÞK\ i
t t; xK\ i*t


 �
t¼τj

h i

þ
X
h2K

∂
∂xh*τ

W τð ÞK τ; xK*τ

 �� �

f h τ, xh*τ ,ψ*
h τ; x*τ

 �� �

�
X
h2K\ i

∂
∂xh*τ

W τð ÞK\ i τ; xK\ i*τ


 �� �
f h τ, xh*τ ,ψ*

h τ; x*τ

 �� �

þ1

2

X
h, ζ 2K

Ωhζ τ; x*τ

 � ∂2

∂xh*τ ∂xζ*τ
W τð ÞK τ; xK*τ


 �h i

�1

2

X
h, ζ 2K\ i

Ωhζ τ; x*τ

 � ∂2

∂xh*τ ∂xζ*τ
W τð ÞK\ i τ; xK\ i*τ


 �h i�
, for i2N;

ð2:5Þ
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would lead to the realization of the Shapley Value imputations ξ(τ)i(τ, xN *
τ ) in

Condition 2.1. ■

Finally, with firms using the cooperative investment strategies

ψ*
i τ; x*τ

 �

, for τ2 t0; T½ � and i2N
� 

; the instantaneous receipt of firm i at time

instant τ when x* τð Þ ¼ x*τ 2X*
τ is:

ζi τ; x
*
τ


 � ¼ gi τ; xi*τ

 �� cNi ψ*

i τ; x*τ

 �� �

,

for τ2 t0; T½ � and i2N: ð2:6Þ

According to Corollary 2.2, the instantaneous payment that firm i should receive

under the agreed-upon optimality principle is Bi(τ, x*τ ) as stated in (2.5). Hence an

instantaneous transfer payment

χi τ; x*τ

 � ¼ Bi τ; x

*
τ


 �� ζi τ; x
*
τ


 � ð2:7Þ

would be given or charged to firm i at time τ, for i2N, x*τ 2X*
τ and τ2 t0; T½ �.

15.2.3 Shapley Value Profit Sharing: An Illustration

Consider the venture in Sect. 15.1.3. When the firms act independently, their

expected profits and state dynamics are respectively (1.14) and (1.15). The expected

profits of firm i2 1; 2; 3f gare given in (1.16). However, the participating firmswould

like to share their expected cooperative profits according to the Shapley Value.

15.2.3.1 Expected Coalition Payoffs

Cost saving opportunities are created under joint venture. In particular, the cost

savings in joint venture is depicted as follows

c
if g
i � c

i;jf g
i , for i, j2 1; 2; 3f g and i 6¼ j,

c
i;jf g
i � c

i;j;kf g
i , for i, j, k2 1; 2; 3f g and i 6¼ j 6¼ k: ð2:8Þ

The firms in the joint venture maximize the sum of their expected profits:

Et0

�ð T

t0

X3
j¼1

Pj x
j sð Þ� �1=2 � cju

1;2;3f g
j sð Þ

h i
exp �r s� t0ð Þ½ � ds

þ
X3
j¼1

exp �r T � t0ð Þ½ �qj xj Tð Þ½ �1=2
�

ð2:9Þ

subject to (1.15).
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Following the analysis in Sect. 15.2, one can obtain the maximized expected

venture profit W t0ð Þ 1;2;3f g t; x1; x2; x3ð Þ as in (1.22), and the investment strategies:

ψ 1;2;3f g
i t; xð Þ ¼ α2i

16 cið Þ2 A
1;2;3f g

i tð Þ
h i2

, for i2 1; 2; 3f g: ð2:10Þ

The cooperative state dynamics of the joint venture over the time interval

s2 t0; T½ � is in (1.25).

For the computation of the dynamic the Shapley Value, we consider cases when

two of the firms form a coalition i; jf g � 1; 2; 3f g to maximize expected joint profit:

Et0

�ðT
t0

Pi x
i sð Þ� �1=2 � c

i;jf g
i ui sð Þ þ Pj x

j sð Þ� �1=2 � c
i;jf g

j uj sð Þ
h i

exp �r s� t0ð Þ½ � ds

þexp �r T � t0ð Þ½ � qi x
i Tð Þ½ �1=2 þ qj x

j Tð Þ½ �1=2
n o�

ð2:11Þ

subject to

dxi sð Þ ¼ αi ui sð Þxi sð Þ½ �1=2 � δ xi sð Þ
h i

dsþ σixi sð Þdzi sð Þ,
xi t0ð Þ ¼ x i02Xi, for i, j, 2 1; 2; 3f g and i 6¼ j: ð2:12Þ

Following the analysis in Sect. 15.1, we obtain the following value functions:

W t0ð Þ i;jf g t; xi; xj

 � ¼ A

i;jf g
i tð Þ xi


 �1=2 þ A
i;jf g
j tð Þ xj


 �1=2 þ C i;jf g tð Þ
h i

exp �r t� t0ð Þ½ �;
ð2:13Þ

for i, j, 2 1; 2; 3f g and i 6¼ j,

where Ai;j
i (t), A

i;j
j (t) and C{i,j}(t) satisfy

_A
i;jf g
i tð Þ ¼ r þ δ

2
þ σ2i

8

� �
A

i;jf g
i tð Þ � Pi, and A

i;jf g
i Tð Þ ¼ qi

for i, j, 2 1; 2; 3f g and i 6¼ j;

_C i;jf g tð Þ ¼ rC i;jf g tð Þ �
X

h2 i;jf g

α2h
16c

i;jf g
h

A
i;jf g
h tð Þ

h i2
,

C i;jf g Tð Þ ¼ 0:

Moreover, one can easily derive for τ2 t0; T½ �

W t0ð Þ i;jf g t; xi; xjð Þ ¼ exp �r τ � t0ð Þ½ �W τð Þ i;jf g t; xi; xjð Þ, for i, j, 2 1; 2; 3f g and i 6¼ j

454 15 Applications in Business Collaboration



15.2.3.2 Subgame Consistent Shapley Value PDP

To formulate a payoff distribution procedure over time so that the agreed imputa-

tions satisfy the Shapley Value we invoke Corollary 2.2 and obtain:

A PDP with a terminal payment qi x*T

 ��

at time T and an instantaneous payment

at time τ2 t0; T½ �:

Bi τ; x*τ

 � ¼ �

X
K
 1;2;3f g

k � 1ð Þ! 3� kð Þ!
3!

W
τð ÞK
t t; xK*t

 �

t¼τj
h i�

� W
τð ÞK\ i
t t; xK\ i*t


 �
t¼τj

h i
þ
X
h2K

∂
∂xh*τ

W τð ÞK τ; xK*τ

 �� ��

α2h

4c
1;2;3f g

h

A
1;2;3f g

h τð Þ xi*τ

 �1=2 � δ xh*τ

�

�
X
h2K\ i

∂
∂xh*τ

W τð ÞK\ i τ; xK\ i*τ


 �� ��
α2h

4c
1;2;3f g

h

A
1;2;3f g

h τð Þ xi*τ

 �1=2�δ xh*τ

�

þ1

2

X
h, ζ 2K

σhx
h*
τ


 �

σζx

ζ*
τ

� ∂2

∂xh*τ ∂xζ*τ
W τð ÞK τ; xK*τ


 �h i

�1

2

X
h, ζ 2K\ i

σhx
h*
τ


 �
σζx

ζ*
τ


 � ∂2

∂xh*τ ∂xζ*τ
W τð ÞK\ i τ; xK\ i*τ


 �h i�
,

for i2 1; 2; 3f g; ð2:14Þ

would lead to the realization of the Shapley Value imputations in Condition 2.1.

Using (1.22) and (2.13),

W
τð Þi
t t; xi*t

 �

t¼τj
h i

¼ r A
if g
i τð Þ xi*τ


 �1=2 þ C
if g
i τð Þ

h i
þ _A

if g
i τð Þ xi*τ


 �1=2 þ _C
if g
i τð Þ

h i
,

for i2 1; 2; 3f g;

W
τð Þ i;jf g
t t; xi*t


 �
t¼τj

h i
¼ r A

i;jf g
i τð Þ xi*τ


 �1=2 þ A
i;jf g

j τð Þ xj*τ

 �1=2 þ C i;jf g τð Þ

h i
þ _A

i;jf g
i τð Þ xi*τ


 �1=2 þ _A
i;jf g

j τð Þ xj*τ

 �1=2 þ _C i;jf g τð Þ

h i
, for i, j2 1; 2; 3f g and

i 6¼ j;

W
τð Þ 1;2;3f g
t t; xi*t


 �
t¼τj

h i
¼

r A
1;2;3f g

1 τð Þ x1*τ

 �1=2 þ A

1;2;3f g
2 τð Þ x2*τ


 �1=2 þ A
1;2;3f g

3 τð Þ x3*τ

 �1=2 þ C 1;2;3f g τð Þ

h i
þ _A

1;2;3f g
1 τð Þ x1*τ


 �1=2 þ _A
1;2;3f g
2 τð Þ x2*τ


 �1=2 þ _A
1;2;3f g
3 τð Þ x3*τ


 �1=2 þ _C 1;2;3f g τð Þ
h i

;

∂
∂xh*τ

W τð ÞK τ; xK*τ

 �� �

¼ 1

2
AK
h τð Þ xh*τ


 ��1=2
, for h2K 
 1; 2; 3f g,

∂2

∂ xh*τ

 �2 W τð ÞK τ; xK*τ


 �h i
¼ �1

4
AK
h τð Þ xh*τ


 ��3=2
, and
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∂2

∂xh*τ ∂xζ*τ
W τð ÞK τ; xK*τ


 �h i
¼ 0, for h 6¼ ζ:

Finally, with firms using the cooperative investment strategies the instantaneous

receipt of firm i at time instant τ is:

ζi τ; x
*
τ


 � ¼ Pi x
i*
τ


 �1=2 � α2i

16 c
1;2;3f g

i

� � A
1;2;3f g
i τð Þ

h i2
,

for i2 1; 2; 3f g, x*τ 2X*
τ and τ2 t0; T½ �: ð2:15Þ

According to (2.14), the instantaneous payment that firm i should receive under the

agreed-upon optimality principle isBi(τ, x*τ ). Hence an instantaneous transfer payment

χi τ; x*τ

 � ¼ Bi τ; x

*
τ


 �� ζi τ; x
*
τ


 � ð2:16Þ

has to be given or charged to firm i at time τ, for i2 1; 2; 3f g, x*τ 2X*
τ and τ2 t0; T½ �.

15.3 Infinite Horizon Analysis

Consider the case when the horizon of the analysis approaches infinity. The state

dynamics of the ith firm is characterized by the set of vector-valued differential

equations:

dxi sð Þ ¼ f i xi sð Þ, ui sð Þ� �
dsþ σi x

i sð Þ� �
dzi sð Þ, xi t0ð Þ ¼ x i0, for i2N; ð3:1Þ

where σi[x
i(s)] is a mi � Θi and zi(s) is a Θi-dimensional Wiener process and the

initial state xi0 is given. Let Ωi x
i sð Þ½ � ¼ σi xi sð Þ½ �σi xi sð Þ½ �T denote the covariance

matrix with its element in row h and column ζ denoted by Ωhζ
i [xi(s)].

The objective of firm i to be maximized is:

Et0

�ð 1

t0

ðgi xi sð Þ� �� c
if g

i ui sð Þ½ �Þ exp �r s� t0ð Þ½ �ds
�
, for i2N: ð3:2Þ

Consider the alternative formulation of (3.1 and 3.2) as:

max
ui

Et

�ð 1

t

ðgi xi sð Þ� �� c
if g
i ui sð Þ½ �Þ exp �r s� tð Þ½ �ds

�
, for i2N; ð3:3Þ

subject to

dxi sð Þ ¼ f i x
i sð Þ, ui sð Þ� �

dsþ σi x
i sð Þ� �

dzi sð Þ, xi tð Þ ¼ xi, for i2N: ð3:4Þ
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The infinite-horizon problem (3.3 and 3.4) is independent of the choice of t and
dependent only upon the state at the starting time.

A noncooperative equilibrium of problem (3.3 and 3.4) can be characterized

by a set of strategies ui ¼ ϕ*
i xð Þ�

for i2Ng and value functions V̂
i
xið Þ : Rmi ! R

for i2N; satisfying the following set of partial differential equations:

rV̂
i
xið Þ � 1

2

Xmi

h, ζ¼1

Ωhζ xi

 �

V̂
i

xi hð Þxi ζð Þ xi

 �

¼ max
ui

g xi

 �� c

if g
i uið Þ

�
þV̂

i

x xð Þf xi; ui
� �� ð3:5Þ

Once again, for the sake of clarity in exposition, we consider the case where mi¼1,

for i2N.

15.3.1 Infinite-horizon Dynamic Joint Venture

These n companies agree to form a joint venture to enhance their profits. Cost-

saving opportunities are created under joint venture. The cost of control of firm

j under the joint venture becomes c1;2;3j [uj(s)]. With joint venture cost advantage

c
1;2;3f g

j uj

 � � c

jf g
j uj

 �

, for j2N; ð3:6Þ

The joint venture would maximize the expected joint venture profit:

Et

� ð 1

t

Xn
j¼1

ðgj xj sð Þ� �� cNj uj sð Þ� �Þ exp �r s� tð Þ½ �ds
�
; ð3:7Þ

subject to (3.4).

An optimal solution of the control problem (3.4) and (3.7) can be characterized as:

Corollary 3.1 A set of control strategies ψ*
i xð Þ�

for i2N1g provides a solution to
the control problem (3.4) and (3.7), if there exist continuously twice differentiable

functions W xð Þ : Rn ! R, satisfying the following partial differential equation:

rW xð Þ � 1

2

Xn
h, ζ¼1

Ωhζ xð ÞWxhxζ xð Þ

¼ max
u1, u2, ���, un

Xn
j¼1

�
gj xj

 �� cNj uj


 ��(
þ
Xn
j¼1

Wxj xð Þf j xj; uj

 ��

; ð3:8Þ

where x ¼ x1; x2; � � �; xn� 
. ■
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Hence the firms will adopt the cooperative control fψ*
i xð Þ, for i2Ng to

obtain the maximized level of expected joint profit. Substituting this set of

control into (3.4) yields the dynamics of technology advancement under coop-

eration as:

dxi sð Þ ¼ f i xi sð Þ,ψ*
i x sð Þð Þ� �

dsþ σi xi sð Þ½ � dzi sð Þ,
xi t0ð Þ ¼ x i0, for i2N: ð3:9Þ

Let x* tð Þ ¼ x1* tð Þ, x2* tð Þ, . . ., xn* tð Þ� 
denote the solution to (3.9). The optimal

trajectory x* tð Þ� 1
t¼t0

can be expressed as:

xi* tð Þ ¼ x i0 þ
ðt
t0

f i xi* sð Þ,ψ*
i x* sð Þ
 �� �

dsþ
ðt
t0

σi s, x
i* sð Þ� �

dzi sð Þ,
for i2N: ð3:10Þ

We use X*
t to denote the set of realizable values of x*(t) at time t generated by

(3.10). The term x*t 2X*
t is used to denote an element in X*

t .

Substituting the optimal extraction strategies in fψ*
i xð Þ, for i2Ng into (3.7)

yields the expected venture profit as:

W x*t

 � ¼ Et

�ð1
t

Xn
j¼1

ðgj xj* sð Þ� �� cNj ψ*
j x* sð Þ
 �h i

Þ exp �r s� tð Þ½ �ds
�
; ð3:11Þ

15.3.2 Subgame-Consistent Venture Profit Sharing

In this Section we consider deriving the PDP for two commonly used sharing

optimality principles – (i) sharing venture profits proportional to the participating

firms’ noncooperative profit, and (ii) sharing venture profits according to the

Shapley Value.

