
Chapter 13

Network-Based Biomedical Data Analysis

Yuxin Lin, Xuye Yuan, and Bairong Shen

Abstract Complex diseases are caused by disorders of both internal and external

factors, and they account for a large proportion of human diseases. They are

multigenetic and rarely a consequence of the dysfunction of single molecules.

Systems biology views the living organism as an organic network. Compared

with reductionism-based viewpoints, systems biology pays more attention to the

interactions among molecules located at different omics levels. Based on this

theory, the concepts of network biomarkers and network medicine have been

proposed sequentially, which integrate clinical data with knowledge of network

sciences, thereby promoting the investigation of disease pathogenesis in the era of

biomedical informatics. The former aims to identify precise signals for disease

diagnosis and prognosis, whereas the latter focuses on developing effective thera-

peutic strategies for specific patient cohorts. In this chapter, the basic concepts of

systems biology and network theory are presented, and clinical applications of

biomolecular networks, network biomarkers, and network medicine are then

discussed.

Keywords Centrality • Cross-scale analysis • Network biomarker • Network

medicine • Sequential network

13.1 Introduction

Complex diseases comprise a large class of common diseases, which originate from

interactions among multiple factors such as gene mutations, environmental effects,

and personal lifestyle choices [1]. The morbidity, mortality, and recurrence rates of

these diseases are growing rapidly throughout the world at present. Due to the

initiation and development of P4 (predictive, preventive, personalized, and partic-

ipatory) medicine and precision medicine, medical paradigms are constantly

shifting. Many traditional methods that focus only on single genes or proteins and
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that view a living organism as simple systems cannot provide a clear understanding

of the essential mechanisms of complex diseases such as cancer, diabetes, and

cardiovascular and neuronal diseases [2]. Therefore, systematic theories and

approaches need to be provided and translated into clinical practice.

Systems biology is one of the most effective and powerful weapons for fighting

complex diseases [3], where it emphasizes the dynamic interactions among biolog-

ical molecules at different omics levels as well as elucidating their in-depth

behaviors or mechanisms from a systematic perspective. These interactions connect

biological components to generate complex interacting modules or networks, which

have great significance for case studies and clinical applications [4]. More impor-

tantly, most of these biological networks tend to have meaningful structural char-

acteristics, which are of great value for discovering potential rules or patterns of

occurrence and progression for complex diseases [5, 6].

Among the principles of systems biology, network analysis is now becoming the

main approach for investigating biological processes and functions in the field of

biomedical informatics [7]. Various holistic concepts such as network biomarkers

[8] and network medicine [9], which break the shackles of reductionist viewpoints,

offer new methods for exploring the complexities of human diseases as well as

helping to address biomedical problems at the systems level. Due to the popular-

ization of next-generation sequencing (NGS), increasing numbers of studies are

combining static networks with large-scale dynamic expression data [10], thereby

elucidating the changes in diseases at different time points. All of these innovations

facilitate the diagnosis and treatment of complex diseases, as well as building a

strong bridge between fundamental research and clinical sciences.

13.2 Networks and Graphs

A network is a description and abstraction of real things and their relationships,

which can be represented as a graph model with two essential components: a set of

vertexes (or nodes), V¼ {v1,v2,. . .,vN}, and a set of edges (or lines), E¼ {e1,e2,. . .,
eM}, between pairs of vertexes. There are many instances of networks such as social

networks, traffic networks, and financial networks, but we focus on biological

networks.

13.2.1 Classification of Networks

13.2.1.1 Directed and Undirected Networks

Networks can be divided into two types according to the directivity that they

indicate: directed networks and undirected networks. In a directed network, an

edge (i, j) indicates that a relationship exists from vertex i to j, but not vice versa.
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Thus, i and j are known as the starting points and ending points, respectively. In an

undirected network, two vertexes are bidirectionally reachable when their edges are

linked. Among the different types of biological networks, a protein-protein inter-

action (PPI) network is typically an undirected network, whereas microRNA-

mRNA regulatory networks are recognized more commonly as directed networks.

13.2.1.2 Weighted or Valued Networks

Network data often contain extra information regarding the extent or strength of

each relationship. For example, in gene co-expression networks, correlation coef-

ficients are usually calculated in order to quantify the extent of the interactions

among genes [11]. This extra information is referred to as a weight or value in

network science. Thus, the two basic network types mentioned above can be

extended to four, as shown in Fig. 13.1a–d.

13.2.1.3 Bipartite Networks

Given a network N¼ {V, E}, if the vertex set V can be divided into two independent

subsets V1 and V2 (V1 [V2¼V, V1 \V2¼Φ), and all edges are between paired

vertexes belonging to different subsets, then the network can be represented as a

bipartite network (or bipartite graph; see Fig. 13.1e). Bipartite networks are used

widely in biological research. For instance, a human gene-disease network is

bipartite, where one set of vertexes are diseases and the other set are genes that

are closely related to linked diseases.

Fig. 13.1 Fundamental types of networks. (a) Unweighted undirected network. (b) Unweighted
directed network. (c) Weighted undirected network. (d) Weighted directed network. (e) Bipartite
network
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13.2.2 Centrality of Vertexes

13.2.2.1 Degree Centrality

In undirected networks, the degree of a certain vertex i (termed k(i)) equals the

number of edges that are incident on it. In directed networks, the vertex degree k(i)
is partitioned into two parts, the in-degree kI(i) and out-degree kO(i) (mathemati-

cally, k(i)¼ kI(i) + kO(i)), which are equivalent to the number of vertexes that are

adjacent to and from the vertex i, respectively. Degree centrality is the most

common property used to measure the importance of a vertex in a network, and it

equals the ratio of the actual to theoretical maximum degree of a given vertex. This

metric indicates that vertexes with larger degrees are more critical in the network.

For example, old genes with significant biological functions often have large

degrees, and they lie at the heart of a PPI network [12].

13.2.2.2 Closeness Centrality

This metric indicates how close the given vertex is to all of the other vertexes in the

network. In general, the vertex with the highest closeness centrality is located at the

optimum position for viewing the information flow. The vertex closeness centrality

can be calculated for both nondirectional and directional relations. If we consider an

undirected network as an example, the closeness centrality of vertex i (CC(i)) in an
undirected network with N vertexes is

CC ið Þ ¼ N
PN

j¼1 d i; jð Þ ð13:1Þ

where d(i, j) represents the distance from vertex i to j.

13.2.2.3 Betweenness Centrality

Interactions between two nonadjacent vertexes in a network can be affected by the

actions of other vertexes, especially by those that lie between them. Some

vertexes are important because all the shortest paths along which information

flows from any vertex at one side to the other must pass through them, and thus the

betweenness centrality is the metric used to describe the importance of a given

vertex based on the number of shortest paths that it penetrates. Vertexes with

higher betweenness centrality hint may have a greater capacity to control the flow

of information. In an undirected network, the betweenness centrality of the given

vertex i (BC(i)) is
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BC ið Þ ¼
X

a 6¼i6¼b

mi
ab

nab
ð13:2Þ

where nab is the number of shortest paths linking vertex a and b and mi
ab is the

number of shortest paths linking vertex a and b that contain vertex i.

