
A Secure Range Query Processing
Algorithm for the Encrypted Database
on the Cloud

Hyeong-Il Kim, Munchul Choi, Hyeong-Jin Kim and Jae-Woo Chang

Abstract Secure range query processing algorithms have been studied as the range
query can be used as a baseline technique in various fields. However, when pro-
cessing a range query, the existing methods fail to hide the data access patterns
which can be used to derive the actual data items and the private information of a
querying issuer. The problem is that the data access patterns can be exposed even
though the data and query are encrypted. So, in this paper we propose a new range
query processing algorithm on the encrypted database. Our method conceals the
data access patterns while supporting efficient query processing by using our pro-
posed encrypted index search scheme. Through the performance analysis, we show
that the proposed range query processing algorithm can efficiently process a query
while hiding the data access patterns.

Keywords Database outsourcing � Database encryption � Encrypted index struc-
ture � Secure range query processing � Data access patterns

1 Introduction

With the development of cloud computing, a data owner can outsource his/her
database and their managements to a cloud. By outsourcing the database, the data
owner can flexibly utilize the resource of the cloud, thus reducing the management

H.-I. Kim � M. Choi � H.-J. Kim � J.-W. Chang (&)
Department of Computer Engineering, Jeonbuk National University,
Jeonju, South Korea
e-mail: jwchang@jbnu.ac.kr

H.-I. Kim
e-mail: melipion@jbnu.ac.kr

M. Choi
e-mail: oopsmun@jbnu.ac.kr

H.-J. Kim
e-mail: yeon_hui4@jbnu.ac.kr

© Springer Science+Business Media Singapore 2016
J.J. (Jong Hyuk) Park et al. (eds.), Advanced Multimedia and Ubiquitous
Engineering, Lecture Notes in Electrical Engineering 393,
DOI 10.1007/978-981-10-1536-6_14

101



costs. The cloud not only stores the database, but also provides an authorized user
with querying services on the outsourced database. However, if the original data-
base is outsourced to the cloud, the cloud or an attacker can abuse the private
information stored in the database. For example, if a real estate agent outsources
his/her original database to the cloud, the cloud or an attacker can sell the property
information to the other agents. In addition, the private information of a user can be
revealed to the attacker. For example, if a user sends a query with his/her location
information to use location-based services, the attacker can find places where the
user frequently visit.

Meanwhile, a range query, one of the most typical query types, is widely used as
a baseline technique in many fields. The range query finds all the data inside a given
query range. However, some privacy threat can occur when issuing the range query.
This is because a range information is closely related to the interest of a user.

Therefore, researches on the range query processing algorithms which consider
the data privacy have been performed [1–5]. However, all the existing works fail to
hide the data access patterns during the query processing. The data access patterns
are the good source to derive not only the actual data items, but also the private
information of a querying issuer. This is the critical problem because the data access
patterns can be exposed even though the data and query are encrypted [6]. To the
best of knowledge, a scheme proposed in [7] is the only work that hides the data
access patterns over the encrypted database. However, the scheme only supports
kNN query processing and requires high computation cost. To solve the problem, in
this paper we propose a new range query processing algorithm on the encrypted
database. Our method conceals the data access patterns while supporting efficient
query processing by using our proposed encrypted index search scheme.

The rest of the paper is organized as follows. Section 2 introduces the related
work and Sect. 3 presents the overall system architecture and secure protocols. In
Sect. 4, we propose our secure range query processing algorithm based on the
encrypted index. The performance analysis of our scheme is presented in Sect. 5.
Finally, we conclude the paper with some future research directions in Sect. 6.

2 Related Work

Yiu et al. [1] proposed the cryptographic transformation (CRT) method which
utilizes encrypted R-tree index. However, CRT cannot preserve the data access
pattern as a user hierarchically requests the required R-tree nodes to the cloud.
A scheme proposed by Hore et al. [2] partitions the data into a set of buckets and
builds indices for buckets. However, a data owner should store and search the
indices locally. In addition, the result of schemes in [1, 2] usually contains the
false-positives. Wang et al. [3] proposed a scheme which utilizes the encrypted
version of R-tree. However, the scheme has a shortcoming that a result contains
many false-positives. In addition, the data access patterns are revealed because the
cloud returns a set of nodes which intersect the query range. Wang et al. [4]

102 H.-I. Kim et al.



proposed an encrypted R-tree based range query processing scheme. However, the
data access patterns are revealed to a cloud because all the identifiers of the data that
satisfy the query are returned by the cloud. Most recently, Kim et al. [5] proposed a
range query processing scheme using the Hilbert-curve order based index.
However, the scheme has a problem that a user is in charge of index traversal
during the query processing. In addition, the scheme leaks the data access pattern
and the query result may contain false-positives.

