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Preface

It is the 9th International Conference on Nonlinear Economic Dynamics
(NED2015) that was held in Tokyo, Japan, in June of 2015. The first NED con-
ference started in Odense, Denmark in the year of 2002, which was organized by a
small group of scholars having strong desires and interests of applying nonlinear
dynamic methods to reveal “new faces” of the traditional dynamic studies of
economics and finance. Since then, the NED conference continued in Odense again
(Denmark, 2003), Tokyo (Japan, 2004), Urbino (Italy, 2005), Bielefeld (Germany,
2007), Jönköping (Sweden, 2009), Cartagena (Spain, 2011) and Siena (Italy, 2013).
Meanwhile at the Jönköping conference, the Nonlinear Economic Dynamic Society
was officially founded and has supported the NED conferences since then. It was
already announced that the next NED conference will be held at James Madison
University in Harrisonburg, USA, 2017.

Following the tradition of the series of conferences, NED2015 aims at bringing
together the young and senior researchers who are interested in pursuing research in
economic dynamics in a broader sense. The conference was held at Chuo
University in Tokyo during June 25–27, 2015 and attracted participants from
Australia, Austria, China, Germany, Hungary, Italy, the Netherlands, Singapore,
Slovakia, Sweden, Ukraine, the US, and Japan. The talks concerned the recent
results of the participants ranging from the pure theory of nonlinear economic
dynamics to its applications and practices in various fields of optimization, game
theory, finance, regional science, behavioral economics, evolutionary economics,
and so forth.

This book is edited by Akio Matsumoto, Ferenc Szidarovszky and Toichoro
Asada and consists of three parts including selected 14 papers contributed to
NED2015, each of which is refereed and revised. Part I considers the method-
ological and philosophical implications of the nonlinear dynamics to economics,
Part II presents nonlinear models of microeconomic dynamics and discusses the
techniques for analyzing the actual economic data, and Part III presents nonlinear
models of macroeconomic dynamics. The papers in the book consider economic
dynamics from a wide variety of perspective ranging from the monopoly and

v



duopoly in microeconomics to the traditional Keyesian, Kaldorian, and Kaleckian
models in macroeconomics. Some papers deepen understandings of the effect
caused by delays that inevitably occur in actual economic activities in a real
economy while some other papers consider the policy implications in nonlinear
dynamic framework.

The conference was financed through various supports: Graduate School of
Economics of Chuo University with the MEXT-supported Program for the Strategic
Research Foundation at Private University 2013–2017, the Japan Society for the
Promotion of Science (Grant-in-Aid for Scientific Research (A) 26242028 and
(C) 24530202, 25380238, 26380316) and Chuo University including Institute of
Economics Research, International Center and Joint Research Grants. For the
preparation of the conference, the Scientific Committee and the Local Organization
Committee have been organized. The efforts provided by the members toward the
conference are much appreciated. Very special thanks are due to Ayako Kodama,
the Secretary of the LOC, without whose efforts the conference would not have
been possible. Additional thanks are due to Masato Nakao and Takayuki Mizuno,
assistants of the LOC. Finally, needless to say, not least, big thanks are also due to
all the participants of the conference. We really wish this book would contribute to
the development of nonlinear economic dynamics and its applications.

Tokyo Akio Matsumoto
June 2016 Ferenc Szidarovszky

Toichiro Asada

vi Preface



Contents

Part I Methodological Issue

Simonian Bounded Rationality and Complex
Behavioral Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
J. Barkley Rosser Jr. and Marina V. Rosser

An Alternative Proof of the Theorem of Woodford on the Existence
of a Sunspot Equilibrium in a Continuous-Time Model . . . . . . . . . . . . 23
Kazuo Nishimura and Tadashi Shigoka

Part II Microeconomics Models

Hotelling Duopoly Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Tönu Puu

Learning in Monopolies with Delayed Price Information . . . . . . . . . . . 57
Akio Matsumoto and Ferenc Szidarovszky

Different Modelling Approaches for Time Lags in a Monopoly . . . . . . . 81
Luca Gori, Luca Guerrini and Mauro Sodini

Dynamic Oligopoly Models with Production Adjustment
and Investment Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Akio Matsumoto, Ugo Merlone and Ferenc Szidarovszky

A Stylized Model for Long-Run Index Return Dynamics . . . . . . . . . . . 111
Natascia Angelini, Giacomo Bormetti, Stefano Marmi
and Franco Nardini

A Non-Walrasian Microeconomic Foundation of the “Profit Principle”
of Investment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Hiroki Murakami

vii

http://dx.doi.org/10.1007/978-981-10-1521-2_1
http://dx.doi.org/10.1007/978-981-10-1521-2_1
http://dx.doi.org/10.1007/978-981-10-1521-2_2
http://dx.doi.org/10.1007/978-981-10-1521-2_2
http://dx.doi.org/10.1007/978-981-10-1521-2_3
http://dx.doi.org/10.1007/978-981-10-1521-2_4
http://dx.doi.org/10.1007/978-981-10-1521-2_5
http://dx.doi.org/10.1007/978-981-10-1521-2_6
http://dx.doi.org/10.1007/978-981-10-1521-2_6
http://dx.doi.org/10.1007/978-981-10-1521-2_7
http://dx.doi.org/10.1007/978-981-10-1521-2_8
http://dx.doi.org/10.1007/978-981-10-1521-2_8


Part III Macroeconomic Models

The Stability of Normal Equilibrium Point and the Existence
of Limit Cycles in a Simple Keynesian Macrodynamic Model
of Monetary Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Toichiro Asada, Michal Demetrian and Rudolf Zimka

Pathology in the Market Economy: Self-fulfilling Process
to Chronic Slump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Akitaka Dohtani

Delay Kaldor–Kalecki Model Revisited . . . . . . . . . . . . . . . . . . . . . . . . 191
Akio Matsumoto and Ferenc Szidarovszky

Two Time Lags in the Public Sector: Macroeconomic Stability
and Complex Behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Eiji Tsuzuki

Liquidity Shock, Animal Spirits and Bank Runs . . . . . . . . . . . . . . . . . 225
Huang Weihong and Huang Qiao

A Mathematical Note on Stabilization Policy and Dynamic
Inefficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Masahiro Yabuta

viii Contents

http://dx.doi.org/10.1007/978-981-10-1521-2_9
http://dx.doi.org/10.1007/978-981-10-1521-2_9
http://dx.doi.org/10.1007/978-981-10-1521-2_9
http://dx.doi.org/10.1007/978-981-10-1521-2_10
http://dx.doi.org/10.1007/978-981-10-1521-2_10
http://dx.doi.org/10.1007/978-981-10-1521-2_11
http://dx.doi.org/10.1007/978-981-10-1521-2_12
http://dx.doi.org/10.1007/978-981-10-1521-2_12
http://dx.doi.org/10.1007/978-981-10-1521-2_13
http://dx.doi.org/10.1007/978-981-10-1521-2_14
http://dx.doi.org/10.1007/978-981-10-1521-2_14


Part I
Methodological Issue



Simonian Bounded Rationality and Complex
Behavioral Economics

J. Barkley Rosser Jr. and Marina V. Rosser

Abstract This chapter will consider the importance of Herbert A. Simon as both
the discoverer of the idea of bounded rationality and its role in modern behavioral
economics and as one of the early developers of complexity theory, especially its
hierarchical and computational forms. Bounded rationality was essentially derived
from Simon’s view of the impossibility of full rationality on the part of economic
agents.Modern complexity theory through such approaches as agent-basedmodeling
offers an approach to understanding behavioral economics by allowing for specific
behavioral responses to be assigned to agents who interact within this context, even
without full rationality. Other parts of modern complexity theory will also be con-
sidered in terms of their relationships with behavioral economics. Fundamentally,
complexity provides an ultimate foundation for bounded rationality and hence the
need to use behavioral economics.

Keywords Bounded rationality · Complexity · Behavioral economics

1 Introduction

It was Herbert A. Simon who developed the idea of bounded rationality from his ear-
liest works (Simon 1947, 1955a, 1957), the basis of modern behavioral economics.
Behavioral economics contrasts with more conventional economics in not assuming
full information rationality (or substantive rationality in the words of Simon) on the
part of economic agents in their behavior, although they may still be capable of a
reasonably self-interested procedural rationality. In this regard, it draws on insights
regarding human behavior from other social science disciplines such as psychology

J.B. Rosser Jr. (B) · M.V. Rosser
Department of Economics, James Madison University, Harrisonburg, VA 22807, USA
e-mail: rosserjb@jmu.edu

© Springer Science+Business Media Singapore 2016
A. Matsumoto et al. (eds.), Essays in Economic Dynamics,
DOI 10.1007/978-981-10-1521-2_1
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4 J.B. Rosser Jr. and M.V. Rosser

and sociology, among others, and without question many earlier economists1 argued
that people are motivated by more than mere fully rational selfish maximization.
However, it was Simon who crystallized this with his formulation of bounded ratio-
nality and behavioral economics.

Aristotle put economic considerations into a context of moral philosophy and
proper conduct while also posing a foundational complexity idea of how the whole
may be greater than the sum of its parts. The father of political economy, Adam
Smith in his Theory of Moral Sentiments (1759) saw people deeply influenced by
their consciences and obeying social norms while responding to their sympathy for
those near to them, even as he also more famously suggested the emergence of
market order from interacting individuals pursuing their private economic interest,
another fundamental complexity insight. Likewise, institutional economists such as
Thorstein Veblen (1898) and Karl Polanyi (1944) saw peoples’ economic conduct as
embedded within broader social and political contexts. Veblen in particular placed
his discussion in the context of establishing an evolutionary economics that would
also allow for emergence of new technologies and social orders, also important
complexity ideas.

Simon’s initiatives led to research over the next few decades, which became
influential in business schools andmanagement programs as the rational expectations
revolution conquered most of economics during the 1970s and 1980s. Assuming
bounded rationality by economic agents led him to the concept of satisficing, that
while people do not fully maximize their rational self-interest they strive to achieve
set goals within constraints. This became accepted in business schools as managers
were taught to achieve levels of profit acceptable to owners.

Also arising out of his discovery of bounded rationalitywas his interest in pursuing
more deeply how people think and understand as part of making decisions. This led
him to consider how this could be studied through understanding computers, which
led him to help found the field of artificial intelligence (Simon 1969). While Simon
is regarded as one of the more general early leaders of computer science, it was his
thinking about the implications of bounded rationality that led him into this nascent
field and into artificial intelligence in particular.

Simon also became a leading figure in developing early complexity theory, both its
hierarchical complexity version (Simon 1962) with its implications for evolution and
emergence, its computational complexity form, and also studying how to estimate
power law distributions (Simon 1955b), which he would apply to various phenom-

1Itmust be noted thatwhile Simon received theSwedishBankPrize inEconomicScience inMemory
of Alfred Nobel in 1978, usually simply called the “Nobel Prize in Economics,” he was not officially
an economist in any way. His PhD from the University of Chicago was in political science, and he
never was in an economics department during his academic career. At his death in 2001, he was
in four different departments at Carnegie Mellon University, where he had been based since 1949
when it was still the Carnegie Institute of Technology: computer science, psychology, cognitive
science, and management, and he had earlier been in the philosophy department as well. The first of
these authors remembers well from personal communication with him how much Simon disdained
conventional economics, and a number of prominent economists expressed public displeasure when
he received his prize in 1978.



Simonian Bounded Rationality and Complex Behavioral Economics 5

ena later. Modern complexity theorists see a direct link between complexity of one
sort or another and bounded rationality, and thus also with behavioral economics.
Complexity can be seen as a foundation for why people have bounded rationality
and thus of complex behavioral economics.

2 Forms of Complexity

A discussion regarding the relationship between “complexity” and something else
clearly requires some discussion of what is meant by this term, or at least what we
mean by it. Indeed, this is arguably a weasel term, one that has no clearly agreed-on
meaning more generally. The MIT engineer, Seth Lloyd, some time ago famously
gathered a list of various different meanings, and this list was at least 45 before
he stopped bothering with this effort, or at least making it publicly known Horgan
(1997, p. 303). It may be useful therefore to refer to the broadest possible view of
complexity that includes all of these and any others as being meta-complexity. The
definition of this may simply amount to listing all possible meanings that any have
ever claimed should be on the list.

If one seeks general definitions or concepts, something often appears in such
general definitions is the idea that somehow something that is complex involves a
whole that is “greater than the sum of its parts,” as the old cliché puts it. Such an idea
can be traced as far back as Aristotle, with many since contributing to it. We shall see
below that not all the items on Seth Lloyd’s list might agree with this, particularly the
many that relate to computational complexity, arguably the subcategoryof complexity
with more variations than any other. That those concerned with this subcategory
might not have such a view might explain why John von Neumann (1966) did not
distinguish complexity from mere complicatedness. While some may not wish to
make this distinction, many do, with Israel (2005) noting that the two words come
from different roots in Latin, complecti and complicare respectively, the former
meaning “to enfold” and the latter “to entangle.” Thus, while close and possibly
from an identical deeper origin, the former implies some completing in a higher order
whereas the latter implies more simply “to confuse” due to the bringing together of
many different elements.

In any case, perusing Lloyd’s list allows one to lump many of his definitions into
higher order subcategories. Arguably the subcategory with the most items on it can
be considered forms of computational complexity, with at least as many as 15 of them
fitting in this category, possibly more.2 If there is a linking concept through this set
of definitions, it involves ideas of size or length, how long a program is or how many
distinct units there are within the object such as bits of information. However, the
many variations on this do not map onto each other readily. Nevertheless, many of
these definitions have the virtue of being clearly measurable, even if there are many

2These would include at a minimum those that use the words “algorithm,” “information,” or “code
length.”
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such definitions. Thus, if one gloms onto one of these, one can argue that it may
have a stronger claim to being “scientific” due to this specific clarity than some other
fuzzier alternatives. Interestingly, among those fuzzier alternatives listed by Lloyd
is the hierarchical complexity concept introduced by Herbert Simon (1962), which
is relevant to several disciplines.

Within economics and arguably several other disciplines the strongest rival to the
varieties of computational complexity can be called dynamic complexity, although
no item called precisely this appears on Lloyd’s list, with perhaps the closest being
“self-organization” and “complex adaptive systems.” More precisely, Day (1994)
defined (dynamic) complexity as arising in nonlinear dynamical systems that due to
endogenous causes do not asymptotically approach a point, a non-oscillating growth
or decline, or two-period oscillation. Thus such a system will exhibit some form
of erratic dynamic behavior arising endogenously from within itself, not due to an
erratic exogenous driver. Rosser (1999) adopted this definition for his “broad-tent”
complexity that is clearly dynamic.3

Within this broad-tent form of dynamic complexity one can observe four well-
known subcategories that were identified as being “the four Cs” of chaoplexity,
according to Horgan (1997, Chap.11). These were cybernetics, catastrophe theory,
chaos, and “small-tent” or agent-based or Santa Fe complexity. Horgan argued that
these have all constituted a succession of intellectual fads or bubbles, beginning
in the 1950s with Norbert Wiener’s cybernetics and moving on successively, with
agent-based complexity simply the latest in this succession that was overhyped and
then discarded after being shown to be overhyped. However, an alternative view is
that these represent an accumulating development of knowledge regarding the nature
of nonlinear dynamics, and that students of this development should take Horgan’s
ridicule and turn it on its head, much as such art movements as Impressionism were
originally named critically, only to have them become widely admired. Let the “four
Cs” be the focus of a successful ongoing intellectual system.

Norbert Wiener (1948) introduced cybernetics, which strongly emphasizes the
role of positive and negative feedback mechanisms. Wiener emphasized issues of
control, which made cybernetics popular in the Soviet Union and other socialist
planned economies long after it had faded from attention in western economies.
WhileWiener did not emphasize nonlinear dynamics so much, certain close relatives
of cybernetics, general systems theory (van Bertalanffy 1968) and systems dynamics
(Forrester 1961) did so more clearly, with Forrester particularly emphasizing how
nonlinearities in dynamical systems can lead to surprising and “counterintuitive”
results. However, the discrediting of cybernetics and its relativesmay have comemost
strongly from the failure of the limits to growth models based on systems dynamics
when they forecast disasters that did not happen (Meadows et al. 1972). Much of the
criticism of the cybernetics approaches, which emphasized computer simulations,

3Velupillai (2011, p. 553) has referred to this form of complexity as “Day-Rosser complexity,”
even as he strongly advocates the use of more computationally based forms of complexity as being
more useful and scientific. For a fuller presentation of Velupillai’s perspective on computational
complexity, see Velupillai (2000).
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focused on the excessive levels of aggregation in the models, something that more
recent agent-based models are not guilty of, with these arguably representing a new
improved revival of the older cybernetics tradition.

Catastrophe theory developed out of broader bifurcation theory, and to the extent
that formal catastrophe theory may not be applicable in many situations due to the
strong assumptions required for it to be applied, broader bifurcation theory can
analyze the same fundamental phenomenon, that of smoothly changing underlying
control variables having critical values where values of endogenous state variables
may change discontinuously. Formal catastrophe theory, based on Thom (1975),
provides generic forms for these bifurcation conditions on equilibrium manifolds
according to the number of control and state variables, and Zeeman (1974) provided
the first application in economics to the analysis of stock market crashes using the
cusp catastrophe model that has two control variables and one state variable. Empiri-
cal analysis of suchmodels requires the use of multi-modal statistical methods (Cobb
et al. 1983; Guastello 2009). A backlash developed as critics argued that the theory
was applied to situations that did not fulfill the strict assumptions necessary for the
application, but Rosser (2007) has argued that this backlashwas overdone, withmany
avoiding its use who should not do so.4

While chaos theory can be traced back at least to Poincaré (1890), it became
prominent after the identification of sensitive dependence on initial conditions, aka
“the butterfly effect,” by the climatologist, Edward Lorenz (1963), probably the most
important idea associatedwith the phenomenon. Applications in economics followed
after an important paper byMay (1976) that initially suggested someof them.Debates
over empirical measurements and problems associatedwith forecasting have reduced
some of the earlier enthusiasm for chaos theory in economics, which probably peaked
during the 1980s. However, the fundamental insights derived from it continue to
influence economic thinking as well as that in other disciplines.

Figure1 shows the butterfly effect as found by Lorenz initially, with two very
different trajectories arising from the same point, with these distinguished by only
small differences in starting conditions from that point. Figure2 shows a case the
combines both catastrophic effects with chaotic dynamics in chaotic hysteresis, a
figure due originally to Puu (1989), with the axes representing investment and the
rate of change of investment for certain parameter values in a Keynesian style macro-
economic model. Rosser et al. (2001) estimated such phenomena for investment in
the former Soviet Union over the post-World War II period.5

Coming on the heels of the popularity of chaos theory would be agent-based (or
“small tent”) dynamic complexity, strongly associated with the Santa Fe Institute.
However, its origin is generally traced to the urban segregation model of Schelling
(1971), who used a go board rather than a computer to work out the dynamics of a

4Vladimir Arnol’d (1992) provides a clear and reasoned overview of the mathematical issues
involved while avoiding the controversies.
5Ralph Abraham (1985) coined the term chaostrophe to describe such combinations, although that
has not caught on especially. He also coined the term “chaotic hysteresis” (Abraham and Shaw
1987).
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Fig. 1 Sensitive dependence
on initial conditions in the
Lorenz Climate Dynamics
Model

Fig. 2 A contribution of two
globally stables states with a
bifurcation manifold
connecting them and an
internal bifurcation
mechanism within each of
them

city starting out racially integrated and then segregating with only the slightest of
incentives through nearest neighbor effects.6 Such systems are famous for exhibiting
self-organization and do not generally converge on any equilibrium, also showing
cross-cutting hierarchical interactions and ongoing evolutionary change (Arthur et al.
1997a). Substantial active research in economics using such models is ongoing.

Wenote that these are only a small subset of the full array of complexdynamics that
nonlinear systems can exhibit. Others include non-chaotic strange attractors (Lorenz
1992), fractal basin boundaries (Abraham et al. 1997), flare attractors (Hartmann
and Rössler (1998); Rosser et al. 2003), and more.

6It is often claimed that Schelling used a chess board, however his board was 19 by 19, which makes
it a go board, with go’s use of simple black and white stones also fitting the model he developed.
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A central point that should be clear is that the presence of such dynamic complex-
ities in economic systems greatly complicates the problem for economic agents of
forming rational expectations regarding the future path of such systems. In their pres-
ence, it becomes highly unlikely that agents can fulfill the conventional assumption
of full information and complete rationality in their decision-making.

3 Herbert Simon and Bounded Rationality

The late Herbert A. Simon is widely considered to be the father ofmodern behavioral
economics, at least it was his work to which this phrase was first applied. He was also
an early theorist of complexity economics, if not the father per se, and also was one of
the founders of the study of artificial intelligence in computer science. Indeed, he was
a polymath who published well over 900 academic papers in numerous disciplines,
and while he won the Nobel Prize in economics in 1978 for his development of the
concept of bounded rationality, his Ph.D. was in political science and he was never
in a department of economics. We must use the term “modern” before “behavioral
economics” because quite a few earlier economists can be seen as focusing on actual
human behavior while assuming that people do not behave fully in what we would
now call an “economically rational” manner (Smith 1759; Veblen 1898).

Wemust at this point be clear that by “behavioral economics” we are not assuming
a view similar to that of “behavioral psychology” of the sort advocated or practiced by
Pavlov or B.F. Skinner (1938). The latter does not view studying what is in peoples’
minds or consciousness as of any use or interest. All that matters is how they behave,
particularly how they respond to repeated stimuli in their behavior. This is more
akin to standard neoclassical economics, which also purports to study how people
behave with little interest in what is going on inside their heads. The main difference
between these two is that conventional economics makes a strong assumption about
what is going on inside peoples’ heads: that they are rationallymaximizing individual
utility functions derived from their preferences using full information. In contrast,
behavioral economics does not assume that people are fully rational and particularly
does not assume that they are fully informed. What is going on inside their heads is
important, and such subjects as happiness economics (Easterlin 1974) are legitimate
topics for behavioral economics.

In any case, from the beginning of his research with his path-breaking PhD dis-
sertation that came out as a book in 1947, Administrative Behavior and on through
important articles and books in the 1950s (Simon 1955a, 1957), Simon saw people
as being limited in both their knowledge of facts as well as in their ability to com-
pute and solve the difficult problems associated with calculating optimal solutions
to problems. They face unavoidable limits to their ability to make fully rational deci-
sions. Thus, people live in a world of bounded rationality, and it was this realization
that led him into the study of artificial intelligence in computer science as part of his
study of how people think in such a world (Simon 1969).
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This led Simon to the concept of satisficing. People set targets that they seek to
achieve and then do not pursue further efforts to improve situations once these targets
have been reached, if they are. Thus a firmwill not maximize profits, but its managers
will seek to achieve an acceptable level of profits that will keep owners sufficiently
happy. This idea of satisficing became the central key to the behavioral study of the
firm (Cyert and March 1963) and entered into the management literature, where it
probably became more influential than it was in economics, for quite a long time.

Some economists, notably Stigler (1961), have taken Simon’s position and argued
that he is actually a supporter of full economic rationality, but only adding another
matter to be optimized, namely minimizing the costs of information. People are still
optimizing but take account of the costs of information. However, Stigler’s argument
faces an unavoidable and ineluctable problem: people do not and cannot know what
the full costs of information are. In this regard they face a potential problem of
infinite regress (Conlisk 1996). In order to learn the costs of information, they must
determine how much time they should spend in this process of learning; they must
learn what the costs of learning what the costs of information are. This then leads to
the next higher order problem of learning what the costs of learning what the costs
of information are, and there is no end to this regress in principle.7 In the end they
must use the sorts of heuristic (or “rule of thumb”) devices that Simon proposes
that people facing bounded rationality must use in order to answer the question. Full
rationality is impossible, and the ubiquity of complexity is a central reason why this
is the case.

Simon (1976) distinguishes substantive rationality from procedural rationality.
The former is the sort of rationality traditionally assumed by most economists in
which people are able to achieve full optimization in their decision-making. The
latter involves them selecting procedures or methods by which they can “do their
best” in a world in which such full optimization is impossible, the heuristics bywhich
they manage in a world of bounded rationality. In this regard it is not the case that
Simon views people as being outright irrational or crazy. They have interests and they
generally know what those are and they pursue them. However, they are unavoidably
bounded in their ability to do so fully, so they must adopt various essentially ad hoc
methods to achieve their satisficing goals.

Among these heuristics that Simon advocated for achieving procedural rationality
were trial and error, imitation, following authority, unmotivated search, and following
hunches. Pingle and Day (1996) used experiments to study the relative effectiveness
of each of these, none of which clearly can achieve fully optimal outcomes. Their
conclusion was that each of these can be useful for improving decision-making,

7This is a problem that central planners faced: how much time and in what way should planners
spend thinking about how they should plan? This problem was discussed in the French and Russian
literature on planning, with the French applying the word planification to this process of “planning
how to plan,” although that word was also used for both planning in general as well as for the more
specific question of dealing with the problem of aggregating micro level plans into a coherent macro
whole (Rosser and Rosser 2004, p. 10).
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however, none of them is clearly superior to the others. It is advisable for agents to
use several of these and to move from one to another under different circumstances,
although as noted above it may be hard to know when to do that and precisely how.

4 Boundedly Rationality and Agent-Based Complexity

ChenandKao (2015) highlight further the linkbetweenSimonianbounded rationality
and the agent-based form of complexity that combine to form complex behavioral
economics. These links draw from the work of Hayek (Vriend 2002) as well as
from Schelling (1971), Vinkopić and Kirman (2006), Ostrom et al. From the early
days of Simon’s formulation of bounded rationality (Simon 2000). These link with
Albin’s (1998) on how complexity bounds rationality and the idea that agents can be
represented by programs, in its hardest form that agents are programs (Newell and
Simon 1972; Mirowski 2007; Davis 2013).

The use of agents in genetic programming (Duffy 2006) are marked by their
aspirations and the limits of their capabilities (Simon 2000; Chen 2012). All of these
represent the real limits of agents that they face in making decisions in real situations
in contrast with the overly strong models of standard economic theory.

Drawing on the hierarchy theory of Simon (1962) has been a large literature
and set of efforts that emphasize modularity and indecomposability within complex
systems using agent-based models (Miller 1956; Simon 1957; Stiglitz and Gallegati
2011; Hommes 2014). Some of this has depended on cellular automata to study the
Schelling model and others.

Fundamentally agent-based models based on behavioral assumptions are able to
build up aggregate behavior from micro-founded behavior based on bounded ratio-
nality (Epstein and Axtell 1996). This potential provides a basis for macroeconomic
modeling using an alternative foundation that avoids rational expectations and is
consistent with a complex behavioral outcome. This can provide a strong foundation
for a genuine behavioral macroeconomics (Akerlof 2002).

5 Imitation and the Instability of Markets

While this list of procedures that can support a boundedly rational pursuit of pro-
cedural rationality, a point not clearly made is that excessive focus on one of these
rather than others can lead to problems. Clearly following authority can lead to prob-
lems when the authority is flawed, as many unfortunate examples in history have
shown. Any of these can lead to problems if too intensively followed, but one that
has particularly played an unfortunate role in markets is imitation, even though it is
a widely used method by many people with a long history of being evolutionarily
successful. The problem is particularly acute in asset markets, where imitation can
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lead to speculative bubbles that destabilize markets and can lead to much broader
problems in the economy, as the crisis of 2008 manifestly shows.

A long literature (MacKay 1852; Baumol 1957; Zeeman 1974; Rosser 1997) has
recognized that while agents focusing on long-term fundamental values of assets tend
to stabilize markets by selling them when their prices exceed these fundamentals
and buying when they are below those, agents who chase trends can destabilize
markets by buying when prices are rising, thus causing them to rise more, and vice
versa. When a rising price trend appears, trend chasers will do better in returns than
fundamentalists and imitation of those doing well will lead agents who might have
followed stabilizing fundamentalist strategies to follow destabilizing trend chasing
strategies, which will tend to push the price further up. And when a bubble finally
peaks out and starts to fall, trend chasers can then push the price down more rapidly
as they follow each other in a selling panic.

That such a tendency to engage in trend chasing speculation is deeply rooted
in the human psyche was initially established by Smith et al. (1988), with many
subsequent studies supporting this observation.8 Even in situations with a finite time
horizon and a clearly identified payment that establishes the fundamental value of
the asset being traded, in experimental markets it has been repeatedly shown that
bubbles will appear even in these simplified and clearcut cases. People have a strong
tendency to speculate and to follow each other into such destabilizing speculation
through imitation. Procedures that can support procedural rationality in a world of
bounded rationality can lead to bad outcomes if pursued too vigorously.

We note that such patterns regularly take three different patterns. One is for price
to rise to a peak and then to fall sharply after hitting the peak. Another is for price
to rise to a peak and then decline in a more gradual way in a reasonably symmetric
manner. Finally, we see bubbles rising to a peak, then declining gradually for awhile,
finally collapsing in a panic-driven crash. Kindleberger’s classicManias, Panics, and
Crashes (2001) shows in its Appendix B that of 47 historical speculative bubbles,
each of the first two have five examples, while the remainder, the vastmajority, follow
the final pattern, which requires heterogeneous agents who are not fully rational for
it to occur (Rosser 1997). This shows that complexity is deeply involved in most
speculative bubbles.

Figures3, 4, and 5 show the time path for prices of three bubbles before, during,
and immediately after the 2008 crisis. They show the three patterns described above,
taken from Rosser et al. 2012. The first is for oil, which peaked at $147 per barrel in
July 2008, the highest nominal price ever observed, and then crashed hard to barely
over $30 per barrel in the following November. It seems that commodities are more
likely to follow this pattern than other assets (Ahmed et al. 2014).

The second pattern was followed by the housing bubble, which peaked in mid-
2006 according to this figure, which shows to different indexes, the Case-Shiller

8This result is especially significant in that Vernon Smith (1962) has long been an advocate of
the idea that free markets work well and lead to rapid convergence in properly structured markets
such as double auction arrangements. This insight was a major basis for his receipt of the Nobel
Prize in economics, although he clearly understands that markets can behave badly under certain
circumstances.
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Fig. 3 West Texas intermediate crude oil prices per barrel, 2003–2011

Fig. 4 Housing prices in US, Case-Shiller index, 1987–2011
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Fig. 5 Dow-Jones industrial average, 2000–2011, daily data

10-city one and their 20-city one as well. Looking closely one can see a bit of
roughness around the peak making it look almost like the third pattern, whereas in
fact if one looks at housing markets in individual cities, they look as posited by this
pattern, with this roughness at the national level reflecting that different cities peaked
at different times, with a final round of them doing so as late as January 2007 before
they all declined.

This sort of pattern historically is often seen with real estate market bubbles. The
more gradual decline than in the other patterns, nearly symmetric with the increase,
reflects certain behavioral phenomena. People identify very personally and intensely
with their homes and as a result tend not to easily accept that their home has declined
in value when they try to sell it during a downturn. As a result they have a tendency
to offer prices that are too high and then refuse to lower their prices readily when
they fail to sell. The upshot is a more dramatic decline in volume of sales on the
downswing compared to the other patterns as people hang on and refuse to lower
prices.

The third case shows the US stock market as exhibited by the Dow-Jones average,
which peaked in October 2007, only then to crash in September 2008. Such patterns
seem to be more common in markets for financial assets. Such patterns show hetero-
geneity of agents with different patterns of imitation, a smarter (or luckier) group that
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Fig. 6 Increase in J. The
two time series share the
same random numbers and
same parameters but J. In the
grey time series J = 0.5; in
the black time series J = 3

gets out earlier at the peak, followed by a less smart (or less lucky) group that hangs
on hoping the price will return to rising, only to panic later en masse for whatever
reason.

Finally, Fig. 6 shows how this pattern with its period of financial distress (Minsky
1972) can be modeled in an agent-based model that has agents shifting from one
strategy to another based on their relative successes, although not instantly (Gallegati
et al. 2011). This model is based on ideas from Brock and Hommes (1997, 1998)
that underlie the so-called Santa Fe stock market model (Arthur et al. 1997b). What
triggers the delayed crash is agents running into financial constraints such as happens
when individuals must meet margin calls in stock markets. The higher curve shows
the pattern when agents imitate each other more strongly, as in a statistical mechanics
model when there is a stronger interaction between particles.

6 Hierarchical Complexity and the Question of Emergence

While we can see Herbert Simon’s discovery of bounded rationality as an indirect
claim to being a “father of complexity,” his most direct claim, recognized by Seth
Lloyd in his famous list, is his 1962 paper to the American Philosophical Soci-
ety on “The Architecture of Complexity.” In this transdisciplinary essay, he deals
with everything from organizational hierarchies through evolutionary ones to those
involving “chemico-physical systems.” He is much concerned with the problem of
the decomposability of higher order systems into lower level ones, noting that pro-



16 J.B. Rosser Jr. and M.V. Rosser

duction ones, such as for watchmaking, as well as organizational ones, function
better when such decomposability is present, which depends on the stability and
functionality of the lower level systems.9

However, he recognizes that many such systems involve near decomposability,
perhaps a hierarchical complexity equivalent of bounded rationality. In most of them
there are interactions between the subsystems, with the broader evolution of the sys-
tem depending on aggregated phenomena. Simon provides the example of a building
with many rooms. Temperature in one room can change that in another, even though
their temperaturesmay fail to converge. But the overall temperatures that are involved
in these interactions are determined by the aggregate temperature of the entire build-
ing.

Simon also deals with what many consider to be the most fundamental issue
involving complexity, namely that of emergence. His most serious discussion of the
emergence of higher levels of hierarchical structure out of lower levels involves bio-
logical evolution, where these issues have long been most intensively discussed. He
argues that how these higher levels emerged has not reflected teleological processes
but strictly random processes. He also argues that even in closed systems, there need
be no change in entropy in the aggregatewhen subsystems emergewithin that system.
But he also recognizes that organisms are energetically open systems, so that “there
is no way to deduce the direction, much less the rate, of evolution from classical
thermodynamic considerations” (Simon 1962, p. 8). However, it is the development
of stable intermediate forms that is the key for the emergence of yet higher forms.

Simon does not cite this older literature, but this issue was central to the British
“emergentist” literature that came out of the nineteenth century to become the dom-
inant discourse in the 1920s regarding the broader story of biological evolution,
all embedded within a broader vision fitting this within the emergence of physi-
cal and chemical systems from particles through molecules to such higher levels
above biological evolution in terms of human consciousness, social systems, and yet
higher systems.10 Simon dealt with this multiplicity of processes without drawing
their interconnection as tightly as did these earlier figures. In the 1930s with the
neo-Darwinian synthesis (Fisher 1930; Wright 1931; Haldane 1932), the emphasis
returned to near-continuous Darwinian process of gradual changes appearing from
probabilistic changes arising from mutations at the gene level, with the gene the
ultimate focus of natural selection (Dawkins 1976).

While Simon avoided dealing with this issue of emergence in biological evolution
in 1962, when the reductionist neo-Darwinian synthesis was at the highest level of

9See Rosser (2010) for a discussion of relations between multidisciplinary, interdisciplinary, and
transdisciplinary viewpoints. For a discussion of variations on hierarchical relations see Rosser
et al. (1994).
10This tradition derived from J.S. Mill’s (1843) heteropathic laws that focused on basic chemical
interactions where two molecules come together to form a completely different molecule. Lewes
(1875) coined the term emergence for such phenomena, with C. Lloyd Morgan (1923) representing
its culmination in biological evolutionary theory. In the 1930s this approach would be pushed aside
by the neo-Darwinian synthesis (Rosser 2011), which emphasized a reductionist approach to the
gene. For further discussion of this point see Rosser and Rosser (2015).
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Fig. 7 Hierarchical emergence in entropic evolutionary unfolding

its influence, soon the emergence view would itself re-emerge, based on multi-level
evolutionary process (Crow 1955; Hamilton 1964; Price 1970). This would further
develop with the study of nonlinear dynamics and complexity in such systems, with
such figures as Stuart Kauffman (1993) and James Crutchfield (1994, 2003), who
draw on computational models for their depictions of self-organization in biological
evolutionary systems.

Figure7 from Crutchfield (2003, p. 116) depicts how an initial genetic level muta-
tion can lead to emergent effects at higher levels. On the right side are genotypes
moving upwards from one basin of attraction to another, while on the left side pheno-
types are also doing so in a parallel pattern. He introduces the concept ofmesoscales
for such processes, which clearly follow Simon’s admonition about the necessity of
stable intermediate systems emerging to support the emergence of yet higher order
ones.

This view remains questioned by many evolutionists (Gould 2002). While the
tradition going through catastrophe theory from D’Arcy Thompson (1917) has long
argued for form arising from deep structures in organic evolution, critics have argued
that such self-organizing processes are ultimately teleological ones that replicate old
pre-evolutionary theological perspectives such as Paley’s (1802) in which all things
are in their place as they should be due to divine will. Others have criticized that such
process lack invariance principles (McCauley 2005). Others coming from a more
computational from such processes (Moore 1990). There is no easy resolution of
this debate, and even those advocating the importance of emergent self-organization
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recognize the role of natural selection. Thus, Kauffman (1993, p. 644) has stated,
“Evolution is not just ‘chance caught on awing.’ It is not just a tinkering of the ad hoc,
of bricolage, of contraption. It is emergent order honored and honed by selection.”

While the mechanisms are not the same, the problems of emergent
self-organization apply as well to socioeconomic systems. Simon’s focus tended to
be on organizations and their hierarchies.While hemaywell have sidedwith themore
traditional neo-Darwinian synthesizers when it came to emergence of higher order
structures in biological evolution, the role of human consciousness within human
socio-economic systems means that the rules are different there, and the formation
of higher order structures can become a matter of conscious will and planning, not
mere randomness.

7 Conclusions

The late Herbert A. Simonwas the “father of behavioral economics,” who discovered
the ideas of bounded rationality and satisficing, along with many ideas in many other
disciplines such as artificial intelligence, cognitive science, andmanagement. Hewas
also a founder of complexity analysis in its transdisciplinary formulation, in particular
hierarchical complexity, although with deep links to both computational complexity
throughhiswork on artificial intelligence and also ondynamic complexity.Branching
across many disciplines, with its most serious implications relating to evolutionary
processes and the problem of the evolutionary emergence of higher order structures
in nature. This goes beyond biology to a broader view of the universe, with such
emergent evolutionary processes extending to emergence of atoms from subatomic
particles to molecules to organic molecules to multi-cellular organisms to human
consciousness to societies and to higher order structures beyond those.

A fundamental link between the two concepts is that the existence of complexity
provides a foundation for the limits to knowledge and rationality that humans face,
and thuswhy theymust operate using bounded rationality. Satisficing is an alternative
approachderived frombounded rationality in that one seeks to achievegoals that seem
achievable and are socially acceptable rather than striving for all-out optimization.
This leads to the use of heuristics such as following authority, imitation, trial and error,
and unmotivated search, although overly excessive focus on one of these can lead
to problems, as shown by the role of excessive imitation of others in the appearance
of damaging speculative bubbles and crashes. While debates continue regarding
this and many other matters involving the relation between behavioral economics
and complexity, the emergence of a complex behavioral macroeconomics and its
apparent influence on policymaking is something to be encouraged.
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An Alternative Proof of the Theorem
of Woodford on the Existence of a Sunspot
Equilibrium in a Continuous-Time Model

Kazuo Nishimura and Tadashi Shigoka

Abstract Nishimura and Shigoka, Int J Econ Theory 2:199–216, (2006) has proved
a continuous-time version of the theorem of Woodford, Stationary sunspot equilib-
ria: the case of small fluctuations around a deterministic steady state, mimeo, (1986)
to the effect that there exists a stationary sunspot equilibrium for a continuous-time
model with a predetermined variable and with an unstable root, if equilibrium is
indeterminate near either a steady state or a closed orbit, and if a stable manifold
is well-located in an ambient space. The present study provides this theorem with
an alternative proof that is due to Murakami et al. Homoclinic orbit and stationary
sunspot equilibrium in a three-dimensional continuous-time model with a predeter-
mined variable forthcoming in: NishimuraK,Venditti A,Yannelis NC (eds) Sunspots
and non-linear dynamics. Springer, (2016) and simpler than that of Nishimura and
Shigoka, Int J Econ Theory 2:199–216, (2006).

1 Introduction

If for a given deterministic model, there exists a continuum of perfect foresight equi-
libria, equilibrium is said to be indeterminate. Suppose that fundamental characteris-
tics of an economy are deterministic, but that economic agents believe nevertheless
that equilibrium dynamics is affected by random factors apparently irrelevant to the
fundamental characteristics (sunspots). This prophecy could be self-fulfilling, and
one will get a sunspot equilibrium, if the resulting equilibrium dynamics is sub-
ject to a nontrivial stochastic process. A sunspot equilibrium is called a stationary
sunspot equilibrium, if the equilibrium stochastic process is stationary. See Shell
(1977), Azariadis (1981), and Cass and Shell (1983) for the concept of a sunspot
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equilibrium. For a large class of models whose fundamental characteristics are de-
terministic, if equilibrium is indeterminate, there exists a sunspot equilibrium. See
Chiappori and Guesnerie (1991) and Guesnerie and Woodford (1992) for thorough
surveys on the sunspot literature. Woodford (1986) has proved that there exists a
stationary sunspot equilibrium for a discrete-time model with a predetermined vari-
able and with an unstable root, if equilibrium is indeterminate near a steady state,
and if a stable manifold is well-located in an ambient space. Nishimura and Shigoka
(2006) treats a three-dimensional continuous-time deterministic model that includes
one predetermined variable and two non-predetermined variables and that includes
a well-located two-dimensional invariant manifold that might be a stable manifold
of either a steady state or a closed orbit, and has constructed a stationary sunspot
equilibrium in this model by means of extending the method of Shigoka (1994). This
is a continuous-time version of the theorem due to Woodford (1986).

Murakami et al. (2016) treats a three-dimensional continuous-time deterministic
model that includes one predetermined variable and two non-predetermined vari-
ables and that is amenable to the existence of a homoclinic orbit with multiple steady
states, and has constructed a stationary sunspot equilibrium in thismodel bymeans of
extending themethod ofBenhabib et al. (2008). The underlying deterministic dynam-
ics in Murakami et al. (2016) is more complex than that in Nishimura and Shigoka
(2006). On the other hand, as discussed in Sect. 2.4, the structure of a stochastic dif-
ferential equation in Benhabib et al. (2008) the extension of which is Murakami et al.
(2016) is simpler than that in Shigoka (1994) the extension of which is Nishimura
and Shigoka (2006). The present study applies the method of Murakami et al. (2016)
to the simpler underlying deterministic dynamics treated by Nishimura and Shigoka
(2006), and provides an alternative proof of the existence of a stationary sunspot
equilibrium for this model. The alternative proof in this study is simpler than that
of Nishimura and Shigoka (2006), because the structure of a stochastic differential
equation in the present study is simpler than that in Nishimura and Shigoka (2006).

In Sect. 2.1, we specify an underlying deterministic model. In Sect. 2.2, we spec-
ify a stochastic process that generates sunspot variables. In Sect. 2.3, we define a
stationary sunspot equilibrium, and state a main theorem that is a continuous-time
version of the theorem of Woodford (1986). In Sect. 2.4, we relate our result to those
of Shigoka (1994), Nishimura and Shigoka (2006), Benhabib et al. (2008), and Mu-
rakami et al. (2016). Section3 provides the main theorem with a proof the method
of which is due to Murakami et al. (2016).

2 Main Result

2.1 Deterministic Equilibrium Dynamics

In the present section, we specify a three-dimensional continuous-time deterministic
model that includes one predetermined variable and two non-predetermined vari-
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ables. We will assume that the model has a well-located two-dimensional invariant
manifold that might be a stable manifold of either a steady state or a closed orbit.
Since the number of a predetermined variable is one, and since the dimension of
the invariant manifold is two, equilibrium is indeterminate near either the steady
state or the closed orbit. Let V be a nonempty open subset of R2 homeomorphic to
some convex set. Let I be a nonempty open connected subset of R. Let W be de-
fined asW := V × I . Let fi : W → R, i = 1, 2, 3, be a continuously differentiable
function, i.e., a C1-function, and let F : W → R

3 be a C1-function defined as

F(X, u, Q) :=
⎡
⎣

f1(X, u, Q)

f2(X, u, Q)

f3(X, u, Q)

⎤
⎦ ,

where (X, u, Q) ∈ W . We assume that X is a predetermined variable, whereas u
and Q are non-predetermined variables, and that a perfect foresight equilibrium is
a solution of an ordinary differential equation [Ẋ , u̇, Q̇]T = F(X, u, Q), where T

denotes the transpose of a given vector. We assume:

Assumption 1 There exists a C1-function ϕ : V → I such that, for (X, u) ∈ V ,

f3(X, u,ϕ(X, u)) = ∂ϕ

∂X
(X, u) f1(X, u,ϕ(X, u)) + ∂ϕ

∂u
(X, u) f2(X, u,ϕ(X, u)).

Under Assumption 1, {(X, u, Q) ∈ W : (X, u) ∈ V ∧ Q = ϕ(X, u)} constitutes a
two-dimensional manifold invariant under the action of [Ẋ , u̇, Q̇]T = F(X, u, Q).
Let G : V → R

2 be a C1-function defined as

G(X, u) :=
[
f1(X, u,ϕ(X, u))

f2(X, u,ϕ(X, u))

]
,

for (X, u) ∈ V . Under Assumption 1, we further assume that either of the following
two assumptions is satisfied.

Assumption 2 There exists a closed subset D of V homeomorphic to the two-
dimensional closed unit disk {(x, y) ∈ R

2 : x2 + y2 ≤ 1} such that the vector field
[Ẋ , u̇]T = G(X, u) points inward on the boundary ∂D of D, where ∂D is homeo-
morphic to {(x, y) ∈ R

2 : x2 + y2 = 1}.
Assumption 3 There exists a closed subset D of V homeomorphic to the two-
dimensional closed doughnut {(x, y) ∈ R

2 : 1
2 ≤ x2 + y2 ≤ 1} such that the vector

field [Ẋ , u̇]T = G(X, u) points inward on the boundary ∂D of D, where ∂D is
homeomorphic to {(x, y) ∈ R

2 : x2 + y2 = 1
2 ∨ x2 + y2 = 1}.

For some (X̄ , ū) ∈ V , if (X̄ , ū,ϕ(X̄ , ū)) ∈ W is a hyperbolic steady state, and if
{(X, u, Q) ∈ W : (X, u) ∈ V ∧ Q = ϕ(X, u)} constitutes a two-dimensional stable
manifold of the steady state, then Assumptions 1 and 2 are satisfied, and equilibrium
is indeterminate near the steady state. See Nishimura and Shigoka (2006, pp. 204–
205) for the method of assuring that Assumptions 1 and 2 are satisfied, and see
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Sect. 3 in Nishimura and Shigoka (2006) for concrete economic models that satisfy
Assumptions 1 and 2.

For some closed curve γ in V , if γ̂ := {(X, u, Q) ∈ W : (X, u) ∈ γ ∧ Q =
ϕ(X, u)} is a closed orbit of [Ẋ , u̇, Q̇]T = F(X, u, Q), and if {(X, u, Q) ∈ W :
(X, u) ∈ V ∧ Q = ϕ(X, u)} includes a two-dimensional invariant manifold each
point of which asymptotically converges to this closed orbit γ̂, then Assumptions
1 and 3 are satisfied, and equilibrium is indeterminate near the closed orbit. See
Sect. 2.4 in Nishimura and Shigoka (2006) for the method of assuring that Assump-
tions 1 and 3 are satisfied, and see Sect. 3 in Nishimura and Shigoka (2006) for
concrete examples that satisfy Assumptions 1 and 3.

2.2 Sunspot Variables

In the present section, we specify a continuous-time stochastic process that generates
sunspot variables. We assume that the stochastic process is subject to a separable
two-stateMarkov process with stationary transition matrices.A sample function of a
random variable subject to this process generates a sequence of discontinuous points
such that each discontinuous point is, of itself, a random variable. We will utilize a
sequence of discontinuous points in the sample path of a sunspot variable in order
to construct a sunspot equilibrium.

LetT denote the set of all nonnegative real numbers, i.e.,T := R+. We denote the
set of all function from T to {1, 2} by {1, 2}T. Let B be some subset of {1, 2}T. Let
ε(t, b) denote the t th coordinate of b ∈ B. Let B(B) be some σ-field on B such that
ε(t, b) is a measurable function of b for each t ∈ T. And let P̂1 : B(B) → [0, 1] be
some probability measure defined on B(B). ε(t, b) that is considered as a function
of t ∈ T will be called a sample function of b ∈ B. Let L = L(R2) be the set of all
2 × 2 real squarematrices. Let λ > 0 be a given positive constant, and let� ∈ L(R2)

be given by

� :=
[−λ λ

λ −λ

]
.

Let Q̂ : T → L(R2) be defined as

Q̂(h) :=
[
1 0
0 1

]
+

∞∑
k=1

hk

k! �
k,

for each h ∈ T. Let B̂({1, 2}T) be the set of all functions b in {1, 2}T such that b
is a piecewise-continuous function of t ∈ T and such that b is continuous on the
right at each discontinuous point in T. Let N be the set of all positive integers, i.e.,
N := {1, 2, . . .}. For b ∈ B ∩ B̂({1, 2}T) and for m ∈ N, let t̂(m, b) ∈ T be the mth
discontinuous point of the sample function ε(t, b) of b if the mth discontinuous
point exists. Then, there exists a stochastic process (B,B(B), P̂1) that satisfies the
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following conditions. See Proposition 1 in Murakami et al. (2016) for the proof and
for the reference to the relevant parts of Doob (1953).

Proposition 1 There exists a continuous-time two-state Markov process (B,B(B),

P̂1) with stationary transition probabilities that satisfies the following conditions:

(1) The initial probability is given by

P̂1{b ∈ B : ε(0, b) = 1} = 1

2
∧ P̂1{b ∈ B : ε(0, b) = 2} = 1

2
.

(2) A family of the stationary transition probabilities is given by a family of the
matrices Q̂(h) with h ∈ T.

(3) B ⊂ B̂({1, 2}T). [The separability.]
(4) For each b ∈ B and for each m ∈ N, there exists the mth discontinuous point

t̂(m, b) in the sample function ε(t, b) of b, and limm→∞ t̂(m, b) = ∞.

Let N0 denote the set of all nonnegative integers, i.e., N0 := {0} ∪ N. Let τ :
N0 × B → T be a function constructed in the following way. For each b ∈ B, set
τ (0, b) = 0. For each m ∈ N and for each b ∈ B, set τ (m, b) = t̂(m, b). Then, by
Proposition 1, τ (m, b) ∈ T is well-defined for all (m, b) ∈ N0 × B. By construc-
tion, and since B ⊂ B̂({1, 2}T), τ (0, b) = 0 for each b ∈ B, and τ (m + 1, b) −
τ (m, b) > 0 for each (m, b) ∈ N0 × B. Let Bt (B) be the smallest σ-field with re-
spect to which (ε(s, b), 0 ≤ s ≤ t) is a family of measurable functions of b ∈ B.
For each m ∈ N0, if t ≥ τ (m, b), τ (m, b) is a Bt (B)-measurable function of b, and
if τ (m, b) > s ≥ 0, τ (m, b) is not Bs(B)-measurable function of b. Proposition 2
in Murakami et al. (2016) shows that each element of the set of random variables
{τ (m + 1, b) − τ (m, b)}m∈N0 is independently and identically subject to a exponen-
tial distribution with a parameter λ > 0.

2.3 Stationary Sunspot Equilibrium

In the present section, we assume that the underlying deterministic dynamics
[Ẋ , u̇, Q̇]T = F(X, u, Q) satisfies Assumption 1 and either of Assumptions 2 and 3.
Under these assumptions, we define a stationary sunspot equilibrium formally, and
state that there exists a stationary sunspot equilibrium thus defined. The proof of the
statement will be given in Sect. 3. Let D̂ ⊂ W be defined as D̂ := {(X, u, Q) ∈ W :
(X, u) ∈ D ∧ Q = ϕ(X, u)}, where ϕ and D are specified as in Assumption 1 and
either of Assumptions 2 and 3, respectively. Let B(D̂) be the Borel σ-field on D̂, and
let P̂0 : B(D̂) → [0, 1] be some probability measure on B(D̂). Let (B,B(B), P̂1)

be the probability space the existence of which is assured by Proposition 1, and let
� := D̂ × B and let B� = B(�) be the product σ-field of B(D̂) and B(B), i.e.,
B(�) := B(D̂) × B(B). Let π0 : � → D̂ be the projection of D̂ × B onto D̂. Let
π1 : � → B be the projection of D̂ × B onto B. We have denoted the t th coordi-
nate of b ∈ B by ε(t, b). Let Bt (�) be the smallest σ-field with respect to which
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(π0(ω), ε(s,π1(ω)), 0 ≤ s ≤ t) is a family of measurable functions of ω ∈ �. Let
P : B(�) → [0, 1] be defined as the product measure of P̂0 and P̂1, and let Et [·]
be the conditional expectation operator relative to Bt (�). We denote a set of all
functions from T to D̂ by D̂T. Let l̂ : � → D̂T be a function such that the t th
coordinate of l̂(ω) ∈ D̂T is B�-measurable function of ω ∈ � for each t ∈ T. Let
(X (t,ω), u(t,ω), Q(t,ω)) denote the t th coordinate of l̂(ω) ∈ D̂T. Let B(D̂T) be
some σ-field on D̂T, and let P̂ : B(D̂T) → [0, 1] be some probability measure de-
fined on B(D̂T). We define a stationary sunspot equilibrium in the following way.

Definition 1 If the probability measure P : B(�) → [0, 1] satisfies the following
conditions, then function l̂ : � → D̂T constitutes a stationary sunspot equilibrium.

(1) For each t ∈ T, (X (t,ω), u(t,ω), Q(t,ω)) ∈ D̂ is aBt (�)-measurable function
of ω ∈ �.

(2) The distribution of (X (0,ω), u(0,ω), Q(0,ω)) is given by (D̂,B(D̂), P̂0).
(3) There exists a stochastic process (D̂T,B(D̂T), P̂) on D̂T such that if {ti }Ni=1 is

a given set of points in T with N ≥ 1, and if Ŷ is a given Borel subset of D̂N ,
then

P{ω ∈ � : (l̂(t1,ω), . . . , l̂(tN ,ω)) ∈ Ŷ }
= P̂{d̂ ∈ D̂T : (d̂(t1), . . . , d̂(tN )) ∈ Ŷ },

where l̂(t,ω) := (X (t,ω), u(t,ω), Q(t,ω)) ∈ D̂, and d̂(t) denotes the t th co-
ordinate of d̂ ∈ D̂T. [The existence of a stochastic process.]

