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Chapter 1

NGS for Sequence Variants

Shaolei Teng

Abstract Recent technological advances in next-generation sequencing (NGS)

provide unprecedented power to sequence personal genomes, characterize genomic

landscapes, and detect a large number of sequence variants. The discovery of

disease-causing variants in patients’ genomes has dramatically changed our per-

spective on precision medicine. This chapter provides an overview of sequence

variant detection and analysis in NGS study. We outline the general methods for

identifying different types of sequence variants from NGS data. We summarize the

common approaches for analyzing and visualizing casual variants associated with

complex diseases on precision medicine informatics.

Keywords Sequence variants • Next-generation sequencing • Sequence

alignment • Variant calling • Association testing • Visualization • Precision

medicine informatics

1.1 Introduction

Over the last decade, next-generation sequencing (NGS) has dramatically changed

the precision medicine field by characterizing patients’ genomic landscapes and

identifying the casual variants associated with human diseases. The Sanger-based

sequencing [48] (“first-generation sequencing”) was used to sequence the first

human reference genome for the Human Genome Project [3], which took

13 years to finish the draft genome at a total cost of $3 billion. NGS technologies

make the sequencing at remarkable price and unprecedented speed by carrying out

hundreds of millions of sequencing reactions at once [52, 57]. With the revolution-

ary technology, we can sequence thousands of genomes in just 1 month, address the

biological questions at a large scale, identify the genetic risk factors for human

diseases, and provide a more precise way to health care [24]. In particular, NGS can

be used to detect a large number of sequence variants in the patients’ genomes and

identify the casual variants associated with human diseases, which has dramatically
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changed our perspective on genetic variants, human diseases, and precision

medicine.

Discovery of casual sequence variants associated with certain traits or diseases

has become a fundamental aim of genetics and biomedical research. The sequence

variants can be classified to single nucleotide variants (SNVs), small insertions and

deletions (INDELs), and large structural variants (SVs) based on their sequences in

length. SNVs, the most common type of sequence variants, are single DNA base-

pair differences in individuals. INDELs are defined as small DNA polymorphisms

including both insertions and deletions ranging from 1 to 50 bp in length. SVs are

large genomic alterations (>50 bp) including unbalanced variants (deletions, inser-

tions, or duplications) and balanced changes (translocations and inversions). Copy

number variants (CNVs), a large category of unbalanced SVs, are DNA alterations

that result in the abnormal number of copies of particular DNA segments. Somatic

mutations are tumor-specific variants in cancer–normal sample pairs. The different

types of sequence variants play important roles in the development of human

complex diseases. For example, the SNVs associated with major depression were

found in the genes encoding serotonin transporter, serotonin receptor, catechol-o-

methyltransferase, tryptophan hydroxylase, and tyrosine hydroxylase [29]. These

sequence variants can influence the neurotransmitter functions in multiple ways

including changing gene expression level, altering substrate binding affinity, or

affecting transport kinetics [19]. A balanced t(1;11) (q42.1;q14.3) translocation in

disrupted in schizophrenia 1 (DISC1) gene was discovered in a large Scottish

family highly burdened for severe mental illnesses, and the family members with

the translocation showed a reduced P300 event-related potential associated with

schizophrenia [9]. Identifying the casual variants and their clinical effects provides

important insight to understand the roles of sequence variants in the causation of

human diseases.

Discovery of disease-causing variants from a large number of sequence poly-

morphisms detected from NGS data is a major challenge in precision medicine.

Bioinformatics and statistical methods have been developed for detecting sequence

variants and identifying disease-related casual variants. The schematic diagram of

NGS variant analysis on precision medicine informatics is shown in Fig. 1.1. The

DNA samples are extracted from patients (or normal individuals) and sequenced on

NGS platforms. The billions of short sequence reads are produced by the

sequencers, and sequence information is stored in FASTQ format files. From

here, NGS variant analysis falls into two major frameworks. The first framework

is the variant detection. The high-quality sequence reads passed quality control

(QC) filters are aligned to a reference genome, and the sequence alignment data is

deposited in SAM/BAM format files. Several variant detection tools are used to call

small variants including SNVs and INDELs. The somatic mutation callers are

applied to tumor–normal patient samples. Multiple SV callers are developed to

detect large structural variants. The variants called from these tools can be stored in

Variant Call Format (VCF) files or BED format files. The next framework is the

variant analysis. The annotation tools are used to predict the functional effects of

coding and regulatory variants. The association analysis can identify the common
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and rare variants associated with certain diseases or traits. Visualization tools are

used to view the small and large candidate sequence variants. By combining

numerous analyzing tools, the causal variants can be identified and connected

with clinical information for precision medicine research. On the one hand,

disease-related causal variants provide the genetic biomarkers for diagnostics of

complex diseases. On the other hand, the candidate variants offer the targets for

developing more precise treatments and drugs for patients. In the following sec-

tions, we will review the bioinformatics approaches and provide a guide for

detecting and analyzing the sequence variants from NGS data.

1.2 Variant Detection

Variant detection consists of quality control (QC), sequence alignment, and variant

calling. The raw data contains a large number of short reads generated by NGS

sequencers. Preprocessing and post-processing QC are carried out to remove the

Fig. 1.1 A flowchart of NGS variant analysis in precision medicine
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potential artifacts and bias from data. The high-quality reads are mapped to

positions on a reference genome. The variant calling is performed by comparing

the aligned reads with known reference sequences to find which segments are

different with the reference genomes. Multiple variant callers have been developed

to detect different types of genetic variants including SNVs, INDELs, somatic

mutations, and SVs. This section provides an overview on QC and alignment

methods, SNV and INDEL callers, somatic mutation tools, and SV detection

approaches.

1.2.1 QC and Alignment

The standard outputs of most NGS platforms are files in FASTQ format. The

FASTQ files include raw sequence reads together with their Phred-scaled base

quality scores. Several tools have been developed to perform preprocessing QC

based on FASTQ files (Table 1.1). FastQC [7] provides a comprehensive QC report

Table 1.1 Variant quality control (QC) and alignment tools

Tool Description URL Reference

Preprocessing QC

FastQC Tool can provide statistical

QC summary report

http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/

[7]

Sickle QC tool can trim low-quality

bases

https://github.com/najoshi/sickle [21]

Trimmomatic QC tool can remove adaptor

and bases

http://www.usadellab.org/cms/?

page¼trimmomatic

[10]

Hash table alignment

MAQ Hashing read aligner that

allows two mismatches

http://maq.sourceforge.net/ [32]

SeqMap Hashing read aligner that

allows five mismatches

http://www-personal.umich.edu/

~jianghui/seqmap/

[20]

SOAP Hashing reference aligner http://soap.genomics.org.cn/ [33]

Suffix tree alignment using Burrows–Wheeler transformation (BWT)

BWA BWT aligner using a back-

ward search

http://bio-bwa.sourceforge.net/

bwa.shtml

[30]

Bowtie BWT aligner using a

backtracking system

http://bowtie-bio.sourceforge.net [26]

SOAP2 BWT and hash aligner http://soap.genomics.org.cn/ [35]

Post-processing QC

SAMtools Tool can convert, sort, and

index SAM/BAM files

http://samtools.sourceforge.net/ [34]

BamTools Tool can manage BAM files

and filter reads

https://github.com/pezmaster31/

bamtools

[8]

Picard QC tool can remove PCR

duplicates

http://broadinstitute.github.io/

picard/
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with tables and plots for basic statistics, quality score distribution, read length

distribution, sequence duplication levels, and GC content distribution. With the

FastQC summary, other QC tools, such as Sickle [21] and Trimmomatic [10], can

be used to filter low-quality reads, remove undesired adaptors, and trim incorrectly

called bases at the ends of the reads.

The sequence alignment is an essential step for identifying the sequence variants

in patients’ genomes. Since any errors in alignment will be carried through to the

downstream analysis, each of the high-quality sequence reads must be accurately

aligned to a reference genome. With the rapid development of NGS technologies, a

wide variety of alignment tools have been developed to align the short sequence

reads with high efficiency and accuracy (Table 1.1). Most of NGS aligners build

indices for reads or references to quickly search potential alignment positions of

reads in the reference sequences. Based on the property of the index, these tools can

be briefly classified into two groups: hash table approaches or suffix tree

approaches [31].

Hash Table Approaches These use a hash-based index to scan either read set or

reference genome for rapid searching. Each position of reference is cut into equal-

sized fragments and stored into a hash table. The species cut from the read with the

same scheme are used as the keys to search the table. The approaches use a seed-

and-extend paradigm to identify the matching positions in the reference for the

reads. Here, we describe three common hash table tools: MAQ [32], SeqMap [20],

and SOAP [33]. MAQ [32] can rapidly align a large number of short reads to the

reference sequence and accurately detect small sequence variants including SNVs

and INDELs. For sequence alignment, MAQ indexes and hashes the short reads

before scanning reference sequence, which allows two mismatches in the first 28 bp

of each read. It then searches ungapped match and extends the partial match when a

seed match is identified. MAQ utilizes a Phred-scaled mapping quality score to

evaluate the reliability of alignments, and the score can measure the probability that

a true positive read is not the one found by the mapping algorithm. SeqMap [20]

also applied an index filtering algorithm to create index tables for sequence reads. It

allows up to five mismatches including substitutions and insertions/deletions.

Instead of the construction of hash tables for reads that used in MAQ and SeqMap,

SOAP [33] loads the reference genome into memory and constructs index tables for

all references sequences. It utilizes a seed strategy for both ungapped and gapped

alignments of either single read or paired-end reads.

Suffix Tree Approaches These use Burrows–Wheeler transformation (BWT) [11]

to store all suffixes of a string. The reference genome can be converted to a

transformed memory-efficient sequence using BWT. Reads are aligned base by

base against the transformed reference sequence. The strategy can reduce memory

footprint and increase mapping speed. Examples of BWT-based tools include BWA

[30], Bowtie [26], and SOAP2 [35]. Burrows–Wheeler Alignment (BWA) tool [30]

is the most commonly used NGS aligner. It uses backward search with BWT for

exact matching and constructs inexact alignments supported by the exact matches.

Bowtie [26] utilizes a novel backtracking system to account mismatches and allows

1 NGS for Variants 5



up to two mismatches in the first 28 bp of sequence read. BWA and Bowtie compare

the query reads and store the reference to short substrings. The tools compute all

combinations of possible mismatches to align the entire reads to reference exactly.

SOAP2 [35], an updated version of SOAP, uses BWT to index the reference

genome in memory and constructs a hash table to search the location of a read in

the reference index. The suffix tree methods run faster than hash table approaches

due to the memory efficiency of BWT sequence. The indices of the entire human

genome generated by BWT approaches are usually less than 2 GB, whereas the

hash table approaches require more than 50 GB.

The sequence alignments are stored in SAM/BAM files [34]. Sequence Align-

ment/Map (SAM) file contains the read alignment data, and BAM file is the binary

version of SAM file. SAMtools [34] can be used to convert SAM/BAM format and

sort, index, and merge the alignment files. BamTools [8] can manage the BAM files

and filter properly reads with high mapping quality. Picard can be used to remove

PCR duplicates caused by the sorting from merged alignment files. These post-

processing QC tools generate clean aligned sequencing files suitable for further

variant detection.

1.2.2 SNV and INDEL Discovery

After mapping the short reads to a reference sequence, the variants can be discov-

ered by comparing the sample genome to the reference genome. Many variant

callers have been developed to detect small variants including SNVs and INDELs

(Table 1.2). These computational tools use either heuristic or probabilistic

approaches. Since probabilistic approaches can estimate sequencing error and

monitor the accuracy of calling, they are more generally used for variant calling

[40]. We introduce three probabilistic callers MAQ [32], SAMtools [34], and

GATK [38] below.