(i) Consider the case when the firms in the venture share the excess of the total

expected cooperative payoff over the sum of expected individual noncooperative

payoffs proportionally to the firms’ expected noncooperative payoffs.

The imputation scheme has to fulfil:

Condition 3.1 An imputation

ξ τð Þi τ; x*τ

 � ¼ V̂

i
x*τ

 �

Xn
i¼1

V̂
i
x*τ

 �W x*τ


 � ð3:12Þ

is assigned to firm i, for i2N at time τ2�t0,1� if x* τð Þ ¼ x*τ 2X*
τ . ■
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To formulate a payoff distribution procedure over time so that the agreed

imputations satisfy Condition 3.1 we invoke Theorem 5.3 of Chap. 3 and obtain:

Corollary 3.2 A PDP with an instantaneous payment at time τ2�t0,1�:
Bi τ; x*τ

 � ¼ r

2
4 V̂

i
xi*τ

 �

Xn
j¼1

V̂
j
xj*τ

 �W x*τ


 � 35

�1

2

Xn
h, ζ¼1

Ωhζ x*τ

 � ∂2

∂xh*τ ∂xζ*τ

2
4 V̂

i
xi*τ

 �

Xn
j¼1

V̂
j
xj*τ

 �W x*τ


 � 35

�
Xn
h¼1

∂
∂xh*τ

2
4 V̂

i
xi*τ

 �

Xn
j¼1

V̂
j
xj*τ

 �W x*τ


 � 35f h xh*τ ,ψ*
h x*τ

 �� �

,

for i2N and x* τð Þ ¼ x*τ 2X*
τ :

ð3:13Þ

would lead to realization of the solution imputations in Condition 3.1. ■

With (3.13) a subgame consistent solution can be obtained. Note that while firms

are using the cooperative investment strategies ψ*
i x*τ

 �

, and i2N
� 

; the instanta-

neous receipt of firm i at time instant τ is:

ζi τ; x
*
τ


 � ¼ gi xi*τ

 �� cNi ψ*

i x*τ

 �� �

,

for i2N, x* τð Þ ¼ x*τ 2X*
τ and τ2�t0,1�:

According to Corollary 3.2, the instantaneous payment that firm i should receive

under the agreed-upon optimality principle is Bi(τ, x*τ ), for i2N, as stated in (3.13).

Hence an instantaneous transfer payment

χi τ; x*τ

 � ¼ Bi τ; x

*
τ


 �� ζi τ; x
*
τ


 �
has to be given or charged to firm i at time τ, for i2N if x* τð Þ ¼ x*τ 2X*

τ .

(ii) Consider again the infinite horizon dynamic venture model (3.3 and 3.4). The

member firms would maximize their expected joint profit and share their expected

cooperative profits according to the Shapley Value.

The expected profit to the joint venture K becomes:

Et

� ð 1

t

X
j2K

ðgj s, xj sð Þ� �� cKj uj sð Þ� �Þ exp �r s� tð Þ½ �ds
�
, for K 
 N: ð3:14Þ

To compute the profit of the joint venture K we have to consider the optimal control

problem (3.4) and (3.14). Invoking Theorem A.4 of the Technical Appendices, the

solution to the stochastic control problem can be characterized as follows.
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Corollary 3.3 A set of controls fψK*
i xKð Þ, for i2K and t2�t0,1�g provides an

optimal solution to the stochastic control problem (3.4) and (3.14) if there exists

continuously twice differentiable functionWK xKð Þ: Rk ! R satisfying the following

equation:

rWK xKð Þ � 1

2

X
h, ζ2K

Ωhζ xK

 �

WK
xhxζ xK

 �

¼ max
uK

X
j2K

�
gj xj

 �� cKj uj


 ��(
þ
X
j2K

WK
xj

xK

 �

f j xj; uj

 � � ð3:15Þ

Now consider the case of a grand coalition N in which all the n firms are in the

coalition. Using the result in Corollary 3.1, the cooperative state trajectory can be

obtained as in (3.10).

To share the venture profit among participating firms according to the Shapley

Value, the imputation has to satisfy

Condition 3.2 An imputation

ξ τð Þi τ; xN *
τ


 � ¼ X
K
N

k � 1ð Þ! n� kð Þ!
n!

WK xK *
τ


 �� �WK\ i xK\ i *τ


 �� ð3:16Þ

is assigned to firm i, for i2N at time τ when the state is x*τ . ■

To formulate a payoff distribution procedure over time so that the agreed

imputations satisfy the Shapley Value in Condition 3.2 we invoke Theorem 5.3 in

Chap. 3 and obtain:

Corollary 3.4 A PDP with an instantaneous payment at time τ2�t0,1�:
Bi τ; x*τ

 � ¼ �

X
K
N

k � 1ð Þ! n� kð Þ!
n!

�
r WK\ i xK\ i*τ


 �� r WK xK*τ

 �

þ
X
h2K

∂
∂xh*τ

WK xK*τ

 �� �

f h xh*τ ,ψ*
h x*τ

 �� �

�
X
h2K\ i

∂
∂xh*τ

WK\ i xK\ i*τ


 �� �
f h xh*τ ,ψ*

h x*τ

 �� �

þ 1

2

X
h, ζ2K

Ωhζ x*τ

 � ∂2

∂xh*τ ∂xζ*τ
WK xK*τ

 �� �

� 1

2

X
h, ζ2K\ i

Ωhζ x*τ

 � ∂2

∂xh*τ ∂xζ*τ
WK\ i xK\ i*τ


 �� � �
, for i2N; ð3:17Þ

would lead to the realization of the Shapley Value in Condition 3.2. ■
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A subgame consistent solution can be constructed with the optimal cooperative

strategies and the PDP in (3.17).

15.3.3 An Example of Infinite Horizon Venture

Consider an infinite horizon version 3-company joint venture. The planning period

is
�
t0,1

�
. Company i’s expected profit is

Et0

� ð 1

t0

Pi x
i sð Þ� �1=2 � c

if g
i ui sð Þ

h i
exp �r s� t0ð Þ½ � ds

�
; ð3:18Þ

for i2 1; 2; 3f g,
The evolution of the technology level of company i follows the dynamics:

dxi sð Þ ¼ αi ui sð Þxi sð Þ½ �1=2 � δ xi sð Þ
h i

dsþ σixi sð Þ dzi sð Þ,
xi t0ð Þ ¼ x i02Xi, for i2 1; 2; 3f g; ð3:19Þ

In the case when each of these three firms acts independently. The conditions

characterizing the non-cooperative payoff of firm i can be obtained as:

rWi xið Þ� σixið Þ2
2

Wi
xixi x

ið Þ

¼ max
ui

�
Pi x

i

 �1=2 � c

if g
i ui

h i
þWi

xi xi

 �

αi u
ixi


 �1=2 � δ xi
h i �

,

for i2 1; 2; 3f g: ð3:20Þ

Solving (3.20) yields

Wi xi

 � ¼ A

if g
i xi

 �1=2 þ C

if g
i

h i
, for i2 1; 2; 3f g; ð3:21Þ

where

0 ¼ r þ δ

2
þ σ2i

8

� �
A

if g
i � Pi, rC

if g
i ¼ α2i

16c
if g

i

A
if g
i

� �2
:

15.3.3.1 Cost-Saving Joint Venture

Consider the case when all these three firms agree to form a joint venture and share

their expected joint profit proportionally to their expected noncooperative profits.
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The cost of control of firm j under the joint venture becomes c1;2;3j uj(s). With joint

venture cost advantage

c
1;2;3f g

j � c
jf g
j , for j2N: ð3:22Þ

The expected profit of the joint venture is the sum of the participating firms’ profits:

Et

� ð 1

t

X3
j¼1

Pj x
j sð Þ� �1=2 � c

1;2;3½ g
j uj sð Þ

h i
exp �r s� tð Þ½ � ds: ð3:23Þ

The optimal solution to the problem of maximizing (3.23) subject to (3.19) can be

characterized by

rW 1;2;3f g x1; x2; x3ð Þ �
X3
h, ζ¼1

σhxh

 �

σζxζ

 �
2

W
1;2;3f g

xhxζ
x1; x2; x3

 �

¼ max
u1, u2, u3

� X3
i¼1

Pi x
i


 �1=2 � c
1;2;3f g

i ui

h i

þ
X3
i¼1

W
1;2;3f g

xi x1; x2; x3ð Þ
�
αi uixi½ �1=2 � δ xi

� �
: ð3:24Þ

Solving (3.24) yields

W 1;2;3f g x1; x2; x3

 � ¼ A

1;2;3f g
1 x1


 �1=2 þ A
1;2;3f g

2 x2

 �1=2 þ A

1;2;3f g
3 x3


 �1=2 þ C 1;2;3f g
h i

;

ð3:25Þ

where A1;2;3
1 ,A1;2;3

2 ,A1;2;3
3 and C{1,2,3} satisfy

0 ¼ r þ δ

2
þ σ2i

8

� �
A

1;2;3f g
i � Pi

for i, j, h2 1; 2; 3f g and i 6¼ j 6¼ h,

rC 1;2;3f g ¼
X3
i¼1

α2i

16c
1;2;3f g
i

A
1;2;3f g

i

� �2
ð3:26Þ

The investment strategies of the grand coalition joint venture can be derived as:

ψ 1;2;3f g
i xð Þ ¼ α2i

16 c
1;2;3f g
i

� �2 A
1;2;3f g

i

h i2
, for i2 1; 2; 3f g: ð3:27Þ
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The dynamics of technological progress of the joint venture over the time interval

s2�t0,1� can be expressed as:

dxi sð Þ ¼
�

α2i
4c

1;2;3f g
i

A
1;2;3f g
i xi sð Þ½ �1=2 � δ xi sð Þ

�
dsþþσixi sð Þ dzi sð Þ,

xi t0ð Þ ¼ x i0; ð3:28Þ

for i2 1; 2; 3f g.
Taking the transforming yi sð Þ ¼ xi sð Þ1=2, for i2 1; 2; 3f g, equation system (3.28)

can be expressed as:

dyi sð Þ ¼
�

α2i
8c

1;2;3f g
i

A
1;2;3f g

i � δ

2
yi sð Þ� σ2i

8
A

1;2;3f g
i yi sð Þ

�
dsþ 1

2
σiy

i sð Þdzi sð Þ,

yi t0ð Þ ¼ x i0

 �1=2

,

for i2 1; 2; 3f g:
ð3:29Þ

(3.29) is a system of linear stochastic differential equations which can be solved

by standard techniques. Solving (3.29) yields the joint venture’s state trajectory. Let

{y1 *(t), y2 *(t), y3 *(t)} denote the solution to (3.29). Transforming xi ¼ yið Þ2, we
obtain the state trajectories of the joint venture over the time interval s2�t0,1� as
x* tð Þ� 1

t¼t0
� x1* tð Þ,x2* tð Þ,x3* tð Þ� T

t¼t0
¼ y1* tð Þ� �2

; y2* tð Þ� �2
; y3* tð Þ� �2n oT

t¼t0
: ð3:30Þ

We use X*
t to denote the set of realizable values of x*(t) at time t and the term x*t

2X*
t is used to denote an element in X*

t .

15.3.3.2 Subgame-Consistent Venture Profit Sharing

We consider deriving the PDP for two commonly used sharing optimality principles

– (i) sharing venture profits proportional to the participating firms’ noncooperative
profit, and (ii) sharing venture profits according to the Shapley Value.

(i) If the firms agree to share their expected joint profit proportionally to their

expected noncooperative profits, the imputation scheme has to fulfill:

ξ τð Þi τ; x*τ

 � ¼ V̂

i
xi*τ

 �

X3
j¼1

V̂
j
xi*τ

 �W 1;2;3f g x1*τ ; x2*τ ; x3*τ


 � ð3:31Þ

is assigned to firm i, for i2 1; 2; 3f g at time τ when the state is x*τ 2X*
τ . ■
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APDPwith and an instantaneous payment at timeτ2�t0,1�whenx* τð Þ¼ x*τ2X*
τ :

Bi τ; x*τ

 � ¼ r

V̂
i
xi*τ

 �

X3
j¼1

V̂
j
xi*τ

 �W 1;2;3f g x1*τ ; x2*τ ; x3*τ


 �

� 1

2

X3
h, ζ¼1

σhx
hσζx

ζ ∂2

∂xh*τ ∂xζ*τ

2
64 V̂

i
xi*τ

 �

X3
j¼1

V̂
j
xj*τ

 �W 1;2;3f g x1*τ ; x2*τ ; x3*τ


 � 375

�
X3
h¼1

∂
∂xh*τ

V̂
i
xi*τ

 �

X3
j¼1

V̂
j
xi*τ

 �W 1;2;3f g x1*τ ; x2*τ ; x3*τ


 �

� α2h

4c
1;2;3f g

h

A
1;2;3f g

h xh*τ

 �1=2 � δ xh*τ sð Þ

�
,

"
for i2 1; 2; 3f g;

ð3:32Þ

will lead to the realization of the Imputation in (3.31). ■
A subgame consistent solution can be readily obtained using (3.27) and (3.32).

Using the cooperative strategies the instantaneous receipt of firm i at time

instant τ given x* τð Þ ¼ x*τ 2X*
τ is:

ζi τ; x
*
τ


 � ¼ Pi x
i*
τ


 �1=2 � α2i

16 c
1;2;3f g
i

� � A
1;2;3f g

i

h i2
; ð3:33Þ

for i2 1; 2; 3f g along the cooperative path x* tð Þ� 1
t¼t0

.

(ii) Consider the case when the participating firms agree to share their expected

cooperative profits according to the Shapley Value. For the computation of the

dynamic the Shapley Value, we consider cases when two of the firms form a

coalition i; jf g � 1; 2; 3f g. The cost savings in joint venture is depicted as follows

c
if g
i � c

i;jf g
i , for i, j2 1; 2; 3f g and i 6¼ j,

c
i;jf g

i � c
i;j;kf g

i , for i, j, k2 1; 2; 3f g and i, j, k2 1; 2; 3f g: ð3:34Þ

Coalition {i, j} would maximize expected joint profit:

Et

� ð 1

t

Pi x
i sð Þ� �1=2� ciui sð ÞþPj x

j sð Þ� �1=2� cjuj sð Þ
h i

exp �r s� tð Þ½ � ds
�

ð3:35Þ

subject to (3.19).
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Following the above analysis, we obtain the following value functions:

W i;jf g xi; xj

 � ¼ A

i;jf g
i xi

 �1=2 þ A

i;jf g
j xj

 �1=2 þ C i;jf g

h i
; ð3:36Þ

for i, j, 2 1; 2; 3f g and i 6¼ j,

where Ai;j
i , A

i;j
j and C{i,j} satisfy

0 ¼ r þ δ

2
þ σ2i

8

� �
A

1;2f g
i � Pi , for i, j, 2 1; 2; 3f g and i 6¼ j and

and rC i;jf g ¼
X
h2 i;jf g

α2h

16c
i;jf g

h

A
i;jf g
h

� �2 :.

Invoke Corollary 3.4 and obtain:

A PDP with an instantaneous payment at time τ2�t0,1�:
Bi τ; x*τ

 � ¼ �

X
K
 1;2;3f g

k � 1ð Þ! 3� kð Þ!
3!