(4) For each ω ∈ �, X (t,ω) is a continuous function of t ∈ T, and for each t > 0,

P{ω ∈ � : lim
h→0

X (t + h,ω) − X (t,ω)

h
= f1(X (t,ω), u(t,ω), Q(t,ω))} = 1.

(5) For each ω ∈ �, (u(t,ω), Q(t,ω)) is a piecewise-continuous function of t ∈ T

and continuous on the right at each discontinuous point in T, and for each t ∈ T,

⎡
⎣

limh→+0
X (t+h,ω)−X (t,ω)

h
Et [limh→+0

u(t+h,ω)−u(t,ω)

h ]
Et [limh→+0

Q(t+h,ω)−Q(t,ω)

h ]

⎤
⎦ =

⎡
⎣

f1(X (t,ω), u(t,ω), Q(t,ω))

f2(X (t,ω), u(t,ω), Q(t,ω))

f3(X (t,ω), u(t,ω), Q(t,ω))

⎤
⎦ .

(6) For each t > s ≥ 0, (X (t,ω), u(t,ω), Q(t,ω)) is not Bs-measurable function
of ω ∈ �.

(7) If {ti }Ni=1 is a given set of points in Twith N ≥ 1, and if Ŷ is a given Borel subset
of D̂N , for any h ∈ R such that {ti + h}Ni=1 ⊂ T,

P{ω ∈ � : (l̂(t1,ω), . . . , l̂(tN ,ω)) ∈ Ŷ }
= P{ω ∈ � : (l̂(t1 + h,ω), . . . , l̂(tN + h,ω)) ∈ Ŷ },

where l̂(t,ω) := (X (t,ω), u(t,ω), Q(t,ω)) ∈ D̂. [The stationarity.]
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In Sect. 3, we will show the following theorem by means of the method due to
Murakami et al. (2016).

Theorem 1 Suppose that the underlying deterministic dynamics [Ẋ , u̇, Q̇]T =
F(X, u, Q) satisfies Assumption 1 and either of Assumptions 2 and 3. Then, there
exists a stationary sunspot equilibrium.

2.4 On Relations of the Present Result to Other Results

Before leaving Sect. 2, we relate our result to those of Shigoka (1994), Nishimura and
Shigoka (2006), Benhabib et al. (2008), and Murakami et al. (2016) here. Let gi :
V → R, i = 1, 2, be defined as gi (X, u) := fi (X, u,ϕ(X, u)), i = 1, 2. Suppose
that the vector field [Ẋ , u̇]T = G(X, u) satisfies either of Assumptions 2 and 3. Let
{(X (t,ω), u(t,ω))}t∈T be a set of random variables that will have been constructed
in Sect. 3. Then, we have the following:

(1) For each ω ∈ �, X (t,ω) is a continuous function of t ∈ T, and for each t > 0,

P{ω ∈ � : lim
h→0

X (t + h,ω) − X (t,ω)

h
= g1(X (t,ω), u(t,ω))} = 1.

(2) For each ω ∈ �, u(t,ω) is a piecewise-continuous function of t ∈ T and con-
tinuous on the right at each discontinuous point in T, and for each t ∈ T,

[
limh→+0

X (t+h,ω)−X (t,ω)

h
Et [limh→+0

u(t+h,ω)−u(t,ω)

h ]
]

=
[

g1(X (t,ω), u(t,ω))

g2(X (t,ω), u(t,ω))

]
.

(3) For each t > s ≥ 0, (X (t,ω), u(t,ω)) is not Bs-measurable function of ω ∈ �.
(4) If {ti }Ni=1 is a given set of points in Twith N ≥ 1, and if Y is a given Borel subset

of DN , for any h ∈ R such that {ti + h}Ni=1 ⊂ T,

P{ω ∈ � : (l(t1,ω), . . . , l(tN ,ω)) ∈ Y }
= P{ω ∈ � : (l(t1 + h,ω), . . . , l(tN + h,ω)) ∈ Y },

where l(t,ω) := (X (t,ω), u(t,ω)) ∈ D. [The stationarity.]

The existence of such a set of random variables {(X (t,ω), u(t,ω))}t∈T is also the
assertion of Theorem 1 in Shigoka (1994).

The present study provides Theorem 1 in Nishimura and Shigoka (2006) with an
alternative proof that is due to Murakami et al. (2016). The proof due to Nishimura
and Shigoka (2006) is an extension of that due to Shigoka (1994), whereas the
proof due to Murakami et al. (2016) is an extension of that due to Benhabib et al.
(2008). Shigoka (1994) treats a deterministic model that includes either a steady state
or a closed orbit with a two-dimensional stable manifold, whereas Benhabib et al.
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(2008) treats a two-dimensional deterministicmodel that includes one predetermined
variable and one non-predetermined variable and that is amenable to the existence
of a homoclinic orbit with multiple steady states. The former deterministic model
is simpler than the latter deterministic model. On the other hand, the specification
of a stochastic differential equation in Shigoka (1994) is more complex than that in
Benhabib et al. (2008). According to the specification due to Shigoka (1994),

du(t,ω) = g2(X (t,ω), u(t,ω)) + s̄dε(t,π1(ω)),

where s̄ is some constant with s̄ �= 0, and where du(t,ω) and dε(t,π1(ω)) denote
Lebesgue-Stieljes signed measures relative to t ∈ T, respectively. According to the
specification due to Benhabib et al. (2008),

lim
h→+0

u(t + h,ω) − u(t,ω)

h
= g2(X (t,ω), u(t,ω)).

Although Benhabib et al. (2008) does not include the proof of the stationarity, Mu-
rakami et al. (2016) includes the proof of this. The proof of the present study is
simpler than that of Nishimura and Shigoka (2006), because the stochastic differen-
tial equation in Benhabib et al. (2008) is simpler than that in Shigoka (1994).

3 Proof of Theorem 1

In the present section, we will prove Theorem 1. We assume that Assumption 1 and
either of Assumptions 2 and 3 are satisfied. LetU ⊂ R

2 be a set of all interior points
of D that is the closed subset specified in either of Assumptions 2 and 3. Then there
exists an open subset N of R × V such that T × D ⊂ N ⊂ R × V and there exists
a continuous function φ : N → V that satisfies following conditions:

(1) For each (t, X, u) ∈ N , φ(t, X, u) is C1-function of t , with φ(0, X, u) =
(X, u) ∈ V .

(2) For each (X, u) ∈ D,

lim
h→0

φ(t + h, X, u) − φ(t, X, u)

h
= G(φ(t, X, u)).

(3) φ(T × D) ⊂ D, and φ(T ×U ) ⊂ U .

Let d : D → R+ be defined as

d(X, u) := min
√

(X − x1)2 + (u − x2)2 subject to (x1, x2) ∈ ∂D.

Since ∂D is a compact set, d = d(X, u) is well-defined, and since d = d(X, u) is a
distance between a point in D and the set ∂D, d = d(X, u) is a continuous function
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of (X, u) ∈ D. Since U is the interior region of D, and since ∂D is the boundary of
U , for any (X, u) ∈ U , d = d(X, u) > 0, and (X, u + 1

2d(X, u)) ∈ U .

Let P̂0 : B(D̂) → [0, 1] be a probability measure that satisfies

P̂0{(X, u, Q) ∈ D̂ : (X, u) ∈ U } = 1.

We have defined P : B(�) → [0, 1] as the product measure of P̂0 and P̂1, where
P̂1 : B(B) → [0, 1] is the probability measure in Proposition 1. Let π̂ : D̂ → D be
the projection of D̂ onto D so that π̂(X, u, Q) = (X, u) for (X, u, Q) ∈ D̂. Then,
we have

P{ω ∈ � : (X, u) ∈ U } = 1.

Since π1(ω) = b, ε(t,π1(ω)) and τ (m,π1(ω)) are measurable functions of ω ∈ �.
We have defined Bt (�) as the smallest σ-field with respect to which (π0(ω),

ε(s,π1(ω)), 0 ≤ s ≤ t) is a family of measurable functions of ω ∈ �. For each
m ∈ N0, if t ≥ τ (m,π1(ω)), then τ (m,π1(ω)) is a Bt (�)-measurable function of
ω ∈ �, because t ≥ τ (m, b) so that τ (m, b) is aBt (B)-measurable function of b ∈ B.

Since φ(T,U ) ⊂ U and since τ (0,π1(ω)) = 0 ∧ τ (m + 1,π1(ω)) −
τ (m,π1(ω)) > 0 ∧ limm→∞ τ (m,π1(ω)) = ∞ for each (m,ω) ∈ N0 × �, the fol-
lowing constructions are well-defined. Let f : N0 × � → U and g : N0 × � → U
be defined as follows. For ω ∈ �, if π̂(π0(ω)) = (X, u) ∈ U , let f (0,ω) and g(0,ω)

be given by

f (0,ω) : = (π̂(π0(ω))),

g(0,ω) : = f (0,ω).

Choose some specific point (X
′
, u

′
) fromU in advance, and forω ∈ �, if π̂(π0(ω)) =

(X, u) ∈ ∂D, let f (0,ω) and g(0,ω) be given by

f (0,ω) : = (X
′
, u

′
),

g(0,ω) : = f (0,ω).

For (m,ω) ∈ N0 × �, and for given f (m,ω) and g(m,ω), let f (m + 1,ω) and
g(m + 1,ω) be given by

f (m + 1,ω) : = φ(τ (m + 1,π1(ω)) − τ (m,π1(ω)), g(m,ω)),

g(m + 1,ω) : = f (m + 1,ω) + (0,
1

2
d( f (m + 1,ω))).

Then, f (m,ω) ⊂ U ∧ g(m,ω) ⊂ U for each (m,ω) ∈ N0 × �. For eachm ∈ N0, if
t ≥ τ (m,π1(ω)), f (m,ω) and g(m,ω) are Bt (�)-measurable functions of ω ∈ �.

Note that for each (t,ω) ∈ T × �, there exists a unique elementm inN0 such that
τ (m,π1(ω)) ≤ t < τ (m + 1,π1(ω)). Let θ : T × � → U be defined as follows. For
each (t,ω) ∈ T × �, if τ (m,π1(ω)) ≤ t < τ (m + 1,π1(ω)), let θ(t,ω) be given by
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θ(t,ω) := φ(t − τ (m,π1(ω)), g(m,ω)).

Then, for each (t,ω) ∈ T × �, θ(t,ω) ∈ U , and for each t ∈ T, θ(t,ω) is a Bt (�)-
measurable function of ω ∈ �. For each (t,ω) ∈ T × �, let (X (t,ω), u(t,ω),

Q(t,ω)) be defined as

(X (t,ω), u(t,ω), Q(t,ω)) := (θ(t,ω),ϕ(θ(t,ω)).

Then, we can use the same argument as that of Sect. 5.2 in Murakami et al. (2016) to
show that a set of random variables {(X (t,ω), u(t,ω), Q(t,ω))}t∈T thus constructed
satisfies the conditions (1)–(6) in Definition 1. We can use the same arguments as
that of Sect. 5.3 in Murakami et al. (2016) to show that a set of random variables
{(X (t,ω), u(t,ω), Q(t,ω), ε(t,π1(ω)))}t∈T is subject to aMarkov process with sta-
tionary transition probabilities and that there is an invariant measure on D̂ × {1, 2}
such that if we assign this measure as an initial probability measure to D̂ × {1, 2},
then the resulting stochastic process is stationary, which implies that the condition
(7) in Definition 1 is satisfied.
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Hotelling Duopoly Revisited

Tönu Puu

Abstract Many articles have been written about Harold Hotelling’s model of two
competitors on a fixed line segment, competing by choosing mill price and location.
Most of them have focused on the paradoxical case of crowding in the middle when
demand is totally inelastic. Yet Hotelling conjectured that this would not happen if
the consumers not only chose the least expensive supplier, but their demand were
dependent on the price charged. However, surprisingly little has been written about
the case with elastic demand. Even less has been attempted to put the problem in a
dynamic format.

Keywords Hotelling duopoly · Elastic demand · Dynamic adjustment

1 Introduction

The enigmatic Hotelling model of duopoly on a fixed line interval appeared in 1929
Hotelling (1929). In a sense it was the first well structured case of Bertrand oligopoly
Bertrand (1883), as heterogeneity of a physically homogenous good was obtained
through spatial separation of suppliers and accrued transportation costs.

Unfortunately, Hotelling only analyzed the case where demand was totally inelas-
tic, which resulted in the paradox that both competitors would crowd in the centre.
Yet, Hotelling himself in his verbal discussion stated that the paradox would disap-
pear if demand were elastic—there would remain a tendency to gravitate towards
the centre, rather than locating at the socially optimal quartiles, though without the
extreme crowding.

It is a bit surprising that Hotelling did not himself follow this track. Perhaps he too
was under the spell of paradox, like following authors, and so wanted to emphasize
this case. There exists an immense literature in his aftermath. Unfortunately, citation
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databases do not extend as far back as to 1929, so it is difficult to give an exact
estimate.1

Analytically, the crowding version of the model is problematic, and even incon-
sistent. With location in the same point, the space Hotelling introduced disappears
again, and we are back at the problems that Bertrand pointed out Bertrand (1883).
Inconsistence arises from consumers choosing the lowest delivered price, which cre-
ates the market areas, but yet each customer buys one unit of commodity, no matter
what its price.

Lerner and Singer (1937) provided the first proof that the crowding paradox evap-
orated if one only assumed the consumers to have a reservation price; if delivered
price was higher they would buy nothing, otherwise just one unit as in the original
model. The contribution is still most enjoyable through its ingenious use of graphic
argument.

Very soon after, Smithies 1941 in two articles, Smithies (1941a, b) put up the
problem with a linear downsloping demand function, which seems to correspond to
what Hotelling had in mind. However, Smithies claimed that the integrals were too
complicated to evaluate.

So it was left to the present author as late as in 2002 Puu (2002) to carry out the
formal analysis of Smithies’s case. Dependent on the parameter values (maximum
demand price, transportation rate and unit production cost) three outcomes were
possible:

(1) Disjoint monopolies. (2) Genuine duopoly. (3) Cutting out monopoly.
The first case, occurs when transportation costs are high and the competitors

can locate so widely apart that demand goes to zero before they reach eachother’s
territories. The third case is ill-structured, like all cases of price war, and still needs
a truly convincing layout. The second case is genuine duopoly, well structured and
worthy of closer study.

In Puu andGardini (2002), Professor Laura Gardini and the present author studied
the dynamics of this genuine duopoly case. It turned out to be very simple; just a
contraction to equilibrium,with locations separated in space, not quite at the quartiles,
but not crowding in the middle either—quite as conjectured in Hotelling’s original
article.2

1Nodoubt the paradox created its popularity. Scientists replaced distance by just “similarity” in some
vague sense for competing products, or even for political opinions, all with doubtful measurability.
Such vague analogies deprive such a good scientific model of its qualification as science. Further,
to escape some consequences of the paradox, the unrealistic and most contrived idea of quadratic
transportation costs was launched and surprisingly gained popularity. d’Aspremont et al. (1979).
2However, this analysis (without motivation) assumed that the competitors shared the market as
a duopoly in a common boundary point, and that at the other ends each market extended to the
boundary points of Hotelling’s fixed interval.

In a communication to the present author Dr. Helge Sanner pointed out that the last may not
be true—the competitors might also end the markets where local demand dropped to zero. Unfor-
tunately the present author has not been able to locate any publication by Dr. Sanner to cite on
this.

Further thought, however, indicates that this case would never happen. If one endpoint only
extends to the point where demand vanishes, the competitor in question would always profit from
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It remains to formulate the entire model under elastic demand and to consider its
global dynamics. To provide a basis for such is the very purpose of this contribution.

The first task is to formulate themap, describe its equilibria and study its dynamic.

2 The Model

2.1 Assumptions and Notation

Consider a line interval [−1, 1] in which two competitors take locations x1, x2.
They charge mill prices p1, p2. Given a transport cost rate k, local price at x is
pi + k |x − xi |dependingon fromwhich supplier i = 1, 2 the commodity is bought.3

The boundary point is

x = x1 + x2
2

∓ p1 − p2

2k
(1)

(sign depending on whether x1 < x2 or x1 > x2).
The boundary point would be halfway between the locations of the competing

firms if their mill prices were equal. If not, the point is dragged in the direction of
the firm charging the higher mill price, thereby decreasing its market share.

However, it is possible that demand goes to zero before this boundary point is
reached. When this happens the firms can have disjoint non-competing monopoly
areas.

Assume the linear demand function qi = max (a − (pi + k |x − xi |) , 0).4
Accordingly, demand for each competitor goes to zero when

x = xi ± a − pi

k
(2)

We could call the expression a−pi

k market radius. Note that this applies both when
we have two disjoint monopolies, and when one firm cuts the other out to establish
one single monopoly. Market radius decreases with higher mill price and with higher

(Footnote 2 continued)
moving its location until an endpoint of the fixed interval is reached. This is because greater spatial
symmetry of the market resulting from this always increases profit.
3Mill pricing, where consumers pay for full transportation costs is our case. However, it is by no
means the only possibility. As the competitors are monopolists in their market areas, they can also
themselves provide for delivery and apply price discrimination, provided they do not charge more
for transport than its actual cost. It is well known that with linear demand perfect discrimination
implies charging for exactly half the transportation cost.
4Amore general formula for demand is qi = max (a − b (pi + k |x − xi |) , 0), but experience from
work with linear models shows that parameter b has no independent influence, so we simplify by
putting b = 1.
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Fig. 1 Picture of the
duopoly market case. For
variety we displayed the
market area of the left firm as
extending to the interval
boundary, whereas that of
the right firm falls short of it,
going only to the point where
local demand vanishes due to
a too high delivered price

transportation cost. High transportation cost would therefore favour establishing
disjoint monopolies.

From (1) we get two candidates for market area endpoints, and (2) adds further
four. Taking in account the fixed endpoints of the entire interval, chosen as ∓1, we
are dealing with eight potential endpoints for market areas.

The geometry of the format is shown in Fig. 1.

2.2 Total Demand and Profits

Let us so introduce symbols for these market area endpoints: αi ,βi . Given these, we
can calculate total demand

Qi =
∫ βi

αi

qi dx =
∫ βi

αi

a − (pi + k |x − xi |) dx

Despite Smithies’s doubts, integration is simple:

Qi = (a − pi ) (βi − αi ) − k

2

(
(xi − αi )

2 + (βi − xi )
2) (3)

Profits then are
Gi = (pi − c) Qi (4)

where c denotes constant unit production cost—for simplicity taken constant and
equal for both competitors.5

5It should be noted that Hotelling assumed production cost to be zero, like many other oligopoly
theorists, such as Cournot Cournot (1838), and von Stackelberg von Stackelberg (1934). Equal, but
nonzero costs do not complicate things notably, and provide a more reasonable first approximation.
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Note in particular that the price minus cost factor in (4) does not depend on
location. Hence, whenever we look for an optimal location, we can just maximize (3).

2.3 Market Area Endpoints

From our previous digression, it is obvious that the left endpoint of a market area αi

can take on the following values:

αi =

⎧⎪⎨
⎪⎩

−1

xi − a−pi

k
xi +x j

2 + pi −p j

2k

(5)

and the right endpoint βi

βi =

⎧⎪⎨
⎪⎩

xi +x j

2 − pi −p j

2k

xi + a−pi

k

1

(6)

Obviously we can combine each left market endpoint αi with each right endpoint
βi , except the case αi = xi +x j

2 + pi −p j

2k ,βi = xi +x j

2 − pi −p j

2k as in a shared market the
left endpoint of the firm to the right cannot be combined with the right endpoint of
the firm to the left.

This leaves eight cases6:

[αi ,βi ] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−1, xi +x j

2 − pi −p j

2k

]
, 1

[−1, xi + a−pi

k

]
, 2

[−1, 1] , 3
[
xi − a−pi

k ,
xi +x j

2 − pi −p j

2k

]
, 4

[
xi − a−pi

k , xi + a−pi

k

]
, 5

[
xi − a−pi

k , 1
]
, 6

[
xi +x j

2 + pi −p j

2k , xi + a−pi

k

]
, 7

[
xi +x j

2 + pi −p j

2k , 1
]
, 8

(7)

6Actually they represent even more cases as a generic firm i could locate to left or right. Further a
monopoly case can represent disjoint monopolies, or cutting out the competitor.
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This list exhausts all possibilities for total market demand, as only endpoints matter
in (3). Inmost cases, the evaluation is quite simple. A graphic summary of the regions
is displayed in Fig. 5.

Also recall that only total demand matters for the choice of optimal location.

2.4 Interpretation of the Cases

2.4.1 Shared Duopoly Market

The duopoly cases are listed as 1, 4, 7 and 8. In all they are four, because given the
location of one competitor, the other may choose to locate to the left or to right of it.
Further, its market at the outer end can extend to the respective interval endpoint, or
stop at the point where local demand vanishes. These are the most interesting cases
of the Hotelling model, as they deal with genuine duopoly. As mentioned, cases 1
and 8 were investigated in Puu and Gardini (2002), and it was about the cases 4 and
7 that the author was alerted by Dr. Sanner (Figs. 2, 3 and 4).

2.4.2 Monopolies

Cases 2, 5 and 6 represent monopoly. We can either have two coexistent disjoint
monopolies, not sharing any common boundary point, or one competitor cutting out
the other. Case 3 too is a cutting out monopoly that covers the entire fixed interval.
This case is what has been focused in the literature.

Fig. 2 A case of disjoint
monopolies on the fixed
interval that do not compete.
Such a case is most likely to
occur when transportation
costs are relatively high, so
that the monopoly areas
within which local demand
remains positive can be
accommodated within the
fixed interval
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Fig. 3 Cutout monopoly.
Through lowering mill price
the left firm makes delivered
price at the location of the
right firm lower than the mill
price of the latter, so taking
the entire market. This will,
of course, be contested by the
cut out firm in further moves

Fig. 4 Gain (right) and loss
(left) strips of total sales
when the firm to the right
takes a step towards the right
boundary of the fixed
interval. Note that it does not
quite stretch out the market
for the firm to the right to
this right boundary—so,
there remains a little further
possible gain in sales

2.5 Demand and Optimal Location

We can now use the endpoints listed in (7) to calculate total demand for the firms
according to (3). Recall that the choice of location in all cases can be done through
maximizing demand, as themultiplicative factor (pi − c) in the expression for profits
(4) does not include location.

After finding optimal locations that maximize demand, we can substitute it out,
and obtain expressions for profits that only depend on mill price. So, let us take the
list (7) case by case.

2.5.1 Cases 1 and 8 (Duopoly)

These true oligopoly situations are the only tough cases. It was these that, however,
were investigated in Puu and Gardini (2002) and shown to be simple contractions in
the dynamic adjustment process.
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In cases 1 and 8 the market of firm 1 extends from the left endpoint α1 = −1 of
the interval to a common market boundary point β1 = x1+x2

2 − p2−p1
2k . Substituting

in (3), we get

Q1 = (a − p1) (1 + β1) − k

2

(
(1 + x1)

2 + (β1 − x1)
2)

Maximizing through putting the derivative ∂Q1
∂x1

= 0, we can solve for a new optimum
location

x ′
1 = x2 − 4

5
+ 2a − 3p1 + p2

5k
(8)

Note that, as a consequence of choosing x ′
1 according to (8), the right market

boundary point is changed to

β′
1 = 3x2 − 2

5
+ a − 4p1 + 3p2

5k
(9)

This consequence of location choice is perceived by the firm, so, along with x ′
1

from (8), β′
1 from (9), must be substituted back in its estimate of demand.

Defining
λ1 = p2 + k (1 + x2) (10)

the resulting total demand becomes

Q′
1 = 1

10k

(
6 (a − p1)

2 − 4 (a − p1) (a − λ1) − (a − λ1)
2) (11)

Likewise for firm 2, whose market extends from α2 = x1+x2
2 − p2−p1

2k to β2 = 1,
substitution in (3) yields

Q2 = (a − p1) (1 − α2) − k

2

(
(α2 − x2)

2 + (1 − x2)
2
)

Putting ∂Q2
∂x2

= 0 and solving, we obtain

x ′
2 = x1 + 4

5
− 2a − 3p2 + p1

5k
(12)

Again this changes the left market boundary point to

α′
2 = 3x1 + 2

5
− a − 4p2 + 3p2

5k
(13)

which, again, along with substitution of the new location, must be substituted back
to get a total demand estimate. Defining
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λ2 = p2 + k (1 − x2) (14)

we get

Q′
2 = 1

10k

(
6 (a − p2)

2 − 4 (a − p2) (a − λ2) − (a − λ2)
2) (15)

Note two things: (i) the slight change of sign in (10) as compared to (14), and
that, given this, (11) and (15) have exactly the same form.

Also, note that λ1,λ2 contain all information about the competitor’s location and
mill price. About these any firm can only have expectations, and, as usual, we will
take the simplest possibility—that each firm believes the other to retain their previous
moves, even if they do not in a dynamic process.

This makes total demand, given optimal location choice, quadratic in its own mill
price for each firm.

Then multiplication by (pi − c) makes profit a cubic in mill price. So, once
we proceed to optimize with respect to mill price, first-order conditions result in a
quadratic to solve—though it is obvious which of its two solution roots provides
profit maximum. This analysis is carried out below.7

2.5.2 Cases 4 and 7 (Duopoly)

We can now pass to the cases where the firms still share a common market boundary
point, but the other market endpoint falls short of the interval limit because local
demand goes to zero before it is reached. I will call it the Sanner Case.

Again there are two cases, depending on which side of the prelocated competitor
the firm chooses.

Surprisingly these cases are considerably simpler than the previous. Taking case
4, the endpoints of the market are α1 = x1 − a−p1

k , the point where local demand
vanishes and β1 = x1+x2

2 − p1−p2
2k , where the delivered prices of the firms break even.

Substituting in (3) and putting ∂Q1
∂x1

= 0, we get the optimal location

x ′
1 = x2 − 2a − p1 − p2

k
(16)

which substituted back in (3) yields

Q′
1 = 1

k
(a − p1)

2 (17)

This is a formula we will encounter repeatedly in the sequel.

7We chose to denote the firm to the left 1, and the one to the right 2. This works in each single step,
but it is fully possible, and shows up in numerical experiment, that each firm can move to the other
side of its competitor, and so we must keep track of the numbering.
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In case 7, location is to the right of the competitor, between points α2 = x1+x2
2 +

p1−p2
2k and, β2 = x2 + a−p2

k , again substituting in (3), and putting ∂Q2
∂x2

= 0 we get
optimal location

x ′
2 = x1 + 2a − pi − p j

κ
(18)

Substituting back in (3) we again find the same formula as (17)

Q′
2 = 1

k
(a − p2)

2 (19)

Now there is a simple argument why the Sanner Case will never be chosen in
duopoly: Given any mill price, total demand will increase with the degree of sym-
metry of the market, which is obtained through approaching the interval limit ∓1
on the side of the firm. Then, either such move results in monopoly if there is space
enough, or in duopoly with a larger market demand. Further, the competitor has no
reason to retaliate at any stage because by such move the firm decreases competition
in the boundary point.

Digression on the Sanner Case

We can make this clear by a simple graphic argument. Take the case illustrated in
Fig. 4, where the market for the firm to the right does not stretch out to the right
interval endpoint. Then assume the firm changes location as indicated by the arrow.

The vertical shaded vertical strip to the right indicates the gain of total sales, the
one to the left, the loss to the competitor. As we see, the loss area is much smaller
than the gain area.

When the firm changes location, the gain area on the right has its boundary pushed
exactly the same distance as the change of location. However, the left market area is
moved much less, due to the sloping delivered price line of the competitor. This is, of
course, due to transportation cost, but the exact level for it does not matter—the left
loss strip remains narrower than the right gain strip. Further, in terms of area (total
sales), it is bounded above by the delivered price line, whereas the gain strip to the
right goes all way up to maximum chargeable price.8

2.5.3 Cases 2, 6 and 5 (Disjoint Monopolies)

The remaining cases are monopolies, coexistent and disjoint, or single cutting out
monopolies. The endpoint alternatives are the same, whether there is coexistence or
cutting out. Intuitively it seems that, given transportation costs are high, and the firms
can accommodate their relatively smallmarket areas in the preassigned segment, then
there is no point in going to extremes such as cutting out.

8Of course, a change of location will be followed by a change of mill price. But this is a further
issue, location can be chosen so as to maximize sales alone.
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Let us start with the monopoly cases where one market endpoint extends to the
fixed interval limit. If to the left, case 2, we have market endpoints α1 = −1 and
β1 = x1 + a−p1

k . Then, from (3)

Q1 = (a − p1)

(
1 + x1 + a − p1

k

)
− k

2

(
(1 + x1)

2 +
(

a − p1

k

)2
)

Putting ∂Qi

∂x1
= 0,

x ′
1 = a − p1

k
− 1 (20)

which substituted back yields

Q1 = 1

k
(a − p1)

2 (21)

i.e. again the same formula as (17).
For case 6, the firm locates on the right, with market limits α2 = x2 − a−p2

k and
β2 = 1,

Q2 = (a − p2)

(
1 − x2 + a − p2

k

)
− k

2

(
(1 − x2)

2 +
(

a − p2

k

)2
)

The optimal location is

x ′
2 = 1 − a − p2

k
(22)

Upon substitution back it again yields

Q1 = 1

k
(a − p1)

2 (23)

quite as (21).
Finally, let us so consider case 5, a monopoly where the market does not extend to

any of the interval endpoints. It extends from αi = xi − a−pi

k to βi = xi + a−pi

k , i.e.
as far as where demand vanishes at either end. Now there is no need to distinguish
between locations to left or right.

Substituting for the endpoints in (3), we obtain

Qi = 1

k
(a − pi )

2 (24)

i.e. again the same formula as in (21), (23), (17) and (19).9

9Notably, this time we did not to optimize with respect to location to get the formula. Demand, and
therefore profit as well, is independent of location, and location itself indeterminate. Therefore, we
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2.5.4 Case 3 (Cutting Out Monopoly)

Remains just one case 3, a monopoly extending over the whole interval [−1, 1]. This
can only be a cutting out monopoly. From (3), we immediately obtain

Qi = 2 (a − pi ) − k

2

(
(1 + xi )

2 + (1 − xi )
2
)

Optimizing with respect to location, we find10

x ′
i = 0 (25)

and substituting back the simple expression

Q′
i = 2 (a − pi ) − k (26)

2.6 Profit Maximization and Mill Price

We now have all the total demand expressions for all possible market area endpoint
[αi ,βi ] combinations. Likewise, we derived optimal location choices, unless they
were indeterminate. We can hence pass to considering profits as functions of mill
prices, and optimize with respect to these.

2.6.1 Cases 1, 8

Start with the toughest cases, where the interval is split in duopoly, and the market
areas stretch out to the interval endpoints at their far ends. Demand for cases 1 and 8
was given in (11) and (15), which had the same form given the different definitions
(10) and (14)

Q′
i = 1

10k

(
6 (a − pi )

2 − 4 (a − pi ) (a − λi ) − (a − λi )
2)

(Footnote 9 continued)
have the disadvantage of not getting a definite location choice for the map we want to formulate.
To solve this problem, consider that we deal with coexistent disjoint monopolies, whose maximum
profits do not depend on location. We can choose either −1 or 1. This actually means merging the
case with cases 2 or 6.
10Note that this case can only occur when transportation cost is very low. As the entire interval
[−1, 1] must be covered, market radius a−p

k must exceed unity, i.e. half the interval.
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Substituting in the profit expression G ′
i = (pi − c)Q′

i , it becomes a cubic in pi ,

G ′
i = (pi − c)Q′

i

The optimality condition ∂Gi
∂ pi

= 0 then yields a quadratic in pi :

18p2
i − 4(4a + 3c + 2λi )pi + a2 + 2a(4c + 3λi ) + λi (4c − λi ) = 0 (27)

The quadratic, as usual, has two roots, ofwhich the smaller provides profitmaximum:

p′
i = 4a + 3c + 2λi

9
−

√
36(a − c)2 − 24 (a − c)

(
a − λ j

) + 34
(
a − λ j

)2
18

(28)

Locations could now be obtained from (8) and (12) through substitution of pi ,
but if we write them down, they just look messy. In numerical work, it is easy to let
the computer do the job.

2.6.2 Cases 2, 4, 5, 6, 7

As we saw, demand in all these cases is given by one single formula, Qi =
1
k (a − pi )

2. These are two cases of duopoly with one end of the market limited
by vanishing local demand (Sanner cases, 4 and 7), and three cases of monopoly (2,
5, and 6), either coexistent or cutting out.

In all these cases profits are

Gi = 1

k
(pi − c) (a − pi )

2 (29)

Thus the optimum condition

∂Gi

∂ pi
= 1

k
(a − pi )

2 (a + 2c − 3pi ) = 0

has two zeros pi = a, and

pi = 1

3
a + 2

3
c (30)

The first is a minimum resulting in zero profit as mill price is equal to maximum
chargeable price, which results in vanishing demand everywhere, even at the location
of the mill. Expression (30) is a well-known formula for such linear models—to
charge a weighted average of maximum price and unit production cost, with weight
one third for the first and two thirds for the latter. See Beckmann (1968).
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Also maximum profit using (30) is now easy to calculate

Gi = 4

27k
(a − c)3 (31)

LocationsOnce we know optimal price for these five cases, we can calculate optimal
locations from (16), (18), (20), (22) and (25).11

Thus

2, 6 xi = ± 2

3k
(a − c) ∓ 1

4, 7 x1 = ±1

k
(p2 + kx2) ∓ 1

3k
(5a − 2c)

5 xi = ±
(

2

3k
(a − c) − 1

)

2.6.3 Case 3

From (26) we get profit

Gi = (pi − c) (2 (a − pi ) − k)

which, optimized with respect to price, yields

pi = 1

2
a + 1

2
c − 1

4
k

Substituted back, we obtain

Gi = 1

2

(
a − c − k

2

)2

This is a cutting out case with location chosen in the midpoint of the interval as we
see from (25). The case corresponds to the Hotelling paradox, and will no doubt be
contested by the competitor. Recall what was said about the conditionality of this
case on a low transportation cost, and also that there are other instances of cutout
behaviour.

11Note that though price according to (30) is in the right interval between c and a, it is by no means
certain that the location according to these formulas is reasonable—depending on parameters an
“optimal” location may even fall outside the admissible interval [−1, 1]. We will therefore have to
run a check of relevance with respect to region for each alternative once we proceed to formulating
the map. Note further that in the monopoly cases (except for cutting out) the location like optimal
price is independent of the competitor’s moves, whereas in the shared market cases 4 and 6 the best
reply depends on the expected move by the competitor.
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3 Summary for the Cases

To interpret Fig. 5, note that, taking x2, p2 as given, we can use the same type of
diagram as in all the pictures above as phase space for x ′

1, p′
1, the dash, as usual,

denoting the next move considered. Several features should be noted.
The empty areas in the rectangle, below c, and in the little triangle on top of the

competitor’s mill price, are such which firm 1 never considers—a mill price lower
than unit cost yields no profit, and neither does a combination of location and mill
price where the firm cuts itself out.

The structure seems quite complicated, but we see that the regions are separated
by parallel straight lines, three downsloping and three upsloping, whose formulas
are easy to state.

Define ri = pi + kxi , si = pi − kxi . Then the downsloping lines have formulas

r1 = 2a − r2
r1 = r2
r1 = a − k

and the upsloping

s1 = 2a − s2
s1 = s2
s1 = a − k

Further study, using our formulas for optimal location and mill pricing choice, show
that the optimal x ′

1, p′
1 points in the plane can only be located on stretches of these

sloping lines, which, of course, simplifies analysis a lot. We, however, do not present
the argument here as it leads into further detail.

Fig. 5 Possible moves
x ′

i , p′
i with regions relevant

for the eight endpoint
combinations (1),…(8)



50 T. Puu

Notably, there are three areas labelled with 5, those on top representing local
monopolies, left, respectively, right of the competitor. The area mid in the picture is
a single cutting out monopoly. Also regions 2 and 6 are in duplicate, local monopoly
extending to the interval boundary on top, and a corresponding cutting out case lower
down. In all we see 12 coloured regions, but three of them are further split by the
vertical line at the competitor’s location, so if we count locations to the left and right
of the competitor, we arrive at 15 different cases.

After computing profits, we choose the reaction which returns the highest profit.
Note that for dynamics the results are quite sufficient forwriting a simple computer

programme, though the map is too complicated with all its pieces to formulate any
elegant closed form iteration formula.

4 Equilibria

All numerical experiments show that there are no periodic ormore complicated orbits
for the map, provided we ignore the cutting out cases, which remain too ill-structured
to be included.However, there exist two different kinds of equilibrium states; genuine
duopoly with a common boundary, and disjoint non-competing monopoles.

4.1 Duopoly

The most interesting, though messy, case is oligopoly when the firms share the total
market between themwith some competition at the common boundary, cases 1 and 8.

4.1.1 Locations

As the firms are identical (facing the same demand and having the same production
and transport costs), it is a reasonable conjecture that in equilibrium they also charge
the same mill prices, i.e. p = p1 = p2. Substituting in (8) and (12), putting x ′

1 =
x1, x ′

2 = x2, now taking the equations as a simultaneous system, and solving,we get

x1 = 1

3

a − p

k
− 2

3
(32)

x2 = 2

3
− 1

3

a − p

k
(33)

Adding (32) and (33)
x1 + x2 = 0
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Obviously the firms locate symmetrically around the centre, which seems plausi-
ble by intuition.

Let us pay attention to two particular cases; (i) if a−p
k = 1

2 then x1 = − 1
2 , x2 =

1
2 and (ii) if a−p

k = 2 then x1 = x2 = 0. In the first case the firms locate socially
optimally at the quartiles, each at the centre of its half-interval, in the second they
crowd both in the centre, Hotelling’s main case.

Hence, we see that according to (32)–(33) both these outcomes are possible under
duopoly action, as are any cases between these. The locations depend on one single
compound expression, a−p

k , the difference of maximum chargeable price and actual
mill price, divided by the transportation rate.

4.1.2 Demand

Note that with equal mill prices, and symmetric locations from (9) and (13) we have
β1 = α2 = 0, so the market areas are α1 = −1,β1 = 0 and α2 = 0,β2 = 1.

Further, from (10) and (14)

λ = λ1 = λ2 = 4p − a + 5k

3
(34)

Substituting this in (11) and (15), along with p1 = p2 = p, we obtain

Q1 = Q2 = 6 (a − p)2 − 4 (a − p) (a − λ) − (a − λ)2

10k
(35)

4.1.3 Price and Profit

From (4), then
Gi = (p − c) Qi (36)

We already obtained the optimal duopoly prices in (28) above. As we deal with
equilibrium, we can remove the dash, delete the index on costs and mill prices and
substitute for λ1,λ2 from (34).

By this (28) becomes quite messy. Furthermore, substitution for λ1,λ2 introduces
mill prices under the root sign. Therefore, we have to square out the root again and
solve for mill price anew. As the resulting equation is quadratic in mill price, we
again have two roots and have to choose the relevant one, obtaining:

p = 2a + 3c + 8k

5
− 3

√
4(a − c)2 − 8 (a − c) k + 34k2

10
(37)
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We can restate this as

a − p

k
= 3

5
κ − 8

5
+ 3

10

√
4κ2 − 8κ + 34

where
κ = a − c

k
(38)

From equations (32)–(33) let us determine x1, x2 once we know
a−p

k . This ratio
was already designated as an important compound, but it depends onmill price,which
is a decision variable. The ratio κ = a−c

k has the same form, but is more fundamental
as it only contains parameters.

We can now use (37) and (34) in (35). Using the convenient (38), total demands
become

Q1 = Q2 = k

50

(
(22 − 2κ)

√
4κ2 − 8κ + 34 + 2κ2 − 24κ + 67

)

Further, using (36),

G1 = G2 = k2

250
((2κ2 − 44κ + 377)

√
4κ2 − 8κ + 34 + 4κ3 − 92κ2 + 482κ − 2194)

- not so elegant, but closed form expressions for total demands and profits anyhow.
As mentioned, this case was analyzed in Puu and Gardini (2002). Any dynamic

process defined by Eqs. (8), (12), (10), (14) and (28) is just a contraction. In Fig. 6,
we illustrate how fast this global approach to equilibrium goes.

In only five steps, the system has converged so close to equilibrium that further
iterations can no longer be distinguished. Not seen in the picture, but showing up

Fig. 6 Illustration of the
contraction to equilibrium
duopoly
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whenwe print the locations, is that in the firstmove the firms swap left/right positions.
Firm 2 starts so far to the right that it finds it better to move to the left of firm 1.

4.2 Monopolies

As for the monopoly cases, we already derived optimal prices, profits and locations,
unless they were indeterminate. Given parameter κ is high, for instance resulting
from a high transportation rate, only narrow market areas delimited by positive local
demand can be established. These can be easily accommodated in the fixed interval,
and there is no point in crowding to a duopoly. In these cases location is indeterminate,
because its exact choice does not influence demand or profit, provided the fixed
interval endpoints and the other competitor’s monopoly area are not touched.

Should the competitor be too centrally located, the firm will temporarily have to
choose a duopoly, but the competitor will then find it more profitable to establish a
monopoly area more to its side. This is confirmed by numerics. See Fig. 7.

We can even use the iterative system designed for duopoly, as it also works for
disjoint monopolies. Several interesting things can be noted in this case. The con-
vergence is again rather fast. Now, we take a starting position where the firms are
initially located very close to the centre. Further, the initial prices are so chosen
that firm 1 is actually cut out by firm 2. Yet both firms in the next move jump wide
apart—even so wide that they hit the interval boundaries. This, we already noted,
is inoptimal, so after that the firms start converging to their final positions, though
definite positions as defined by the duopoly process. As a matter of fact, once they
are disjoint monopolies, their exact final positions are indeterminate.

Fig. 7 Iteration to disjoint
monopolies, using the
duopoly map
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5 Further Issues

In a first analysis one can assume, as Hotelling originally, that both competitors are
free to choose location and mill price in each move.

5.1 Different Time Scales

However, we could also consider a combination of short run dynamics where only
prices change but location is fixed, and a long run dynamics where both location and
price are variable. In such a case, it is natural to connect location change with capital
formation. A firm is unlikely to change location as long as it has capital invested in
some plant. But capital wears out with time, and when it is time for renewal, then
also location can be changed.

The present author has in mind capital with constant rate of decay and “sud-
den death”, combined with a Leontief type of production function which produces
capacity limits.

5.2 Different Pricing Policies

Above we mentioned that price discrimination was not considered. Any competitors
with local monopoly market areas could consider price discrimination, arranging for
transportation and charging less than actual transportation cost. It is even possible
to combine discrimination in an inner area with mill pricing at the fringe towards
the competitor. See Beckmann (1968). Also note that uniform pricing is a case of
discrimination, though utterly unsuited for the Hotelling case as one does not get any
definite market boundary points.

5.3 Geographical Space

An intriguing problem is, of course, extending the Hotelling model to the two dimen-
sions of geographical space.Hotelling, like almost all economists dealingwith spatial
issues stopped short of this extension, because the complexity increases, and econo-
mists as a rule cannot use the mathematical tools needed for the study of phenomena
in two dimensions.

The first issue is, of course, to make clear what one means by the Hotelling
problem in two dimensions. In a sense a generalization from two firms on an interval
could be three firms in a triangle.
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However, as soon as one moves from one to two dimensions, one has to consider
the distance metric on which transportation costs depend. Now, all integrations using
the Euclidean distance become immensely messy. Much easier to deal with is, for
instance a Manhattan metric, as an idealization of an infinitely dense net of west–
east and south–north roads. Such calculations become much easier. But to obtain
an analog to the Hotelling problem one would need a region which conforms to the
equidistance loci of the metric, which would be a tilted square. But then the choice
would be four competing firms rather than three. Is this really the next generalization
step?

How about the triangle and three competitors? Does there exist any metric that
produces triangular distance loci? Yes, there is one, with roads in three different
directions. However, with lanes in both directions, the result is hexagonal distance
loci. However, if we let all roads be one-way, then we actually get distance loci that
are triangles.

Anyhow, the two dimensions of geographical space provide a real challenge, and
it is by no means obvious what the generalization of Hotelling’s model would look
like. The present author reviewed quite a number of extensions of the model to 2D,
unfortunately, none convincing.
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Abstract The intersection of the price function with the vertical axis is called the
maximum price and the slope of the price function is called the marginal price. It
is assumed that a monopoly has full information about the marginal price and its
own cost function but is uncertain about the maximum price. Based on repeated
price observations an adaptive learning process can be developed for the maximum
price. If the price observations have fixed delays, then the learning process can be
described by a delayed differential equation. In the cases of one or two delays,
the asymptotic behavior of the associated dynamic process is examined. Stability
conditions are derived and the occurrence of Hopf bifurcation is shown at the critical
values. The nonlinear learning process can generate complex dynamics in the case
of local instability when the delay is sufficiently long.
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1 Introduction

This paper is based on the familiar monopoly model in which there is only one firm
having linear price and cost functions. Its main purpose is to show how cyclic and
erratic dynamics can emerge from quite simple economic structures when uncer-
tainty, information delays, and behavioral nonlinearities are present. Implicit in
the textbook approach is an assumption of complete and instantaneous informa-
tion availability on price and cost functions. In consequence, the textbook-monopoly
can choose its optimal choices of price and quantity to maximize profit with one
shot. Thus the monopoly model is static in nature. The assumption of such a rational
monopoly is, however, questionable and unrealistic in real economies, since there are
always uncertainty and a time delay in collecting information and determining opti-
mal responses, and in addition, function relations such as the market price function
cannot be determined exactly based on theoretical consideration and observed data.
Getting closer to the real world and improving the monopoly theory, we replace
this extreme but convenient assumption with the more plausible one. Indeed, the
monopoly firm is assumed, first, to have only limited knowledge on the price func-
tion and, second, to obtain it with time delay. As a natural consequence of these
alternations, the firm gropes for its optimal choice by using data obtained through
market experiences. The modified monopoly model becomes dynamic in nature.

In the recent literature, it has been demonstrated that a boundedly rational
monopoly may exhibit simple as well as complex dynamic behavior. Nyarko (1991)
solves the problems of a profit maximizing monopoly without knowing the slope
and intercept of a linear demand and shows that using Bayesian updating leads to
cyclic actions and beliefs if the market demand is mis-specified. Furthermore, in the
framework with discrete-time scale, Puu (1995) shows that the boundedly rational
monopoly behaves in an erratic way under cubic demand with a reflection point. In
the similar setting, Naimzada and Ricchiuti (2008) represent that complex dynamics
can arise even if cubic demand does not have a reflection point. Naimzada (2012)
exhibits that delaymonopolistic dynamics can be described by the well-known logis-
tic equationwhen the firm takes a special learning scheme.More recentlyMatsumoto
and Szidarovszky (2014a, b) demonstrate that the monopoly equilibrium undergoes
to complex dynamics through either a period-doubling or a Neimark-Sacker bifur-
cation.

This paper considers monopoly dynamics in continuous-time scale and presents a
new characterization of a monopoly’s learning process under a limited knowledge of
themarket demand. It is, in particular, a continuation ofMatsumoto and Szidarovszky
(2012)where themonopoly does not know the price function andfixed timedelays are
introduced into the output adjustment process based on the gradient of the marginal
expected profit. It also aims to complement Matsumoto and Szidarovszky (2014a, b,
2015) where uncertain delays are modeled by continuously distributed time delays
when the firm wants to react to average past information instead of sudden market



Learning in Monopolies with Delayed Price Information 59

changes.1 Gradient dynamics is replaced with an adaptive learning scheme based
on profit maximizing behavior. Although there is price uncertainty and the price
information is delayed, the monopoly is still able to update its estimate on the price
function via the usage of price observations and its optimal price beliefs. We will
consider the cases of a single delay and twodelays, respectively, and then demonstrate
a variety of dynamics ranging from simple cyclic oscillations to complex behavior
involving chaos.

This paper develops as follows. The mathematical model is formulated in Sect. 2.
The case of a single delay is examined in Sect. 3, when the firm uses the most
current delayed price information to form its expectation about the maximum price.
In Sect. 4, it is assumed that the firm formulates its price expectation based on two
delayed observations by using a linear prediction scheme. Complete stability analysis
is given, the stability regions are determined and illustrated. The occurrence of Hopf
bifurcation is shown at the critical values of the bifurcation parameter, which is the
length of the single delay or one of the two delays. The last section offers conclusions
and further research directions.

2 The Mathematical Models

Consider a single product monopoly that sells its product to a homogeneous market.
Let q denote the output of the firm, p(q) = a − bq the price function andC(q) = cq
the cost function.2 Since p(0) = a and |∂ p(q)/∂q| = b, we call a the maximum
price and b the marginal price. There are many ways to introduce uncertainty into
this framework. In this study, it is assumed that the firm knows the marginal price
but does not know the maximum price. In consequence it has only an estimate of it
at each time period, which is denoted by ae(t). So the firm believes that its profit is

πe = (ae − bq)q − cq

1There are two different ways to model time delays in continuous-time scale: fixed time delay
and continuously distributed time delay (fixed delay and continuous delay henceforth). The choice
of the type of delay results in the use of different analytical tools. In the cases of fixed delay,
dynamics is described by a delay differential equation whose characteristic equation is a mixed
polynomial-exponential equation with infinitely many eigenvalues. Bellman and Cooke (1956)
offer methodology of complete stability analysis in such models. On the other hand, in the cases
of continuous delay, Volterra-type integro-differential equations are used to model the dynamics.
The theory of continuous delays with applications in population dynamics is offered by Cushing
(1977). Since Invernizzi and Medio (1991) have introduced continuous delays into mathematical
economics, its methodology is used in analyzing many economic dynamic models.
2Linear functions are assumed only for the sake of simplicity. We can obtain a similar learning
process to be defined even if both functions are nonlinear. It is also assumed for the sake of simplicity
that the firm has perfect knowledge of production technology (i.e., cost function).
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and its best response is

qe = ae − c

2b
.

Further, the firm expects the market price to be

pe = ae − bqe = ae + c

2
. (1)

However, the actual market price is determined by the real price function

pa = a − bqe = 2a − ae + c

2
. (2)

Using these price data, thefirmupdates its estimate. The simplestway for adjusting
the estimate is the following. If the actual price is higher than the expected price,
then the firm shifts its believed price function by increasing the value of ae, and if the
actual price is the smaller, then the firm decreases the value of ae. If the two prices
are the same, then the firm wants to keep its estimate of the maximum price. This
adjustment or learning process can be modeled by the differential equation

ȧe(t) = k
[
pa(t) − pe(t)

]
,

where k > 0 is the speed of adjustment. Substituting relations (1) and (2) reduces
the adjustment equation to a linear differential equation with respect to ae as

ȧe(t) = k
[
a − ae(t)

]
. (3)

In another possible learning process, thefirm revises the estimate in such away that
the growth rate of the estimate is proportional to the difference between the expected
and actual prices. Replacing ȧe(t) in Eq. (3) with ȧe(t)/ae(t) yields a different form
of the adjustment process

ȧe(t)

ae(t)
= k

[
a − ae(t)

]

or multiplying both sides by ae(t) generates the logistic model

ȧe(t) = kae(t)
[
a − ae(t)

]
(4)

which is a nonlinear differential equation.
If there is a time delay τ in the estimated price, then we can rewrite the estimated

price and market price at time t based on information at time t − τ as

pe(t; t − τ ) = ae(t − τ ) − bqe(t; t − τ )
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and
pa(t; t − τ ) = a − bqe(t; t − τ )

where qe(t; t − τ ) is the delay best reply,

qe(t; t − τ ) = ae(t − τ ) − c

2b
.

Then Eqs. (3) and (4) have to be modified, respectively, as

ȧe(t) = k
[
a − ae(t − τ )

]
(5)

and
ȧe(t) = kae(t)

[
a − ae(t − τ )

]
. (6)

If the firm uses two past price information, then the delay dynamic equations turn
to be

ȧe(t) = k
[
a − ωae(t − τ1) − (1 − ω)ae(t − τ2)

]
(7)

and
ȧe(t) = kae(t)

[
a − ωae(t − τ1) − (1 − ω)ae(t − τ2)

]
, (8)

where τ1 and τ2 denote the delays in the price information. If the firm uses inter-
polation between the observations, then 0 < ω < 1, and if it uses extrapolation to
predict the current price, then the value of ω can be negative or even greater than
unity. Notice that for ω = 0 and ω = 1, Eqs. (7) and (8) reduce to Eqs. (5) and (6).
If 0 < ω < 1, then the cases of ω ≤ 1/2 are the same as ω ≥ 1/2 because of the
symmetry of the model between τ1 and τ2. Similarly, if ω < 0, then 1 − ω > 1, so
the cases of ω < 0 and ω > 1 are also equivalent. Therefore in models (7) and (8),
we will consider only the case of 1/2,= ω < 1.

By introducing the new variable z(t) = ae(t) − a, Eq. (5) and the linearized ver-
sion of Eq. (6) are written as

ż(t) + αz(t − τ ) = 0 (9)

whereα = k orα = ak. By the sameway, Eq. (7) and the linearized version of Eq. (8)
are modified as

ż(t) + αωz(t − τ1) + α(1 − ω)z(t − τ2) = 0. (10)

In the following sections, we will examine the asymptotic behavior of the trajec-
tories of Eqs. (9) and (10).
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3 Single Fixed Delay

If there is no delay, then τ = 0 and Eq. (9) becomes an ordinary differential equation
with characteristic polynomial λ + α. So, the only eigenvalue is negative implying
the global asymptotic stability of the steady state z̄ = 0 if the original equation is
linear and the local asymptotic stability if nonlinear. The steady state corresponds to
the true value of the maximum price. If τ > 0, then the exponential form z(t) = eλt u
of the solution gives the characteristic equation,

λ + αe−λτ = 0. (11)

Since the only eigenvalue is negative at τ = 0, we expect asymptotical stability
for sufficiently small values of τ and loss of stability for sufficiently large values
of τ . If the steady state becomes unstable, then stability switch must occur when
λ = iν. If λ is an eigenvalue, then its complex conjugate is also an eigenvalue. In
consequence we can assume, without any loss of generality, that ν > 0. So Eq. (11)
can be written as

iν + αe−iντ = 0.

By separating the real and imaginary parts, we have

α cos ντ = 0

and
ν − α sin ντ = 0.