MAQ [32] is the first widely used tool for variant calling in NGS data. It uses a

Bayesian statistical model to generate consensus genotype sequence from the

alignments. MAQ compares the consensus sequence to the reference genome to

identify potential SNVs and filtered them using some predefined rules. SAMtools

[34] uses a revised MAQ model to measure statistical uncertainty of called geno-

types and applies given likelihood for each possible genotype. It uses a subset of

commands, called BCFtools, to call SNVs and INDELs. The true small variants can

be filtered by base alignment quality scores computed from the depth of coverage,

numbers of reads in alternate and reference alleles, average quality scores, and

mapping quality of reads.

Genome Analysis Toolkit (GATK) [38] is the most frequently used toolkit for

small variant calling. It provides a structured Java programming MapReduce

framework for NGS analysis. The GATK package includes coverage analyzer,

local realigner, quality score recalibrator, and variant caller. It inputs SAM/BAM
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files from initial read mapping. Then, the tool carries out a local INDEL realign-

ment and computes base quality scores for recalibration. A program, called

UnifiedGenotyper, is used to identify all potential SNVs and INDELs. GATK

applies machine learning approaches to filter true variants from machine artifacts

in NGS technologies [56]. GATK recently developed a HaplotypeCaller [16]

program which performs a local de novo assembly of aligned reads and calls

SNVs and INDELs simultaneously. It provides a greater quality for INDELs calling

than UnifiedGenotyper program [42]. In addition, HaplotypeCaller can handle the

non-diploid samples and work well for the region including different types of

sequence variants close to each other. The outputs of the most variant callers are

Table 1.2 Variant discovery tools

Tool Description URL Reference

SNV and INDEL discovery

MAQ Tool can detect small variants

using a Bayesian statistical model

http://maq.sourceforge.net/ [32]

SAMtools Tool can detect genotypes and

small variants using a revised

MAQ model

http://samtools.

sourceforge.net/

[34]

GATK Package including coverage ana-

lyzer, local realigner, quality score

recalibrator, and variant caller

https://www.broadinstitute.

org/gatk/

[38]

Somatic mutation discovery

VarScan2 Caller can detect somatic muta-

tions using Fisher’s exact test
http://varscan.sourceforge.

net/

[23]

Strelka Caller can detect somatic muta-

tions using Bayesian probability

model

https://sites.google.com/

site/

strelkasomaticvariantcaller/

[49]

SomaticSniper Caller can compute Phred-scaled

scores to detect somatic mutations

using Bayesian probability model

http://gmt.genome.wustl.

edu/packages/somatic-

sniper/

[27]

JointSNVMix Caller can detect somatic muta-

tions using two Bayesian

probability-based models

http://compbio.bccrc.ca/

software/jointsnvmix/

[47]

Structural variant discovery

CNVnator Read-depth caller can detect dele-

tions and duplications

http://sv.gersteinlab.org/

cnvnator/

[2]

BreakDancer Read-pair caller can detect inser-

tion, deletions, inversions, and

translocations

http://breakdancer.

sourceforge.net/

[12]

Pindel Split-read caller can detect large

deletions and medium insertions

https://github.com/genome/

pindel

[61]

CONTRA Read-depth caller can detect CNVs

from exome sequencing data

https://sourceforge.net/pro

jects/contra-cnv/

[36]

XHMM Read-depth caller can detect CNVs

using hidden Markov model from

exome sequencing data

https://atgu.mgh.harvard.

edu/xhmm/

[18]
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Variant Call Format (VCF) files. The VCF is used for storing sequence variants

such as SNVs, INDELs, as well as SVs. The genetic variant information in VCF

files includes variant positions, unique identifiers, reference and alternate alleles,

quality scores, filters, annotations, and genotypes.

1.2.3 Somatic Mutation Discovery

Discovery of somatic mutations associated with oncogenesis is essential for iden-

tifying appropriate treatments for cancer patients. Several callers have been devel-

oped for detecting the somatic mutations that present in tumor cells but not in

normal tissue (Table 1.2). VarScan2 [23] screens the genotypes that are above

certain coverage and quality thresholds from the cancer and normal samples,

respectively. The variant calls with minimum variant frequency of all reads greater

than 20% are classified as either heterozygous calls or homozygous calls. For each

position with genotypes that do not match in tumor and normal, VarScan2 uses a

one-tailed Fisher’s exact test to check significant difference of allele frequency

across samples. The somatic mutations are called if the normal samples are

homozygous reference or heterozygous as loss of heterozygosity, but the calls in

tumor samples do not match.

Several tools based on Bayesian probability model have been developed for the

discovery of somatic mutations in matched cancer–normal pairs. Strelka [49]

carries out a realignment around INDELs in the tumor and normal sequence

alignment files like GATK. It uses a Bayesian probability approach to model the

normal sample allele frequencies as diploid genotypes and tumor sample allele

frequencies as a mixture of the normal sample with somatic variation. The

approaches also apply some priors for strand bias, mapping qualities, somatic

mutation rates, and estimated heterozygosity rates of the normal sample.

SomaticSniper [27] uses a Bayesian probability model to compute the probability

of all possible combined genotypes for the cancer–normal pair samples. The

likelihood is given by the observed as well as prior information from the rates of

population mutation, sequencing error, and somatic mutation. Each variant call in

tumor samples is assigned a Phred-scaled score indicating the probability that the

cancer and normal genotypes are different. JointSNVMix [47] utilizes a different

Bayesian method with a mixed binomial model to call each variant in the tumor and

normal samples. It analyzes the allelic count in paired cancer–normal samples using

two probabilistic graphical models: JointSNVMix1 that assumes the base calls and

read numbers and follows a perfect binomial distribution and JointSNVMix2 that

weighs priors for base call and mapping quality.

8 S. Teng



1.2.4 Structural Variant Discovery

Structural variants (SVs) are widespread in human genomes and play important

roles in the development of human diseases. As the growing number of SVs has

been demonstrated to have clinical relevance, SV discovery is critical in precision

medicine and cancer genomics. NGS technologies have revolutionized SV studies.

Compared to traditional hybridization-based approaches such as array CGH and

SNP microarrays, sequencing-based bioinformatics methods can detect multiple

types of SVs at a wide size range [5]. Most of these approaches distinguish SVs

based on two read mapping signatures including depth of coverage and paired-end

mapping [39]. The first type of approaches searches the regions with abnormal read

counts; the second type of tools investigates the configurations of the paired-end

mappings [60]. In this section, we describe the computational approaches

(Table 1.2) based on the two signatures below.

Depth of Coverage The approaches assume that read mapping follows a Poisson

distribution and the divergence from this distribution indicates the SV signatures.

The duplication has more reads mapping to region, and deletions show significantly

reduced coverage. CNVnator [2] can detect the deletions and duplications using a

statistical analysis of read mapping density for single-end and paired-end reads. It

captures the read-depth signatures by dividing sequencing regions into equal-sized

bins and computing the counts of reads in each bin. The partitioning of the

signatures is based on a mean-shift approach with additional filters such as

GC-bias correction. The statistical significance test is used to identify the regions

with abnormal signals for detecting possible deletions or duplications. The read-

depth approaches can predict the absolute copy numbers of genomic segments.

However, they cannot detect the balanced SVs such as translocations and

inversions.

Paired-EndMapping The approaches can be classified into two types of strategy:

read pair and split read. Read-pair methods analyze the span and orientation of

paired-end reads and identify the read pairs that are mapped with discordant

separation distances or orientation. Read-pair approaches can detect all classes of

SVs. BreakDancer [12] can detect read pairs with mapping span and orientation that

are inconsistent with the control. It has two models: BreakDancerMax can identify

five types of SVs including insertion, deletions, inversions, and intrachromosomal

and interchromosomal translocations, while BreakDancerMini is used to detect

INDELs. Split-read approaches are used to search split-read signatures to identify

the breakpoints of SVs. The deletions and duplications can be identified from the

continuous stretch of gaps in the sequence reads or references, respectively. Split-

read methods are suitable for long reads, but some algorithms can use short reads to

identify the breakpoints of large SVs. For example, Pindel [61] uses a pattern

growth algorithm to find large deletions and medium insertions from short paired-

end reads. The algorithm can align the gapped short sequences to reference

1 NGS for Variants 9



sequences with local alignment, which can reduce memory and increase speed for

searching potential split reads.

Structure variant discovery from targeted or whole-exome sequencing data is very

challenging due to the noncontiguous reads in exons. The targeted sequencing results

in some biases in sample collection, targeted genomic hybridization, and GC content.

Multiple tools have been developed to overcome these biases. CONTRA [36] is a

read-depth tool for CNV discovery. It uses BAM/SAM alignments as inputs and

builds an average baseline across multiple samples as the control. CONTRA then

computes the base-level log-ratios with corrections for imbalanced library size bias

and GC content bias. It calculates two-tailed P-values to detect CNVs. XHMM [18]

applies principal component analysis to normalize read depth in targets. It uses

hidden Markov model (HMM) to detect CNVs across multiple samples (>50 sam-

ples). In addition to VCF files, Browser Extensible Data (BED) format files can be

used to store and display large structural variants for further analysis.

1.3 Variant Analysis

Causal variant discovery is the key step in precision medicine informatics. Identi-

fying the disease-related variants promises to dramatically expand current aspects of

biomedical research in disease diagnostics and drug design. Multiple bioinformatics

tools have been developed to distinguish the causal variants associated with human

diseases from the massive number of nonfunctional variants detected by NGS variant

callers. Annotation methods determine the possible functional impact of all identified

variants. Association analyses connect the variants with complex diseases or clinical

traits. Visualization tools provide the graphic views of identified causal variants. The

disease-related casual variants can be identified by combining these approaches and

stored in public variant databases such as ClinVar [25] and HGMD [54]. The Human

Variome Project (http://www.humanvariomeproject.org/) has curated the gene-/dis-

ease-specific databases to collect the sequence variants and genes associated with

diseases. In this section, we summarize the variant analysis approaches for identify-

ing the most promising causal variants underlying human diseases.

1.3.1 Variant Annotation

Variant annotation can be used to determine the effects of sequence variants on

genes and proteins and filter the functional important variants from a background of

neutral polymorphisms. Coding mutations, such as nonsynonymous SNVs, could

change amino acid sequences and affect protein structures and functions. They are

more likely to be involved in the development of diseases. Regulatory variants

located in noncoding regions could modulate the gene expressions and work as the

causative modifiers of human diseases. Here, we describe the common
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computational tools for predicting the effects of coding mutations and regulatory

variants. We also introduce the generally used annotation toolkits to access the

prediction results generated from these tools.

Damaging Nonsynonymous Mutation Prediction With the advent of NGS technol-

ogies, particularly of exome sequencing, there is a significant need to interpret the

coding variants. A number of tools have been developed to distinguish deleterious

mutations from a large number of harmless nonsynonymous polymorphisms.

Sorting Intolerant From Tolerant (SIFT) [41] is a commonly used method for

predicting the effects of coding mutations on protein function. The algorithm

assumes that important protein sites should be conserved throughout evolution

and mutations located in these sites could alter protein functions. SIFT searches

the target sequence in protein database and constructs the sequence alignments

using closely related sequences. It computes the degree of conservation of protein

residues to distinguish the deleterious and neutral coding mutations. Polymorphism

Phenotyping v2 (PolyPhen2) [4] is another popular tool for predicting deleterious

missense mutations. The PolyPhen2 prediction is based on sequence annotations,

structural attributes, and comparative evolutionary considerations. PolyPhen2 uses

an iterative greedy algorithm to extract sequence-based and structure-based fea-

tures. Then, it constructs the supervised machine learning classifiers to predict

missense variants as benign, possibly damaging, or probably damaging mutations.

PolyPhen2 uses two data sets (HumDiv and HumVar) for training. HumDiv data set

collects all damaging mutations associated with human Mendelian diseases from

UniProtKB and non-damaging mutations between the proteins and their closely

related mammalian homologs. HumDiv model can be used to analyze rare variants

mildly deleterious at functionally important regions such as the regions involved in

complex phenotypes or identified from genome-wide association studies (GWAS).

HumVar data set uses all disease-causing mutations from UniProtKB as positive data

and the common sequence variants not involved in disease as negative instances.