Next, we briefly review the Paillier cryptosystem [8]. The Paillier cryptosystem
is an additive homomorphic and probabilistic asymmetric encryption scheme for
public key cryptography. The public key pk for encryption is given by (N, g), where
N is a product of two large prime numbers p and q, and g is in Z�

N2 . The secret key
sk for decryption is given by (p, q). Let E() denote the encryption function and D()
denote the decryption function. The Paillier crypto system has the following
properties. (i) The product of two ciphertexts E(m1) and E(m2) results in the
encryption of the sum of their plaintexts m1 and m2; E(m1 + m2) = E(m1)*E(m2)
mod N2. (ii) The bth power of ciphertext E(m1) results in the encryption of the
product of b and m1; E(m1*b) = E(m1)

b mod N2. (iii) Encrypting the same plain-
texts with the same public key results in distinct ciphertexts (aka ‘semantic
security’).

3 System Architecture and Secure Protocols

The system consists of four components: data owner (DO), authorized user (AU),
and two clouds (CA and CB, respectively). The DO owns the original database (T) of
n records. A record ti (1 ≤ i ≤ n) consists of m attributes and jth attribute value of ti
is denoted by ti,j. To provide the indexing on T, the DO partitions T by using
kd-tree. If we retrieve the tree structure in hierarchical manner, the access pattern
can be disclosed. So, we only consider the leaf nodes of the kd-tree and all the leaf
nodes are retrieved once during the query processing. Let h denote the level of the
constructed kd-tree and F be the fanout of each leaf node. The total number of leaf
nodes is 2h−1. From now on, a node means a leaf node. Each node is represented as
the lower bound lbz,j and the upper bound ubz,j for 1 ≤ z ≤ 2h−1 and
1 ≤ j ≤ m. Each node stores the identifiers (id) of data being located inside the node
region.

To preserve the data privacy, the DO encrypts T attribute-wise using the public
key (pk) of the Paillier cryptosystem [8] before outsourcing the database. So, the
DO generates E(ti,j) for 1 ≤ i ≤ n and 1 ≤ j ≤ m. The DO also encrypts the kd-tree
nodes so as to support efficient query processing over the encrypted database. The
lb and the ub of each node are encrypted attribute-wise, so E(lbz,j) and E(ubz,j) are
generated for 1 ≤ z ≤ 2h−1 and 1 ≤ j ≤ m. In the system, we assume that the
clouds, CA and CB, act as semi-honest adversaries. This is because protocols under
the semi-honest adversaries are efficient in practice and can be used to design

A Secure Range Query Processing Algorithm … 103



protocols against malicious adversaries. So, the CA and CB correctly perform the
given protocols and do not exchange unpermitted data. However, an adversary may
try to obtain additional information from the intermediate data during executing
his/her own protocol.

To support range query processing over the encrypted database, a secure mul-
tiparty computation (SMC) is required between CA and CB. For this, the DO out-
sources the encrypted database and its encrypted index to the CA with pk while the
sk is sent to the CB. The encrypted index includes the region information of each
node in cipher-text and the ids of data that are located inside the node in plain-text.
The DO also sends pk to AUs to enable them to encrypt a query. At query time, an
AU first encrypts a query attribute-wise. Then, the AU sends E(q.lbj) and E(q.ubj)
for 1 ≤ j ≤ m to CA. CA processes the query with the help of CB and returns a query
result to the AU.

As an example, assume that an AU has 8 data in two-dimensional space (e.g.,
x-axis and y-axis) as depicted in Fig. 1. The data are partitioned into 4 nodes for a
kd-tree. To outsource the database, the DO encrypts each data and the information
of each node attribute-wise. For example, t1 is encrypted as E(t1) = {E(2), E(1)}.