Therefore
cos ντ = 0 and sin ντ = ν

α

with ν = α leading to infinitely many solutions,

τ = 1

α

(π

2
+ 2nπ

)
for n = 0, 1, 2, . . . (12)

The solution τ with n = 0 forms a downward-sloping curve with respect to α,

τ ∗ = π

2α
with α = k or α = ak.

Applying the main theorem in Hayes (1950) or the same result obtained differ-
ently in Matsumoto and Szidarovszky (2013), we can find that this curve divides
the nonnegative (α, τ ) plane into two subregions; the real parts of the roots of the
characteristic equation are all negative in the region below the curve and some roots
are positive in the region above. This curve is often called a partition curve separat-
ing the stability region from the instability region. Notice that the critical value of
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τ decreases with α, so a larger value of α caused by the high speed of adjustment
and/or the larger maximum price makes the steady state less stable.

We can easily prove that all pure complex roots of Eq. (11) are simple. If λ is a
multiple eigenvalue, then

λ + αe−λτ = 0

and
1 + αe−λτ (−τ ) = 0

implying that
1 + λτ = 0

or

λ = −1

τ

which is a real and negative value.
In order to detect stability switches and the emergence of a Hopf bifurcation, we

select τ as the bifurcation parameter and consider λ as function of τ , λ = λ(τ ). By
implicitly differentiating Eq. (11) with respect to τ , we have

dλ

dτ
+ αe−λτ

(
−dλ

dτ
τ − λ

)
= 0

implying that
dλ

dτ
= − λ2

1 + τλ

and as λ = iν, its real part becomes

Re

(
dλ

dτ

)
= Re

(
ν2

1 + iτν

)

= ν2

1 + (τν)2
> 0.

At the critical value of τ , the sign of the real part of an eigenvalue changes from
negative to positive and it is a Hopf bifurcation point of the nonlinear learning process
(6) with one delay that has a family of periodic solutions. Thus we have the following
results:

Theorem 1 (1) For the linear adjustment process (5), stability of the steady state is
lost at the critical value of τ ,

τ ∗ = π

2k
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and cannot be regained for larger values of τ > τ ∗. (2) For the logistic adjustment
process (6), stability of the steady state is lost at

τ ∗∗ = π

2ak

and limit cycles appear through Hopf bifurcation for τ > τ ∗∗.

An intuitive reason why stability switch occurs only at the critical value of τ with
n = 0 is the following. Notice first that the delay differential equation has infinitely
many eigenvalues and second that their real parts are all negative for τ < τ ∗. When
increasing τ arrives at the partition curve, then the real part of one eigenvalue becomes
zero and its derivative with respect to τ is positive implying that the real part changes
its sign to positive from negative. Hence the steady state loses stability at this critical
value. Further increasing τ crosses the (α, τ ) curve defined by Eq. (12) with n = 1.
There the real part of another eigenvalue changes its sign to positive from negative.
Repeating the same arguments, we see that stability cannot be regained and therefore
no stability switch occurs for any n ≥ 1. Hence stability is changed only when τ
crosses the partition curve.

Theorem1 is numerically confirmed. In Fig. 1a, three cyclic trajectories generated
by the linear delay equation (5) are depicted under a = 1 and k = 1. The initial
functions are the same, φ(t) = 0.5 for t ≤ 0 but lengths of delay are different. The
blue trajectory with τ = τ ∗ − 0.1 shows damped oscillation approaching the steady
state, the black trajectory with τ = τ ∗ converges to a limit cycle (i.e., a degenerated
Hopf cycle) and the red trajectory with τ = τ ∗ + 0.1 cyclically diverges away from
the steady state (The color versions of the figures of this chapters can be found in the
e-version of this book). On the other hand, in Fig. 1b, one limit cycle generated by
the logistic delay equation (6) is illustrated under the same parametric conditions, the
same initial function and τ = τ ∗∗ + 0.05. By comparing these numerical results, it

Fig. 1 Cyclic oscillations. a Linear learning. b Nonlinear learning
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is quite evident that nonlinearity of the logistic equation can be a source of persistent
fluctuations when the steady state loses its stability.

4 Two Fixed Delays

In this section, we draw attention to asymptotic behavior of differential equation (8)
with two delays. Its characteristic equation is obtained by substituting the exponential
form q(t) = eλt u into Eq. (10) and arranging the terms:

λ + αωe−λτ1 + α(1 − ω)e−λτ2 = 0

or
λ̄ + ωe−λ̄γ1 + (1 − ω)e−λ̄γ2 = 0, (13)

where λ̄ = λ/α, γ1 = ατ1 and γ2 = ατ2. If γ1 = γ2 = 0 (or τ1 = τ2 = 0), then the
steady state is asymptotically stable, since the only eigenvalue is negative. In order
to find stability switches, we assume again that λ̄ = iν with ν > 0. Then Eq. (13)
becomes

iν + ωe−iνγ1 + (1 − ω)e−iνγ2 = 0.

Separating the real and imaginary parts yields

ω cos νγ1 + (1 − ω) cos νγ2 = 0 (14)

and
ν − ω sin νγ1 − (1 − ω) sin νγ2 = 0 (15)

when ω ≥ 1/2 and ω �= 1 are assumed. We first examine two boundary cases, one
with γ1 = 0 and the other with γ2 = 0, to obtain the following two results.

Theorem 2 If γ1 = 0, then the steady state is locally asymptotically stable for all
γ2 > 0.

Proof In the case of γ1 = 0, Eq. (14) is reduced as

cos νγ2 = − ω

1 − ω
.

If ω = 1/2, then cos νγ2 = −1 so sin νγ2 = 0 implying that ν = 0, which is
a contradiction. If 1/2 < ω < 1, then −ω/(1 − ω) < −1, so no solution exists.
Therefore Eq. (13) has no pure imaginary roots that cross the imaginary axis when
γ2 increases from zero. �
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Putting this result differently, we can say that for γ1 = 0, delay γ2 is harmless
implying that the steady state is locally asymptotically stable regardless of the values
of γ2. We now proceed to the other case.

Theorem 3 If γ2 = 0 and ω > 1/2, then the steady state is locally asymptotically
stable for 0 < γ1 < γ∗

1 and locally unstable if γ1 > γ∗
1 where the critical value of γ1

is defined as

γ∗
1 = cos−1

(− 1−ω
ω

)
√
2ω − 1

.

Proof In the case of γ2 = 0, (14) and (15) are reduced to

(1 − ω) + ω cos νγ1 = 0

and
ν − ω sin νγ1 = 0.

Moving 1 − ω and ν to the right-hand sides, squaring both sides and adding the
resulted equations yield

ν2 = 2ω − 1.

The positive solution of ν is

ν = √
2ω − 1

where ω > 1/2. Substituting this value into the first equation above and solving the
resultant equation, we have γ∗

1 , the critical value of γ1. In the same way as in proving
Theorem1, we arrive at the stability result by applying Hays’ theorem or our result
in Matsumoto and Szidarovszky (2012). �

We now examine the general case of γ1 > 0 and γ2 > 0. By introducing the new
variables

x = sin νγ1 and y = sin νγ2,

Equation (14) implies that

ω2(1 − x2) = (1 − ω)2(1 − y2)

or

− ω2x2 + (1 − ω)2y2 = 1 − 2ω (16)

and from (15),

y = ν − ωx

1 − ω
. (17)
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By combining (16) and (17), we get an equation for x,

−ω2x2 + (1 − ω)2
(

ν − ωx

1 − ω

)2

= 1 − 2ω

implying that

x = ν2 + 2ω − 1

2νω

and from (17),

y = ν2 − 2ω + 1

2ν(1 − ω)
.

These two equations provide a parametric representation in the (γ1, γ2) plane:

sin νγ1 = ν2 + 2ω − 1

2νω
and sin νγ2 = ν2 − 2ω + 1

2ν(1 − ω)
. (18)

The feasibility of solutions requires that

− 1 ≤ ν2 + 2ω − 1

2νω
≤ 1 (19)

and

− 1 ≤ ν2 − 2ω + 1

2ν(1 − ω)
≤ 1. (20)

Consider first condition (19), which is a pair of quadratic inequalities in ν,

ν2 + 2νω + 2ω − 1 ≥ 0 (21)

and
ν2 − 2νω + 2ω − 1 ≤ 0 (22)

The roots of (21) are −1 and 1 − 2ω, and the roots of (22) are 2ω − 1 and 1.
Condition (20) is also a pair of quadratic inequalities,

ν2 + 2ν(1 − ω) + (1 − 2ω) ≥ 0 (23)

and
ν2 − 2ν(1 − ω) + (1 − 2ω) ≤ 0 (24)

with−1 and 2ω − 1 being the roots of (23) and 1 − 2ω and 1 being the roots of (24).
So if ω < 1, then the value of ν has to satisfy the following relation:

2ω − 1 ≤ ν ≤ 1.
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As it was explained earlier, we have assumed that ω ≥ 1/2. The remaining part
of this section is divided into two subsections. First, the nonsymmetric case (i.e.,
1 > ω > 1/2) is examined in Sect. 4.1, then the symmetric case (i.e., ω = 1/2) in
Sect. 4.2.

4.1 The Case of 1
2 < ω < 1

In this subsection, we assume that 1/2 < ω < 1. Since from (14), we see that the
signs of cos νγ1 and cosνγ2 are different, Eq. (18) imply that

L1(k, n) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ1 = 1

ν

(
sin−1

(
ν2 + 2ω − 1

2νω

)
+ 2kπ

)
(k ≥ 0)

γ2 = 1

ν

(
π − sin−1

(
ν2 − 2ω + 1

2ν(1 − ω)

)
+ 2nπ

)
(n ≥ 0)

(25)

or

L2(k, n) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ1 = 1

ν

(
π − sin−1

(
ν2 + 2ω − 1

2νω

)
+ 2kπ

)
(k ≥ 0)

γ2 = 1

ν

(
sin−1

(
ν2 − 2ω + 1

2ν(1 − ω)

)
+ 2nπ

)
(n ≥ 0)

(26)

which gives two sets of parametric curves in the (γ1, γ2) plane. The domain of ω is
the interval [2ω − 1, 1]. At the initial point ν = 2ω − 1, we have

ν2 + 2ω − 1

2νω
= 1 and

ν2 − 2ω + 1

2ν(1 − ω)
= −1

and at the end point ν = 1, we have

ν2 + 2ω − 1

2νω
= 1 and

ν2 − 2ω + 1

2ν(1 − ω)
= 1.

Therefore the initial and end points of L1(k, n) are

I1(k, n) =
(

1

2ω − 1

(π

2
+ 2kπ

)
,

1

2ω − 1

(
3π

2
+ 2nπ

))

and
E1(k, n) =

(π

2
+ 2kπ,

π

2
+ 2nπ

)
.
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and similarly, the initial and end points of L2(k, n) are

I2(k, n) =
(

1

2ω − 1

(π

2
+ 2kπ

)
,

1

2ω − 1

(
−π

2
+ 2nπ

))

and
E2(k, n) =

(π

2
+ 2kπ,

π

2
+ 2nπ

)
.

Notice that E1(k, n) = E2(k, n) and I1(k, n) = I2(k, n + 1), that is, L1(k, n) and
L2(k, n) have the same end points and L1(k, n) and L2(k, n + 1) have the same initial
points. Hence the segments

(L2(k, 0), L1(k, 0), L2(k, 1), L1(k, 1), L2(k, 2), L1(k, 2), . . .)

starting at I2(k, 0) and passing through points

E2(k, 0) = E1(k, 0), I1(k, 0) = I2(k, 1), E2(k, 1) = E1(k, 1), . . .

form a continuous curve.
Figure2 illustrates the loci L1(k, n) and L2(k, n) with the value of ν varying

from 2ω − 1 to unity for n = 0, 1, 2 and k = 0. The parameter value ω = 0.8 is
selected. The red curves are L1(k, n) and the blue curves are L2(k, n). The red and
blue curves shift upward when n increases and rightward when k increases. There
the initial point I2(0, 0) is infeasible, and L2(0, 0) is feasible only for ν ≥ √

2ω − 1.
Notice that I1(0, n) = I2(0, n + 1) at point In for n = 0, 1 and E1(0, n) = E2(0, n)
at point En for n = 0, 1, 2. γm

1 � 1.493 is the minimum γ1-value of the segment
L1(0, n) while γM

1 � 2.733 is the maximum γ1-value of the segment L2(0, n). It
can be checked that γ0

1 � 2.354 is the γ1-value of the intersection of the segment
L2(0, 0) with the horizontal axis and is identical with γ∗

1 given in Theorem3. The

Fig. 2 Partition curves with
k = 0 and n = 0, 1, 2
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partition curve stays within the interval [γm
1 , γ

M
1 ] when k = 0 but its shape could be

different for a different value of ω. It will be shown that the steady state is locally
asymptotically stable in the yellow region of Fig. 2.

Apparently γm
1 < γ0

1 is implying that the steady state is locally asymptotically
stable for 0 < γ1 < γm

1 and γ2 = 0 due to Theorem3. Since the segment Li (0, n)
is in the interval [γm

1 , γ
M
1 ], there are no eigenvalues changing the sign of the real

part when γ2 increases. In other words, the real parts of the eigenvalues are negative
for γ1 < γm

1 and any γ2 > 0. Hence the steady state is locally asymptotically stable.
Such delays of (γ1, γ2) do not affect asymptotic behavior of the steady state and thus
are harmless. We summarize this result in the following theorem:

Theorem 4 If k = 0 and 0 < γ1 < γm
1 , then delay γ2 is harmless, so the steady state

is locally asymptotically stable.

We now move to the case of γ1 > γm
1 and examine the directions of the stability

switches by selecting γ1 as the bifurcation parameter with fixed value of γ2. So we
consider the eigenvalue as a function of the bifurcation parameter, λ̄ = λ̄(γ1). By
implicitly differentiating Eq. (13) with respect to γ1, we have

dλ̄

dγ1
+ ωe−λ̄γ1

(
− dλ̄

dγ1
γ1 − λ̄

)
+ (1 − ω)e−λ̄γ2

(
− dλ̄

dγ1
γ2

)
= 0

implying that
dλ̄

dγ1
= ωλ̄e−λ̄γ1

1 − ωγ1e−λ̄γ1 − (1 − ω)γ2e−λ̄γ2
. (27)

Since from (13)
(1 − ω)e−λ̄γ2 = −λ̄ − ωe−λ̄γ1 ,

the right-hand side of Eq. (27) can be rewritten as

dλ̄

dγ1
= ωλ̄e−λ̄γ1

1 + λ̄γ2 + ω(γ2 − γ1)e−λ̄γ1
.

If λ̄ = iν, then

dλ̄

dγ1
= iνω (cos νγ1 − i sin νγ1)

1 + iνγ2 + ω(γ2 − γ1) (cos νγ1 − i sin νγ1)
. (28)

Its real part is

Re

[
dλ̄

dγ1

]
= νω [sin νγ1 + νγ2 cos νγ1]

(1 + ω(γ2 − γ1) cos νγ1)2 + (νγ2 − ω(γ2 − γ1) sin νγ1)2
, (29)
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Fig. 3 Bifurcation diagrams I with different values of γ2. a γ2 = 4. b γ2 = 12

As is already shown in Theorem3, the steady state is asymptotically stable for
γ1 = 0 and anyγ2 > 0.Gradually increasing the value ofγ1 with fixed value ofγ2, the
horizontal line crosses either L1(0, n) or L2(0, n). Consider first the intercept with
the segment L1(0, n). Since both sin νγ1 and cos νγ1 are positive for νγ1 ∈ (0,π/2),

Re

[
dλ̄

dγ1

]
> 0.

This inequality implies that as γ1 increases, stability is lost when γ1 crosses the
segment L1(0, n). In the case of the linear learning process, local instability leads
to global instability. However this is not necessary true if the learning process is
nonlinear. To confirm global behavior, two bifurcation diagrams generated by the
delay logistic equation (8) are illustrated.3 In particular, we vary γ1 from γm

1 to γM
1

in 0.01 increments, calculate 1000 values for each value of γ1 and use the last 300
values to get rid of the transients. The local maximum and minimum values of the
trajectory are plotted against γ1 to construct a bifurcation diagram of ae with respect
to γ1. In Fig. 3a, γ2 is fixed at 4 and γ1 increases along the lowest horizontal dotted
line of Fig. 2. The stable steady state loses stability at γP

1 � 1.691, the intersection
with the segment L1(0, 0).4 The bifurcation diagram in Fig. 3a takes a distorted C-
shape and its upper part is thick, indicating that trajectories are quasi-periodic with

3The linear equation (7) with two delays generates the same simple dynamics as the linear equation
(3) with one delay. So no further considerations are given to it.
4Using the second equation of (25), we solve equation

4 = 1

ν

(
π − sin−1

(
ν2 − 2ω + 1

2ν(1 − ω)

))

for ν and then substitute the solution into the first equation of (25) to obtain the value of γP
1 .
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minor fluctuations in their local maximum values for γ1 > γP
1 . It is further seen that

the periodic cycle expands as γ1 becomes larger. In Fig. 3b, γ2 is changed to 12 and
γ1 increases along the third highest horizontal dotted line of Fig. 2. The stability is
lost at γP

1 � 1.80 where the dotted line crosses the segment L1(0, 1) from the left.5

As γ1 gets larger than γP
1 , erratic (chaotic) behavior emerges via a period-doubling

bifurcation. Further increasing γ1 suddenly reduces complex dynamics to simple
periodic oscillations for γ1 being close to γM

1 . Only the values of γ2 are different
between these two diagrams. So a larger γ2 can be a source of erratic oscillations of
ae(t). These results are numerically confirmed and thus summarized as follows:

Proposition 1 The steady state loses local stability when increasing γ1 crosses the
segment L1(0, n) from left for the first time and global behavior of the unstable steady
state exhibits simple oscillations if γ2 is relatively small and complex oscillations if
γ2 is relatively large.

Assume next that γ1 crosses a segment L2(0, n) where cos νγ1 < 0 as νγ1 ∈
(π/2, π). It is clear from (29) that

Re

[
dλ̄

dγ1

]
= − ν3ω cos νγ1

(1 + ω(γ2 − γ1) cos νγ1)2 + (νγ2 − ω(γ2 − γ1) sin νγ1)2
∂γ2

∂ν

(30)

where, by implicitly differentiating the second equation in (18) and using (14), we
have

∂γ2

∂ν
= − 1

ν2

sin νγ1 + νγ2 cos νγ1

cos νγ1
.

Since the first factor with the minus sign of (30) is positive, stability is switched
to instability when ∂γ2/∂ν > 0 and instabiliy might be switched to stability when
∂γ2/∂ν < 0. Although it is possible to confirm analytically the sign of the deriva-
tive ∂γ2/∂ν on the segment L2(0, n), we numerically check it.6 We also examine
responses of the nonlinear learning as a function of γ1 for two different fixed values
of γ2,

γ2 = 3π

2(2ω − 1)
and γ2 = 9π

2
.

We start with γ2 = 3π/(2(2ω − 1)) � 7.85. Although it is not clear in Fig. 2, the
segment L2(0, 1) takes a convex–concave shape. So the dotted horizontal line at
3π/(2(2ω − 1)) could have multiple intersects with L2(0, 1). The second equation
of (26) determines a value of γ2. So solving the following equation:

3π

2(2ω − 1)
= 1

ν

(
sin−1

(
ν2 − 2ω + 1

2ν(1 − ω)

)
+ 2π

)

5See footnote 4 for detailed arguments to determine γP
1 .

6See Matsumoto and Szidarovszky (2012) for analytical examinations of the sign of the derivative.
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with ω = 0.8 for ν yields three solutions,

νa = 1, νb � 0.84, and νc = 0.6,

each of which is then substituted into the first equation of (26) to obtain three corre-
sponding values of γ1,

γa
1 = π

2
� 1.57, γb

1 � 2.15 , and γc
1 = π

2(2ω − 1)
� 2.62.

Notice that γa
1 and γc

1 are the γ1 -values of the points E1 and I0 in Fig. 2. Fixing the
parameter γ2 at 3π/(2(2ω − 1)), we perform simulations of Eq. (8) for different γ1
values to confirm two dynamic results; one is the appearance and disappearance of
a limit cycle for γa

1 < γ1 < γb
1 and the other is initial point dependency of dynamics

for γb
1 < γ1 < γc

1. We will discuss these results in detail.
Characterization of bifurcation occurring along the dotted line is given. Start with

Fig. 4a. The steady state is locally stable forγm
1 < γ1 < γa

1 and loses stability forγ1 =
γa
1 at which ∂γ2/∂ν > 0 implying that the real part of an eigenvalue is positive for

γ1 > γa
1 . With further increasing γ1, it bifurcates to a limit cycle which first expands,

then shrinks and finally merges to the steady state to regain stability for γ1 = γb
1 .

There ∂γ2/∂ν < 0 implies that the real part of the same eigenvalue becomes negative
again for γ1 > γb

1 . For γ
b
1 < γ1 < γc

1, the steady state is locally asymptotically stable
as the dotted line is in the yellow region of Fig. 2. In order to examine global behavior,
we simulate the nonlinear learning process with a constant initial function defined for
t ≤ 0 having slightly different constant values, ϕ(t) = 0.2,ϕ(t) = 0.4,ϕ(t) = 0.6
and ϕ(t) = 0.8. Two results are numerically confirmed: the first is that the learning
process generates the same dynamics regardless of the different initial functions if
γ1 ≤ γb

1 or γ1 > γc
1; the second is that for γb

1 < γ1 < γc
1, a trajectory converges to the

Fig. 4 Bifurcation diagram II with different values of γ2. a γ2 = 3π
2(2ω−1) . b γ2 = 9π

2
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steady state whenϕ(t) = 0.87 while it bifurcates to a periodic cycle by discontinuous
jump when any other initial function is selected and further, the jumping value of
γ1 depends on the selection of the initial function. In particular, the green trajectory
with ϕ(t) = 0.2 jumps to the periodic cycle at the first dotted point in Fig. 4a, the
orange trajectory with ϕ(t) = 0.4 at the second dotted point, the blue trajectory with
ϕ(t) = 0.6 at the third dotted point and finally the red trajectory with ϕ(t) = 0.8 at
the fourth dotted point. Depending on a choice of the initial function, the same delay
equation generates different global dynamics.

In Fig. 4b, γ2 is increased to 9π/2 � 14.14 and the horizontal dotted line at 9π/2
crosses the segment L2(0, 2) twice at the points

γa
1 = π

2
� 1.57 and γb

1 � 1.78.

Stability is lost at γ1 = γa
1 for which the dotted line crosses L2(0, 2) with

∂γ2/∂ν > 0 and regained at γ1 = γb
1 for which the dotted line crosses L2(0, 2) with

∂γ2/∂ν < 0. The dotted line also crosses the segment L1(0, 1) with ∂γ2/∂ν > 0 at

γc
1 � 1.93

for which stability is lost again. Taking ϕ(t) = 0.9, we simulate the model and
obtain the following results. The appearance and disappearance of a limit cycle for
γa
1 < γ1 < γb

1 is observed again. Although the initial point dependency is observed
in the interval (γb

1 , γ
c
1) in this case as well, we omit it from Fig. 4b to avoid the messy

bifurcation diagram. Instead, it should be noticed that complex behavior emerges
via a period-doubling bifurcation for γc

1 < γ1 < γM
1 . Comparing these bifurcation

diagrams where only the values of γ2 are different leads to the same conclusion that
a larger γ2 can be a source of erratic oscillations of ae(t).

Proposition 2 When the horizontal line of γ1 crosses the segment of L2(0, n) for
the first time from left, then three different dynamics emerge; (1) the steady state
bifurcates to a limit cycle that expands, shrinks and thenmerges to the steady state for
γa
1 < γ1 < γb

1 ; (2) depending on a choice of the initial functions, it becomes locally
asymptotically stable or bifurcates to a periodic oscillation for γb

1 < γ1 < γc
1; (3)

it proceeds to a periodic oscillation or chaos via a period-doubling cascade for
γc
1 < γ1 < γM

1 according to whether γ2 is small or large.

In the next simulation, γ2 is increased to 17 and then kept fixed. γ1 is increased
along the highest horizontal dotted line of Fig. 2. As can be seen, the horizontal
line has three intercepts. At the first one with L1(0, 2) the steady state becomes
unstable. At the second one with L1(0, 1) the real part of one more eigenvalue
becomes positive. At the third intercept with L2(0, 2) the real part of only one of
the two eigenvalues changes back to negative. Therefore stability cannot be regained

7It is numerically verified that trajectories converge to the steady state for any initial values close
to a (i.e., unity).
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Fig. 5 Bifurcation diagram
with γ2 = 17

at this point, so no stability switch occurs. According to Fig. 5, the steady state is
replaced with a periodic oscillation just after it becomes unstable and there is a very
short period-doubling cascade to chaos. As we can see further, interesting dynamics
begins; complex dynamics suddenly disappears and a periodic oscillation appears
and undergoes a period-doubling bifurcation cascade to chaos again.

Let us summarize the main point that has been made so far.

Proposition 3 (1) Given k = 0, the boundary of the stable region consists of the
envelop of the segments L1(0, n) and L2(0, n) for n ≥ 0; (2) depending values of
(γ1, γ2), the nonlinear learning process can generate a wide spectrum of dynamics
ranging from simple periodic oscillations to complex aperiodic oscillations when the
steady state loses local stability.

We can also show that at stability switches only one eigenvalue changes the sign
of its real part, that is, the pure complex eigenvalues are single. Assume not, then
λ̄ = iν solves both equations

λ̄ + ωe−λ̄γ1 + (1 − ω)e−λ̄γ2 = 0 (31)

and
1 − ωγ1e

−λ̄γ1 − (1 − ω)γ2e
−λ̄γ2 = 0 (32)

from which we have

e−λ̄γ1 = 1 + λ̄γ2

(γ1 − γ2)ω
and e−λ̄γ2 = −1 − λ̄γ1

(γ1 − γ2)(1 − ω)
. (33)

If λ̄ = iν, then by comparing the real and imaginary parts, we conclude that

sin νγ1 + νγ2 cos νγ1 = sin νγ2 + νγ1 cos νγ2 = 0
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or
tan νγ1 + νγ2 = tan νγ2 + νγ1 = 0. (34)

Let Li (k, n) denote the segment containing (γ1, γ2), then this point is a common
extremum of Li (k, n) with respect to γ1 and γ2, which is impossible, since Li (k, n)
is a differentiable curve.

Until this point, we examined the curves L1(k, n) and L2(k, n) for k = 0. If k ≥ 1,
then these curves are shifted to the right and slightly modified resulting in similar
patterns. If we fix the value of γ2 and gradually increase the value of γ1 from zero,
then it is unknown theoretically how the stability region, if any, looks like behind
the L1(0, n) and L2(0, n) curves. By performing repeated simulations no stability
region was found here.

Consider now a point (γ∗
1 , γ

∗
2 )with positive coordinates, and consider the horizon-

tal line γ2 = γ∗
2 and its segment for 0 ≤ γ1 ≤ γ∗

1 . There are finitely many intercepts
of this horizontal segment with the set

L = ∪∞
n=0 ∪∞

k=0 {L1(k, n) ∪ L2(k, n)} .

Let s(γ∗
1 , γ

∗
2 ) denote the number of intercepts where stability is lost and g(γ∗

1 , γ
∗
1 )

the number of intercepts where stability can be regained. With (γ∗
1 , γ

∗
2 ) the system is

asymptotically stable if g(γ∗
1 , γ

∗
2 ) ≥ s(γ∗

1 , γ
∗
2 ) and unstable otherwise. The stability

region is illustrated as the yellow domain in Fig. 2.

4.2 The Symmetric Case of ω = 1
2

If ω = 1/2, then Eqs. (14) and (15) become

cos(νγ1) + cos(νγ2) = 0

and

ν − 1

2
(sin(νγ1) + sin(νγ2)) = 0

and the segments L1(k, n) and L2(k, n) are simplified as follows:

L1(k, n) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ1 = 1

ν

(
sin−1(ν) + 2kπ

)
(k ≥ 0)

γ2 = 1

ν

(
π − sin−1(ν) + 2nπ

)
(n ≥ 0)

(35)
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and

L1(k, n) :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ1 = 1

ν

(
π − sin−1(ν) + 2kπ

)
(k ≥ 0)

γ2 = 1

ν

(
sin−1(ν) + 2nπ

)
(n ≥ 0).

(36)

Clearly ν has to be in the unit interval in order to have feasible solutions. The
segments L1(k, n) and L2(k, n) for small values of k and n are illustrated as the red
and the blue curves in Fig. 6.When k = n = 0, these segments construct a hyperbolic
curve passing through the point (π/2,π/2) which is the common point of L1(0, 0)
and L2(0, 0). It divides the first quadrant of the (γ1, γ2) plane into two subregions:
in the yellow region under the curve, the steady state is locally asymptotically stable
and in the white region above, it is locally unstable. Note that the curve is symmetric
with respect to the diagonal and asymptotic to the line γi = 1 for i = 1, 2. This
implies that any delay γi > 0 is harmless if γ j ≤ 1 for i, j = 1, 2 and i �= j .

Two numerical simulations are done with two different values of γ1. In the first
simulation depicted in Fig. 7a, we increase the value of γ2 from zero to 20 along
the vertical dotted line at γ1 = π/2. The steady state loses stability at γ2 = π/2
and bifurcates to cyclic oscillations with finite number of periodicity as γ2 becomes
larger. As far as the simulations are concerned, only periodic cycles can be born. In
the second simulation shown in Fig. 7b, we change the value of γ1 to (π/2) + 1. A
limit cycle emerges after stability is lost at γ2 = γa

2 when the increasing value of γ2
crosses the hyperbolic curve, then exhibits aperiodic oscillations for γ2 being about
14 and returns to periodic oscillations afterwards.

Fig. 6 Partition curvs with
ω = 0.5
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Fig. 7 Bifurcation diagrams with different values of γ1. a γ1 = π
2 . b γ1 = π

2 + 1

5 Conclusion

An adaptive learning process is introduced when the monopoly knows its cost func-
tion, the marginal price, and uncertain about the maximum price. It is able to update
repeatedly its belief of the maximum price by comparing the actual and predicted
market prices. It is assumed that the firm’s prediction is either the most current
delayed price information or it is obtained by interpolation or by extrapolation based
on two delayed data. The asymptotical stability of the resulted dynamic learning
process is examined. If it is asymptotically stable, then the beliefs of the firm about
the maximum price converge to the true value, so successful learning is possible.
Stability conditions are derived, the stability regions are determined and illustrated.
The global behavior of the trajectory is examined by using simulation.

The dynamic models (5) and (7) are linear, when local asymptotical stability
implies global asymptotical stability. However (6) and (8) are nonlinear, where only
local asymptotic stability can be guaranteed under the derived conditions. The learn-
ing processes (3) and (4) can be generalized as

ȧe(t) = g(a − ae(t))

where function g is sign preserving, that is, for all δ �= 0,

δg(δ) > 0.

In our future research, different types of such nonlinear learning schemes will
be introduced in our model and we will investigate the asymptotical behavior of
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the resulted dynamics. Uncertainty and learning of other model parameters will be
additional subjects of our study.
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Different Modelling Approaches
for Time Lags in a Monopoly

Luca Gori, Luca Guerrini and Mauro Sodini

Abstract This chapter considers different modelling approaches to study nonlinear
monopolies with a downward and concave demand function based on the model by
Naimzada and Ricchiuti (Appl Math Comput 203:921–925, 2008). In particular, the
article characterises the dynamics of continuous time models with delays related
to several assumptions regarding the bounded rationality of the monopolist. Some
results about global dynamics are also obtained through simulations.

Keywords Chaos · Monopoly · Time delays
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1 Introduction

Monopolyperhaps represents the simplestmarket structure amongst the severalmajor
market forms analysed by economists. In fact, in first-year microeconomics courses
it is often presented as the first and most intuitive kind of behaviour of producers and
consumers in the market (Schotter 2008). In a monopoly, there is only one producer
of a good or service and the inverse market demand (i.e. the marginal willingness
to pay of consumers) is generally downward sloping. However, despite its relative
simplicity, it has been shown that in the absence of perfect knowledge on the market
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demand by the producer, the introduction of naïve adjustment mechanisms on the
quantities produced by the monopolist can actually generate dynamics that do not
converge towards the optimal solution of the problem. In this regard, in fact, Puu
(1995) builds on a model with a downward sloping market demand having two
inflection points and analyses in a discrete-time dynamic set up monopoly dynamics
driven by a Newton-like adjustment mechanism, i.e. a mechanism based on the profit
differential realised in two subsequent periods.

It is quite peculiar to note that since Puu (1995), perhaps motivated by an interest
related to the study of game theory and strategic interaction, a vast and burgeon-
ing literature is emerged to deepen our knowledge of duopoly dynamics, but with
sporadic contributions on the dynamics of a monopoly with bounded rationality.
Only recently, there has been a renewed interest in this issue in both a discrete-
time framework (difference equation) and continuous-time framework with delays
(delay differential equations). With specific regard to the former set up, we men-
tion the work of Naimzada and Ricchiuti (2008) that introduces a rule based on the
gradient dynamics in a monopoly with a nonlinear market demand and the work
Naimzada and Ricchiuti (2011), which takes into account a monopoly with a non-
linear demand and a linear approximation of it on the side of the monopolist. More
recently, Cavalli and Naimzada (2015) considers a behavioural rule equal to the one
adopted by Naimzada and Ricchiuti (2008) and studies the dynamics of a monopoly
with isoelastic demand, whereas some analytical developments of Puu (1995) were
proposed by Al-Hdaibat et al. (2015). In the latter set up, instead, i.e. continuous-
time models with delays, it is important to mention the works of Matsumoto and
Szidarovszky (2012, 2014a, b, 2015a, b) and Matsumoto et al. (2013). Specifically,
Matsumoto and Szidarovszky (2012) present a first attempt tomodel out the existence
of discrete-time delays in a dynamic monopoly under the assumption of information
lags on profits, linear market demand and non-constant speed of adjustment of the
quantity produced. Also, Matsumoto and Szidarovszky (2014a) study a model with a
nonlinear demand and non-constant marginal costs of production, implying strongly
decreasing returns to scale. A special feature of this work is that of considering an
asymmetric information structure betweenmarginal revenues (that enter with delays)
andmarginal costs (incurred immediately by thefirm). Then, the article ofMatsumoto
and Szidarovszky (2014b) builds on a continuous-time model with delays by taking
into account the discrete-time set up as a starting point and using the method pro-
posed by Berezowski (2001). Differently, the works of Matsumoto et al. (2013) and
Matsumoto and Szidarovszky (2015a) propose two nonlinear monopoly models with
linear demand where the monopolist adjusts production according with the gra-
dient mechanism and delays are continuously distributed. Finally, in the work of
Matsumoto and Szidarovszky (2015b) a feedback from the market on the expecta-
tion formation on the price of the monopolist is introduced.

The aim of the present article is to point out how different assumptions on the
bounded rationality of themonopolist lead tomodels with strongly different dynamic
properties. To this purpose, we take the discrete-time model of Naimzada and Ric-
chiuti (2008) as a starting point, that is a monopoly with a decreasing and con-
cave demand function and constant returns to scale technology. The article shows a
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range of results depending on the way a discrete-time model is transformed into a
continuous-time model with delays. In particular, we get two polar scenarios (within
which the other models presented are included) in two distinct contexts. In the for-
mer case, by considering that the monopolist knows the market price as well as the
linear approximation of the market demand in a neighbourhood of the current value
of the price, the equilibrium of the system is always stable. In the latter case, by
following the method proposed by Berezowski (2001) and considering that at every
date the monopolist is not able to perfectly realise the production plan arranged in the
previous period (because of frictions due to the long time required for production),
the long-term outcomes of the economy may be characterised by chaotic behaviour.
Our results, therefore, stresses the importance of the theoretical modelling frame-
work used as a device that may dramatically change the long-term findings of an
economy.

The rest of the article proceeds as follows. Section2 presents several models to
allow a discrete-time nonlinearmonopolymodel to be transformed into a continuous-
time model with delays and gives some economic interpretations in each case
analysed. Section3 studies the dynamic properties of the different ways of trans-
forming a discrete-time dynamic set up into a continuous-time model with delays.
Section4 outlines the conclusions.

2 The Model

We consider a market served by amonopolist who produces a homogeneous product.
The market demand is described by the following downward sloping and concave
function:

p = P(q) := a − bq3, (1)

where q ≥ 0 is the quantity demanded by consumers, p ≥ 0 is their corresponding
marginal willingness to pay (price), a > 0 is the market size and b > 0. Output q is
produced by a constant-return-to-scale technology, so that the cost function of the
monopolist is C(q) = cq, where c ≥ 0 is the average and marginal cost.1 Profits are
therefore given by

�(q) = (
a − bq3

)
q − cq. (2)

By standard calculations, the market equilibrium in a static context by assuming that
the monopolist has perfect knowledge about the market demand is the value of q
such that �(q) is maximized, that is

q∗ = 3
√

(a − c)/4b. (3)

1In order to guarantee the nonnegativity of prices, we assume that q < 3
√
a/b holds from now on.
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Note that we assume a > c holds in order to guarantee the existence of a positive
stationary equilibrium value of the quantity produced by the monopolist. For what
follows, it is important to recall that

∂�(p)

∂q
= P ′(q)q + P(q) − c. (4)

Equation (4) implies thatmarginal profits depend on components related to themarket
demand (P ′(q) and P(q)) as well as on a component related to the quantity produced
(q).We note that the component associatedwith the cost function enters in a relatively
simple way in the marginal profit equation. In fact, given our assumption of constant
returns to scale technology, the marginal cost is a constant (see Matsumoto and
Szidarovszky 2014a, for a study of a monopoly dynamic model where the marginal
cost is not constant).

Dynamics. Consider a dynamic setting in which we will take into account several
assumptions about limited knowledge of themonopolist. However, all themodels that
we will build on later in this article share the assumption for which the monopolist
chooses future production by considering the rule of thumb formerly introduced by
Baumol and Quandt (1964) and recently used by Naimzada and Ricchiuti (2008)
in a discrete-time monopoly to show that it may give birth to nonlinear dynamics.
We now briefly recall that the dynamic model of Naimzada and Ricchiuti (2008) is
described by the following equation:

q(t + 1) = φ(q(t)) := q(t) + k
∂�(t)

∂q(t)
, (5)

where k > 0 is the constant speed of adjustment of output and ∂�(t)/∂q(t) is the
marginal profit. This implies that at time t the firm knows its ownmarginal profitabil-
ity and uses this information to produce at time t + 1. In other words, at time t the
monopolist chooses to start with a production that will be effective in the time inter-
val [t, t + 1). This production process will actually bring to the market the quantity
q(t + 1) at time t + 1. We note that with this kind of modelling approach markets
are open at discrete-time intervals and no trading takes place in the interval of time
(t, t + 1). One of the advantages of dealing with a continuous-time set up is pre-
cisely the one of allowing markets to be always open, so that through time delays it
is possible to consider the existence of some lags related to either the information
set of the firm or technology of production (gestation lags).

Consider now some alternativemodelling approaches to transform a discrete-time
model into a continuous-time model with delays. In this section, we will focus on the
description of each specific scheme adopted as well as on its economic interpretation.
Later, we will analyse the dynamic properties of the models just introduced.

Case 1. After a simple algebraic manipulation, we note that (5) can be rewritten as
follows:
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[q(t + 1) − q(t)] = k
∂�(t)

∂q(t)
. (6)

Then, by interpreting the term within brackets on the left-hand side of (6) as an
approximation of ∂q(t)/∂t and assuming the existence of a delay about the knowl-
edge of the expression at the right-hand side of such an equation, we derive the
following time-delayed model:

q̇ = k(a − c − 4bq3
d ), (7)

whereqd := q(t − τ ) is the variableq by considering one delay τ ≥ 0 (the time index
has been omitted for simplicity). From an economic point of view, (7) tells us that the
instantaneous changes in production (q̇) depend on the marginal profitability at time
t − τ . In other words, we are assuming that production is immediately available but
there exists a time lag between the time at which the firm computes its own marginal
profit (t − τ ) and the time at which such a marginal profit is used to produce final
output (t). In fact, it is reasonable to assume that the monopolist repeatedly uses a
market research in order to adjust production but also that such an analysis takes a
non-negligible amount of time, so that production choices are affected by a time lag.
We note that the explicit knowledge of production at time t is not required with this
kind of adjustmentmechanism. Another possible interpretation is that the technology
requires a time τ for bringing production to completion and that marginal profit is
computed at time t by considering the quantity produced at time t − τ . In other
words, the decision to produce qd is revealed on the market at time t . Then, with this
kind of interpretation we do not have any information lag.

Case 2. Let us assume that the monopolist produces without delays and chooses
to use a mechanism similar to the one detailed in Case 1 above based on marginal
profits as a behavioural rule, that is if the marginal profit is positive (resp. negative),
the firm increases (resp. decreases) production. Assume also that the firm knows (1)
the price components that enter the marginal profit with a time delay τ , and (2) the
quantity currently produced by starting from (6) at time t . Then, we get

q̇ = k(a − c − 3bqq2
d − bq3

d ). (8)

Case 3. Let us now assume as in Case 2 that the monopolist produces without delays
and chooses to use a mechanism analogous to the one described inCase 1 andCase 2
as a behavioural rule based on marginal profits. However, different from the previous
case we assume that the firm does not know current production but knows the stock
produced in a previous period. In addition, the firm also knows the market price and
the linear approximation of the market demand in a neighbourhood of the current
value of the price. Then, by starting from (6) we get

q̇ = k(a − c − 3bqdq
2 − bq3). (9)
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Case 4. An alternative way to switch from a discrete-timemodel to a continuous-time
model is given by the following procedure. To this purpose, we note that (5) is also
equivalent to the equation

[q(t + 1) − q(t)] = φ(q(t)) − q(t). (10)

As in (6), by assuming that the term in brackets represents an approximation of
∂q(t)/∂t and also that there exists a time delay about the knowledge of the expression
on the right-hand side of (10), we get

q̇ = qd + k(a − c − 4bq3
d ) − q. (11)

From an economic point of view, (11) tells us that the instantaneous variation of
production is based on the differential existing between the target (based on past
information with a delay τ ) and current production. If such a differential is positive
(resp. negative), production will tend to increase (resp. reduce). Different from the
mechanism detailed previously, the explicit knowledge of production at time t is now
necessary to adjust production.

Case 5. Amongst the several ways to transform a discrete-time model into a
continuous-time model, an interesting technique is the one proposed by Berezowski
(2001). Assume that at time t − τ themonopolist plans production for time t by using
the rule of thumb specified in (5). In particular, we consider that at every time t the
monopolist is not able to perfectly realise the production plan arranged at time t − τ
(this is because of the existence of frictions due to the long time required for pro-
duction). The technique proposed by Berezowski (2001) implies that the dynamics
of the model are described by the following equation:

σq̇ + q = qd + k
(
a − c − 4bq3

d

)
, (12)

where σ ≥ 0 is a parameter that measures the degree of friction in production. Equa-
tion (12) tells us that in a phase of output growth, i.e. q̇ > 0, themonopolist is not able
to realise a sufficiently large amount of products, meaning that realised production
is smaller than the one planned in the previous period. The opposite holds in a phase
of recession.

Remark 1 If σ = 0, Eq. (12) boils down to the discrete-time model described by (5).

Remark 2 If σ = 1, Eq. (12) boils down to the model described by Eq. (11). Then,
from an mathematical point of view (but not from an economic point of view) the
model described by (11) can be viewed as a sub-case of the model described by (12).

Case 6. In this last case we begin with the behavioural rule adopted by Puu (1995) in
a discrete-time dynamic monopoly. In particular, he assume that the firm knows the
profit obtained at two subsequent dates (i.e. the profit obtained in the current period
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and the one obtained in the previous period) and uses this information to choose next
period output. Formally, this rule implies

qt+1 = qt + k
�(qt ) − �(qt−1)

qt − qt−1
. (13)

By generalising (13) to an arbitrarily time interval l, we get

[
qt+l − qt

] = k
�(qt ) − �(qt−l)

qt − qt−l
. (14)

By assuming that the left-hand side of (14) represents an approximation of the first
derivative and that there exists a time delays d2 in the knowledge of the expression
qt at the right-hand side of (14), then by using the profit equation (2) after some
algebraic manipulations one gets the following equation:

q̇ = k
[
a − c − b

(
q3
d1 + q3

d2 + q2
d1qd2 + qd1q

2
d2

)]
, (15)

where d1 = d2 + l. The possible economic interpretations of (15) are similar to those
detailed in Case 1, where we have substituted out the marginal profit with the ratio
between the profit differential and the quantity differential at two subsequent dates.
In the light of Remark 2, in the following section we will ignore the analysis of
Case 4.

3 Dynamic Properties

The aim of this section is to analyse the local properties of the models introduced
previously and to present some simulations also to infer about some global properties
of the different systems. We note that in all cases considered in Sect. 2 there is only
one delay and there exists a unique positive equilibrium q∗ = 3

√
(a − c)/4b, obtained

by solving q̇ = 0 with qd = q = q∗. The same result is obtained when there are two
delays by considering that q̇ = 0 with qd1 = qd2 = q = q∗. In order to avoid to make
the exposition tedious, we will present all analytical details only for Cases 1, 5 and 6.
In fact, as all models from 1 to 5 are related to the equation q̇(t) = z(q(t), q(t − τ )),
for every model presented the corresponding characteristic equation will be of the
form λ + A + Be−λτ = 0, where A and B are appropriate parameters. However, we
will see that by passing from one model to another the results just obtained may
be quite different, both from an economic and mathematical point of views and by
considering local and global aspects.

Case 1. The local stability of the unique positive equilibrium point q∗ of Eq. (7)
is governed by the roots of the corresponding characteristic equation for Eq. (7).
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By linearising (7) at q∗, we obtain

q̇ = −12bkq2
∗(qd − q∗). (16)

The characteristic equation associated to the linearised equation is

λ + 12bkq2
∗e

−λτ = 0. (17)

When τ = 0, one gets the real eigenvalue λ = −12bkq2∗ < 0. Thus, q∗ is locally
asymptotically stable. Let τ > 0 and assume λ = iω (ω > 0) to be a root of (17).
Then we have

iω + 12bkq2
∗ [cos (ωτ ) − i sin (ωτ )] = 0. (18)

Separating the real and imaginary parts of Eq. (18) yields

ω = 12bkq2
∗ sin (ωτ ) and cos (ωτ ) = 0.

Therefore, the characteristic equation (17) has purely imaginary roots λ = ±iω0

when τ = τ0, where
ω0 = 12bkq2

∗ and τ0 = π/(2ω0). (19)

These roots are simple. In order to consider the way of the complex roots of Eq. (17)
crossing through the imaginary axis when τ = τ0, let λ(τ ) = ν(τ ) + iω(τ ) be the
root of Eq. (17) near τ = τ0 with ν(τ0) = 0 and ω(τ0) = ω0. Then, one can derive
that

sign

{
d (Reλ)

dτ

∣∣∣∣
τ=τ0

}
= sign

{
Re

(
dλ

dτ

)−1
∣∣∣∣∣
τ=τ0

}
= sign

{
1

ω2
0

}
.

Theorem 3 Let τ0 be defined by (19). Then the positive equilibrium q∗ of Eq. (7) is
locally asymptotically stable when τ ∈ [0, τ0) and unstable for τ > τ0.Furthermore,
Eq. (7) undergoes a Hopf bifurcation at q = q∗ when τ = τ0.

Remark 4 As is known, the result of Theorem 3 implies that for values of τ a few
larger than τ0 there exists an invariant curve of classC1 that surrounds the equilibrium.
It is possible to show (but we will show only some numerical evidence for this result)
that the bifurcation is super-critical, that is the invariant curve attracts all trajectories
starting from close enough to it. In addition, numerical evidence allows us also to
show that even moving away from τ0, results remain unchanged from a qualitative
point of view and there still exist nonexplosive trajectories.

We note that it is possible to obtain a result about the global stability of the
equilibrium by taking sufficiently small values of the delay. This result is summarised
in the following theorem (see also Fig. 1d).
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Fig. 1 Parameter set: a = 4, b = 0.6, c = 0.5 and k = 0.28. a A trajectory convergent towards the
equilibrium for τ = 0.53. b A trajectory convergent towards the invariant curve generated by the
Hopf bifurcation for τ = 2. c Bifurcation diagram for τ (τ0 ∼= 0.6058867855). We note that this
bifurcation diagram is economically meaningful only for values of τ smaller than almost 0.73. In
fact, for larger values of τ the quantity would be negative and then economically meaningless. This
result is due to the particular form of the demand curve that becomes negative for sufficiently large
values of the quantity demanded by consumers. This problem can actually exist also in discrete-
time models and can be overcome by accounting for (adequate) constraints on prices or quantities.
However, the study of this issue is rather complicated and we avoid to deepen this point in the
present article, as it may be subject to possible future research. d A trajectory that starts far away
from the stationary equilibrium converges towards it (τ < 1/12bkq2∗e−λτ ∼= 0.1418982769)

Theorem 5 Assume that τ < 1/
(
12bkq2∗e

)
. Then the positive steady-state solution

of Eq. (11) is globally asymptotically stable.

Proof Let x = q − q∗. Then Eq. (7) becomes
·
x = −12bkq2∗ xd − 4bkx2d (3q∗ + xd)

with x∗ = 0. The statement follows from Theorem 4.2 of Györi (1990) with d =
12bkq2∗ , σ = τ , f (x) = −4bkx2(3q∗ + x). Note that condition (a2) x f (x) ≥ 0 is
verified since it yields −3q∗ ≤ x ≤ 0, i.e. 0 < q ≤ q∗, whether the
condition | f (x)| < d |x | holds true since it gives x2 + 3q∗x − 3q2∗ < 0. Thus,
−(3 + √

21)/2 < x < 0, i.e. 0 < q < q∗. �
Case 2. By considering the linearised system at q∗ and by studying the solutions of
the associated characteristic equation, we obtain the following result:
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Theorem 6 Let τ0 = 1
ω0

[
arctan

(
− ω0

3bkq2∗

)
+ π

]
, where ω0 = 6

√
2bkq2∗ . Then, the

positive equilibrium q∗ of Eq. (8) is locally asymptotically stable for τ ∈ [0, τ0) and
unstable for τ > τ0. Equation (7) undergoes a Hopf bifurcation2 at the equilibrium
q = q∗ when τ = τ0.

Also in this case, it is possible to show that for a small enough value of τ the sta-
tionary equilibrium q∗ is globally asymptotically stable and that the Hopf bifurcation
shown in Theorem 6 is super-critical. Now, by a direct comparison, it is possible to
verify that in this case the bifurcation value of τ is larger than the one of Case 1.
This implies (ceteris paribus) that the equilibrium of this model loses stability (and
the dynamics are captured by a limit cycle) for a value of the delay larger than in
the previous model and then the equilibrium is much more stable in this case. In this
regard, for the same parameter values used in Fig. 1a–c, we have that the bifurcation
value of τ is 1.042, whereas in the previous examples it was 0.6.

Case 3. The characteristic equation of the linearisation ofEq. (9) at the unique positive
equilibrium q∗ of (9) writes as

λ + 9bkq2
∗ + 3bkq2

∗e
−λτ = 0. (20)

In absence of delay,q∗ is locally asymptotically stable since the rootλ= −12bkq2∗ <0
is the unique solution of (20). If τ > 0 and λ = iω (ω > 0) is a root of (20), we can
derive that

ω = 3bkq2
∗ sin (ωτ ) and 9bkq2

∗ = −3bkq2
∗ cos (ωτ ) .

Bysquaring these equations and then adding them together,wefindω2 = −72b2k2q4∗ .
Hence, Eq. (20) has no purely imaginary root. In conclusion, the positive equilibrium
q∗ of Eq. (9) is locally asymptotically stable for all τ ≥ 0.

Similar to Case 2 it is possible to show for Case 3 that q∗ is globally asymptotically
stable for sufficiently low values of τ .

Remark 7 The knowledge of the current market price and the use of a linear approx-
imation of the market demand are actually stabilising devices that make the equi-
librium locally asymptotically stable irrespective of the information on the delays
about the production process (gestation lags).

We do not explicitly deal with Case 4 as it is a sub-case of Case 5, which is
discussed below.

Case 5. In this case we will present all the mathematical steps because, as we shall
see from the next Theorem 8, the results are more articulated. First of all, let us
rewrite Eq. (12) in the following way:

q̇ = −q

σ
+ qd

σ
+ k(a − c − 4bq3

d )

σ
, (21)

2The transversality condition can easily be verified.
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where qd := q(t − τ ), σ > 0 and 0 < q < 3
√
a/b. In order to analyse the stability of

the equilibrium q∗, we linearise Eq. (21) at q∗ and get

q̇ = − 1

σ
(q − q∗) + (1 − 12bkq2∗)

σ
(qd − q∗). (22)

The characteristic equation of the linearised equation at q∗ takes the following form:

λ + 1

σ
− (1 − 12bkq2∗)

σ
e−λτ = 0. (23)

For τ = 0, (23) becomes λ = −12bkq2∗/σ < 0. Thus, we can conclude that, in the
absence of delay, the positive equilibrium q∗ is locally asymptotically stable. For
τ > 0, it is well known that q∗ is locally asymptotically stable if all roots of Eq. (22)
have negative real parts. Let λ = iω (ω > 0) be a root of (23). Then

iω + 1

σ
− (1 − 12bkq2∗)

σ
[cos (ωτ ) − i sin (ωτ )] = 0.

Separating the real and imaginary parts, we obtain

ω = − (1 − 12bkq2∗)

σ
sin (ωτ ) and

1

σ
= (1 − 12bkq2∗)

σ
cos (ωτ ) ,

which imply

ω2 = (1 − 12bkq2∗)2 − 1

σ
.

There exists ω > 0 if
∣∣1 − 12bkq2∗

∣∣ > 1, that is if 6bkq2∗ > 1. For k > 1/(6bq2∗), set

ω0 =
√

(1 − 12bkq2∗)2 − 1

σ
and τ0 = 1

ω0
[arctan(−ω0) + π] . (24)

Adirect calculation showsλ = iω0 to be a simple root of (23). Letλ(τ )=ν(τ )+iω(τ )

denote the root of Eq. (23) near τ = τ0 satisfying ν(τ0) = 0 and ω(τ0) = ω0, with
ω0 and τ0 defined in (24). By substituting λ(τ ) into Eq. (23), and differentiating both
sides of (23) with respect to τ , it follows that

(
dλ

dτ

)−1

= − σ

λ(σλ + 1)
− τ

λ
.
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This implies

sign

{
d (Reλ)

dτ

∣∣∣∣
τ=τ0

}
= sign

{
Re

(
dλ

dτ

)−1
∣∣∣∣∣
τ=τ0

}
= sign

{
σ2

σ2ω2
0 + 1

}
.