HumVar model can be used to identify the damaging mutations with significant

effects for Mendelian disease research. Other common in silico programs include

likelihood ratio test (LRT) [13], which identifies the damaging mutations that disrupt

significantly conserved amino acid positions within the human proteome, and

MutationTaster [51] which evaluates the deleterious sequence variants using a

naive Bayesian model constructed from features including splice-site alterations,

mRNA changes, loss of protein, and evolutionary conservation.

Regulatory Variant Effect Prediction The majority of disease-related variant hits

identified from GWAS fall in noncoding DNA region, which indicate the regulatory

variants located in noncoding regions are critical in human disease. Regulatory

variants play important roles in gene expression and protein modification. Several

bioinformatics tools have been developed for predicting the functional effects of

regulatory variants. Genome-wide annotation of variants (GWAVA) [45] uses a

random forest algorithm to construct three classifiers to distinguish the functional

sequence variants in regulatory regions from a background of neutral variants. The

classifiers integrate genomic features such as evolutionary conservation and GC

content and range of epigenomic annotations from the Encyclopedia of DNA
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Elements (ENCODE) project [15]. Combined Annotation Dependent Depletion

(CADD) [22] is a score that can be used to prioritize the functional variants

including coding variants and regulatory variants. CADD tool constructs support

vector machine classifiers to integrate various genomic and epigenomic annotations

into a single measure (C score) for each sequence variant. Recently, deep learning

algorithm has been applied for interpretation of regulatory variants. DeepSEA [62]

is a deep learning-based tool for predicting the effects of noncoding variant and

prioritizing regulatory variants. The software uses deep learning algorithms to learn

regulatory sequence code from large-scale chromatin-profiling data and predict the

effects of noncoding variants on chromatin accessibility such as DNase I sensitiv-

ities, transcription factor binding, and histone marks at regulatory elements.

General Variant Annotation Multiple annotation toolkits have been developed to

determine the impacts of sequence variants on genes and proteins and access their

functional effects from above predictors. ANNOVAR [58] is a command-line Perl

software for annotating SNVs and INDELs based on genes, regions, or filters. In

gene-based annotation, it can annotate whether sequence variants affect protein

amino acid sequences (nonsense, missense, splice site, etc.). In region-based annota-

tion, it can identify the variants located in ENCODE-annotated regions such as

transcribed regions, enhancer regions, DNase I hypersensitivity sites, transcription

factor binding site, and transcription factor ChIP-Seq data. In filter-based annotation,

ANNOVAR can extract the information (allele frequency and identifier) of a

sequence variant in public databases such as dbSNP [53], ClinVar [25], 1000

Genomes Project [1], and Exome Variant Server (http://evs.gs.washington.edu/

EVS/). In addition, it can be used to access the annotations from damaging mutation

predictors (SIFT, PolyPhen2, LRT, MutationTaster, etc.) for nonsynonymous muta-

tions and CADD for regulatory variants. SnpEff [14] is another popular annotation

package to estimate the functional effects of SNVs, INDELs, and multiple nucleotide

polymorphisms. Based on the functional impacts of the sequence variants, SnpEff

classifies the variants to four classes: high, moderate, low, and modifier. It also

provides the annotations for regulatory variants. SnpEff provides a summary

HTML page to display overall statistics for sequences and variants (Table 1.3).

1.3.2 Variant Association Testing

Understanding how genetic variants contribute to diseases is the key challenge in

precision medicine. There are two hypotheses for interpreting the genetic contri-

bution of sequence variants in complex diseases such as cancers and mental

disorders [50]. The “common disease–common variant” hypothesis states that a

few common variants, usually defined as the allele frequency greater than 1% in the

population, make the major contributions for the genetic variance in complex

disease susceptibility. In contrast, the “common disease–rare variant” hypothesis

argues that multiple risk variants, each of which has low frequency (e.g., allele

frequency less than 1%) in the population, are the major contributors to the genetic
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susceptibility to complex diseases. NGS technologies can detect the full spectrum

of sequence variants including the rare variants that are difficult to be captured by

traditional genotyping arrays. Here, we describe the generally used case–control

association approaches for common and rare variants.

Case–Control Data QC The first step in any case-control association analysis is the

data quality control [6]. The samples and variants with poor quality should be removed

to reduce the numbers of false-positive and false-negative associations. The samples

with outlying heterozygosity rates, high missing data rates, and discordant sex infor-

mation have poor quality and should be removed firstly. In addition, the related

samples or samples from divergent ancestry should not be used for case-control

analysis. If the variants showed a high rate of missing genotypes, departure from

Hardy–Weinberg equilibrium, or a different missing genotype rate between cases and

controls, these variants should be excluded from case-control analysis.

Common-Variant Association Analysis The genome-wide association study

(GWAS) is a generally used approach to identify the common variants associated

Table 1.3 Variant annotation tools

Tool Description URL Reference

Damaging nonsynonymous mutation prediction

SIFT Tool can predict deleterious and neutral

mutations based on sequence homology

http://sift.jcvi.org/ [41]

PolyPhen2 Tool can predict probably damaging,

possibly damaging, and benign muta-

tions based on sequence and structure

features

http://genetics.bwh.

harvard.edu/pph2/

[4]

LRT Tool can predict deleterious, neutral, or

unknown mutations using likelihood

ratio test

http://www.genetics.

wustl.edu/jflab/lrt_

query.html

[13]

MutationTaster Tool can predict disease-causing and

polymorphism mutations using naive

Bayesian model

http://www.

mutationtaster.org/

[51]

Regulatory variant effect prediction

GWAVA Tool can predict the regulatory variant

effects using random forest algorithm

https://www.sanger.

ac.uk/sanger/

StatGen_Gwava

[45]

CADD Tool can predict the effects of coding

and noncoding variants using support

vector machine algorithm

http://cadd.gs.wash

ington.edu/

[22]

DeepSEA Tool can predict the regulatory variant

effects using deep learning algorithm

http://deepsea.

princeton.edu/

[62]

General variant annotation

ANNOVAR Perl annotation toolkit based on genes,

regions, and filters

http://annovar.

openbioinformatics.

org/

[58]

SnpEff Java annotation package based on genes http://snpeff.

sourceforge.net/

[14]
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with complex diseases and traits. The common methods used in GWAS are carried

out based on a single-variant level. The variants are tested individually, and

multiple testing correction should be used to control the family-wise error rate

(FWER). PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/) is the most com-

monly used software package for GWAS analysis in large-scale studies [43]. It

provides numerous useful tools for genetic data management, data quality control,

and association tests. Multiple association tests implemented in PLINK can be used

to identify the common variants associated with diseases based on their minor allele

frequencies between cases and controls. Fisher’s exact test can be used for case-

control traits in small-sized samples; permutation methods should be applied to

control for FWER. Linear regression test can be utilized for complex quantitative

traits, and permutation approaches should be performed to generate empirical

P-values to avoid issues with the test statistic distribution caused by the combina-

tion of variants and traits that deviate greatly from normality. Another popular

association testing tool is PLINK/SEQ (https://atgu.mgh.harvard.edu/plinkseq/).

The toolset performs Fisher’s exact test for single-variant association, on the

contrary, based on the alternate allele frequencies of variants in cases and controls.

Rare-Variant Association Analysis GWAS research has identified many common

variants strongly implicated in complex diseases. However, most of the common

variants have modest effects on the disease risk and much of the genetic contribu-

tion to complex diseases remains unexplained [37]. Recent sequencing studies

revealed the rare genetic variants have large effects on the risk for complex diseases

such as schizophrenia [44]. The rare-variant association tests are usually carried out

on a gene, or gene set level due to single-variant analysis is underpowered for rare

variants unless the sample sizes are very large. The general rare-variant burden test

collapses the rare variants across all samples into a single variable and compares the

cumulative effects in cases with controls within a gene to evaluate the significance

of the difference. The sequence kernel association test (SKAT, https://cran.r-pro

ject.org/web/packages/SKAT/) is particularly designed for the rare-variant analysis

from NGS data [59]. It uses a kernel machine regression approach to aggregate the

associations between variants in a gene region and a continuous or dichotomous

trait. SKAT-O [28] test applies a unified test to search the optimal linear combina-

tion of the general burden test and SKAT test to maintain the power in both

scenarios. In addition, the SKAT package provides “SKAT_CommonRare” func-

tion to evaluate the combined effects of rare and common variants. The permutation

method can be used in rare-variant association analysis to control FWER.

1.3.3 Variant Visualization

Visualizing the individual genomes and causal variants based on the existing

knowledge provides critical supports for biomedical research. Various standalone

visualization tools have been developed for interactive exploration of NGS data

from public resources and researchers’ own studies. Integrative Genomics Viewer
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(IGV) is a high-performance tool that provides a rapid visualization for large

genomic data sets [46]. IGV tool (https://www.broadinstitute.org/igv/) can load

sequence alignment BAM files, annotation data, and reference genomes from local

computers or remote sites. IGV includes tools for data tiling and file format sorting

and indexing [55]. It provides both stand-alone GUI desktop version and command-

line scripts for generating different image snapshots. IGV is capable of displaying

various sequence variants including SNVs and INDELs. As shown in Fig. 1.2, IGV

provides the views of chromosome ideogram, genomic coordinates, coverage plot,

sequence reads, and gene annotation tracks. The base mismatches compared to

reference are highlighted with color bars in coverage plot or color bases in read

tracks. Figure 1.2a shows an intronic SNV (rs3812384) in Src-like-adaptor

Fig. 1.2 IGV views of small sequence variants. Snapshots of IGV showing (a) an intronic SNV

(rs3812384) in SLA2 gene and (b) an insertion (rs72336257) in DEFB125 gene
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2 (SLA2) gene, and Fig. 1.2b displays an insertion (rs72336257) in defensin beta

125 (DEFB125) gene.
Several visualization tools have been developed for displaying the large SVs

from NGS data. Sequence Annotation, Visualization, and ANalysis Tool (Savant) is

a viewer for analyzing and visualizing sequence reads and variants [17]. Savant

browser (http://genomesavant.com) uses a modular docking framework to show

each module in a separate window. It provides the track module, bookmark module,

and table view to analyze the NGS data. In particular, Savant provides multiple

visualization modes to view and compare SVs in different samples (Fig. 1.3). For

example, a 150 kb duplication presenting in case but not in control shows a higher

coverage in zinc finger and AT-hook domain containing (ZFAT) gene in the

Fig. 1.3 Savant views of large SVs. Plots of Savant displaying the large SVs that present in case

but not in control including (a) a 150 kb duplication in ZFAT gene and (b) a 1.5 kb deletion in

YBX1 gene
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coverage mode (Fig. 1.3a). The Matepair (arc) mode displays the relative distance

between paired-end reads. The red and taller arcs indicate a larger distance between

the two reads of a pair, suggesting a 1.5 kb deletion in Y box binding protein

1 (YBX1) gene is only carried by the case sample (Fig. 1.3b).

1.4 Conclusions

NGS has significantly benefited the discovery of disease-related sequence variants,

which greatly facilitated the improvement of diagnosis and treatment methods in

precision medicine. Computational approaches have been developed to detect

different types of sequence variants (SNVs, INDELs, somatic mutations, and

structural variants) from NGS data. Bioinformatics methods have been applied to

annotate, filter, and visualize the casual variants associated with complex diseases.

There are limit standards regarding best practices in NGS variant detection and

analysis. To meet the challenges in precision medicine, some international scien-

tific organizations, such as Human Variome Project, are developing standardized

workflows for analyzing sequence variants implicated in human diseases.
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Chapter 2

RNA Bioinformatics for Precision Medicine

Jiajia Chen and Bairong Shen

Abstract The high-throughput transcriptomic data generated by deep sequencing

technologies urgently require bioinformatics methods for proper data visualization,

analysis, storage, and interpretation. The involvement of noncoding RNAs in

human diseases highlights their potential as biomarkers and therapeutic targets to

facilitate the precision medicine. In this chapter, we give a brief overview of the

bioinformatics tools to analyze different aspects of RNAs, in particular ncRNAs.