13.2.3 Topological Properties of Networks

13.2.3.1 Degree Distribution

The degree distribution P(k) of a network is equivalent to the fraction of vertexes in
the network with degree k. If the network is directional, the distribution should be

refined as an in-degree distribution or out-degree distribution. Vertexes in different

networks tend to follow different degree distributions, such as the normal distribu-

tion (or Gaussian distribution), binomial distribution, and long tail distribution

(or scale-free distribution) (see Fig. 13.2a–c).

Fig. 13.2 Schematic diagrams of four common degree distributions. (a) Normal distribution.

(b) Binomial distribution. (c) Long tail distribution. (d) Power-law distribution
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13.2.3.2 Power-Law Distribution

In 1999, Barabasi and his colleagues showed that the in-degree and out-degree

distribution of the World Wide Web has a power-law tendency [13]. In network

science, networks with this property are often known as scale-free networks.

Mathematically, P(k) ~ k–γ, where γ is a parameter with a value that usually ranges

among 2< γ< 3 (see Fig. 13.2d). In fact, many important biological networks are

also scale-free. For example, the human PPI network has an approximately scale-

free characteristic [14] with a degree exponent of 1.49 [12], which indicates that

proteins (or genes) with large degrees (i.e., hubs) are few in number and they may

affect the whole network greatly.

13.3 Biomolecular Networks and Their Clinical
Applications

Biological molecules interact to promote the activity and evolution of living

organisms. These interactions contribute to various types of biological networks,

where they may influence the significance and complexity of biological processes

in many ways.

13.3.1 Protein-Protein Interaction (PPI) Networks

Proteins are the direct products of functional genes, and they are large biological

molecules that mediate the functions of living organisms. Accumulating evidence

indicates that PPIs are closely associated with biological processes [15, 16], where

they play pivotal roles in a large number of cellular behaviors and their abnormal

activities may lead to the development of numerous diseases [17].

Protein interactions (“interactome”) have generally been identified based on

multiple biological experiments or computational approaches. However, due to

the development of biological and computational techniques, the volume of PPI

data increases year, and many publicly available databases have been created to

store these data, thereby providing valuable information for interactome research.

Table 13.1 lists six manually curated PPI databases. The data in these databases

have been verified by experiments or published studies. To fully exploit these data

and analyze them at a higher level, Wu et al. integrated their interactions and

constructed a PPI network analysis platform (called PINA) for investigating the

underlying latent information [18]. The platform was then enhanced in version 2.0

by including interactome modules identified by the global PPI network for six

model organisms [19].
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It is widely acknowledged that the functions of biomolecules are affected by

their structures [26, 27] and network structures with special characteristics can also

indicate the possible mechanisms of interactions among given biomolecules

[28]. Many studies have shown that PPI networks tend to be scale-free [29] and

proteins/genes with large degrees or centralities (or hubs) may play important roles

in relevant biological processes. In addition, PPI networks have been reported as

modular [30], so some studies have addressed the substructural analysis of PPI

networks. For example, Luo et al. [31] separated five modules related to the

initiation of early-onset colorectal cancer using a PPI network based on gene

expression data and cluster analysis and then screened five hub genes as key

indicators or candidate therapeutic targets for this disease. Gene ontology and

pathway enrichment analyses demonstrated the validity of their results. Zanzoni

and Brun [32] designed a computational approach that considers both PPI network

and stage-based proteomics profiles to identify dysregulated cellular functions

during the progression of different cancers. They extracted several functional

modules using the OCG algorithm [33] and annotated them based on gene ontology

terms and pathway signals. Combined with actual proteomics datasets obtained at

different stages of cancers, they selected modules with increasing, decreasing, or

stage-specific importance during cancer progression. This study showed that pro-

tein modules are functional in different biological processes and that the interac-

tions among them are usually as important as the proteins themselves. To some

extent, PPI networks can provide a comprehensive understanding of molecular

interactivity rather than single proteins, thereby presenting more opportunities for

elucidating the potential mechanisms under different conditions. This could allow

great breakthroughs in the diagnosis and treatment of complex diseases.

13.3.2 Gene Co-expression Networks

PPI networks represent the interactions among proteins/genes from a static per-

spective. However, these interactions might not be exactly the same in different

conditions due to the specificity of samples or groups with different backgrounds. In

recent decades, due to the rapid development of experimental technologies, the

number of expression profile data identified by high-throughput screening has

Table 13.1 Protein-protein interaction databases

Name Version Link Citation

BioGRID 3.4.132 http://www.thebiogrid.org/ Stark et al. [20]

DIP 2004 update http://dip.doe-mbi.ucla.edu/ Salwinski et al. [21]

HPRD Release 9 http://www.hprd.org/ Keshava Prasad et al. [22]

IntAct 4.2.3.1 http://www.ebi.ac.uk/intact/ Aranda et al. [23]

MINT 2012 update http://mint.bio.uniroma2.it/mint/ Ceol et al. [24]

MIPS MPact Not available http://mips.gsf.de/genre/proj/mpact/ Guldener et al. [25]
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increased greatly, thereby providing unprecedented opportunities for integrative

analyses of clinical diseases based on static networks and dynamic expression

information.

Gene co-expression networks combine the similarity of expression among

coordinated genes with the topological properties of networks, which can provide

a systematic view of the dynamic changes of molecular activities and cellular

functions during the evolution of biological processes. Using gene co-expression

networks to analyze complex biological phenomena is simple and efficient

[34]. Importantly, they are beneficial for building condition- or disease-specific

networks, which are useful for elucidating the underlying mechanisms related to the

progression of specific diseases [35].

Rotival and Petretto [36] reviewed some well-known computational methods for

co-expression network analysis, which can be divided into two categories according

to specific guiding principles. The first category comprises potential foundational

factors, the influences of which may lead to changes in gene expression. These

methods first select the principal factors and their induced genes from a pool of

candidate factors based on principal components analysis or nonnegative matrix

factorization algorithms [37], before extracting functional modules based on the

factor-gene pairs. The other methods for co-expression network analysis are largely

dependent on graph-based modeling, where vertexes or edges with similar features

are clustered into the same modules. As shown in Fig. 13.3, co-expressed genes are

usually measured by correlation analysis, such as Pearson’s correlation coefficient

(PCC), Spearman’s rank correlation, or Kendall correlation tests, where the func-

tional modules are finally inferred for further research.

In the era of biomedical informatics, co-expression network analysis greatly

improves the speed and accuracy of disease-associated gene discovery. Zhang

Fig. 13.3 Pipeline for graph-based gene co-expression network analysis
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et al. [38] confirmed that five crucial genes can be used as prognostic markers for

chronic lymphocytic leukemia, where they constructed a co-expression network

using the CODENSE algorithm [39] and they focused mainly on modules

containing the key gene ZAP70. Yang et al. [40] built gene co-expression networks
for four different types of cancers and found that the features of prognostic genes

did not lie at hub positions in cancer-specific co-expression networks, but instead

they were often enriched in modules conserved among different cancer networks.