Thus, we have the transversal condition [d (Reλ) /dτ ]τ=τ0 > 0.Accordingly, a Hopf
bifurcation at q = q∗ occurs when τ = τ0.

Summarising the discussion above we have the following.

Theorem 8 Let τ0 be defined as in (24). For Eq. (11) the following hold.

(1) If k ≤ 1/(6bq2∗), the positive equilibrium q∗ is locally asymptotically stable for
τ ≥ 0.

(2) If k > 1/(6bq2∗), the positive equilibrium q∗ is locally asymptotically stable for
τ ∈ [0, τ0) and unstable for τ > τ0. Equation (11) undergoes a Hopf bifurcation
at q∗ when τ = τ0.

In this case, we present a result about global stability based on the work of Cooke
et al. (1999). It is summarised in the following theorem, which is a consequence of
Theorem 3.1 of Cooke et al. (1999).

Theorem 9 Let τ0 be defined as in (24).

(1) If k ≤ 1/
{
12b (a/b)2/3

}
or if q < 1/

(
2
√
3bk

)
and 1/

{
12b (a/b)2/3

}
< k ≤ 1/(6bq2∗ ),

the positive equilibrium q∗ is globally asymptotically stable for all τ ≥ 0.

(2) If q < 1/
(
2
√
3bk

)
and k > 1/(6bq2∗), the positive equilibrium q∗ of Eq. (11)

is globally asymptotically stable for all τ ∈ [0, τ0).
Proof Write Eq. (11) as

q̇ = −q

σ
+ qd

[
1

σ
+ k (a − c)

σqd
− 4bkq2

d

σ

]
.

ApplyingTheorem3.1 inCooke et al. with d = 1, B(q) = 1/σ + k (a − c) /(σq) − 4bkq2/σ

and d1 = 0, we get the following conditions for the global stability:
1 − 4bkq2 + k (a − c) /q > 0 and1 − 12bkq2 > 0.Since1 − 4bkq2 > 1 − 12bkq2,

these conditions reduce to 1 − 12bkq2 > 0, i.e. q < 1/
(
2
√
3bk

)
. Recalling that

q < 3
√
a/b, the statement follows considering the two cases 3

√
a/b ≤ 1/

(
2
√
3bk

)

and 3
√
a/b > 1/

(
2
√
3bk

)
.Note that 3

√
a/b ≤ 1/

(
2
√
3bk

)
yields k ≤ 1/{12b (a/b)2/3}

and one has 1/
{
12b (a/b)2/3

}
<

3
√
2/

{
3b [(a − c)/b]2/3

} = 1/(6bq2∗). �
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Fig. 2 Parameter set: a = 4,
b = 0.6 and c = 0.5. a
Bifurcation diagram for σ
(k = 0.29 and τ = 1). b
Bifurcation diagram for τ
(k = 0.29 and σ = 0.2). c
Bifurcation diagram for k
(σ = 0.2 and τ = 1)
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Fig. 3 Parameter set: a = 4, b = 0.6, c = 0.5, σ = 0.2 and τ = 1. Evolution of the attractor when
k varies. a k = 0.27. b k = 0.29. c k = 0.31. d k = 0.35

Fromamathematical point of view, the technique proposed byBerezowski (2001),
introduces a perturbation of the discrete dynamic system. By taking this fact into
account, we know that from a qualitative point of view the dynamic behaviours of
trajectories of the continuous-time systemwith delays for values of σ close enough to
0 will be similar to trajectories of the discrete-time system (see Fig. 2a). In particular,
Fig. 2b, c show the stabilising role of τ and k, respectively. We note that it is possible
to have dynamics with oscillations characterised by several maximum and minimum
values or the presence of a chaotic attractor. To this purpose, Fig. 3a–d show the
evolution of the attractor of the systemwhen k varies. For k = 0.27, the projection of
the attractor in (q, qd) plane is a closed curve of class C1 without auto intersections.
In this case, the long-term trajectory of q is characterised by a unique maximum
value and a unique minimum value. For k = 0.29, we note the presence of an auto
intersection of the curve and this is a sign of the birth of further relative maximum
and minimum values in the long-term trajectory of q. When k increases further
(k = 0.31) we observe an increase in the number of auto intersections of the curve
to which correspond more complicated trajectories, until we get chaotic trajectories
when k = 0.35.
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Case 6. The characteristic equation of the linearisation of Eq. (15) at q∗ is

λ = −6bkq2
∗e

−λτ1 − 6bkq2
∗e

−λτ2 . (25)

For τ2 = 0, (25) has the form

λ = −6bkq2
∗e

−λτ1 − 6bkq2
∗ . (26)

If λ = iω, with ω > 0, is a solution of (26), then separating the real and imaginary
parts gives

ω = 6bkq2
∗ sinωτ1, 6bkq2

∗ = −6bkq2
∗ cosωτ1.

Hence, we obtain ω2 = 0. In case τ2 = 0, the stationary solution q∗ of Eq. (15)
is locally asymptotically stable for arbitrary τ1 > 0. By continuity, for sufficiently
small τ2 > 0, q∗ remains locally asymptotically stable. Let τ2 > 0. Then, Eq. (25)
has a purely imaginary root λ = iω, ω > 0, if the following equations are satisfied:

ω − 6bkq2
∗ sin(ωτ1) = 6bkq2

∗ sin(ωτ2), 6bkq2
∗ cos(ωτ1) = −6bkq2

∗ cos(ωτ2).

Squaring and adding up both equations, we get

sin(ωτ1) = ω

12bkq2∗
. (27)

For any τ1 > 0,Eq. (27) has finite number of positive solutionsω j , j = 1, 2, . . . ,m.

For every arbitrary chosen τ1 > 0 and for each ω j there exist an infinite number of τ2
such that 6bkq2∗ cos(ω jτ1) = −6bkq2∗ cos(ω jτ2). For all j = 1, 2, . . . ,m,we define

τ
j
2 = min

{
τ2 > 0 : 6bkq2

∗ cos(ω jτ1) = −6bkq2
∗ cos(ω jτ2)

}
.

Set

τ̄ 0
1 = 1

12bkq2∗
and τ̄ 0

2 = τ 0
2

6bkq2∗
(28)

where τ 0
2 = min

{
τ
j
2 : j = 1, 2, . . . ,m

}
.

Theorem 10 Let τ̄ 0
1 and τ̄ 0

2 be defined by (28).

(1) If τ1 ∈ [0, τ̄ 0
1 ] and τ2 > 0 or if τ1 > τ̄ 0

1 and τ2 ∈ [0, τ̄ 0
2 ), then the positive equi-

librium q∗ of Eq. (15) is locally asymptotically stable.
(2) If τ1 > τ̄ 0

1 and 6bkq2∗ω0τ̄
0
2 ∈ ∪l∈N[2lπ, 2lπ + π/2], then the Hopf bifurcation

occurs at τ2 = τ̄ 0
2 .
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Proof The proof can be found in Theorem 2 of Piotrowska (2007). �

Corollary 11 If τ1 ∈ (π/
(
12bkq2∗

)
,π/

(
6bkq2∗

)], then there exists τ̄ 0
2 such that for

τ2 ∈ [0, τ̄ 0
2 ) the positive equilibrium q∗ of Eq. (15) is locally asymptotically stable

and for τ2 = τ̄ 0
2 the Hopf bifurcation occurs.

Proof The proof can be found in Corollary 3 of Piotrowska (2007). �

We note that due to the symmetry of (26), it is possible to obtain a result about
the stability of the stationary equilibrium q∗ in a nicely way. In particular, we may
use Theorem 4.2 of Kuang (1993, p. 87), to characterise the stability region. Then,
we have the following theorem:

Theorem 12 The positive equilibrium q∗ is locally asymptotically stable if and
only if

12bkq2
∗(τ1 + τ2) cos

(
π

2

τ1 − τ2

τ1 + τ2

)
− π < 0 (29)

Figure4 illustrates the result stated in Theorem 12.

In the light of Corollary 11 and Theorem 12, in Fig. 5a, b we present some numer-
ical simulations to clarify the dynamic behaviour of this model.

Fig. 4 Parameter set: a = 4,
b = 0.6, c = 0.5 and
k = 0.285. Switching curves
in (τ1, τ2) plane. In the
yellow region the stationary
equilibrium is stable (color
figure online)
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Fig. 5 Parameter set: a = 4,
b = 0.6, c = 0.5 and
τ1 = 1.6 ∈
(π/

(
12bkq2∗

)
,π/

(
6bkq2∗

)].
a Time series of q associated
with a trajectory that
converges towards the
long-term equilibrium for
τ2 = 0.3 (τ̄02

∼= 0.38). b
Time series of q associated
with a trajectory that
converges towards the limit
cycle for τ2 = 0.42 > τ̄02

4 Conclusions

By taking the discrete-time nonlinear monopoly model of Naimzada and Ricchiuti
(2008) as a starting point, in this article we have proposed a continuous-time version
of it with discrete delays.We have shown that depending on the specific way of trans-
forming a discrete-time model in a continuous-time model with delays, it is possible
to obtain several results about local stability of the equilibrium. In particular, there
are two polar cases: a model which is always stable (when the monopolist knows
the market price and the linear approximation of the market demand in a neighbour-
hood of the current value of the price) and a model that can actually display chaotic
dynamics (this is the case that follows Berezowski 2001, according to which at every
time t the monopolist is not able to perfectly realise the production plan arranged at
time t − τ because of frictions due to the long time required for production). Our
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findings suggest that from a theoretical point of view it is important to have a good
description of the information set and the assumptions made as these hypotheses
have important consequences on the main dynamic results. In order to infer about
the long-term dynamics of the model, it would be of importance also to have avail-
able empirical evidence of the economic agents in a monopoly to understand which
of the theoretical models presented is the one that better captures realistic economic
behaviours.

Acknowledgments The authors are grateful to an anonymous reviewer for valuable comments on
an earlier draft. The usual disclaimer applies.
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Dynamic Oligopoly Models with Production
Adjustment and Investment Costs

Akio Matsumoto, Ugo Merlone and Ferenc Szidarovszky

Abstract A modified version of single-product discrete Cournot oligopolies is
introduced, where the additional costs of decreasing or increasing the output level
from the previous time period as well as increasing the output level from the already
built up capacity limit are included. In this way the costs of laying off or hiring new
workers and making investments for increasing capacity are essential parts of the
model. The best response functions of the firms are analytically determined, which
are non-differentiable even if the price and the production cost functions are linear.
The set of all equilibria are characterized by a system of linear inequalities, which
is illustrated in the case of duopoly. The asymptotic properties of the equilibria are
examined by using computer simulation. Finally, it is shown how some specific
models can be derived from the general approach.

Keywords Oligopolies · Repeated games · Complex dynamics · Workforce
flexibility · Investment costs

1 Introduction

Since the pioneering work of Cournot (1960) the theory of oligopoly became one
of the most frequently discussed subjects in mathematical economy. Oligopoly was
considered as an n-person non-cooperative game, the existence and uniqueness of the
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Nash-equilibriumwas the central issue at the beginning.Different variants of the clas-
sicalCournotmodelwere introduced andanalyzed includingoligopolieswith product
differentiation, multi-product models, labor-managed oligopolies among others. The
investigation of the dynamic extensions was the next stage of research. First linear
models were considered, the asymptotic behavior of which are relatively simple,
since local asymptotic stability implies global stability. The most important results
up to the mid 70s were presented in Okuguchi (1976), and their multiproduct gen-
eralizations were introduced and discussed in Okuguchi and Szidarovszky (1999).
More recently nonlinear models became the major focus of research. A compre-
hensive summary of the methodology and its applications in oligopoly theory were
presented in Bischi et al. (2010).

The conditions assumed in the classical models were already criticized in the
literature and modified models were formulated. Production adjustment costs were
introduced in Szidarovszky and Yen (1995), Reynolds (1987, 1991), Howroyd and
Rickard (1981), Macleod (1985). The main issue was the effect of adjustment costs
on the stability of the equilibrium. In Driskill and McCafferty (1989) the authors
developed a differential game model including production adjustment costs. A com-
plete equilibria analysis was performed in Zhao and Szidarovszky (2008), where the
best response functions were non-differentiable. In Szidarovszky and Matsumoto
(2016) an oligopoly model with discontinuous cost functions was introduced when
the setup cost was included for cleaning and depositing waste. The best response
functions were also discontinuous, and those as functions of the total industry output
could be evenmultiple valued. In Burr et al. (2015) adjustment constraints were intro-
duced resulting in discontinuous best responses. In addition to complete equilibrium
analysis the dynamic extension of the model was also examined.

Anotherwayof developingmore realisticmodelswas the considerationof carteliz-
ing groups and antitrust thresholds Matsumoto et al. (2008, 2010a, b), contingent
workforce and investment costs Merlone and Szidarovszky (2015), as well as unem-
ployment insurance systems Matsumoto et al. (2015b). In these works both static
and dynamic models were examined.

In this paper a generalized model is introduced considering the layoff and hiring
of new workers, and additional investments. After the model is formulated the best
response functions are determined in Sect. 2 and the set of the equilibria is described
in Sect. 3. It will be also demonstrated how the specific models can be reduced from
the general approach. The asymptotic behavior of the equilibria is examined by using
computer simulation in Sect. 4. Section5 concludes the paper with future research
directions.

2 The General Model and Best Responses

Consider an n-firm single-product oligopoly without product differentiation. If xk is
the output of firm k, then s = ∑n

k=1 xk is the industry output. The price function is
assumed to be linear: p (s) = A − Bs, and the production cost of firm k, Ck (xk) =
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ck + dkxk is also linear in xk . In addition to the production costs we consider the
following additional cost types.

Laying off or hiring new workers:

C̄k (xk, xk (t − 1)) =
{

δk (xk (t − 1) − xk) if xk < xk (t − 1)
γk (xk − xk (t − 1)) if xk ≥ xk (t − 1)

which includes the unemployment insurance, severance pays, hiring and training
new workers. The cost of increasing production level beyond the already built up
capacity limit is

Ck (xk, Xk (t − 1)) =
{
0 if xk ≤ Xk (t − 1)
αk (xk − Xk (t − 1)) if xk > Xk (t − 1)

where
Xk (t − 1) = max

0≤τ≤t−1
{xk (τ )} (≥ xk (t − 1))

is the already built up capacity limit. So the profit function of firm k has the form:

Πk =

⎧⎪⎪⎨
⎪⎪⎩

xk (A − Bxk − Bsk ) − (ck + dk xk ) − δk (xk (t − 1) − xk ) if 0 ≤ xk < xk (t − 1)
xk (A − Bxk − Bsk ) − (ck + dk xk ) − γk (xk − xk (t − 1)) if xk (t − 1) < xk ≤ Xk (t − 1)
xk (A − Bxk − Bsk ) − (ck + dk xk ) − γk (xk − xk (t − 1))

−αk (xk − Xk (t − 1))
if Xk (t − 1) < xk ≤ Lk

(1)

where Lk is the maximum possible capacity limit of the firm which cannot be
increased.

Let ϕ1, ϕ2 and ϕ3 denote these functions. Notice first that

ϕ′
1 (xk) = A − 2Bxk − Bsk − dk + δk

ϕ′
2 (xk) = A − 2Bxk − Bsk − dk − γk

ϕ′
3 (xk) = A − 2Bxk − Bsk − dk − γk − αk

so ϕ′
1 (xk) > ϕ′

2 (xk) > ϕ′
3 (xk) for each feasible xk .

Furthermore

ϕ′
1 (0) = A − Bsk − dk + δk

ϕ′
1 (xk (t − 1)) = A − 2Bxk (t − 1) − Bsk − dk + δk

ϕ′
2 (xk (t − 1)) = A − 2Bxk (t − 1) − Bsk − dk − γk

ϕ′
2 (Xk (t − 1)) = A − 2BXk (t − 1) − Bsk − dk − γk

ϕ′
3 (Xk (t − 1)) = A − 2BXk (t − 1) − Bsk − dk − γk − αk

ϕ′
3 (Lk) = A − 2BLk − Bsk − dk − γk − αk

So in determining the best response Rk of player k we have to consider the following
cases:
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(i) ϕ′
1 (0) ≤ 0 occurs when sk ≥ A−dk+δk

B and now Rk = 0
(ii) ϕ′

1 (0) > 0 and ϕ′
1 (xk (t − 1)) ≤ 0 occur when

A − 2Bxk (t − 1) − dk + δk

B
≤ sk <

A − dk + δk

B

and Rk is the stationary point between 0 and xk (t − 1):

Rk = A − Bsk − dk + δk

2B

(iii) ϕ′
1 (xk (t − 1)) > 0 and ϕ′

2 (xk (t − 1)) ≤ 0 is the case when

A − 2Bxk (t − 1) − dk − γk

B
≤ sk <

A − 2Bxk (t − 1) − dk + δk

B

with Rk = xk (t − 1)
(iv) ϕ′

2 (xk (t − 1)) > 0 and ϕ′
2 (Xk (t − 1)) ≤ 0 occur when

A − 2BXk (t − 1) − dk − γk

B
≤ sk <

A − 2Bxk (t − 1) − dk − γk

B

and Rk is the stationary point between xk (t − 1) and Xk (t − 1):

Rk = A − Bsk − dk − γk

2B

(v) ϕ′
2 (Xk (t − 1)) > 0 and ϕ′

3 (Xk (t − 1)) ≤ 0 is the case when

A − 2BXk (t − 1) − dk − γk − αk

B
≤ sk <

A − 2BXk (t − 1) − dk − γk

B

and now Rk = Xk (t − 1)
(vi) ϕ′

3 (Xk (t − 1)) > 0 and ϕ′
3 (Lk) ≤ 0 occur when

A − 2BLk − dk − γk − αk

B
≤ sk <

A − 2BXk (t − 1) − dk − γk − αk

B

and Rk is the stationary point between Xk (t − 1) and Lk :

Rk = A − Bsk − dk − γk − αk

2B
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(vii) ϕ′
3 (Lk) > 0 occurs when

sk <
A − 2BLk − dk − γk − αk

B

in which case Rk = Lk .

These cases with the possible shapes of the profit function of firm k are illustrated in
Fig. 1.

The best response of firm k is therefore given as follows:

Rk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if sk ≥ A−dk+δk
B

A−Bsk−dk+δk
2B if A−2Bxk (t−1)−dk+δk

B ≤ sk < A−dk+δk
B

xk (t − 1) if A−2Bxk (t−1)−dk−γk
B ≤ sk < A−2Bxk (t−1)−dk+δk

B

A−Bsk−dk−γk
2B if A−2BXk (t−1)−dk−γk

B ≤ sk <
A−2Bxk (t−1)−dk−γk

B

Xk (t − 1) if A−2BXk (t−1)−dk−γk−αk

B ≤ sk <
A−2BXk (t−1)−dk−γk

B

A−Bsk−dk−γk−αk

2B if A−2BLk−dk−γk−αk

B ≤ sk <
A−2BXk (t−1)−dk−γk−αk

B

Lk if sk <
A−2BLk−dk−γk−αk

B .

(2)

In the case of interior xk (t − 1) the shape of the best response function is given in
Fig. 2. If xk (t − 1) is on the boundary, then one or more segments of Rk are omitted.

Fig. 1 The possible shapes of the profit function of firm k
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Fig. 2 Best response of firm k when xk (t − 1) is interior

3 Equilibrium Analysis

Let x̄k denote an equilibrium output level of firm k, and s̄k = ∑
l �=k x̄l the equilibrium

output level of the rest of the industry.
Case (i) implies that

x̄k = 0 if s̄k ≥ A − dk + δk

B
,

case (vii) implies that

x̄k = Lk if s̄k ≤ A − 2BLk − dk − γk

B

and case (iii) implies that x̄k is interior if

A − 2Bx̄k − dk − γk

B
≤ s̄k ≤ A − 2Bx̄k − dk + δk

B
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In the second case we used the fact that if x̄k = Lk , then the third segment of Πk

disappears. We can illustrate the equilibrium set in the case of a duopoly, when
s̄1 = x̄2 and s̄2 = x̄1. So

x̄1 = 0 if x̄2 ≥ A − d1 + δ1

B
,

x̄2 = 0 if x̄1 ≥ A − d2 + δ2

B
,

x̄1 = L1 if x̄2 ≤ A − 2BL1 − d1 − γ1

B
,

x̄2 = L2 if x̄1 ≤ A − 2BL2 − d2 − γ2

B
,

x̄1 is interior if

A − 2Bx̄1 − d1 − γ1

B
≤ x̄2 ≤ A − 2Bx̄1 − d1 + δ1

B

and finally, x̄2 is interior if

A − 2Bx̄2 − d2 − γ2

B
≤ x̄1 ≤ A − 2Bx̄2 − d2 + δ2

B
.

These cases are shown in Fig. 3, where the shaded region shows the set of the interior
equilibria (x̄1, x̄2). In the cases of certain parameter values (such as shown in the
figure) we might have two boundary equilibria (0, L2) and (L1, 0) in addition.

In the profit function (1) there are three marginal cost factors: δk , γk and αk , the
earlier discussed models can be obtained by the special choices of the values of these
parameters.

By selecting αk = 0, output adjustment cost occurs if xk differs from the previous
output level xk (t − 1). If the output level decreases, then the layoff of workers might
result in additional cost, and if it increases, then the hiring of new workers adds
additional cost by training them and maybe paying higher wages. This model was
investigated in Matsumoto et al. (2015a).

By selecting δk = αk = 0 the model Matsumoto et al. (2015b) with contingent
workforce and unemployment insurance system is obtained. If δk = 0, then themodel
of Merlone and Szidarovszky (2015) with contingent workforce and investment cost
is derived.
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Fig. 3 Equilibrium set in the duopoly case

4 Simulation Study

In the simulation study we assume discrete time scales and that the firms adjust
their output quantities partially towards best responses. Let Kk denote the speed of
adjustment of firm k, then this adjustment process can be described by the first order
difference equations:

xk (t) = xk (t − 1) + Kk (Rk (Xk (t − 1) , xk (t − 1)) − xk (t − 1)) (3)

for k = 1, 2, . . . , N , where we assume that 0 < Kk ≤ 1. As it is well known, the
selection of Kk = 0 would lead to constant trajectories, and the case of Kk = 1
corresponds to best response dynamics. For the sake of simplicity we assume the
speed of adjustment is the same for all the firms, i.e., K1 = K2 = · · · = KN = K .

Further, we select the semisymmetric case of N firms (N > 1) in which N − 1
firms are identical and the N th firm is different. We assume that the price function
is p (X) = 20 − 2X , the common cost function of firms k (k = 1, 2, . . . , N − 1) is
Ck (xk) = xk and that of the N th firm is CN (xN ) = 2xN . For both types of firms
Lk = 10. It is also assumed that the coefficients αk , γk and δk are the same for all
the firms. If the initial outputs of the first N − 1 firms are identical then they have
the same trajectories for all future times. Therefore, this model is two-dimensional
where x1 can denote the common output of the first N − 1 firm, and xN the output
of the last firm.
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The dynamic properties of this system can be conveniently illustrated by the
bifurcation diagrams with zero initial output levels. In our earlier papers Matsumoto
et al. (2015b); Merlone and Szidarovszky (2015) we examined the dynamic behavior
of the special models with different values of N , so in this paper we select N = 15
since this case generates interesting dynamics in the special models.

The bifurcation diagrams with respect to the adjustment cost coefficients (αk , γk
and δk) are not interesting since the qualitative properties of the dynamics do not
change with these parameters. More interesting conclusions can be easily reached
form the bifurcation diagrams with respect to the common speed of adjustment K .

Figure 4 shows the bifurcation diagram with respect to K in the case of αk =
γk = δk = 0. For small values of K (K < 0.22) the system is asymptotically stable,
then period doubling like bifurcation occurs which leads to chaotic behavior which
suddenly (at K � 0.5) turns into three-cycle and then for a short interval around 0.8
becomes chaotic and finally turns into a two-cycle with increasing amplitude.

Figure 5 shows four bifurcation diagrams: in case (a) only α = 1, the other two
coefficients are zeros; in case (b) only γ = 1 with the other two coefficients are
zeros; in case (c) only δ = 1 where the other two coefficients are zeros and, finally,
in case (d) all coefficient are equal to one. Notice that the dynamic behavior of the
system is qualitatively identical in the second and third cases however the first and
the fourth cases are quite different. The first case is very similar to the one without
adjustment costs, in the second and third cases the lengths of the chaotic intervals
become much smaller and between the chaotic intervals the system is asymptotically
stable. In the fourth case the first chaotic interval disappears and only the very short
second chaotic interval shows up. In all cases after the second chaotic interval the
system presents a two-cycle and clearly this is the case for best response dynamics
when K = 1 as well.

Fig. 4 The case of N = 15
firms: bifurcation diagram
with α = γ = δ = 0
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Fig. 5 The case of N = 15 firms: bifurcation diagrams with different costs configurations. a
α = 1, γ = 0 and δ = 0, b α = 0, γ = 1 and δ = 0, c α = 0, γ = 0 and δ = 1, d α = 1, γ =
1 and δ = 1

5 Conclusions

A general linear oligopoly model with additional production adjustment and invest-
ment costs was introduced, which contains some of the earlier studied models as
special cases. The profit functions of the firms are continuous and non-differentiable.
The best responses of the firms were analytically determined as non-increasing, con-
tinuous and non-differentiable functions of the rest of the industry. The set of all
equilibria was characterized by a system of linear inequalities which was illustrated
in the case of a duopoly. The dynamic extension of the model was investigated by
using computer simulation. A semisymmetric case was investigated with 15 firms,
when the first 14 firms were assumed to be identical so the system became two-
dimensional. The bifurcation diagrams with respect to speed of adjustment K were
determined. For small values of K the system is asymptotically stable in all cases, for
large values of K the system shows two-cycle dynamics, and in between we might
have intervals in which chaotic like behavior, three-cycle and stability might occur.
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It is interesting to extend this study to the cases of nonlinear price and cost
functions as well as to nonlinear production adjustment and investment costs. This
will be the subject of our next research project.
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A Stylized Model for Long-Run Index
Return Dynamics

Natascia Angelini, Giacomo Bormetti, Stefano Marmi and Franco Nardini

Abstract We introduce a discrete-time model of stock index return dynamics
grounded on the ability of Shiller’s Cyclically Adjusted Price-to-Earning ratio to pre-
dict long-horizon market performances. Specifically, we discuss a model in which
returns are driven by a fundamental term and an autoregressive component per-
turbed by external random disturances. The autoregressive component arises from
the agents’ belief that expected returns are higher in bullish markets than in bearish
markets. The fundamental term, driven by the value towards which fundamentalists
expect the current price should revert, varies in time and depends on the initial aver-
aged price-to-earnings ratio. The actual stock price may deviate from the perceived
reference level as a combined effect of an idyosyncratic noise component and local
trends due to trading strategies. We demonstrate both analytically and by means of
numerical experiments that the long-run behavior of our stylized dynamics agrees
with empirical evidences reported in literature.
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1 Introduction

“I never have the faintest idea what the stock market is going to do in the next six
months, or the next year, or the next two. But I think it is very easy to see what is
likely to happen over the long term”, Buffet (2001).

The first part of Buffett’s statement clearly explains why nowadays it is widely
accepted that stock prices and stock market indexes behave like stochastic processes.
Such a long lived popularity is further supported by two different arguments. The
first one is the argument put forth by Fama (1965) that financial markets are “infor-
mationally efficient”. One can not achieve returns in excess of averagemarket returns
on a risk-adjusted basis, given the information available at the time the investment is
made since the instantaneous adjustment property of an efficient market implies that
successive price changes in individual securities may be assumed independent for
any practical purpose, see Fama (1965) and Samuelson (1965). The second argument
is the possibility—within the formal framework of stochastic processes—to develop
pricing models.

Despite the second part of the statement may be tracked back to Buffett’s men-
tor Benjamin Graham, it has been obscured by the efficient market hypothesis for
decades. Campbell and Shiller are two of the few scholars long skeptical about the
latter; as early as 1988 they found statistical evidence that “the present value of future
dividends is, for each year, roughly a weighted average of moving-average earnings
and current real price” which has implication for the present-value model of stock
prices and for recent results that long-horizon stock returns are highly predictable.
At the very beginning of 2000 Robert Shiller wrote “we do not know whether the
market level makes any sense, or whether they are indeed the result of some human
tendency that might be called irrational exuberance”, Shiller (2000). He reached his
conclusion through an innovative test of the appropriateness of prices in the stock
market: the Cyclically Adjusted Price-to-Earning ratio (CAPE), which he proved to
be a powerful predictor of future long run performances of the market. The perfor-
mance of the test is quite satisfactory in the case of the US market from the end
of 19th century up to today. For a detailed discussion refer to Campbell and Yogo
(2006) and references therein.

It is clear that modeling a Shiller-type price dynamics requires a time scale com-
pletely different from those considered when pricing options. The latter scales range
from several days to severalmonths (seeCont andTankov (2004) p. 3), time scales for
which “the full effects of new information on intrinsic values to be reflected “instan-
taneously” in actual prices” (see Fama 1965 p. 56). On the other hand, introducing in
the model some mean reverting mechanism would not be enough to generate stock
prices which “have a life of their own; they are not simply responding to earnings
or dividends. Nor does it appear that they are determined only by information about
future” earnings or dividends, see Shiller (2000) p. 183 and Zhong et al. (2003).

To cope with this evidence a model of stock price dynamics should be able

i. to generate a significant transitory component around the rationally expected
equilibrium value of the asset. This component requires the action of at least two
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different contrasting forces: One pushing the price towards its equilibrium and
the other pointing at the opposite direction;

ii. to determine whether the trajectory is wandering far from the fundamentals. To do
so the model should explicitly take into account macroeconomic variables such
as the CAPE.

Surprisingly enough to our knowledge very few such models have been so far put
forth. Boswijk et al. (2007) propose a model in which agents have different beliefs
about the persistence of deviations of stock prices from the publicly known funda-
mental value. Quite recently, following Koijen et al. (2009), He et al. (2014) propose
an asset pricing model which incorporates a mean reversion process and a mov-
ing average momentum component into the drift of a standard geometric Brownian
motion. They prove that the profitability of different investment strategies depends on
different time horizons and on the market state. In all these models the fundamental
value is constant at its (very) long-run historical mean.

Obviously how the fundamental price is determined is a very delicate issue: The
initial assumption of a known constant fundamental price may be regarded as a pre-
liminary simplifying hypothesis. A more realistic assumption is that the fundamen-
tal value follows itself a random walk (see Lux and Marchesi 1999; Chiarella et al.
2008) and agents know it only approximately due to their bounded rationality. In
Westerhoff (2004) agents make estimates by starting from an initial value that is
adjusted as time goes on. Thanks to this assumption the model can exhibit prolonged
phases of under and over valuation.

Here we choose to follow the approach suggested in a similar context by Biagini
et al. (2013), who describe the effects at an aggregate level of the interaction at a
micro-level of different types of agents. In particular they assume that “the perceived
fundamental value” shifts in time because of the varying share of optimists in the
market.1 Differently from all the above cited papers, we do not try to a priori guess
how the mood of the market dictates “the perceived fundamental value”. Instead, we
allow the fundamental value, towards which fundamentalists expect that the current
price should revert, to vary in time and to depend on the initial averaged price-to-
earnings ratio as on an initial anchor (see Tversky and Kahneman 1974).

In our model the price growth depends on three components

1. an autoregressive component, naturally justified in terms of agents’ expectation
that expected returns are higher in bullish markets than in bearish ones;

2. a fundamental component, proportional to the level of the logarithmic averaged
Earnings-to-Price ratio (for brevity log EP ratio) and the perceived fundamental
value;

3. a stochastic component ensuring the diffusive behavior of stock prices.

1A similar assumption of possible shifts of the perceived fundamental value is proposed in Lengnick
and Wohltmann (2010) where financial and real markets are taken into account. In De Grauwe and
Kaltwasser (2012) traders switch between optimistic and pessimistic views about the fundamental
value.
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We show that with a suitable choice of the parameters the assumptions of Lengnick
and Wohltmann (2010) are in some sense corroborated by our model. Initially the
fundamentalists’ perception of the fundamental value is biased in the direction of the
most recent performance of the market, i.e., if prices are high (low) the fundamental
stock price is perceived to lie above (below) its true counterpart. However optimism
(pessimism) does not last for ever, as in Biagini et al. (2013) (see p. 10), and within
approximately 11 or 12 years it reverts to a value independent of the initial one and
compatible with the long-run mean observed by Shiller.

Moreover, we are able to prove that, if we consider a sufficiently large number
of periods, the expected rate of return and the expected gross return are linear in
the initial time value of log EP, and their variance converges to zero with rate of
convergence consistent with a diffusive behavior. This means that, in our model, the
stock prices dynamicsmay exhibit significant and persistent upwards and downwards
deviations form the long run mean value of the averaged earning-to-price ratio,
nevertheless the averaged earning-to-price ratio is a good predictor of future long-run
returns, as claimed by Campbell and Shiller (1988a), Shiller (2000). The result holds
for both returns and gross returns; in the latter case we assume that the log dividend-
to-price ratio follows a stationary stochastic process as in Campbell and Shiller
(1988a, b). Our results are also in keeping with Hodrick (1992), who “demonstrates
that a relatively large amount of long-run predictability is consistent with only a
small amount of short-run predictability”.

2 The Model

We refer to the inflation adjusted price of the stock index measured at the beginning
of time period t with Pt , while Dt denotes the real dividend paid between t and t + 1.
Accordingly, we write the real log gross return on the index held from time t until
time t + 1 as

Ht = log (Pt+1 + Dt ) − log Pt .

The description we provide of the return dynamics is on a monthly basis. Thus, the
notation t + 1 refers to time t increased by one month and the real gross yield over
a period of length h months corresponds to

yt,h = 1

h

h−1∑
i=0

Ht+i . (1)

We also introduce the index log price pt = log Pt , in terms of which the gross yield
can be rewritten as

yt,h = 1

h

h−1∑
i=0

(pt+i+1 − pt+i ) + 1

h

h−1∑
i=0

log

(
1 + Dt+i

Pt+1+i

)
, (2)
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where the telescopic sum is equivalent to (pt+h − pt )/h. The latter term on the
right hand side represents a non linear function of the logarithmic dividend-to-price
ratio. Campbell and Shiller argue that the log dividend-to-price ratio dt − pt+1

.=
log Dt − log Pt+1 follows a stationary stochastic process (see page 666 of Campbell
and Shiller 1988b). In light of this evidence the dynamics of the log dividend-to-price
is given by

�(dt−1 − pt ) = −θ(dt−1 − pt − logG) + σdW
d
t , (3)

with initial time condition equal to d−1 = log D−1. The AR(1) coefficient is given by
1 − θ ,σd is a positive volatility constant, {W d

t } are independent identically distributed
(i.i.d.) Gaussian increments with zero mean and unit variance, and logG is the fixed
mean. By means of a first-order Taylor expansion centred in logG, the quantity
log (1 + Dt/Pt+1) appearing in Eq.2 can be replaced by a linear function of the log
dividend-to-price ratio.

The dependent variable dealt with throughout the paper is the gross return of
the stock index, while as a predictive quantity we consider the log price-to-earnings
ratio capet

.= pt − log 〈e〉10t . The symbol 〈e〉10t refers to the moving average of real
earnings over a time window of ten years. The use of an average of earnings in
computing the price ratios has been strongly pushed by the literature in recognition
of the cyclical variability of earnings.

In Campbell and Shiller (1988a, b) the regression of real and excess stock returns
on explanatory variables which are known at the start of the year t shows that the
log dividend-to-price ratio and the log earnings-to-price ratio have good predictive
capabilities. The ratio variables are used as indicators of fundamental value relative
to price. The basic idea is that if stocks are under-priced relative to fundamental
value, returns tend to be high subsequently, while the converse holds if stocks are
overpriced. Consistently, we describe the dynamics of the log price assuming the
existence of an exogenous fundamental component given by a mean-reverting term
whose long-run target level depends linearly on the current value of the earnings-to-
price ratio.

Wemodel the dynamics of the log price bymeans of the linear system of stochastic
difference equations

⎧⎨
⎩

pt+1 = pt + μt + ξt ,

μt+1 = γμt + κ (H + Ft − capet ) + σμW
μ
t ,

ξt+1 = ξt + σξW
ξ
t ,

(4)

with initial time conditions equal to p0 = log P0, and μ0. The quantities {Wμ
t },

and {W ξ
t } for t = 0, . . . , h are i.i.d. Gaussian increments with zero mean and unit

variance, and σμ, and σξ are positive volatility constants. The system of equations (4)
determines the evolution of log prices as a superposition of a local driftμt and a noise
component ξt . The latter is a zero mean process originating from ξ0 which ensures
the diffusive behavior of stock prices. The most relevant component corresponds to
the equation driving the local drift
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μt+1 = γμt + κ (H + Ft − capet ) + σμW
μ
t . (5)

The dependence of the future level of μt+1 on the value μt prevailing at the previous
time step is expressed in terms of an autoregressive component whose intensity
is determined by the agents’ sensitivity to the market trend, γ . This effect can be
justified in terms of the expectation that returns are higher in bullish markets than in
bearish markets. Competing with the latter effect we add a second mechanism which
affects the drift from a fundamental perspective. The second term in the right hand
side of Eq. (5) represents the exogenous “fundamental” component given in terms of
amean reverting term. The actual stock pricemay deviate from the long-run behavior
as a combined effect of both random external disturbances and short-term speculative
component. Eventually this disequilibrium becomes apparent causing stock prices to
move in the direction that reduces the deviation. In modeling the fundamental effect
we bear inmind that “in reality it is very difficult (if not impossible) to identify the true
fundamental value of any stock” (see Lengnick and Wohltmann 2010). Consistently
we allow the mean reversion target to vary in time. Finally, we assume that the
evolution of the averaged earnings is exogenous and follows an exponential law, i.e.
〈e〉10t = 〈e〉100 exp (gt).

The main theoretical result of this paper characterises the asymptotic behavior of
the first and second moment of the log-price gross returns.

Proposition 1 The expected gross yield over h months is asymptotically linear in F
and G

E0
[
y0,h

] = g + F + G + O(
1

h
), (6)

while the variance converges to zero as predicted by a diffusive model

V ar0
[
y0,h

] = σ 2
p

h
+ 1

h

G2σ 2
d

θ(2 − θ)
+ o(

1

h
), (7)

with σp = σξ (1 − γ )/κ .

Equation (6) provides an insightful decomposition of the return growth in three
components: the growth of earnings, g, a fundamental term, F, ascribable to the
price-over-earnings ratio, and the long-run level of the dividend-to-price ratio, G. In
this respect Proposition 1 sheds light on the economic constituents of the expected
gross yield and matches John Bogle’s suggestion for forecasting the long-term per-
formance of stock markets. At the beginning of the 1990s in an article entitled
“Investing in the 1990s” he propose to forecast long-run behavior on the basis of
three variables: The initial dividend yield, the expected growth of earnings, and the
expected change in the price-to-earnings ratio, Bogle (1991). More recently, Estrada
(2007) extends Bogle’s proposal including a fourth variable, the expected growth of
dividends, providing a simple framework for the decomposition of returns similar in
spirit to our findings. Proposition 1 also clarifies the long-run behavior of the gross
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yield’s variance. Equation7 states that it asymptotically reduces to zero with a rate
of convergence which is coherent with the diffusive behavior of stock returns.

3 Numerical Computations

In light of the result Eq. (6) and supported by the evidence provided in Campbell and
Shiller (1988a, b) that the long-run expected gross yield is a linear function of the
initial CAPE, we assume the following

F = αF − βF cape0,
G = αG − βG cape0.

Coherently, we also assume that H depends linearly on the initial ratio

H = αH − βH cape0.

It is interesting to comment how the perceived fundamental valueH + Ft evolves
in time. If βF > 0 and βH < 0, its initial value is smaller (larger) the lower (higher)
cape0, but it gradually reverts toward larger and larger (smaller and smaller) values
as time elapses and within −βH/βF months reaches a value independent of the
initial level of the value ratio. This behavior is confirmed by Fig. 1 where we plot
the evolution of the price-to-earnings ratio over 12 years computed by means of
fifty Monte Carlo simulations with different initial values. Figure1a corresponds
to an initial price-to-earnings equal to 11, Fig. 1b–16.6 and 1c–22. The red line is
the target of the mean reversion. All paths are sampled with αF = 0.033, αH =
0.84 , βF = 0.006, βH = −0.84, g = 0.0012, and κ = 0.037. In all figures there
are paths which exhibit long transients wandering away from the long run value of
the price-to-earnings, but finally most of the paths end in the same interval around
the long run value of 16.6, irrespective of the initial ratio. These values are close to
those considered by Campbell and Shiller (1988a, b) to prove the forecasting ability
of long-term stock returns. Coherently with their findings our model captures the
mechanism for which an initially under-priced market is driven to the higher long-
run level by means of the fundamental anchor. Conversely, keeping fixed all the
parameter values, an initially over-priced market is deflated to the long-run price-to-
earnings ratio of 16.6 within a transient period of nearly 12 years (−βH/βF � 141
months).

Figure2 is obtained using a data sample consisting of prices, earnings, and divi-
dends for the Standard and Poor Composite Stock Price Index (S&P) on a monthly
basis. The data are discussed in Campbell and Shiller (1987, 1988a, b), and are freely
available from Robert J. Shiller’s webpage http://www.econ.yale.edu/. These time
series cover the entire period from January 1871 until December 2012. Figure2a
shows the empirical yields for a time horizon of two years. The dashed line cor-
responds to a linear regression on the logarithmic CAPE. Figure2b–h report the

http://www.econ.yale.edu/
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Fig. 1 Fifty simulated paths
of price-to-earnings ratio for
initial CAPE equal to 11
(Fig. 1a), 16.6 (Fig. 1b), and
22 (Fig. 1c). The solid lines
correspond to the target of
mean reversion
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2 Empirical yields for the Standard & Poor’s 500 from January 1871 until December 2012
for a 2, 4, 6, 8, 10, 12, 14, and 16 year time horizon (figures a, b, c, d, e, f, g, and h, respectively)
(color figure online)

same as Fig. 2a with time horizons increasing from 4 to 16 years. Points are given
in chronological order according to the color scale ranging from dark blue to red
passing through light blue, green, yellow, and orange; labels in the top left figure
refer to points which correspond to the first month of the specified year. In Fig. 3 we
present a Monte Carlo simulation of the model given by Eqs. (3) and (4). The dashed
line corresponds to the long-run behavior predicted by the Eq. (6) and the dotted
lines to the boundaries of the 95% confidence level region. The parameter values
chosen for the simulation are given in Table1. Values reported in the second column
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3 Monte Carlo scenarios generated with parameter values given in Table1 and initial time
conditions as in Fig. 2

are obtained from the linear regressions displayed in Fig. 2. The monthly earning
growth, g, is consistent with the historical long-run growth, while κ provides the
typical scale of mean reversion of the fundamental component consistent with the
results discussed in Campbell and Shiller (1988a, b). The autoregressive coefficient
γ reflects the positive empirical autocorrelationmeasured from equity indexmonthly
returns. In line with the strong evidence that the log dividend-to-price ratio follows
a near unit root process, we set θ equal to 0.025. Finally, all values of the variance
coefficients are set equal to 18 bps yielding 15% yearly volatility for the market
index. The color scale determines the initial time condition prevailing historically at
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Table 1 Common set of parameter values used in the numerical analysis

αF (month−1) 0.033 g (month−1) 0.0012

βF (month−1) 0.006 θ (month−1) 0.025

αG (month−1) 0.021 γ 0.25

βG (month−1) 0.003 κ (month−1) 0.037

αH 0.84 σ 2
d (month) 18 (bps)

βH -0.84 σ 2
μ (month) 18 (bps)

σ 2
p (month) 18 (bps)

the beginning of each month. Since Monte Carlo scenarios are generated under the
same initial time conditions, the remarkable agreement of the color distributions in
Figs. 3 and 2 confirms the ability of the model to capture the long-run behavior of
the market index.

4 Conclusions and Perspectives

This paper proposes a simple dynamicmodel for the long-run behavior of stock index
returns for the U.S. market. The log price dynamics depend on two market forces:
A positive autoregressive component typical for stock index returns and a mean-
reverting termwhose long-run level is fixed exogenously on the basis of the predictive
ability of Shiller’s CAPE. Accordingly, we show that the long-run expected growth
of the market index can be decomposed in three components: The earning growth,
the log dividend-to-price ratio long-run level, and a fundamental term ascribable to
the price-over-earnings ratio.

Substantial evidence of the importance of fundamentals in the valuation of inter-
national stock markets has been accumulated by the proponents of fundamental
indexation e.g. Arnott et al. (2005). Practitioners and academicians alike have been
using several valuation measures for estimating the intrinsic value of a stock index.
For example, in Table2 of Poterba and Samwick (1995) the ratio of market value of
corporate stock to GDP, the year-end price-to-earnings ratio, the year-end price-to-
dividend ratio and Tobin’s q are reported from 1947 to 1995 in an effort of alerting the
reader on the possible overvaluation of the index. In particular Tobin’s q has been
proposed as another efficient method of measuring the value of the stock market,
with an efficiency comparable to the CAPE (see Smithers 2009). The q ratio is the
ratio of price to net worth at replacement cost rather than the historic or book cost
of companies. It therefore allows for the impact of inflation, much alike the CAPE
which averages real earnings over a ten year span. It would be interesting to carry out
an empirical analysis of the relationship between Tobin’s q and future stock index
returns as far as to extend the present approach to countries other than the U.S. Both
perspectives are worth to be followed but require high quality long-term time series.
As a possible future extension to model the emergence of explosive bubbles, we
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plan to relax the assumption of stationarity of the log dividend price ratio process
following the approach recently investigated by Engsted et al. (2012).
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A Non-Walrasian Microeconomic Foundation
of the “Profit Principle” of Investment

Hiroki Murakami

Abstract In this chapter, microeconomic foundation of the “profit principle” of
investment is discussed from a non-Walrasian/Keynesian perspective. A non-
Walrasian “quantity constraint” is introduced in the intertemporal profit maxi-
mization problem to consider non-Walrasian/Keynesian excess supply situations.
Consequently, we find that it is possible to provide microeconomic foundation for
the profit principle in the case of static expectations but it may not in the case of more
general types of expectations. We also clarify that Tobin’s q can also be defined in
non-Walrasian/Keynesian excess supply situations.

Keywords Non-Walrasian analysis · Profit principle · Quantity constraint ·
Tobin’s q

JEL Classification D50 · E12 · E22

1 Introduction

The “profit principle” of investment states that the current investment demand is
determined by the current level of income (or the current level of profit) and the
current volume of capital stock. Since Kalecki (1935, 1937) and Kaldor (1940)
utilized it to formalize the investment function in their business cycle models, it
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has widely been employed as a principle governing corporate fixed investment.1 For
instance, the investment function that obeys the profit principle has been formulated in
mathematical refinements and extensions of Kaldor’s (1940) business cycle theory
(e.g., Chang and Smyth 1971; Varian 1979; Semmler 1986; Asada 1987, 1995;
Skott 1989; Murakami 2014, 2015) and in the post-Keynesian theory of economic
growth (e.g., Robinson 1962; Malinvaud 1980; Rowthorn 1981; Dutt 1984; Skott
1989; Marglin and Bhaduri 1990; Lavoie 1992). Moreover, it was confirmed by, for
instance, Blanchard et al. (1993) and Cummins et al. (2006) that the profit principle
fits well with empirical facts. Thus, the profit principle has played an important role
in both theoretical and empirical studies.

Unfortunately, however, there have only a few attempts to provide the microeco-
nomic foundation of the profit principle. Grossman (1972) and Skott (1989, Chap.6)
derived the investment function that obeys the profit principle as a solution of the
firm’s intertemporal profit maximization problem, but they had theoretical flaws in
that adjustment costs of installing new capital (e.g., Eisner and Strotz 1963; Lucas
1967; Gould 1968; Treadway 1969; Uzawa 1969) were ignored and that the optimal
level of capital and that of investment were not distinguished.2 Recently, Murakami
(2015) was successful in providing a microeconomic foundation of the profit princi-
ple in the presence of adjustment costs of investment, but the analysis was confined
to the situation where static expectations prevail.

The purpose of this paper is to examine the possibility of microeconomic foun-
dation of the profit principle of investment in general situations. The starting point
of our analysis is Murakami’s (2015) microeconomic foundation of the profit prin-
ciple, and we extend the analysis to more general situations. Following Murakami
(2015)we introduce not only adjustment costs of investment but also a non-Walrasian
“quantity constraint” (e.g., Barro and Grossman 1971; Drèze 1975; Benassy 1975;
Grandmont and Laroque 1976; Malinvaud 1977; Hahn 1978; Negishi 1979), which
describes the situation where the firm cannot sell all it can produce due to the defi-
ciency of demand for its product, i.e., where Keynes’ (1936) principle of effective
demand holds true. By so doing, we intend to demonstrate that the profit principle of
investment is closely related to non-Walrasian/Keynesian excess supply situations.

This paper is organized as follows. In Sect. 2, we set up a model of optimal
decisions on investment and derive the investment function that obeys the profit
principle, by following Murakami (2015). In Sect. 3, we attempt to generalize the

1The profit principle of investment is often confusedwith the “acceleration principle” of investment,
which was used by Harrod (1936), Samuelson (1939), Hicks (1950) and Goodwin (1951) in their
business cycle models, but as Kaldor (1940, p. 79, f. n. 3) pointed out, they are different from each
other because the latter asserts that investment demand is determined by the rate of changes in
income, not by the level of income. In reviewing Hicks (1950), Kaldor (1951, p. 837) also argued
that the profit principle is more akin to Keynes’ (1936) marginal efficiency theory of investment than
the acceleration principle is. Moreover, the acceleration principle is not a theoretical consequence
but an empirical law. For these reasons, in this paper, we focus on the microeconomic foundation
of the profit principle.
2The difference between the concepts of capital and of investment was pointed out by, for example,
Lerner (1944) and Haavelmo (1960).
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analysis in Sect. 2 by relaxing the assumption of static expectations and verify that
the profit principle may not be microeconomically founded without the assumption
of static expectations. In Sect. 4, we compare our non-Walrasian microeconomic
foundation with several theories of investment: Keynes’ (1936) marginal efficiency
theory, Tobin’s (1969) q theory, the neoclassical optimal capital theory (e.g., Jor-
genson 1963, 1965) and the neoclassical adjustment cost theory (e.g., Eisner and
Strotz 1963; Lucas 1967; Gould 1968; Treadway 1969; Uzawa 1969). In Sect. 5, we
conclude this paper by mentioning the possibility of microeconomic foundation of
the “utilization principle” of investment.3

2 The Model Under Static Expectations

In this section, we present a model of decisions on investment of a price-taking firm.
As specified below, the firm is assumed to incur adjustment costs associated with
installing new capital and face with a non-Walrasian “quantity constraint.” Since we
assume that the firm is a price-taker, we can normalize the price of the firm’s product
as unity.4

3We mean by the utilization principle of investment that investment demand is determined by the
rate of utilization. Along with the profit principle, use has intensively been made of it in the post-
Keynesian analysis (e.g., Steindl 1952, 1979; Rowthorn 1981; Dutt 1984, 2006; Amadeo 1986;
Skott 1989; Marglin and Bhaduri 1990; Lavoie 1992; Sasaki 2010; Murakami 2016).
4The existence of “quantity constraint” may seem incompatible with the assumption of a price-
taking firm. Certainly, as Arrow (1959, pp. 45–47) clarified, if a supplier of a commodity cannot
sell all he can produce, i.e., if he faces a quantity constraint, he may act as if he were a monopolist,
who takes account of the (perceived) inverse demand function of his product in his decision-making.
As Negishi (1979) maintained, however, the assumption of a price-taker can be defended even in
non-Walrasian excess supply situations, by introducing the assumption of a kinked demand curve
(á la Sweezy). Indeed, Negishi (1979) stated as follows:

More important for oligopolistic price rigidity is, therefore, the fact that, as Sweezy stated,
any shift in demand will clearly first make itself felt in a change in the quantity sold at the
current price. In other words, a shift in demand changes the position of the starting point P
at which the kink occurs to the right or left without affecting the price. If the marginal cost
is not increasing rapidly, the equilibrium price remains unchanged while shifts in demand
are absorbed by changes in the level of output. (pp. 80–81)

Although Arrow did not mention it explicitly, such an imperfectly demand curve must be
considered to have a kink at the currently realized point or the starting point in the sense of
Sweezy. Firstly, perceived demand curves generally have kinks in a non-Walrasian monetary
economy where information is not perfect. (p. 87)

When demand falls short of supply, the model of competitive suppliers, is therefore, very
much like the Sweezy model of oligopoly, at least in some formal aspects. (p. 88)

If the firm has a perceived demand with kinks due to, for instance, lack of information, as Negishi
explained, it is rational for the firm to respond to changes in the demand conditions by adjusting
the quantity of its output (which corresponds to the output-capital ratio in our case) rather than
by varying the price. In this respect, the assumption of a price-taker is compatible with the existence
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First, the production technology of the firm is specified. We assume that the
production function of the firm is represented as

Y (t) = F(K (t), N (t)). (1)

In (1), Y, K , and N stand for the firm’s quantity of output, stock of capital and labor
employment, respectively.

For the analysis, we make the following standard assumption:

Assumption 1 The real valued function F : R2++ → R++ is homogeneousof degree
one and twice continuously differentiable with

FN (1, n) > 0, FN N (1, n) < 0, for every n ∈ R++, (2)

lim
n→0+ F(1, n) = 0, lim

n→∞ F(1, n) = ∞, lim
n→∞ FN (1, n) = 0, lim

n→0+ FN (1, n) = ∞.

(3)

Condition (2) means that the marginal productivity of labor is positive but strictly
decreasing, while condition (3) is the so-called Inada condition.