Meanwhile, our range query processing algorithm is constructed using several
secure protocols. We describe the secure protocols that are used in our range query
processing algorithm. All the protocols except SBN protocol are performed through
the SMC technique between CA and CB. SBN protocol can be executed by CA

alone. Due to the space limitation, we first briefly introduce two existing secure
protocols that we adopt from [7, 9]. SM (Secure Multiplication) protocol [7]
computes the encryption of a × b, i.e., E(a × b), when two encrypted data E(a) and
E(b) are given as inputs. SBD (Secure Bit-Decomposition) protocol [9] computes
the encryptions of binary representation of the encrypted input E(a). The output is
[a] = < E(a1), …, E(al) > where a1 and al denote the most and least significant bits
of a, respectively. We use symbol [a] to denote the encryptions of binary
representation.

Fig. 1 An example in
two-dimensional space

104 H.-I. Kim et al.



Next, we propose our new secure protocols. First, SBN (Secure Bit-Not) pro-
tocol performs the bit-not operation when an encrypted bit E(a) is given as input.
The output E(*a) is computed by E(a)N−1 × E(1). Here, “−1” is equivalent to
“N−1” under ZN.

Second, SCMP (Secure Compare) protocol returns E(1) if u ≤ v, E(0) otherwise,
when [u] and [v] are given as inputs. We devise SCMP by modifying SMIN [7]
protocol which outputs [min] between two inputs [u] and [v]. The variables gen-
erated during SMIN can be categorized into two folds. One set of the variables
include hints about what the minimum value is. Another set of the variables is used
to securely extract the minimum value. Because we only need the information about
whether u is smaller or not, we only compute the former (e.g., W, G, H, Φ, L, L′).
The goal of designing SCMP is to make the returned value from CB be exactly
opposite for the same inputs, based on the functionality selected by CA.

The overall procedure of SCMP is as follows. (i) CA appends E(0) to the least
significant bits of [u] and E(1) to the least significant bits of [v]. By doing so, SCMP
makes u smaller than v only when two values are the same. (ii) CA randomly
chooses one functionality between F0:u > v and F1:v > u. The selected function-
ality is oblivious to CB. Then, CA computes E(ui × vi) using SM and Wi, depending
on the selected functionality. In particular, if F0:u > v is selected, CA computes
Wi = E(ui) × E(ui × vi)

N−1. If F1:v > u is selected, CA computes Wi = E(vi) ×
E(vi × ui)

N−1. For F0:u > v, Wi = E(1) when ui > vi, and Wi = E(0) otherwise.
Similarly, for F1:v > u, Wi = E(1) when vi > ui, and Wi = E(0) otherwise. (iii) CA

performs bit-xor between E(ui) and E(vi) and stores the result into Gi. CA computes
Hi = (Hi−1)

ri × Gi and Φi = E(−1) × Hi where H0 = E(0). Here, ri is a random
number in ZN. Assume that j is the index of the first appearance of E(1) in Gi.
j means the first position where the minimum value between u and v can be
determined. (iv) CA computes Li = Wi × Φi

ri where Li involves the information
about which value is smaller between u and v at j. CA generates L′ by permuting
L by using a random permutation function π1 and sends L′ to CB. (v) CB decrypts L′
attribute-wise and checks whether there exists 0 in Li′ for 1 ≤ i ≤ l. If so, CB sets α
as 1, and 0 otherwise. After encrypting α, CB sends E(α) to CA. By doing so, the
returned values by CB are exactly opposite with the selected functionalities for the
same input which coincides with the goal of SCMP protocol. (vi) CA performs
E(α) = SBN(E(α)) only when the selected functionality is F0:u > v and returns the
E(α). So, the final E(α) is E(1) when u ≤ v, regardless of the selected functionality.
Note that the only information decrypted during SCMP is L′ which is seen by CB.
However, CB cannot obtain an additional information from D(L′) because the
selected functionality is oblivious to CB.

Third, SRO (Secure Range Overlapping) protocol returns E(1) when range1
overlaps range2, E(0) otherwise, when the encryptions of binary representation of
two ranges [range1] and [range2] are given as inputs. Assuming that both range1
and range2 consist of [lbj] and [ubj], where 1 ≤ j ≤ m, the two ranges overlap only
if two following conditions are satisfied; (i) E(range1.lbj) ≤ E(range2.ubj) for
1 ≤ j ≤ m, (ii) E(range2.lbi) ≤ E(range1.ubj) for 1 ≤ j ≤ m. SRO determines the
conditions by using our SCMP. The overall procedure of SRO is as follows.