This may be an important insight that could facilitate the identification of cancer

prognostic genes in clinics.

13.3.3 MicroRNA-mRNA Regulatory Networks

MicroRNAs (miRNAs) are small noncoding RNAs that comprise approximately

22–24 nucleotides. miRNAs silence gene expression at the posttranscriptional

level by base-paring with their target mRNAs [41]. According to previous

studies, miRNAs are involved in a variety of important biological processes, such

as cell proliferation, development, apoptosis, and immune responses [42, 43, 44].

In addition, the aberrant expressions of miRNAs may cause many serious diseases

[45, 46, 47].

The relationships between miRNAs and their targets can be abstracted as a

bipartite network (or bipartite graph), which is called a miRNA-mRNA regulatory

network. The pairs in the network comprise miRNA-mRNA regulations, which can

be determined using experimental and computational methods. Table 13.2 lists

several useful databases that store miRNA-mRNA pairs.

Some well-known tools are also available for miRNA-target prediction. For

example, TargetScan [55] infers miRNA targets by matching the seed region of

Table 13.2 miRNA-mRNA regulatory pair databases

Type Name Version Link Citation

Experimentally

validated

miRTarBase 6.0 http://mirtarbase.mbc.nctu.

edu.tw/

Chou

et al. [48]

TarBase 7.0 http://www.microrna.gr/

tarbase/

Vlachos

et al. [49]

miRecords 4.0 http://miRecords.umn.edu/

miRecords/

Xiao

et al. [50]

miR2Disease Not

available

http://www.miR2Disease.

org/

Jiang

et al. [51]

Computationally

predicted

HOCTAR 2.0 http://hoctar.tigem.it/ Gennarino

et al. [52]

ExprTargetDB Not

available

http://www.scandb.org/

apps/microrna/

Gamazon

et al. [53]

starBase 2.0 http://starbase.sysu.edu.cn/ Li et al. [54]
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each input miRNA. miRanda [56] is an optimized method that relies only on

sequence complementarity and user-specified rules to enhance the accuracy of

predicted results. In general, the miRNA-mRNA pairs identified by

low-throughput experiments such as real-time PCR are more convincing than

those determined using high-throughput techniques such as microarrays or NGS,

while the pairs predicted by computational algorithms often have a high false-

positive rate. Thus, it is necessary to clean the data before constructing the final

network.

miRNAs function in the development of many diseases, and many studies have

attempted to discover disease-associated miRNAs based on miRNA-mRNA regu-

latory networks. One of the most popular approaches is based on the theory that

miRNAs may be functionally synergistic so they can co-regulate the expression of

their target genes. Bandyopadhyay et al. [57] found that the miRNAs included in a

module may have a combinatorial effect on their targets, where those located next

to the module appeared to have similar dysregulatory patterns. Based on this

observation, several computational frameworks or programs have been developed

to identify abnormal miRNAs or miRNA regulatory modules in human diseases

[58, 59].

Instead of the synergistic functions of miRNAs, Zhang et al. [5] focused on the

substructures of miRNA-mRNA regulatory networks and found evidence that

miRNAs can regulate genes independently. They defined a novel bioinformatics

model using the NOD (novel out-degree) parameter to quantify the independent

regulatory power and employed it to detect key miRNAs in prostate cancer [5, 60],

gastric cancer [61], and sepsis [62]. The model was expanded later by considering

the biological functions of miRNA targets [6]. Unlike some machine learning-based

methods that are highly reliant on the training data, the improved model identified

crucial miRNAs without any prior knowledge, and its application to biomarker

discovery for pediatric acute myeloid leukemia demonstrated its great predictive

power.

Another typical application of miRNA-mRNA networks in clinical research is

the approach proposed by Zhao et al. [63], who utilized a network as a bridge to

infer cancer-related miRNAs from dysfunctional genes and their enriched path-

ways. The method is flexible because it can identify cancer-related miRNAs

without requiring miRNA expression profiles. All of the studies mentioned above

demonstrate the importance of miRNA-mRNA regulatory networks, especially in

the field of disease-associated miRNA discovery.

13.3.4 Competing Endogenous RNA (CeRNA) Regulatory
Networks

It has been widely reported that miRNAs may repress a large proportion of

transcripts and they can act as oncogenes [64] or tumor suppressor genes [65] in
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many diseases such as cancers. Recent studies have demonstrated that the

transcriptome has a large number of components, including protein-coding RNAs

(or mRNAs), pseudogene transcripts, and long noncoding RNAs (lncRNAs), which

“talk” with each other using the “letter” miRNA response elements (MREs) by

competitively binding the limited sites in common miRNAs to influence the

regulatory effects of miRNAs on their targets [66]. Salmena et al. [67] formally

proposed the ceRNA concept to represents the group of RNAs with these abilities.

The activities of competing endogenous RNA (ceRNAs) form a large-scale

regulatory network at the posttranscriptional level, and thus the traditional para-

digm of “miRNA!RNA” has gradually been replaced by

“RNA!miRNA!RNA.” As shown in Fig. 13.4, in this new model, miRNAs are

often recognized as mediators, where different ceRNAs bind them competitively to

promote changes in the expression of the target genes (or mRNAs) mediated by

miRNAs.

In ceRNA regulatory networks, miRNAs can target a large number of

co-expressed transcripts, and the expression of one targeted transcript can be

affected by changes in the concentration of other transcripts [68]. Multiple RNA

transcripts may share one miRNA via MREs in their 3’ untranslated regions. Su

et al. [69] found that overexpressed ceRNAs may increase the concentration of

specific MREs to change the distribution of miRNAs, thereby leading to increases

in the expression levels of their targets.

In recent years, studies have demonstrated that the initiation and progression of

cancer are closely related to the dysregulation of ceRNA networks. Thus, Sumazin

et al. [66] discovered a miRNA-mediated network with more than 248,000 inter-

actions, and they showed that the network regulated various established genes and

oncogenic pathways with close relationships to the initiation and development of

glioblastoma. Tay et al. [70] confirmed that the ceRNA regulatory network was

Fig. 13.4 Schematic diagram of two regulatory paradigms. (a) “miRNA!RNA” paradigm and

miRNA regulatory network. (b) “RNA!miRNA!RNA” paradigm and ceRNA regulatory

network
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functional for protein-coding RNAs and tests based on the tumor suppressor gene

PTEN showed that the expression patterns of protein-coding RNA transcripts were

consistent with PTEN. Overall, it was concluded that ceRNAs and their networks

may play crucial roles in disease development processes.