We first describe the emerging bioinformatics methods for RNA identification,

structure modeling, functional annotation, and network inference. This is followed

by an introduction of potential usefulness of ncRNAs as diagnostic, prognostic

biomarkers and therapeutic strategies.

Keywords RNA • Precision medicine • Biomarkers • Bioinformatics • Cancer

2.1 Introduction

RNAs are polymeric molecules that carry genetic information and are implicated in

protein synthesis. Recently, it is discovered that only a minor fraction of human

genomes encode for proteins [10, 15], and the remaining large fraction of the

transcripts are known as noncoding RNAs (ncRNAs).

ncRNAs could be broadly grouped into distinct classes based on the lengths.

Some classes have been known for long, e.g., ribosomal RNAs, transport RNAs,

and small nucleolar RNAs (snoRNAs). Several novel ncRNA classes have been

discovered, e.g., microRNAs (miRNAs), small interfering RNAs (siRNAs), PIWI-

interacting RNAs (piRNAs), hairpin RNAs (hpRNAs), and long noncoding RNAs

(lncRNAs) [31, 36, 51, 56]. The repertoire of ncRNAs continues to expand.
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Each of the ncRNA class has its unique biogenesis routes, three-dimensional

structure, and modes of action. Therefore, the functional spectrum of ncRNAs is

richer than expected. RNAs function as critical players at the epigenetic, transcrip-

tional, and posttranscriptional level [40]. They regulate gene expression through

diverse mechanisms, e.g., by mediating imprinting [57], alternative splicing [61],

and modification of other small noncoding RNAs.

The huge amount of biological data generated by high-throughput sequencing

technologies have opened new possibilities for RNA research field. On the other

hand, these data in turn give rise to an urgent demand for proper visualization,

analysis, storage, and interpretation of the data. It’s imperative to find efficient

bioinformatics methods to utilize these rich data source for a better understanding

of the RNA world.

Clinical transcriptomics will have great impact on the therapeutic strategy of

human disorders. The involvement of the RNA in human diseases has widely been

investigated for microRNAs. MicroRNAs, however, are just the tip of the iceberg.

The heterogeneous family of long noncoding RNAs (lncRNAs) may also partici-

pate in the progression of human diseases.

In the year of 2015, US government invested $215 million to launch the

Precision Medicine Initiative (PMI). Precision medicine (PM) is a customized

healthcare model. This model takes into account the individual variability and

tailors the medical treatment to the individual patient. Precision medicine is depen-

dent on molecular diagnostics or other molecular and cellular analyses to select

appropriate therapies based on the context of a patient’s genetic content [45].
Bioinformatics analyses integrating high-throughput microarray, next-

generation sequencing (NGS), and genotyping data in disease cases and matched

healthy controls consistently reveal changes in gene expression of both protein-

coding and regulatory noncoding RNAs. The strong correlations between

deregulated lncRNAs and disease development and prognosis highlight the poten-

tial of ncRNA as biomarkers and therapeutic targets to facilitate the precision

medicine.

In this chapter, we give a brief overview of the bioinformatics tool to analyze

several different aspects of RNAs, in particular ncRNAs. We first describe the

emerging bioinformatics methods for RNA identification, structure modeling,

functional annotation, and network inference. This is followed by an introduction

of potential usefulness of ncRNAs as diagnostic, prognostic biomarkers and ther-

apeutic strategies.

2.2 RNA Detection

RNA-seq is now a rich source to discover new ncRNA transcripts. It is also an

interesting topic to further validate any novel transcripts discovered.
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2.2.1 Detection of Small ncRNAs

Most of the currently available methods or algorithms that investigate

NGS-generated transcriptomic data aim at detecting, predicting, and quantifying

small RNAs, in particular microRNAs.

miRDeep [19] is the first stand-alone tool that identifies both novel and known

microRNAs from large-scale sRNA-seq data. miRDeep evaluates the possibility of

a hairpin structure by using Bayesian probability controls during the processes of

microRNA biogenesis. miRDeep successfully identifies new miRNA candidates by

searching for the characteristic read profile covering the mature miRNA and its

complement miRNA*. In miRDeep2, the well-conserved structure of ncRNA

families is used as a supplementary step to confirm a novel or known ncRNA

[49]. miRDeep* [1] employs a miRNA precursor prediction algorithm to minimize

the putative range of the precursor loci. It outperforms both versions of miRDeep by

reducing false negatives.

In addition to the microRNA-specific tools, other approaches or pipelines gen-

erally concentrate on the whole family of small RNAs.

The web service DARIO is a comprehensive approach designed to predict and

analyze different types of small RNAs generated from any next-generation RNA

sequencing experiments [17]. The web server CPSS [67] makes further improve-

ment on DARIO. CPSS is able to analyze small RNA-seq data that originate from

single or paired samples. CPSS also predicts target genes for interested miRNAs

and performs functional annotation of the predicted target genes. Different from

CPSS, ncPRO-seq [7] is an integrated pipeline that identifies regions significantly

enriched with short reads which do not belong to any known ncRNA families, thus

allowing the identification of novel ncRNA- or siRNA-producing regions.

2.2.2 Detection of lncRNAs

Compared with messenger RNAs or small ncRNAs, detection of long ncRNAs

from assembled transcripts is more complicated, because more deep sequencing

reads are needed for lncRNAs to achieve sufficient coverage.

The main problem in the lncRNA detection is to reconstruct the transcripts from

the short sequencing reads. In order to meet the ever-increasing need for effective

NGS data mining, a variety of bioinformatics tools have been developed for

NGS-based RNA transcriptome investigation. Below we will give a brief introduc-

tion on the currently available tools.

Sun et al. [59] developed a computational pipeline lncRScan to predict novel

lncRNA from transcriptome sequencing data. lncRScan uses expression level as a

filter to preclude artifacts or mRNAs from the initially assembled candidate tran-

scripts. iSeeRNA [60] trained a support vector machine-based classifier using

conservation, open reading frame, and sequence information as features. iSeeRNA
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could identify putative lincRNAs from RNA-seq data with high accuracy and

speed. More recently, Musacchia et al. [53] have provided a pipeline, Annocript,

that distinguishes lncRNAs from coding RNAs by combining functional annotation

databases and sequence analysis tools. Most recently, Jiang and colleagues [28]

developed LncRNA2Function, an ontology-driven web service which annotates

lncRNAs with the functional ontologies of the groups of protein-coding genes that

are coexpressed with them.

2.3 RNA Structure Prediction

The ncRNAs have now been recognized as an abundant class of genes which often

function through their structure. During the past decades, RNA structure prediction

has always been a research focus. Understanding of RNA structure not only helps

the biologists to investigate the biological of the RNA in vivo but also will facilitate

the clinicians to design novel strategies against genetic disorders.

Currently, RNA secondary structure determination is a challenging task. Unfor-

tunately, most RNAs are currently difficult to crystallize. Moreover, it is rather

difficult and expensive to determine RNA structures experimentally at atomic level.

Therefore, developing mathematical and computational algorithms to determine the

secondary structure of RNA from a known RNA sequence is very necessary.

A number of computational tools for secondary structure prediction have been

proposed. A large majority of the methods are based on the thermodynamic folding

of linear nucleotide sequences. Among them the most well known are the

ViennaRNA package [43], Mfold [69], Rfold [32], and RNAalifold [3]. Instead of

using energy parameters, probabilistic approaches provide an alternative to the

thermodynamic RNA folding. Probabilistic approaches provide a probability dis-

tribution of common secondary structures of the input alignment. Popular programs

include Pfold [33], PETfold [58], McCaskill-MEA, and CentroidAlifold.

Methods based merely on single-sequence folding are far from sufficient to

accurately predict RNA structure. Therefore, some implementations of thermody-

namic folding, e.g., UNAfold and RNAfold, also incorporate structure information

to improve prediction accuracy. These folding algorithms restrict the folding of

RNA sequence to structures that are consistent with the experimental constraints.

There are also some attempts that predict RNA structure from homologous

sequences of conserved species to improve secondary structure prediction.

2.4 Functional Analysis

RNAs have proved to be a gold mine of novel functions necessary for the entire

human genome. Given the ever-growing high-throughput sequencing data, under-

standing the function of ncRNAs relies on computational approaches to
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functionally characterize ncRNAs. There are some general methods for ncRNA

clustering and function prediction from sRNA-seq data.

ncRNAs are highly structured and interact with DNAs, RNAs, and proteins. This

versatility suggests that ncRNAs might serve as links between the proteins and

nucleotide sequences encoded by the entire genome. Therefore one key step in the

study of ncRNA function includes finding lncRNA associations with other mole-

cules. For that purpose, one needs approaches to directly analyze physical interac-

tions. Basically, we have three major classes of interactions: RNA-protein

interaction, RNA-RNA interaction, and RNA-DNA interaction.

RNA-protein interactions can be determined by microarray (RIP-CHIP) or high-

throughput sequencing (RIP-seq). The bioinformatics analysis of RIP-seq and

CLIP-seq data usually uses peak callers to reduce the false-positive rate. For

CHIP-seq data, standard CHIP-seq peak callers like MACS [66] are often used.

For RIP-seq data, specialized peak callers like PARalyzer [11] have to be used.

There are a multitude of tools to discover the sequence motifs for transcription

factor-binding sites, with popular examples being MEME, DREME,

MatrixREDUCE [18], and DRIMust [39]. These approaches are often used to

analyze RNA-protein interaction data from RIP-seq or CLIP-seq experiments. In

addition to the RNA sequence, other methods also consider the structural features

of the RNAs in binding motif detection, e.g., BioBayesNet [54], MEMERIS [24],

and RNAcontext [29].

RNA-DNA interactions can be detected with the CHIRP-seq method. Bioinfor-

matics analysis using sequence motif detection tools of triple helices in binding

sites can be performed in this case.

For RNA-RNA interactions, there have been very successful approaches to

predicting these interactions for small RNAs, especially for miRNA target

prediction.

Computational tools for microRNA target gene prediction are usually based on

the complementarity between microRNAs and their target mRNAs. Different

methods have been developed for microRNA target prediction. The initial strate-

gies for target prediction are mainly based on sequence complementarity. However,

these methods generally suffer from low accuracy and high false-positive rate. As

an improvement, conservation analysis reduces the false-positive rate by filtering

out the microRNA-binding sites that are not conserved among species.

Recent methods have further improved the target prediction accuracy using

CLIP-seq data, e.g., Piranha [62] and CLIPZ [30], and single nucleotide polymor-

phism (SNP) data, e.g., PolymiRTS [68], Patrocles [23] and miRdSNP, at the target

regions.

In addition, several bioinformatics tool, e.g., InMiR [5], miRGen [42], miRGator

[8], SigTerms [12], and TopKCEMC [41], have integrated target prediction and

expression information to reveal microRNA-mRNA interactions.
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2.5 RNA Interpretation at Pathway Level

The cross talk between RNAs and other biological molecules has generated a wide-

ranging regulatory network at transcriptomic level. In order to investigate RNAs at

systems level, numerous studies have emerged that converge ncRNAs and their

interaction partners on specific biological pathways.

These systematic association analyses can be used for large numbers of

lncRNAs simultaneously. They have integrated the predicted targets of ncRNAs

of interest with other -omics data, e.g., the functional annotation and expression

profiles, and thus provided global insights into the regulatory role of ncRNAs in a

broader range of posttranscriptional pathway and network.

A number of pathway analysis pipelines have been developed for this purpose;

popular examples include DAVID, WebGestalt [64], miR2Disease [27], and

miReg [2].

2.6 ncRNA-Based Biomarkers

The discovery of disease-specific biomarkers may provide useful predictive param-

eters for early diagnosis, prognosis, and prediction of therapeutic response and also

provide potential drug targets.

It has been shown that defects in lncRNA expression and epigenetics are not the

passenger, but a hallmark of human diseases, particularly in cancer. Moreover,

ncRNAs are stable and can be readily isolated and detected in biological fluids

using qRT-PCR amplification. Therefore, ncRNAs are of great potential diagnostic,

prognostic, and therapeutic value.