�
r WK\ i xK\ i*τ


 �� r WK xK*τ

 �

þ
X
h2K

∂
∂xh*τ

WK xK*τ

 �� ��

α2h

4c
i;jf g

h

A
1;2;3f g
h xi*τ


 �1=2 � δ xh*τ

�

�
X
h2K\ i

∂
∂xh*τ

WK\ i xK\ i*τ


 �� ��
α2h

4c
i;jf g

h

A
1;2;3f g

h xi*τ

 �1=2 � δ xh*τ

�

þ 1

2

X
h, ζ2K

σhx
h*
τ


 �

σζx

ζ*
τ

� ∂2

∂xh*τ ∂xζ*τ
WK xK*τ

 �� �

� 1

2

X
h, ζ2K\ i

σhx
h*
τ


 �
σζx

ζ*
τ


 � ∂2

∂xh*τ ∂xζ*τ
WK\ i xK\ i*τ


 �� � �
; ð3:37Þ

for i2 1; 2; 3f g,
would lead to the realization of the Shapley Value;

where

WK(xK *
τ ) is given in (3.21), (3.25) and (3.36); and

∂
∂xh*τ

WK xK*τ

 �� �

¼ 1

2
AK
h xh*τ

 ��1=2

, for h2K 
 1; 2; 3f g;

∂2

∂ xh*τ

 �2 WK xK*τ


 �� � ¼ �1

4
AK
h xh*τ

 ��3=2

, and

∂2

∂xh*τ ∂xζ*τ
WK xK*τ

 �� � ¼ 0, for h 6¼ ζ:
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15.4 A Stochastic Dynamic Dormant-Firm Cartel

It is well known that cartels restrict their outputs to enhance their joint profit. In this

Section, we consider oligopolies in which firms agree to form a cartel to restraint

output and enhance their profits. Some firms have cost disadvantages and would

elect to become dormant partners.

15.4.1 Basic Settings and Market Outcome

Consider an oligopoly in which n firms are allowed to extract a renewable resource

within the duration [t0,T]. Among the n firms, n1 of them have absolute and marginal

cost disadvantages over the other n2 ¼ n� n1 firms. For notational convenience, the

firms with cost advantages are numbered from 1 to n1 and the firms with cost

disadvantages are numbered fromn1 þ 1to n. The subset of firmswith cost advantages

is denoted byN1 and that of firms with cost disadvantages is denoted byN2. The firms

with cost advantages are identical and so are the firms with cost disadvantages.

The dynamics of the resource is characterized by the stochastic differential

equations:

dx sð Þ ¼
�

f
s, x sð Þ,

X
ji2N1

uj1


s
�þX

j22N2

uj2


s
��� � �

dsþþσ s, x sð Þ½ �dz sð Þ,
x t0ð Þ ¼ x02X; ð4:1Þ

where uj2Uj is the (nonnegative) amount of resource extracted by firm i, for i2N,
and x(s) is the resource stock, σ[s, x(s)] is a m� Θ matrix and z(s) is a

Θ-dimensional Wiener process and the initial state x0 is given. Let Ω s, x sð Þ½ � ¼ σ
s, x sð Þ½ �σ s, x sð Þ½ �’ denote the covariance matrix with its element in row h and column

ζ denoted by Ωhς[s, x(s)].
The extraction cost depends on the quantity of resource extracted ui(s) and the

resource stock size x(s). In particular,

The extraction cost for the n1 firms with cost advantages is:

cj
1

uj1 sð Þ, x sð Þ
h i

, for j12N1; and

the extraction cost for the n1 firms with cost advantages can is:

cj
2

uj2 sð Þ, x sð Þ
h i

, for j22N2:

This formulation of cost follows from two assumptions: (i) the cost of extraction is

positively related to extraction effort, and (ii) the amount of resource extracted,
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seen as the output of a production function of two inputs (effort and stock level), is

increasing in both inputs (see Clark 1976). In particular, firm j12N1 has cost

advantage so that

∂cj
1

uj1 sð Þ, x sð Þ
h i

=∂uj1 sð Þ < ∂cj
2

uj2 sð Þ, x sð Þ
h i

=∂uj2 sð Þ, for all levels of uj1 2Uj1

and uj2 2Uj2 at any x2X:

The market price of the resource depends on the total amount extracted and

supplied to the market. The price-output relationship at time s is given by the

following downward sloping inverse demand curve P sð Þ ¼ g Q sð Þ½ �, where Q sð Þ

¼
X
ji2N1

uj1


s
�þX

j22N2

uj2


s
��

is the total amount of resource extracted and

marketed at time s. At time T, firm j12N1 will receive a termination bonus qj
1

x Tð Þ½ � and firm j22N2 will receive a termination bonus qj
2

x Tð Þ½ �. There exists a

discount rate r, and profits received at time t has to be discounted by the factor

exp �r t� t0ð Þ½ �.
At time t0, firm j12N1 which has cost advantages seeks to maximize its expected

profit

Et0

� ð T
t0

g
X
h2Ni

uh sð Þ þ
X
‘2N2

u‘ sð Þ
" #

uj1 sð Þ � cj
1

uj1 sð Þ, x sð Þ
h i !

exp �r s� t0ð Þ½ � ds

þ exp �r T � t0ð Þ½ �qj1 x Tð Þ½ �
�

ð4:2Þ

subject to (4.1).

At time t0, firm j22N2 which has cost disadvantages seeks to maximize expected

profit

Et0

� ð T
t0

g
X
h2Ni

uh sð Þ þ
X
‘2N2

u‘ sð Þ
" #

uj2 sð Þ � cj
2

uj2 sð Þ, x sð Þ
h i !

exp �r s� t0ð Þ½ � ds

þ exp �r T � t0ð Þ½ �qj2 x Tð Þ½ �
�

ð4:3Þ

subject to (4.1).

We use Γ x0,T � t0ð Þ to denote the game (4.1, 4.2, and 4.3) and Γ xτ,T � τð Þ
to denote an alternative game with state dynamics (4.1) and payoff structures

(4.2 and 4.3), which starts at time τ2 t0; T½ � with initial state xτ2X. A

non-cooperative Nash equilibrium solution of the game Γ xτ,T � τð Þ can be

characterized as:
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Corollary 4.1 A set of feedback strategies ϕ*
j1
t; xð Þ

n
for j12N1 and ϕ*

j2
t; xð Þ for

j22N2gprovides a Nash equilibrium solution to the gameΓ xτ, T � τð Þ, if there exist
continuously twice differentiable functions

V τð Þj1 t; xð Þ: τ; T½ � � R ! R for j12N1 and V τð Þj2 t; xð Þ : τ; T½ � � R ! R for j22N2, sat-

isfying the following partial differential equations:

�V
τð Þj1
t t; xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ t; xð ÞV τð Þj1
xhxζ

t; xð Þ ¼

max
uj 1

�
g

X
h2Ni

h 6¼ j1

ϕ*
h t; xð Þ

þ uj1 þ
X
‘2N2

ϕ*
‘ t; xð Þ

2
664

3
775 uj1 , � cj

1

uj1 ; x
� �0

BB@
1
CCA exp �r t� τð Þ½ �

þV τð Þj1
x t; xð Þf

t, x,
X

h2Ni

h 6¼ j1

ϕ*
h t; xð Þ

þ uj1 þ
X
‘2N2

ϕ*
‘ t; xð Þ

2
664

3
775
�
, and

V τð Þj1 T; xð Þ ¼ exp �r T � t0ð Þ½ �qj1 xð Þ, for j12N1;

�V
τð Þj2
t t; xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ t; xð ÞV τð Þj2
xhxζ

t; xð Þ ¼

max
uj 2

�
g

X
h2Ni

ϕ*
h t; xð Þ þ

X
‘2N2

‘ 6¼ j 2

ϕ*
‘ t; xð Þ þ uj2

2
664

3
775 uj2 � cj

2

uj2 ; x
� �0

BB@
1
CCA exp �r t� τð Þ½ �

þV τð Þj2
x t; xð Þf

t, x,
X
h2Ni

ϕ*
h t; xð Þ þ

X
‘2N2

‘ 6¼ j 2

ϕ*
‘ t; xð Þ þ uj2

2
664

3
775
�
, and

V τð Þj2 T; xð Þ ¼ exp �r T � t0ð Þ½ �qj 2

xð Þ, for j22N2:

ð4:4Þ

First order conditions satisfying the indicated maximization in (4.4) yields:

8<
: g

X
h2Ni

h 6¼ j1

ϕ*
h t;xð Þþuj1 þ

X
‘2N2

ϕ*
‘ t;xð Þ

0
BBBB@

1
CCCCAþg

0 X
h2Ni

h 6¼ j1

ϕ*
h t;xð Þþuj1 þ

X
‘2N2

ϕ*
‘ t;xð Þ

0
BBBB@

1
CCCCAuj1
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� ∂
∂uj 1

cj
1

uj1 ;x
� �9=

;exp �r t� τð Þ½ �

þV τð Þj1
x t;xð Þ ∂

∂uj1
f t,x,

X
h2Ni

h 6¼ j1

ϕ*
h t;xð Þþuj1 þ

X
‘2N2

ϕ*
‘ t;xð Þ

2
66664

3
77775¼ 0;

for j12N1;

8<
: g

X
h2Ni

ϕ*
h t;xð Þþ

X
‘2N2

‘ 6¼ j 2

ϕ*
‘ t;xð Þþuj2

0
BBBB@

1
CCCCAþg

0 X
h2Ni

ϕ*
h t;xð Þþ

X
‘2N2

‘ 6¼ j 2

ϕ*
‘ t;xð Þþuj2

0
BBBB@

1
CCCCAuj2

� ∂
∂uj 2

cj
2

uj1 ;x
� �9=

;exp �r t�τð Þ½ �

þV τð Þj2
x t;xð Þ ∂

∂uj2
f t,x,

X
h2Ni

ϕ*
h t;xð Þþ

X
‘2N2

‘ 6¼ j 2

ϕ*
‘ t;xð Þþuj2

2
66664

3
77775¼0,

ð4:5Þ

for j22N2.

The expected profits of firm j12N1 which has cost advantages can be expressed

as:

V τð Þj1 t; xτð Þ ¼ Eτ

� ð T

τ

�
g
X
h2Ni

ϕ*
h s, x sð Þ½ � þ

X
‘2N2

ϕ*
‘ s, x sð Þ½ �

" #
ϕ*
j1 s, x sð Þ½ �

� cj
1

ϕ*
j1 s, x sð Þð Þ, x sð Þ

h i !
exp �r s� τð Þ½ � ds

þ exp �r T � τð Þ½ �qj1 x Tð Þ½ �
)
;

for j12N1; and

the expected profits of firm j22N2 which has cost disadvantages can be

expressed as:
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V τð Þj2 t; xτð Þ ¼ Eτ

� ð T

τ
g
X
h2Ni

ϕ*
h s, x sð Þ½ � þ

X
‘2N2

ϕ*
‘ s, x sð Þ½ �

" #
ϕ*
j2
s, x sð Þ½ �

 

�cj
2

ϕ*
j2
s, x sð Þð Þ, x sð Þ

h i �
exp �r s� τð Þ½ � ds

þexp �r T � τð Þ½ �qj2 x Tð Þ½ �
�
;

for j22N2;

where

dx sð Þ ¼ f s, x sð Þ,
X
ji2N1

ϕ*
j1



s, x sð Þ�þX

j22N2

ϕ*
j2



s, x


s
��2

4
3
5dsþ σ s, x sð Þ½ �dz sð Þ

x τð Þ ¼ xτ2X:

15.4.2 Optimal Cartel Output

Assume that the firms in the oligopoly agree to form a cartel to restraint output and

enhance their expected profits. To achieve a group optimum, these firms are

required to solve the following expected joint profit maximization problem:

max
u1, u2, ���, un

Et0

( ð T
t0

g
X
h2Ni

uh sð Þ þ
X
‘2N2

u‘ sð Þ
" # X

h2Ni

uh sð Þ þ
X
‘2N2

u‘ sð Þ
" # 

�
X
h2Ni

ch uh sð Þ, x sð Þ½ � þ
X
‘2N2

c‘ u‘ sð Þ, x sð Þ½ �
" #!

exp �r s� t0ð Þ½ � ds

þexp �r T � t0ð Þ½ �
X
h2Ni

qh x Tð Þ½ � þ
X
‘2N2

q‘ x Tð Þ½ �
" # )

ð4:6Þ

subject to (4.1).

An optimal solution of the stochastic control problem (4.1) and (4.6) can be

characterized using Theorem A.3 in the Technical Appendices as:

Corollary 4.2 A set of control strategies ψ*
j1
t; xð Þ

n
for j12N1 and ψ*

j2
t; xð Þ for j2

2N2g provides a solution to the control problem (4.1) and (4.6), if there exist

continuously twice differentiable functionsW t0ð Þ t; xð Þ : τ; T½ � � Rm ! R; satisfying
the following partial differential equation:

470 15 Applications in Business Collaboration

http://dx.doi.org/10.1007/978-981-10-1545-8_BM1


�W
t0ð Þ
t t; xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ t; xð ÞW t0ð Þ
xhxζ

t; xð Þ ¼

max
u1, u2, ���, un

�
g
X
h2Ni

uh þ
X
‘2N2

u‘

" # X
h2Ni

uh þ
X
‘2N2

u‘

" # 

�
X
h2Ni

ch uh; x½ � þ
X
‘2N2

c‘ u‘; x½ �
" #!

exp �r t� t0ð Þ½ �

þW t0ð Þ
x t; xð Þf t, x,

X
h2N1

uh þ
X
‘2N2

u‘

" # �
, and

W t0ð Þ T; xð Þ ¼ exp �r T � t0ð Þ½ �
X
h2Ni

qhxþ
X
‘2N2

q‘x

" #
: ð4:7Þ

Conditions satisfying the indicated maximization in (4.7) include:

�
g
X
h2Ni

uh þ
X
‘2N2

u‘

" #
þ g

0 X
h2Ni

uh þ
X
‘2N2

u‘

" # X
h2Ni

uh þ
X
‘2N2

u‘

" #

� ∂
∂uj 1

cj
1

uj1 ; x
� � �

exp �r t� t0ð Þ½ �

þW t0ð Þ
x t; xð Þ ∂

∂uj1
f t, x,

X
h2N1

uh þ
X
‘2N2

u‘

" #
� 0, uj1 	 0;

and if uj1 > 0, the equality sign must hold, for j12N1;

�
g
X
h2Ni

uh þ
X
‘2N2

u‘

" #
þ g

0 X
h2Ni

uh þ
X
‘2N2

u‘

" # X
h2Ni

uh þ
X
‘2N2

u‘

" #

� ∂
∂uj 2

cj
2

uj1 ; x
� � �

exp �r t� t0ð Þ½ �

þW t0ð Þ
x t; xð Þ ∂

∂uj2
f t, x,

X
h2N1

uh þ
X
‘2N2

u‘

" #
� 0, uj2 	 0; ð4:8Þ

and if uj2 > 0, the equality sign must hold, for j22N2.

Since ∂
∂uj 1

cj
1

uj1 ; x
� �

< ∂
∂uj 2

cj
2

uj1 ; x
� �

, all the firm which has cost disadvantages

would refrain from extraction. The optimal extraction strategies under cooperation

become:

u*j1 tð Þ ¼ ψ*
j1 t; xð Þ for j12N1 and u*j2 tð Þ ¼ 0 for j22N2: ð4:9Þ

The optimal cooperative state dynamics follows:
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dx sð Þ ¼ f s, x sð Þ,
X
ji2N1

ψ*
j1 s, x sð Þð Þ

2
4

3
5dsþ σ s, x sð Þ½ �dz sð Þ, x t0ð Þ ¼ x0: ð4:10Þ

The solution to (4.10) yields a group optimal trajectory, which can be expressed as:

x* tð Þ ¼ x0 þ
ð t

t0

f s, x* sð Þ,
X
ji2N1

ψ*
j1 s, x* sð Þ
 �2

4
3
5 dsþ

ð t

t0

σ s, x sð Þ½ �dz sð Þ: ð4:11Þ

We use X*
t to denote the set of realizable values of x*(t) at time t generated by

(4.11). The term x*t 2X*
t is used to denote an element in X*

t .