Let n = N/K and define f (n) = F(1, n). Then, Assumption 1 implies that f :
R++ → R++ satisfies

f ′(n) > 0, f ′′(n) < 0, for every n ∈ R++, (4)

lim
n→0+ f (n) = 0, lim

n→∞ f (n) = ∞, lim
n→∞ f ′(n) = 0, lim

n→0+ f ′(n) = ∞. (5)

Second, we introduce the concept of adjustment costs associated with increasing
stock of capital (e.g., Eisner and Strotz 1963; Lucas 1967; Gould 1968; Treadway
1969; Uzawa 1969). Following Uzawa (1969) in particular, we assume that the effec-
tive cost, including the adjustment cost, of capital accumulation � is represented as
follows:

�(t) = ϕ(z(t))K (t). (6)

In (6), z stands for the ratio of gross capital accumulation (including replacement
investment) to capital stock. In other words, z satisfies the following equation:

K̇ (t) = [z(t) − δ]K (t), (7)

where δ is a positive constant which represents the rate of depreciation of capital.
As regards the effective cost function of capital accumulation ϕ, the following

standard assumption is made.5

(Footnote 4 continued)
of quantity constraint. Thus, in what follows, it is implicitly assumed that the firm faces a kinked
demand curve in the Sweezy–Negishi sense.
5Grossman (1972) derived the optimum level of capital stock from the profit maximization problem
and then formalized investment as a discrepancy between the optimum and current levels of capital
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Assumption 2 The real valued function ϕ : R+ → R+ is twice continuously dif-
ferentiable with

ϕ(0) = 0,ϕ′(z) > 0,ϕ′′(z) > 0, for every z ∈ R+. (8)

Condition (8) states that the effective cost function is strictly convex and means
that the effective cost of investment is greater as the rate of capital accumulation
increases.

Third, we assume that the firm perceives the upper limit of demand for its product
due to the existing deficiency of demand, i.e., that the firm faces some kind of
“quantity constraint” (á la the non-Walrasian theory). In the analysis below, the
“quantity constraint” is specified as follows:

f (n(t)) ≤ x, (9)

where x is a positive constant. In (9), x stands for the ratio of the firm’s perceived
upper limit of demand (X ) to its capital stock K . From (9), x can be viewed as
the perceived maximum average productivity of capital by the firm. The index of x
reflects the firm’s expectation on the future demand condition.

The quantity constraint can be written in the form of

F(K (t), N (t)) ≤ X, (10)

where X is a positive constant. In (10), X stands for the perceived upper limit of level
of demand.6 Constraint (9) is similar to (10) but differs from it. The former means
that the firm anticipates that its productivity of capital cannot exceed the upper limit
x , while the latter that the firm expects that its level of production cannot be larger
than the upper limit X . In discussing growing (resp. shrinking) economies, constraint
(10) is unnatural one because, in growing (resp. shrinking) economies, it is natural
that the firm expects that the demand for its product increases (resp. decreases) in
accordance with a rise (resp. decline) in the scale of the economy, which is measured
by, for instance, the number of population or aggregate capital stock. However, this
problem can be avoided if constraint (9) is adopted. Moreover, it seems a natural
assumption that in making decisions on investment, the firm cares more about the
(maximum) productivity of capital, which measures the profitability of capital7 than
about the level of demand. For these reasons, we adopt (9) instead of (10) as a
“quantity constraint.” As we will see below, this constraint plays a significant role
in the firm’s decision-making on investment.

(Footnote 5 continued)
stock, while we directly derive the optimum investment from the profit maximization problem by
introducing the concept of adjustment costs. In his approach, the optimum level of capital stock can
be rationalized but investment itself cannot.
6This constraint was adopted by Grossman (1972).
7As we will see in (14), the ratio x is related to the (expected) rate of profit ρ.
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In the rest of this section, we consider the optimal capital accumulation in the
case where the firm’s expectations on the perceived maximum average productivity
of capital x , the real wage w and the rate of interest r are all static, i.e., where their
values are constant over time.

Since the price of the firm’s product is normalized as unity, the firm’s optimal
investment plan (made at time 0) can be represented as a solution {z(t)}∞t=0 of the
following problem (Problem (M)):

max
{z(t),n(t)}∞t=0

∫ ∞

0
[ f (n(t)) − wn(t) − ϕ(z(t))]K (t)e−r t dt

s.t. (7) and (9),
(M)

where K (0), x, w and r are given positives.
As Murakami (2015) proved, the case in which the quantity constraint (9) binds

can be characterized by the situation in which the marginal productivity of labor
corresponding to the perceived maximum average productivity of capital x is larger
than the real wage w.

Proposition 1 Let Assumptions 1 and 2 hold. Assume that the following condition
is satisfied8:

f ′( f −1(x)) > w, (11)

Then, for every solution to Problem (M), n(t) is equal to the positive constant n∗ for
all t ≥ 0 such that

f (n∗) = x . (12)

Proof SeeMurakami (2015, p. 29, Proposition 2.1). Since this proposition is a corol-
lary to Proposition 3, see also the proof of Proposition 3. �

Proposition 1 states that if the marginal productivity of labor corresponding to
the perceived maximum productivity of capital, which is determined by the firm’s
expectation on future demand conditions, exceeds the (expected) real wage, the
firm’s optimum production per unit of capital is reduced to the perceived upper
limit of demand per unit of capital. In this respect, condition (11) is the one that
characterizes Keynes’ (1936) principle of effective demand in the long run.9

The expected rate of gross profit ρ = f (n∗) − wn∗ can be defined as a function
of x and w10:

8It can be verified that, under (4) and (5) deduced from Assumption 1, the inverse functions
f −1, f ′−1 : R++ → R++, exist.
9The same condition as (11) can be found in Barro and Grossman (1971, p. 85), which characterizes
non-Walrasian excess supply situations. However, their analysis was static in nature.
10The expected rate of gross profit ρ is, in principle, identical to Keynes’ (1936, chap. 11) marginal
efficiency of capital. However, as long as condition (11) holds, it is generally not equal to the
marginal productivity of capital.
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ρ(x, w) =
{

x − w f −1(x) if condition (11) holds
f ( f ′−1(w)) − w f ′−1(w) otherwise

. (13)

The partial derivatives of ρ are given by:

ρx =
{
1 − w/ f ′( f −1(x)) > 0
0

, ρw =
{− f −1(x) < 0 if condition (11) holds

− f ′−1(w) < 0 otherwise
.

(14)

It follows from (14) that the real valued function ρ : R2++ → R++ is continuously
differentiable. Unlike in the neoclassical theory of investment (e.g., Jorgenson 1963,
1965; Lucas 1967; Gould 1968; Treadway 1969; Uzawa 1969), the (expected) rate of
gross profit ρ is affected by the perceived maximum average productivity of capital
x , i.e., by the firm’s expectation on the future demand condition.

Thanks to Proposition 1, the firm’s optimal expected profitmaximization problem,
Problem (M), can be reduced to

max
{z(t)}∞t=0

∫ ∞

0
[ρ(x, w) − ϕ(z(t))]K (t)e−r t dt

s.t. (7)
(M)

In the following, Problem (M), redefined above, is examined.
To solve Problem (M), we impose the following constraint:

∫ ∞

0
[r + δ − z(t)]dt = ∞. (15)

Condition (15) is satisfied if the rate of net capital accumulation z(t) − δ is less than
the rate of interest r . To see what condition (15) implies, suppose, for the time being,
that z(t) is a constant z over time. Under this assumption, condition (15) reduces to
z − δ < r and the marginal effect of an increase in z on the discounted present value
of the firm’s profit at t = ∞ is zero because we have

lim
t→∞ ϕ′(z)K (t)e−r t = lim

t→∞ ϕ′(z)K (0)e−(r+δ−z)t = 0.

In the case where z(t) is constant over time, condition (15) has the same meaning as
that of the usual transversality condition.

As Murakami (2015) verified, the solution of Problem (M), {z(t)}∞t=0, is constant
over time under condition (15).

Proposition 2 Let Assumptions 1 and 2 hold. Assume that condition (15) holds.
Then, if there exists a solution of Problem (M), z(t) is equal to the constant z∗ for
t ≥ 0 such that

ρ(x, w) − ϕ(z∗)
r + δ − z∗ = ϕ′(z∗). (16)
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Proof See Murakami (2015, p. 30, Proposition 2.2). �

Proposition 2 states that, if the firm’s expectations on the perceived maximum
of productivity of capital (the index of the firm’s expectations on demand) x , on
the rate of interest r and on the real wage w are static, the optimum rate of capital
accumulation z∗ is unique and constant. Figure1 illustrates geometrically how the
optimal rate of capital accumulation z∗ is determined.

Proposition 2 implies that the optimum rate of capital accumulation z∗ can be
represented as a function of x, w and r in the following form:

z∗ = g(x, w, r). (17)

Furthermore, it follows from (8), (14)–(16) that the partial derivatives of g are
given by

gx = ρx

ϕ′(z∗)(r + δ − z∗)

{
> 0 if condition (11) holds
= 0 otherwise

,

gw = ρw

ϕ′(z∗)(r + δ − z∗)
< 0, gr = − ϕ′′(z∗)

ϕ′(z∗)(r + δ − z∗)
< 0.

(18)

Condition (18) says that the optimal rate of capital accumulation g is strictly increas-
ing in the index of the expectation on future demand x if the marginal productivity of
labor corresponding to x is greater than the given real wagew, while g is inelastic to x
otherwise. This implies that investment demand is affected by the firm’s expectation
on demand provided that the marginal productivity of labor exceeds the real wage.
In the sense that the firm’s expectation on future demand has an influence on invest-
ment demand, the formula given in (16) may be regarded as a natural expression of
Keynes’ (1936, Chap.11) theory of investment.

Fig. 1 Optimal rate of
capital accumulation
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Tobin’s (1969) qof investment can also be defined in our context. Since the optimal
rate of capital accumulation z(t) is shown to be equal to a unique constant z∗ over
time, the discounted present value of the firm’s expected profit associated with the
optimal plan of capital accumulation, or V ∗, can be calculated as follows:

V ∗ = K (0)
ρ(x, w) − ϕ(z∗)

r + δ − z∗ .

Since the replacement cost of capital is K (0) at time 0 because the price is normalized
as unity, we know from (16) that Tobin’s (1969) q can be defined as follows:

q = V ∗

K (0)
= ρ(x, w) − ϕ(z∗)

r + δ − z∗ = ϕ′(z∗). (19)

As the q ratio defined in (19) allows for the case in which the non-Walrasian quantity
constraint (9) binds, it may be interpreted as Tobin’s q in non-Walrasian/Keynesian
excess supply situations. This definition of Tobin’s q ratio is different from those of
Yoshikawa (1980) andHayashi (1982) in that a non-Walrasian quantity constraintwas
not taken into account in their definitions and that their definitions dealt only with the
case of full employment. Unlike in the interpretations of the q theory by Yoshikawa
(1980) and Hayashi (1982), the role of expectation on the future demand condition
(represented by x) is taken into account in our interpretation. Since Tobin (1969)
defined the q ratio to discuss corporate investment in non-Walrasian/Keynesian
excess supply situations, our interpretation of the q theory conforms more to Tobin’s
(1969) original definition than those in the preceding works.

According to (19), the optimal rate of capital accumulation z∗ may also be repre-
sented as an increasing function of q. Moreover, ifϕ′(0) = 1, which is often assumed
as a property of the effective cost function ϕ, condition (16) implies that when
ρ(x, w) − δ ≤ r , we have z∗ = 0. This means that when the (expected) rate of profit
(net of the rate of depreciation) is less than or equal to the rate of interest, no new
investment is carried out. This result is consistent with Tobin’s (1969) q theory of
investment and Keynes’ (1936) marginal efficiency theory of investment.

In what follows, we proceed to derive the investment function that obeys the profit
principle of investment.

Since Proposition 1 implies that the firm’s current output is represented as Y (0) =
x K (0) under condition (11), non-Walrasian/Keynesian excess supply situations can
be characterized by

f ′
(

f −1
( Y (0)

K (0)

))
> w. (20)

On the other hand, when the quantity constraint (9) does not bind, the optimal level
of production is so determined that the marginal productivity of labor would be equal
to the real wage. So if condition (20) is not met, the following condition is fulfilled:
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f ′
(

f −1
( Y (0)

K (0)

))
= w. (21)

The situations in which the notional labor demand is met are characterized by (21).
Condition (18) can thus be replaced by

gY/K

{
> 0 when condition (20) holds
= 0 when condition (21) holds

, gr < 0, gw < 0. (22)

In particular, condition (22) says that investment demand g is positively influenced
by the current (average) productivity of capital Y (0)/K (0) in non-Walrasian excess
supply situations (in the case of (20)) but not affected by it in the situations where
the notional labor demand is fulfilled (in the case of (21)). The negative effects of
the rate of interest and of the real wage on investment demand are also confirmed by
(22).

Therefore, the gross capital accumulation function and the investment expenditure
function, Z and I , can be defined, respectively, as follows:

Z(Y (0), K (0), w, r) = g
( Y (0)

K (0)
, w, r

)
K (0), (23)

I (Y (0), K (0), w, r) = ϕ
(
g
( Y (0)

K (0)
, w, r

))
K (0). (24)

It follows from (22) that the partial derivatives of Z and I are given by

ZY = gY/K

{
> 0
= 0

, Z K = g − gY/K
Y

K

{
� 0 when condition (20) holds
≥ 0 when condition (21) holds

,

Zw = gw K , Zr = gr K < 0, (25)

IY = ϕ′(g)gY/K

{
> 0
= 0

, IK = ϕ(g) − ϕ′(g)gY/K
Y

K

{
� 0 when condition (20) holds
≥ 0 when condition (21) holds

,

Iw = ϕ′(g)gw K < 0, Ir = ϕ′(g)gr K < 0.
(26)

The investment functions Z and I ((23) and (24)) can be considered to obey the
profit principle of investment, because the current investment demand is a function
of the current income Y (0) and the current capital stock K (0). Furthermore, since
the (current) level of income Y (0) has a positive impact on the current investment
demand only in the case of (20), i.e., only in the case where the equality of the
quantity constraint (9) holds, the profit principle of investment is closely related to
non-Walrasian/Keynesian excess supply situations.

In this section, we have verified that the profit principle of investment can be
rationalized by following Murakami (2015), but we have assumed that the firm’s
expectations (on x, w and r ) are static. In the next section, we shall drop the assump-
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tion of static expectations and investigate whether the profit principle can also be
rationalized under more general types of expectations.

3 The Model Under General Expectations

In this section, we explore the possibility that the profit principle of investment is
microeconomically founded in general expectations.

To allow for the case in which the firm’s expectations on the perceived maximum
of productivity of capital x , on the real wage w and on the rate of interest r vary with
time t , they are represented as functions of t : x(t), w(t), r(t).

Under the general expectations, the quantity constraint (9) is replaced with

f (n(t)) ≤ x(t). (27)

Note that constraint (27) includes (10) as a special case.
For given expectations {x(t), w(t), r(t)}∞t=0, the firm’s expected profit maximiza-

tion problem (Problem (G)) can be formalized as follows:

max
{z(t),n(t)}∞t=0

∫ ∞

0
[ f (n(t)) − w(t)n(t) − ϕ(z(t))]K (t) exp

(
−

∫ t

0
r(s)ds

)
dt

s.t. (7) and (27),

(G)

where K (0) > 0; x(t) > 0, w(t) > 0 and r(t) > 0 for all t ≥ 0.
Let λ(t) ≥ 0 be the Lagrange multiplier concerning (27) and set the Hamiltonian

as follows:

H(K (t), n(t), z(t);λ(t),μ(t)) = [ f (n(t)) − w(t)n(t) − ϕ(z(t))]K (t)

+ λ(t)[x(t) − f (n(t))] + μ(t)[z(t) − δ]K (t).

Then, we know from the Kuhn–Tucker condition and the maximum principle that,
if a solution of Problem (G) {z(t), n(t)}∞t=0 exists, it satisfies (7), (27) and

∂H(t)

∂n(t)
= 0,

∂H(t)

∂z(t)
= 0,

λ(t)[x(t) − f (n(t))] = 0,

μ̇(t) = r(t)μ(t) − ∂H(t)

∂K (t)
,
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or

[
1 − λ(t)

K (t)

]
f ′(n(t)) = w(t), (28)

ż(t) = 1

ϕ′′(z(t))
{[r(t) + δ − z(t)]ϕ′(z(t)) − [ f (n(t)) − w(t)n(t) − ϕ(z(t))]},

(29)

λ(t)[x(t) − f (n(t))] = 0. (30)

One can find from (30) that if λ > 0, the equality of (9) is fulfilled. In other words, if
λ > 0, the firm’s output per unit of capital f (n) is restricted to the perceived upper
limit of demand per unit of capital x . As in Sect. 2, we can characterize the situation
in which the quantity constraint (27) binds.

Proposition 3 Let Assumptions 1 and 2 hold. Assume that the following condition
is satisfied at t:

f ′( f −1(x(t))) > w(t). (31)

Then, for every solution of Problem (G), n(t) satisfies the following equation at t:

f (n(t)) = x(t). (32)

Proof Suppose, for the sake of contradiction, that f (n(t)) < x(t) (note that n(t)
must satisfy (27)).

By the implicit function theorem, conditions (4) and (5) imply that the inverse
function f −1 : R++ → R++ of f exists and satisfies d f −1/dx > 0. Then, the above
assumption implies

n(t) < f −1(x(t)).

Because of (4), we have
f ′(n(t)) > f ′( f −1(x(t))). (33)

Since we have λ(t) = 0 by condition (30) and the above assumption, conditions
(28) and (33) imply

w(t) = f ′(n(t)) > f ′( f −1(x(t))).

But this contradicts (31).
Therefore, condition (32) is fulfilled. �

Proposition 3 is a generalized version of Proposition 1 and condition (31) is a
generalized version of (11) and characterizes the situation where Keynes’ (1936)
principle of effective demand holds.



A Non-Walrasian Microeconomic Foundation … 135

With the help of Proposition 3, Problem (G) can thus be reformulated as follows:

max
{z(t)}∞t=0

∫ ∞

0
[ρ(x(t), w(t)) − ϕ(z(t))]K (t) exp

(
−

∫ t

0
r(s)ds

)
dt

s.t. (7),

(G)

where ρ is defined by (13).
Then, the first order conditions for optimality in Problem (G), (28)–(30), can be

reduced to

ż(t) = 1

ϕ′′(z(t))
{[r(t) + δ − z(t)]ϕ′(z(t)) − [ρ(x(t), w(t)) − ϕ(z(t))]}. (34)

This fact is summarized in the following proposition:

Proposition 4 Let Assumptions 1 and 2 hold. Then, if there exists a solution of
Problem (G), {z(t)}∞t=0, it satisfies (34).

As in Sect. 2, the first order condition for optimality, (34), can also be interpreted
à la Tobin’s (1969) q theory. To verify this fact, assume that the following transver-
sality condition holds:

lim
t→∞ ϕ′(z(t))K (t) exp

(
−

∫ t

0
r(s)ds

)
= 0. (35)

By (7) and (35), we find that a solution of Problem (G), {z(t)}∞t=0, satisfies

∫ ∞

0
ϕ′′(z(t))ż(t)K (t) exp

(
−

∫ t

0
r(s)ds

)
dt

= −ϕ(z(0))K (0) +
∫ ∞

0
ϕ′(z(t))[r(t) + δ − z(t)]

(
−

∫ t

0
r(s)ds

)
dt. (36)

Moreover, it follows from (34) that along a solution of Problem (G), {z(t)}∞t=0, we
have

∫ ∞

0
ϕ′′(z(t))ż(t)K (t) exp

(
−

∫ t

0
r(s)ds

)
dt

=
∫ ∞

0
{[r(t) + δ − z(t)]ϕ′(z(t)) − [ρ(x(t), w(t))

− ϕ(z(t))]}K (t) exp
(
−

∫ t

0
r(s)ds

)
dt. (37)
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Comparing (36) and (37) with each other, we find that a solution of Problem (G),
{z(t)}∞t=0, satisfies

∫ ∞

0
[ρ(x(t), w(t)) − ϕ(z(t))]K (t) exp

(
−

∫ t

0
r(s)ds

)
dt = ϕ′(z(0))K (0). (38)

Letting V be the left-hand side of (38), we know that a solution of Problem (G),
{z(t)}∞t=0, fulfills

q = V

K (0)
= ϕ′(z(0)). (39)

The left hand side of (39) is Tobin’s (1969) q because V is the discounted present
value of thefirm’s expected profit and K (0) is the replacement cost of capital at time0.
Condition (38) says that the discounted present value of the firm’s expected profit is
equal to the marginal cost of installing new capital. Since the firm’s expectations are
general, the q given by (39) can be interpreted as a generalized version of Tobin’s q
in non-Walrasian/Keynesian excess supply situations.

We are now ready to check if the profit principle of investment can be rationalized
even under general expectations. In the below, it is demonstrated that, without the
assumption of static expectations, the investment function that obeys the profit prin-
ciple may not be obtained. Since the profit principle states that the current investment
demand or the current rate of capital accumulation z(0) is a function of the current
income Y (0) = x(0)K (0) and the current stock of capital K (0) > 0, it suffices for
our purpose to show that, even if the current capital stock K (0) and the current per-
ceived upper limit of productivity of capital x(0) are specified, the current optimal
rate of capital accumulation z(0) is not uniquely determined without the assumption
of static expectations. To do so, we assume that the real wage w(t) and the rate of
interest r(t) are positive constants w and r , respectively, for all t ≥ 0 and consider
the optimal rate of capital accumulation z(0) for the following two time paths of
{x(t)}∞t=0; the one is x0(t) = x for all t ≥ 0; the other is x1(t) = x for t ∈ [0, t0]
or t ≥ t1 and x1(t) > x for t ∈ (t0, t1), where x is a positive constant that satisfies
(11) and t0 and t1 are positive with t0 < t1. Let {zi (t), Ki (t)}∞t=0 and Vi be the opti-
mal plans of capital accumulation and capital stock corresponding to {xi (t)}∞t=0 and
the discounted present value of the firm’s expected profit obtained along {zi (t)}∞t=0,
respectively, for i = 0, 1. Then, we have

V0 =
∫ ∞

0
[ρ(x0(t), w) − ϕ(z0(t))]K0(t)e

−r t dt

<

∫ ∞

0
[ρ(x1(t), w) − ϕ(z0(t))]K0(t)e

−r t dt

≤
∫ ∞

0
[ρ(x1(t), w) − ϕ(z1(t))]K1(t)e

−r t dt = V1
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Because the optimal plan of capital accumulation {zi (t)}∞t=0 satisfies (38), we obtain

ϕ′(z0(0))K0(0) < ϕ′(z1(0))K1(0).

Since we have K0(0) = K1(0) = K (0) > 0, we find from (8) that

z0(0) < z1(0). (40)

Noting that K0(0) = K1(0) = K (0) and x0(0) = x1(0) = x , inequality (40) implies
that, even when K (0) and x(0) are specified, z(0) may not uniquely be determined.
This consequence suggests that the profit principle may not be rationalized without
the assumption of static expectations. Therefore, the profit principle of investment
may not necessarily be obtained as the optimal plan of capital accumulation under
general expectations.

In this section, we have extended the argument in Sect. 2 to the case where more
general expectations prevail and checked if the profit principle of investment can
be microeconomically founded. We have revealed that the optimal plan of capital
accumulation and Tobin’s (1969) q can be derived in the existence of non-Walrasian
quantity constraint even under general types of expectations but that the profit prin-
ciple of investment may not be rationalized without static expectations. This clarifies
that the assumption of static expectations plays a critical role in the profit principle
of investment.

4 Discussion on Non-Walrasian Microeconomic
Foundation of Investment

We have so far explored non-Walrasian microeconomic foundation of the invest-
ment function. In particular, we have inquired into the possibility of microeconomic
foundation of the profit principle of investment. In this section, we turn to the advan-
tage of non-Walrasian microeconomic foundation of investment. For this purpose,
we compare our non-Walrasian microeconomic foundation with the other represen-
tative theories on investment: the Keynesian theories (Keynes’ marginal efficiency
theory and Tobin’s q theory) and the neoclassical theories (the neoclassical optimal
capital theory and the neoclassical adjustment cost theory).

First, we compare our results with Keynes’ (1936) marginal efficiency theory
of investment. Keynes’ (1936, chap. 11) maintained that the optimal investment is
subjected largely to changes in the marginal efficiency of investment.11 Our results
are in favor of Keynes’ (1936) argument because the (expected) rate of profit ρ(x, w),

11Lerner (1944) argued that the term“marginal efficiency of capital” used inKeynes’ (1936)General
Theory should be renamed “marginal efficiency of investment” because the concepts of optimal
capital stock and optimal investment are different from each other.
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which can be regarded as identical with the marginal efficiency, has a positive effect
on investment demand. In this respect, the results of our analysis may be viewed as
an appropriate expression of Keynes’ theory of investment.

Second, the relationship between Tobin’s (1969) q and our results is examined. As
we have seen in Sects. 2 and 3 (especially (39)), our results can provide a support for
Tobin’s q theory. Since Tobin (1969) originally coined the concept of q on the basis
of Keynes’ (1936) theory, it is a natural consequence that our results also constitute
a foundation of Tobin’s q theory. Furthermore, the microeconomic foundation of
Tobin’s q theory derived from our analysis is more comprehensive than those by
Yoshikawa (1980) and Hayashi (1982) in that excess supply (underemployment)
situations can also be discussed in ours unlike in Yoshikawa (1980) and Hayashi
(1982).

Third, our results are contrasted with the neoclassical optimal capital theory of
investment (e.g., Jorgenson 1963, 1965). In this theory, the optimum investment is
discussed in the framework of dynamic optimization, but this theory has been crit-
icized for its failure to describe investment as an optimum activity because, in this
theory, investment is explained as an activity to fill the gap between the optimum and
current levels of capital stock.12 Since we have introduced the concept of adjustment
costs, we can escape from this kind of criticism. What is more, the neoclassical opti-
mal capital theory is, in general, an investment theory in full employment situations
(neoclassical situations) and does not discuss investment plans in non-Walrasian
excess supply situations. In this respect, our analysis has an advantage over this
theory.

Fourth, the differences between the neoclassical adjustment cost theory of invest-
ment (e.g., Eisner and Strotz 1963; Lucas 1967; Gould 1968; Treadway 1969; Uzawa
1969) are mentioned. As we have seen in Sects. 2 and 3, full employment situations
alone are considered in the neoclassical adjustment cost theory, but our results accom-
modate both full employment and underemployment (non-Walrasian excess supply)
situations and so include the results obtained in the neoclassical adjustment cost
theory as a special case because we have allowed for the case where the quantity
constraint (9) or (27) binds (if this constraint does not bind, the results obtained in
our analysis reduce to those obtained in the neoclassical adjustment cost theory).

Thus, our analysis has advantages as a general investment theory in that it incor-
porates both Keynesian and neoclassical aspects by imposing the quantity constraint
(9) or (27) and takes into consideration the difference between capital and investment
by introducing the adjustment cost function. In this sense, our analysis can be said
to retain generality.

12The difference between the concepts of capital and of investment was pointed out by, for example,
Lerner (1944) and Haavelmo (1960).
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5 Concluding Remarks

We summarize the analysis in this paper.
In Sect. 2, we have formalized a model of optimal investment that emphasizes

adjustment costs of investment andnon-Walrasian “quantity constraint,” by following
Murakami (2015). We have found through the analysis in this section that Tobin’s
(1969) q can be extended to non-Walrasian/Keynesian excess supply situations and
that the profit principle of investment can be derived as the intertemporally optimal
plan of capital accumulation.However, the argument in this section has been confined
to the case of static expectations.

In Sect. 3, we have generalized the argument in Sect. 2 by allowing for more gen-
eral types of expectations. We have made clear that the formula of optimal capital
accumulation and Tobin’s q can also be derived even under the assumption of gen-
eral expectations but that the profit principle of investment may not necessarily be
microeconomically founded without the assumption of static expectations. By so
doing, we have verified that the assumption of static expectations is vital for the
profit principle.

In Sect. 4, our non-Walrasian microeconomic foundation of investment has been
comparedwith other investment theories:Keynes’marginal efficiency theory,Tobin’s
q theory, the neoclassical optimal capital theory and the neoclassical adjustment cost
theory. It has been confirmed that our microeconomic foundation provides natural
and appropriate expressions of Keynes’ marginal efficiency theory and of Tobin’s
q theory, includes the neoclassical adjustment cost theory as a special case and is
superior to the neoclassical optimal capital theory.

Before concluding this paper, we shall mention the possibility of microeconomic
foundation of the utilization principle of investment. In this paper, for the sake of
simplicity, we have not explicitly taken account of (variations of) the rate of utiliza-
tion. So our analysis does not directly contribute to microeconomic foundation of the
utilization principle. However, since the rate of utilization u is usually measured by
the output-capital ratio Y/K and the results in Sect. 2 indicate that the optimal rate
of capital accumulation z∗ is influenced positively by the ratio Y/K , our analysis
may partially make a contribution to microeconomic foundation of the utilization
principle.
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The Stability of Normal Equilibrium Point
and the Existence of Limit Cycles in a Simple
Keynesian Macrodynamic Model
of Monetary Policy

Toichiro Asada, Michal Demetrian and Rudolf Zimka

Abstract In this chapter, a simple Keynesian macroeconomic model of monetary
policy describing the development of nominal rate of interest, expected rate of infla-
tion, and nominal money supply in the period of deflationary depression, which was
introduced by Asada (2011) is investigated rigorously. The normal equilibrium point
of the model is derived and its dynamic stability is investigated. Questions concern-
ing the existence of limit cycles are studied analytically. The bifurcation equation is
found. The formulae for the calculation of its coefficients are gained. A numerical
example is presented by means of numerical simulations.

Keywords Keynesianmacrodynamicmodel ·Monetarypolicy ·Dynamic stability ·
Limit cycle · Numerical simulations

1 Introduction

Minsky’s (1982, 1986) financial instability hypothesis implies that the financially
dominated capitalist economy is inherently unstable. The real situation during sev-
eral last decades ‘proves’ it. For example, Japanese economy fell into the serious
deflationary depression in the 1990s and could not get out of it for nearly twenty
years, and the big financial crisis, that started in USA by mortgage crisis in 2008,
rapidly expanded to the European Union and to other parts in the world.1 As a reac-
tion especially to the deflationary depression in the Japanese economy, Asada (2011)

1See Asada (ed.) (2015) and Wakatabe (2015) for the Japanese depression, and see Krugman
(2012) for the subprime mortgage crisis in USA.
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set up a simple Keynesian macrodynamic model of monetary policy describing the
development of nominal rate of interest, expected rate of inflation, and nominal
money supply. In Asada (2011), however, analytical treatment is rather sketchy and
the numerical simulation is not presented.

This paper studies Asada’s (2011) dynamic model rigorously both analytically
and numerically. In Sect. 2, the model is introduced and its normal equilibrium point
is derived. Section3 is devoted to the dynamic stability / instability of the normal
equilibrium point. In Sect. 4 questions concerning the existence of limit cycles are
studied rigorously. The bifurcation equation is derived. The formulae for the cal-
culation of its coefficients are gained. In Sect. 5, a numerical example is presented
by means of numerical simulation. Section6 is devoted to the concluding remarks,
which gives an economic interpretation of the reached results and suggests other
possibilities of the extension of the model.

2 The Model

The model consists of the following system of equations:

Y = Y
(
r − πe,G, τ

) ; Yr−πe = ∂Y

∂ (r − πe)
< 0, YG = ∂Y

∂G
> 0, Yτ = ∂Y

∂τ
< 0

(1)

M

p
= L

(
Y, r,πe) ; LY = ∂L

∂Y
> 0, Lr = ∂L

∂r
< 0, Lπe = ∂L

∂πe
< 0 (2)

π = ε
(
Y − Ȳ

) + πe; Ȳ > 0, ε > 0 (3)

ṙ =
{

α(π − π̄) + β(Y − Ȳ ) i f r > 0
max[0,α(π − π̄) + β(Y − Ȳ )] i f r = 0

(4)

π̇e = γ[θ(π̄ − πe) + (1 − θ)(π − πe)]; γ > 0, 0 ≤ θ ≤ 1, (5)

where the meaning of the symbols is as follows. Y—real national income (real
output)> 0, Ȳ—‘natural’ output level corresponding to the natural rate of unemploy-
ment (fixed)> 0,G—real government expenditure (fixed)> 0, τ—marginal tax rate
(fixed, 0< τ < 1),M—nominal money supply > 0, p—price level > 0,π = ṗ

p—
rate of inflation, πe—expected rate of inflation, π̄—target rate of inflation, r—
nominal rate of interest ≥ 0, r − πe—expected real rate of interest.

Equation (1) is the reduced form of the IS equation, which corresponds to the
equilibrium condition of the goods market. In this formulation, capital accumulation
effect is neglected, so that this is a ‘short run’ model in the sense of Keynes (1936).

Equation (2) is the LM equation, which corresponds to the equilibrium condition
of the money market. It is convenient to rewrite this equation as follows. Differenti-
ating this equation with respect to time, we get the following equivalent ‘dynamic’
expression of the LM equation
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μ = π + ηy
Ẏ

Y
− ηr

ṙ

r
− ηπ

π̇e

πe
; μ = Ṁ

M
, (6)

where ηy = ( ∂L
∂Y )
( L
Y )

> 0, ηr = − ( ∂L
∂r )
( L

r )
> 0, and ηπ = − ( ∂L

∂πe )
( L

πe )
> 0 are elasticities of the

real money demand with respect to changes of the real national income, nominal rate
of interest and the expected rate of inflation, respectively.

Equation (3) is the quite conventional ‘expectation-augmented Philips curve’.
Equation (4) describes the monetary policy rule of the central bank in the spirit

of the ‘Taylor rule’. It is assumed that the central bank chooses the nominal rate of
interest r as a policy variable, and the central bank raises or reduces r according
to the predetermined policy rule that is specified by Eq. (4). In this equation, the
‘nonnegative constraint’,whichmeans that the nominal rate of interest cannot become
negative, is explicitly considered, and it is assumed that twopolicy parametersα andβ
are positive.We can consider that this monetary policy rule means a kind of ‘inflation
targeting’ as well as ‘employment targeting’, because it means that the central bank
aims at the realization of the ‘target rate of inflation’ π̄ that is announced by the
central bank as well as the realization of the ‘natural level of output’ Ȳ .

Equation (5) is a formalization of the inflation expectation formation, which is the
mixture of the ‘forward looking’ and ‘backward looking’ or ‘adaptive’ expectations.
If the public strongly believes that the actual rate of inflation will be governed by
the target rate of inflation that is announced by the central bank in the long run, we
shall have in a limit case θ = 1. On the other hand, if the public does not believe
the announcement by the central bank at all or the central bank does not announce
the target rate of inflation, then we shall have as a limit case θ = 0. Hence, we can
consider that the value of the parameter θ reflects the ‘degree of credibility’ of the
central bank’s announcement.

Substituting Eqs. (1) and (3) into Eqs. (4)–(6) we receive

ṙ =
{

f1(r,πe;α,β, ε,G, τ ) i f r > 0
max[0, f1(r,πe;α,β, ε,G, τ )] i f r = 0

(7)

π̇e = f2(r,π
e; γ, θ, ε,G, τ ) (8)

μ = ε
[
Y

(
r − πe,G, τ

) − Ȳ
] + πe + ηy

Yr−πe (ṙ − π̇e)

Y (r − πe,G, τ )
− ηr

ṙ

r
− ηπ

π̇e

πe
(9)

where

f1
(
r,πe;α,β, ε,G, τ

) = α
{
ε
[
Y

(
r − πe,G, τ

) − Ȳ
] + πe − π̄

}

+ β
[
Y

(
r − πe,G, τ

) − Ȳ
]
,

f2
(
r,πe; γ, θ, ε,G, τ

) = γ
{
θ
(
π̄ − πe

) + (1 − θ) ε
[
Y

(
r − πe,G, τ

) − Ȳ
]}

.

The system of Eqs. (7)–(9) determines the dynamics of three variables (r,πe,μ). We
can see that this system is a decomposable system in the sense that the dynamics of
r and πe, which is determined by Eqs. (7) and (8), does not depend on equation (9).
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Equation (9) only plays the role to determine the growth rate of money supply μ.
Therefore, we need only to analyze the two-dimensional system of Eqs. (7) and (8).

The normal equilibrium point E = (r∗,πe∗) of this system is determined by the
relations ṙ = 0, π̇ = 0,Y = Ȳ . If we neglect the nonnegative constraint of r , then
from the structure of the functions f1 (r,πe;α,β, ε,G, τ ) and f2 (r,πe; γ, θ, ε,
G, τ ) we receive

Y
(
r∗ − π̄,G, τ

) = Ȳ , (10)

πe∗ = π∗ = π̄. (11)

Substituting (10) and (11) into Eq. (9) and considering ṙ = 0, π̇e = 0, we obtain the
equilibrium value of μ

μ∗ = π̄. (12)

Equation (10) means that the ‘natural’ output level is realized at the normal equi-
librium point. Equation (11) means that the expected rate of inflation is realized
and the realized rate of inflation is equal to the target rate of inflation at the normal
equilibrium point. Equation (12) implies that the growth rate of the nominal money
supply at the normal equilibrium point is equal to the target rate of inflation. This
means that the target rate of inflation that is set by the central bank determines the
equilibrium growth rate of money supply and not the other way round in this model.

The nominal rate of interest at the normal equilibrium point r∗ is determined as
follows. First, the equilibrium real rate of interest ρ∗ is determined by the equation
Y (ρ∗,G, τ ) = Ȳ . Solving this equation with respect to ρ∗, we have

ρ∗ = ρ∗ (G, τ ) ; ∂ρ∗

∂G
> 0,

∂ρ∗

∂τ
< 0. (13)

Then, we have
r∗ = ρ∗ (G, τ ) + π̄. (14)

If r∗ in (14) is negative, the economically meaningful normal equilibrium point does
not exist. The condition r∗ > 0 is equivalent to the condition

π̄ > −ρ∗ (G, τ ) . (15)

If G is sufficiently small and/or τ is sufficiently large, the equilibrium real rate of
interest ρ∗ may become negative. In this case, the inequality (15) may not be satisfied
so that the normal equilibrium point need not exist if the target rate of inflation π̄
is not sufficiently large. Needless to say, the deflationary biased central bank that
selects non-positive π̄ can easily fail to satisfy the inequality (15). From now on, we
assume that the inequality (15) is satisfied so that the equilibrium nominal rate of
interest r∗ is positive.
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3 Dynamic Stability of the Normal Equilibrium Point

For further investigation it is suitable to transform the equilibrium E = (r∗,πe∗)
of system of Eqs. (7) and (8) into the origin E0 = (

x∗
1 = 0, x∗

2 = 0
)
by the shifting

x1 = r − r∗, x2 = πe − πe∗.We receive system

ẋ1 = α{ε[Y (x1 − x2 + r∗ − πe∗,G, τ ) − Ȳ ] + x2 + πe∗ − π̄}
+ β

[
Y

(
x1 − x2 + r∗ − πe∗,G, τ

) − Ȳ
] ≡ F1 (x1, x2;α,β, ε)

x2 = γ{θ(π̄ − x2 − πe∗) + (1 − θ)ε[Y (x1 − x2 + r∗ − πe∗,G, τ ) − Ȳ ]}
≡ F2(x1, x2; γ, ε, θ)

(16)

Further on we investigate the impact of the changes in the values of the credibility
parameter θ on the behavior of solutions of system (16) in a neighborhood of its
equilibrium point E0 = (0, 0). The Jacobian matrix of system (16) at the equilibrium
E0 is

J (E0, θ) =
(
F11 F12

F21 F22

)
, (17)

where

F11 = ∂F1

∂x1
= αεYr−πe + βYr−πe = (αε + β) Yr−πe < 0,

F12 = ∂F1

∂x2
= −αεYr−πe + α − βYr−πe = − (αε + β) Yr−πe + α > 0,

F21 = ∂F2

∂x1
= γ (1 − θ) εYr−πe < 0,

F22 = ∂F2

∂x2
= γ

[−θ − (1 − θ) εYr−πe

]
.

The eigenvalues of Jacobian (17) are the roots of its characteristic equation λ2 −
Tr Jλ + detJ = 0,which are given by the formulaλ1,2 = Tr J±

√
(Tr J )2−4detJ
2 ,where

Tr J = [αε + β − γ (1 − θ) ε] Yr−πe − γθ, detJ = −γ (θβ + αε) Yr−πe > 0.

Conditions for pure imaginary eigenvalues of (17) are:

1. Tr J = [αε + β − γ (1 − θ) ε] Yr−πe − γθ = 0. (18)

2. detJ > 0.

From (18) we receive

β =
(

1

Yr−πe
− ε

)
γθ + (γ − α) ε. (19)
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Expression (19) is the equation of a line with respect to parameter variables θ and β.
Its intersection θ̄ with θ-axis is given by the formula

θ̄ = (γ − α)

γ

−εYr−πe

1 − εYr−πe
< 1.

We recall that all parameters α,β, γ, ε, and θ in the model are considered to be
positive. As the determinant of the Jacobian is always positive, we get that the real
parts of the eigenvalues λ1,2 of Jacobian (17) are negative for the values of the
parameter β lying above line (17), and positive for lying below this line. Therefore
we can state, taking into account that the qualitative properties of the solutions are not
changed by the shift of the equilibriumE = (r∗,πe∗) into the origin, the following
theorem on the stability of the equilibrium.

Theorem 1 1. If 0 < α < γ and 0 < θ < θ̄, θ̄ = (γ−α)
γ

−εYr−πe

1−εYr−πe
, then the equilib-

rium E = (r∗,πe∗) is

(a) asymptotically stable for β >
(

1
Yr−πe

− ε
)

γθ + (γ − α) ε,

(b) unstable for β <
(

1
Yr−πe

− ε
)

γθ + (γ − α) ε.

2. If 0 < α < γ and θ̄ ≤ θ < 1, then the equilibrium E = (r∗,πe∗) is asymptotically
stable for all β and ε.

3. If γ ≤ α, then the equilibrium E = (r∗,πe∗) is asymptotically stable for all β, ε
and

0 < θ < 1.

4 Existence of the Cycles Around the Equilibrium Point

At the points (θ,β) lying on the segment

β =
(

1

Yr−πe
− ε

)
γθ + (γ − α) ε, 0 < θ < θ̄,

θ̄ = (γ − α)

γ

−εYr−πe

1 − εYr−πe
< 1, γ − α > 0
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there is Tr J = [αε + β − γ (1 − θ) ε] Yr−πe − γθ = 0 and detJ = −γ (θβ + αε)
Yr−πe > 0.

Consider an arbitrary credibility parameter θ = θ0, 0 < θ0 < θ̄. Then at the pair

(θ0,β0) ,β0 =
(

1
Yr−πe

− ε
)

γθ0 + (γ − α) ε there is λ1,2 (θ0) = ±iω0 (θ0). We call

this pair the critical pair of Jacobian (17). Let us fix parameters α, γ, ε and the
critical value β0 which corresponds to the chosen θ0. Further on we shall investigate
the properties of the solutions of model (16) with respect to parameter θ from a small
neighborhood of the critical parameter θ0. For this purpose it is suitable to shift θ0
in model (16) to the origin by shifting θ̃ = θ − θ0. We receive

ẋ1 = α{ε[Y (x1 − x2 + r∗ − πe∗,G, τ )] + x2 + πe∗ − π̄}
+ β

[
Y

(
x1 − x2 + r∗ − πe∗,G, τ

) − Ȳ
] ≡ X1 (x1, x2;α,β0, ε)

ẋ2 = γ{(θ̃ + θ0)(π̄ − x2 − πe∗) + (1 − θ̃ − θ0)ε[Y (x1 − x2 + r∗ − πe∗,G, τ − Ȳ ]}
≡ X2

(
x1, x2; γ, θ̃, ε

)
.

(20)

In shorten form system (20) can be written as

ẋ = X (x, θ̃), x = (x1, x2). (21)

The properties of system (21):

1. X (0, θ̃) = 0.
2. The eigenvalues of Jacobian of (21) at x = 0, θ̃ = 0 are λ1,2 = ±iω0, and at

θ̃ from a small neighborhood of θ̃ = 0 are λ1,2(θ̃) = δ(θ̃) ± iω(θ̃), δ(0) = 0,
ω (0) = ω0.

Performing Taylor expansion of model (21) at the equilibrium E0 = (0, 0) with
respect to x we get

ẋ = J (E0; θ̃)x + H(α, θ̃), (22)

where

J (E0; θ̃) =
(
(αε + β0) Yr−πe − (αε + β0) Yr−πe + α

γ(1 − θ̃ − θ0)επ
e γ

[
−θ̃ − θ0 − (1 − θ̃ − θ0)εYr−πe

]
)
,

H(x, θ̃) =
(
H1(x1, x2, θ̃)
H2(x1, x2, θ̃)

)
,
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H1(x1, x2, θ̃) = 1

2!
(
a(2,0)x21 + 2a(1,1)x1x2 + a(0,2)x22

)

+ 1

3!
(
a(3,0)x31 + 3a(2,1)x21 x2 + 3a(1,2)x1x

2
2 + a(0,3)x32

)

+ 1

4!
(
a(4,0)x41 + 4a(3,1)x31 x2 + 6a(2,2)x21 x

2
2 + 4a(1,3)x1x

3
2 + a(0,4)x42

)

+O
(
| x |5

)

a(p,q) = (−1)q (αε + β)
∂kY

(
r∗ − πe∗,G, θ̃

)

∂ (r − πe)k
, k = p + q,

and

H2(x1, x2, θ̃) = 1

2!
(
b(2,0)x21 + 2b(1,1)x1x2 + b(0,2)x22

)

+ 1

3!
(
b(3,0)x31 + 3b(2,1)x21 x2 + 3b(1,2)x1x

2
2 + b(0,3)x32

)

+ 1

4!
(
b(4,0)x41 + 4b(3,1)x31 x2 + 6b(2,2)x21 x

2
2 + 4b(1,3)x1x

3
2 + b(0,4)x42

)

+O
(
| x |5

)
,

b(p,q) = (−1)q γ(1 − θ̃ − θ0)ε
∂kY (r∗ − πe∗,G, θ̃)

∂ (r − πe)k
, k = p + q.

Denoting A = − (αε + β0) Yr−πe , B = γ(1 − θ̃ − θ0)εYr−πe , then Jacobian
J (E0; θ̃) in (22) can be written in the form

J (E0; θ̃) =
(−A A + α
B −B − γ (τ + θ0)

)
.

Consider now the matrix of the eigenvectors �u1, �u2 of the Jacobian J (E0; θ̃) in the
form

M= ( �u1, �u2) =
(−(αε + β0)Yr−πe + α −(αε + β0)Yr−πe + α

−(αε + β0)Yr−πe + λ1 −(αε + β0)Yr−πe + λ2

)
=

(
A + α A + α
A + λ1 A + λ2

)
,

and its inverse matrix

M−1 = 1

−2i (A + α)ω(θ̃)

(
A + λ2 −A − α
−A − λ1 A + α

)
.

In further considerations we utilize the real forms Mr and M−1
r of the matrices M

and M−1. They are as follows:

Mr =
(
2 (A + α) 0
2A + 2δ(θ̃) −2ω(θ̃)

)
, M−1

r = 1

2 (A + α)ω(θ̃)

(
ω(θ̃) 0
A + δ(θ̃) −A − α

)
.
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Perform now in (22) the transformation x = Mr y, y = (y1, y2) .We receive

ẏ = M−1
r (0; θ̃)Mr y + M−1

r H(Mr y, θ̃),

what gives the system

(
ẏ1
ẏ2

)
=

(
δ(θ̃) −ω(θ̃)

ω(θ̃) δ(θ̃)

)(
y1
y2

)

+ 1

2 (A + α)ω(θ̃)

(
ω(θ̃)K1 (y1, y2)(
A + δ(θ̃)

)
K1 (y1, y2) − (A + α) K2 (y1, y2)

)
,

(23)

where

K1 (y1, y2) = 1

2!
{
a(2,0) [2 (A + α) y1]

2 + 2a(1,1) [2 (A + α) y1]
[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]

+ a(0,2)
[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]2} + 1

3!
{
a(3,0) [2 (A + α) y1]

3

+3a(2,1) [2 (A + α) y1]
2
[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]
+ 3a(1,2) [2 (A + α) y1]

[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]2 + a(0,3)
[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]3}

+ 1

4!
{
a(4,0) [2 (A + α) y1]

4 + 4a(3,1) [2 (A + α) y1]
3
[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]

+6a(2,2) [2 (A + α) y1]
2
[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]2 + 4a(1,3) [2 (A + α) y1]

[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]3+a(0,4)
[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]4}+O
(
| y |5

)
,

K2 (y1, y2) = 1

2!
{
b(2,0) [2 (A + α) y1]

2 + 2b(1,1) [2 (A + α) y1]
[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]

+ b(0,2)
[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]2} + 1

3!
{
b(3,0) [2 (A + α) y1]

3

+3b(2,1) [2 (A + α) y1]
2
[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]
+ 3b(1,2) [2 (A + α) y1]

[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]2 + b(0,3)
[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]3}

+ 1

4!
{
b(4,0) [2 (A + α) y1]

4 + 4b(3,1) [2 (A + α) y1]
3
[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]

+6b(2,2) [2 (A + α) y1]
2
[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]2 + 4b(1,3) [2 (A + α) y1]

[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]3 + b(0,4)
[
2

(
A + δ(θ̃)

)
y1 − 2ω(θ̃)y2

]4} + O
(
| y |5

)
.

The normal form of (23) in real domain (see Wiggins (1990) or Bibikov (1979)) is

(
ẏ1
ẏ2

)
=

(
δ(θ̃) −ω(θ̃)

ω(θ̃) δ(θ̃)

) (
y1
y2

)
+

(
(a(θ̃)y1 − b(θ̃)y2)(y21 + y22 ) + O(|y|5)
(b(θ̃)y1 − a(θ̃)y2)(y21 + y22 ) + O(|y|5)

)
.

(24)
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System (24) in polar coordinates y1 = ucosφ, y2 = u sin φ has the form

u̇ = δ(θ̃)u + a(θ̃)u3 + O(u5)

φ̇ = ω(θ̃)u + b(θ̃)u2 + O(u4). (25)

Taylor expand of the coefficients in (25) at θ̃ = 0 gives

u̇ = dδ(0)

d θ̃
θ̃u + a(0)u3 + O(μ2u, θ̃u3, u5)

φ̇ = ω(0) + dω(0)

d θ̃
θ̃ + b(0)u2 + O(θ̃2, θ̃u2, u4) (26)

The bifurcation equation of (26) is

u̇ = u(au2 + bθ̃), a = a(0), b = dδ(0)

d θ̃
. (27)

Denote

h1
(
y1, y2, θ̃

)
= 1

2 (A + α)ω(θ̃)
ω(θ̃)K1 (y1, y2)

h2(y1, y2) = 1

2 (A + α)ω(θ̃)

[(
A + δ(θ̃)

)
K1(y1, y2) − (A + α)K2(y1, y2)

]
.

Then according to Wiggins (1990) the first Lyapunov coefficient a = a (0) in bifur-
cation equation (27) is defined by the formula

a = 1

16ω0

[
h1y1 y2

(
h1y1 y1 + h1y2 y2

) − h2y1 y2
(
h2y1 y1 + h2y2 y2

) − h1y1 y1h
2
y1 y1 + h1y2 y2h

2
y2 y2

]

+ 1

16

(
h1y1 y1 y1 + h1y1 y2 y2 + h2y1 y1 y2 + h2y2 y2 y2

)
.

In our case the coefficient b = dδ(0)
d θ̃

in the bifurcation equation is negative, as δ
(
θ̃
)

=
Tr J

(
E0, θ̃

)
= (αε + β0) Yr−πe + γ

[
−τ − θ0 −

(
1 − θ̃ − θ0

)
εYr−πe

]
and

dδ (μ)

d θ̃
= −γ + γεYr−πe < 0. (28)

On the base of (28) and the results from the theory on Hopf bifurcation (see for
example Wiggins (1990)) we can formulate

Theorem 2 Let for the coefficient a in the bifurcation equation (27) hold:

1. if a < 0, then there exists a stable limit cycle for every small enough θ̃ < 0.
2. if a > 0, then there exists an unstable limit cycle for every small enough θ̃ > 0.
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5 Numerical Simulations

Considermodel (7)–(8) constructed on the base of the following functions and values:
Y = C + I + G,C = c (Y − T ) + C0, T = τY − T0, I = κ

1+er−πe , Y (r − πe,

G, τ ) = 1
1−c(1−τ )

κ
1+er−πe + G+C0+cT0

1−c(1−τ )
, α = 1

6 , γ = 10, ε = 0.2, c = 0.8, τ = 0.4,

G = 40,C0 = 2.4, T0 = 2, π̄ = 0.02, Ȳ = 100,κ = 8
(
e0.03 + 1

)
.

The equilibrium of this model is E = (r∗ = 0.05,πe∗ = 0.02) and the intersec-

tion θ̄ of the line β =
(

1
Yr−πe

− ε
)

γθ + (γ − α) ε with θ-axis is θ̄ = 0.599. In the

following part there are depicted three pairs of solutions of the model with different
values of the critical parameters (θ0,β0) and the credibility parameter θ. In these

Fig. 1 Without nonnegative
constraint: θ̄

.= 0.599, θ0 =
0.95 θ̄, θ = 0.995θ0, initial
values

(
r0,πe

0

)
of solutions:

solid(
r0 = 3r∗,πe

0 = 2πe∗) ,
dotted(
r0 = 6r∗,πe

0 = 8πe∗)
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pairs the first figure depicts solutions without nonnegative constraint, and the second
one depicts solutions with nonnegative constraint.

Figures1 and 2 correspond to the critical pair (θ0 = 0.569,β0 = 0.098) with the
value of the credibility parameter θ = 0.995θ0 what gives the approximate value θ

.=
0.567. In Fig. 1 there are depicted two solutions of the model without its nonnegative
constraint. We see that their r -components take also negative values. In Fig. 2 there
are depicted three solutions of this model with its nonnegative constraint. We see
that this constraint controls their courses in the way that their r -components do not

Fig. 2 With nonnegative constraint: θ̄
.= 0.599, θ0 = 0.95 θ̄, θ = 0.995θ0, initial values

(
r0,πe

0

)
of solutions: dash-dotted

(
r0 = 1.6r∗,πe

0 = 2πe∗) , dashed
(
r0 = 2.5r∗,πe

0 = 2.5πe∗) , solid(
r0 = 3r∗,πe

0 = 2πe∗)
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Fig. 3 Without nonnegative constraint: θ̄
.= 0.599, θ0 = 0.9 θ̄, θ = 0.995θ0, initial values

(
r0,πe

0

)
of solutions: solid

(
r0 = 3r∗,πe

0 = 2πe∗) , dotted (
r0 = 8r∗,πe

0 = 8πe∗)

take negative values, and their courses gradually form a common cycle with different
time shifting.