A Secure Range Query Processing Algorithm … 105



(i) CA initializes E(α) as E(1). (ii) CA obtains E(α′) by performing SCMP([range1.
lbj], [range2.ubj]) and updates E(α) by executing SM(E(α), E(α′)). CA repeats this
step for 1 ≤ j ≤ m. Similarly, CA computes E(α′) by performing SCMP([range2.lbj],
[range1.ubj]) and updates E(α) by executing SM(E(α), E(α′)) for all attribute values.
Only when all conditions are satisfied, the value of E(α) remains E(1). (iii) CB

returns the final E(α). Note that no decryption is performed during SRO except
performing SCMP and SM protocols.

Finally, SPE (Secure Point Enclosure) protocol returns E(1) when p is inside the
range or on a boundary of the range, E(0) otherwise, when the encryptions of binary
representation of a point [p] and [range] are given as inputs. The overall procedure
of SPE is identical to SRO. This is because if a low bound and an upper bound of a
range is the same, the range can be considered as a point. However, we also define
SPE protocol to make the relations between inputs clear.

4 Secure Range Query Processing Algorithm

In this section, we present our secure range query processing algorithm (SRangeI)
using the kd-tree on the encrypted database. SRangeI consists of two steps;
encrypted kd-tree search step and result retrieval step.

First, the procedure of the encrypted kd-tree search step is as follows.

(i) CA computes [q.lbj] and [q.ubj] for 1 ≤ j ≤ m by using the SBD. CA also
computes [nodez.lbj] and [nodez.ubj] for 1 ≤ z ≤ numnode and 1 ≤ j ≤ m by
using SBD where numnode is the total number of kd-tree leaf nodes. Then, CA

securely finds nodes which overlap the query range by executing
E(αz) ← SRO([q], [nodez]) for 1 ≤ z ≤ numnode. Note that the nodes with
E(αz) = E(1) overlaps the query range, but both CA and CB cannot know
whether the value of each E(αz) is E(1).

(ii) CA generates E(α′) by permuting E(α) using a random permutation function π
and sends E(α′) to CB. For example, SRO returns E(α) = {E(0), E(0), E(1),
E(1)} in Fig. 1 as the query range overlaps the node3 and node4. Assuming
that π permutes data in reverse way, CA sends the E(α′) = {E(1), E(1), E(0),
E(0)} to CB.

(iii) Upon receiving the E(α′), CB obtains α′ by decrypting the E(α′) and counts
the number of α′ with the value of 1. The number of α′ = 1 is stored into c.
So, c means the number of nodes that overlaps the query range.

(iv) CB creates c number of node groups (e.g., NG). CB assigns to each NG a node
with α′ = 1 and numnode/c−1 nodes with α′ = 0. Then, CB computes NG′ by
randomly shuffling the ids of nodes in each NG and sends NG′ to CA. For
example, CB can obtain α′ = {1, 1, 0, 0}. However, CB cannot correctly point
out ids of the nodes overlapping the query range because the values in α′
were permutated by CA. As two node groups are required, CB assigns node1
and node2 to NG1 and NG2, respectively. In this example, numnode/c−1 is

106 H.-I. Kim et al.



calculated as 1 because numnode = 4 and c = 2. So, CB randomly assigns a
node to each node group. Assume that CB assigns node3 to NG1 and node4 to
NG2. So, NG1 = {1, 3} and NG2 = {2, 4}. Then, CB randomly shuffles the
ids of the nodes in each NG. The result can be like NG1′ = {1, 3} and
NG2′ = {4, 2}.