Substituting the optimal extraction strategies in (4.9) into (4.6) yields the

expected cartel profit as:

W t0ð Þ t0; x0ð Þ ¼ Et0

� ð T
t0

g
X
h2Ni

ψ*
h s, x* sð Þ� �" # X

h2Ni

ψ*
h s, x* sð Þ� �" # 

�
X
h2Ni

ch ψ*
h s, x* sð Þ
 �

, x* sð Þ� �" #!
exp �r s� t0ð Þ½ �

þexp �r T � t0ð Þ½ �
X
h2Ni

qh x* Tð Þ� �þX
‘2N2

q‘ x* Tð Þ� �" # �
: ð4:12Þ

LetW(τ)(t, x*t ) denote the expected total venture profit from the control problem with

dynamics (4.1) and payoff (4.6) which begins at time τ2 t0; T½ � with initial state

x*τ 2X*
τ . One can readily obtain

exp

ð τ

t0

r yð Þdy
� �

W t0ð Þ t; x*t

 � ¼ W τð Þ t; x*t


 �
;

for τ2 t0; T½ � and t2�τ,T� and x*t 2X*
t .

Next we consider subgame-consistent profit sharing schemes for the cartel along

the optimal output path.

15.4.3 Subgame-Consistent Cartel Profit Sharing

In a dormant firm cartel firms having cost disadvantages will refrain from extraction

in order to enhance the cartel’s expected profit to a group optimum. Compensation

must be made to the dormant firms for stopping their production activities. Consider

the case when the firms in the cartel agree to share the expected total cooperative

payoff proportional to the firms’ expected noncooperative payoffs.
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The imputation scheme has to fulfill:

Condition 4.1 An imputation

ξ t0ð Þj1 t0; x0ð Þ ¼ V t0ð Þj1 t0; x0ð ÞX
h2N1

V t0ð Þh t0; x0ð Þ þ
X
‘2N2

V t0ð Þ‘ t0; x0ð ÞW
t0ð Þ t0; x0ð Þ;

is assigned to firm j1, for j12N1 at the outset; and an imputation

ξ t0ð Þj2 t0; x0ð Þ ¼ V t0ð Þj2 t0; x0ð ÞX
h2N1

V t0ð Þh t0; x0ð Þ þ
X
‘2N2

V t0ð Þ‘ t0; x0ð ÞW
t0ð Þ t0; x0ð Þ; 4:13ð Þ■

is assigned to firm j2, for j22N2 at the outset;

and an imputation

ξ τð Þj1 τ; x*τ

 � ¼ V τð Þj1 τ; x*τ


 �X
h2N1

V τð Þh τ; x*τ

 �þX

‘2N2

V τð Þ‘ τ; x*τ

 �W τð Þ τ; x*τ


 �

is assigned to firm j1, for j12N1 at time τ2
t0,T�; and an imputation

ξ τð Þj2 τ; x*τ

 � ¼ V τð Þj2 τ; x*τ


 �X
h2N1

V τð Þh τ; x*τ

 �þX

‘2N2

V τð Þ‘ τ; x*τ

 �W τð Þ τ; x*τ


 �

is assigned to firm j2 , for j22N2 at time τ2
t0, T�
Invoking Theorem 3.1 in Chap. 3, a subgame consistent PDP for the cartel can

then be expressed as:

Bj1 s; x*s

 � ¼ � ∂

∂t

2
664 V sð Þj1 t; x*t


 �X
h2N1

V sð Þh t; x*t

 �þX

‘2N2

V sð Þ‘ t; x*t

 �W sð Þ t; x*t


 �
t ¼ s

��������

3
775

� ∂
∂x*s

2
6664 V sð Þj1 s; x*s


 �X
h2N1

V sð Þh s; x*s

 �þX

‘2N2

V sð Þ‘ s; x*s

 �W sð Þ s; x*s


 �
3
7775

� f s, x* sð Þ,
X
ji2N1

ψ*
j1 s, x* sð Þ
 �2

4
3
5
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�1

2

Xm
h, ζ¼1

Ωhζ s; x*s

 � ∂2

∂xh*s ∂xζ*s

2
4 V sð Þj1 s; x*s


 �X
h2N1

V sð Þh s; x*s

 �þX

‘2N2

V sð Þ‘ s; x*s

 �W sð Þ s; x*s


 � 35;
for j12N1;

Bj2 s; x*s

 � ¼ � ∂

∂t

2
4 V sð Þj2 t; x*t


 �X
h2N1

V sð Þh t; x*t

 �þX

‘2N2

V sð Þ‘ t; x*t

 �W sð Þ t; x*t


 �
t ¼ s

������
3
5

� ∂
∂x*s

2
64 V sð Þj2 s; x*s


 �X
h2N1

V sð Þh s; x*s

 �þX

‘2N2

V sð Þ‘ s; x*s

 �W sð Þ s; x*s


 � 375

� f s, x* sð Þ,
X
ji2N1

ψ*
j1 s, x* sð Þ
 �2

4
3
5

�1

2

Xm
h, ζ¼1

Ωhζ s; x*s

 � ∂2

∂xh*s ∂xζ*s

2
4 V sð Þj2 s; x*s


 �X
h2N1

V sð Þh s; x*s

 �þX

‘2N2

V sð Þ‘ s; x*s

 �W sð Þ s; x*s


 � 35,

for j22N1: ð4:14Þ

With firms having cost advantages producing an outputψ*
j1
t; xð Þ for j12N1 and firms

having cost disadvantages refraining from production, the instantaneous receipt of

firm i at time instant τ when x*τ τð Þ ¼ x*τ 2X*
τ is:

ζj1 τ; x*τ

 � ¼ g

X
h2Ni

ψ*
h τ; x*τ

 �" #

ψ*
j1 τ; x*τ

 �� cj

1

ψ*
j1 τ; x*τ

 �

, x*τ sð Þ
h i

;

for τ2 t0; T½ � and j12N1, and

ζj2 τ; x*τ

 � ¼ 0 for τ2 t0; T½ � and :

According to (4.14), the instantaneous payment that firm i should receive under the

agreed-upon optimality principle is Bj1 τ; x*τ

 �

for j12N1 and Bj2 τ; x*τ

 �

for j22N2.

Hence an instantaneous transfer payment

χj
1

τ; x*τ

 � ¼ ζj1 τ; x*τ


 �� Bj1 τ; x*τ

 �

, for firm j12N1 and τ2 t0; T½ �;
χj

2

τ; x*τ

 � ¼ Bj1 τ; x*τ


 �
, for firm j22N2 and τ2 t0; T½ �; ð4:15Þ

would have to be arranged.
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15.5 An Illustration

Consider a dormant firm duopoly in which two firms are allowed to extract a

renewable resource within the duration [t0,T]. The dynamics of the resource is

characterized by the differential equations:

dx sð Þ ¼ ax sð Þ1=2 � bx sð Þ � u1 sð Þ � u2 sð Þ
h i

dsþ σ x sð Þdz sð Þ,
x t0ð Þ ¼ x02X; ð5:1Þ

where ui2Ui is the (nonnegative) amount of resource extracted by firm i, for
i2 1; 2f g, a and b are positive constants.

The extraction cost for firm i2 1; 2f g depends on the quantity of resource

extracted ui(s), the resource stock size x(s), and a parameter ci. In particular, firm

i’s extraction cost can be specified as ciu
i sð Þx sð Þ�1=2

. In particular, firm 1 has

absolute and marginal cost advantages with c1 < c2.
The market price of the resource depends on the total amount extracted and

supplied to the market. The price-output relationship at time s is given by the

following downward sloping inverse demand curve P sð Þ ¼ Q sð Þ�1=2
, where Q sð Þ

¼ u1 sð Þ þ u2 sð Þ is the total amount of resource extracted and marketed at time s. At
time T, firm iwill receive a termination bonus with satisfaction qix(T )

1/2, where qi is
nonnegative. There exists a discount rate r, and profits received at time t has to be

discounted by the factor exp �r t� t0ð Þ½ �.
At time t0 the expected profit of firm i2 1; 2f g is:

Et0

� ð T
t0

ui sð Þ
u1 sð Þ þ u2 sð Þ½ �1=2

� ci

x sð Þ1=2
ui sð Þ

" #
exp �r s� t0ð Þ½ � ds

þexp �r T � t0ð Þ½ �qix Tð Þ12
�
: ð5:2Þ

A set of strategies u*i tð Þ ¼ φ*
i t; xð Þ�

, for i2 1; 2f gg provides a Nash equilibrium

solution to the stochastic differential game (5.1 and 5.2), if there exist continuously

twice differentiable functions V t0ð Þi t; xð Þ : t0; T½ � � R ! R; i2 1; 2f g, satisfying the

following partial differential equations:

�V
t0ð Þi
t t; xð Þ � 1

2
σ2x2V t0ð Þi

xx t; xð Þ

¼ max
ui

�
ui

ui þ ϕ*
j t; xð Þ

� �1=2 � ci
x1=2

ui

2
64

3
75exp �r t� t0ð Þ½ �

þV t0ð Þi
x t; xð Þ ax1=2 � bx� ui � ϕ*

j t; xð Þ
h i �

, and

V t0ð Þi T; xð Þ ¼ qix
1=2 exp �r T � t0ð Þ½ � , for i2 1; 2f g, j2 1; 2f g and j 6¼ i: ð5:3Þ

Performing the indicated maximization and solving (5.3) yields:
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ϕ*
1 t; xð Þ ¼ x

4 c1 þ V t0ð Þ1
x exp r t� t0ð Þ½ � x1=2� � 2

and

ϕ*
2 t; xð Þ ¼ x

4 c2 þ V t0ð Þ2
x exp r t� t0ð Þ½ � x1=2� � 2

:
ð5:4Þ

The value function reflecting the expected game equilibrium payoffs of the firms in

the game (5.1 and 5.2) can be obtained as:

Proposition 5.1 The game equilibrium value function of firm i is

V t0ð Þi t; xð Þ ¼ exp �r t� t0ð Þ½ � Ai tð Þx1=2 þ Ci tð Þ
� �

for i2 1; 2f g and t2 t0; T½ �; ð5:5Þ

where Ai(t), Ci(t), Aj(t) and Cj(t), for i2 1; 2f g and j2 1; 2f g and i 6¼ j, satisfy:

_A i tð Þ ¼ r þ b

2
þ σ2

8

� �
Ai tð Þ � 3

2

� �
2cj � ci þ Aj tð Þ � Ai tð Þ=2
� �
c1 þ c2 þ A1 tð Þ=2þ A2 tð Þ=2½ �2

þ 3

2

� �2 ci 2cj � ci þ Aj tð Þ � Ai tð Þ=2
� �

c1 þ c2 þ A1 tð Þ=2þ A2 tð Þ=2½ �3

þ 9

8

� �
Ai tð Þ

c1 þ c2 þ A1 tð Þ=2þ A2 tð Þ=2½ �2 ;

Ai Tð Þ ¼ qi;
_C i tð Þ ¼ rCi tð Þ � a

2
Ai tð Þ, and Ci Tð Þ ¼ 0:

Proof First substitute the results in (5.4), and V t0ð Þ1 t; xð Þ, V t0ð Þ1
x t; xð Þ, V t0ð Þ2 t; xð Þ and

V t0ð Þ2
x t; xð Þobtained via (5.5) into the set of partial differential equations (5.3). One can

readily show that for this set of equations to be satisfied, Proposition 5.1 has to hold.■

One can readily verify that

V τð Þi t; xð Þ ¼ exp �r t� τð Þ½ � Ai tð Þx1=2 þ Ci tð Þ
h i

, for i2 1; 2f g and t2 τ; T½ �:

Assume that the firms agree to form a cartel and seek to solve the following

expected joint profit maximization problem to achieve a group optimum:

max
u1, u2

Et0

� ð T
t0

u1 sð Þ þ u2 sð Þ½ �1=2 � c1u1 sð Þ þ c2u2 sð Þ
x sð Þ1=2

" #
exp �r s� t0ð Þ½ � ds

þexp �r T � t0ð Þ½ � q1 þ q2½ �x Tð Þ1=2
�
;

ð5:6Þ

subject to dynamics (5.1).
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A set of strategies ψ*
1 s; xð Þ,ψ*

2 s; xð Þ� �
, for s2 t0; T½ �provides an optimal solution

to the stochastic control problem (5.1) and (5.6), if there exist a continuously twice

differentiable function W t0ð Þ t; xð Þ : t0; T½ � � R ! R satisfying the following partial

differential equations:

�W
t0ð Þ
t t; xð Þ � 1

2
σ2x2W t0ð Þ

xx t; xð Þ

¼ max
u1, u2

�
u1 þ u2ð Þ1=2 � c1u1 þ c2u2ð Þx�1=2

h i
exp �r t� t0ð Þ½ �

þW t0ð Þ
x t; xð Þ ax1=2 � bx� u1 � u2

� � �
, and

W t0ð Þ T; xð Þ ¼ q1 þ q2ð Þx1=2 exp �r T � t0ð Þ½ � :

ð5:7Þ

Performing the indicated maximization operation in (5.7) yields:

ψ*
1 t; xð Þ ¼ x

4 c1 þWxexp r t� t0ð Þ½ � x1=2½ � 2
and ψ*

2 t; xð Þ ¼ 0: ð5:8Þ

Firm 2 has to refrain from extraction. The more efficient firm (firm 1) would buy the

less efficient firm (firm 2) out from the resource extraction process. Firm 2 becomes a

dormant firm under cooperation. The value function indicating the maximized

expected joint payoff of firms in the control problem (5.1) and (5.6) can be obtained as:

Proposition 5.2
W t0ð Þ t; xð Þ ¼ exp �r t� t0ð Þ½ � A tð Þx1=2 þ C tð Þ

h i
; ð5:9Þ

where A(t) and B(t) satisfy:

_A tð Þ ¼ r þ b

2
þ σ2

8

� �
A tð Þ � 1

4 c1 þ A tð Þ=2½ �,
A Tð Þ ¼ q1 þ q2
_C tð Þ ¼ rC tð Þ � a

2
A tð Þ, and B Tð Þ ¼ 0:

Proof First substitute the results in (5.8), andW t0ð Þ t; xð Þ, andW t0ð Þ
x t; xð Þobtained via

(5.9) into the set of partial differential equations (5.7). One can readily show that for

this set of equations to be satisfied, Proposition 5.2 has to hold. ■

Again, one can readily verify that W τð Þ t; xð Þ ¼ exp �r t� τð Þ½ � A tð Þx1=2 þ B tð Þ� �
Upon substituting ψ*

1(t, x) and ψ*
2(t, x) into (5.1) yields the optimal cooperative

state dynamics as:

dx sð Þ ¼ ax sð Þ1=2 � bx sð Þ�
�

x sð Þ
4 c1 þ A sð Þ=2½ � 2

�
dsþ σ x sð Þdz sð Þ,

x t0ð Þ ¼ x02X:

ð5:10Þ
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The solution to (5.10) yields a Pareto optimal trajectory, which can be expressed as:

x* tð Þ ¼ Φ t; t0ð Þ x
1=2
0 þ

ð t

t0

Φ�1 s; t0ð Þa
2
ds

� �� �2

ð5:11Þ

where

Φ t; t0ð Þ ¼ exp

� ð t

t0

� �b

2
� 1

8 c1 þ A sð Þ=2½ � 2 �
3σ2

8

�
dsþ

ð t

t0

σ

2
dz sð Þ

�
:

We denote the set containing realizable values of x*(t) by Xt, for t2


t0,T

�
.