Understanding the competition mechanisms of ceRNAs may provide great

insights into the pathogenesis of specific diseases. For instance, Zhou et al. [71]

constructed a breast cancer-specific ceRNA regulatory network by combining

miRNA-mRNA relationships with miRNA and mRNA expression datasets from

patients with breast cancer, where they found that the network also tended to follow

a power-law. Moreover, functional analysis indicated that the hub genes and dense

clusters were strongly linked to cancer hallmarks, which proved valuable for risk

assessments in breast cancer. Thus, ceRNA regulatory network-based analyses may

inspire new approaches to both fundamental and clinical studies of complex

diseases.

13.3.5 Others

Due to the complexity of disease progression, other biological networks such as drug-

target interaction networks [72], metabolic networks [73], and epigenetic networks

[74] may also have important functions during the occurrence and development of

diseases. However, due to space limitations, please refer to the references cited for

further details.

13.4 Network Biomarkers in Complex Diseases

Biological markers, also known as biomarkers, are unique molecules that can

indicate changes or potential changes in biological conditions from normality to

abnormality in living organism [75]. Clinically, biomarkers with high sensitivity

and specificity could serve as powerful indicators for disease diagnosis and prog-

nosis. Instead of using single biomarkers, network-based biomarkers are now

becoming more popular because they can help to investigate the overall behaviors

of biological molecules and they may reflect the system-level states of diseases.

13.4.1 Single Molecular Biomarkers and Network
Biomarkers

Many studies have shown that single biological molecules can be effective bio-

markers for both the diagnosis and prognosis of human diseases. For instance, the
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protein prostate-specific antigen is widely used for the early detection of prostate

cancer [76]. The BRCA1 and BRCA2 genes can also be useful markers for breast

cancer [77]. In addition, some noncoding RNAs such as miRNAs may also have

diagnostic or prognostic roles in many complex diseases [78, 79].

The traditional methods used to detect candidate biomarkers rely mainly on

biological experiments. Most begin by identifying differentially expressed or

deregulated molecules based on large-scale expression profiling data, before vali-

dating the selected candidates in low-throughput experiments [80]. Considering the

limited availability of samples and time-consuming pipelines, several computa-

tional approaches have been developed to improve the efficiency of biomarker

signature discovery [81].

Single molecules may be dysfunctional in many cellular processes, but they are

still not sufficiently powerful to explore the underlying mechanisms of certain

diseases due to the diversity and complexity of disease development. In fact,

complex diseases are usually due to interactions among multiple factors rather

than the breakdown of single molecules. Moreover, single biomarkers identified in

samples from patients with similar diseases by different methods tend to exhibit

high heterogeneity [82]. Complex diseases should be considered more as disorders

in a system; therefore, the concept of network biomarkers has been proposed, and

novel strategies have been developed for explaining genetic or epigenetic changes

across diseases.

There are two main types of network biomarkers: static network biomarkers

(SNBs) and dynamic network biomarkers (DNBs). As shown in Fig. 13.5, the

former integrates the interactions, annotations, and pathway signals of molecules

by focusing only on the static nature of networks, whereas the latter pays considers

the states of a disease at different time points, which is useful for monitoring the

progression of diseases [83].
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Fig. 13.5 Three different types of biomarkers: single molecular biomarkers, static network bio-

markers (SNBs), and dynamic network biomarkers (DNBs)
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13.4.2 Static Network Biomarkers (SNBs)

Complex diseases are always caused by system-level disorders in living organisms.

Thus, network biomarkers are more useful for explaining the pathogenesis of

diseases than single molecular markers. Improvements in experimental techniques

and theories of informatics mean that more interactions among biological mole-

cules have been elucidated as well as their annotations and signal transduction

pathways, thereby providing static information for exploring diseases within a

systems biology framework and helping to translate theoretical analyses into

clinical research.

As a solid bridge between the genotype and phenotype, proteins are vital

biological molecules with significant roles in the occurrence and evolution of

diseases. Thus, many studies have focused on protein-based network biomarkers,

and they are valuable for validating mechanistic hypotheses related to the progres-

sion of diseases. The main pipeline is shown in Fig. 13.6. First, disease-associated

proteins/genes are selected by analyzing experimental data or other publications,

which are then mapped onto the reference PPI network where the knowledge-based

PPIs are integrated. Thus, a disease-specific PPI network is constructed. Second,

subnetworks of candidate biomarkers are scored and identified from the disease-

Fig. 13.6 Pipeline for protein-based network biomarker discovery
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specific network according to their actual expression levels, existing knowledge, or

the topological properties of the network. Finally, in vitro experiments or machine

learning methods such as support vector machines (SVMs) [84] or artificial neural

networks [85] can be used to validate the results and to perform further research.

To highlight the carcinogenic mechanisms of lung cancer, Wang and Chen [86]

constructed a biomarker network based on microarray data and PPIs. They identi-

fied 40 proteins that had significant associations with lung carcinogenesis using the

network, and they found that three-quarters of the total (30/40) had annotations

related to cell growth. The biomarker network had the potential to diagnose

smokers with signs of lung cancer, which could be an effective therapeutic target

to fight cancer.

In addition to disease diagnosis, biomarker networks are capable of

distinguishing metastatic and non-metastatic tumors. Chuang et al. [87] combined

breast cancer metastatic and non-metastatic data with a PPI network using the

“subnetwork activity matrix” and greedy algorithm to prioritize high-ranked sub-

networks as candidate biomarkers. They found that genes in these biomarker

networks were enriched for the hallmarks of cancer, and the results of SVM

classification showed that these network biomarkers were highly accurate in sepa-

rating metastatic and non-metastatic breast tumors, which may have significant

utility for tumor progression investigations.

In addition to protein-based biomarker networks, noncoding RNAs are essential

during the disease development process. It is obvious that interactions among these

RNAs and their targets or regulators can form functional or even biomarker

networks. Lu et al. [88] built miRNA biomarker networks containing miRNA

targets and relevant transcription factors and applied them to the diagnosis of

gastric cancer. Cui et al. [89] identified three lncRNA co-expression modules

connected with prostate cancer, one of which may be recognized as a module

biomarker for prostate cancer diagnosis.

13.4.3 Dynamic Network Biomarkers (DNBs)

Traditional molecular biomarkers and network biomarkers can only distinguish

between diseases in two stable states. This static information limits their capacity to

detect certain pre-disease states. However, pre-disease states may reflect crucial

signs of disease progression, and they could be key indicators for early diagnosis

and the prevention of diseases.

The novel DNB concept was proposed to overcome these limitations and to

elucidate more dynamic changes in diseases. Based on complex network theory and

nonlinear dynamical theory, DNBs can evaluate the stages of diseases at different

time points and represent molecules and their relations in a three-dimensional

image, as well as facilitating the discovery of stage-specific or personalized bio-

markers in the era of biomedical informatics [83].

13 Network-Based Biomedical Data Analysis 323



Chen et al. [90, 91] partitioned the process of disease development into three

stages: normal, pre-disease, and disease. The normal stage is stable, and it repre-

sents the state of health or early disease. In this stage, changes are usually gradual.