We searched PubMed for articles about cancer-related ncRNAs with key words

“*ncRNA* [tiab] AND (cancer[tiab] or carcinoma[tiab]).” The searching results

were listed in Fig. 2.1.

Articles about ncRNAs implicated in cancer have been increasing steadily

during the last 15 years, implying a growing interest during the next few years.

An ideal biomarker should be noninvasive, easy to detect, cost effective, and

consistent across heterogeneous patient groups. In this sense, the use of noncoding

RNAs as biomarkers has some intrinsic advantages over the protein-coding RNAs.

Currently the majority of biomarkers are proteins or glycoproteins. The major

drawbacks of these protein-based biomarkers are relatively low sensitivity and

specificity as well as high false-positive rates. A prominent example is given by

prostate-specific antigen (PSA), which is a glycoprotein secreted from the prostate

gland. PSA testing has been widely applied in prostate cancer screening. PSA

testing lacks specificity for prostate cancer. Serum PSA is overexpressed not only

in prostate cancer but also in other benign prostate diseases such as prostatitis and

prostatic hyperplasia. It was reported that only 30% of the patients with high PSA

are diagnosed with prostate cancer after histopathological analysis. PSA-based
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screening may result in overdiagnosis and unnecessary treatment and does not help

reduce PCa-associated mortality.

Different from protein-based biomarkers which are expressed from different

tissues, most lncRNAs feature a tissue-specific expression pattern [14]. The tissue

specificity of lncRNAs makes them ideal molecular signatures for clinical utiliza-

tion. In the past decade, numerous studies have attempted to identify ncRNA-based

molecular signatures for cancer diagnosis and prognosis. lncRNA and miRNA are

two classes of the ncRNAs that have received special attention in oncologic

research.

2.6.1 MicroRNAs in Cancer Diagnosis

MicroRNA is one of the most studied ncRNA classes in cancer research.

MicroRNAs are short RNAs containing approximately 22 nucleotides. MicroRNAs

silence target genes via partial base pairing with complementary regions of mRNAs

and inhibit them from translation.

The target genes of microRNAs are found to play vital roles in many funda-

mental biological processes such as proliferation and apoptosis. Differential

microRNA expression patterns have been extensively reported in many types of

malignancies, in which they act either as oncogenes or as tumor suppressors.

Calin et al. [6] were the first to report microRNAs with differential expression in

cancer samples. They found two microRNAs, hsa-miR15 and hsa-miR16,

Fig. 2.1 The number of papers on cancer-related RNA during the past 15 years. The bars
represent the number of PubMed hits for the keywords “*ncRNA* [tiab] AND (cancer[tiab] or

carcinoma[tiab])”
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significantly downregulated in the majority of chronic lymphocytic leukemia

(CLL) patients. Since then, many more reports have investigated aberrations in

microRNA expression in a variety of cancer types including both hematological

and solid neoplasms, summarized in a recent review [16].

2.6.2 MicroRNAs for Tumor Subtyping

Unique microRNA expression signatures can also differentiate between tumor

subtypes. Cancer is a remarkably heterogeneous disease with multiple subtypes.

Each subtype has diverse genetic backgrounds and different molecular alteration,

prognosis, and responses to medical treatment. Tumor subtyping is therefore

critical for patient treatment and survival.

MicroRNA expression patterns are significantly associated with five molecular

subtypes of breast tumor. Panels of microRNAs have been identified to distinguish

among breast cancer subtypes, e.g., luminal A [50], luminal B [44], HER2-

enriched, basal-like, and normal-like breast cancer [4, 13, 63]. Recently, a

microRNA classification system was developed to distinguish among four subtypes

of renal cell carcinoma (RCC), clear cell RCC (ccRCC), papillary RCC (pRCC),

chromophobe RCC (cRCC), and oncocytoma [65]. An eight-miRNA panel accu-

rately distinguishes among the four subtypes of lung cancers, namely, small cell

lung cancer (SCLC), NSCLC, squamous cell carcinoma, and carcinoid [20]. -

hsa-miR21 and hsa-miR29b differentiate SCLC from NSCLC, while hsa-miR129

and hsa-miR205 are differentially expressed in squamous versus non-squamous

NSCLC [37, 38]. A set of microRNAs was recently validated that differentiate

among common subtypes of peripheral T-cell lymphoma (PTCL) [35].

2.6.3 MicroRNA-Based Therapeutic Strategies

Oncogenic microRNAs also provide new potential targets for anticancer therapies.

Inhibition of microRNA function can be achieved by using antisense oligonu-

cleotides (ASOs). ASOs target microRNA molecules via base-pairing complemen-

tarity. In mammary cancer, administration of the antagonistic oligonucleotides

targeting miR10b remarkably prevents lung metastases [47].

Alternatively, one could express “microRNA sponges” that competitively

inhibit microRNA function. MicroRNA sponges contain artificial microRNA-

binding sites and prevent microRNAs from binding with their natural targets

[9]. This strategy has been adopted by Ma et al. to inhibit miR9 in breast cancer

cells to reduce metastasis formation [48].

Another innovative strategy involves restoring the expression of tumor suppres-

sor microRNAs that are downregulated in cancer. A microRNA replacement

therapy was recently reported to restore miR26a expression in liver cancer. An
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adenoviral vector was used to deliver miR26a in murine model of hepatocellular

carcinoma, leading to suppressed tumor growth and increased apoptosis [34].

2.6.4 lncRNAs in Diagnosis of Cancer

It’s increasingly accepted that many cancer-associated risk loci are transcribed into

lncRNAs and these noncoding transcripts are broadly involved in cancer transfor-

mation and progression.

These findings, along with tissue- and cancer-type-specific expression manner,

make lncRNAs intriguingly potential diagnostic and prognostic markers. In the past

decade, several large-scale studies have found lncRNA-based expression signatures

in different types of cancer. A detailed list of the deregulated lncRNAs in cancer is

provided in Table 2.1.

The PCA3 (prostate cancer antigen 3) is an established diagnostic marker in

prostate cancer. First identified in 1999, it has already been translated into clinical

practice. PCA3 is a prostate-specific gene markedly overexpressed in prostate

cancer. It can be easily detected in urine or urine sediments. Compared with

currently available biomarker prostate-specific antigen (PSA), PCA3 demonstrates

higher prostate specificity and helps avoid unnecessary prostate biopsy. In addition,

Progensa™, a commercialized PCA3 urine test, has been developed for general use

in clinical testing.

Another interesting example for lncRNA-based diagnosis is the liver-specific

RNA HULC (highly upregulated in liver cancer). HULC is detectable in primary

liver tumors and hepatic metastasis of colorectal cancer, but absent in primary colon

cancer or non-liver metastasis, indicating diagnostic potential of HULC.

2.6.5 lncRNAs in Prognosis of Cancer

Additionally, lncRNA expression was also found to be an independent prognostic

parameter which predicts metastasis and patient outcome.

For example, HOTAIR can serve as a candidate prognostic marker of lymph

node metastasis in HCC. Upregulation of HOTAIR also predicts recurrence in HCC

patients who have received liver transplant. Moreover, HOTAIR expression posi-

tively correlates with primary breast cancer, stomach cancer, and colorectal can-

cers. The same is true for MALAT1 whose expression is an independent predictor

of patient survival in early-stage lung cancer [26]. Furthermore, lncRNA expression

also predicts patient response to chemotherapy. For instance, the expression of the

XIST is strongly associated with the disease-free survival of cancer patients under

Taxol therapy [25].
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2.6.6 lncRNA-Based Therapeutic Strategies

lncRNAs also provide new potential targets for anticancer therapies. One could

block the activity of oncogenic lncRNAs that are upregulated in cancer in

several ways.

First, by decreasing oncogenic lncRNA expression, one of the most explored

methods is to deliver small interfering RNAs (siRNAs) or longer antisense oligo-

nucleotides (ASOs) that are complementary to the lncRNA targets. While siRNAs

induce lncRNA degradation in RISC (RNA-induced silencing) complex, ASO

function through RNase H1 catalyzed cleavage of the RNA molecules.

For example, inhibition of HOTAIR by siRNAs decreased invasiveness of breast

cancer cells [21], attenuated proliferation of pancreatic cancer, and improved the

chemotherapeutic sensitivity of liver cancer cell lines. siRNA-mediated depletion

of HULC compromised HCC cell progression. Knockdown of MALAT1 by ASO

attenuated malignant phenotypes in cervical cancer cells and blocked metastasis of

lung cancer cells.

Taking into account their interaction with regulatory proteins, additional thera-

peutic strategies can be designed that disrupt lncRNA-protein interactions. Thera-

peutic strategies that block the protein-microRNA interactions could be applied to

the lncRNA field. The strategy for inhibiting microRNAs is also applicable to

lncRNAs. This could be achieved via the use of either antagonistic oligonucleotide

that targets the ncRNA and blocks their binding. Alternatively, small-molecule

inhibitors that block the binding site of lncRNA partners can be used to functionally

silence lncRNAs.

The tissue-specific expression pattern of lncRNAs has translated them into

preliminary clinical trials. For example, H19 is an extensively investigated lncRNA

which has entered clinical trial making use of its high tissue-specific expression.

Hochberg et al. have developed an expression vector BC-819 containing diphtheria

toxin A, under control of the regulatory sequences of H19 genes [55]. This vector

allows for a tissue-specific expression of diphtheria toxin A. When administered

intratumorally, the vector significantly inhibited tumor proliferation without any

toxicity to the surrounding cells. A phase 2 clinical trial of the BC-819 was

conducted among unresectable pancreatic cancer patients [22]. Recent studies

have yielded promising results of H19 in many other malignancies, e.g., bladder,

colon, and ovarian cancers.

Alternatively, one could find a way to restore the expression level of tumor-

suppressive lncRNAs such as GAS5 [52] and TERRA [46] or to administer

synthetic lncRNA mimics.
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2.7 Conclusions

The examples of ncRNAs provided in this chapter have showed the potential

clinical utility of these novel transcripts. High-throughput human genomic infor-

mation can be fully utilized only if these noncoding fractions of the human

transcriptome are well understood. The bioinformatics tools discussed above will

shed light on the regulatory role of ncRNAs and improve the diagnosis and

prognosis of diseases toward the ultimate goal of precision medicine.
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Chapter 3

Exploring Human Diseases and Biological
Mechanisms by Protein Structure Prediction
and Modeling

Juexin Wang, Joseph Luttrell IV, Ning Zhang, Saad Khan, NianQing Shi,
Michael X. Wang, Jing-Qiong Kang, Zheng Wang, and Dong Xu

Abstract Protein structure prediction and modeling provide a tool for understand-

ing protein functions by computationally constructing protein structures from

amino acid sequences and analyzing them. With help from protein prediction

tools and web servers, users can obtain the three-dimensional protein structure

models and gain knowledge of functions from the proteins. In this chapter, we will

provide several examples of such studies. As an example, structure modeling

methods were used to investigate the relation between mutation-caused misfolding

of protein and human diseases including epilepsy and leukemia. Protein structure
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prediction and modeling were also applied in nucleotide-gated channels and their

interaction interfaces to investigate their roles in brain and heart cells. In molecular

mechanism studies of plants, rice salinity tolerance mechanism was studied via

structure modeling on crucial proteins identified by systems biology analysis; trait-

associated protein-protein interactions were modeled, which sheds some light on

the roles of mutations in soybean oil/protein content. In the age of precision

medicine, we believe protein structure prediction and modeling will play more

and more important roles in investigating biomedical mechanism of diseases and

drug design.