Consider the case when the firms in the cartel agree to share the total expected

cooperative payoff proportional to the firms’ expected noncooperative payoffs. The
imputation scheme has to fulfill:

ξ τð Þi τ; x*τ

 � ¼ V τð Þi τ; x*τ


 �
X2
j¼1

V τð Þj τ; x*τ

 �W τð Þ τ; x*τ


 �
, for i2 1; 2f g and τ2 t0; T½ �:

Invoking the results in (4.14), a subgame consistent PDP for the cartel can then be

obtained as

Bi s;x
*
s


 �¼� ∂
∂t

2
4 V sð Þi t;x*t


 �
X2
j¼1

V sð Þj t;x*t

 �W sð Þ t;x*t


 �
t¼ s

������
3
5

� ∂
∂x*s

2
64 V sð Þi s;x*s


 �
X2
j¼1

V sð Þj s;x*s

 �W sð Þ s;x*s


 � 375 a x*s

 �1=2�bx*s�

�
x*s

4 c1þA sð Þ=2½ � 2
�

�σ2 x*s

 �2
2

∂2

∂ x*s

 �2

2
64 V sð Þi s;x*s


 �
X2
j¼1

V sð Þj s;x*s

 �W sð Þ s;x*s


 � 375, for i2 1;2f g;

ð5:12Þ

Under cooperation, firm 1 would derive an expected payoff:

W t0ð Þ1 t0; x0ð Þ ¼ Et0

�
ð T

t0

ψ*
1 s,x* sð Þ
 �� �1=2 � c1

x* sð Þ1=2
ψ*
1 s, x* sð Þ
 �" #

exp �r s� t0ð Þ½ � ds

þexp �r T � t0ð Þ½ �q1x* Tð Þ12
�
;

478 15 Applications in Business Collaboration



where ψ*
1 s, x* sð Þ
 � ¼ x* sð Þ

4 c1 þ A sð Þ=2½ �2, and firm 2 would derive an expected payoff:

W t0ð Þ2 t0; x0ð Þ ¼ 0 for being dormant: ð5:13Þ

The instantaneous receipt of firm 1 at time instant τ is:

ζ1 τ; x*τ

 � ¼ x*τ


 �1=2
2 c1 þ A τð Þ=2½ � �

c1 x*τ

 �1=2

4 c1 þ A τð Þ=2½ �2

for τ2 t0; T½ � when x* τð Þ ¼ x*τ 2X*
τ .

The instantaneous receipt of firm 2 at time instant τ is

ζ2 τ; x*τ

 � ¼ 0, for τ2 t0; T½ �:

According to (5.12), the instantaneous payment that firm i should receive under the

agreed-upon optimality principle is Bi(τ, x*τ ). Hence an instantaneous transfer

payment

χ1 τ; x*τ

 � ¼ ζ1 τ; x*τ


 �� B1 τ; x*τ

 �

, for firm 1, and

χ2 τ; x*τ

 � ¼ B2 τ; x*τ


 �
, for firm 2 at time τ2 t0; T½ � when x* τð Þ ¼ x*τ 2X*

τ ;
ð5:14Þ

would be arranged.

15.6 Infinite Horizon Cartel

In this Section we consider the dormant firm cartel in Sect. 15.5 with an infinite

horizon. An oligopoly in which n firms are given perpetual rights to extract a

renewable resource.

The dynamics of the resource is characterized by the differential equations:

dx sð Þ ¼ f x sð Þ,
X
ji2N1

uj1 sð Þ þ
X
j22N2

uj2 sð Þ�
2
4

3
5dsþ σ x sð Þ½ �dz sð Þ,

x t0ð Þ ¼ x02X;

ð6:1Þ

where uj2Uj is the (nonnegative) amount of resource extracted by firm i, for i2N,
and x(s) is the resource stock, σ[x(s)] is am� Θmatrix and z(s) is a Θidimensional

Wiener process and the initial state x0 is given. Let Ω x sð Þ½ � ¼ σ x sð Þ½ � σ x sð Þ½ �0
denote the covariance matrix with its element in row h and column ζ denoted by

Ωhζ
i [xi(s)].
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At time t0, firm j12N1 which has cost advantages seeks to maximize its expected

profit

Et0

� ð1
t0

g
X
h2Ni

uh sð Þ þ
X
‘2N2

u‘ sð Þ
" #

uj1 sð Þ � cj
1

uj1 sð Þ,x sð Þ
h i !

exp �r s� t0ð Þ½ � ds
�
;

ð6:2Þ

subject to (6.1).

At time t0, firm j22N2 which has cost disadvantages seeks to maximize its

expected profit

Et0

� ð1
t0

g
X
h2Ni

uh sð Þ þ
X
‘2N2

u‘ sð Þ
" #

uj2 sð Þ � cj
2

uj2 sð Þ, x sð Þ
h i !

exp �r s� t0ð Þ½ � ds
�
; ð6:3Þ

subject to (6.1).

Consider the alternative formulation of (6.1, 6.2, and 6.3) as:

max
uj1

Et

� ð1
t

g
X
h2Ni

uh sð Þ þ
X
‘2N2

u‘ sð Þ
" #

uj1 sð Þ � cj
1

uj1 sð Þ, x sð Þ
h i !

exp �r s� tð Þ½ � ds
�
; ð6:4Þ

for j12N1, and

max
uj2

Et

� ð1
t

g
X
h2Ni

uh sð Þ þ
X
‘2N2

u‘ sð Þ
" #

uj2 sð Þ � cj
2

uj2 sð Þ, x sð Þ
h i !

exp �r s� tð Þ½ � ds
�
; ð6:5Þ

subject to the state dynamics

dx sð Þ ¼ f x sð Þ,
X
ji2N1

uj1 sð Þ þ
X
j22N2

uj2 sð Þ�
2
4

3
5dsþ σ x sð Þ½ �dz sð Þ, x tð Þ ¼ x: ð6:6Þ

The infinite-horizon autonomous game (6.4, 6.5, and 6.6) is independent

of the choice of t and dependent only upon the state at the starting time,

that is x.
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Invoking Theorem 5.1 in Chap. 3 a noncooperative feedback Nash equilibrium

solution can be characterized by a set of strategies ϕ*
j1
xð Þ

n
for j12N1 and ϕ

*
j2
xð Þ

for j22N2gconstitutes a Nash equilibrium solution to the game (6.4, 6.5, and 6.6), if

there exist functionals V̂
j1

xð Þ : Rm ! R for j12N1 and V̂
j2

xð Þ : Rm ! R for j22N2,

satisfying the following set of partial differential equations:

rV̂
j1

xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ xð ÞV̂ j1

xhxζ xð Þ ¼

max
uj 1

�
g

X
h2Ni

h 6¼ j1

ϕ*
h xð Þ þ uj1 þ

X
‘2N2

ϕ*
‘ xð Þ

2
66664

3
77775 uj1 , � cj

1

uj1 ; x
� �

0
BBBBB@

1
CCCCCA

þV̂
j1

x xð Þf x,
X

h2Ni

h 6¼ j1

ϕ*
h xð Þ þ uj1 þ

X
‘2N2

ϕ*
‘ xð Þ

2
66664

3
77775
�
, for j12N1 and

rV̂
j2

xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ xð ÞV̂ j2

xhxζ xð Þ ¼

max
uj 2

�
g
X
h2Ni

ϕ*
h xð Þ þ

X
‘2N2

‘ 6¼ j 2

ϕ*
‘ xð Þ þ uj2

2
66664

3
77775 uj2 � cj

2

uj2 ; x
� �

0
BBBBB@

1
CCCCCA

þV̂
j2

x xð Þf x,
X
h2Ni

ϕ*
h xð Þ þ

X
‘2N2

‘ 6¼ j 2

ϕ*
‘ xð Þ þ uj2

2
66664

3
77775
�
, for j22N2:

ð6:7Þ

After characterizing the noncooperative market we proceed to consider the

Pareto optimal output trajectory if a cartel of these firms is formed.

15.6.1 Pareto Optimal Trajectory

Assume that the firms agree to form a cartel to restraint output and enhance their

expected profits. To achieve a group optimum, these firms are required to solve the

following expected joint profit maximization problem:
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max
u1, u2, ���, un

Et

� ð1
t

g
X
h2Ni

uh sð Þ þ
X
‘2N2

u‘ sð Þ
" # X

h2Ni

uh sð Þ þ
X
‘2N2

u‘ sð Þ
" # 

�
X
h2Ni

ch uh sð Þ, x sð Þ½ � þ
X
‘2N2

c‘ u‘ sð Þ, x sð Þ½ �
" #!

exp �r s� tð Þ½ � ds
� ð6:8Þ

subject to (6.6).

An optimal solution of the stochastic control problem (6.6) and (6.8) can be

characterized using Theorem A.4 in the Technical Appendices as:

Corollary 6.1 A set of control strategies ψ*
j1
xð Þ

n
for j12N1 and ψ*

j2
xð Þ for j22N2g

provides a solution to the stochastic control problem (6.6) and (6.8), if there exist

continuously twice differentiable functions W xð Þ : Rm ! R, satisfying the following

partial differential equation:

rW xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ xð ÞWxhxζ xð Þ ¼

max
u1, u2, ���, un

8<
: g

X
h2Ni

uh þ
X
‘2N2

u‘

" # X
h2Ni

uh þ
X
‘2N2

u‘

" # 

�
X
h2Ni

ch uh; x½ � þ
X
‘2N2

c‘ u‘; x½ �
" #!

þWx xð Þ f t, x,
X
h2N1

uh þ
X
‘2N2

u‘

" # 9=
;: ð6:9Þ■

Conditions satisfying the indicated maximization in (6.9) include:

(
g
X
h2Ni

uh þ
X
‘2N2

u‘

" #
þ g

0 X
h2Ni

uh þ
X
‘2N2

u‘

" # X
h2Ni

uh þ
X
‘2N2

u‘

" #

� ∂
∂uj 1

cj
1

uj1 ; x
� � )

þWx xð Þ ∂
∂uj1

f x,
X
h2N1

uh þ
X
‘2N2

u‘

" #
� 0,

uj1 	 0;

and if uj1 > 0, the equality sign must hold, for j12N1;
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8<
: g

X
h2Ni

uh þ
X
‘2N2

u‘

" #
þ g

0 X
h2Ni

uh þ
X
‘2N2

u‘

" # X
h2Ni

uh þ
X
‘2N2

u‘

" #

� ∂
∂uj 2

cj
2

uj1 ; x
� � 9=

;þWx xð Þ ∂
∂uj2

f x,
X
h2N1

uh þ
X
‘2N2

u‘

" #
� 0,

uj2 	 0,

and if uj2 > 0 , the equality sign must hold, for j22N2

ð6:10Þ

Since ∂
∂uj 1

cj
1

uj1 ; x
� �

< ∂
∂uj 2

cj
2

uj1 ; x
� �

, all the firm which has cost disadvantages

would refrain from extraction. The optimal extraction strategies under cooperation

become:

u*j1 tð Þ ¼ ψ*
j1 xð Þ for j12N1 and u*j2 tð Þ ¼ 0 for j22N2: ð6:11Þ

The optimal cooperative state dynamics follows:

dx sð Þ ¼ f x sð Þ,
X
ji2N1

ψ*
j1 x sð Þð Þ

2
4

3
5 dsþþσ x sð Þ½ �dz sð Þ, x t0ð Þ ¼ x0: ð6:12Þ

The solution to (6.12) yields a group optimal trajectory, which can be expressed as:

x* tð Þ ¼ x0 þ
ðt
t0

f x* sð Þ,
X
ji2N1

ψ*
j1 x* sð Þ
 �2

4
3
5 dsþ

ð t
t0

σ x sð Þ½ �dz sð Þ: ð6:13Þ

Substituting the optimal extraction strategies in (6.11) into (6.6) yields the expected

cartel profit as:

W xð Þ ¼ Et

� ð1
t

g
X
h2Ni

ψ*
h x* sð Þ� �" # X

h2Ni

ψ*
h x* sð Þ� �" # 

�
X
h2Ni

ch ψ*
h x* sð Þ
 �

, x* sð Þ� �" #!
exp �r s� tð Þ½ � x tð Þ ¼ x

����
�
:

ð6:14Þ

We then examine subgame consistent cartel profit sharing mechanisms in the

next subsection.
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15.6.2 Subgame Consistent Cartel Profit Sharing

In a dormant firm cartel firms having cost disadvantages will refrain from extraction

in order to enhance the cartel’s expected profit to a group optimum. Consider the

case when the firms in the cartel agree to share the excess of the total expected

cooperative payoff proportional to the firms’ expected noncooperative payoffs.

The imputation scheme has to fulfill:

Condition 6.1 An imputation

ξ τð Þj1 τ; x*τ

 � ¼ V̂

j1

x*τ

 �

X
h2N1

V̂
h
x*τ

 �þX

‘2N2

V̂
‘
x*τ

 � W x*τ


 �

is assigned to firm j1, for j12N1 at time τ2�t0,1� when x* τð Þ ¼ x*τ 2X*
τ ; and an

imputation

ξ τð Þj2 τ; x*τ

 � ¼ V̂

j2

x*τ

 �

X
h2N1

V̂
h
x*τ

 �þX

‘2N2

V̂
‘
x*τ

 �W x*τ


 �

is assigned to firm j2, for j22N2 at time τ2�t0,1� when x* τð Þ ¼ x*τ 2X*
τ ð6:15Þ

■

To formulate a set of subgame consistent payoff distribution procedure we

invoke Theorem 5.3 in Chap. 3 and obtain:

Corollary 6.2 A PDP with instantaneous payments at time τ2�t0,1� when x* τð Þ
¼ x*τ 2X*

τ equaling

Bj1 x*τ

 � ¼ rV̂

j1

x*τ

 �

X
h2N1

V̂
h
x*τ

 �þX

‘2N2

V̂
‘
x*τ

 �W x*τ


 �

� ∂
∂x*τ

2
4 V̂

j1

x*τ

 �

X
h2N1

V̂
h
x*τ

 �þX

‘2N2

V̂
‘
x*τ

 �W x*τ


 � 35f x*τ ;
X
ji2N1

ψ*
j1 x*τ

 �2

4
3
5

�1

2

Xm
h, ζ¼1

Ωhζ x*τ

 � ∂2

∂xh*τ ∂xζ*τ

2
4 V̂

j1

x*τ

 �

X
h2N1

V̂
h
x*τ

 �þX

‘2N2

V̂
‘
x*τ

 �W x*τ


 � 35;

for j12N1;
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Bj2 x*τ

 � ¼ rV̂

j2

x*τ

 �

X
h2N1

V̂
h
x*τ

 �þX

‘2N2

V̂
‘
x*τ

 �W x*τ


 �

� ∂
∂x*τ

2
66664

V̂
j2

x*τ

 �

X
h2N1

V̂
h
x*τ

 �þX

‘2N2

V̂
‘
x*τ

 �W x*τ


 �
3
77775f x*τ ;

X
ji2N1

ψ*
j1 x*τ

 �2

4
3
5

�1

2

Xm
h, ζ¼1

Ωhζ x*τ

 � ∂2

∂xh*τ ∂xζ*τ

2
66664

V̂
j2

x*τ

 �

X
h2N1

V̂
h
x*τ

 �þX

‘2N2

V̂
‘
x*τ

 �W x*τ


 �
3
77775,

for j22N2;

ð6:16Þ

yields a subgame consistent payoff distribution procedure to the cooperative game

Γc(x0) with imputation as specified in Condition 6.1. ■

With firms having cost advantages producing an output ψ*
j1
xð Þ for j12N1 and

firms having cost disadvantages refraining from production, the instantaneous

receipt of firm i at time instant τ when x* τð Þ ¼ x*τ 2X*
τ is:

ζj1 τ; x*τ

 � ¼ g

X
h2Ni

ψ*
h x*τ

 �" #

ψ*
j1 x*τ

 �� cj

1

ψ*
j1 x*τ

 �

, x*τ sð Þ
h i

;

for τ2�t0,1� and j12N1, and

ζj2 τ; x*τ

 � ¼ 0 , for τ2�t0,1� and j22N2:

According Corollary 6.2, the instantaneous payment that firm i should receive

under the agreed-upon optimality principle is Bj1 τ; x*τ

 �

for j12N1 and Bj2 τ; x*τ

 �

for j22N2 as stated in (6.16). Hence an instantaneous transfer payment

χj
1

τ; x*τ

 � ¼ ζj1 τ; x*τ


 �� Bj1 τ; x*τ

 �

, for firm j12N1 and τ2 t0; T½ �;
χj

2

τ; x*τ

 � ¼ Bj2 τ; x*τ


 �
, for firmj22N2 and τ2 t0; T½ �; ð6:17Þ

would have to be arranged.
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15.6.3 Infinite-Horizon Dormant-Firm Cartel: An
Illustration

Consider an infinite horizon version of the game in Sect. 15.3. The dynamics of the

resource is characterized by the stochastic differential equations:

dx sð Þ ¼ ax sð Þ1=2 � bx sð Þ � u1 sð Þ � u2 sð Þ
h i

dsþ σ x sð Þdz sð Þ,
x t0ð Þ ¼ x02X;

ð6:18Þ

where ui2Ui is the (nonnegative) amount of resource extracted by firm i, for
i2 1; 2f g, a and b are positive constants.