The pre-disease stage indicates the state immediately before critical changes have

been reached. Molecules in living systems undergo dramatic transitions during this

stage until another stable stage (the state of disease or advanced disease) occurs.

The pre-disease stage is crucial because it may provide latent signals of disease

progression, which could be pivotal markers for the early diagnosis of disease.

To quantify signals and detect DNBs during system-level transitions, a compos-

ite index (CI) is defined as follows [90]:

CI ¼ SDd � PCCd

PCCo
ð13:3Þ

where SDd is the average standard deviation (SD) of the DNB molecules (mole-

cules in DNB), PCCd represents the average PCC among DNB molecules as

absolute values, and PCCo represents the average PCC among DNB molecules

and other molecules as absolute values. In fact, the DNB comprises a group of

molecules in the system, which can provide significant information about the

changes at critical points of the pre-disease stage. These molecules are functional

compared with other non-DNB molecules in the same system. The expression of

these molecules is identified mainly using experimental data, especially those

obtained from high-throughput omic experiments.

The theory of DNB has been employed to detect early-warning signs for both type

1 and type 2 diabetes, especially recognizing the key points at which the state

reverses. In a study of type 1 diabetes [92], two DNBs were built to predict sudden

changes during the progressive disease deterioration. Previous studies and functional

analyses demonstrated that these two DNBs are highly relevant to type 1 diabetes and

they may be useful for its early diagnosis. Based on this study, tissue-specific DNBs

were constructed for type 2 diabetes mellitus, and two significant states were iden-

tified that had strong associations with severe inflammation and insulin resistance

[90]. The genes in the DNBs were shown to be dysfunctional at the point of disease

deterioration according to a cross-tissue analysis. Importantly, they were mostly

located upstream of the signaling pathways, and they acted as leaders during the

transcriptional processes. These results demonstrate that DNB can be predictors of

the occurrence of disease, as well as transducers that may facilitate a better under-

standing of the molecular mechanisms of disease development.

13.4.4 Evolution of Network Biomarkers During
Disease Progression

Network biomarkers are system-level molecular modules that are helpful for

investigating the evolutionary mechanism of disease progression. Wong
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et al. [93] constructed two PPI-based network biomarkers for the early and late

stages of bladder cancer. First, they downloaded microarray data for the two stages

of bladder cancer and for normal samples from the Gene Expression Omnibus

repository, before constructing two different networks for the two stages of bladder

cancers using statistical methods. Second, proteins/genes were extracted with

significant carcinogenesis relevance values together with their network structures.

The activities of these proteins tended to exhibit remarkable changes in normal and

disease samples, and these changes may be essential in bladder cancer carcinogen-

esis. The results obtained by pathway enrichment analysis showed that proteins in

the biomarker network for early-stage bladder cancer were significantly more

enriched in pathways related to ordinary cancer mechanisms such as the cell

cycle, pathways in cancer, and Wnt signaling pathway, and these proteins may

also be functional in other cancers such as prostate cancer, chronic myeloid

leukemia, and small cell lung cancer. By contrast, the ribosome and spliceosome

pathway were the top two pathways targeted by the biomarker network for late-

stage bladder cancer. Obviously, during the evolution of bladder cancer, proteins

and their interactions change gradually, but ultimately there is a shift in the enriched

pathways from universal to specific types.

Meaningful evolutionary patterns were also discovered in a study of hepatocel-

lular carcinoma (HCC) [94], where Wong et al. analyzed the evolution of network

biomarkers from the early to late stages of HCC using a framework analogous to

that employed for bladder cancer research. However, NGS datasets were used in

this study. They found that the common pathways enriched for network biomarkers

in both the early and late stages of HCC were associated with the ordinary

mechanisms of cancers, where the spliceosome pathway was prominent in the

late stages of both hepatocellular and bladder cancer.

Both of these studies provide new insights into disease-targeted therapies at

different stages or time points, and they merit further clinical research.

13.5 Network Medicine in Clinical Practice

The Human Genome Project shifted genome-wide studies from isolated genes or

proteins to the networks of interconnections among them. The traditional methods

for disease diagnosis and drug discovery are symptom-based or molecule-based.

However, the occurrence of diseases is rarely a consequence of the disorder of

single molecules, and different diseases are likely to share similar symptoms.

Thus, the concept of network medicine, which emphasizes treating disease pro-

gression at the systems level, may provide new directions for disease analysis and

therapeutics.
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13.5.1 Paradigm of Network Medicine

The pattern for disease classification and drug discovery has changed greatly due to

the continuous deepening of biomedical ideas and techniques. During the early

period, diseases were often simply classified based on knowledge of clinical

symptoms. However, this method is inaccurate, and it may miss opportunities for

disease prevention due to its low sensitivity and specificity. Clearly, symptoms may

be totally absent during the early stage of a disease, and most ordinary symptoms

are not specific to a certain disease [95].

The emergence and development of genomic research has provided various types

of molecular data, which facilitate investigations of the underlying mechanisms of

disease progression. Therefore, the disease analysis paradigm has gradually shifted

from studies of outward manifestations to internal mechanisms. For example, com-

plex diseases can be caused by multiple changes in biomolecules, such as DNA

methylation, single nucleotide polymorphisms, and DNA copy number variations.

Similar disease symptoms may be apparent, but the treatments will be quite different

according to the differences in pathogenesis. Therefore, molecule-based methods are

more beneficial for the personalized and precise treatment of diseases [96].

Recently, many analyses have shown that complex diseases are multigenic,

resulting from the synergistic actions of genetic and environmental factors. Simple

molecule-based methods focus only on biological molecules that act as key players in

the system. However, these single components are not sufficient to create system-level

disruption. Instead, network medicine treats disease diagnosis and therapeutics from a

global perspective by linking the potential factors that are relevant to disease occur-

rence and development to form an organic network, thereby identifying reasonable

therapeutic strategies at specific time points according to both the static and dynamic

properties of the network. The pathogenic behavior of complex interactions among

molecules can be uncovered at various omics levels using this systemic approach, and

effective drugs may be obtained to reach the goal of precision medicine [97].

13.5.2 Foundations and Resources

Network medicine is based on a series of hypotheses that are widely acknowledged

by researchers. However, the theory continues to improve due to the development

of systems biology and network science. The main focus is on linking network

structures and disease occurrence. Thus, the topological structures of biological

networks might potentially reflect the roles of specific molecules during disease

initiation and progression. In particular, evidence has shown that essential proteins/

genes often lie at the heart of a PPI network, whereas nonessential disease proteins

are not found in these central locations. This is quite similar to a social network

where important people or leaders are usually hub nodes who can control the

information flow. In addition, proteins appear to cooperate with each other, espe-

cially those involved in the same diseases. Many studies have shown that proteins
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often participate in biological processes in the form of modules, which highlights

the existence of synergistic mechanisms. Moreover, cells that exist in a microen-

vironment of diseases with similar phenotypes tend to have common disease-

associated components. This may help to explain why comorbidities usually

occur. Finally, the causal molecular pathways are parsimonious, and they often

form the shortest paths between known components of diseases [95].