Keywords Protein structure modeling • Protein structure prediction • Biological

mechanism • Protein misfolding • Sequence mutation • Human disease • GWAS •

Plant breeding

3.1 Introduction

As the most versatile macromolecules in living organisms ranging from bacteria to

human, proteins serve crucial functions in essentially all biological processes

[55]. Folding from an amino acid sequence, three-dimensional structures of pro-

teins often gave us informative knowledge of protein functions. However, only a

limited number of three-dimensional structures of proteins were known experimen-

tally (116, 258 in Protein Data Bank (PDB) [4] as of Feb. 25, 2016), in contrast to

60, 971, 489 known protein sequence entries in Release 2016_02 of Feb. 17, 2016,

of the UniProtKB/TrEMBL database [2]. This huge gap between protein sequence

and structure makes protein structure prediction and modeling more and more

important, i.e., to computationally predict the protein three-dimensional structure

from its amino acid sequence and analyze the structural model. With decades of

efforts, numerous protein structure prediction methods, software tools, and web

servers have been developed and deployed. Comparing with the experimental

approaches, computational structural prediction and modeling are quicker, cheaper,

and becoming more and more reliable. Researchers could use these tools to model

the target protein that they are interested in, and the structure models could help

them obtain further insight on the function of the target protein and its role and

mechanism of the underlying biological process.

This book chapter starts from a brief overview of current protein structure

prediction tools and mainstream protein function prediction methods (Sect. 3.1).

Several case studies using structure modeling are presented. The first case study is

how to use ligand binding prediction server to study the proposed protein function

(Sect. 3.2). Then we demonstrate how structure modeling is used in human protein

studies on exploring diseases (Sect. 3.3). Plant studies on abiotic stress and agri-

cultural traits using protein structure models are also presented (Sect. 3.4).
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3.1.1 Protein Structure Prediction Methods

Computational protein structure prediction methods can be generally classified

into three categories: ab initio prediction [26, 37, 79], comparative modeling

(CM) [8, 65], and threading [63, 78, 82]. Different from CM and threading using

other known protein structures as templates, ab initio methods predict a protein

structure by optimizing some scoring functions based on the physical/statistical

properties of proteins. CM methods, based on the fact that evolutionarily related

proteins typically share a similar structure, build models for the target protein by

aligning the target sequence to evolutionarily related (i.e., homologous) tem-

plate structures. Threading methods are designed to find and align the target

sequence to templates of similar structural folds, where target and template

sequences are not required to be evolutionary related. Theoretically, ab initio

prediction could discover new structural folds with more computational

resources, but it has not been consistently successful. Template-based methods

often obtain high-resolution models with the available templates and accurate

alignments.

To advance the development of protein structure prediction, Critical Assessment

of Techniques for Protein Structure Prediction (CASP) [32] was set up in 1994 to

provide an objective assessment of the state of the art in the field. Since then,

11 CASPs have been done on a biannual basis. Table 3.1 shows several protein

structure prediction servers that achieved success in the CASPs.

Table 3.1 A sample of current tools in the field of protein structure prediction

Method/server URL Brief description

HHpred Soding

et al. [65]

http://toolkit.tuebingen.

mpg.de/hhpred

Structure prediction by sensitive

HMM-HMM search of template

I-TASSER Zhang

[82]

http://zhanglab.ccmb.med.

umich.edu/I-TASSER/

A hierarchical approach using multiple

threading results and conformation

sampling

MUFOLD [83, 84] http://mufold.org/ Graph-based model generation using MDS

and comprehensive model quality

assessment

MULTICOM

Wang et al. [73]

http://sysbio.rnet.missouri.

edu/multicom_cluster/

Model generation using multi-template

comparative modeling and refinement

RaptorX Kallberg

et al. [22]

http://raptorx.uchicago.

edu/StructurePrediction/

predict/

Highly sensitive method for remote homo-

log identification and alignment

ROBETTA/

ROSETTA Kim

et al. [26]

http://www.robetta.org/sub

mit.jsp

Model generation using both ab initio and

comparative models of protein domains
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3.1.2 Protein Function Prediction via Protein-Ligand
Binding Comparison

A related problem to protein structure prediction is protein function prediction,

which occupies an interesting and challenging area of computational research. In

order to understand the process behind predicting a protein’s function, it is neces-
sary to understand what is meant by the term “function.” For many proteins, this is a

computationally challenging problem and can lead to answers that reveal much

more than a single biological effect [6, 14]. However, regardless of the difficulty of

the question, the goal of studying protein function is typically to simply understand

what a given protein “does” in nature [14]. Furthermore, even though the details

surrounding the question of a protein’s function typically share a stronger relation-

ship with biological research, development of methods for computational predic-

tion of protein function continues to be fueled by the abundance of possible

functions and the relative difficulty of determining them experimentally [14].

Just as there are many different functional roles that a protein may have, there

are many different ways to predict these functions. One interesting method cur-

rently being researched involves protein-ligand binding site comparison. In this

kind of prediction, previously known or predicted binding sites are used to infer the

functional similarity of two proteins. Essentially, the main argument behind the

usefulness of these predictions is the fact that binding sites of proteins with similar

biological functions are typically better conserved than many other structural

elements in evolutionarily distant proteins [29]. In other words, being able to

predict the regions of a protein where binding with a ligand takes place can be a

helpful clue in determining the function of that protein by allowing comparison

with proteins that have similar binding and classified functions.

As a result, a number of tools and databases have been developed using these

methods. Even within this closely related group of tools, the methods used vary. For

example, ProBiS predicts ligand binding sites that may exist on a given query

protein by assessing the surface structure of that protein and then comparing it to a

database of proteins to find structurally similar binding sites [28, 31]. Some other

tools, such as CAST, focus on predicting binding sites through the automatic

location and measurement of regions on the input protein known as pockets

[38]. Table 3.2 lists a few more of the software packages and projects that are

currently utilizing these techniques.

In addition to these servers, a number of databases also contain protein-ligand

binding information. These services often distinguish themselves by including

information from differing sources and by utilizing differing search algorithms.

For example, the PoSSuM database can rapidly compare binding sites among

structures with similar or differing global folds [21]. Databases like this may

provide users with an idea of the function of similar structures without the need

for computationally expensive predictions. In order to make use of the information

available from these databases, projects like GIRAF continue to experiment with

different data handling approaches [46].
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3.1.3 Protein Structure Modeling in the Era of Precision
Medicine

Precision medicine often uses invaluable genetics information of many complex

diseases. Researchers may explore the link between disease and nonsynonymous

variation in a large scale, i.e., both population/family scale and individual whole

genome-wide scale [15, 60]. Several tools such as SIFT and MutationTaster were

developed to evaluate and predict the exon mutation effects on biological functions

[33, 60]. However, the potential of using protein structure prediction and modeling

for this purpose has been under-explored. There will be increasingly demands in

accurately modeling comparative structures between wide-type and mutated pro-

teins. These millions of sequencing data will also advance the method improvement

of structure modeling, and the systems biology that incorporates different levels of

biological information will expand the usefulness of protein structure information

for more comprehensive understanding of biological mechanism. Furthermore,

protein design and structure-based drug design will also benefit more and more

from integrating the structural information and systems biology data for precision

medicine.

Table 3.2 A sample collection of current tools in the field of protein function prediction that are

based on protein-ligand binding comparison

Method/server URL Summary

CAST Liang

et al. [38]

http://sts.bioe.uic.edu/

castp/

Predicting binding sites through shape

matching

CatSId Nilmeier

et al. [48] and

Kirshner et al. [27]

http://catsid.llnl.gov/ Predicting catalytic sites by using a

structure matching algorithm

COFACTOR Roy

et al. [56]

http://zhanglab.ccmb.med.

umich.edu/COFACTOR

Structure-based function predictions

(ligand binding sites, GO, and enzyme

commission)

DoGSiteScorer

Volkamer et al. [71]

http://dogsite.zbh.uni-ham

burg.de/

Pocket detection on protein surface and

druggability prediction

Nucleos Friedberg

[14] and Gherardini

et al. [16]

http://nucleos.bio.

uniroma2.it/nucleos/

Binding site prediction for different

types of nucleotides

SA-Mot Friedberg

[14]

http://sa-mot.mti.univ-

paris-diderot.fr/main/SA_

Mot_Method

Using HMM-SA to extract and describe

structural motifs from protein loop

structures

SiteBinder http://webchem.ncbr.muni.

cz/Platform/App/

SiteBinder

Building models of binding sites and

superimposing an arbitrary number of

small protein fragments

ProBiS Konc and

Janezic [28] and Konc

et al. [31]

http://probis.nih.gov/ Ligand binding site prediction by

searching for protein surface with known

binding of ligand
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3.2 Predicting the Protein Function: A Case Study

One way to start the process of predicting the function of a protein is to obtain

protein-ligand binding site predictions from a web server such as ProBiS

[31]. Using this software simply involves uploading a protein structure file. Also,

advanced options include choosing which proteins from the database to compare

with the query protein and choosing different limits for the scoring function that

judges the results. In order to generate these predictions, ProBiS analyzes the

solvent accessible surface of the query protein and compares “patches” of this

surface with entries in a database of proteins known as the nr-PDB (nonredundant

Protein Data Bank) [28]. Once the final predictions have been made, the user is sent

an email with a link to a results page that contains visualization tools to aid in

interpreting the results.

As an example of using ProBiS, Fig. 3.1 shows images generated with the tools

available at the ProBiS website and depicts the process of obtaining ligand binding

site predictions. In this case, the ProBiS web server was given the structure of

CASP 9 target protein T0515 as a query for protein-ligand binding site prediction

[45]. Using the aforementioned structural comparison process, ProBiS determined

that the third top scoring similar model was PDB ID 2P3E (chain A). It is important

to note that the coloring scheme is consistent across all of the images and was

automatically applied by ProBiS.

After going through the process to obtain these results, biologists would be more

informed in their search to identify the function of T0515. The ProBiS server even

predicts what type of ligand may bind at each predicted binding site. However, this

is just the first step toward predicting the function of a protein. At this point, any

predictions made are heavily reliant on inference. Konc et al. performed predictions

like these but also took their study a step further into more detailed function

prediction using the information that they obtained from protein-ligand binding

site comparison [30]. After they had used ProBiS to predict the binding sites on

their query protein (Tm1631), they also noticed that the server detected binding site

similarities between Tm1631 and another protein (PDB ID 2NQJ). Specifically, a

similarity was detected between a predicted binding site on Tm1631 and the

DNA-binding site of 2NQJ. Figure 3.2 depicts the structure of Tm1631 as

represented in PDB ID 1VPQ and binding site predictions performed with the

ProBiS server as an example illustration for this passage. By superimposing the

structures of Tm1631 and 2NQJ, they were able to formulate a hypothetical model

for the interaction of Tm1631 and DNA. In order to further validate this proposed

interaction, a molecular dynamics simulation using Chemistry at Harvard Molec-

ular Mechanics (CHARMM) was run on the hypothetical complex [9]. This process

essentially tested the stability of the complex and determined that it could reason-

ably exist in a natural environment. With this as supporting evidence, they were

able to draw even more detailed conclusions about Tm1631 and its functional role

in binding to DNA. Starting with protein-ligand binding site predictions and
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making comparisons with other proteins proved to be an effective strategy for this

case of function prediction.

While these predictions are a useful starting point, it is important to remember

that they do not perfectly reflect the natural conditions that proteins function

in. Therefore, it may be beneficial to compare results derived from protein-ligand

binding comparison with other computational methods of function prediction. One

way to gain further verification of results in this situation is through the use of Gene

Ontology term (GO term) prediction [1]. Essentially, GO terms are identifiers that

establish a universal vocabulary for describing the function of a protein [1]. As an

example of obtaining GO term predictions through methods other than protein-

ligand binding comparison, the sequence for T0515 was submitted to the

CombFunc server [76]. Using CombFunc from the web server page is a simple

process that only involves entering a protein sequence and an email address for the

results to be sent to. Once the sequence has been received, CombFunc utilizes an

Fig. 3.1 An example of using the ProBiS web server to perform protein-ligand binding site

prediction. Section (a) represents the template protein 2P3E and depicts its binding region

(represented by red spheres) as identified by ProBiS. Section (b) shows an enlarged view of this

binding region surrounded by a simplified view of the tertiary structure of 2P3E. Section (c)
depicts the structure of T0515 with its predicted binding region and the aligned region of 2P3E.