At time t0 the expected profit of firm i2 1; 2f g is:

Et0

� ð1
t0

ui sð Þ
u1 sð Þ þ u2 sð Þ½ �1=2

� ci

x sð Þ1=2
ui sð Þ

" #
exp �r s� t0ð Þ½ � ds

�
,

wehere c1 < c2:

ð6:19Þ

Consider the alternative game problem which starts at time t2�t0,1� with initial

state x tð Þ ¼ x:

max
ui

Et0

� ð1
t

ui sð Þ
u1 sð Þ þ u2 sð Þ½ �1=2

� ci

x sð Þ1=2
ui sð Þ

" #
exp �r s� tð Þ½ � ds

�
ð6:20Þ

subject to

dx sð Þ ¼ ax sð Þ1=2 � bx sð Þ � u1 sð Þ � u2 sð Þ
h i

ds

x tð Þ ¼ x2X;
ð6:21Þ

A set of strategies {ϕ*
i (x), for i2 1; 2f g provides a Nash equilibrium solution to the

game (6.20 and 6.21), if there exist continuously twice differentiable functions

V̂
i
xð Þ : R ! R, i2 1; 2f g, satisfying the following partial differential equations:

rV̂
i
xð Þ � 1

2
σ2x2V̂

i

xx xð Þ ¼ max
ui

�
ui

ui þ ϕ*
j xð Þ

� �1=2 � ci
x1=2

ui

2
64

3
75

þV̂
i

x t; xð Þ ax1=2 � bx� ui � ϕ*
j xð Þ

h i �
,

for i2 1; 2f g, j2 1; 2f g and j 6¼ i:

ð6:22Þ

Performing the indicated maximization yields:
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ϕ*
1 xð Þ ¼ x

4 c1 þ V̂
1

xx
1=2

h i 2
and ϕ*

2 t; xð Þ ¼ x

4 c2 þ V̂
2

x x
1=2

h i 2
: ð6:23Þ

The game equilibrium value functions reflecting the expected payoffs of the firms in

the game (6.20 and 6.21) can be obtained as:

Proposition 6.1
V̂

i
xð Þ ¼ Aix

1=2 þ Ci

h i
, for i2 1; 2f g; ð6:24Þ

where Ai, Ci, Aj and Cj, for i2 1; 2f g and j2 1; 2f g and i 6¼ j, satisfy:

0 ¼ r þ b

2
þ σ2

8

� �
Ai � 3

2

� �
2cj � ci þ Aj � Ai=2
� �
c1 þ c2 þ A1=2þ A2=2½ �2

þ 3

2

� �2 ci 2cj � ci þ Aj � Ai=2
� �

c1 þ c2 þ A1=2þ A2=2½ �3 þ
9

8

� �
Ai

c1 þ c2 þ A1=2þ A2=2½ �2,

rCi ¼ a

2
Ai:

Proof First substitute the results in (6.23), and V̂
1
xð Þ, V̂ 1

x xð Þ, V̂ 2
xð Þ and V̂

2

x xð Þ
obtained via (6.24) into the set of partial differential equations (6.22). One can readily

show that for this set of equations to be satisfied, Proposition 6.1 has to hold. ■

A noncooperative market equilibrium can be explicitly obtained from (6.23) and

(6.24).

15.6.3.1 Cartel Output

Assume that the firms agree to form a cartel and seek to solve the following

expected joint profit maximization problem to achieve a group optimum:

max
u1, u2

Et0

� ð1
t0

u1 sð Þ þ u2 sð Þ½ �1=2 � c1u1 sð Þ þ c2u2 sð Þ
x sð Þ1=2

" #
exp �r s� t0ð Þ½ � ds

�

ð6:25Þ

subject to dynamics (6.18).

Consider the alternative stochastic control problem which starts at time t2�t0,
1� with initial state x tð Þ ¼ x:
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max
u1, u2

Et

� ð1
t

u1 sð Þ þ u2 sð Þ½ �1=2 � c1u1 sð Þ þ c2u2 sð Þ
x sð Þ1=2

" #
exp �r s� tð Þ½ � ds

�

ð6:26Þ

subject to (6.21)

A set of strategies [ψ*
1(x),ψ

*
2(x)] provides an optimal solution to the problem

(6.26) and (6.21), if there exist a continuously twice differentiable function W xð Þ
: R ! R satisfying the following partial differential equations:

rW xð Þ � 1

2
σ2x2Wxx xð Þ

¼ max
u1, u2

�
u1 þ u2ð Þ1=2 � c1u1 þ c2u2ð Þx�1=2

h i
þWx xð Þ ax1=2 � bx� u1 � u2

h i �
:

ð6:27Þ

Performing the indicated maximization operation in (6.27) yields:

ψ*
1 xð Þ ¼ x

4 c1 þWx x1=2½ � 2
and ψ*

2 xð Þ ¼ 0: ð6:28Þ

Firm 2 has to refrain from extraction. The more efficient firm (firm 1) would buy the

less efficient firm (firm 2) out from the resource extraction process. Firm 2 becomes

a dormant firm under cooperation. The maximized cooperative payoff in the control

problem (6.26) and (6.21) can be obtained as:

Proposition 6.2
W xð Þ ¼ Ax1=2 þ C

h i
; ð6:29Þ

where A and B satisfy:

0 ¼ r þ b

2
þ σ2

8

� �
A� 1

4 c1 þ A=2½ � and rC ¼ a

2
A:

Proof First substitute the results in (6.28), andW(x), andWx(x) obtained via (6.29)
into the partial differential Eq. (6.27). One can readily show that for this equation to

be satisfied, Proposition 6.2 has to hold. ■

Upon substituting ψ*
1(x) and ψ*

2(x) into (6.16) yields the optimal cooperative

state dynamics as:

dx sð Þ ¼ ax sð Þ1=2 � bx sð Þ�
�

x sð Þ
4 c1 þ A=2½ � 2

�
þ σ x sð Þdz sð Þ,

x t0ð Þ ¼ x02X:

ð6:30Þ
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The solution to (5.10) yields a Pareto optimal trajectory, which can be expressed as:

x* tð Þ ¼ Φ t; t0ð Þ x
1=2
0 þ

ð t

t0

Φ�1 s; t0ð Þa
2
ds

� �� �2

; ð6:31Þ

where Φ t; t0ð Þ ¼ exp

� ð t

t0

� �b

2
� 1

8 c1 þ A=2½ � 2 �
3σ2

8

�
dsþ

ð t

t0

σ

2
dz sð Þ

�
:

We denote the set containing realizable values of x*(t) by Xt, for t2


t0,T

�
.

15.6.3.2 Subgame Consistent Cartel Profits Sharing

Consider the case when the firms in the cartel agree to share the expected cooper-

ative payoff proportional to the firms’ expected noncooperative payoffs.

The imputation scheme has to fulfill Condition 6.1, that is

ξ τð Þi τ; x*τ

 � ¼ V̂

i
x*τ

 �

X2
j¼1

V̂
j
x*τ

 � W x*τ


 �
, for i

2 1; 2f g along the cooperative path x*τ
� 1

τ¼t0
: ð6:32Þ

To formulate a set of subgame consistent payoff distribution procedure we

invoke Corollary 6.2 and obtain:

Corollary 6.3 A PDP with an instantaneous payment at time τ2�t0,1� when

x* τð Þ ¼ x*τ 2X*
τ :

Bi τ; x*τ

 � ¼ r

V̂
i
x*τ

 �

X2
j¼1

V̂
j
x*τ

 �W x*τ


 �� σ2 x*τ

 �2
2

∂2

∂ x*τ

 �2

2
4 V̂

i
x*τ

 �

X2
j¼1

V̂
j
x*τ

 �W x*τ


 � 35,

� ∂
∂x*τ

2
4 V̂

i
x*τ

 �

X2
j¼1

V̂
j
x*τ

 � W x*τ


 � 35 a x*τ

 �1=2 � bx*τ�

�
x*τ

4 c1 þ A=2½ � 2
�
,

for i2 1; 2f g;
ð6:33Þ

yields a subgame consistent PDP to the cooperative game with payoff (6.19),

dynamics (6.18) and imputation as specified in (6.32). ■
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The instantaneous receipt of firm 1 at time instant τ with x* τð Þ ¼ x*τ 2X*
τ is:

ζ1 τ; x*τ

 � ¼ x*τ


 �1=2
2 c1 þ A=2½ � �

c1 x*τ

 �1=2

4 c1 þ A=2½ � 2
, for τ2�t0,1�:

The instantaneous receipt of firm 2 at time instant τ is

ζ2 τ; x*τ

 � ¼ 0, for τ2�t0,1� with x* τð Þ ¼ x*τ 2X*

τ :

According Corollary 6.3, the instantaneous payment that firm i should receive

under the agreed-upon optimality principle is B1(τ, x*τ ) and B2(τ, x*τ ) as stated in

(6.33). Hence when x* τð Þ ¼ x*τ 2X*
τ an instantaneous transfer payment

χ1 τ; x*τ

 � ¼ ζ1 τ; x*τ


 �� B1 τ; x*τ

 �

, for firm 1 and

χ2 τ; x*τ

 � ¼ B2 τ; x*τ


 �
, for firm 2

would be arranged.

15.7 Appendix: Proof of Condition 2.1

To prove that

W τð ÞK τ; xK

 � 	 W τð ÞL τ; xL


 �þW τð ÞK\ L τ; xK\ L

 �

, for L � K 
 N;

we first use x̂ j Lð Þ, for j2L, to denote the optimal trajectory of the stochastic optimal

control problem ϖ[L; τ, xLτ ] which maximizes

Eτ

� ðT
τ

X
j2L

fgj s, xj sð Þ� �� cLj uj sð Þ� �g exp �
ðs
τ
r yð Þdy

� �
ds

þ
X
j2L

exp �
ðT
t0

r yð Þdy
� �

qj xj Tð Þð Þ
�

subject to

dxj sð Þ ¼ f j s, xj sð Þ, uj sð Þ� �
dsþ σj s, xj sð Þ½ � dzj sð Þ, xj τð Þ ¼ x jτ,

for j2L:

Note that
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W τð ÞL τ; xLτ

 � ¼

Eτ

� ð T
τ

X
j2L

fgj s, x̂ j Lð Þ sð Þ
h i

� cLj ψ τð ÞL*
j s, x̂ L Lð Þ sð Þ

� �h i
g exp �

ðs
τ
r yð Þdy

� �
ds

þ
X
j2L

exp �
ðT
τ
r yð Þdy

� �
qj x̂ j Lð Þ Tð Þ
� � �

� Eτ

�
ð T
τ

X
j2L

fgj s, x̂ j Lð Þ sð Þ
h i

� cKj ψ τð ÞL*
j s, x̂ L Lð Þ sð Þ

� �h i
g exp �

ðs
τ
r yð Þdy

� �
ds

þ
X
j2L

exp �
ð T

τ
r yð Þdy

� �
qj x̂ j Lð Þ Tð Þ
� � �

,

because cKj uj sð Þ� � � cLj uj sð Þ� �
, for j2L 
 K:

ð7:1Þ

Similarly, for the optimal control problem ϖ[K\L; τ, xK L
τ ], we have

W τð ÞK\ L τ; xK\ Lτ


 � ¼ Eτ

�
ð T
τ

X
j2K\ L

fgj s, x̂ j K\ Lð Þ sð Þ
h i

� cK\ Lj ψ τð ÞK\ L*
j s, x̂ K\ L K\ Lð Þ sð Þ

� �h i
g exp �

ðs
τ
r yð Þdy

� �
ds

þ
X
j2K\ L

exp �
ðT
τ
r yð Þdy

� �
qj x̂ j K\ Lð Þ Tð Þ
� � �

� Eτ

�
ð T
τ

X
j2K\ L

fgj s, x̂ j K\ Lð Þ sð Þ
h i

� cKj ψ τð ÞK\L*
j s, x̂ K\ L K\ Lð Þ sð Þ

� �h i
g exp �

ðs
τ
r yð Þdy

� �
ds

þ
X
j2K\ L

exp �
ðT
τ
r yð Þdy

� �
qj x̂ j K\ Lð Þ Tð Þ
� � �

,

because cKj uj sð Þ� � � cK\ Lj uj sð Þ� �
, for j2K\ L 
 K:

ð7:2Þ

Now consider the optimal control problem ϖ[K; τ, xKτ ] which maximizes

Eτ

� ðT
τ

X
j2K

fgj s, xj sð Þ� �� cKj uj sð Þ� �g exp �
ðs
τ
r yð Þdy

� �
ds

þ
X
j2K

exp �
ðT
t0

r yð Þdy
� �

qj xj Tð Þð Þ
�

subject to
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dxj sð Þ ¼ f j s, xj sð Þ, uj sð Þ� �
dsþ σj s, x

j sð Þ� �
dzj sð Þ, xj τð Þ ¼ x jτ;

for j2K:

Since ψ τð ÞK*
j s, x̂ K Kð Þ sð Þ

� �
and x̂ K Kð Þ sð Þ are respectively the optimal control and

optimal state trajectory of the control problem ϖ[K; τ, xKτ ],

W τð ÞK τ; xKτ

 � ¼

Eτ

� ð T
τ

X
j2K

fgj s, x̂ j Kð Þ sð Þ
h i

� cKj ψ τð ÞK*
j s, x̂ K Kð Þ sð Þ

� �h i
g exp �

ðs
τ
r yð Þdy

� �
ds

þ
X
j2K

exp �
ð T

τ
r yð Þdy

� �
qj x̂ j Kð Þ Tð Þ
� � �

	 Eτ

� ð T
τ

X
j2L

fgj s, x̂ j Lð Þ sð Þ
h i

� cKj ψ τð ÞL*
j s, x̂ L Lð Þ sð Þ

� �h i
g exp �

ðs
τ
r yð Þdy

� �
ds

þ
X
j2L

exp �
ð T

τ
r yð Þdy

� �
qj x̂ j Lð Þ Tð Þ
� � �

þEτ

�
ð T
τ

X
j2K\ L

fgj s, x̂ j K\ Lð Þ sð Þ
h i

� cKj ψ τð ÞK\L*
j s, x̂ K\ L K\ Lð Þ sð Þ

� �h i
g exp �

ðs
τ
r yð Þdy

� �
ds

þ
X
j2K\ L

exp �
ðT
τ
r yð Þdy

� �
qj x̂ j K\ Lð Þ Tð Þ
� � �

ð7:3Þ

Invoking (7.1), (7.2) and (7.3), we have W τð ÞK τ; xKτ

 � 	 W τð ÞL τ; xLτ


 �þ
W τð ÞK\ L τ; xK\ Lτ


 �
. Hence Condition 2.1 follows. ■

15.8 Chapter Notes

In this Chapter two applications in business cooperation are considered – cost

saving joint venture and dormant firm cartel. Despite all their purported benefits,

joint ventures are highly unstable because of the lack of dynamical stable profit

sharing schemes. Subgame consistent scheme can be perceived as a solution. The

analysis can be used as a foundation for future research to develop solutions to joint

ventures other than cost saving venture. For instance, other adverse effects, such as

uncompensated transfers of technology, operational difficulties, disagreements and

anxiety over the loss of proprietary information have been found (Hamel

et al. (1989) and Gomes-Casseres (1987)). D’Aspremont and Jacquemin (1988),

Kamien et al (1992) and Suzumura (1992) have studied cooperative R&D with
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spillovers in joint ventures under a static framework. Cellini and Lambertini (2002,

2004) considered cooperative solutions to investment in product differentiation in a

dynamic approach.