(v) CA obtains NG
* by permuting the ids of nodes using π−1 in each NG′. In each

NG*, there exists only one node overlapping the query range. However, CA

cannot know the correct id of the node because the ids of the nodes in NG*

are shuffled by CB. Sixth, CA gets access to one datum in each node (e.g.,
nodez) for each NG* and performs E(t′i,j) ← SM(nodez.ts,j, E(αz)) for
1 ≤ s ≤ F and 1 ≤ j ≤ m. Here, αz is the outputs of SPE, corresponding to
the nodez. If a node has the less number of data than F, it performs SM by
using E(max), instead of using nodez.ts,j, where E(max) is the largest value in
the domain. When CA accesses one datum from every node in a NG*, CA

performs a homomorphic addition such as E(candcnt,j) ←
Qnum

i¼1 Eðt0i;jÞ,
where num means the total number of nodes in the selected NG*. By doing
so, a datum in the node overlapping the query range is securely extracted
without revealing the data access patterns. By repeating these steps, all the
data in the nodes are safely stored into the E(candcnt,j) where cnt means the
total number of data extracted during the index search.

As an example, CA obtains NG1
* = {2, 4} and NG2

* = {1, 3} by permuting
NG1′ = {3, 1} and NG2′ = {4, 2} using π−1. Then, CA accesses E(t3) in node2, E(t7)
in node4 for NG1

*. The results of SM using E(t3), e.g., E(t′1), are E(0) for every
attribute because the E(α) value of node2 is E(0). However, the results of SM using
E(t7), e.g., E(t′2), become E(7) and E(7) for x and y dimension, respectively. So, the
results of the attribute-wise homomorphic addition of E(t′1) and E(t′2) are E(7) and
E(7) for x and y dimension, respectively. Thus, one datum E(t7) in node4 is securely
extracted into E(cand1). Similarly, values of E(t8) can be securely extracted into
E(cand2) by using E(t4) and E(t8). In the same way, for NG2

*, all the data in the
node3 (e.g., E(t5) and E(t6)) are securely extracted into E(cand3) and E(cand4),
respectively.

Second, the procedure of the result retrieval step is as follows. (i) CA computes
{([candi,j] | 1 ≤ i ≤ cnt, 1 ≤ j ≤ m} by using the SBD. Here, cnt is equal to
F × (the number of node groups).

(ii) CA securely finds data inside the query range by executing E(αi) ← SPE
([candi], [q]) for 1 ≤ i ≤ cnt. Note that the data with E(αi) = E(1) are included in
the query range. However, both CA and CB cannot know whether the value of each
E(αi) is E(1). For example, when E(cand) = {E(t7), E(t8), E(t5), E(t6)} is given from
the step 1, SPE returns E(α) = E(1) for E(t7) and E(t6), which are located inside the
query range. The data with E(α) = E(1) should be sent to the user. To minimize the
computation cost at the user side, it is required to send decrypted results. However,
if the cloud decrypts the results, the actual content of the data are revealed to the
cloud.

A Secure Range Query Processing Algorithm … 107



So, (iii) CA computes E(γi,j) = E(resulti) × E(ri,j) for 1 ≤ i ≤ cnt and 1 ≤ j ≤ m
by generating a random value ri,j. CA generates E(α′), E(γ′), and r′ by permuting E(α),
E(γ), and r, using a random permutation function π1. Then, CA sends E(α′) and E(γ′)
to CB, and r′ to AU, respectively. iv) CB decrypts E(αi′) and E(γ′i,j) for 1 ≤ i ≤ cnt
and for 1 ≤ j ≤ m. Then, CB sends α′ and γ′ corresponding to the α′ = 1 to AU.
Finally, AU computes γ′i,j−r′i,j for 1 ≤ i ≤ cnt and 1 ≤ j ≤ m only for the corre-
sponding αi = 1.

5 Performance Analysis

There is no existing range query processing algorithm that hides the data access
patterns. So, in this section, we compare our SRangeI with a baseline algorithm
SRangeB which only performs result retrieval step by considering all the data
without using an index. We do the performance analysis of both schemes in terms
of query processing time with different parameters. We used the Paillier cryp-
tosystem to encrypt a database for both schemes. We implemented both schemes by
using C++. Experiments were performed on a Linux machine with an Intel Xeon
E3-1220v3 4-Core 3.10 GHz and 32 GB RAM running Ubuntu 14.04.2. To
examine the performance under various parameters, we randomly generated syn-
thetic datasets by following [7]. We set the size of the range as 0.1 which means the
relational portion of the range compared to the total domain size (i.e., l). In addition,
we set the domain size (l) as 12 and the encryption key size (K) as 1024.