Figures3 and 4 correspond to the critical pair (θ0 = 0.539,β0 = 0.197) with the
value of the credibility parameter θ = 0.995θ0,what gives the approximate value θ

.=
0.537. This value is a little smaller than that one in Fig. 1. In Fig. 3 there are depicted
two solutions of the model without its nonnegative constraint. We see that their r -
components take also negative values. In Fig. 4 there are depicted three solutions of
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Fig. 4 With nonnegative constraint: θ̄
.= 0.599, θ0 = 0.9 θ̄, θ = 0.995θ0, initial values

(
r0,πe

0

)
of solutions: dash-dotted

(
r0 = 1.6r∗,πe

0 = 2πe∗) , dashed
(
r0 = 2.5r∗,πe

0 = 2.5πe∗) , solid(
r0 = 3r∗,πe

0 = 2πe∗)

this model with its nonnegative constraint, having the same initial conditions as the
solutions in Fig. 2. We see that the dot-dashed and dashed solutions gradually enter
into a common cycle but the solid solution by contrast to the solid solution in Fig. 2
goes to the depression of the expected rate of inflation.
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Fig. 5 Without nonnegative constraint: θ̄
.= 0.599, θ0 = 0.7 θ̄, θ = 0.995θ0, initial values

(
r0,πe

0

)
of solutions: solid

(
r0 = 3r∗,πe

0 = 2πe∗) , dotted (
r0 = 10r∗,πe

0 = 8πe∗)

Figures5 and 6 correspond to the critical pair (θ0 = 0.420,β0 = 0.590) with the
value of the credibility parameter θ = 0.995θ0,what gives the approximate value θ

.=
0.418which is smaller comparing it with that one in Fig. 3. In Fig. 5 there are depicted
two solutions of the model without its nonnegative constraint. We see that their r -
components take also negative values. In Fig. 6 there are depicted three solutions
of this model with its nonnegative constraint, having the same initial conditions as
the solutions in Figs. 2 and 4. We see that the dot-dashed solution gradually form a
cycle but the dashed and solid solutions go to the depression of the expected rate of
inflation.

Figures2, 4 and 6 show that the domain of the ‘stability’ around the equilibrium
point E = (r∗,πe∗) of the model which guarantees that solutions starting inside it
will not go into the depression of expected rate of inflation is getting smaller with
the decrease of the value of the credibility parameter θ.
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Fig. 6 With nonnegative constraint: θ̄
.= 0.599, θ0 = 0.7 θ̄, θ = 0.995θ0, initial values

(
r0,πe

0

)
of solutions: dash-dotted

(
r0 = 1.6r∗,πe

0 = 2πe∗) , dashed
(
r0 = 2.5r∗,πe

0 = 2.5πe∗) , solid(
r0 = 3r∗,πe

0 = 2πe∗)

6 Conclusion

In this paper, a simple two-dimensionalKeynesianmacrodynamicmodel ofmonetary
economy describing the development of nominal interest rate and expected rate of
inflation is analyzed. Theorem 1 solves the question of the stability of its normal
equilibrium point giving conditions on the parameters of the model which guarantee
its stability. This theorem implies the following results.

(1) The normal equilibrium point becomes locally stable if the monetary policy
of the central bank is sufficiently active (at least one of the monetary policy
parameters α or β is sufficiently large) and the central bank’s inflation targeting
is sufficiently credible (the credibility parameter θ is sufficiently close to 1).

(2) The normal equilibrium point becomes locally unstable if both of the monetary
policy parameters α and β are sufficiently small and the credibility parameter θ
is sufficiently small.
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Theorem 2 gives conditions under which limit cycles around the normal equilib-
rium point can arise through Hopf bifurcation at the intermediate parameter values.
In the presented example the limit cycle is stable. In three pairs of figures it is shown
that the nonnegative constraint in the equation for the development of the nominal
interest rate can prevent the interest rate to receive negative values during its course.
In the presented examples, this nonnegative constraint has a destabilizing effect, and
it can trigger the development of the deflationary depression even if the normal equi-
librium point is stable in the system without nonnegative constraint. The figures at
the same time show that the domain of the ‘stability’ around the equilibrium point
which guarantees that solutions starting inside it will not go into the depression of
the expected rate of inflation is getting smaller with the decrease of the value of
the credibility parameter θ. These observations are consistent with the performance
Japanese economy during the period from the 1990s to the mid 2010s.2

Needless to say, the two-dimensional dynamic model in this paper that is based on
Asada (2011) is the simplest prototype dynamic model of the monetary policy in the
spirit of Keynes (1936) economic theory. More advanced five-dimensional dynamic
Keynesian model of monetary and fiscal policy mix with public debt accumulation
is studied in Asada and Ouchi (2015).
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Pathology in the Market Economy:
Self-fulfilling Process to Chronic Slump

Chronic Slump

Akitaka Dohtani

Abstract In this chapter, we construct an extension of Goodwin’s nonlinear accel-
erator model and detect a possible cause that generates a chronic slump. By intro-
ducing a nonlinearity expressing a pessimistic outlook for the future economy in
our extended model, we demonstrate that a chronic slump cycle arises from the pes-
simistic outlook through a self-fulfilling prophecy. In the extended model, income on
the cycle is locked in a domain lower than the market equilibrium. This implies that
private spending in the model economy fluctuates and is continuously insufficient to
make use of the available productive capacity that is estimated at the market equi-
librium. The periodic attractor gives a partial description of the recent worldwide
chronic slump. Our result shows that the extended Goodwin model provides a partial
description of the Krugman’s view that explains the recent worldwide slump. More-
over, although booms and slumps come in all sizes, our extended model explains
how this is possible.

Keywords Chronic slump · Demand side · Self-fulfilling prophecy · Pessimistic
outlook · Asymmetric adaptive expectation formation

1 Introduction

Recently, many countries have experienced slumps. The current depression is not as
severe as the Great Depression. However, the recent worldwide slump is critical in
the sense that it is chronic, and this chronicity implies a difficulty in recovery: the
signs of a serious depression have been observed. Which mechanism is responsible
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for generating the recent worldwide chronic slump? Following Krugman’s view1 on
the chronic slump, we emphasize the importance of the demand side of the econ-
omy. We are interested in the dynamic demand-side model describing Krugman’s
view. Moreover, the Krugman’s view states that the present state of private spend-
ing is continuously insufficient to make use of the available productive capacity.2

Krugman (2008) also asserts that the dynamic notion of the self-fulfilling prophecy3

plays an important role in explaining the chronicity of the recent slump. Regarding
the self-fulfilling prophecy, Krugman (2008) focuses on the financial markets. How-
ever, we concentrate on the real markets and show that the Krugman’s view on the
self-fulfilling prophecy holds true for the real markets as well. In a downswing, the
self-fulfilling prophecy will often occur in both markets repeatedly. From the per-
spective of demand-side macroeconomics, we construct a prototype dynamic model
expressing a part of the Krugman’s view.

The situation that we will describe by the prototype mode is as follows. We
will demonstrate that the chronic slump results from a pessimistic outlook on the
demand side. We suppose that the Knightian uncertainty4 arises from a market’s
loss of confidence, and therefore, the pessimistic outlook spreads.5 This pessimism
often yields the self-fulfilling prophecy. The pessimistic outlook makes the economy
inactive. As a result, the inactiveness makes the economic agents believe that the
pessimistic outlook is appropriate, and the belief renders the economy even more
inactive. This vicious circle (or the self-fulfilling prophecy) continues, triggering an
economic avalanche, and a chronic slump emerges. Thus, the pessimistic outlook is
a critical barrier to prosperity.

We heremake one important remark. Themarket psychologymay change through
a “learning”, and the pessimistic outlookmay change. However, the Knightian uncer-
tainty persists over a long period of time unless the market’s loss of confidence is
recovered. Consequently, the above vicious circlemakes the economic agents believe
firmly the validity of pessimistic outlook. Therefore, the pessimistic outlook also per-
sists over a long period of time, and our precondition of argument is robust unless
such a loss is recovered.

1See Krugman (2008, Chap.10).
2Here, the productive capacity is estimated at the market equilibrium.
3For insightful arguments on the self-fulfilling prophesy, see Rosser (1991).
4Knightian uncertainty applies to situations where we cannot obtain enough information we need
in order to set accurate odds. See Knight (1921). For an important relation between the Knightian
uncertainty and market psychology, see also Akerlof and Shiller (2009, Chap.11).
5The role of expectation in business cycles has been discussed by many economists from the
Keynesian perspective. See, for example, Matthews (1959, Chap.3.5). Economists have considered
expectation to be fickle, and therefore, the corresponding argument lacks clarity. However, owing
to the self-fulfilling prophecy, pessimism becomes inflexible and robust in the long run. Thus, the
market psychology of pessimism can be considered as a theoretical subject. Akerlof and Shiller
(2009) discuss importance of the market psychology from a much wider viewpoint. By using the
Michigan Consumer Sentiment Index, Blanchard (1993) pointed out that the loss of confidence can
cause a large economic recession.
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We present the analytical details as follows. The prototype model constructed
in this paper is based on the classical nonlinear-accelerator business cycle model of
Goodwin (1951).6 The Goodwinmodel is one of well-known demand-sidemodels of
the business cycle in the Keynesian tradition.7 In the model, the sigmoid type of non-
linearity plays themost important role in generating persistent nonlinear fluctuations.
Although the Goodwin model has been criticized for the lack of microfoundation,
the Keynesian nonlinear business cycle models like Goodwin’s nonlinear accelerator
model are useful for explaining actual business cycles. We construct an extension
of the Goodwin model and detect a possible cause of a chronic slump.8 Unlike the
Goodwin model, we assume that the household distinguishes between short-run and
medium-run consumption plans. In the short-run plan, like the Goodwin model, the
household determines its consumption depending linearly on its income.On the other
hand, in the medium-run plan, the household determines its consumption in propor-
tion to the expected income, which is adjusted by an adaptive expectation rule. We
assume that in the case where the actual income is larger than the expected income,
the slope of the adjustment function is smaller than that in the converse case. This
implies that the household develops a pessimistic outlook for the future economy,
and therefore, in the case where the actual income is larger than the expected income,
the latter is adjusted merely by a smaller amount than that in the converse case. We
show that the introduction of pessimistic adaptive learning into the Goodwin model
does generate a chronic slump in which income and expected income are locked in
lower domains than the market equilibrium.

All business cycle models in the Keynesian tradition describe a complete recovery
from a slump. However, the economic process in an actual chronic slump is not
monotonous in the sense that it gradually descends while repeating partial recoveries
and slowdowns. In other words, even in the chronic slump, the market economy
persistently fluctuates in a low domain of income. To describe this situation, we
must construct a nonlinear business cycle model that possesses a periodic path on
which income and expected income are lower than those at the market equilibrium.
We show that the above extended Goodwin model has such a periodic path. Thus, the
extendedGoodwinmodel constructedwill be a business cyclemodel that analytically
expresses the above view held by Krugman on the recent chronic slump. Moreover,
as stressed in Krugman (1996, p. 68), an important feature of business cycle is that
booms and slumps come in all sizes. Slump cycles are a part of such a feature. The
extended Goodwin model also gives a theoretical explanation of the feature.

6Many studies have examined the nonlinear dynamics of the original and extended versions. See,
for example, Bothwell (1952), Strotz et al. (1953), Gabisch and Lorenz (1987), Krugman (1996),
Owase (1991), and Puu (2003), and many papers on the Goodwin model in Puu and Sushko (2006).
7kaldor (1940) constructed another well-known and important nonlinear business cycle model in
the Keynesian tradition. The mathematical formulation of the model is given by Chang and Smyth
(1971). Our argument holds true for the business cycle model.
8For another interesting Keynesian approach, see Varian (1976) and George (1981). This approach
employs the catastrophe theory. It also provides the important and useful information on a serious
depression. For the catastrophe theory, see Rosser (1991, Chap.6).
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Manymodelswith self-fulfilling features have been proposed.9 A feature common
to these models is that there exist multiple equilibria, which comprise higher and
lower equilibria. However, we emphasize that the extended Goodwin model is quite
different from these models in the sense that it possesses only a unique equilibrium
and all its paths converge to a periodic attractor that is locked in a domain lower than
the equilibrium point. From the perspective of Keynesian demand-side economics,
we present a new kind of model possessing the self-fulfilling feature.

2 Extension of the Goodwin Model

For constructing the extended Goodwin model, the requirements we impose are as
follows:

R.1 The business cycle model is a demand-side model.
R.2 There exists a small periodic path on which income and expected income are

constantly lower than their levels at the market equilibrium.

R.1 is the first requirement for following the Krugman’s view. In a chronic slump,
the market economy does not possess the power of automatic recovery. In this sense,
the slump is serious. Therefore, as stated in the Introduction, the economy constantly
repeats partial recoveries and slowdowns. To describe such a situation, we require
R.2.

R.2 may be stronger than needed. However, R.2 is a convenient requirement for
clarifying the meaning of “partial recovery.” As stated in the Introduction, R.2 also
implies that private spending is continuously insufficient to make use of the available
productive capacity.10 Like the Goodwin model, many business cycle models in the
Keynesian tradition possess the power of automatic recovery, and therefore, all the
paths fluctuate around the equilibrium point. However, R.2 implies that the model
does not possess any power of automatic recovery by itself, and therefore, the income
and expected income are lower than their levels at the market equilibrium. The
purpose of this section is to construct a prototype dynamic macromodel satisfying
R.1 and R.2, which provides an extension of Goodwin’s nonlinear business cycle
model.

Before constructing the extended Goodwin model, we briefly explain the original
nonlinear accelerator model11 of Goodwin. Throughout this paper, we assume that
all functions are continuous. Goodwin’s original model is given by

·
yt = μ{(ct +

·
kt) − yt}, (2.1a)

ct = αyt + c0, and (2.1b)

9For the models, see, for example, Krugman (1991) and Murphy et al. (1989).
10See also Footnote 2.
11It is well-known that the multiplier-accelerator principle plays an important role in explaining
business cycles. See Blanchard (1981).
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·
kt+θ = φ(

·
yt), (2.1c)

where c is consumption, y is national income, k is capital stock, α ∈ [0, 1) is the
marginal propensity to consume, μ is the adjustment coefficient, and c0 is a pos-
itive constant. A dot over a variable indicates a derivative with respect to time.
Goodwin’s original model is given by differential-difference equations. Following
Goodwin (1951), we transform this system into a system of differential equations.
Equations (2.1a) and (2.1b) yield

(1 − α)yt = ·
kt − (1/μ)

·
yt + c0. (2.2)

The linear approximation of
·
kt+θ is given by

·
kt+θ ≈ ·

kt + θ
··
kt . As is typical, using the

linear approximation, we replace (2.1c) with

θ
··
kt = φ(

·
yt) − ·

kt . (2.3)

Let us define

xt = ·
yt and wt = yt − c0/(1 − α).

Then, xt = ·
wt . Moreover, Eq. (2.1b) yields xt = μ{ ·

kt − (1 − α)yt + c0}. Therefore,
Eq. (2.3) yields

·
xt = μ{··

kt − (1 − α)
·
yt} = μ[{φ(xt) − ·

kt}/θ − (1 − α)xt].

Equation (2.2) yields
·
kt=(1 − α)yt + (1/μ)

·
yt − c0 = (1 − α)wt + (1/μ)xt . Thus,

we obtain the following two-dimensional system of differential equations:

ΘG :
{ ·
xt = μ

θ
[φ(xt) − {(1/μ) + (1 − α)θ}xt − (1 − α)wt],

·
wt = xt .

We call this system the Goodwin model. Throughout this paper, the φ−function is
supposed to satisfy the following assumptions:

Assumption 1 φ(0) = 0.

Assumption 2 The φ−function is continuously differentiable.

Clearly, Assumption1 shows that (0, 0) is the equilibrium point in the Goodwin
model. On the other hand, Assumption2 guarantees the existence and uniqueness of
solutions in the Goodwin model.12

12See Guckenheimer and Holmes (1983, p. 3).
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Fig. 1 Typical periodic
attractor of the Goodwin
model

Goodwin (1951) numerically showed that the φ−function of a sigmoid shape
yields a limit cycle. System ΘG is a system of autonomous differential equations
of the Rayleigh type.13 For the Rayleigh-type equation, many mathematical results
exist.14 Therefore, it is not difficult to prove the existence of a limit cycle in System
ΘG under suitable conditions. Since proving this is not the purpose of the present
paper, we merely provide a numerical example, where System ΘG possesses a limit
cycle.

Numerical Example 1 We set φ(x) = 2Arctan(1.5x), μ = 2, α = 0.7, and θ = 1.
Clearly, theφ−function satisfies Assumptions1 and 2. Theφ−function is of a typical
sigmoid shape as in Goodwin (1951). Figure1 shows that System ΘG possesses a
limit cycle. �

We now extend the Goodwin model. To incorporate the pessimistic outlook for
the future economy into the Goodwin model, we consider the long-run consumption
plan of the household. Moreover, for this purpose, we replace (2.1b) with

ct = αyt + βyet + c0, (2.4)

where β ∈ [0, 1] and ye is the expected income. Equation (2.4) states that the con-
sumption plan is decomposed into the short-run plan (αyt + c0) and the long-run
plan (βyet). Throughout this paper, we assume the following:

13System ΘG can also be transformed into a van der Pol-type equation. See Lorenz (1993, Subsec-
tion5.3.2).
14See, for example, Sansone and Conti (1964) and Yanqian (1986).
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Assumption 3 1 > α + β.

As proved later, Assumption3 is utilized to guarantee the existence and uniqueness
of the equilibrium point. The expected income is adjusted by

·
yet = ψ(yt − yet). (2.5)

Here, we assume the following:

Assumption 4 ψ(u)u > 0 for any u �= 0.

We will later discuss the properties of the ψ−function that are closely related to the
occurrence of a slump cycle. We call the ψ−function the adjustment function and
Eq. (2.5) the adjustment equation. Given Assumption3, we define

xt = ·
yt, (2.6a)

wt = yt − c0/(1 − α − β), and (2.6b)

zt = yet − c0/(1 − α − β), (2.6c)

where wt denotes the deviation of income from the equilibrium and zt denotes the
deviation of expected income from the equilibrium. Then, xt = ·

wt . In the same way
as before, Eq. (2.3) yields

·
xt = μ

θ
[φ(xt) − {(1/μ) + (1 − α)θ}xt − (1 − α)wt + βzt + θβψ(wt − zt)].

Thus, we obtain the following extension of the Goodwin model:

ΘEG :

⎧⎪⎪⎨
⎪⎪⎩

·
xt = μ

θ [φ(xt) − {(1/μ) + (1 − α)θ}xt − (1 − α)wt + βzt + θβψ(wt − zt)],·
wt = xt,·
zt = ψ(wt − zt).

Wecall SystemΘEG the extendedGoodwinmodel. In the following sections, by intro-
ducing a pessimistic outlook into the adjustment function, we consider the dynamic
behavior of System ΘEG.

3 Dynamics Resulting from Pessimism

In this section, we demonstrate that the pessimistic outlook held by the house-
hold about the future economy causes a chronic slump. The pessimistic outlook
is expressed by a nonlinearity incorporated into the adjustment function. Before dis-
cussing this, it is convenient to consider the dynamic behavior of System ΘEG with
the linear adjustment function. We begin with the verification of simple results on
the existence and stability of the equilibrium point. The following lemma is clear.
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Lemma 1 Under Assumptions1, 3, and 4, System ΘEG possesses a unique equilib-
rium point (0, 0, 0). In other words, the market equilibrium is uniquely determined
and given by (y∗, x∗, y∗

e ) = (c0/(1 − α − β), 0, c0/(1 − α − β)). �

Proof Direct calculation proves Lemma1. �

We now prove the following.

Lemma 2 We assume that 0 < ψ′(0)θ < μφ′(0) − 1 − μ(1 − α)θ. Then, under
Assumptions1–4, the equilibrium point of System ΘEG is unstable. �

Proof See Appendix. �

The linear case provides a direct extension of the Goodwin model. In fact, as will
be shown in Numerical Example2, like the Goodwin model, System ΘEG possesses
a similar periodic path that surrounds the equilibrium point. The meaning of “simi-
larity” is clarified using the comparison between systems with nonlinear and linear
adjustment functions, which will be presented soon.

Numerical Example 2 We consider the linear adjustment function

ψ(u) = ηL(u; h) = hu (h > 0).

We set α = 0.4, μ = 2, θ = 1, β = 0.46, h = 0.45, and φ(x) = 2Arctan(1.5x).
It can be easily verified that these parameters satisfy Assumptions1–4. Figure2
describes the projection of a typical path of System ΘEG onto the w−z plane, which
converges to a periodic path. The black dot emphasizes the equilibrium point in the

Fig. 2 Typical periodic
attractor of the extended
Goodwin model with a
symmetric (linear)
adjustment function
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w−z plane. The path in Numerical Example2 represents the usual business cycles in
the sense that the path surrounds the equilibrium point. As in Numerical Example 1,
the model economy in Numerical Example2 possesses the power of automatic and
complete recovery from the slump, though the recovery is temporal and the economy
repeats a pattern of booms and slumps. �

The nonlinear factor in Numerical Example2 is merely incorporated into the
φ−function. Therefore, the periodic attractor observed in Numerical Example2 is
generated by the sigmoid nonlinearity of theφ−function. SystemΘEG with the linear
ψ−function generates a periodic attractor that is similar to that of theGoodwinmodel
in the sense that the periodic attractor surrounds the equilibrium point.

Next, we incorporate the nonlinearity of our model into the adjustment function.
We define

ηNL(u; a+, a−) =
{
a+u u ≥ 0,

a−u u < 0.
(3.1)

We now make the following assumption:

Assumption 5 a− > a+.

We use SystemΘNEG to denote SystemΘEG whereinψ(u) = ηNL(u; a+, a−) satisfies
Assumption5. Assumption5 introduces the asymmetric nonlinearity into the adjust-
ment function. As shown later, Assumption5 is closely related to the emergence of a
chronic slump. In this sense, Assumption5 plays the most important role in our argu-
ment. Here, we explain its economic implication. We assume that the representative
household is pessimistic about the future economy.We consider the adjustment func-
tion under this assumption. When the actual income exceeds the expected income
(i.e., u = y − ye > 0), it is expected that the economy will become more prosperous
in the future. However, since the household is pessimistic, it does not have hope
for further prosperity. Therefore, the upward adjustment of the expected income is
excessively small (in other words, the household is hyperopic). Conversely, when the
actual income is lower than the expected income (i.e., u = y − ye < 0), it is expected
that the economy will worsen even more in the future. Since the household is pes-
simistic, it will expect further worsening. Therefore, the downward adjustment of the
expected income is excessively large (in otherwords, the household ismyopic). Thus,
we see that pessimism about the future economy yields the asymmetric nonlinearity
of Assumption5.

We here make one remark. As showed in the Introduction, through the self-
fulfilling prophecy, the pessimistic outlook persists over a long period of time unless
the market’s loss of confidence is recovered. Consequently, the asymmetric nonlin-
earity persists over a long period of time. Thus, Assumption5 is robust.

A viewpoint of the behavioral economics about loss aversion is useful in explain-
ing the asymmetric nonlinearity. We here quote the sentences from Kahneman et al.
(1991): Responses to increases and to decreases in prices, for example, might not
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always be mirror images of each other. The possibility of loss-aversion effects sug-
gests, more generally, that treatments of responses to change in economic vari-
ables should routinely separate the cases of favorable and unfavorable changes. Our
assumption is consistent with the viewpoint of the behavioral economics. We con-
sider the graph of the nonlinear adjustment functionψ(u) = ηNL(u; a+, a−). Changes
to the right (resp. left) side of the origin (i.e., the reference point) are favorable (resp.
unfavorable) for households. Thus, from the viewpoint of the behavioral economics,
we obtain that the adjustment function habitually possesses the (perhaps weak) non-
linearity. In our model, since we assume pessimism about the future economy, the
loss aversion will be reinforced and the asymmetric nonlinearity will be stronger.

Before discussing the dynamics of System ΘNEG, we must confirm the existence
and uniqueness of solutions. It should be noted here that the ψ−function is not dif-
ferentiable at u = 0. However, it can be easily checked that the ψ−function satisfies
the Lipschitz condition in R2. Therefore, from Assumptions2 and 5, the vector field
of System ΘNEG also satisfies the Lipschitz condition. This proves the existence and
uniqueness of solutions.15 Thus, under Assumptions2 and 5, the solutions of System
ΘNEG are determined uniquely. The piecewise linear function (3.1) is written in a
very simple form to explain the self-fulfilling process to chronic slump. It is not easy
to ascertain whether or not the equilibrium point is stable. Therefore, in this paper,
we numerically investigate the dynamics of SystemΘNEG. Moreover, as shown from
the explanation of Assumption5, we observe that as the a+−value decreases or the
a−−value increases, the pessimism regarding the future economy becomes strong
(in other words, the asymmetry of the adjustment function becomes strong).

Clearly, System ΘNEG with an asymmetric adjustment function possesses the
mechanism to produce business cycles, much like the Goodwin model. On the other
hand, as stated in the Introduction, in System ΘNEG, the household’s pessimistic
outlook has a direct influence on the adjustment function of expected income, which
is closely related to its outlook for the future economy. Assumption5 describes
this influence. Therefore, given the above, the household’s consumption decreases
through the reduction in its expected income, and the reduction in consumption
makes the model economy inactive. Thus, we can expect the resulting economy to
become more inactive than in the Goodwin model. To demonstrate that this intuitive
observation is correct, we now consider a typical numerical example of SystemΘNEG.

We consider a more pessimistic case than that presented in Numerical Example2.
InNumerical Example2, we considered the adjustment functionψ(u) = ηL(u; 0.45).
Therefore, since we consider a more pessimistic case, we set

a+ = 0.1 < 0.45 and a− = 0.6 > 0.45. (3.2)

We set μ = 2, α = 0.4, θ = 1, β = 0.46, and φ(x) = 2Arctan(1.5x). Clearly, these
parameters satisfy Assumptions1–3. It should be noted here that in the symmetric
case with h = a+ = a−, the size of h determines the amplitude of a periodic path
that surrounds the equilibrium point. Parts (1) of Figs. 3 and 4 describe the graphs

15See Guckenheimer and Holmes (1983, p. 3).
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Fig. 3 Periodic attractor of
the extended Goodwin model
with a small symmetric
adjustment coefficient

of the adjustment functions of the systems with h = a+ = a− = 0.1 and h = a+ =
a− = 0.6, respectively. Parts (2) of Figs. 3 and 4 describe the projections of typical
periodic paths of the systems with h = a+ = a− = 0.1 and h = a+ = a− = 0.6 onto
the w−z plane, respectively. In the asymmetric case with (3.2) (i.e., in the mixture
of these two cases), different dynamic behavior occurs. Figure5 shows it. The thick
black line of Part (1) of Fig. 5 describes the piecewise linear graph of the adjustment
function of System ΘNEG. The piecewise linear graph is the mixture of the graphs of
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Fig. 4 Periodic attractor of
the extended Goodwin model
with a large symmetric
adjustment coefficient

Parts (1) of Figs. 3 and 4. Part (2) of Fig. 5 describes the projection of a typical path of
SystemΘNEG onto the w−z plane, which converges to a periodic path. In Parts (2) of
Figs. 3, 4 and 5, the black dot emphasizes the equilibrium point in thew−z plane. The
black curves in Parts (1) and (2) of Fig. 6 describe the time series of the deviations
of income and expected income of the path of Fig. 5. In (1) and (2), thick straight
lines emphasize the time series of the equilibrium income and equilibrium expected
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Fig. 5 Periodic attractor of
the extended Goodwin
model with an asymmetric
adjustment coefficient

income paths, respectively. As compared to the periodic path of Figs. 3 and 4, that
of Fig. 5 appears in a domain lower than the equilibrium point (0, 0). In this sense,
in a chronic slump, private spending is continuously insufficient to make use of the
available productive capacity. See the Introduction. Thus, the periodic path of Fig. 5
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Fig. 6 Time series of the
path of Fig. 5

describes the situation in which the economy constantly repeats partial recoveries
and slowdowns. We call such a periodic path a slump cycle.16

As stated before, the periodic paths of the Goodwin model and System ΘEG with
the linear adjustment function surround the equilibrium point. On the other hand,
Fig. 5 show that in the slump cycle of SystemΘNEG, the income and expected income
are locked in domains lower than the equilibriumpoint. Thus, we note that the System
ΘNEG (i.e., System ΘEG with the asymmetric adjustment function) satisfies R.1 and
R.2. We now observe the dynamic behavior of the expected income. Figure5 also
shows that given the loss of symmetry due to the pessimistic outlook, the expected
income is locked in a “narrow” domain lower than the equilibrium point. This shows
that the household is convinced of the pessimistic outlook for the future economy.
Thus, it becomes difficult that the household escapes from a pessimistic outlook.

We consider the effect of the intensity of pessimism about the future economy
(i.e., the degree of asymmetry of the adjustment function) on the location and the
amplitude of the emerging slump cycle. We set a− = 0.4 and a+ = 0.4i, where i

16Needless to say, the periodic paths of System ΘNMG with asymmetric adjustment functions are
not necessarily lower than the equilibrium. Therefore, the notion of a slump cycle is restrictive. In
the case where the asymmetry of the adjustment function is sufficiently strong, the periodic path
becomes lower than the equilibrium. For this point, see Fig. 7 to be given later. However, such a
notion is useful in making our argument clear-cut. The occurrence of slump cycles is the most
interesting feature of the present paper.
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Fig. 7 Periodic attractor
goes away from the
equilibrium point as the
degree of asymmetry of
adjustment coefficient (the
intensity of pessimism)
becomes large
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Fig. 8 Periodic attractor
goes away from the
equilibrium point as the
propensity to consume
becomes large

represents the intensity of pessimism. Assumption5 yields 0 < i < 1. Parts (1)–(3)
of Fig. 7 describe the projections of the paths for i = 0.9, i = 0.4, and i = 0.2 onto
the w−z plane, respectively. The parameters of Fig. 7 apart from a± are the same as
in Fig. 5. In Fig. 7, the black dots emphasize the equilibrium point in the w−z plane.
Parts (1)–(3) describe how the attractor changes as the intensity of pessimism (i.e., the
degree of asymmetry) increases. Figure7 shows that the intensity of pessimism has
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a strong effect on the location of the emerging slump cycle. This indicates that as the
intensity of pessimism increases (i.e., the parameter a− increases or the parameter a+
decreases), the maximum point of a business cycle decreases. Moreover, the figure
reveals that the intensity of pessimism has a weak effect on the amplitude of the
emerging slump cycle. As the intensity of pessimism increases, the amplitude of the
z−value in the slump cycle decreases slightly. This indicates that as the household
becomes more pessimistic, the outlook for the future economy (expressed by the
expected income) becomes more inflexible in a low domain.

SystemΘNEG possesses two propensities to consume: the propensities concerning
income and expected income. We here numerically see the relation between the
seriousness of slump and the propensity to consume concerning income. See Fig. 8.
Parts 1 and 2 of Fig. 8 describe the typical dynamic behavior in the case where we set
μ = 2, θ = 1, β = 0.43, a+ = 0.1, a− = 0.5, and φ(x) = 2Arctan(1.5x). In Parts
1 and 2 of Fig. 8, we set α = 0.4 and α = 0.47, respectively. Figure8 shows that
as the propensity to consume concerning income becomes larger, the slump cycle
becomes more severe. In other words, comparing with the case where the propensity
is small, the occurrence of pessimism in the converse case makes the slump cycle
more severe. Since we can obtain the same result on the propensity to consume
concerning expected income, we omit the argument.

4 Chronic Slump and Local Stability

Our main result in Sect. 3 is that the maintaining of pessimism can yield the chronic
slump through self-fulfilling prophecy. However, the maintaining of pessimism does
not always yield the chronic slump. It should be noted that in Sect. 3 we assumed the
instability of equilibrium. This assumption is essential to the occurrence of chronic
slump. In this section, we make clear this point.

In order to see it, we need the smooth adjustment function in the sense that ψ′
is continuous. The ψ−function in Sect. 3 is nonsmooth. Therefore, throughout this
section, we consider the following smooth adjustment function:

ψ(u) = ψm,n,d(u) = ϕm,n,d(u) · u = m{n − dArctan(gu)} · u, (4.1)

where m, n, and h are positive constants. The ϕm,n,d−function represents the adjust-
ment coefficient that depends on u = yt − yet . We work under the assumption:

Assumption 6 n/d > π/2.

The black curve of Fig. 9 describes the graph of theϕm,n,d−function. In Fig. 9, we set
m = 1, n = 0.5, d = 0.3, and g = 3.4. The adjustment coefficient function satisfies
the following properties:

Lemma 3 ϕ′
m,n,d(u) < 0 and uϕ′′

m,n,d(u) > 0, for any u ∈ (−∞, 0) ∪ (0,+∞).

limt→+∞ ϕm,n,d(u)=m(n − dπ/2) > 0 and limt→−∞ ϕm,n,d(u) = m(n + dπ/2). �
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Fig. 9 Adjustment
coefficient function

Proof See Appendix. �

Thus, we consider the asymmetric adjustment coefficient. In the case where the
adjustment coefficient function takes the form of (4.1), the adjustment function sat-
isfies the following properties:

Lemma 4 we have ψm,n,d
′′(u) > 0, limu→+∞ ψm,n,d

′(u) = m(n − dπ/2) > 0,
limu→−∞ ψm,n,d

′(u) = m(n + dπ/2), and ψm,n,d
′(u) > 0, for any u �= 0. �

Proof See Appendix. �

From Lemma4, we see that the form of the smooth ψm,n,d−function is almost the
same as that of the adjustment function in Sect. 3. The difference between them is in
the continuity of the derivative. Figure10 describes a typical graph of the adjustment
function with m = 1, n = 0.5, d = 0.3, and g = 3.4.
Moreover, the ψm,n,d−function possesses the following important property:

Lemma 5 If d > s > 0, we have ψm,n,s(u) > ψm,n,d(u) for any u �= 0.

Proof See Appendix. �

See Fig. 11. In Fig. 11, we set m = 1, n = 0.87, g = 3, d = 0, d = 0.12, d = 0.3,
and d = 0.45. Figure11 describes that the degree of flexion is larger as the value of
d is larger. Thus, the property of Lemma5 shows that as the parameter d is larger,
the degree of pessimism becomes larger. Especially, the line with d = 0 describes
the usual symmetric adjustment function. Thus, the parameter represents the degree
of pessimism. Here, we have the following result:

Lemma 6 The stability of equilibrium does not depend on the degree of d. �

Proof See Appendix. �
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Fig. 10 Adjustment
function

Fig. 11 The degree of
flexion (the degree of
pessimism) becomes large as
the parameter d becomes
large

Lemma6 gives us an important message. In order to explain it, in the following, Sys-
tem ΘEG with d = 0 and System ΘEG with d > 0 are called the nonpessimistic and
the pessimistic Goodwin models, respectively. Lemma6 shows that if the nonpes-
simistic Goodwin model is locally stable, the pessimistic Goodwin model is locally
stable independently of the degree of pessimism.
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We numerically show that if the equilibrium is asymptotically stable, the (persis-
tent) chronic slump does not occur. We set α = 0.4, μ = 2, θ = 1, β = 0.46,m = 1,
n = 0.5, d = 0.3, g = 3, φ(x) = Arctan(qx). Under the setting, we have

ψ′(0) = ϕm,n,d(0) = mn = 0.5.

Therefore, since q = φ′(0), we have

λ1 + λ2 + λ3 =
{

μq − 1 − μ(1 − α)θ

θ
− ψ′(0)

}
= 2q − 2.7, (4.1a)

λ1λ2 + λ2λ3 + λ3λ1 = μ{1 − α − θβψ′(0)} − {μq − 1 − μ(1 − α)θ}ψ′(0)
θ

= (1.2 − 0.92ψ′) − (2q − 2.2)ψ′ = 1.84 − q, (4.1b)

λ1λ2λ3 = −μψ′(0)(1 − α − β)

θ
= −0.14. (4.1c)

For λk(k ∈ {1, 2, 3}), see the proof of Lemma 2 in Appendix. We here define

−(λ1 + λ2 + λ3)(λ1λ2 + λ2λ3 + λ3λ1) + λ1λ2λ3 = (2q − 2.7)(q − 1.84) − 0.14

= 2q2 − 6.38q + 4.828 ≡ Π(q).

Then, the solutions of Π(q) = 0 are given by

q+ ≡ 6.38 + √
6.382 − 4 × 2 × 4.828

4
> 1.84, (4.2a)

q− ≡ 6.38 − √
6.382 − 4 × 2 × 4.828

4
< 2.7/2. (4.2b)

We here prove the following lemma:

Lemma 7 If q < q−, the equilibrium is asymptotically stable. Moreover, if q− < q,
the equilibrium is unstable. �

Proof See Appendix. �

Lemma7 shows that the stability of the equilibrium point depends on q. That is, it
depends on the form of the investment function. See Fig. 12 that shows typical paths
of the pessimistic Goodwin models. Parts 1 and 2 of Fig. 12 describe paths of the
pessimistic Goodwin models with q = 1.9 > q+ and q = 1.11 < q−, respectively.
It should be noted here that the adjustment functions of Parts 1 and 2 are the same.
Thus, we see that even if the pessimism is not recovered, stabilizing the equilibrium
recovers the chronic slump. The recovery from pessimism often requires a lot of
time. Therefore, the observation in this section suggests that not only recovering the
pessimism but also stabilizing the equilibrium are necessary for the recovery from
the chronic slump.
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Fig. 12 Paths of the
extended Goodwin model: 1
with the unstable equilibrium
point; 2 with the stable
equilibrium point

Finally, we make one remark. Although stabilizing the equilibrium is necessary
for the recovery from the chronic slump, the pessimism makes the recovery slower.
Figure13 describes it. In Fig. 13, we set α = 0.4, μ = 2, θ = 1, β = 0.46, m = 1,
n = 0.5, q = 1.1, and g = 3. Since q = 1.1 < q−, we see from Lemma7 that the
equilibrium point of the extended Goodwin model is asymptotically stable. Dashed
curves of Parts 1 and 2 of Fig. 13 describe typical time series of the deviations of
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Fig. 13 Paths in the case
where the extended Goodwin
model with asymmetric
adjustment coefficient is
stable

income and expected income in the nonpessimistic Goodwin models with d = 0. On
the other hand, black curves of Parts 1 and 2 of Fig. 13 describe typical time series
of the deviations of income and expected income of the pessimistic Goodwin model
with d = 0.3.

5 Conclusions and Final Remarks

From theKeynesian perspective, we constructed a prototype dynamicmodel express-
ing a part of the Krugman’s view (Krugman 2008) concerning the recent chronic
slump that has spread across the world. We constructed an extension of Goodwin’s
nonlinear accelerator model, and attempted to show that the pessimistic outlook of
the household is an important cause of the chronic slump.Unlike theGoodwinmodel,
the representative household distinguishes between the short-run and long-run con-
sumption plans. The short-run plan is the same as that in the Goodwin model. On
the other hand, in the long-run plan, the household determines its consumption in
proportion to the expected income, which is adaptively adjusted. We assumed that
the household possesses a pessimistic outlook; according to this outlook, the upward
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adjustment of the expected income is excessively small (in other words, the house-
hold is hyperopic). Conversely, the downward adjustment of the expected income is
excessively large (in other words, the household is myopic). This assumption intro-
duces an asymmetric nonlinearity into the adjustment function. We also observed
that the assumption is related to the result about loss aversion in the behavioral eco-
nomics. We demonstrated that the asymmetric nonlinearity plays an important role
in generating a chronic slump.

An intuitively explanation of our result is as follows. First, we considered the
case where the extended Goodwin model is completely unstable. The asymmetric
nonlinearity implies that pessimism makes an upturn difficult but makes a downturn
easy. Through this mechanism, the model economy spirals downward and falls into a
chronic slump. Moreover, in the process, the model economy constantly repeats par-
tial recoveries. But, income and expected income are locked in a domain lower than
the market equilibrium. Thus, in the extended Goodwin model, the model economy
in the chronic slump cannot continuously achieve the potential ability to produce,
which is estimated at the market equilibrium. Thus, we revealed a way in which local
instability and a pessimistic outlook cause a chronic slump.

Another important feature of the extended Goodwin model with a pessimistic
outlook is that

the model economy goes into chronic slump from everywhere, regardless of initial economic
conditions.

The reason is that, in the cases where we numerically investigated, any slump
cycle is globally stable. Immediately after the collapse of the bubble economy, the
Japanese economy from 1991 through 2002 experienced a chronic slump. The above
feature may explain such a transition from a bubble economy to a chronic slump
economy. This feature does not appear in the models with multiple equilibria (for
example, stable higher, unstable middle, and stable lower equilibria), because, in
any model with multiple equilibria, the destination of a path depends on the initial
condition of the path.

Next, we considered the case where the extended Goodwin model is stable. We
numerically showed that even if the pessimistic outlook is not improved, the economy
converges to the equilibrium and therefore, it recovers from the slump, though the
recovery time may depend on the strength of stability. Thus, we conclude that the
chronic slump results from the instability of equilibrium and the pessimistic outlook
about future economy.

From the consideration in this paper, we presented two ways of recovering from
the chronic slump: the recovery from the pessimistic outlook and the stabilization of
economy. It often takes a long time to recover from the pessimistic outlook. In such
a case, it will be effective to carry out a stabilizing policy.

As stated in Introduction, an important feature of business cycle is that booms
and slumps come in all sizes. This paper proved that, according to the measure of
pessimism, slumps come in all sizes. Moreover, by the same argument as that in this
paper, we can prove that, according to the measure of optimism, booms come in all
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sizes. Thus, the extended Goodwin model also gives a theoretical explanation of the
feature.

Acknowledgments The author thanks Toichiro Asada for his helpful comments and suggestions.

Appendix

In this appendix, we prove Lemmas2–7.

Proof of Lemma2 We use J to denote the Jacobian matrix of System ΘEG. The
characteristic equation of J is given by

Λ(λ) ≡ det(λI − J)

= det

⎡
⎢⎣

λ − μφ′(0) − 1 − μ(1 − α)θ

θ

μ{1 − α − θβψ′(0)}
θ

μ(θβψ′(0) − β)

θ−1 λ 0
0 −ψ′(0) λ + ψ′(0)

⎤
⎥⎦

= λ3 −
{

μφ′(0) − 1 − μ(1 − α)θ

θ
− ψ′(0)

}
λ2

+ μ{1 − α − θβψ′(0)} − {μφ′(0) − 1 − μ(1 − α)θ}ψ′(0)
θ

λ + μψ′(0)(1 − α − β)

θ
.

We use λk (k ∈ {1, 2, 3}) to denote the eigenvalue of J . Assumption3 yieldsΛ(0) >

0. Therefore, at least one eigenvalue is negative. Without loss of generality, we sup-
pose that λ3 < 0. Assumption3 gives that λ1 · λ2 · λ3 = −μψ′(0)(1 − α − β)/θ <

0. Thus, we have λ1 · λ2 > 0. Therefore, if λ1 and λ2 are real numbers, then λ1 and
λ2 must be simultaneously positive or negative. The assumption of Lemma2 shows

λ1 + λ2 + λ3 = μφ′(0) − 1 − μ(1 − α)θ

θ
− ψ′(0) > 0. (A.1)

Hence, λ1 > 0 and λ2 > 0. Moreover, we observe from (A.1) that if λ1 and λ2 are
complex conjugates, then Re λ1 > 0 and Re λ2 > 0. Thus, we complete the proof.

Proof of Lemma3 We have

ϕ′
m,n,d(u) = −mgd/(g2u2 + 1) < 0, uϕ′′

m,n,d(u) = mdg3u2/(g2u2 + 1)2 > 0, and

limn→±∞Arc tan(u) = ±π/2.

The proof follows directly from this fact. �
Proof of Lemma4 We have

ψm,n,d
′(u) = m{n − dArc tan(gu) − dgu/(g2u2 + 1)}. (A.2)
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Therefore, since limn→±∞ Arc tan(u) = ±π/2, we see from (A.2) and Assumption6
that limu→±∞ ψm,n,d

′(u) = m(n ± dπ/2) > 0. Moreover, we have

ψm,n,d
′′(u) = −m

{
dg

g2u2 + 1
+ dg(g2u2 + 1) − 2dg3u2

(g2u2 + 1)2

}
= − 2mdg

(g2u2 + 1)2
< 0.

(A.3)
We now prove ψm,n,d

′(u) > 0. It follows from (A.3) and Assumption6 that

ψm,n,d
′(u) > lim

u→+∞ ψm,n,d
′(u) = m(n − dπ/2) > 0.

Thus, we complete the proof. �
Proof of Lemma5 Since Arc tan(u) > 0 (< 0) for any u > 0 (< 0), we have
uArc tan(u) > 0 for any u �= 0. Therefore, we have

ψm,n,s(u) − ψm,n,d(u) = uArc tan(gu) · m(d − s) > 0 for any u �= 0.

This completes the proof. �
Proof of Lemma6 Since we haveψm,n,d

′(0) = mn,Λ(λ) does not depend on d. This
completes the proof. �

Before proving Lemma7, we prove the following three sublemmas.

Sublemma 1 Let α, β, and γ be solutions of a cubic equation. We assume α + β +
γ ≥ 0 and αβγ < 0. Then, one of the real parts of the solutions is positive. �

Proof of Sublemma1 Since αβγ < 0, one of α, β, and γ must be a negative real
number. Without loss of generality, we assume γ < 0. If α and β are real numbers,
α and β are positive. We assume that α and β are not real numbers. Then, α and
β are given as α = ξ + ωi and β = ξ − ωi, where ξ and ω are real numbers and
i = √−1. From the assumption, we have 0 ≤ α + β + γ = 2ξ + γ. Since γ < 0,
we have ξ > 0. This completes the proof. �

Sublemma 2 Let α, β, and γ be solutions of a cubic equation. We assume that,
α + β + γ < 0,αβγ < 0, and −(α + β + γ)(αβ + βγ + γα) + αβγ < 0. Then,
one of the real parts of the solutions is positive. �

Proof of Sublemma2 Since αβγ < 0, one of α, β, and γ must be a negative real
number. Without loss of generality, we assume γ < 0. We assume that α and β are
not real numbers. Then, α and β are given as α = ξ + ωi and β = ξ − ωi, so that

0 > −(α + β + γ)(αβ + βγ + γα) + αβγ = 2[−(2ξ + γ)γ − (ξ2 + ω2)]ξ.

Since α + β + γ = 2ξ + γ < 0, we have ξ > 0. Therefore, if α and β are not real
numbers, the proof completes. We next assume that α and β are real numbers. Then
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α and β must be simultaneously positive or negative. We assume that α and β are
negative. Then, we have

0 > −(α + β + γ)(αβ + βγ + γα) + αβγ

= −(α2β + αβ2 + β2γ + βγ2 + γ2α + γα2 + 2αβγ) > 0.

This contradicts to the assumption. Therefore, we see that α and β are positive. This
completes the proof. �

Sublemma 3 Let α, β, and γ be solutions of a cubic equation. A set of necessary
and sufficient conditions for all the real parts of the solutions to be negative are given
by

α + β + γ < 0, αβγ < 0, αβ + βγ + γα > 0, and

− (α + β + γ)(αβ + βγ + γα) + αβγ > 0. �

Proof of Sublemma3 See Gandolfo (1996, Sect. 16.4). �
We now prove Lemma7.

Proof of Sublemma7 Sublemma3 yields that a set of necessary and sufficient con-
ditions for all the real parts of the solutions to be negative are given by

λ1 + λ2 + λ3 = 2q − 2.7 < 0, λ1λ2 + λ2λ3 + λ3λ1 = 1.84 − q > 0, and

Π(q) = 2q2 − 6.38q + 4.828 > 0.

Therefore, the necessary and sufficient condition for all the real parts of the solutions
to be negative is given by q < q−. This proves the first half. We now prove the latter
half. Sublemmas1 and 2 show that a set of sufficient conditions for one of the real
parts of the solutions to be positive are given by

λ1 + λ2 + λ3 = 2q − 2.7 ≥ 0 or (A.4a)

λ1 + λ2 + λ3 = 2q − 2.7 < 0 and Π(q) = 2q2 − 6.38q + 4.828 < 0. (A.4b)

Noting q− < 2.7/2, (A.4) implies that q > 2.7/2 or q− < q < 2.7/2. Thus, we have
a sufficient condition for one of the real parts of the solutions to be positive is given
by q− < q. This proves the latter half. �
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Delay Kaldor–Kalecki Model Revisited

Akio Matsumoto and Ferenc Szidarovszky

Abstract This chapter studies the dynamics of theKaldor–Kaleckimodel of national
income and capital stock. The investment function is assumed to have not only a
Kaldorian characteristics, namely, a S-shaped form but also a Kaleckian charac-
teristics, that is, a gestation delay between “investment decision” and “investment
implementation.” We divide the analysis into two parts. In the first part, we assume
that the time period under consideration is short enough so that the capital stock is
not affected by the flow of investment and then examine the delay effect on dynamics
of national income. In the second part, taking the capital accumulation into account,
we draw attention to how the delay affects cyclic dynamics observed in the nondelay
Kaldor–Kalecki model. It is demonstrated that the investment delay quantitatively
affects the dynamic behavior but not qualitatively.

1 Introduction

In real economy, macroeconomic variables such as national income, capital accu-
mulation, interest rate, etc., exhibit cyclic fluctuations. As a natural consequence, it
has been the main interest in studying macro economic dynamics to detect endoge-
nous sources of such cyclic behavior. Since investment is considered to be the key
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factor to cyclic dynamics for the evolution of national economy, a lot of efforts has
been devoted to studying investment determinations. As early as in 1930s, a few
years before the publication of the Keynes’ General Theory, Kalecki (1935) intro-
duces an idea of the consumption function and the multiplier in his statistic analysis
of macro economy. Furthermore, regarding investment in the dynamic analysis, he
assumes a lag between “investment order” and “investment installation” and call
it a gestation lag of investment.1 Adopting a linear investment function, he con-
structs a macro dynamic model as a delay differential equation of retarded type and
shows that it gives rise to a cycle due to the delay. Kaldor (1940), on the other hand,
studies the evolution of production and capital formation and believes that nonlin-
earities of behavioral equations could be a clincher in such cyclic oscillations. He
builds a 2D model of national income and capital with nonlinear investment and
saving functions. Its basic movements consist of two sorts. One is the movements
along the nonlinear functions and the other is shifts of these functions according to
capital accumulations. So far, it has also been confirmed in various ways that the
Kaldor model is capable of generating cyclic behavior when nonlinearities become
strong enough. Indeed, Ichimura (1955) reduces the model to the Liénard equation,
Chang and Smyth (1971) rigorously show the existence of a limit cycle by applying
the Poincaré-Bendixson theorem and so does Lorenz (1993) by the Hopf bifurca-
tion theorem. Furthermore, Grasman and Wentzel (1994) show multistability in the
Kaldor model, that is, the coexistence of stable and unstable cycles when the equi-
librium is locally stable. “Nonlinearity” and “delay” are now treated as two of the
main ingredients for endogenous cycles.

More than a half century after Kaldor (1940), Krawiec and Szydlowski (1999)
combine the Kaldor model with the Kaleckian time delay in investment to build a
delay business cycle model. Their model is often called the (delay) Kaldor–Kalecki
model. To emphasize the role of delay, they assume a linear investment function as
in the Kalecki model and then show the occurrence of a limit cycle with respect to
time delay. This model has been developed in various directions. Having an S-shaped
investment function that reacts to delay output, Zhang and Wei (2004) investigate
the local and global existence and the directions of Hopf bifurcation. Kaddar and
TalibiAlaoui (2008) further introduce a time delay into capital stock of the investment
function and establish sufficient conditions for the local existence ofHopf bifurcation.
Wang and Wu (2009) rigorously examine the model with delay in both output and
capital stock, applying the center manifold theory with the normal forms and show
emergence of periodic solutions. Zhou and Li (2009) assume different gestation
delays in output and capital stock and show the occurrence of Hopf bifurcation. In
the analysis of these models, the time delay is treated as a bifurcation parameter.
Recently Manjunath et al. (2014) exhibit that an exogenous and nondimensional
parameter can be a source of cyclic dynamics of the delay Kaldor–Kalecki model.

1Since “lag” and “delay” do not have distinctive different meanings, we use these words inter-
changeably. In particular, we mainly use “delay” in this study.
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We will revisit the original Kaldor–Kalecki model with one delay in output and
present a new characterization of cyclic oscillations. As mentioned above, in the
existing literature, Hopf bifurcation occurs due to the nonlinearity of the investment
functionwith time delay in output (aswell as capital stock). This finding indicates that
the delay model may explain cyclic dynamic behavior of economic variables. In the
existing literature, however, almost no attention is given to a delay effect in the short-
run in which capital stock is constant. Furthermore, although the multistability of the
Kaldor model is confirmed, it has not been discussed in the delay Kaldor–Kalecki
model. We concern these issues, in particular, we are interested in how nonlinearity
and delay are responsible for the birth of limit cycles in order to complement the
existing literature. For this purpose, we first recapitulate the 2D Kaldor–Kalecki
model and specify the investment function. Then we proceed to the analysis of
delay dynamics with two steps. At the first step, we investigate dynamics of national
income, keeping the stock of capital fixed. As iswell known, no cyclic behavior arises
in the Kaldor model without capital accumulation. We focus attention on the effect
causedbydelay on such stable dynamics. Since investment and savings are short term,
eliminating capital or fixing capital implies short-run dynamic analysis. At the second
step, we consider delay dynamics of the national income and capital accumulation.
As is seen above, the nonlinear Kaldor model without delay can generate not only
a single limit cycle but also multiple limit cycles while the linear delay Kaldor–
Kalecki model also give rise to a limit cycle. A natural question we rise is how the
delay affects the multiple cyclic behavior in the long-run.

This paper is organized as follows. In Sect. 2, the basic elements of the Kaldor–
Kalecki model is rebuilt. In Sect. 3, short-run dynamics is examined under the invest-
ment delay. In Sect. 4, after reviewing the Kaldor model without delay quickly, we
analytically and numerically detect the delay effect on cyclic dynamics of theKaldor–
Kalecki model from the long-run point of view in the sense that capital accumulation
is explicitly taken into account. Section5 contains concluding remarks and further
research directions. The color versions of the figures of this chapter can be found in
the e-version of this book.