Section (d) provides a closer view of the predicted binding region of T0515 without the aligned

region of 2P3E and surrounded by a simplified representation of the tertiary structure of T0515.

Section (e) depicts the same view as section c but also includes the aligned region of 2P3E

(represented as a mixture of blue and red spheres). Section (f) offers a more detailed view of the

predicted binding region of T0515 and the aligned region of 2P3E
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algorithm that incorporates data from multiple protein function prediction sources.

After the relevant data have been gathered, CombFunc produces and ranks the final

predictions using a support vector machine (SVM) [69]. In this case, four biological

process GO terms were predicted and listed in the order of increasing SVM

probability. The first term (GO:0009089) represents the “lysine biosynthetic pro-

cess via diaminopimelate.” Second, the term GO:0008295 represents the

“spermidine biosynthetic process.” Third, the term GO:0006591 represents the

“ornithine metabolic process.” Finally, the fourth biological process prediction

made by CombFunc was the term representing the “putrescine biosynthetic

process.”

Checking the CASP 9 target list revealed that the target T0515 is associated with

PDB ID 3MT1. The PDB entry for 3MT1 contains records with two biological

process annotations assigned to this protein. These two processes are identified with

the GO terms GO:0008295 (described as the “spermidine biosynthetic process”)

and GO:0006596 (described as the “polyamine biosynthetic process”). Therefore,

the second biological process prediction from CombFunc matched one of the

function annotations in the PDB. In some cases, the top scoring predictions can

be fairly close to the accepted annotations in terms of semantic similarity. Here, the

results from CombFunc were compared with the annotations in the PDB using the

“mgoSem” function of the GOSemSim library [81]. In this configuration,

GOSemSim takes two lists of GO terms and returns a number (from 0 to 1) that

indicates the percentage of similarity between the two lists. Specifically,

GOSemSim looks at relationships between “ancestor” terms and the position of

GO terms in the graph structure of Gene Ontology data [81]. Simply running the

mgoSem function with the two lists (the two PDB GO terms and the four GO terms

predicted by CombFunc) as input resulted in a semantic similarity of 0.723.

Fig. 3.2 ProBiS results depicting the tertiary structure of PDB ID 1VPQ (Tm1631) and its

predicted binding region (red spheres). The red spheres represent the predicted binding region

and the rest of the image follows the same coloring scheme as Fig. 3.1
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With all of these different pieces of information and methods of prediction,

combining them is the first step to uncovering the story behind the function of a

protein, which is highly challenging. One place where progress in protein function

prediction can be seen is the Critical Assessment of Protein Function Annotation

(CAFA) experiments [53]. In these experiments, researchers participate to develop

the best function prediction methods using various methods including protein-

ligand binding comparison and more. As techniques continue to be developed

and evaluated, application of these concepts is becoming more feasible.

For example, the medical field can benefit from the ability of predicting ligand

binding sites since many drugs operate by binding to these areas on proteins. This is

referred to as druggability prediction and is a feature offered by fpocket and many

other servers [58]. The general process behind druggability prediction often

operates on the same principles of protein-ligand binding prediction. However,

druggability prediction tends to focus more on applying knowledge from the field of

drug development. Since the process of testing drugs can be very expensive, having

the ability to make computational predictions about the interactions of a drug with a

potential target protein is very promising for drug development and precision

medicine [25]. Given the ability to predict the function of a protein and the types

of ligands that it may bind with, it may become easier for health-care professionals

to provide better care for patients on an individual basis. Essentially, this may lead

to more efficient treatment because of an increase in the ability to predict the

compatibility of a drug with specific cases of a disease [25].

3.3 Protein Structure Modeling and Human Disease

In this section, we will show three examples of using protein structure prediction

and modeling in studying human diseases: (1) Three truncation mutations of

GABAA receptor (GABAAR) GABRG2 subunit were modeled, which reveals

that these mutations caused protein misfolding that links to epilepsy (Sect. 3.3.1).

(2) Structure of hyperpolarization-activated cyclic nucleotide-gated (HCN) chan-

nels and caveolin in cardiac tissues were modeled individually, their interactions

were studied, and the possible binding interface was predicted associated with

pacemakers in heart and brain cells (Sect. 3.3.2). (3) Whole-exome analysis iden-

tified various nonsynonymous mutations in juvenile myelomonocytic leukemia

(JMML) patients, and structural modeling on these mutated proteins shed some

light on the mechanism of this disease (Sect. 3.3.3).
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3.3.1 Protein Modeling on Truncation Mutation of GABAA

Receptor for Studying Epilepsy

Epilepsy is a central nervous system disorder (neurological disorder) in which the

nerve cell activity in the brain is disrupted, causing seizures or periods of unusual

behavior, sensations, and sometimes loss of consciousness [49]. Genetic epilepsies

(GEs) are common neurological disorders that are associated frequently with

mutations of ion channel genes. One of them is GABAA receptor (GABAAR),

which is an ionotropic receptor and ligand-gated ion channel. It has an endogenous

ligand, γ-aminobutyric acid (GABA), which is the major inhibitory neurotransmit-

ter in the central nervous system [18, 20, 24]. GABAAR causes an inhibitory effect

on neurotransmission by diminishing the occurrence of a successful action poten-

tial. Mutations in GABAA receptor subunit genes (GABRs) are frequently associ-

ated with epilepsy, and nonsense mutations in GABRG2 are associated with various
types of epilepsy syndromes including the most severe form epileptic encephalop-

athy like Dravet syndrome [18]. The molecular basis for the phenotypic heteroge-

neity of GABRG2 truncation mutations is still unclear, but evidences gathered

suggest these mutations caused protein misfolding and abnormal receptor

trafficking [23].

The first three-dimensional protein structure of GABAAR was resolved by X-ray

diffraction (PDB ID, 4COF), and its GABAAR-β3 homopentamer reveals its role as

a pentamer in signal transduction [43]. However, mutants and truncation in differ-

ent lengths at these subunits still lack structure-based explanation. We applied a

structure modeling approach to investigate the structure details on three nonsense

mutations in GABRG2 (GABRG2(R136X), GABRG2(Q390X), and GABRG2
(W429X)) associated with epilepsies of different severities. We mainly used our

in-house protein structure prediction tool MUFOLD [83] to construct protein

models of mutant GABAA receptor subunits: (1) γ2 (R136X) subunit, in which

all transmembrane regions are deleted and only part of the N-terminal domain

remains; (2) γ2 (Q390X) subunit, in which the fourth hydrophobic transmembrane

α-helix (YARIFFPTAFCLFNLVYWVSYLYL) is deleted and a new α-helix with

many charged amino acids (KDKDKKKKNPAPTIDIRPRSATI) is found to

assume its location; and (3) γ2 (W429X) subunit, in which the fourth hydrophobic

transmembrane α-helix is truncated. Figure 3.3 presents structure models on wide-

type γ2, γ2 (R136X), γ2 (Q390X), and γ2 (W429X) subunits.

Following the MUFOLD protocol, we identified a nicotinic acetylcholine recep-

tor (PDB ID: 4COF and 2BG9) as the main template for GABAAR-β3. Then
multidimensional scaling (MDS) was used to construct multiple protein decoys

based on the template and other minor templates. Then these decoys were clustered

and evaluated. With several iterations of model generation and evaluation, one

decoy was chosen as the predicted protein model and then refined by Rosetta

[36]. For mutant GABAA receptor subunits, the original input subunits were split

into different domains, and each domain was modeled individually and then

assembled together.
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To further understand the stabilities of these wide-type and mutant subunits, a

dimer structure was constructed between two subunits by symmetric docking of

SymmDock [59], detailed in Fig. 3.4. As classified as transporter protein in the

Fig. 3.3 Predicted protein structure modeling of the wild-type γ2 and the mutant γ2 (R136X), γ2
(Q390X), and γ2 (W429X) subunits

Fig. 3.4 Docking models for potential mutant γ2 subunit homodimers by SymmDock. In each

panel, the two γ2 subunits are shown in red and green; (a) wide-type γ2 dimer, (b) γ2 (R136X)

mutant dimer, (c) γ2 (Q390X) mutant dimer, (d) γ2 (W429X) mutant dimer
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membrane, special filtering on dimer models was applied to make sure the intra-

cellular, transmembrane, and extracellular domains were arranged correspondingly

between monomers. Template-free dockings were performed in conjunction with

template-based docking [66] between γ2 and α-subunits by mapping their

corresponding positions to template GABAAR-β3 homopentamer (PDB ID:

4COF). Pentamer and hypothetic homopentamer were also constructed by

template-based docking. Chimera [51] and PyMOL [12] were used to display the

protein structure models.

Along with flow cytometry and biochemical approaches in combination with

lifted whole-cell patch clamp recordings, the structural modeling and structure-

based analysis indicated that the wild-type γ2 subunit surface was naturally hydro-

phobic, which is suitable to be buried in membrane. The different γ2 subunits

adopted different conformations, and the mutant γ2 (Q390X) subunits formed

protein-specific or nonspecific stable protein dimers with themselves or other pro-

teins, while γ2 (R136X) subunits could not form dimers with other partnering

subunits but could dimerize with themselves. The γ2 (W429X) subunits also

dimerized with themselves, but the protein conformation was similar to the wild-

type γ2 subunit protein. Our modeling study provides good hypotheses to under-

stand the mechanisms and effects of the GABRG2 truncation mutations in epilepsy.

3.3.2 Exploring the Interaction of Caveolin-3
with Hyperpolarization-Activated Cyclic Nucleotide-
Gated Channels 2 and 4

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are a group of

cation channel proteins serving as pacemakers in heart and brain cells

[13, 50]. They play essential roles in regulating cardiac and neuronal rhythmicity

[40, 57]. Currently, four types of HCN (HCN1 to HCN4) channels have been

discovered. Among them, HCN4 and HCN2 are the main isoforms expressed in

cardiac tissues. A type of related proteins to HCN is the caveolin family of integral

membrane proteins, which are the building blocks of caveolae, a type of lipid rafts

on cell membrane [52, 62]. In addition, caveolins act as scaffolding proteins and

interact with a variety of proteins to form macromolecular complexes [7]. Three

types of caveolin proteins have been identified so far (Cav1 to Cav3). Cav3 is

reported to be specifically expressed in skeletal, smooth, and cardiac and muscle

cells [67]. Interestingly, studies have shown that Cav3 is associated with HCN4 and

affects its function [80]. However, the detailed interaction information is still

largely unknown. In this work, we explored the interaction of Cav3 with HCN2/

HCN4 and predicted the possible binding interface of Cav3 with HCN2/HCN4

using computational methods.

We started our analysis by searching for caveolin-binding motif on HCN2 and

HCN4 protein sequences, respectively. The existence of caveolin-binding motif

was not a definitive evidence of the binding interface, but it served as a reasonable

50 J. Wang et al.



starting point. We used ScanProsite [11] and targeted on two known motif patterns,

i.e., [FWY]X[FWY]XXXX[FWY] and [FWY]XXXX[FWY]XX[FWY] [10]. We

found two hits on HCN2 and one hit on HCN4 (Table 3.3). One hit (214–222) on

HCN2 was located in the transmembrane region, making it less likely to be binding

interface. The other hit on HCN2 (202–210) had the exactly the same motif

sequence with HCN4 hit. Both hits were in the N-terminal cytoplasmic domain.

Meanwhile, to determine the possible binding interfaces of HCN2/HCN4 and

Cav3, we performed correlated mutation analysis using i-COMS web server

[19]. Correlated mutation aims to discover those coevolved pairs of amino acid

residues between two proteins. Based on our motif search, we limited our search in

the N-terminus of HCN2/HCN4. We predicted possible correlated amino acid

residues between the ion transport protein N-terminal domain (PF08412) of

HCN2/HCN4 and the caveolin domain (PF01146) of Cav3. We combined the

prediction results from three algorithms of computing correlated mutations, includ-

ing mutual information, pseudolikelihood maximization direct-coupling analysis,

and mean-field direct-coupling analysis.