Figure 2 shows the performance of SRangeI for varying the level of kd-tree.
Figure 2a shows the performance of SRangeI for varying h and n. Overall, as the
n becomes larger, the query processing time increases. Meanwhile, when the n in-
creases, the h that shows the best performance becomes larger. For all cases, when
the h is increased, the query processing time decreases for the smaller h while the
query processing time increases for the larger h. Figure 2b shows the performance
of SRangeI for varying h and m. As the m becomes larger, the query processing
time linearly increases. This is because all the protocols including SRO and SPE
should process additional data as the m increases. We set the h as 7 in the following

Fig. 2 Performance of SRangeI for varying h. a m = 6, K = 1024, b n = 6 k, K = 1024

108 H.-I. Kim et al.



performance evaluation because SRangeI shows good performance when h = 7 in
our parameter settings.

Figure 3a shows the performance of both SRangeI and SRangeB schemes
varying the n. Overall, as the n becomes larger, the query processing time linearly
increases for both schemes. Overall, SRangeI shows much better performance than
SRangeB because SRangeI filters irrelevant data by using the index. On average,
SRangeI shows about 25 times better performance than SRangeB. Meanwhile,
Fig. 3b shows the performance of both schemes varying the m. Overall, as the
m becomes larger, the query processing time linearly increases for both schemes.
However, on average, SRangeI shows about 27 times better performance than
SRangeB.

6 Conclusion

With the popularity of the outsourced databases, researches on the range query
processing methods over the encrypted database have been actively performed.
They can preserve the data privacy and the query privacy, but there is no work that
hides the data access patterns during the query processing. To solve the problem,
we proposed a new secure range query processing algorithm on the encrypted
database. Our method conceals the data access patterns while supporting efficient
query processing by using our proposed encrypted index search scheme. We
showed from our performance analysis that our algorithm achieves efficient query
processing performance while hiding the data access patterns. As a future work, we
plan to expand our work to support other query types, such as Top-k and skyline
queries.

Acknowledgments This work was supported by the Human Resource Training Program for
Regional Innovation and Creativity through the Ministry of Education and National Research
Foundation of Korea (NRF-2014H1C1A1065816)

Fig. 3 Comparison of SRangeI and SRangeB. a m = 6, K = 1024, b n = 6 k, K = 1024

A Secure Range Query Processing Algorithm … 109



References

1. Yiu ML, Ghinita G, Jensen CS, Kalnis P (2010) Enabling search services on outsourced
private spatial data. VLDB J 19(3):363–384

2. Hore B, Mehrotra S, Canim M, Kantarcioglu M (2012) Secure multidimensional range queries
over outsourced data. VLDB J 21(3):333–358

3. Wang P, Ravishankar CV (2013) Secure and efficient range queries on outsourced databases
using R-trees, ICDE, pp 314–325

4. Wang B, Hou Y, Li M, Wang H, Li H (2014) Maple: scalable multi-dimensional range search
over encrypted cloud data with tree-based index, ASIACCS, pp 111–122

5. Kim H, Hong S, Chang J (2015) Hilbert curve-based cryptographic transformation scheme for
spatial query processing on outsourced private data. Data Knowl Eng. doi:10.1016/j.datak.
2015.05.002

6. Vimercati S, Foresti S, Samarati P (2012) Managing and accessing data in the cloud: privacy
risks and approaches, CRiSIS, pp 1–9

7. Elmehdwi Y, Samanthula BK, Jiang W (2014) Secure k-nearest neighbor query over
encrypted data in outsourced environments, ICDE, pp 664–675

8. Paillier P (1999) Public-key cryptosystems based on composite degree residuosity classes,
EUROCRYPT, pp 223–238

9. Samanthula BK, Chun H, Jiang W (2013) An efficient and probabilistic secure
bit-decomposition, ASIACCS, pp 541–546

10. Carmit H, Lindell Y (2010) Efficient secure two-party protocols: techniques and constructions,
Springer Science & Business Media

110 H.-I. Kim et al.

http://dx.doi.org/10.1016/j.datak.2015.05.002
http://dx.doi.org/10.1016/j.datak.2015.05.002

	14 A Secure Range Query Processing Algorithm for the Encrypted Database on the Cloud
	Abstract
	1 Introduction
	2 Related Work
	3 System Architecture and Secure Protocols
	4 Secure Range Query Processing Algorithm
	5 Performance Analysis
	6 Conclusion
	Acknowledgments
	References