2 Delay Dynamic Model

Kaldor (1940) relates investment to the level in income (i.e., profit principle) and
extends it by proposing a sigmoidal, instead of linear, investment function. A brief
description of his model is given by two equations,

Ẏ (t) = α [�(Y (t), K (t)) − S(Y (t))]
K̇ (t) = �(Y (t), K (t)) − δK (t).

(1)

where Y (t) is national income at time t, K (t) denotes capital, �(Y (t), K (t)) is an
investment function, S(Y (t)) is a savings function and the parameters α and δ denote
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the adjustment coefficient and the rate of depreciation. Thefirst equation describes the
national income adjustment process and the second describes capital accumulation
process. As will be reviewed soon, the Kaldor model is able to generate endogenous
limit cycles. There are two ingredients for the birth of the cycles, the nonlinearity of
investment in Y and the dependency of investment in K . These two prevent Y and K
for global divergence when the equilibrium is locally unstable. Using our notation
and following his spirit, a Kaleckian investment function can be presented by

I (t) = �(Y (t − θ), K (t))

where θ denotes the gestation delay.2 Replacing the investment function in the second
equation of system (2) with Kaleckian function yields the Kaldor–Kalecki model of
the income and capital stock,

Ẏ (t) = α [�(Y (t), K (t)) − S(Y (t))] ,
K̇ (t) = �(Y (t − θ), K (t)) − δK (t).

(2)

We plan to analyze dynamics generated by (2)with two steps. At first step, we confine
attention to short-run dynamics. To this end, we impose two assumptions:

Assumption 1 The time period under consideration is short enough so that the
capital stock is not affected by the flow of investment.

Assumption 2 The investment function in the first equation of system (2) contains
the delay.

As a consequence of these modifications, the second equation concerning the
evolution of capital is eliminated and the variable K in the investment function also
disappears. Thus the modified Kaldor–Kalecki model can be presented by a one-
dimensional nonlinear differential equation with one time delay,

Ẏ (t) = α {ϕ[Y (t − θ)] − S[Y (t)]} (3)

After examining short-run dynamics, we proceed to the second step in which the
dynamic analysis of Y (t) and K (t) generated by system (2) is investigated. It is
considered to be long-run dynamics in the sense that the national income as well
as the capital stocks evolve over time. We will numerically confirm the existing
analytical results and then consider the effects of the delay on them.

2There are several extensions of this delay investment function. Kaddar and Talibi Alaoui (2008)
introduce time delay also in capital stock in capital accumulation equation (i.e.,�(Y (t − θ), K (t −
θ))). Zhou and Li (2009) assume that the investment function in the capital accumulation depends
on the income and the capital stock at different gestation periods (i.e., �(Y (t − θ1), K (t − θ2))
with θ1 �= θ2).
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Fig. 1 Determination of
equilibrium with different
values of K̄

3 Short-Run Dynamics

We first make the following two assumptions for the sake of analytical simplicity.

Assumption 3 The saving function is linear and has no autonomous savings,

S(Y ) = sY, 0 < s < 1.

Assumption 4 The investment function has the S-shaped form,

ϕ(Y ) = A ∗ 2− 1
(CY+D)2 + BY − K̄ .

Parameter K̄ in ϕ(Y ) is positive implying the fixed level of the capital stock.3

At a stationary state of Eq. (3), two conditions, Ẏ (t) = 0 and Y (t) = Y (t − θ) =
Y e for all t ≥ 0, are satisfied. Economically, these conditions can be restated as
investment is equal to saving at the equilibrium. In Fig. 1, we superimpose the linear
saving function, sY with s = 0.282, on the three sigmoid investment functions with
A = 35, B = 0.02, C = 0.01, D = 0.00001 and three different values of K̄ (i.e.,
K̄ = 5, 10, 15). The equilibrium state is determined by the intersection of these
curves.

When the fixed value of K̄ is small, we will have a high level of investment and
thus a high short-run equilibrium level Y e

H of national income. As K increases, the
investment curve shifts downward.Due to the S-shaped form, there is a casewhere the
saving curve crosses the investment curve three times. These intersections are denoted
by the black dotes and their x-coordinates are the corresponding equilibrium levels

3This is a simplified version of the investment function adopted in Lorenz (1987). It is replaced
with the full version in the latter half of this chapter.
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of national income, Y e
1 < Y e

2 < Y e
3 . A further increase of K̄ shifts the investment

curve downward enough resulting in only one intersection denoted by the lower
green dotted point and the corresponding national income is Y e

L . Investment is small
here and thus the equilibrium level is also small.

We draw attention to stability of the three equilibrium points obtained under the
middle value of K̄ . Let Yδi = Y − Y e

i for i = 1, 2, 3. The linear approximation of
Eq. (3) is

Ẏδi (t) = αηi Yδi (t − θ) − αsYδi (t) (4)

where ηi = ϕ′(Y e
i ) > 0 denotes the slope of the investment curve at the equilib-

rium income Y e
i . Substituting an exponential solution, e

λt u, yields the characteristic
equation,

λ + αs − αηi e
λθ = 0. (5)

In the absence of time delay (i.e., θ = 0), we simply have,

λi = α(ηi − s). (6)

If ηi < s or λi < 0, then the equilibrium income Y e
i is stable. Since investment is

greater or less than savings in the left or right of the intersection, any nonequilibrium
Y approaches its equilibrium level by the multiplier. Similarly it is locally unstable
if ηi > s or λi > 0. The sign of ηi − s depends on the slopes of the investment and
saving curves evaluated at the equilibrium point. Apparently, among three equilib-
rium values, η1 − s < 0 at e1, η2 − s > 0 at e2 and η3 − s < 0 at e3. The middle
one (i.e., Y e

2 ) is locally unstable and the remaining high and low ones (i.e., Y e
1 and

Y e
3 ) are locally stable. It is also clear that the unique equilibrium Y e

L or Y e
H is locally

stable. As a benchmark, we summarize these results as follows.

Theorem 1 When Eq. (4) with θ = 0 has three equilibria, then the middle one is
locally unstable while both of the larger and smaller ones are locally asymptotically
stable.

Kaldor (1940) focuses on the unstable equilibrium. Themain key to it is the capital
accumulation that shifts the short-term investment function over time which gives
rise to a cycle. On the other hand, we focus on the stable equilibrium and consider
whether the delay affects its stability. Hence we return to Eq. (5) with θ > 0. It should
be noticed that λ = 0 does not solve this equation unless s = ηi . So if stability of
Y e
i switches at θ = θ̄, then Eq. (5) must have a pair of pure imaginary roots there.

Since roots of a real function always come in conjugate pairs, we assume λ = iω
with ω > 0. Substitution of this root divides Eq. (5) into the real and imaginary parts,

αs − αηi cos θω = 0,
ω + αηi sin θω = 0.

(7)

Moving the first term in each equation to the right, squaring the resultant equations
and adding them together yield
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ω2 = α2(ηi + s)(ηi − s) (8)

where the first two factors on the right-hand side are positive. If ηi − s > 0, then
there is a positive ω and stability switch can occur. The condition, ηi > s, could be
possible only at the middle equilibrium point Y e

2 . However, since it is already shown
to be locally unstable for θ = 0, Y e

2 still remains unstable for any θ > 0. On the
other hand, ηi < s holds at the other equilibrium points. If ηi − s ≤ 0, then there is
no ω > 0 implying that stability switch does not occur. Summarizing these results
yields the following:

Theorem 2 For any equilibria of the delay Eq. (3), no stability switch occurs for
any positive value of the delay.

Theorem2 implies that the delay does not affect asymptotic dynamics of the
delay model (3). In spite of this result, we show that it really matters in transient
dynamics. In particular, following Beddington and May (1975), we show that the
delay increases the real parts of the eigenvalues for a stable equilibrium point and
decreases the magnitude for an unstable equilibrium point. We proceed to illustrate
these effects of the investment delay in the three equilibria case. We assume that
λ = x + iy with y ≥ 0 and substitute it into Eq. (5), After arranging the terms, we
obtain

x + iy = −αs + αηi e
−xθ cos yθ + i

(−αηi e
−xθ sin yθ

)
.

Comparing both sides finds that the real and imaginary parts are

x = −αs + αηi e−xθ cos yθ,
y = −αηi e−xθ sin yθ,

(9)

from which we derive the form of the real part depending on y and θ,

x = −αs − y cot yθ. (10)

Moving the first term in the right-hand side of the first equation in (9) to the left-hand
side, squaring both sides of the resultant equation and adding the square of the second
equations to it yield the imaginary part depending on x and θ,

y =
√

(αηi )
2 e−2xθ − (x + αs)2. (11)

Solving Eq. (9) with y = 0 for x yields the real part functional for θ. The equation is

x + αs = αηi e
−xθ (12)

which clearly has a unique real solution for x that is denoted by x(θ). For θ = 0,

xi (0) = α(ηi − s)
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which is identical with Eq. (6). By implicitly differentiating Eq. (12), we have that

dx(θ)

dθ
= αηi e

−θx(θ)

(
−dx(θ)

dθ
θ − x(θ)

)

implying that
dx(θ)

dθ
= −x(θ)

αηi e−θx(θ)

1 + αηiθe−θx(θ)
.

So if x(θ) > 0, then dx(θ)/dθ < 0 implying that x(θ) decreases, and if x(θ) < 0,
then dx(θ)/dθ > 0 implying that x(θ) increases. In both cases |x(θ)| decreases.
Hence we have Theorem3.

Theorem 3 Larger delays result in the smaller absolute value of the real parts and
thus slow down convergence speed to stable equilibrium.

4 Long-Run Dynamics

4.1 Kaldor Model

We review the original Kaldor model (1). So far, in this model, it is demonstrated that
the nonlinearity of investment functions leads to the two remarkable results. One is
the existence of a stable limit cycle shown by Chang and Smyth (1971) with applying
the Poincáre-Bendixson theorem when the equilibrium is locally unstable. The other
is the coexistence of a stable limit cycle and a unstable limit cycle by Grasman and
Wentzel (1994) with the use of the Hopf bifurcation theorem when the equilibrium
is locally stable. Figure2 graphically confirms these results with the following form
of the separable investment function,4

�(Y, K ) = 25 ∗ 2− 1
(0.015Y+0.00001)2 + 0.05Y + 5

(
320

K

)3

.

and α = 3. The positive sloping dashed curve is the K̇ = 0 locus and the convex–
concave-dashed curve is the Ẏ = 0 locus. The intersection of these curves determines
the stationary equilibrium point denoted by (Y e, Ke) � (324.32, 54.05). In Fig. 2a
where we take s = 0.3, the stationary point is locally unstable as we will see shortly
and two trajectories starting in a neighborhood of the stationary point explosively
oscillate and approach the limit cycle. In Fig. 2b, s is decreased to 0.282 and all other
parameters are kept fixed. The equilibrium point becomes stable, which is enclosed
by an unstable inner limit cycle which is, in turn, enclosed by an outer stable limit

4Lorenz (1987) uses this form of the function to show the occurrence of chaotic motion in a
multisector Kaldorian business cycle model. Grasman and Wentzel (1994) also use this form.
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Fig. 2 Limit cycles in the Kaldor model. a One limit cycle, b Two limit cycles

cycle. A green trajectory starting inside of the inner limit cycle converges to the
equilibrium point while both the red trajectory starting outside of the inner limit
cycle and the blue trajectory starting outside of the outer limit cycle approaches the
outer cycle. The black dots denote the initial points in simulations.

Kaldorian nonlinear dynamics is often examined with respect to the value of the
adjustment coefficientα.5 Figure2 indicates that Kaldorian dynamics has also strong
sensitivity to the value of s. Two different dynamics illustrated in Fig. 2 imply that
there is a threshold value of s and the changing of the parameter through this value
causes a qualitative change in the nature of dynamics. A bifurcation diagram gives
good insights into what is happening to evolution of the equilibrium point as the
value of the parameter is changed. In Fig. 3a, the value of s is increased from 0.25
to 0.38 with an increment 1/10000. For each value of s, the dynamic system (1)
runs for t ∈ [0, 500] and the local maximum and minimum values of the specified
trajectory for 400 ≤ t ≤ 500 are plotted. If the diagram shows one point against s, it
implies that the equilibrium is stable and the trajectory converges to it. If it shows two
points, then the trajectory has one maximum and one minimum point, implying an
emergence of a limit cycle. Figure3a roughly indicates that the equilibrium point is
locally stable for smaller values of s, loses its stability bifurcating to a limit cycle for
mediumvalues and then regains stability for larger values. Figure3b is an enlargement
of Fig. 3a around the two threshold values, sα and sβ . If s < sα, the Kaldor system
generates a stable equilibrium.As s passes sβ, the trajectories of the system converges
to a stable limit cycle with the radius equal to the distance between the upper and
lower red branches. On the other hand, for s ∈ [sα, sβ] � [0.281, 0, 283],6 cyclic
dynamics can emerge. Notice that the dotted vertical lime at s = 0.3 crosses the
bifurcation diagram twice in Fig. 3b and the corresponding limit cycle is depicted in

5See, for example, Lorenz (1993).
6The value of sa is numerically obtained and the value of sβ is analytically determined as will be
seen.
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Fig. 3 Bifurcation diagrams with respect to s. a 0.25 ≤ s ≤ 0.38, b 0.28 ≤ s ≤ 0.284

Fig. 2a. Similarly, the dotted vertical line at s = 0.282 crosses the blue curve twice
and the red curve three times in Fig. 3b and the subcritical Hopf bifurcation leads to
multistability, that is, the coexistence of a stable equilibrium, an unstable limit cycle
and a stable limit cycle as illustrated in Fig. 2b. A distance between the upper and
lower blue branches corresponds to the radius of the unstable limit cycle.

4.2 Kaldor–Kalecki Model

We now turn attention to the Kaldor–Kalecki model (2) that has the same stationary
equilibrium point, (Y e, Ke), as the Kaldor model (1). As is already mentioned,
Krawiec and Szydlowski (1999) show the existence of limit cycle in the Kaldor–
Kalecki model. In this section, we revisit this property and compare the results in
the nondelay model with the results in the delay model to find how the delay affect
dynamics.

Let Yδ = Y − Y e and Kδ = K − Ke. By linearizing (2) at the equilibrium point,
we have

Ẏδ(t) = α [(η − s)Yδ(t) − βKδ(t)] ,
K̇δ(t) = ηYδ(t − θ) − (β + δ)Kδ(t),

(13)

where

η = ∂�

∂Y
= 0.05 + 0.52 × 2− 1

(0.015Ye+0.00001)2

(0.015Y e + 0.00001)3

and

β = −∂�

∂K
= −15 × (320)3

(Ke)4
.
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Fig. 4 Stability and
instability regions

Notice that the values of β and η depend on the the point where they are evaluated,
although their dependency is not explicitly expressed in the following. Suppose expo-
nential solutions, Yδ(t) = eλt u and Kδ(t) = eλtv. Then the characteristic equation
is written as

λ2 + aλ + b + ce−λθ = 0 (14)

where
a = (β + δ) − α(η − s),

b = −α(η − s)(β + δ)

and
c = αβη.

We first examine the nondelay case (i.e., θ = 0) in which the corresponding charac-
teristic equation is reduced to

λ2 + aλ + b + c = 0.

The necessary and sufficient conditions for the roots of the quadratic equation to be
negative if real and to have negative real parts if complex are a > 0 and b + c >

0. Under the specified values of the parameters, b + c > 0 always. In Fig. 4, the
negative sloping black curve is the locus of (s,Y e) and the closed red curve is the locus
of a = 0.The black locus crosses the red curve four times at s = si for i = 1, 2, 3, 4.7

It is verified that a < 0 inside and a > 0 outside.8 Hence, the stationary equilibrium

7Notice that s2 is identical with sβ . See footnote 6.
8We use the green curve later when the delay model is examined.
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obtained along the black curve is locally stable for s < s2 and s > s3 and locally
unstable for s2 < s < s3 where

s1 � 0.265, s2 � 0.283, s3 � 0.346 and s4 � 0.416.

We now return to Eq. (14) and examine the delay case (i.e., θ > 0). Suppose that
λ = iω with ω > 0 is a solution of the equation for some θ > 0. Substituting it into
the equation and separating the real and imaginary parts present

−ω2 + b + c cosωθ = 0,
ωa − c sinωθ = 0.

(15)

Thus
c2 = (ω2 − b)2 + (ωa)2.

Hence
ω4 − (2b − a2)ω2 + b2 − c2 = 0

and its roots are

ω2
± = 2b − a2 ± √

(2b − a2)2 − 4(b2 − c2)

2

where
2b − a2 = − [

(β + δ)2 + α2(η − s)2
]

< 0.

If b2 − c2 < 0, then ω+ > 0 and there is only one imaginary solution, λ = iω+.

On the other hand, if b2 − c2 ≥ 0, then both roots are negative or complex so no
imaginary solution exist. In Fig. 4, the green curve is the locus of b2 − c2 = 0. It
is verified that b2 − c2 > 0 in the left side of the green curve and b2 − c2 < 0 in
the right side. Thus stability of Y e along the black curve is affected by the value of
s. Along the black curve, stability of Y e (as well as stability of Ke) can be switched
to instability for s1 < s < s2 and s3 < s < s4 for some value of θ while Y e is locally
unstable for s2 < s < s3 regardless of the value of θ. In case of stability switch,
solving the first equation of Eq. (15) for θ yields the partition curve9

θ = 1

ω+
cos−1

(
ω2+ − b

c

)
(16)

that divides the parameter region into two subregions, stability is reserved in one
subregion and stability is lost in the other subregion. Figure5 presents the division
of the (s, θ) plane. For θ = 0 (i.e., no-delay case), as it is already confirmed, stability
is lost for s2 < s < s3. As θ increases and becomes positive, we have two results.

9Solving the second equation yields the same partition curve in a different form.
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Fig. 5 Partition of the (s, θ) plane

One is that as far as s ∈ [s2, s3], the equilibrium is locally unstable regardless of the
values of θ (i.e., in the white region of Fig. 5). The other is that the instability interval
of s becomes larger. Stability is preserved in the yellow region and lost in the blue
region. The boundary of these regions is the partition curve described by Eq. (16)
that is downward-sloping for s ∈ [s1, s2] and upward-sloping for s ∈ [s3, s4]. The
blue regions are the enlarged instability regions due to the positive delay.

Figure6 gives the bifurcation diagrams with respect to s and reveals the effects
caused by increasing θ on dynamics with respect to s from a different view point.
The red curve is for θ = 0 and is identical with the one given in Fig. 3a although
multistability phenomenon occurred around s2 is omitted for the sake of graphical
simplicity. The blue curve is for θ = 5 where s is increased along the dotted line at
θ = 5 in Fig. 5 where the dotted line crosses the partition curves at points a and b. Let
us denote the s-values of the intersections by sa � 0.277 and sb � 0.386. Stability is
lost for s = sa and regained for s = sb. The similar bifurcation cascade is obtained
for θ = 10 and described by the green curve. The dotted line at θ = 10 crosses the
partition curves at points A and B whose s-values are sA � 0.274 and sB � 0.399.
10 Stability is lost for s = sA and regained for s = sB . Since qualitatively different
dynamics arises according to s < s2 or s > s2,we first consider dynamics for s > s2.
In Fig. 6a where the bifurcation diagrams are expanding as θ increases, we observe
the following:

(i) the equilibrium point bifurcates to a limit cycle when s crosses the downward-
sloping partition curve;

(ii) the amplitude (or ups and downs) of the cycle becomes larger as delay becomes
larger as illustrated by the expansion of the bifurcation diagrams;

10In Fig. 6, sa and sA are not labeled to avoid confusion.
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Fig. 6 Bifurcation diagrams with respect to s. a Shift due to delay, b Multistability

(iii) the stability-regain value of s increases as θ becomes larger, implying that the
larger delay has the stronger destabilizing effect by expanding the instability
region more.

We turn attention to dynamics for s < s2 to find that it is harder to generate
multistability as θ becomes larger. In Fig. 6b the red curve describes the bifurca-
tion diagrams for s < s2, which is the same as Fig. 3b without the blue curves. We
increase the value of θ from 1 to 7 and denote the corresponding threshold values
of s determined by Eq. (16) as σk for k = 1, 2, ..., 7. Notice that stability is lost for
s = σk for θ = k since the real parts of the eigenvalues are zero. The black curves
ending at the red dotted line at s = σk imply that multistability occurs for s between
the starting point of the black curves and the ending point for θ = k. It is observed
that the lengths of the black curves become shorter with larger length of delay. Fur-
thermore, for θ = 7, the black curves almost disappear. Therefore it becomes harder
to have multistability as θ increases.

We perform two more numerical simulations to see how the stable equilibrium is
destabilized via increasing value of θ (i.e., the delay effect). In the above simulations,
we change the value of s with fixed value of θ. In these simulations, we increase
the value of θ, taking the value of s fixed. In the first example, we take θ = 5
and s � 0.277 ∈ [s1, s2] that is obtained via Eq. (16). For θ = 0, the equilibrium
is locally asymptotically stable. When θ arrives at the downward-sloping partition
curve at θ = 5, stability is lost and further increased θ induces the equilibrium to
bifurcate to a limit cycle. Figure7a shows a bifurcation diagram with respect to θ. It
is seen first that the red curve jumps to a limit cycle at θ1 = 5 via a subcritical Hopf
bifurcation. It is further seen that the blue curve appears for θ0 � 3.45, implying the
occurrence of multistability for θ ∈ [θ0, θ1]. It is also verified that the occurrence of
multistability becomes harder as the value of θ increases. In the second example, we
change the value of s to s � 0.386 ∈ [s3, s4]. The increasing θ arrives at the upward-
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Fig. 7 Bifurcation diagrams with respect to θ. a s � 0.277, b s � 0.386

sloping partition curve for θ1 = 5. Figure7b indicates that the stable equilibrium loses
stability at θ = θ1 and bifurcates to a limit cycle via supercritical Hopf bifurcation.
Summarizing the delay effects obtained above gives the following results:

(i) The equilibriumpoint bifurcates to a limit cycle via supercriticalHopf bifurcation
when increasing θ crosses the upward-sloping partition curve and via subcritical
Hopf bifurcation when it crosses the downward-sloping partition curve;

(ii) Multistability can happen with respect to delay.

5 Concluding Remark

We investigate the Kaldor–Kalecki model in which the investment function has a
S-shaped form and a gestation lag of investment between “investment decision” and
“investment installation.” The main analysis can be divided into two parts. In the
first part, with a constant level of the capital stock, short-run dynamics of national
income is examined and two results are obtained. First, the delay does not affect
asymptotical dynamics in the sense that no stability switch occurs for any values of
the delay. Second, the convergence speed gets faster as the delay becomes larger.
In the second part, evolution of national income and the capital accumulation are
simultaneously examined. Two nonlinear phenomenon, the birth of a limit cycle and
coexistence of stable and unstable limit cycles around the stabile equilibrium point,
both of which can emergewithout delay, are preserved even if the delay is introduced.
However, it is numerically confirmed that the amplitude of trajectory’s fluctuations
becomes larger as the delay becomes larger. It can be concluded that the delay affects
the long-run as well as short-run dynamics quantitatively but not qualitatively.
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Two Time Lags in the Public Sector:
Macroeconomic Stability and Complex
Behaviors

Eiji Tsuzuki

Abstract This chapter develops a macroeconomic model that considers two time
lags in the public sector—a government expenditure lag and a tax collection lag—
and examines the effects of these lags on local stability of the steady state. According
to previous studies, a sufficiently large expenditure lag causes economic instability.
However, we show that a tax collection lag can have a stabilizing effect on the steady
state. In addition, we develop an analysis of global dynamics to demonstrate that an
increase in a tax collection lag can yield to complex behaviors.

Keywords Keynesian macrodynamic model · Fiscal policy lag · Delay differential
equation · Stability analysis

JEL Classification E12 · E30 · E62

1 Introduction

Recently,many studies have examined the effects of time lags onmacroeconomic sta-
bility using traditional Keynesian models. For instance, Sportelli and Cesare (2005)
introduce a tax collection lag into the dynamic IS-LM model developed by Schinasi
(1981) and Sasakura (1994), which is a traditional Keynesian model, and examine
the local and global dynamics of the system. The standard dynamic IS-LM model
with no policy lag comprises three equations that represent the goods market, mone-
tary market, and budget constraints of the consolidated government. These equations
form an ODE (ordinary differential equations) system. The introduction of a time
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lag transforms this system from an ODE to a DDE (delay differential equations)
system.1

Generally, models with a time lag can be categorized into two types: fixed lag
model and distributed lag model. Fanti and Manfredi (2007) develop a dynamic
IS-LM model with a distributed tax collection lag, whereas Sportelli and Cesare
(2005) analyze the case of a fixed lag. Both these studies demonstrate that a time
lag evidently causes complex behaviors, including chaos, and that a traditional fiscal
policy is likely to be ineffective. Moreover, Matsumoto and Szidarovszky (2013)
compare the case of a fixed lag with that of a distributed lag in tax collections. They
demonstrate that a larger stable region can be established in the case of a fixed lag
compared with a distributed lag.

Another type of traditional Keynesian macrodynamic model that incorporates a
capital accumulation equation in place of the disequilibrium adjustment function of
the monetary market, which is often termed the Kaldorian model, has been proposed.
This model originated from Kaldor (1940) and its primary characteristic is found in
the assumption of an S-shaped configuration of the investment function. Chang and
Smyth (1971) reconstruct the Kaldorian model to form an ODE system. Asada and
Yoshida (2001) introduce afixedgovernment expenditure lag into themodel proposed
by Chang and Smyth (1971) and show that an increase in the responsiveness of a
fiscal policy could lead to economic instability.

Further, Gabisch and Lorenz (1989) propose a hybrid model of the standard dy-
namic IS-LM model and the Kaldorian model, which involves both functions of
capital accumulation and disequilibrium adjustment in the monetary market. Cai
(2005) and Neamţu et al. (2007) introduce a fixed capital accumulation lag and a
fixed tax collection lag, respectively, into this hybrid model and comprehensively
discuss the occurrence of a Hopf bifurcation.

Moreover, Zhou and Li (2009) and Sportelli et al. (2014) propose macrodynamic
models with two fixed time lags. Zhou and Li (2009) develop Cai’s (2005) model
to include two capital accumulation lags. In addition, Sportelli et al. (2014) present
a dynamic IS-LM model with two time lags in the public sector: a government
expenditure lag and a tax collection lag. These studies demonstrate that the steady
states fluctuate between stability and instability as a certain lag increases.

Unlike in Sportelli et al. (2014), this study uses the Kaldorian macrodynamic
model to investigate the interaction of two time lags in the public sector. Therefore,
our model can be considered as introducing a tax collection lag into Asada and
Yoshida’s (2001) model. We examine two cases where a fiscal policy is active and
where it is passive. An active fiscal policy strongly responds to the national income,
whereas a passive fiscal policy is less responsive to the national income. In addition,
we perform a stability analysis employing a mathematical method developed by Gu
et al. (2005). This method enables us to present an exact figure of a stability crossing

1Schinasi (1981) does not consider disequilibriumof themonetarymarket. Sasakura (1994) develops
Schinasi’s (1981) model by introducing a disequilibrium adjustment function of the monetary
market. Sasakura’s (1994) model is now used as a benchmark of the dynamic IS-LM model.
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curve—a curve that separates stable and unstable regions on a parameter plane. Few
studies have employed this method for economic analysis.2

This study proceeds as follows: Sect. 2 presents a dynamic system that repre-
sents a model economy. Section3 examines the local dynamics around the steady
state. Subsequently, Sect. 4 examines the global dynamics. Section5 presents our
conclusion.

2 The Model

2.1 Dynamic System

The model economy comprises the following equations:

Ẏ (t) = α[C(t) + I (t) + G(t) − Y (t)]; α > 0, (1)

C(t) = c[Y (t) − T (t)] + C̄; 0 < c < 1; C̄ > 0, (2)

T (t) = τY (t − θ2) − T̄ ; 0 < τ < 1; T̄ ≥ 0, (3)

I (t) = I (Y (t), K (t), r(t)); IY > 0; IK < 0; Ir < 0, (4)

K̇ (t) = I (Y (t), K (t), r(t)), (5)

G(t) = β[Ȳ − Y (t − θ1)] + Ḡ; β > 0; Ȳ > 0; Ḡ > 0, (6)

M(t)/P(t) = L(Y (t), r(t)); LY > 0; Lr < 0, (7)

M(t) = P(t)γ[Ȳ − Y (t)] + M̄; γ > 0; M̄ > 0, (8)

P(t) = P(Y (t)); PY > 0, (9)

where Y = real national income (output); C = real private consumption; I = real
private investment; G = real government expenditure; T = real income tax; K =
real capital stock;M = nominalmoney supply; P = price level; r = nominal interest
rate;α = adjustment speed of the goodsmarket; c =marginal propensity to consume;
C̄ = base consumption; τ =marginal tax rate; T̄ = real subsidy; β = responsiveness

2We shall refer other Keynesian macrodynamic models that consider a time lag as follows. The
time-to-build model developed by Kalecki (1935) is the basis of economic models with a fixed time
lag. Szydlowski (2002, 2003) develops this model into models with economic growth. Moreover,
Yoshida and Asada (2007) examine the effects of a lag in government expenditure (where they
examine both distributed and fixed lags) using the so-called Keynes–Goodwin model. Further,
Asada and Matsumoto (2014) introduce a distributed lag of monetary policy implementation into
the Keynesian equilibrium model proposed by Asada (2010). Asada’s (2010) model comprises a
monetary policy rule and an expectation adjustment function. A fixed lag version of this model is
proposed byTsuduki (2015). Furthermore,Matsumoto andSzidarovszky (2014) develop a nonlinear
multiplier-accelerator model with investment and consumption lags. Finally, Bellman and Cooke
(1963) provide a helpful introductory textbook of delay differential equations (i.e., differential-
difference equations).
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of government expenditure to national income (i.e., activeness level of the fiscal
policy); Ȳ = target level of real national income; Ḡ = target level of real government
expenditure; γ = responsiveness of nominal money supply to national income (i.e.,
activeness level of the monetary policy); M̄ = target level of nominal money supply;
t = time; θ1 = government expenditure lag; and θ2 = tax collection lag.

Equations (1) and (2) represent a disequilibrium adjustment function of the goods
market and a consumption function, respectively. Equation (3) is a tax collection
function that represents income tax T as a function of past national incomeY (t − θ2).
It may bemore general to formulate T as a function not only of a past income but also
of the present incomedenotedbyY (t).However, this changedoes not affect the nature
of our argument; hence, we simply assume that T is a function only of Y (t − θ2).
Equations (4) and (5) represent an investment function and a capital accumulation
function, respectively. For simplicity, we assume that capital depreciation does not
exist. Equation (6) represents a fiscal policy reaction function with a government
expenditure lag. Equation (7) represents the monetary market equilibrium condition,
where the left-hand side denotes real money balance and the right-hand side denotes
a demand function for money. In this study, we ensure that the adjustment of the
monetary market is rapid, and therefore, the balance of demand and supply of this
market is always maintained. Equation (8) represents a monetary policy reaction
function. Finally, Eq. (9) represents an aggregate supply function, by which the price
level is determined.

In the case of no tax collection lag (i.e., θ2 = 0), the system compounded from
Eqs. (1)–(9) essentially becomes similar to that of Asada and Yoshida (2001). How-
ever, the existence of a positive θ2 significantly complicates the dynamic property of
the system, thereby resulting in a major change in the economic implication of time
lags.

2.2 Summarizing the Equations

In this section, we summarize Eqs. (1)–(9) in a two-dimensional dynamic system.
Substituting Eqs. (8) and (9) into (7) and solving for r , we obtain

r(t) = r(Y (t)), (10)

where rY = −(γP2 + PY M̄ + P2LY )/P2Lr > 0.
Substituting Eq. (3) into (2) and substituting Eq. (10) into (4), we obtain

C(t) = cY (t) − cτY (t − θ2) + C̄ + cT̄ , (11)

I (t) = I (Y (t), K (t), r(Y (t))). (12)

Finally, substituting Eqs. (6), (11), and (12) into (1) and substituting Eq. (12) into
(5) yields the following system of differential equations with two time lags:
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Ẏ (t) = α[I (Y (t), K (t), r(Y (t))) − (1 − c)Y (t) − βY (t − θ1) − cτY (t − θ2)

+ C̄ + cT̄ + βȲ + Ḡ], (13)

K̇ (t) = I (Y (t), K (t), r(Y (t))).

2.3 Linearization

To analyze the local dynamics of System (13), we linearize the system around the
steady state (Y ∗, K ∗) and obtain

˙̂Y (t) = α[{A1 − (1 − c)}Ŷ (t) − βŶ (t − θ1) − cτ Ŷ (t − θ2) + IK K̂ (t)],
˙̂K (t) = A1Ŷ (t) + IK K̂ (t),

(14)

where Ŷ (t) = Y (t) − Y ∗, K̂ (t) = K (t) − K ∗, and A1 = IY + IrrY . By necessity,
the coefficients of these equations are evaluated at the steady state.

Assuming the exponential functions Ŷ (t) = C1eλt and K̂ (t) = C2eλt (where C1

and C2 are arbitrary constants, and λ denotes the eigenvalue) as the solutions of the
above system and substituting these into System (14), we obtain

[
λ − α{A1 − (1 − c)} + αβe−θ1λ + αcτe−θ2λ −αIK

−A1 λ − IK

] [
Ŷ (t)
K̂ (t)

]
=

[
0
0

]
.

For nontrivial solutions to exist for this system, the determinant of the left-hand
side matrix, denoted by �(λ), must equal zero; i.e.,

�(λ) = λ2 − [IK + α{A1 − (1 − c)}]λ − α(1 − c)IK

+ αβ(λ − IK )e−θ1λ + αcτ (λ − IK )e−θ2λ = 0

= p0(λ) + p1(λ)e−θ1λ + p2(λ)e−θ2λ = 0, (15)

where

p0(λ) = λ2 + b1λ + b2,

b1 = −[IK + α{A1 − (1 − c)}],
b2 = −α(1 − c)IK ,

p1(λ) = αβ(λ − IK ),

p2(λ) = αcτ (λ − IK ).

Equation (15) is a characteristic equation of System (14). The significant feature of
this equation is the existence of the exponential terms (e−θ1λ and e−θ2λ).
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First, we examine the case with no time lags. When θ1 = θ2 = 0, Eq. (15) can be
rewritten as follows:

�(λ) = λ2 + (b1 + α(β + cτ ))λ + b2 − αIK (β + cτ ) = 0, (16)

which is an ordinary quadratic equation of λ.
Thus, we can state that if b1 + α(β + cτ ) > 0 (i.e., the coefficient of λ from

Eq.16 is positive), the real parts of the roots of Eq. (16) are negative.3 In contrast,
if b1 + α(β + cτ ) < 0, then the real parts of the roots are positive. Therefore, if
b1 + α(β + cτ ) > 0, the steady state is locally stable, and if b1 + α(β + cτ ) < 0, it
is unstable.

In the discussion below, we assume the following condition:

Assumption 2.1 b1 + α(β + cτ ) > 0.

This assumption implies that if a lag does not exist in the public sector, an economy
is stable. Under this assumption, we analyze the effects of the lags (θ1, θ2) on local
stability.

3 Local Dynamics

The following analysis is performed based on the technique developed by Gu et al.
(2005).

3.1 Preconditions

First, to apply the technique of Gu et al. (2005), some preconditions should be
checked. According to their study, Eq. (15) should satisfy the following conditions:

(I) deg(p0(λ)) ≥ max{deg(p1(λ)), deg(p2(λ))};
(II) �(0) �= 0;
(III) a solution common to all three polynomials p0(λ) = 0, p1(λ) = 0, and p2(λ) =

0 does not exist;
(IV) limλ→∞(|p1(λ)/p0(λ)| + |p2(λ)/p0(λ)|) < 1.

In our system, Condition (I) is satisfied by 2 > max{1, 1}. Condition (II) is also
satisfied by �(0) = αIK [−(1 − c) − β − cτ ] > 0. Concerning Condition (III), we
can check as follows: substituting IK into p1(λ) and p2(λ), we obtain p1(IK ) =
p2(IK ) = 0. However, p0(IK ) = −αA1 IK �= 0. Hence, Condition (III) is satisfied.

3See Chap.18 in Gandolfo (2010) for details of the relationship between the roots and coefficients
of a quadric equation.
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Finally, Condition (IV) is satisfied by limλ→∞(|p1(λ)/p0(λ)| + |p2(λ)/p0(λ)|) =
0.

Now, we examine the effects of lags (θ1, θ2) on the stability of the steady state.
The analysis proceeds as follows:

(1) We characterize the points at which the local dynamics can change, i.e., the
points at which the pure imaginary roots appear.4 These points are referred to as
the crossing points.

(2) We depict the sets of the crossing points (which we refer to as the crossing
curves) on the θ1-θ2 plane using numerical simulation.

(3) We reveal the directions of changes in the signs of the real parts that occur when
lags (θ1, θ2) cross the crossing curves.

3.2 Crossing Points

Dividing Eq. (15) by p0(λ), we obtain

1 + a1(λ)e−θ1λ + a2(λ)e−θ2λ = 0, (17)

where

a1(λ) = p1(λ)

p0(λ)
= αβ(λ − IK )

λ2 + b1λ + b2
, (18)

a2(λ) = p2(λ)

p0(λ)
= αcτ (λ − IK )

λ2 + b1λ + b2
. (19)

Moreover, we denote a pure imaginary root as λ = vi (where v = imaginary part
�= 0 and i = √−1). Then, the values of v that satisfy Eq. (17) can be characterized
by the following lemma:

Lemma 3.1 (Gu et al. 2005, Proposition 3.1) For each v satisfying p0(vi) �= 0,
λ = vi is a solution of �(λ) = 0 for some (θ1, θ2) ∈ R

2+ if and only if

|a1(iv)| + |a2(iv)| ≥ 1, (20)

−1 ≤ |a1(iv)| − |a2(iv)| ≤ 1. (21)

We denote the set of v > 0 that satisfy conditions (20) and (21) as �, which is
termed as the crossing set.5 For any given v ∈ �, the sets (θ1, θ2) satisfying Eq. (17)
(each of which corresponds to a crossing point) must satisfy the following relation-
ships (Fig. 1).

4It is ensured from precondition (III) that a zero real root cannot be a root.
5Pure imaginary roots are always conjugated. Therefore, we can assume v > 0 without a loss of
generality.
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Fig. 1 Triangle formed by
1, |a1(iv)|, and |a2(iv)| on
the complex plane

∓δ1 = arg(a1(iv)e−ivθ1) + 2mπ; m = 0, 1, 2, . . . , (22)

±δ2 = arg(a2(iv)e−ivθ2) + 2nπ; n = 0, 1, 2, . . . , (23)

where δ1, δ2 ∈ [0,π].
Incidentally, on the complex plane, a multiplication of amplitudes becomes a sum

of parts; therefore, we obtain

arg(a1(iv)e−ivθ1) = arg(a1(iv)) − vθ1, (24)

arg(a2(iv)e−ivθ2) = arg(a2(iv)) − vθ2. (25)

Figure1 also demonstrates that the following relationships hold:

arg(a1(iv)) = tan−1

(
Im(a1(iv))

Re(a1(iv))

)
, (26)

arg(a2(iv)) = tan−1

(
Im(a2(iv))

Re(a2(iv))

)
. (27)

Moreover, after some manipulation, Eqs. (18) and (19) derive the following ex-
pression:

Im(a1(iv))

Re(a1(iv))
= Im(a2(iv))

Re(a2(iv))
= b1v IK + v(b2 − v2)

b1v2 − IK (b2 − v2)
. (28)

Thus, using Eqs. (24)–(28), Eqs. (22) and (23) can be rewritten as follows:

θ1 = tan−1( b1v IK+v(b2−v2)

b1v2−IK (b2−v2)
) ± δ1 + 2mπ

v
, (29)

θ2 = tan−1( b1v IK+v(b2−v2)

b1v2−IK (b2−v2)
) ∓ δ2 + 2nπ

v
, (30)
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where the interior angles of the triangle denoted by δ1 and δ2 are given by the cosine
theorem as follows:

δ1 = cos−1

(
1 + |a1(iv)|2 − |a2(iv)|2

2|a1(iv)|
)

= cos−1

(
(b2 − v2)2 + (b1v)2 + (αβ IK )2 + (αβv)2 − (αcτ IK )2 − (αcτv)2

2
√

(αβ IK )2 + (αβv)2
√

(b2 − v2)2 + (b1v)2

)
,

δ2 = cos−1

(
1 + |a2(iv)|2 − |a1(iv)|2

2|a2(iv)|
)

= cos−1

(
(b2 − v2)2 + (b1v)2 − (αβ IK )2 − (αβv)2 + (αcτ IK )2 + (αcτv)2

2
√

(αcτ IK )2 + (αcτv)2
√

(b2 − v2)2 + (b1v)2

)
.

Equations (29) and (30) characterize the sets of the crossing points (θ1, θ2) ∈ R
2+.

Depending on the signs of δ1 and δ2, we can define two types of crossing points,
denoted by L1(m, n) and L2(m, n), as follows:

L1(m, n) :
θ1 = tan−1( b1v IK+v(b2−v2)

b1v2−IK (b2−v2)
) + δ1 + 2mπ

v
,

θ2 = tan−1( b1v IK+v(b2−v2)

b1v2−IK (b2−v2)
) − δ2 + 2nπ

v
,

L2(m, n) :
θ1 = tan−1( b1v IK+v(b2−v2)

b1v2−IK (b2−v2)
) − δ1 + 2mπ

v
,

θ2 = tan−1( b1v IK+v(b2−v2)

b1v2−IK (b2−v2)
) + δ2 + 2nπ

v
.

In the next section, based on the study of Asada and Yoshida (2001), we illustrate
the examples of L1(m, n) and L2(m, n) using numerical simulations.

3.3 Numerical Simulations

Following Asada and Yoshida’s (2001) study, we assume the investment function as
follows:

I (Y (t), K (t), r(Y (t))) = 400

1 + 12e−0.1(Y (t)−400)
− 0.01

√
Y (t) − 0.5K (t)

− 10γ(
√
Y (t) −

√
Ȳ ).
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Further, we set the parameter values as follows: α = 0.9; c = 0.625; τ = 0.2;
Ȳ = 400; C̄ + cT̄ + Ḡ = 200; and γ = 8.6. Under these specifications, the steady-
state values of System (13) are given by (Y ∗, K ∗) = (400, 61.138).

In the following discussion, we compare two cases: the case of an active fiscal
policy with that of a passive fiscal policy.

3.3.1 Example 1

When β = 4.1, which represents a relatively active fiscal policy, the crossing set �

is given by v ∈ (3.6506, 3.8716) (Fig. 2). For v ∈ �, we can depict L1(m, n) and
L2(m, n) as shown in Fig. 3, where m = 0, 1, 2 and n = 0, 1, 2. The dotted curves
represent L1(m, n), and the solid curves represent L2(m, n). These curves are referred
to as the crossing curves.

3.3.2 Example 2

When β = 0.1, which represents a passive fiscal policy, the crossing set� is given by
v ∈ (0.2636, 0.5120) (Fig. 4). In this case, the crossing curves L1(m, n) and L2(m, n)

can be depicted for v ∈ � as shown in Fig. 5. The starting points of both curves
L1(m, n) and L2(m, n) (i.e., the points corresponding to v = 0.2636) are given by
the upper connecting points of the circles.
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Next, we examine how the real parts of the roots change when lags (θ1, θ2) cross
the crossing curves.
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3.4 Direction of Crossing

We reveal the direction in which the roots cross the imaginary axis when the value
of θ1 increases. It is determined by the sign of dReλ/dθ1|λ=iv (where v ∈ �). If
dReλ/dθ1|λ=iv > 0, the roots cross the imaginary axis from left to right with an
increase in θ1 (which indicates destabilization). In contrast, if dReλ/dθ1|λ=iv < 0,
the roots cross the imaginary axis from right to left with an increase in θ1 (which
indicates stabilization). For convenience of calculation, we observe the sign of
Re(dλ/dθ1)

−1|λ=iv instead of that of dReλ/dθ1|λ=iv .
Differentiating Eq. (17) with respect to θ1, we obtain

[
a′
1(λ)e−θ1λ − a1(λ)e−θ1λθ1 + a′

2(λ)e−θ2λ − a2(λ)e−θ2θ2
] dλ

dθ1
= a1(λ)e−θ1λλ,

or equivalently

(
dλ

dθ1

)−1

= a′
1(λ)e−θ1λ + a′

2(λ)e−θ2λ − a2(λ)e−θ2λθ2

a1(λ)e−θ1λλ
− θ1

λ
, (31)
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where

a′
1(λ) = αβ p0(λ) − αβ(λ − IK )(2λ + b1)

p0(λ)2
,

a′
2(λ) = αcτ p0(λ) − αcτ (λ − IK )(2λ + b1)

p0(λ)2
.

3.4.1 Example 1

Suppose that β = 4.1. In this case, describing the real part of Eq. (31) as a function of
v ∈ �, we can derive Fig. 6, where the dotted curves are the functions evaluated on
curve L1(m, n), and the solid curves are the functions evaluated on curve L2(m, n).

Figure6 shows that Re(dλ/dθ1)
−1|λ=iv > 0 holds for all cases in Fig. 3. There-

fore, at least two imaginary roots with positive real parts emerge when θ1 crosses the
crossing curves from left to right.

Now, a curve formed by connecting curves L j (0, n) (where j = 1, 2; n = 0, 1, 2)
is termed asm0 (an enlarged representation of this curve is proposed in Fig. 7). Then,
we can make the following proposition:
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Proposition 3.1 For lags (θ1, θ2) lying to the left of curve m0, the steady state is
locally stable. However, for lags (θ1, θ2) lying to the right of curve m0, the steady
state is unstable.

Based on this proposition, we can state the following: In the case of θ1 < 0.384,
the steady state is locally stable irrespective of the value of θ2, i.e., if a government
expenditure lag is sufficiently small, a tax collection lag does not affect economic
stability. Moreover, in the case of θ1 ∈ (0.384, 0.412), the steady state fluctuates be-
tween stability and instability as θ2 increases. Thus, a tax collection lag can contribute
toward stabilizing an economy.

3.4.2 Example 2

When β = 0.1, the direction of crossing is determined by Fig. 8. Figures5 and 8
demonstrate the following proposition:

Proposition 3.2 In Fig.5, the regions enclosedwithin curves L1(m, n) and L2(m, n)

(i.e., regions inside the circles) are unstable, whereas the others are stable.

Comparing the case of a passive policy (β = 0.1) with that of an active policy
(β = 4.1) within an economically meaningful region of (θ1, θ2) (i.e., θ1 and θ2 take
values between 0 and 3), the former achieves a larger stable region. This suggests
that an active policy stance may increase economic instability. This result cannot
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be derived from a model without a time lag. Furthermore, as indicated by Fig. 5,
in the case of β = 0.1, the steady state fluctuates between stability and instability
with increases in not only θ2 but also θ1. Therefore, not only tax collection but also
government expenditure lags can contribute toward stabilizing an economy.

4 Global Dynamics

Thus far, we analyzed the local dynamics of System (13) with regard to the steady
state. In this section, we illustrate phase diagrams to visually confirm the result
established in the previous section and provide an example of global dynamics of
the system.

We set the same parameter values as those in the previous section and assume that
β = 4.1 (This section only examines the casewith an activefiscal policy.). Further,we
assume θ1 = 0.4. As indicated by Fig. 7, if θ2 is sufficiently small (i.e., θ2 ≤ 0.038),
the steady state is locally stable. However, if θ2 > 0.038, then the dynamics of the
solutions change depending on the value of θ2 (Fig. 9). When θ2 = 0.7, a stable cycle
exists and the solutions starting from the initial values of (Y (0), K (0)) = (390, 55)
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converge to the cycle. When θ2 = 1.7, the steady state becomes locally stable again,
and the solutions converge to the steady state. Moreover, when θ2 = 3.6, a strange-
shaped attractor emerges, and the solutions exhibit chaotic behaviors.

This example demonstrates thatwhile an increase in a tax collection lag contributes
toward local stability, it can cause globally complex behaviors.

5 Conclusion

In this study, we developed the Kaldorian model with government expenditure and
tax collection lags and examined the effects of these lags on local stability using
numerical simulations. In addition, we also examined global dynamics.

As shown by Asada (1987), under a fiscal policy without a lag, the steady state is
locally stable as long as the government is sufficiently active. However, Asada and
Yoshida (2001) show that under a policy with a sufficiently large expenditure lag,
the steady state becomes unstable even if the government is sufficiently active. This
study showed that under a policy with government expenditure and tax collection
lags, a policy lag can have a stabilizing effect on the steady state.

Under an active policy stance, if a government expenditure lag exceeds a certain
threshold level, then the steady state becomes unstable. This result is similar to that
in Asada and Yoshida’s (2001) study. However, we further demonstrated that in
the neighborhood of the threshold, certain positive values of a tax collection lag can
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achieve local stability. Therefore, a tax collection lag can contribute toward economic
stability.

Similarly, under a passive policy stance, both tax collection as well as government
expenditure lags can contribute to stabilizing an economy.

We also demonstrated that in an unstable parameter region, limit cycles and com-
plex behaviors can emerge. Therefore, while an increase in a tax collection lag
contributes toward local stability, it can cause globally complex behaviors.

According to Friedman (1948), policy lags are classified into three types: recogni-
tion, implementation, and diffusion lag. Unlike recognition and diffusion lag, imple-
mentation lag can be considered as adjustable to some extent. Therefore, this study
suggests that an adjustment of the timing of policy implementation can be a means
to achieve stabilization.
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Liquidity Shock, Animal Spirits and Bank
Runs

Huang Weihong and Huang Qiao

Abstract Since the end of WWII, economists generally believed that the
phenomenon of bank runs had died away. However, sufficient evidences occurred in
last two decades suggest the revival of bank run, supported by the facts that numer-
ous banking panics occurred repeatedly with the traditional and new styles during
the Asian Financial Crisis in 1997, the financial crisis in 2007, and the recent Euro-
pean debt crises. Therefore, classical economic and financial theories about bank
runs need to be challenged. In this chapter, a bottom-up behavioral model is built to
model bank runs. It is shown with agent-based modeling approach that animal spir-
its of the depositors together with endogenous optimism and pessimism can cause
liquidity shock. In particular, bank run will be trigged if the animal sprit reaches to
a tipping point. The model is tested with a set of empirical data, which shows that
the effect of animal spirits is significant in reality. The findings in this research may
shed some light on central bank’s monetary policy.

Keywords Bank runs · Liquidity shock · Animal spirits · Tipping point ·
Agent-based modeling

1 Introduction

Liquidity is regarded as the lifeline of commercial banks. It is not only a vital aspect
for the safety of a single commercial bank, but also significant to the stability of
the whole country and the global economy. Nowadays, although the consequence of
liquidity shock, i.e., bank runs, has been superficially treated as a solved problem,
not all credit institutions are covered by certain clinker-built system of defense. For
example, during the Asian Financial Crisis in 1997, liquidity crisis occurred due
to bank runs in many countries, which led to the bankruptcy of many commercial
banks and the financial crisis in many economies. In addition, the shadow banking
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system has raised wide new liquidity concerns during the U.S. subprime mortgage
crisis and the global financial crisis. At the same time, numerous traditional financial
institutions have begun to withdraw deposits from core financial institutions. Up
to now, a lot of investors are still suffering from the panic of this turmoil though
the economy has gradually recovered. Over the last two decades, these non-bank
banks have grown up and begin to play a role similar as the commercial banks,
investment banks and hedge funds. There can also be a run on shadow banks just
as what happened to traditional banks in history, especially in the emerging market
such as China where supervisions are not foolproof. Hence, the classical economic
theory about bank runs need to be modified, and a theory involving the non-economic
motivations that can explain the tipping point of the emergence phenomenon before
bank failure are in dire need.

There are two main factors that may cause a bank failure: solvency shock and
liquidity shock. We will focus on the latter in this paper. Although many factors
influence the liquidity of banks, there are two main perspectives. The first is the
structure of a bank’s assets and liabilities, which is based on the identity: Assets =
Liabilities + Capital. When the depositors suspect that the bank cannot repay their
deposits as the market value of assets is below liability, bank runs would happen if
there is no additional liquidity provided. What’s worse, when one of the representative
banks bankrupts, people would be afraid of the bankruptcy of other banks. Depositors
will panic and start withdrawing money from other banks even if those banks are
well-run. The second main factor is the policy of central bank. In the case of Northern
Rock, before the breakout of a bank run, the Bank of England announced that it would
provide emergency liquidity support. However, it was just after the central bank had
the announcement that the depositors started queuing outside the bank. This revealed
to us that the central bank could lose its capacity to play as the lender of last resort if
the contagion has already been formed. Under such circumstance, it might aggravate
the bank run phenomenon even more. In other words, both perspectives suggest that
animal spirits might play an essential role in the phenomenon of bank runs.

When such crisis breaks out, human beings tend to fall into a state of chaos. As
their willpower weakens, or surrounded by negative signals, two aspects of animal
spirit – emotion or emotional drives might play an essential role in their decision-
making. Their confidence and stability in their action dramatically reduces after
passing a critical value of mind state, and this threshold can be defined as the tipping
point. In short, such striking change is driven by the animal spirits, a concept ever
laid at the heart of Keynes’s explanation for Great Depression, but was abandoned
after the blooming of New Classical Economics. Although the reason of bank runs
is still controversial, there is no doubt that the public lost confidence in the market
though some of the banks are still well-managed, and all the people run on banks
when the contagion of panic reaches a critical point. Therefore, the discovery and
study of such tipping point is beneficial for us to effectively predict and prevent the
occurrence of bank runs.

The optimal bankruptcy rules in monetary conditions are pioneered by Shubik
and Wilson (1977), have pointed out that the theory, as the severity of the penalties is
varied, considered constraint of credit reappear in a variety of borrowing constraints
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in modern-equilibrium models. After that, based on Samulson’s pure consumption
loans model, Bryant (1980) introduced an overlapping-generations model of borrow-
ing and lending alone, without considering such factors as reserves, risky assets, or
deposit insurance. In a word, this theory provides the basic strategy of game theory
that has been cited in many papers about bank runs. The milestone of bank run theory
is that of Diamond and Dybvig (1983) who have proposed the now-classic model
based on Nash equilibrium, a model that demonstrates the reason why banks choose
to issue deposits that are more liquid than their own assets and to understand the
reason why banks are subject to runs. They pointed out the undesirable equilibrium
in which all depositors panic and withdraw immediately. After that, the mainstream
of academia explains and rationalizes their theory until now. The cost of illiquidity
can be avoided with a fragile capital structure in bank (Diamond and Rajan 2001a, b),
however, when the bank failures appear, it will shrink the common pool of liquidity,
creating, or exacerbating aggregate liquidity shortages and lead to a contagion of
failure (Diamond and Rajan 2005).