15.9 Problems

1. Consider the case when there are three companies involved in a joint venture.

The planning period is [0, 3]. We use xi(s) to denote the level of technology of

company i at time s2 0; 3½ �, and ui sð Þ � Rþ is its physical investment in

technological advancement. The increments of the levels of technology are

subject to stochastic disturbances. The discount rate is 0.05. The salvage values

of the firms’ technologies are 2[x1(2)]1/2, [x2(2)]1/2 and 1.5[x3(2)]1/2 at time 3. If

the companies act independently, the costs of physical investment of these three

firms are respectively 3u1(s), 2.5u2(s) and 2u3(s).
The expected profits for companies 1, 2 and 3 are respectively:

E

� ð3
0

9 x1 sð Þ� �1=2 � 3u1 sð Þ
h i

exp �0:05sð Þ dsþ exp �0:05 3ð Þ½ �2 x1 3ð Þ½ �1=2
�
,

E

� ð3
0

6 x2 sð Þ� �1=2 � 2:5u2 sð Þ
h i

exp �0:05sð Þ dsþ exp �0:05 3ð Þ½ � x2 3ð Þ½ �1=2
�
;

and

E

� ð3
0

10 x3 sð Þ� �1=2 � 2u3 sð Þ
h i

exp �0:05sð Þ dsþ exp �0:05 3ð Þ½ � 1:5 x3 3ð Þ� �1=2 �
:

The evolution of the technology level of company i2 1; 2; 3f g follows a system

of stochastic dynamics:

dx1 sð Þ ¼ 3 u1 sð Þx1 sð Þ½ �1=2 � 0:2x1 sð Þ
h i

dsþ 0:1x1 sð Þdz1 sð Þ, x1 0ð Þ ¼ 35,

dx2 sð Þ ¼ 4 u2 sð Þx2 sð Þ½ �1=2 � 0:1x2 sð Þ
h i

dsþ 0:2x2 sð Þdz2 sð Þ, x2 0ð Þ ¼ 22, and

dx3 sð Þ ¼ 2 u3 sð Þx3 sð Þ½ �1=2 � 0:05x3 sð Þ
h i

dsþ 0:1xi sð Þdz3 sð Þ, x3 0ð Þ ¼ 20;

where z1(s), z2(s) and z3(s) are independent Wiener processes.

Characterize a feedback Nash equilibrium solution when these three firms act

independently.

2. Consider the case when these three companies form a joint venture. The partic-

ipating firms in a coalition can gain core skills and technology from each other.

In particular, they can obtain cost reduction and with absolute joint venture cost

advantage.
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With joint venture cost advantage, the cost of investment of firm j2 1; 2; 3f g
under the joint venture become c1;2;3j uj(s) where c

1;2;3f g
1 ¼ 1:5, c

1;2;3f g
2 ¼ 1 and

c
1;2;3f g

3 ¼ 1.

If the joint venture firms agree to maximize their expected joint profit and

share the excess gain equally, characterize a subgame consistent solution.

3. Consider a duopoly in which two firms are allowed to extract a renewable

resource within the duration [0, 4]. The dynamics of the resource is characterized

by the stochastic dynamics

dx sð Þ ¼ 4x sð Þ1=2 � 0:3x sð Þ � u1 sð Þ � u2 sð Þ
h i

ds þ 0:1x sð Þdz sð Þ, x 0ð Þ ¼ 100;

where z(s) is a Wiener process and x(s) is the resource biomass and ui(s) is the
amount of resource extracted by firm i at time s2 0; 4½ �, for i2 1; 2f g.

The extraction cost for firm 1 and firm 2 are respectively 2u1 sð Þx sð Þ�1=2
and

3u1 sð Þx sð Þ�1=2
. The market price of the resource depends on the total amount

extracted and supplied to the market. The price-output relationship at time s is

given by the following downward sloping inverse demand curveP sð Þ ¼ Q sð Þ�1=2
,

where Q sð Þ ¼ u1 sð Þ þ u2 sð Þ is the total amount of resource extracted and

marketed at time s. At terminal time 4, firm 1 will receive a termination bonus

3x(3)1/2 and firm 2 a bonus 1.5x(3)1/2. The discount factor is 0.05.
Characterize a feedback Nash equilibrium solution when these firms act

independently.

4. If these two firms form a cartel, show that firm 2 has to be dormant. Derive the

optimal output strategies of the cartel.

5. Consider the case when the firms in the cartel agree to share the excess of the

total expected cooperative profits proportional to the firms’ expected noncoop-

erative profits. Characterize a subgame consistent solution.
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Technical Appendices

Continuous-Time Dynamic Programming

Consider the dynamic optimization problem in which the single decision-maker

maximizes the payoffðT
t0

g s, x sð Þ, u sð Þ½ � exp �
ðs
t0

r yð Þdy
� �

dsþ exp �
ðT
t0

r yð Þdy
� �

q x Tð Þð Þ; ðA:1Þ

subject to the vector-valued differential equation:

_x sð Þ ¼ f s, x sð Þ, u sð Þ½ �ds, x t0ð Þ ¼ x0; ðA:2Þ

where x sð Þ2X � Rm denotes the state variables of game, and u2U is the control.

A frequently adopted approach to dynamic optimization problems is the tech-

nique of dynamic programming. The technique was developed by Bellman (1957).

The technique is given in Theorem A.1 below.

Theorem A.1 (Bellman’s Dynamic Programming) A set of controls u* tð Þ ¼ ϕ*

t; xð Þ constitutes an optimal solution to the control problem (A.1 and A.2) if there

exist continuously differentiable function V(t, x) defined on [t0,T] �Rm ! R and

satisfying the following Bellman equation:

�Vt t; xð Þ ¼ max
u

g t; x; u½ �exp �
ðt
t0

r yð Þdy
� �

þ Vx t; xð Þf t; x; u½ �
� �

¼ g t, x,ϕ* t; xð Þ� �
exp �

ðt
t0

r yð Þdy
� 	

þ Vx t; xð Þf t, x,ϕ* t; xð Þ� �� �
;

© Springer Science+Business Media Singapore 2016

D.W.K. Yeung, L.A. Petrosyan, Subgame Consistent Cooperation,
Theory and Decision Library C 47, DOI 10.1007/978-981-10-1545-8

495



V T; xð Þ ¼ q xð Þexp �
ðT
t0

r yð Þdy
� �

: ðA:3Þ

Proof Define the maximized payoff at time t with current state x as a value
function in the form:

V t; xð Þ ¼ max
u

ðT
t

g s, x sð Þ, u sð Þð Þexp �
ðs
t0

r yð Þdy
� �

ds

�
þ exp �

ðT
t0

r yð Þdy
� �

q x Tð Þð Þ
�

¼
ðT
t

g s, x* sð Þ,ϕ* s, x* sð Þ
 �� �
exp �

ðs
t0

r yð Þdy
� �

ds

þ exp �
ðT
t0

r yð Þdy
� �

q x* Tð Þ
 ��
satisfying the boundary condition

V T, x* Tð Þ
 � ¼ q x* Tð Þ
 �
exp �

ðT
t0

r yð Þdy
� �

, and

_x * sð Þ ¼ f s, x* sð Þ,ϕ* s, x* sð Þ
 �� �
, x* t0ð Þ ¼ x0 ðA:4Þ

One can express V(t, x�t ) as:

V t; x*t

 � ¼ max

u

ðT
t

gi s, x sð Þ, u sð Þ½ �exp �
ðs
t0

r yð Þdy
� �

ds

�
þ q x Tð Þð Þexp �

ðT
t0

r yð Þdy
� ��

¼ max
u

ðtþΔt

t

gi s, x sð Þ, u sð Þ½ �exp �
ðs
t0

r yð Þdy
� �

ds

�
:

þV tþ Δt, x*t þ Δx*t

 ��

ðA:5Þ

where Δx*t ¼ f t, x*t ,ϕ
* t; x*t

 �� �

Δtþ o Δtð Þ; and o Δtð Þ=Δt ! 0 as Δt ! 0.

With Δt ! 0, Eq. (A.5) can be expressed as:

V t; x*t

 � ¼ max

u
gi t; x*t ; u
� �

exp �
ðt
t0

r yð Þdy
� �

Δtþ V t; x*t

 �þ Vt t; x

*
t


 �
Δt

�
þVxt t; x*t


 �
f t, x*t ,ϕ

* t; x*t

 �� �

Δtþ o Δtð Þ
�
: ðA:6Þ
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Dividing (A.6) throughout by Δt, with Δt ! 0, yields

�Vt t; x
*
t


 � ¼ max
u

gi t; x*t ; u
� �

exp �
ðt
t0

r yð Þdy
� �

þ Vxt t; x*t

 �

f t, x*t ,ϕ
* t; x*t

 �� �� �

;

ðA:7Þ

with boundary condition

V T, x* Tð Þ
 � ¼ q x* Tð Þ
 �
exp �

ðT
t0

r yð Þdy
� �

:

Hence Theorem A.1 follows. ■

Infinite-Horizon Continuous-Time Dynamic Programming

Consider the infinite-horizon dynamic optimization problem with a constant dis-

count rate:

max
u

ð1
t0

g x sð Þ, u sð Þ½ � exp �r s� t0ð Þ½ �ds
� �

; ðA:8Þ

subject to the vector-valued differential equation:

_x sð Þ ¼ f x sð Þ, u sð Þ½ �ds, x t0ð Þ ¼ x0: ðA:9Þ

Since s does not appear in g[x(s), u(s)] and the state dynamics explicitly, the

problem (A.8 and A.9) is an autonomous problem.

Consider the alternative problem which starts at time t2�
t0,1

�
with initial state

x tð Þ ¼ x:

max
u

ð1
t

g x sð Þ, u sð Þ½ �exp �r s� tð Þ½ �ds; ðA:10Þ

subject to

_x sð Þ ¼ f x sð Þ, u sð Þ½ �, x tð Þ ¼ x: ðA:11Þ

Theorem A.2 A set of controls u ¼ ϕ* xð Þ constitutes an optimal solution to the

infinite horizon control problem (A.10 and A.11) if there exists continuously
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differentiable function W(x) defined on Rm ! R which satisfies the following

equation:

rW xð Þ ¼max
u

g x; u½ �f þWx xð Þf x; u½ � g
¼ g x,ϕ* xð Þ� �� þWx xð Þf x,ϕ* xð Þ� �

:

Proof The infinite-horizon autonomous problem (A.10 and A.11) is independent

of the choice of t and dependent only upon the state at the starting time, that is x.
Define the value function to the problem (A.8 and A.9) by

eW t; xð Þ ¼ max
u

ð1
t

g x sð Þ, u sð Þ½ � exp �r s� t0ð Þ½ �ds x tð Þ ¼ x ¼ x*t
��� �

;

where x�t is the state at time t along the optimal trajectory. Moreover, we can

write

eW t;xð Þ ¼ exp �r t� t0ð Þ½ �max
u

ð1
t

g x sð Þ,u sð Þ½ � exp �r s� tð Þ½ �ds x tð Þ ¼ x¼ x*t
��� �

:

Since the problem max
u

ð1
t

g x sð Þ, u sð Þ½ � exp �r s� tð Þ½ �ds x tð Þ ¼ x ¼ x*t
��� �

depends on the current state x only, we can write:

W xð Þ ¼ max
u

ð1
t

g x sð Þ, u sð Þ½ � exp �r s� tð Þ½ �ds x tð Þ ¼ x ¼ x*t
��� �

:

It follows that:

eW t; xð Þ ¼ exp �r t� t0ð Þ½ �W xð Þ,eWt t; xð Þ ¼ �rexp �r t� t0ð Þ½ �W xð Þ, andeWx t; xð Þ ¼ �rexp �r t� t0ð Þ½ �Wx xð Þ: ðA:12Þ

Substituting the results from (A.12) into Theorem A.1 yields

rW xð Þ ¼ max
u

g x; u½ � þWx xð Þf x; u½ �f g : ðA:13Þ

Hence Theorem A.2 follows. ■
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Stochastic Control

Consider the dynamic optimization problem in which the single decision-maker:

max
u

Et0

ðT
t0

gi s, x sð Þ, u sð Þ½ �exp �
ðs
t0

r yð Þdy
� �

dsþ q x Tð Þð Þexp �
ðT
t0

r yð Þdy
� �� �

;

ðA:14Þ

subject to the vector-valued stochastic differential equation:

dx sð Þ ¼ f s, x sð Þ, u sð Þ½ �dsþ σ s, x sð Þ½ �dz sð Þ, x t0ð Þ ¼ x0; ðA:15Þ

where Et0 denotes the expectation operator performed at time t0, and σ[s, x(s)] is a
m� Θ matrix and z(s) is a Θ-dimensional Wiener process and the initial state x0 is

given. Let Ω s, x sð Þ½ � ¼ σ s, x sð Þ½ �σ s,x sð Þ½ �T denote the covariance matrix with its

element in row h and column ζ denoted by Ωhζ[s, x(s)].
The technique of stochastic control developed by Fleming (1969) can be applied

to solve the problem.

Theorem A.3 A set of controls u* tð Þ ¼ ϕ* t; xð Þ constitutes an optimal solution to

the problem (A.14 and A.15), if there exist continuously twice differentiable func-

tionsV t; xð Þ : t0; T½ � � Rm ! R, satisfying the following partial differential equation:

�Vt t; xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ t; xð ÞVxhxζ t; xð Þ ¼

max
u

gi t; x; u½ ��
exp �

ðt
t0

r yð Þdy
� �

þVx t; xð Þf t; x; u½ � g , and

V T; xð Þ ¼ q xð Þexp �
ðT
t0

r yð Þdy
� �

:

Proof Substitute the optimal control ϕ*(t, x) into the (A.15) to obtain the optimal

state dynamics as

dx sð Þ ¼ f s, x sð Þ,ϕ* s, x sð Þð Þ� �
dsþ σ s, x sð Þ½ �dz sð Þ, x t0ð Þ ¼ x0: ðA:16Þ

The solution to (A.16), denoted by x*(t) can be expressed as:

x* tð Þ ¼ x0 þ
ðt
t0

f s, x* sð Þ,ψ t0ð Þ*
1 s, x* sð Þ
 �

,ψ t0ð Þ*
2 s, x* sð Þ
 �h i

ds

þ
ðt
t0

σ s, x* sð Þ� �
dz sð Þ: ðA:17Þ
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We use X�
t to denote the set of realizable values of x*(t) at time t generated by

(A.17). The term x�t is used to denote an element in the set X�
t .