The essential resources for network medicine study are suitable data or datasets.

It is obvious that sufficient data can drive research to become more precise and

specific due to differences between omics levels, disease stages, and even individ-

uals or groups. Chen and Butte [96] summarized eight publicly available data

sources for network medicine, which offer great opportunities for disease analysis

and drug discovery. Furthermore, databases such as HMDD [98] and DriverDBv2

[99] aim to represent the relationships between biomolecules and diseases, thereby

providing great insights into the pathogenic nature of diseases. Details of these

databases are listed in Table 13.3.

Bioinformatics approaches perform well at mining functional molecules or

molecular modules for disease diagnosis and treatment. The most remarkable

Table 13.3 Publicly available data sources for network medicine study

Name Description Link

CCLE Cancer Cell Line Encyclopedia: genetic and

pharmacological characterization of cancer models

http://www.

broadinstitute.org/ccle/

CMAP Connectivity Map: a collection of genome-wide tran-

scriptional expression profiles

http://www.

broadinstitute.org/

cmap/

ChEMBL Biological activities for drug-like molecules https://www.ebi.ac.uk/

chembl/

DriverDBv2 Relationships between driver genes/mutations and

cancers

http://driverdb.tms.

cmu.edu.tw/

driverdbv2/

ENCODE Encyclopedia of DNA Elements: comprehensive

database of genome-wide functional elements

http://genome.ucsc.

edu/ENCODE/

GEO Gene Expression Omnibus: a functional genomics data

repository

http://www.ncbi.nlm.

nih.gov/geo/

HMDD Human microRNA Disease Database: a collection of

human microRNAs and their related diseases

http://cmbi.bjmu.edu.

cn/hmdd/

ICGC International Cancer Genome Consortium: a compre-

hensive description of changes at different omics

levels in different cancers

https://icgc.org/

ImmPort Immunology Database and Analysis Portal: data and

advanced techniques in immunology

https://immport.niaid.

nih.gov/

LINCS Library of Integrated Cellular Signatures: signatures of

different cellular states and development tools for data

analysis

http://www.lincscloud.

org/

PubChem Connects PubChem substance, compound, and bioas-

say data

http://pubchem.ncbi.

nlm.nih.gov/

TCGA The Cancer Genome Atlas: a platform for searching,

downloading, and analyzing cancer-related data

http://cancergenome.

nih.gov/
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achievement is the discovery and application of network biomarkers. As described

in Sect. 11.4, network biomarkers indicate dysfunctional modules during disease

progression, and they facilitate the development of macroscopic explanations of

disease initiation. It is clear that they are indispensable components of network

medicine because they can provide important signals, which are sensitive and

specific for both disease research and drug design.

13.5.3 Research Significance and Practical Challenges

Network medicine combines systematic thinking with clinical sciences, and by

utilizing network theory as a mediator, it is poised to promote the understanding of

disease pathogenesis and to forecast disease development trajectories or tendencies.

It focuses on predicting the key players in disease progression, with the aim of

providing better therapeutic strategies for patients [100].

The development of ideas is always accompanied by opportunities and chal-

lenges, and network medicine is not an exception. The volume of data available for

network medicine study is huge, but that with practical value may be limited.

Furthermore, the structure of the data is inconsistent, especially clinical data,

which is rooted in different schemas and ontologies [96]. Thus, necessary criteria

should be established for data representation, or the process of data integration and

further analysis may be hindered. Due to the complexity of biological mechanisms,

networks should be more specific. It has been reported that response networks for

the same drug tend to exhibit distinct heterogeneity in different cell lines. The

components and activities of real living organisms are more complex than those in

computational models because networks or functions are generally not condition-

specific and they fail to consider the effects of the external environment. Thus,

effective methods and tools should be developed for constructing models across

different omics levels in the era of big data, as well as to aid discovery in

personalized therapeutics for different populations with different diseases under

the guidance of precision medicine.

13.6 Conclusions

Analyzing complex biological problems within a network framework facilitates

deeper investigations of the behaviors of biomolecules and their interconnections.

The application of network biomarkers and network medicine may accelerate the

understanding of disease pathogenesis, as well as promoting the transformation from

fundamental research to clinical practice in the era of biomedical informatics. In

particular, the human system is far more complex than simply emulating networks,

where even the size or shape of cells may affect their biological functions. Thus,

cross-scale analyses and dynamic simulations are urgently needed in the future.

328 Y. Lin et al.

11.4


References

1. Sudlow C, et al. UK biobank: an open access resource for identifying the causes of a wide

range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779.

2. Chen L, Wu J. Systems biology for complex diseases. J Mol Cell Biol. 2012;4:125–6.

3. Bjorkegren J, Tegner J. Systems biology makes detailed understanding of complex diseases

possible. Arteriosclerosis is an example. Lakartidningen. 2007;104:3042–5.

4. Liu R, et al. Identifying critical transitions and their leading biomolecular networks in

complex diseases. Sci Rep. 2012;2:813.

5. Zhang W, et al. Identification of candidate miRNA biomarkers from miRNA regulatory

network with application to prostate cancer. J Transl Med. 2014;12:66.

6. YanW, et al. MicroRNA biomarker identification for pediatric acute myeloid leukemia based

on a novel bioinformatics model. Oncotarget. 2015;6:26424–36.

7. Cho DY, Kim YA, Przytycka TM. Chapter 5: network biology approach to complex diseases.

PLoS Comput Biol. 2012;8:e1002820

8. Zhao XM, Chen L. Network-based biomarkers for complex diseases. J Theor Biol.

2014;362:1–2.

9. Silverman EK, Loscalzo J. Network medicine approaches to the genetics of complex dis-

eases. Discov Med. 2012;14:143–52.

10. Xin J, et al. Identifying network biomarkers based on protein-protein interactions and

expression data. BMC Med Genet. 2015;8 Suppl 2:S11.

11. Lu YY, et al. Transcriptional profiling and co-expression network analysis identifies potential

biomarkers to differentiate chronic hepatitis B and the caused cirrhosis. Mol BioSyst.

2014;10:1117–25.

12. Zhang W, et al. New genes drive the evolution of gene interaction networks in the human and

mouse genomes. Genome Biol. 2015;16:202.

13. Albert R, Jeong H, Barabasi AL. Internet – diameter of the world-wide web. Nature.

1999;401:130–1.

14. Barabasi AL. Scale-free networks: a decade and beyond. Science. 2009;325:412–3.

15. Cho S, et al. Protein-protein interaction networks: from interactions to networks. J Biochem

Mol Biol. 2004;37:45–52.

16. Thakur S, et al. A review on protein-protein interaction network of APE1/Ref-1 and its

associated biological functions. Cell Biochem Funct. 2015;33:101–12.

17. Hu Z. Analysis strategy of protein-protein interaction networks. Methods Mol Biol.

2013;939:141–81.