Uhlig (2010) points out that the new kind of bank runs appears in 2008 finan-
cial crisis, and many financial institutions withdraw deposits from core financial
institutions. What’s more, different from the traditional view, he figures out that the
appropriate perspective of bank run might come from insolvency rather than illiquid-
ity. The financial crisis reminds many other economists of this old-fashioned story,
for example, Calvo (2012) also claims that the factors that determines the liquid-
ity motivate the financial innovation and crash, and the policy might increase the
asset process and steady-state output, however, get reversed as liquidity is destroyed.
What’s more, as the previous model is impossible to describe the new and com-
plex bank-run phenomenon and the impact on the whole economy, the DSGE model
emerges and tries to figure out the real cause. Andre Gerali et al. (2010) set up a
DSGE model to explain the credit and banking system in Euro Area, but they just
calibrate with the real data without clear explanation of the bank runs occurrence.
Based on the idea of Diamond and Rajan (2001a, b), different attitudes to risk in the
transmission of shocks (Angeloni and Faia 2009; Wickens 2014) have been men-
tioned, and different kinds of exogenous shocks are discussed. Hafstead and Smith
(2012) introducesin the DSGE framework the interbank lending, which is crucial in
nowadays banking system, and they focus on how to adjust the costs and benefits of
bank intermediation to smooth the business cycle. Recently, the discipline of social
network develops quite fast, and interdisciplinary model is applied in the simulation
of the spread of bank-run panic. An epidemiologic model is used by Toivanen (2013),
showing that central banks’ interventions reduce contagion only slightly. Although
some of the agent-based models have appeared (for example, Dias et al. 2015), until
now, most of them concentrate on the network of the contagion spread. In a nutshell,
no one has explained the shock from a reasonable endogenous perspective, let alone
give the explanation on when the chaos would happen and when it would form the
trend to be bank run. Therefore, it is of great significance to find the potential stimulus
and critical point of bank runs.

The term Animal Spirits was introduced by Hume (1739) to trace the origins of
human decision making as major field of human nature. However, we could hardly see



228 H. Weihong and H. Qiao

any research of economics related to this concept until it is revisited by Keynes (1936).
He suggested that human sentiments or feelings (e.g. optimism or pessimism) would
drive the aggregate economy. Animal spirits, instead of just employing mathematics
and strong economic analysis, would lead people to act without shyness and doubt, or
even they would not react at all. This concept lays at the core of Keynes’s explanation
for the Great Depression, however, during 1970s, the New Classical Economics
arose and criticized that animal spirits should be not considered at all. During the
waived period of animal spirits, the valuable development came from Loewenstein
and O’Donoghue (2004). They divided animal behavior into deliberative processes
that assess options with a broad, goal-based perspective within the standard economic
conception and affective processes that encompass emotions and emotional drives. It
is noticed that the affective system is inherently myopic, while the deliberative system
cares about both short-term and long-term outcomes. Furthermore, Adaptive learning
mechanism, which consists of two kind of rules: fundamentalist and chartist rules,
has often been applied in the behavioral economic literature (Brock and Hommes
1997; De Grauwe and Grimaldi 2006; Branch and Evans 2006). Pfajfar and Zakelj
(2009) find out the experimental evidence in support of these two rules for inflation
forecasts in a new Keynesian model.

Recently, the study of animal spirits was renewed by Akerlof and Shiller (2009)
and began to raise greater concern. Different from seeking to minimize asmuch as
possible in pure economic motivation and rationality, they explain the deviations
that actually do occur and that can be observed. Besides, they generally account
for the impact of animal spirits in the bank runs and point out that the dramatic
loss of confidence is indispensable to cause bank runs inevitably even though some
insurance measures have been set up. Paul De Grauwe (2012) brings animal spirits
into the DSGE framework, and it is the first time that this concept is combined with
new Keynesian model. He breaks the assumption of rational expectation that gives
an endogenous shock with non-normal distribution, and points out that when the
sample is large enough, the uncertainty is transformed into measurable risk, which
means that the deterministic trend is observable. Therefore, with the development of
animal spirits theory, considering the bank run phenomenon from the perspective of
endogenous shock becomes possible.

In 2000, Gladwell and Malcolm define tipping points as the moment of criti-
cal mass, the threshold, the boiling point. To be specific, it refers to one dramatic
moment in an epidemic when everything can change all at once. Silver (2008) has
pointed out that a Tipping-Point state is defined as a state that would be most likely
to alter the outcome if it were decided differently. Besides, the latest and exhaustive
interpretation has been given by Lamberson (2012). They define tipping points as
discontinuities in the relationship between present conditions and future states of
the system. In other words, it is regarded as the action or outcome that dramatically
reduces uncertainty about the future. The authors divide tipping points into two cat-
egorical distinctions, which describe the tipping point by scientific division. Beyond
the pure theory, Solé (2011) has showed various models with the feature of tipping
point in the phase transitions. Such process focuses on the properties of the interac-
tion structure, which would undergo a dramatic shift when passing the tipping point.
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In the bank-run phenomenon, the spread of panic would increase dramatically when
the surroundings is in chaos. Namely, some stimuli would tip the contagion, and
bank runs is nearly formed above the tipping point. This implies the reason that why
the economic behavior would always be explained by the unstable equilibrium, and
actually in that case some forces in nature are driving us strikingly to a deterministic
tendency.

There are two disparate fields in studying networks: graph theory and social
science. In the social science, the set of contacts of an individual is their ‘neighbor-
hood’, and the size of this neighborhood is the individual’s ‘degree’ (Keeling and
Eames 2005). In random networks, the spatial position of individuals is irrelevant,
and connections are formed at random (Bollobás 2001). In the most simplified ver-
sion of the random network, each individual has a fixed number of neighborhood
through which infection can spread. In fact, the growing random network is more
reliable, and the social science develop the mode by simulating the methodology of
graph theory. The random graphs were first introduced by Erdös and Rényi (1959),
Erdös and Rényi (1960), who have given the probable structure of a random graph.
In the development of their theory, they have found that there exists a probability
distribution function with a regular sharp threshold. However, they could not find
the precise condition of the critical value that the network would tip in their theory,
and there are not the delicate trends of human nature considered in their model.
After that, Schelling (1978) published Micromotives and Macrobehavior, where he
is interested to find that a small and ostensible meaningless decisions and actions
made by individuals often lead to dramatically unintended results for a large group.
Similarly, Miller and Page (2004) set up a Standing Ovation Problem (SOP) that
explains peer effect, which is the part of everyone’s common experience. It stresses
some of the key themes caused in social systems, such as social learning, diffusion,
heterogeneity, incentives, and networks. Even so, both the Schelling’s Segregation
Model and the Standard Ovation Problem explaining the same individual behavior
would lead to the unintended results at large group with the different condition. In
addition, the agent-based modeling used in these models allow a variety of assump-
tions about information transmission, and it allows the researcher to easily alter the
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assumed behaviors and parameters in an effort to identify the key factors driving
the results. As the great merit of agent-based modeling, many scholars nowadays
attempt to simulate the social network with the epidemic models. For the bank runs
phenomenon, the driver of the dramatic chaos is driven by the animal spirits in nature,
so the model should base on the condition and result of animal spirits. In a word, it
is crucial to find out the tipping point that animal spirits would react prominently,
and we should know which factor leading to this tip, which is direct or contextual.

2 The Generic Model

The economy is considered with entrepreneurs in firms, depositors in households
and the commercial banks. The central bank acts as the lender of last resort, but we
assume it is inactive to figure out the effect of animal spirits in this paper. Refer
to Diamond and Rajan (2001a, b) and Ignazio Angeloni and Faia (2009), a present
“liquidation value” of the assets equals to a fundamental value At plus a value would
be shocked by animal spirits St . Thus the assets is At + St , and the interval of St is
defined as 1/2z. z is the shock by animal spirits, which is between 0 and 1. As the
Fig. 1 shown below, the circulation of banking system should satisfy the function
At + St ≥ Rtdt , otherwise the depositors might run on the banks. Rt is the interest
rate of deposit, and dt is the deposit ratio.

Further, as the commercial bank has the professional knowledge about the project,
it will have an advantage in figuring out the project value before it is completed
compared with other lenders. Therefore,other lenders’ liquidation value can be set
as λ(At + St) where 0 < λ < 1. In conclusion, there are two cases for the bank-run
happened (Table 1).

Table 1 Cases for the bank runs

Category Scenario Range between
the return of
investment and
saving

Returns of
depositors and
banks

Case 1 The depositors must run on
bank as the outcome of the
project is lower than the gross
deposits (including interest)

At + St < Rtdt Depositors:
(1+λ)×(At+St )

2

Bank: (1−λ)×(At+St )
2

Case 2 The other lenders figure out
the outcome of project is lower
than the gross deposit, but the
calculation of the specific
commercial bank is not

λ(At + St) <

Rtdt < At + St
Depositors: At+St+Rtdt

2

Bank: At+St−Rtdt
2
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In the first case, depositors alone would get λ × (At + St) by expectation, and the
rest (1 − λ) × (At + St) share between depositor and the bank. The excess return is
divided into half for each. The returns receive from the project investment is lower
than gross deposit, which means the bank face the illiquidity risk. For the second
case, the depositors run or not based on whether they believe the extraction of bank.
At this time, the outcome of project seems uncertain for outsider. If the outcome of
project calculated by other lenders is higher than the gross return by deposit, that is
λ(At + St) > Rtdt , the depositor will not run the bank in this situation.

Because the interval is larger than z, the expected value of total payment to the
depositors is maximized as follows:

max
dt

Ẽpt = 1

2z

∫ Rtdt−At

−z

(1 + λ) × (At + St)

2
dSt + 1

2z

∫ z

Rtdt−At

At + St + Rtdt
2

dSt

s.t.λ
At + z

Rt
< dt <

At + z

Rt

⇒ dt = 1

Rt

At + z

2 − λ

The probability of a run occurring can be written as

B = 1

2z

∫ Rtdt−At

−z
dSt = 1

2
(
Rtdt − At

z
+ z

z
) = 1

2
− At(1 − λ) − z

2z(2 − λ)

The probability B ranges between 0 and 1, impacted by the return of bank, the
expectation of depositors and the shock in the market. The higher the expectation λ

and shock z with the lower return At , the higher probability of the bank runs happens.
The problem here is to figure out the shock z in the market, and an endogenous shock
aroused by animal spirits is discussed in the following section.

3 Shock Aroused by Animal Spirits

While the mainstream model assumes that agents are able to understand thewhole
world with the rational expectations, and here replaced by homo sapiens, the agents
use the simple rules to portray thecognitive limitation and willingness to learn(e.g.
Kirman 2006; Brazier et al. 2008; De Grauwe 2012). In the other word, we will use-
heuristics (Tversky and Kahneman 1974) to decide the economic behavior with the
adaptive learning mechanism, which can be simplified as two kinds of rules: One is
the basic justifications underlying rational expectations, and the other is contrasting
a great deal with the rational expectations forecasting rule. This is the basic mech-
anism that is applied for figure out the shock coming from animal spirits. What’s
more, each agent can use different forecasting rules. Therefore, there will be hetero-
geneity among agents. While rational expectations assume that agents understand
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the complex structure with understanding the only one “Truth” and allows builders
of rational expectations models to focus on just one “representative agent”, this
heterogeneity creates interactions between agents and lead to a dynamics that is
absent from rational expectations models, which is more close to our real life. Here,
two types of behavior rules (heuristics) could be assumed as follows: the first is
“fundamentalist rule” that Agents estimate the future with uncertainty and only have
too pessimistic and pessimistic biased estimates of it. The second is “chartist rule”
that does not presuppose that agents have biased estimates. It is ambiguous for the
future and predict by the previous observation.Two rules can be listed as

(i) The fundamentalist rule is defined by
The optimistic fundamentalist rule ẼfoSt+1 = b
The pessimistic fundamentalist rule ẼfpSt+1 = −b
(ii) Thechartist rule is defined by ẼcSt+1 = St−1

The rules are simple in the sense that do not need the agent to understand the whole
picture, and just use the information they can understand. The experimental evidence
has supported these two rules for inflation forecasts in a new Keynesian model (e.g.
Duffy 2006). Although the agents could not figure out the whole picture of the market,
they will have the adaptive learning ability that continually try to learn from their
mistakes and choice the better rule they think, and generally, the market forecast
is based on the weighted average of these two forecasts.This is the mechanism of
animal spirits’ effect, which is driven by the memory and the willingness to learn.
The shock in next period is written as ẼSt+1that

ẼSt+1 = βf ,t Ẽf St+1 + βc,t ẼcSt+1 = ±βf ,t × b + βc,t × St−1, where βf ,t +
βc,t = 1

ẼSt+1 is the weighted sum of two kinds of rule, so we should figure out the weight
value firstly. Apply the discrete choice theory (Anderson et al. 1992), under pure
rationality agents would choose the fundamentalist ruleifUf ,t > Uc,t , and vice versa.
Uf ,t/Uc,t is forecast utility of the fundamentalist/chartist rule separately. Yet, psy-
chologists have get the result that when we make an alternative decision we are
also influenced by our state of mind that is impacted by recent emotional experi-
ences, environment, etc. Thus, we can derive the new probability of choosing the
fundamentalist as

βf ,t = P(Uf ,t + εf ,t > Uc,t + εc,t )

εf ,tand εc,tare the component that will aggrandize the animal spirits, and a more
precise expression can specify as the logistically distributed (Anderson et al. 1992,
p. 35):



Liquidity Shock, Animal Spirits and Bank Runs 233

βf ,t = exp(γUfo,t)

exp(γUfo,t) + exp(γUfp,t) + exp(γUc,t)

βf ,t = exp(γUfp,t)

exp(γUfo,t) + exp(γUfp,t) + exp(γUc,t)

βc,t = exp(γUc,t)

exp(γUfo,t) + exp(γUfp,t) + exp(γUc,t)

If theUf ,t/Uc,t improves greater thanthe outcomes of chartist/fundamentalist rule, the
people prefer the fundamentalist/chartist rule. The parameter γ refers to willingness
to learn from the past performance, and it shows as the intensity of choice in economic
behavior. It is related to the variance of εf ,t and εc,t . When the variance is large, γ

approaches 0. In this situation, agents choose the rule randomly and the probability of
fundamentalist/ extrapolator equals to 0.5 as the time goes on. The variance becomes
small when γ increases, and the utility is then fully deterministic. In the other words,
the willingness to learn is 0 when γ= 0, and it will increase with the size of γ . In
this adaptive learning mechanism, only those rules that pass the fitness test remain
in place, or kick out.

Ufo,t = −
∞∑
k=0

wk(St−k−1 − Ẽfo,t−k−2St−k−1)
2

Ufp,t = −
∞∑
k=0

wk(St−k−1 − Ẽfp,t−k−2St−k−1)
2

Uc,t = −
∞∑
k=0

wk(St−k−1 − Ẽc,t−k−2St−k−1)
2

For Uf ,t/Uc,t , the geometrically declining weights is introduced, because the agents
would forget and give lower weight to errors made far in the past compared with errors
made recently. Therefore, they are the negative value of geometrically declining
weights (wk) times mean squared forecasting errors of the fundamentalist and chartist
rules respectively.To be specified, the wk = (1 − ρ)ρk(0 ≤ ρ ≤ 1) is defined, and
the equation can be written as follows

Ufo,t = ρUfo,t−1 − (1 − ρ)(St−1 − Ẽfo,t−2St−1)
2

Ufp,t = ρUfp,t−1 − (1 − ρ)(St−1 − Ẽfp,t−2St−1)
2

Uc,t = ρUc,t−1 − (1 − ρ)(St−1 − Ẽc,t−2St−1)
2

When ρ = 0, there is no memory, which means that onlyperformance in last period
impacts on the forecasting rule, and the memory increases with the growth of ρ.
When ρ = 1, the agent has infinite memory and the weight allocated to each period
is the same and approaches to 0. At this time, the agents forget nothing, but the
impact of new information can be also ignored. The animal spirit might disappear in
this situation.
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4 Tipping Point Simulation

Based on the random social network, thepossibility shocked by animal-spirit effects
can be simulated by heterogeneous agent-based modeling. As the rumor between
depositors becomes more frequent under the bad economic circumstance, the infor-
mation in links would increase convexly (Fig. 2a). The vertical axis of dmeans the
degree (information number) of each depositor, and the horizontal axis of nrepresents
the probability of group panic. At the beginning, when the panic group is small, the
neighbor is almost zero as almost no one will care about the bad situation and each one
is isolated from others. If the group becomes larger, the depositors start to concern
more information, which would increase infinitely when the major group focuses
on it. The links between depositors increase convexly, because human being would
become very sensitive to changes in the low probability and be impacted by the dra-
matic loss of confidence. Based on the prospect theory, there are overweighting of
small probability and the underweighting of large probability. When the expectation
begins to deviate the reference point, people would become sensitive observably, and
they react much more strongly than the rational necessity. In Fig. 2b, the probability
of rational withdrawal of individual depositor is expressed as the horizontal axis,
and the probability of reality is the vertical axis. During the bad period, the panic
people are likely to withdraw their money when they believe other people were also
withdrawing. As a result, they withdraw the money at high level in reality, while
the rational choice still closes to zero. Further, as people become less sensitive to
changes in probability that moves away from the reference point, the willing of with-
drawal will decrease gradually. After this change driven by animal spirits, the new
equilibrium in standard economic would appear.

Pr

p

0 1

1

0
n

d

(a) (b)

Fig. 2 a The degrees each depositor when the population of panic is increasing; b the relationship
between real probability of individual depositor withdraw rationally and the probability of individual
withdraw in fact
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Fig. 3 Tipping point of bank runs

In reality, individual withdrawal gradually changes in the normal situation, how-
ever, there exists the extreme scenario when passing a critical value that leads to a
discontinuous jump to the whole withdrawing behavior. The moment of jumping is
the tipping point (TP), which appears due to the fact that animal spirits has played
an essential role in human decision making. What we can see in Fig. 3a is that the
probability of individual depositor (p) is the horizontal axis, and the probability of
the whole depositors (P(p)) showing as vertical axis is increasing slowly and then
becomes drastic. Bank run phenomenon forms when the P(p) gets 1 rapidly. Regarded
as the equilibrium problem in Fig. 3b, the probability 0 and 1 of P(p) are two stable
equilibrium similar to the Nash equilibrium in Diamond and Dybvig model. How-
ever, when the P(p)is larger than TP, it will tend to probability 1, or when the p is
less than TP, the tendency to 0 would happen. In other words, the TP is an unstable
at the lower p. However, when the change arrives at the tipping point, the increase
equilibrium, and the probability of withdraw becomes positive above TP. Thus, it is
necessary for us to find out the tipping point and then recognize the tendency of bank
runs.

Now it is ensured that after passing the tipping point, the group withdrawal dra-
matically grows to cause a social bank run phenomenon impacted by the extremely
enlarging of animal spirits (Fig. 4a), and the simulation result of agent-based model-
ing is demonstrated with different assumptions. To simplify, there are 4 connections
for each agent that have the same probability to deliver the information, and 39507,
the amount of withdrawing agents is selected arbitrarily. Initially, the serious conse-
quence is not considered because this kind of phenomenon seldom happened before,
like bank runs occurred in the early 20th. We show this result in Fig. 4b, and the
tipping point is around 59 % in this situation. What’s more, the animal spirits rises
when story of crisis imprints a profound impression to public, and then the tipping
point becomes lower (Fig. 4c). Driven by the animal spirits, the tipping point, around
40 % is just one possibility that becomes much stronger, and the real tipping point is
based on the emotional change of human being. Nevertheless, the insurance mecha-
nism is necessary which can delay the tipping point. Even when the bank run occurs,
it can help keep the confidence among some depositors. As is seen from the Fig. 4d,
the tipping points become higher, with several fluctuations before the process of
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Fig. 4 Simulation with different conditions

dramatic change. Hence, it can leave the time to stop the tips in this scenario. Fur-
thermore, there is no more than 80 % group withdrawal, which implies that more
effective insurance can control the occurrence of bank-run in a low degree.

5 Data Analysis

From the discussion above, for the equation of bank run probability B = 1
2 −

At(1−λ)−z
2z(2−λ)

, the US real data is used in this paper. TheKBW Bank Total Return Index
(KBW BTRI), which is abbreviated as BI below, is set as the return of bank At ,
and the Michigan Consumer Sentiment Index (CSI) is regarded as the ratio of other
lenders’ value λ. It is the monthly data from Jan. 1993 to April 2015 (Fig. 5).

The number of bank failure is regarded as the proxy of bank runs tendency.
Influenced by the saving and loan crisis during the 1980–1990s, a lot of banks failed
during the two decades. Fig. 6a is the real data, and there are 2362 banks closed
between year 1980 and year 1995. After that, US entered a boom time that only 50
bank failed until 2006. However, the breakout of financial crisis revisits this kind of
old story thatthe illiquidity risk in bank strikingly increases. The result of the model
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is shown in Fig. 6b. Coinciding with the real data, after the peak around year 1989, the
risk got down gradually and the strong shock with animal spirits effect still existed
until year 1995. The probability of bank runs became a bit lower than 50 % after
that year. Yet, between the end of 1990 s and the beginning of 20th century, a small
number of bank run cases still appeared because the adjustmentwas implemented
before the boom time. Since year 2000, the bank crisis got down till the eruption of
subprime crisis. Obviously, there is a discontinuous jump of the bank run risk just as
what the real story tells us in financial crisis. Behind this result, the shock aroused by
animal spirits might guide the central bank effectively, and the analysis is expressed
in the following.

As mentioned in the model section, animal spirits are determined by the memory
and the intensity of choice. When ρ = 0, there is no memory, and the memory
increases with the growth of ρ. When ρ = 1, the agents forget nothing, theycan

.2
.4

.6
.8

1

B

1995m1 2000m1 2005m1 2010m1 2015m1

Probability of Bank Runs

(a)

(b)

Fig. 6 Real data and modeling result of bank runs
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remember all the things with the same weight. The animal spirit might disappear in
this situation as they don’t have any cognitive limitation. Computing the correlation
between bank runs and animal spirits for consecutive values of ρ, the animal spirits
arise when they try to remind the history, however, after ρ approaches to 0.95, it will
dramatically drop to almost zero (Fig. 7a). This proves that the agents should have
the cognitive limitation that forgets something to generate the animal spirits.

Fig. 7 Correlation between
bank runs and animal spirits
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The parameter γ refers to the intensity of choice that comes from the willingness
to learn from the past performance. Whenγ approaches 0, agents choose the rule
randomly and the probability to be fundamentalist (or extrapolator) is exactly 0.5
as the time goes on. When γ increases, the willingness to learn will increase. From
Fig. 7b, it shows that the correlation between bank runs and animal spirits would get
down to a negative value first, which means people will take the irrational behavior as
they don’t want to learn from their mistake any more when γ is around 0.1 and 0.3.In
our data when the economic environment is good enough, γ is low. In the contrast,
the γ turns to be quite high when the recession would happen. At this time, the animal
spirits arise, which means that the agents need a minimum level of willingness to
learn for animal spirits to emergence and to influence the fluctuation of banking
system. So far, it is ensured that the cognitive limitation and the willingness to learn
would shock the banking system. What’s more, considering the longitudinal effect
of animal spirits by taking the impulse response function in Fig. 7c, the effect is great
and lasting for 100 steps. The agents need a short time to react, so the effect is zero
but increases fast at the beginning. Around the10th step the effect becomes largest
and then declines gradually for a long time. Overall, it shows that the shock of animal
spirits is quite significant and long lasting.

In a good environment, the economic activities are frequent because it is easy to
earn money, and the animal spirits are low. Normally, the economic world is working
in line with the law. Thus, from the Fig. 8a, it is easy to find that the major distribution
is allocated at the lower level of animal spirits. Yet, just a few values are between 0.4
and 0.6, because people become very prudent when the economic environment is not
good or bad, and they do not try to switch their choice or learn from the history. And
then there is a small peak from 0.6. During the crisis, people would like to swift their
wealth to a safer way, so the activities are also relatively frequent. They will try to
learn from the aftermath of the history and they will take the extreme reaction when
this kind of contagion forms and spreads. From Fig. 8b, there is an increase with the
increasing rate from the value around 0.5 of bank run probability. What’s more, the
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Fig. 8 Distribution and Trend of Animal Spirits
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Fig. 9 Bank Runs and Animal Spirits

value becomes very oscillatory until getting the higher level. Therefore, the tipping
point here for animal spirits is around 0.5.

When all the probability of bank runs is plotted with the ascending order in
Fig. 9a, it is clear that there is a discontinuous jump. What’s more, before the
jumping the probability is concave shape that increases with the decreasing rate,
but after the jumping the shape becomes convex that increases extremely fast. In
Fig. 9b, taking the animal spirits with ascending order with the corresponding value
of bank runs, the animal spirits jump when the value is around 0.3 andthen the bank-
ing system becomes chaotic at first. At this time, the central bank would like to solve
the problem, and the banking system turns to stable for a while. However, as the
real financial situation exacerbate and the animal spirits approach to 0.5, the trend
of bank runs turns into deterministic that to be a higher level, and the so called bank
runs phenomenon is formed in this case.

Overall, it is clear that when the shock of animal spirits dramatically increases,
the bank runs phenomenon would erupt. The result of real data is shown in Fig. 9c.
Before the value of bank runs jumps, the animal spirits dramatically increase ahead
during the year 2007. Luckily, before the tipping point of animal spirits appears, there
might be some inflection point that makes the economic statementbecome chaotic,
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and this is the signal that the central bank should implements or swift the monetary
policy for preventing the following crisis.

6 Discussion

The effect of animal spirits shows us that small changes could have big, and desirable,
consequences. From the result of agent-based simulation, we can see that the policy
intervention might be effective if the policy can be actualized before the tip of animal
spirits. Mostly, human beings are naive, and preferences often fluctuate as a result
of purely present-bias effect (Loewenstein 1996). When the crisis occurs, people
normally pay attention to the recent depression, instead of the gain in the future, and
then the tips of bank runs might easily emerge. On the other side, sophistication effect
means sophisticates are fully aware of any self-control problems they might have in
the future, and this awareness can influence behavior now. Thus, sophisticates are
influenced by the sophistication effect in addition to the present-bias effect. How-
ever, a person with projection bias understands the qualitative nature of change in
her preferences but underestimates the magnitude (Loewenstein 2000). Thus, while
people believe the crisis gradually recovers nowadays, they are still too prudent for
the risk free investment. Further, Loewenstein and O’Donoghue (2004) model the
behavior motivated by animal spirits as the interaction between deliberative system
(assesses options with a broad, goal-based perspective) and affective system (experi-
ences emotions, such as anger and fear, and motivational drives, such as hunger and
sex). The deliberative system may expandwillpower to exert influence on the myopic
affective system. However, it is a limited cognitive resource that may have an impact
on exercising self-control. Individuals have a finite amount of willpower, which is
used for all kinds of tasks. Ego depletion theory postulates that willpower (or ego)
depletes when using it, but is replenished after a while (like a muscle). Exercising
self-control now impacts self-restraint later, e.g., individuals can maintain their diet
discipline for some time, but not over long time (Baumeister et al. 1998). To solve the
self-control problem, the potential benefits of commitments suggested by Gul and
Pesendorfer (2001) and Thaler and Benartzi (2004), and this result supports Diamond
and Dybvig (1983). Therefore, a good commitment can control the shocks aroused
by animal spirits to avoid this kind of disaster, and this has explained the current sit-
uation in China that the banking system is very stable due to the strong commitment
from central bank. Yet, although China can be regarded as the symbol with strong
commitment, as the inclusive financial system strikingly developing, the mechanism
to figure out the probability of crisis breakout is still necessary and attractive, let
alone in the open system for most of countries. Hence, this study pays attention on
the threshold of time that central bank should implement a stronger intervention for
banking system, and discovering the animal-spirit effect is quite remarkable.
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7 Conclusion

With the thriving of the complex banking system and its unsound supervision, the
risk of bank runs should be considered again. This paper attempts an exploratory
study about how the shock aroused by animal spirits can tip the bank run occurrence
based on the adaptive learning mechanism. The effect of animal spirit does not come
from the irrational expectation, instead, it is from the fact that the agents are eager to
learn from the mistake they ever have with the bounded memory ability. Yet, those
agents could not capture all the information in the complex market, and they only
use the information they can understand driven by both the optimal/pessimistic and
extrapolated motivation. Thus, such kind of animal spirit lays at the core of the bank-
ing crisis, and it will dramatically rise when the economic environment deteriorates.
The distribution of animal spirits shows that economic activities are frequent in both
good and bad situation, and the shock caused by animal spirits explains that when
the tipping point is passed, the financial contagion takes places even if thereis inter-
vening policy. On the other hand, the result of agent-based simulation reveals that the
preventative policy is helpful in preventing the arrival of tipping point, and central
bank should implement rescue policies before that point. The tipping point and long
run effect of animal spirits demonstrates the reason why crisis is difficult to recover
in a short time once it is formed. This has explained why the bank run phenomenon
still occurs in Northern Rock even after the announcement of the central bank, and
why the public is still scared when we talk about financial crisis.

Overall, this behavior model with endogenous waves of optimism and pessimism
accounts for the micro-behavior with the animal spirits —the shock caused by cog-
nitive limitation and willingness to learn —in the bank run phenomenon, and the
signal from this kind of shock is beneficial for central bank’s monetary policy.
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AMathematical Note on Stabilization Policy
and Dynamic Inefficiency

Masahiro Yabuta

Abstract This chapter aims at discussing an essential idea concerning the economic
stabilization policy and its outcome from a dynamics perspective., focusing on a
theoretical discussion of the consequences of the stabilization policy. In the current
economic situation, not only the fragility of the financial system but also the erratic
fluctuation of the economy resulting from operational issues have become apparent.
Among financial matters, such as the expansion of the budget deficit, the importance
of a stabilization policy via the policy instruments is increasing. In this context, the
paper explores the discipline of the stabilization system.

Keywords Stabilization policy · Dynamic inefficiency · Consumption and invest-
ment · Policy instruments · Income distribution

1 Introduction

The purpose of this paper is to discuss an essential idea concerning the economic
stabilization policy and its outcome from a dynamics perspective. The paper focuses
on a theoretical discussion of the consequences of the stabilization policy. In the
current economic situation, not only the fragility of the financial system but also the
erratic fluctuation of the economy resulting from operational issues have become
apparent. Among financial matters, such as the expansion of the budget deficit, the
importance of a stabilization policy via the policy instruments is increasing. In this
context, the paper explores the discipline of the stabilization system.

This paper is organized as follows: In Sect. 2, we present the basic concept of
economic stabilization that will be discussed in this document. In Sect. 3, an opti-
mal stabilization policy is discussed. Then, Sect. 4 analyzes the issue of dynamic
inefficiency.
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2 Formulation of the Stabilization Policy

The following sections investigate the policy instruments such as fiscal expenditure
and monetary supply to make the economy stable. Yabuta (1993) analyzed the unsta-
ble property of the economic growth model, and Chiang (1992), Holbrook (1972)
and Scarth (1979) have examined issues of the instrument instability. The economy
that this chapter analyzes using foundational research of Harrod (1973) is based on
the discussion of the relevance of a myopic stabilization policy and the optimal pol-
icy plan when faced with instability. First of all, to clarify the characteristics of the
analytical framework, the following single differential equation is assumed:

ẋ = φ(x, u), (1)

where x is a macroeconomic variable, such as production and employment, and u
represents the policy variable to be controlled, such as government spending and
high-powered money. For the purpose of analysis, the function φ is assumed to be
partially differentiable and the following is assumed:

φx > 0, φu > 0. (2)

Because the first sign of (2) implies that an increase of x leads to an additional
increase of x itself, the macroeconomic system shown by (1) is unstable. The second
inequality of (2) means that a rise in policy measures, such as government spending
and money supply leads to an increase in macroeconomic variables, such as produc-
tion and employment. In this context, for the second partial derivatives concerning
(1), the following is assumed:

φxx < 0, φuu < 0, φux = φxu = 0. (3)

Equations (1)–(3) are justified when introducing the investment function of the
Harrod type. The Harrod model (1939), usually, is characterized by an instability
property with a “knife-edge” shown by the following:

ġ = h(δ(g), u), ∂h/∂δ > 0, dδ/dg > 0, (4)

where g is the rate of capital accumulation and δ is the capital utilization rate. The rise
in the rate of capital accumulation leads to excess demand in the market to increase
the rate of capital utilization. Typically, companies that face a shortage of capital
equipment expand new investment, resulting in a rise in the capital accumulation
rate. Equation (4) implies ∂ ġ/∂g = hδδ

′ > 0, meaning the instability of the economy,
which is known as the “balance on the blade of the knife (knife-edge equilibrium)”.

In the following section, the paper focuses on a structural formula concerning
the instability of the economy given in (1). When the private economy itself has
instability in (1), the paper looks for the way that leads to the overall stability of the
entire economy, in addition to the use of government functions. Removing the overall
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economic instability through a variety of policy measures and leading the economy
to a stable equilibrium is expected by the government. In this case, a stabilization
policy has the formula to adjust a policy measure u in (1):

u̇ = ϕ(x, u), (5)

where ϕ is assumed to have continuous partial derivatives.1 To clarify the nature of
the equilibrium (x∗, u∗) given by (1) and (5), the Olech theorem, which provides
sufficient conditions for global stability (Desai 1973, is applied. For convenience of
analysis, the equilibrium is re-evaluated at the (x − x∗) and (u − u∗), leading to a new
equilibrium evaluated at (0, 0). Further, for simplicity, until now, the same variable
symbols x and u apply.

The Jacobi matrix J of (1) and (5) is

J =
[
φx φu

ϕx ϕu

]
. (6)

According to the Olech theorem, the conditions under which the equilibrium (0, 0)
becomes globally stable are as follows2:

Trace of J = φx + ϕu < 0, everywhere (7a)

Determinant of J = φxϕu − φuϕx > 0, everywhere (7b)

and
φxϕu �= 0, everywhere or φuϕx �= 0, everywhere. (7c)

Equation (7c) implies that whenever a policy variable u changes, the economy shown
by x should change. Equation (7a), (7b), and (2) together provide the following:

ϕu < −φx < 0, (8a)

ϕx <
φx

φu
ϕu < 0. (8b)

1In this context, note that it does not mention the automatic stabilizer of the economy (built-in
stabilizer). The built-in stabilizer, such as the progressive taxation system, is known as one of the
effective means of stabilizing the economy. In the case of introducing it, for example, a formula
u = u(x) leads to the stability conditions concerning (1) to be expressed as follows:

dẋ

dx
= φx + φuu′(x) < 0 or u′(x) < −φx

φu
< 0.

2It is notable that the conditions (7a)–(7c) does not assure the non-negativity of the variables,
meaning that these conditions are the ones for semi-global stability rather than global stability from
the economic perspective.
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Equation (8a) and (8b) show the rule that the government should follow to make the
system of (1) and (5) stable by adjusting u as a policy stabilizer. This rule means
that an adjustment of the policy measure should be sufficiently large to compare the
adjustment in the economy. For example, if the government’s stimulus policy leads
to economic recovery, the rule means that the reversal of or reduction in government
spending is needed authoritatively.

The following phase diagrams help us to understand the adjustment process of
u and x visually. For the system of (1) and (5), the slope of the curve of φ(x, u) =
ϕ(x, u) = 0 is given by the following:

0 >
du

dx
|ẋ=0 = −φx

φu
>

du

dx
|u̇=0 = −ϕx

ϕu
. (9)

On the other hand, the characteristic equation of the system and its discriminant is
as follows:

� = (φx + ϕu)
2 − 4(φxϕu − φuϕx). (10)

Equation (7a) and (7b) together do not give a clear sign condition of (10). If � is
positive (or zero), two of the roots of the characteristic equation are each a negative
of different real solutions (or a multiple root). In this case, the equilibrium becomes a
stable node (node). This is shown in Fig. 1a. On the contrary, if � is negative, two of
the roots become a conjugate complex solution, and the equilibrium point becomes
a stable spiral point. Figure 1b depicts this case.

It is evident that the economy can not eliminate instability without the government
adjusting appropriate policy measures. To stabilize the unstable economy as depicted
in the Harrod model, the government should appropriately adjust the policy variable
u in the form of (5), while satisfying (8a) and (8b). In cases where the economy

u 0=x u 0=x

u* u* 

0=u 0=u

O x* x O x* x

(a) (b)

Fig. 1 Stabilization policy and policy variable. a Stable node. b Stable spiral point
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is of an unstable nature, we can define such a short-term stabilization policy of the
government as a myopic stabilization policy (MSP). In this regard, to define a set of
MSPs for economic system (1) will be as follows:

M = {MSP | u̇ = ϕ(x, u) with (6) and (7) (or (6) and (8))},

where M is not null, and the following conditions will be assured:

Proposition 1 The government can stabilize the economy by adopting a certain
MSP ∈ M.

Proposition 2 Assume that the autonomous system (1) is a neoclassical type of
stable economy with φx < 0 and ϕu > 0. In this case, the government can stabilize
the economy by adopting a certain MSP ∈ M.

These propositions suggest that whenever the government suitably adopts an MSP,
it can manage the economy so as to attain stability. In this sense, especially concerning
Proposition 2, an MSP belonging to M can be referred to as too cautious a policy (or
an overcautious policy).

3 Optimal Stabilization Policy

Following Phillips (1954), consider the following typical optimization policy:

Minimize
∫ ∞

0
{(x − x∗)2 + β(u − u∗)2}e−ρtdt subject to (1) with (2). (11)

A fundamental analytical framework for the stabilization policy was given by
Blancherd and Fisher (1996) and Kamien and Schwartz (1991). Here, the variables
with an asterisk, such as x∗ and u∗, show a target value.3 Any deviation from these
target values reduces the welfare of the society. In this optimal control problem, x is
a state variable and u is a control variable.

The Hamiltonian concerning (11) is as follows:

H = {x2 + βu2} + λφ(x, u), (12)

where λ is the adjoint variable and shows the shadow price of x. From the maximum
principle in (12) and the variation of x in (1), the following necessary conditions are
assured:

∂H

∂u
= 2βu + λφu = 0, (13)

3In the equilibrium, these target values are adjusted to be zero.
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and

λ̇ = −∂H

∂x
+ ρλ = −2x + (ρ − φx)λD. (14)

It is clear that ∂2H/∂u2 = 2β{1 − uφuu/φu} is positive from (2), meaning that
H is minimized. Differentiating (13) with respect to time, an adjustment equation
concerning the policy variable u is attained as follows:

u̇ = χ(x, u) = 1

1 + ε

[
x

β
φu + (ρ − φx)u

]
, (15)

where ε = −φuuu/φu > 0. Consider the system of (1) and (15). In the equilibrium
of this system, φ(0, 0) = χ(0, 0) = 0 is assured. The Jacobi matrix evaluated at (0,
0), J0, becomes as follows:

Jo =
[
φx φu

χx χu

]
, (16)

where

χx = φu

(1 + ε)β
, (17)

and

χu = ρ − φx

1 + ε
. (18)

In (16), considering (17) and (18) leads to the following:

Trace of Jo = φx + χu = 1

1 + ε
(ρ + εφx) > 0 (19a)

Determinant of Jo = φxχu − φuχx = 1

1 + ε

[
φx(ρ − φx) − φ2

u

β

]
≡ 1

1 + ε
F(φx)

(19b)

Because the trace of J0 is positive, the equilibrium can be neither a stable node nor
a stable spiral point. Here, only a saddle point can be converged to the equilibrium
along a dynamic stable path. It is necessary for the equilibrium to be a saddle point
that F(φx) of the second term of the right-hand side of (19b) is negative. Consider
the discriminant, �F , of a quadratic function F(φx) of φx. Note that all values are
evaluated at the equilibrium point (0, 0). Also, confirm the following equations to
focus on the sign conditions concerning F(φx):

F(0) = F(ρ) = −φ2
u/β < 0, (20a)

F′(ρ/2) = 0, (20b)
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Fig. 2 Optimization and
saddle point domain

F

O 2/ρ ρ xφ
F(0)

�F = ρ2 − 4φ2
u/β. (20c)

Taking (20a), (20b), and (20c) into consideration, F(φx) can be depicted as in Fig. 2.
Let the economy have the inherently instability shown by φx > 0. Even if an opti-

mal stabilization policy is taken, controlling the policy variables along the path to the
saddle point is not always possible at any time. The case that such control is not pos-
sible is shown by the area where F is above the horizontal axis φx depicted in Fig. 2.
The magnitude of φx(=∂ ẋ/∂x) represents the rate of change of the economy itself
induced by changes in the variable. For example, a change in the unit of investment
causes the investment to change itself through varying income and employment.
Therefore, it is notable that whether or not controlling the policy variable can suc-
cessfully lead to a stable saddle point is dependent on the individual nature of the
economy in advance. As the neoclassical model assumed, as far as the economy is
inherently stable, as shown by φx < 0, the equilibrium becomes a saddle point, and
it is possible for the government to choose the optimal path toward a steady state.

On the other hand, when the economy is unstable with φx > 0, some additional
conditions to make F(φx) negative are needed. First, in the case of �F < 0, F is
always negative regardless of the restrictions on φx. An additional condition is given
by the following: √

βρ

2
< φu. (21)

Equation (21) is satisfied easily when the impact of policy variables on the private
economy is (i.e., the larger φu gets) large enough or a weight of welfare related to
the target policy variable β and the social discount rate is small enough. Even if (21)
does not hold true, once the followings inequalities are satisfied, it is possible for the
government to perform the stabilization policy:

0 < φx <
−ρ − √

�F

2
or

−ρ + √
�F

2
< φx. (22)
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As already discussed, when the economy is inherently unstable, whether a stable
path toward a stable saddle point exists or not is dependent on the ranges that φx and
φu take. Unlike the case of MSP in (4), the government must continuously adjust
and control the policy variable u according to (15), whose essential components are
given by (1). In this sense, the optimal stabilization policy is closely related to the
stability conditions of the private economy. Unfortunately, there exists a case where
the government can never realize the optimal control policy that leads to the steady
state.

While the private economy is inherently unstable, if an optimum stability control
policy exists, it is referred to as the optimal stabilization policy (OSP). Then, a set
of OSPs related to (1) characterized by (2) is as follows:

O = {OSP | u̇ = χ(x, u) with (22) and negative F(φx) in (23)}.

To summarize the above discussion, the following propositions on the set O will
hold:

Proposition 3 M ∩ O is empty. Hence, an MSP is not in OSP, and it is impossible
for an OSP to be in MSP.

Proposition 4 The government can only pursue an optimum stabilization path only
if F(φx) in (19b) is negative. It is possible for the set O to be empty.

Proposition 5 Unlike the Harrodian economy with instability, let’s assume that the
economy is inherently stable, with φx < 0 and ϕu > 0. In this case, O is not an empty
set, and it is possible for the economy to follow a stable optimized path toward a
steady state.

A comparison of O and M seems to have significant implications for the following
points. As far as the goal of economic policy is concerned, full employment, improve-
ment of income, and price stability are often discussed. In reality, it is necessary to
implement a countercyclical policy against economic fluctuation. In this regard, (5)
assumes that the government carries out an economic policy post-correspondingly
to the reality of economic trends, but (15) shows a case in which the government can
control the economy when it confirms the policy goal. The former is a policy related
to M, but the latter is involved in O. Hence, a stabilization policy that has these two
properties at the same time does not exist. The understanding itself that stabilization
policies must be carried out by either formulation defines our analytical method.

4 The Issue of Dynamic Inefficiency

The macroeconomic policies for stabilizing economic fluctuations induced by the
private sector were examined in the previous sections. We found that the relationship
between the stability of the private economy and the effectiveness of the stabiliza-
tion policy of the government is the problem. This section focuses on a private sector
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economy from a strategic optimization perspective. One of the modern economic
challenges is in the relationship of labor and capital, therefore on the income dis-
tribution of wages and profits. In fact, even in Abenomics in Japan, which puts the
monetary policy within the axis, salary increases are considered to be a meaningful
measure to stabilize the private economy, which means that at the same time, a wage
hike means the reallocation of profits.

The problem of income distribution clearly includes the intertemporal decision-
making problem because the way the current income is distributed determines future
income distribution. It is evident that a larger profit distribution due to less wages
paid results in rapid capital accumulation, leading to the expansion of future income
levels as a consequence. Hence, considering the intertemporal relationship between
investments and savings is significant for the analysis from a long-term perspective.
Here, this study considers somewhat older topics that Lancaster (1973) and later
scholars have developed.

The framework of optimal control to be used here includes two players, the work-
ers and the companies (or the capitalist) in a dynamic differential game. The problem,
rather than governing, is of finding the optimal decisions for each economic entity.
As mentioned earlier, there is a dilemma with regard to income distribution. First,
workers, even though they gain enhanced current consumption acquired from higher
wages, they might reduce consumption of the future. Whether or not future con-
sumption becomes significant depends on corporate savings and its accumulation
behavior. On the other hand, while companies seem to be able to control future pro-
duction, they do not appear to be able to control income distribution. In other words,
the outcome distribution that each entity can receive is dependent on the decisions
of other economic agents. Such a conflict over current and future consumption is
understood as a dynamic battle (an active conflict of the capitalist economy); there-
fore, this framework can be formulated as a differential game—a differential game
between workers and capitalists).4

First of all, we try to set up a basic model on the basis of Lancaster (1973). The
production function is assumed to be of the AK type:

Y = aK, (23)

where Y is income and K is capital stock. On the demand side, the demand for the
product is given by the following:

Y = Cw + Cc + I, (24)

4The analytical framework here depends on Lancaster (1973). Also, there are analyses such as
Pohjola (1983, 1984) and Zeeuw (1992). In Pohjola (1984), in response to the previous study,
incentives, both institutional and consensus rules of the cooperation policy in capitalism, are ana-
lyzed, and the fact that the presence of the Nash bargaining solution in the Lancaster model is
proven to affect the bargaining solution with the nature of the threat optimum strategy has been
analyzed. Moreover, Pohjola (1983) conducted a comparative study of the Nash and Stackelberg
solutions, where dynamic biological inefficiencies that were dealt with in this section are likely to
be reduced by the Stackelberg solution. It also proved that the Stackelberg game is in a state of
stalemate because both workers and capitalists never act as leaders.
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where Cw is the consumption by workers and Cc is the consumption by firms. In
this relation, let μ be the labor share and ν be the investment rate of firms. Then,
investment and consumption are assumed to be shown as follows:

Cw = μY , c ≤ μ ≤ b, (1/2 ≤ b) (25)

Cc = (1 − μ)(1 − ν)Y , 0 ≤ ν ≤ 1 (26)

I = (1 − μ)νY . (27)

The accumulation process of capital is as follows:

K̇ = I. (28)

The workers’ problem to maximize their consumption is given by the following:

max J1 =
∫ T

0
aKμdt subject to K̇ = aK(1 − μ)ν, (29a)

while the firms’ problem becomes

max J2 =
∫ T

0
aK(1 − μ)νdt subject to K̇ = aK(1 − μ)ν. (29b)

It is assumed that workers try to control μ to pursue (29a), whereas firms would
control ν so as to meet (29b). Here, we apply the maximum principle to an optimal
control problem related to (29a) and (29b). We define Hamiltonian for workers, H1,
and firms, H2, respectively, with each adjoint variable λi(i = 1, 2) as (30a) and (30b).
Then, as far as the workers’ problem is concerned, the following hold true:

H1 = aKμ + λ1[aK(1 − η)ν], (30a)

∂H1/∂μ = aK(1 − λ1ν), (31a)

λ̇1 = −∂H1/∂K = −a[μ − λ1(1 − μ)ν]. (32a)

Moreover, the related transversality condition is given by the following

λ1(T) = 0. (33a)

Then,
μ = cif λ1ν > 1, μ = bif λ1ν < 1 (34a)

will be confirmed from (31a).
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Similarly, the following are assured as far as the firms’ problem (29b) is concerned:

H2 = aK(1 − μ)ν + λ2aK(1 − η)ν, (30b)

∂H2/∂ν = aK(1 − ν)(λ2 − 1), (31b)

λ̇2 = −∂H2/∂K = −a(1 − μ)[1 + (λ2 − 1)ν], (32b)

λ2(T) = 0. (33b)

Hence, the following will hold true:

ν = 0 if λ2 < 1, ν = 1if λ2 > 1. (34b)

The transversality condition implies μ = b and ν = 0 for any t (t0 <= t <= T), leading
to the following:

K̇ = 0, λ̇1 = −ab, λ̇2 = −a(1 − b). (35)

In (35), because the time variation of λ2 is equal to a(1 − b), it is clear that for t0 to
be equal to T − 1/(a(1 − b)), λ2(t0) = 1, and λ1(t0) = b/(1 − b). Hence, because
b >= 1/2, it is assured that λ1(t0) > 1, and (μ, ν) = (c, 1) for t ∈ [0, t0]. In any event,
ultimately, (μ, ν) = (b, 0) becomes the control to be performed.

Apart from the optimal control behavior of the economic agents in such a conflict
between workers and firms, there would be an optimal control behavior that should
be considered from a social perspective. Here, the sum of the welfare of both entities
is envisaged, i.e., J1 + J2 is regarded as a social welfare function to be maximized.
In this framework, a social planner problem is as follows:

max J1 + J2 =
∫ T

0
aK(1 − σ)dt subject to K̇ = aKσ , (29s)

where σ = (1 − μ)ν, and 0 <= σ <= 1 − c. It is necessary for a social planner to control
the social investment rate σ so as to meet (36). Hamiltonian Hs is defined as follows:

Hs = aK(1 − σ) + λsaKσ. (30s)

Hence, the followings will be

∂Hs/∂σ = −aK(1 − λs) (31s)

λ̇s = −∂Hs/∂K = a[1 − σ(1 − λs)]. (32s)

Moreover, the transversality condition becomes the following:

λs(T) = 0. (33s)
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From this, for any t in t∗ <= t <= T consisting of λs < 1, it can be seen that
σ = 0 becomes the control to be performed. Furthermore, in this case, since
K̇ = 0, λ̇s = −a, and for t∗ = T − 1/a, λs (t∗) = 1 is satisfied. Thus, for any t
in 0 <= t <= t∗, λs>1 and σ = 1 − c are also satisfied. In this way, a social planner,
even initially taking the maximum value of the investment rate (1 − c), should drive
a policy to convert to zero at some point in time.

The problem is whether or not divergence exists between the consequence brought
about by the social optimization program and that brought about by the individual
optimizing behavior of each entity (let’s call this “the capitalist program”). To clarify
this point, let’s focus on the time when the policy change is needed, t0 and t∗,
respectively. Clearly, the following holds true:

t∗ = T − 1/a > T − 1(a(1 − b)) = t0. (36)

Therefore, it is justified to classify the policy periods into (i) t ∈ [0, t0], (ii) t ∈ [t0,
t∗], and (iii) t ∈ [t∗, T ]. Table 1 summarizes the differences in variables, such as
consumption and investment in each period, wherein, C is the representative of the
total consumption. As in Table 1, the difference between the two programs occurs
after period (ii).

The total welfare, W0, attained through period (ii) and period (iii), is given by the
following:

W0 = aK0(T − t0) = K0/(1 − b), (37)

while the welfare by a social optimum program, W∗, considering (36), is given as
follows:

W∗ =
∫ t∗

t0

caK0 exp[a(1 − c)(t − t0)]dt + aK0 exp[a(1 − c)(t∗ − t0)](T − t∗)

= [exp{b(1 − c)/(1 − b)}/(1 − c) − c/(1 − c)]K0. (38)

The first term on the right side of (38) is a welfare measure implemented in period
(ii), and the second term refers to the welfare measure in period (iii).

Exp(x) > 1 + x holds true for x > 0, and let x = b(1 − c)/(1 − b), meaning that
Exp (b(1 − c)/(1 − b)) > 1 + b(1 − c)/(1 − b) holds. Upon dividing this by 1 − c

Table 1 Capitalist program
and social optimization
program

Capitalist program Social optimization
program

(i)
K̇ = a(1 − c)K

C = caK

K̇ = a(1 − c)K

C = caK

(ii)
K̇ = 0

C = aK, K = K0

K̇ = a(1 − c)K

C = caK

(iii)
K̇ = 0

C = aK, K = K0

K̇ = 0

C = aK, K = K∗ > K0
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and multiplying by K0, the expression {b(1 − c)/(1 − b)}K0/(1 − c) > [1/(1 −
c) + b/(1 − b)]K0 is satisfied. Then, considering both (37) and (38), W∗ > [1 +
b/(1 − b)]K0 = W0 holds true, meaning that the capitalism program can never
achieve the welfare to be attained in the social optimum program. This is related
to the issue of the capital accumulation system in period (ii) and is caused by the
separation between workers and firms for making decisions of consumption and
investment.

Of course, the result of the inefficiency of the capitalism program might come from
the Lancaster type of analytical system. It is notable that essentially, the relationship
of conflict is caused by a relationship over income distribution. Hence, the assumption
that it is possible to control the rate of distribution μ in an optimizing way for the
benefit of the entire group of workers might be simply meaningful in the normative
hypothesis. On the other hand, along this analytical method, it is also possible to
envisage a workers’ organizer. This, named as the workers’ program, would be written
as follows:

max Jw =
∫ T

0
aKωdt subject to K̇ = aK(1 − ω), c ≤ ω ≤ 1, (29w)

where ω represents the consumption rate that the workers can facilitate. Solving this
optimal control problem leads to the following:

Hw = aKω + λw[aK(1 − ω)], (30w)

∂Hw/∂ω = aK(1 − λw), (31w)

λ̇w = −∂Hw/∂K = −a[ω − λw(1 − ω)], (32w)

and the transversality condition is given by the following:

λw(T) = 0. (33w)

From (33w),ω = 1 for 1 > λw. Here, it is clear thatλw(tw) = 1 holds for any t, tw <= t <=
T and tw = T − 1/a. After all, a workers’ program will bring an entirely equivalent
outcome as the optimal social program seen before. This result might imply that
the noncooperative game between both classes (leading to a Nash solution) brings a
prisoner’s dilemma solution and that a cooperative game shows the possibility of a
Pareto improvement. Unfortunately, the analysis mentioned above does not indicate
that the direction of the cooperation itself between both classes transcends class.
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