Define the maximized payoff at time t with current state x�t as a value function in
the form:

V t; x*t

 � ¼ max

u
Et0

ðT
t

gi s, x sð Þ, u sð Þ½ �exp �
ðs
t0

r yð Þdy
� �

ds

�
þ q x Tð Þð Þexp �

ðT
t0

r yð Þdy
� �

x tð Þ ¼ x*t
�� �

¼ Et0

ðT
t

g s, x* sð Þ,ϕ* s, x* sð Þ
 �� �
exp �

ðs
t0

r yð Þdy
� �

ds

�
þ q x* Tð Þ
 �

exp �
ðT
t0

r yð Þdy
� � �

;

satisfying the boundary condition

V T, x* Tð Þ
 � ¼ q x* Tð Þ
 �
exp �

ðT
t0

r yð Þdy
� �

:

One can express V(t, x�t ) as:

V t; x*t

 � ¼ max

u
Et0

ðT
t

gi s, x sð Þ, u sð Þ½ �exp �
ðs
t0

r yð Þdy
� �

ds

�
þ q x Tð Þð Þexp �

ðT
t0

r yð Þdy
� �

x tð Þ ¼ x*t
�� �

¼ max
u

Et0

ðtþΔt

t

gi s, x sð Þ, u sð Þ½ �exp �
ðs
t0

r yð Þdy
� �

ds

�
:

þ V tþ Δt, x*t þ Δx*t

 �

x tð Þ ¼ x*t

���� �
: ðA:18Þ

where

Δx*t ¼ f t, x*t ,ϕ
* t; x*t

 �� �

Δtþ σ t; x*t
� �

Δzt þ o Δtð Þ;

Δzt ¼ z tþ Δtð Þ � z tð Þ; and Et o Δtð Þ½ �=Δt ! 0 as Δt ! 0.

With Δt ! 0, applying Ito’s lemma Eq. (A.18) can be expressed as:

V t; x*t

 � ¼ max

u
Et0 gi t; x*t ; u

� �
exp �

ð t

t0

r yð Þdy
� �

Δtþ V t; x*t

 �þ Vt t; x

*
t


 �
Δt

�
þVxt t; x*t


 �
f t, x*t ,ϕ

* t; x*t

 �� �

Δtþ Vxt t; x*t

 �

σ t; x*t
� �

Δzt

þ 1

2

Xm
h, ζ¼1

Ωhζ t; xð ÞVxhxζ t; xð ÞΔtþ o Δtð Þ
)
: ðA:19Þ
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Dividing (A.19) throughout by Δt, with Δt ! 0; and taking expectation yield

�Vt t; x
*
t


 �� 1

2

Xm
h, ζ¼1

Ωhζ t; xð ÞVxhxζ t; xð Þ

¼ max
u

gi t; x*t ; u
� �

exp �
ðt
t0

r yð Þdy
� �

þ Vxt t; x*t

 �

f t, x*t ,ϕ
* t; x*t

 �� �� �

; ðA:20Þ

with boundary condition V T, x* Tð Þ
 � ¼ q x* Tð Þ
 �
exp �

ðT
t0

r yð Þdy
� �

:

Hence Theorem A.3 follows. ■

Infinite Horizon Stochastic Control

Consider the infinite-horizon stochastic control problem with a constant discount

rate:

max
u

Et0

ð1
t0

gi x sð Þ, u sð Þ½ �exp �r s� t0ð Þ½ �ds
� �

; ðA:21Þ

subject to the vector-valued stochastic differential equation:

dx sð Þ ¼ f x sð Þ, u sð Þ½ �dsþ σ x sð Þ½ �dz sð Þ, x t0ð Þ ¼ x0; ðA:22Þ

Let Ω x sð Þ½ � ¼ σ x sð Þ½ �σ x sð Þ½ �T denote the covariance matrix with its element in row

h and column ζ denoted by Ωhζ[x(s)].
Since s does not appear in g[x(s), u(s)] and the state dynamics explicitly, the

problem (A.21 and A.22) is an autonomous problem.

Consider the alternative problem which starts at time t2�
t0,1

�
with initial state

x tð Þ ¼ x:

max
u

Et

ð1
t

gi x sð Þ, u sð Þ½ �exp �r s� tð Þ½ �ds
� �

; ðA:23Þ

subject to the vector-valued stochastic differential equation:

dx sð Þ ¼ f x sð Þ, u sð Þ½ �dsþ σ x sð Þ½ �dz sð Þ, x tð Þ ¼ xt: ðA:24Þ

Theorem A.4 A set of controls u ¼ ϕ* xð Þ constitutes an optimal solution to the

infinite horizon stochastic control problem (A.21 and A.22) if there exists contin-

uously twice differentiable function W(x) defined on Rm ! R which satisfies the

following equation:

Technical Appendices 501



rW xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ xð ÞWxhxζ xð Þ ¼ max
u

g x; u½ � þWx xð Þf x; u½ �f g

¼ g x,ϕ* xð Þ� �þWx xð Þf x,ϕ* xð Þ� �� 
:

Proof The infinite-horizon autonomous problem (A.23 and A.24) is independent

of the choice of t and dependent only upon the state at the starting time, that is xt.
Define the value function to the problem (A.23 and A.24) by

V t; x*t

 � ¼ max

u
Et0

ð1
t

g x sð Þ, u sð Þ½ � exp �r s� t0ð Þ½ �ds x tð Þ ¼ x*t
��� �

;

where x�t is an element belonging to the set of realizable values along the optimal

state trajectory at time t. Moreover, we can write

V t;x*t

 �¼ exp �r t� t0ð Þ½ �max

u
Et0

ð1
t

g x sð Þ,u sð Þ½ � exp �r s� tð Þ½ �ds x tð Þ ¼ x*t
��� �

:

Since the problemmax
u

Et0

ð1
t

g x sð Þ, u sð Þ½ � exp �r s� tð Þ½ �ds x tð Þ ¼ x*t
��� �

depends

on the current state x�t only, we can write:

W x*t

 � ¼ max

u
Et0

ð1
t

g x sð Þ, u sð Þ½ � exp �r s� tð Þ½ �ds x tð Þ ¼ x*t
��� �

:

It follows that:

V t; x*t

 � ¼ exp �r t� t0ð Þ½ �W x*t


 �
Vt t; x

*
t


 � ¼ �rexp �r t� t0ð Þ½ �W x*t

 �

,

Vxt t; x*t

 � ¼ �rexp �r t� t0ð Þ½ �Wxt x*t


 �
, and

Vxtxt t; x*t

 � ¼ �rexp �r t� t0ð Þ½ �Wxtxt x*t


 �
: ðA:25Þ

Substituting the results from (A.25) into Theorem A.3 yields

rW xð Þ � 1

2

Xm
h, ζ¼1

Ωhζ xð ÞWxhxζ xð Þ ¼ max
u

g x; u½ � þWx xð Þf x; u½ �f g : ðA:26Þ

Since time is not explicitly involved (A.26), the derived control u will be a function
of x only. Hence Theorem A.4 follows. ■
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Discrete-Time Dynamic programming

Consider the general T� stage discrete-time dynamic programming problem with

initial state x0. The state space of the game is X2Rm and the state dynamics is

characterized by the difference equation:

xkþ1 ¼ f k xk; ukð Þ; ðA:27Þ
for k2 1; 2; � � �; Tf g�κ and x1 ¼ x0;

whereuk2U � Rm is the control vector of the decision-maker at stage k,xk2X is the

state. The payoff to be maximized is

XT
ζ¼1

gi
ζ xζ; uζð Þ 1

1þ r

� �ζ�1

þ qTþ1 xTþ1ð Þ 1

1þ r

� �T

; ðA:28Þ

where r is the discount rate, and qTþ1 xTþ1ð Þ is the terminal benefit that the decision-

maker will receive at stage T þ 1.

Invoking Bellman’s (1957) technique of dynamic programming, an optimal

solution can be characterized as follows:

Theorem A.5 A set of controls
�
u*k ¼ ψ k xð Þ, for k2 1; 2; � � �; Tf g provides an

optimal solution to the dynamic problem (A.27 and A.28) if there exist functions V

(k, x), for k2 1; 2; � � �; Tf g, such that the following recursive relations are satisfied:
V k; xð Þ ¼max

uk
gk x; ukð Þ þ V k þ 1, f k x; ukð Þ½ �f g

¼ gk x,ψ k xð Þ½ � þ V k þ 1, f k x,ψ k xð Þð Þ½ �, , for k2 1; 2; � � �; Tf g ;
ðA:29Þ

V T þ 1, xð Þ ¼ qTþ1 xð Þ: ðA:30Þ

Proof Invoking the technique of backward induction we first consider the last

operating stage, that is stage T. In that stage one has an optimization problem which

maximizes

gT x; uTð Þ þ qTþ1 xTþ1ð Þ ðA:31Þ

subject to

xTþ1 ¼ f T x; uTð Þ, x2X: ðA:32Þ
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Substituting (A.32) into (A.31), the problem (A.31 and A.32) becomes a single-

period maximization problem:

max
uT

gT x; uTð Þ þ qTþ1 f T x; uTð Þ½ �� 
: ðA:33Þ

Invoking V T þ 1, xð Þ ¼ q xð Þ in (A.30), the maximized payoff of problem (A.33)

can be expressed as:

V T; xð Þ ¼max
uT

gT x; uTð Þ þ V T þ 1, f T x; uTð Þ½ �f g
¼ gT x,ψT xð Þ½ � þ V

�
T þ 1, f T



x,ψT xð Þ�: ðA:34Þ

Now consider the problem in stage T � 1. The problem becomes

max
uT�1, uT

XT
ζ¼T�1

gζ xζ; uζð Þ þ q xTþ1ð Þ
( )

; ðA:35Þ

subject to xT ¼ f T�1 xT�1; uT�1ð Þ and xTþ1 ¼ f T xT ; uTð Þ, xT�1 ¼ x2X:
Invoking the result from the analysis in stage T, the stage T � 1 problem in

(A.35) can be expressed as:

max
uT�1

gT�1 x; uT�1ð Þ þ Vi T; xTð Þ�  ðA:36Þ
subject toxT ¼ f T�1 xT�1; uT�1ð Þ and xT�1 ¼ x2X: ðA:37Þ

Substituting (A.37) into (A.36), the problem in stage T � 1 becomes a single-stage

problem

max
uT�1

gT�1 x; uT�1ð Þ þ V T, f T�1 xT�1; uT�1ð Þ½ �f g: ðA:38Þ

The maximized payoff of the stage T � 1 problem can be expressed as:

V T � 1, xð Þ ¼max
uT�1

gT�1 x; uT�1ð Þ þ V T, f T�1 x; uT�1ð Þ½ �f g
¼ gT�1 x,ψT�1 xð Þ½ � þ V T, f T�1 x,ψT�1 xð Þð Þ½ �: ðA:39Þ

Proceeding recursively onwards for stage k2 T � 2, T � 1, � � �, 1f g; the stage

k problem can be expressed as a single-stage problem:

max
uk

gk x; ukð Þ þ V k þ 1, f k x; ukð Þ½ �f g; ðA:40Þ

where xk ¼ x2X.
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The maximized payoff of the stage k problem can be expressed as:

V k; xð Þ ¼max
uk

gk x; ukð Þ þ V k þ 1, f k x; ukð Þ½ �f g
¼ gk x,ψ k xð Þ½ � þ V

�
k þ 1, f k



x,ψ k xð Þ�: ðA:41aÞ

Hence Theorem A.5 follows. ■

Discrete-Time Stochastic Dynamic Programming

Consider the general T� stage discrete-time stochastic dynamic programming

problem with initial state x0. The state space of the game is X2Rm and the state

dynamics of the game is characterized by the stochastic difference equation:

xkþ1 ¼ f k xk; ukð Þ þ θk; ðA:41bÞ
for k2 1; 2; � � �; Tf g�κ and x1 ¼ x0;

where uk2Rϖ is the control vector of agent i at stage k, xk2X is the state, and θk is a
set of statistically independent random variables.

The expected payoff to be maximized is

Eθ1,θ2, ���,θT
XT
ζ¼1

gζ xζ; uζ½ � 1

1þ r

� �ζ�1
( )

; ðA:42Þ

where r is the discount rate and Eθ1,θ2, ���,θT is the expectation operation with respect

to the statistics of θ1, θ2, � � �, θT :
Invoking the technique of stochastic dynamic programming, an optimal solution

can be characterized as follows:

Theorem A.6 A set of controls
�
u*k ¼ ψk xð Þ; for k2 1; 2; � � �; Tf g provides an

optimal solution to the stochastic dynamic problem (A.41 and A.42) if there exist

functions V(k, x), for k2 1; 2; � � �; Tf g; such that the following recursive relations

are satisfied:

V k; xð Þ ¼ max
uk

Eθk gk x; ukð Þ þ V k þ 1, f k x; ukð Þ þ θk½ �f g
¼ Eθk gk x,ψ k xð Þ½ � þ V k þ 1, f k x,ψ k xð Þð Þ þ θk½ �f g,

for k2 1; 2; � � �; Tf g; ðA:43Þ
V T þ 1, xð Þ ¼ q xð Þ: ðA:44Þ

Proof We first consider the last stage of operation, that is stage T. One has an

optimization problem which maximizes
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EθT gT x; uTð Þ þ qTþ1 xTþ1ð Þ�  ðA:45Þ

subject to

xTþ1 ¼ f T x; uTð Þ þ θT , x2X: ðA:46Þ

Substituting (A.46) into (A.45), the problem (A.45 and A.46) becomes a single-

period stochastic maximization problem:

max
uT

EθT gT x; uTð Þ þ qTþ1 f T x; uTð Þ þ θT½ �� 
: ðA:47Þ

Invoking V T þ 1, xð Þ ¼ q xð Þ in (A.44), the maximized expected payoff of problem

(A.47) can be expressed as:

V T; xð Þ ¼max
uT

EθT gT x; uTð Þ þ V T þ 1, f T x; uTð Þ þ θT½ �f g
¼ EθT gT x,ψT xð Þ½ � þ V T þ 1, f T x,ψT xð Þð Þ þ θT½ �f g: ðA:48Þ

Now consider the problem in stage T � 1. The problem becomes

max
uT�1, uT

EθT�1,θT

XT
ζ¼T�1

gζ xζ; uζð Þ þ qTþ1 xTþ1ð Þ
( )

; ðA:49Þ

subject to

xT ¼ f T�1 xT�1; uT�1ð Þ þ θT�1 and xTþ1 ¼ f T xT ; uTð Þ þ θT , xT�1 ¼ x2X:

Invoking the result from the analysis in stage T,, the stage T � 1 problem in

(A.49) can be expressed as:

max
uT�1

EθT�1
gT�1 x; uT�1ð Þ þ Vi T; xTð Þ�  ðA:50Þ

subject to xT ¼ f T�1 xT�1; uT�1ð Þ þ θT�1 and xT�1 ¼ x2X: ðA:51Þ

Substituting (A.51) into (A.50), the problem in stage T � 1 becomes a single-stage

problem

max
uT�1

EθT�1
gT�1 x; uT�1ð Þ þ V T, f T�1 xT�1; uT�1ð Þ þ θT�1½ �f g: ðA:52Þ

The maximized expected payoff of the stage T � 1 problem can be expressed as:

V T � 1, xð Þ ¼max
uT�1

EθT�1
gT�1 x; uT�1ð Þ þ V T, f T�1 x; uT�1ð Þ þ θT�1½ �f g

¼ EθT�1
gT�1 x,ψT�1 xð Þ½ � þ V T, f T�1 x,ψT�1 xð Þð Þ þ θT�1½ �f g: ðA:53Þ
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Proceeding recursively onwards for stage k2 T � 2, T � 1, � � �, 1f g; the stage

k problem can be expressed as a single-stage problem:

max
uk

Eθk gk x; ukð Þ þ V k þ 1, f k x; ukð Þ þ θk½ �f ; ðA:54Þ

where xk ¼ x2X.
The maximized expected payoff of the stage k problem can be expressed as:

V k; xð Þ ¼ max
uk

Eθk gk x; ukð Þ þ V k þ 1, f k x; ukð Þ þ θk½ �f g
¼ Eθk gk x,ψ k xð Þ½ � þ V k þ 1, f k x,ψ k xð Þð Þ þ θk½ �f g: ðA:55Þ

Hence Theorem A.6 follows. ■
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