18. Wu J, et al. Integrated network analysis platform for protein-protein interactions. Nat

Methods. 2009;6:75–7.

19. Cowley MJ, et al. PINA v2.0: mining interactome modules. Nucleic Acids Res. 2012;40:

D862–5.

20. Stark C, et al. The BioGRID interaction database: 2011 update. Nucleic Acids Res. 2011;39:

D698–704.

21. Salwinski L, et al. The database of interacting proteins: 2004 update. Nucleic Acids Res.

2004;32:D449–51.

22. Keshava Prasad TS, et al. Human protein reference database-2009 update. Nucleic Acids Res.

2009;37:D767–72.

23. Aranda B, et al. The IntAct molecular interaction database in 2010. Nucleic Acids Res.

2010;38:D525–31.

24. Ceol A, et al. MINT, the molecular interaction database: 2009 update. Nucleic Acids Res.

2010;38:D532–9.

25. Guldener U, et al. MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res.

2006;34:D436–41.

26. Dall E, Brandstetter H. Structure and function of legumain in health and disease. Biochimie.

2015;122:126–50.

13 Network-Based Biomedical Data Analysis 329



27. Zanoli L, et al. Arterial structure and function in inflammatory bowel disease. World J

Gastroenterol. 2015;21:11304–11.

28. Selbig J, SteinfathM, Repsilber D. Network structure and biological function: reconstruction,

modeling, and statistical approaches. EURASIP J Bioinform Syst Biol. 2009;2009:714985.

29. Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science.

2002;296:910–3.

30. Rives AW, Galitski T. Modular organization of cellular networks. Proc Natl Acad Sci U S

A. 2003;100:1128–33.

31. Luo T, et al. Network cluster analysis of protein-protein interaction network identified

biomarker for early onset colorectal cancer. Mol Biol Rep. 2013;40:6561–8.

32. Zanzoni A, Brun C. Integration of quantitative proteomics data and interaction networks:

identification of dysregulated cellular functions during cancer progression. Methods.

2015;93:103–9.

33. Becker E, et al. Multifunctional proteins revealed by overlapping clustering in protein

interaction network. Bioinformatics. 2012;28:84–90.

34. Ma S, et al. Incorporating gene co-expression network in identification of cancer prognosis

markers. BMC Bioinf. 2010;11:271.

35. Zhao W, et al. Weighted gene coexpression network analysis: state of the art. J Biopharm

Stat. 2010;20:281–300.

36. Rotival M, Petretto E. Leveraging gene co-expression networks to pinpoint the regulation of

complex traits and disease, with a focus on cardiovascular traits. Brief Funct Genomics.

2014;13:66–78.

37. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization.

Nature. 1999;401:788–91.

38. Zhang J, et al. Using gene co-expression network analysis to predict biomarkers for chronic

lymphocytic leukemia. BMC Bioinf. 2010;11 Suppl 9:S5.

39. Hu H, et al. Mining coherent dense subgraphs across massive biological networks for

functional discovery. Bioinformatics. 2005;21 Suppl 1:i213–21.

40. Yang Y, et al. Gene co-expression network analysis reveals common system-level properties

of prognostic genes across cancer types. Nat Commun. 2014;5:3231.

41. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell.

2004;116:281–97.

42. Dar AA, et al. miRNA-205 suppresses melanoma cell proliferation and induces senescence

via regulation of E2F1 protein. J Biol Chem. 2011;286:16606–14.

43. Shivdasani RA. MicroRNAs: regulators of gene expression and cell differentiation. Blood.

2006;108:3646–53.

44. Lindsay MA. microRNAs and the immune response. Trends Immunol. 2008;29:343–51.

45. Jian B et al. Downregulation of microRNA-193-3p inhibits tumor proliferation migration and

chemoresistance in human gastric cancer by regulating PTEN gene. Tumour Biol. 2016.

46. Yan W, et al. Comparison of prognostic microRNA biomarkers in blood and tissues for

gastric cancer. J Cancer. 2016;7:95–106.

47. Kong XM, et al. MicroRNA-140-3p inhibits proliferation, migration and invasion of lung

cancer cells by targeting ATP6AP2. Int J Clin Exp Pathol. 2015;8:12845–52.

48. Chou CH, et al. miRTarBase 2016: updates to the experimentally validated miRNA-target

interactions database. Nucleic Acids Res. 2016;44:D239–47.

49. Vlachos IS, et al. DIANA-TarBase v7.0: indexing more than half a million experimentally

supported miRNA:mRNA interactions. Nucleic Acids Res. 2015;43:D153–9.

50. Xiao F, et al. miRecords: an integrated resource for microRNA-target interactions. Nucleic

Acids Res. 2009;37:D105–10.

51. Jiang Q, et al. miR2Disease: a manually curated database for microRNA deregulation in

human disease. Nucleic Acids Res. 2009;37:D98–104.

52. Gennarino VA, et al. HOCTAR database: a unique resource for microRNA target prediction.

Gene. 2011;480:51–8.

330 Y. Lin et al.



53. Gamazon ER, et al. Exprtarget: an integrative approach to predicting human microRNA

targets. PLoS One. 2010;5:e13534.

54. Li JH, et al. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA

interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–7.

55. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines,

indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

56. John B, et al. Human microRNA targets. PLoS Biol. 2004;2:e363.

57. Bandyopadhyay S, et al. Development of the human cancer microRNA network. Silence.

2010;1:6.

58. Xu J, et al. Prioritizing candidate disease miRNAs by topological features in the miRNA

target-dysregulated network: case study of prostate cancer. Mol Cancer Ther.

2011;10:1857–66.

59. Zhang S, et al. A novel computational framework for simultaneous integration of multiple

types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics.

2011;27:i401–9.

60. Zhu J, et al. Screening key microRNAs for castration-resistant prostate cancer based

on miRNA/mRNA functional synergistic network. Oncotarget. 2015;6:43819–30.

61. YanW, et al. Identification of microRNAs as potential biomarker for gastric cancer by system

biological analysis. BioMed Res Int. 2014;2014:901428.

62. Huang J, et al. Identification of microRNA as sepsis biomarker based on miRNAs regulatory

network analysis. BioMed Res Int. 2014;2014:594350.

63. Zhao XM, et al. Identifying cancer-related microRNAs based on gene expression data.

Bioinformatics. 2015;31:1226–34.

64. Chen B, et al. MicroRNA-346 functions as an oncogene in cutaneous squamous cell carci-

noma. Tumour Biol. 2015;37(2):2765–71.

65. Song N, et al. microRNA-107 functions as a candidate tumor suppressor gene in renal clear

cell carcinoma involving multiple genes. Urol Oncol. 2015;33(205):e201–11.

66. Sumazin P, et al. An extensive microRNA-mediated network of RNA-RNA interactions

regulates established oncogenic pathways in glioblastoma. Cell. 2011;147:370–81.

67. Salmena L, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell.

2011;146:353–8.

68. Marques AC, Tan J, Ponting CP. Wrangling for microRNAs provokes much crosstalk.

Genome Biol. 2011;12:132.

69. Su X, et al. microRNAs and ceRNAs: RNA networks in pathogenesis of cancer. Chin J

Cancer Res. 2013;25:235–9.

70. Tay Y, et al. Coding-independent regulation of the tumor suppressor PTEN by competing

endogenous mRNAs. Cell. 2011;147:344–57.

71. Zhou X, Liu J, Wang W. Construction and investigation of breast-cancer-specific ceRNA

network based on the mRNA and miRNA expression data. IET Syst Biol. 2014;8:96–103.

72. Li ZC et al. Identification of drug-target interaction from interactome network with ‘guilt-by-
association’ principle and topology features. Bioinformatics. 2015.

73. Duarte NC, et al. Global reconstruction of the human metabolic network based on genomic

and bibliomic data. Proc Natl Acad Sci U S A. 2007;104:1777–82.

74. Cheung N, et al. Targeting aberrant epigenetic networks mediated by PRMT1 and KDM4C in

acute myeloid leukemia. Cancer Cell. 2016;29:32–48.

75. Chen J, Sun M, Shen B. Deciphering oncogenic drivers: from single genes to integrated

pathways. Brief Bioinform. 2015;16:413–28.

76. Barry MJ. Clinical practice. Prostate-specific-antigen testing for early diagnosis of prostate

cancer. N Engl J Med. 2001;344:1373–7.

77. Ford D, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2

genes in breast cancer families. The breast cancer linkage consortium. Am J Hum Genet.

1998;62:676–89.

13 Network-Based Biomedical Data Analysis 331



78. Tsujiura M, et al. Circulating miR-18a in plasma contributes to cancer detection and

monitoring in patients with gastric cancer. Gastric Cancer. 2015;18:271–9.

79. Ge W, et al. Expression of serum miR-16, let-7f, and miR-21 in patients with hepatocellular

carcinoma and their clinical significances. Clin Lab. 2014;60:427–34.

80. Kojima S, et al. [MiRNA profiling in prostate cancer], Nihon rinsho. Japanese J Clin Med.

2011;69 Suppl 5:92–5.

81. Cun Y, Frohlich H. netClass: an R-package for network based, integrative biomarker

signature discovery. Bioinformatics. 2014;30:1325–6.

82. Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list

for predicting outcome in cancer. Proc Natl Acad Sci U S A. 2006;103:5923–8.

83. Chen H, et al. Pathway mapping and development of disease-specific biomarkers: protein-

based network biomarkers. J Cell Mol Med. 2015;19:297–314.

84. Vangala RK, et al. Novel network biomarkers profile based coronary artery disease risk

stratification in Asian Indians. Adv Biomed Res. 2013;2:59.

85. Chowdhury SA, et al. Subnetwork state functions define dysregulated subnetworks in cancer.

J Comput Biol. 2011;18:263–81.

86. Wang YC, Chen BS. A network-based biomarker approach for molecular investigation and

diagnosis of lung cancer. BMC Med Genet. 2011;4:2.

87. Chuang HY, et al. Network-based classification of breast cancer metastasis. Mol Syst Biol.

2007;3:140.

88. Lu L, Li Y, Li S. Computational identification of potential microRNA network biomarkers

for the progression stages of gastric cancer. Int J Data Min Bioinform. 2011;5:519–31.

89. Cui W, et al. Discovery and characterization of long intergenic non-coding RNAs (lincRNA)

module biomarkers in prostate cancer: an integrative analysis of RNA-Seq data. BMC

Genomics. 2015;16 Suppl 7:S3.

90. Li M, et al. Detecting tissue-specific early warning signals for complex diseases based on

dynamical network biomarkers: study of type 2 diabetes by cross-tissue analysis. Brief

Bioinform. 2014;15:229–43.

91. Liu R, et al. Early diagnosis of complex diseases by molecular biomarkers, network bio-

markers, and dynamical network biomarkers. Med Res Rev. 2014;34:455–78.

92. Liu X, et al. Detecting early-warning signals of type 1 diabetes and its leading biomolecular

networks by dynamical network biomarkers. BMC Med Genet. 2013;6 Suppl 2:S8.

93. Wong YH, Li CW, Chen BS. Evolution of network biomarkers from early to late stage

bladder cancer samples. BioMed Res Int. 2014;2014:159078.

94. Wong YH, et al. Applying NGS data to find evolutionary network biomarkers from the early

and late stages of hepatocellular carcinoma. BioMed Res Int. 2015;2015:391475.

95. Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to

human disease. Nat Rev Genet. 2011;12:56–68.

96. Chen B, Butte AJ. Network medicine in disease analysis and therapeutics. Clin Pharmacol

Ther. 2013;94:627–9.

97. Chan SY, Loscalzo J. The emerging paradigm of network medicine in the study of human

disease. Circ Res. 2012;111:359–74.

98. Li Y, et al. HMDD v2.0: a database for experimentally supported human microRNA and

disease associations. Nucleic Acids Res. 2014;42:D1070–4.

99. Chung IF, et al. DriverDBv2: a database for human cancer driver gene research. Nucleic

Acids Res. 2016;44:D975–9.

100. Baffy G. The impact of network medicine in gastroenterology and hepatology. Clin

Gastroenterol Hepatol. 2013;11:1240–4.

332 Y. Lin et al.


	Chapter 13: Network-Based Biomedical Data Analysis
	13.1 Introduction
	13.2 Networks and Graphs
	13.2.1 Classification of Networks
	13.2.1.1 Directed and Undirected Networks
	13.2.1.2 Weighted or Valued Networks
	13.2.1.3 Bipartite Networks

	13.2.2 Centrality of Vertexes
	13.2.2.1 Degree Centrality
	13.2.2.2 Closeness Centrality
	13.2.2.3 Betweenness Centrality

	13.2.3 Topological Properties of Networks
	13.2.3.1 Degree Distribution
	13.2.3.2 Power-Law Distribution


	13.3 Biomolecular Networks and Their Clinical Applications
	13.3.1 Protein-Protein Interaction (PPI) Networks
	13.3.2 Gene Co-expression Networks
	13.3.3 MicroRNA-mRNA Regulatory Networks
	13.3.4 Competing Endogenous RNA (CeRNA) Regulatory Networks
	13.3.5 Others

	13.4 Network Biomarkers in Complex Diseases
	13.4.1 Single Molecular Biomarkers and Network Biomarkers
	13.4.2 Static Network Biomarkers (SNBs)
	13.4.3 Dynamic Network Biomarkers (DNBs)
	13.4.4 Evolution of Network Biomarkers During Disease Progression

	13.5 Network Medicine in Clinical Practice
	13.5.1 Paradigm of Network Medicine
	13.5.2 Foundations and Resources
	13.5.3 Research Significance and Practical Challenges

	13.6 Conclusions
	References