We found several amino acid pairs whose prediction scores ranked top 100 inter-

protein links for all three methods: D209 in HCN2 vs. T66 in Cav3, D260 in HCN4

vs. T66 in Cav3, and S230 in HCN4 vs. F65 in Cav3. For the first two pairs (HCN2

D209 vs. Cav3 T66 and HCN4 D260 vs. Cav3 T66), the amino acid residues were in

caveolin-binding motif regions previously determined. This further inferred that the

possible binding sites on HCN2/HCN4 were located within the caveolin-binding

motif.

Next we built a structural model showing the interaction between HCN2/HCN4

and Cav3. Results from protein disorder analysis indicated that most of the

N-terminal sequences of HCN2/HCN4 were disordered regions. Therefore, the

structure of the N-terminal domains could be highly variable, and it might be

difficult to obtain a reliable and consistent structure. We selected the ordered region

of HCN2 (186–225) and HCN4 (236–275) and used I-TASSER [82] to predict their

3D structures. On the other hand, since Cav3 is a transmembrane protein, we

predicted the 3D structures using its cytoplasmic N-terminal sequences (1–85)

based on I-TASSER. Next, the best predicted structures were docked using

PatchDock [59] and FireDock [42] to determine and refine the possible binding

conformations of the N-terminal structures of HCN2/HCN4 and Cav3 (Fig. 3.5).

Among the top docking solutions, we could find interaction interface via caveolin-

binding motif in HCN2/HCN4 with the N-terminus of Cav3.

Table 3.3 Predicted caveolin-binding motif for HCN2 and HCN4

Sequence Pattern matched Topology

HCN2-human-

wt

WiihpYsdF

(202–210)

[FWY]XXXX[FWY]XX

[FWY]

Cytoplasmic (1–215)

HCN2-human-

wt

WdFtmllF

(214–221)

[FWY]X[FWY]XXXX

[FWY]

Transmembrane

(216–236)

HCN4-human-

wt

WiihpYsdF

(253–261)

[FWY]XXXX[FWY]XX

[FWY]

Cytoplasmic (1–266)
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3.3.3 Point Mutations Identified in Juvenile Myelomonocytic
Leukemia (JMML) Patient’s Exome and Their Effects
on Protein Structure

Juvenile myelomonocytic leukemia (JMML) is a rare and chronic leukemia found

to occur in 1.2 cases per million. JMML affects children in the age group of four and

below. It is thought that JMML is a congenital disorder. The majority of mutations

that have been found in JMML patients so far belong to RAS/MAPK signaling

pathway; these include NRAS, KRAS, NF, and PTPN11 mutations. It has been

established that JMML is fundamentally a disease of hyperactive RAS signaling,

but targeted chemotherapy of this pathway has not been successful [3, 35].

We did whole-exome analysis of a 2-year-old JMML patient’s bone marrow

specimen using whole-exome sequencing and verified it using cancer panel

sequencing. We were able to identify several novel mutations in NTRK1,

HMGA2, MLH3, MYH9, and AKT1 genes. We were also able to confirm the

already identified mutation of PTPN11 (exon 3 181G>T) [39] in JMML. Here, we

discuss the methods we used to elucidate whether any of these novel/already

identified mutations at DNA level affect the respective protein structure of their

proteins.

Whole-exome analysis identified various nonsynonymous mutations, which

were then confirmed by cancer panel sequencing. These include ITPR3

Fig. 3.5 A schematic representation of the interaction between HCN2/HCN4 and Cav3. HCN2

was shown in left and HCN4 in right. Cav3 N-terminal domain was shown in blue, and HCN2/

HCN4 N-terminal ordered region was shown in red. The side chains of the three hydrophobic

residuals (W, Y, F) in caveolin-binding motif were labeled in orange
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(chr6:33651070, G>A, exon 35, A1562>T), PTPN11 (chr12:112888165, G>T,

exon 3, D61>Y), AKT1 (chr14:105239869, G>A, exon 9, R251>C), MLH3

(chr14:75514537, A>T, exon 2, F608> I), and MYH9 (chr22:36685257, C>A,

exon 32, K1477>N). In order to identify whether these mutations have any effect

on their protein sequence, SIFT and PROVEAN predictions were used [33]. The

already identified mutations in PTPN11 and the novel mutations in AKT1, MLH3,

and MYH9 were found to be deleterious and damaging. In order to identify whether

the particular mutation is likely to be associated with the disease, we used SuSPect

web server (http://www.sbg.bio.ic.ac.uk/~suspect/). SuSPect web server indicated

that out of all the mutations, two mutations, namely, AKT1 and already known

PTPN11, were most likely disease-causing mutations. Protein sequences of the two

mutations were further extracted from the .vcf file using customProDB [72]. Muta-

tion taster [60] was used to detect that the AKT1 mutation occurs at an evolutionary

conserved site by comparison against different species. A homology model of the

AKT1 mutation was constructed using SWISS-MODEL [5] based on the template

(PDB: 3O96) with 97% identity as shown in Fig. 3.6a (superimposed with the

native structure). The 3D structure shows that mutation R251>C occurs at the

Fig. 3.6 Effect of AKT1 mutation on the protein structure. (a) Superimposed structures of AKT1

protein structure template (PDB ID¼ 3O96) and homology model of AKT1 protein with point

mutation (from JMML patient) (the AKT1 protein sequence in template structure is shifted by

62 residues in the template sequence). (b) and (c) Polar contacts around the wild-type ARG251
residue and its immediate neighbors were visualized using LigPlotþ [34]; similarly, polar contacts

around CYS189 and its immediate neighbors were also visualized using LigPlotþ. There is a

change in the electron density due to mutation as shown by change in positions of the hydrophobic

contacts and loss of hydrogen bonding between ASP248 and PHE407
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surface of the 3D protein as indicated by ARG and CYS residues in the structure

created visualized using UCSF Chimera [51].

Both Motif Scan and UniProt indicate that the R251>C lies near or within

multiple protein domains which can potentially act as active sites in the protein. In

order to see if any active site lies near the mutation which can potentially have a

damaging effect on overall structure of the protein HOPE [70], web server was

used. Results from HOPE server point toward a structural disruption in an InterPro

[44] domain, i.e., the protein kinase domain (IPR000719) [17].

In order to find if there is a change in the polar contacts of the neighboring

residues of the mutated residue, we compared the polar contact maps of native

ARG251 and the mutated CYS189 residues and their immediate neighbors using

LigPlotþ [34]. As indicated by Fig. 3.6, there is a change in the electron density due

to mutation as shown by change in positions of the hydrophobic contacts and loss of

hydrogen bonding between mutated sites and ASP248 and PHE407.

3.4 Protein Modeling and Plant Analysis

In this section, we present two examples of integrating protein structure prediction/

modeling with other omics data for understanding plant protein mechanism.

Although they represent agriculture research problems, applications in medicine

can work in a similar fashion. The first example is to combine rice microarray and

structure modeling to study proteins that may have important roles in the rice

salinity resistance process (Sect. 3.4.1). The second example is to conduct protein

modeling on trait-associated protein-protein interactions identified from soybean

genome-wide association study (GWAS) (Sect. 3.4.2).

3.4.1 Structure Modeling in Exploring Rice Tolerance
Mechanism

Under the pressure of global climate change and global population explosion, soil

salinity causes rice production reduction in about 30% of the rice-growing area

worldwide. The study in exploring the mechanism of salt tolerance starts from

selecting differential expressed genes in the whole gene set, then a putative

mechanism network was built, and several network modules were identified upon

information from protein-protein interaction. These modules were annotated and

assessed by quantitative trait loci (QTL) [61], co-expression and regulatory binding

motif analysis. The topological hub genes in these modules are considered as the

most important genes dominating the inherent function [74].
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Among all the genes in the module, one of the most interesting genes is

LOC_Os01g52640.3, which is a hub gene in the largest module and overlaps

with a QTL region. This gene corresponds to a hypothetical protein

Os01g0725800, which interacts with 32 of the 51 proteins in the module. It contains

four InterPro domains, namely, IPR000719, IPR001680, IPR011046, and

IPR011009. IPR011009 domains can also be found in RIO kinase (IPR018935), a

SPA1-related serine/threonine-specific and tyrosine-specific protein kinase. This

protein also has an ortholog in Arabidopsis thaliana as SPA4 (SPA1-RELATED 4),

which is a binding protein and a signal transducer. MUFOLD [83, 84] was applied

to predict the structure for LOC_Os01g52640.3. Using the identified templates of

2GNQ, 3EMH, and 3DM0 in PDB, the model for the protein region of 196–627 for

the protein with the length of 432 was constructed, as shown in Fig. 3.7. The protein

structure model contains the WD40 structure motif repeats, each with a tryptophan-

aspartic acid (WD) dipeptide termination. As WD40 proteins often play important

roles in signal transduction and transcription regulation [47], the structure predic-

tion suggests that this protein may be related to signal transduction in the salt

resistance process.

Fig. 3.7 Predicted structural model of protein Os01g0725800
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3.4.2 Structure Modeling for Soybean Trait Improvement

Soybeans represent one of the most important agricultural crops providing nutrition

and sustenance to humans and household animals and become an increasingly

valuable feedstock for industrial applications [64]. Among hundreds of agricultural

trials, seed oil content and seed protein content are both polygenic traits controlled

by several gene loci in soybeans. Many of the QTL alleles with positive and

negative effects on oil content are often dispersed among genotypes [85], which

suggests that accumulation of the positive alleles from different genetic back-

grounds could eventually lead to the development of genotypes with higher seed

oil content or protein content [77]. To address the “missing heritability” problem in

complex traits by the original GWAS analysis under the hypothesis of single SNP

association with the phenotype [41], Bayesian High-Order Interaction Toolset

(BHIT) [75] was applied to explore the SNP interactions associated with the

phenotypes. The most interesting interactions identified were four loci across two

chromosomes located in position 20,897,627; 20,954,490 of chromosome 8 and

8,642,446; 12,051,017 of chromosome 19 in soybean genome. Among them,

protein Glyma08g26580.1 containing first SNP (SNP293) and protein

Glyma19g07330.1 containing third SNP (SNP792) were computationally predicted

to interact by ProPrInt [54].

The first SNP (named as SNP293) in the results is located in gene

Glyma08g26580.1, which has an Arabidopsis homolog AT3G0140 (EC/6.3.2.19)

and a ubiquitin-protein ligase. At the sequence level, this polymorphism makes the

minor allele nucleotide adenine (A) replaced the major allele nucleotide guanine

(G), which causes the 73th amino acid of the protein change from glycine (G) to

arginine (R). The added positive-charged arginine may have significant impact on

the protein conformation and function. The third SNP (named as SNP792) in the

results is located in gene Glyma19g07330.1, which also causes amino acid change

from glycine (G) to arginine (R). This gene has the Arabidopsis homolog

AT3G48990.1, which encodes an oxalyl-CoA synthetase and is required for oxalate

degradation and normal seed development processes.

MUFOLD [83, 84] was applied to predicted protein structures of gene

Glyma08g26580.1 and gene Glyma19g07330.1. The two predicted structures

were docked together using GRAMM-X [68]. Interestingly, the distance between

the residue containing SNP293 and the residue containing SNP792 in the docking

complex was 1.17Å, shorter than 0.0052% of all the paired distances between the

two structures, as shown in Fig. 3.8. This result suggests that the epistatic interac-

tion between the two SNPs may play a role in the interaction between the two

proteins. And this interaction caused by amino acid changes may shed some light on

the mechanism in controlling oil/protein contents in soybean.

56 J. Wang et al.



3.5 Conclusions

Protein structure modeling provides a tool to explore the mechanism of a biological

process and the function of a protein. In the studies reviewed in this book chapter,

we showed various use cases of combining with docking, protein-protein interac-

tion prediction, GWAS analysis, systems biology, other analyses, and protein

structure modeling in studying protein conformation, function, mutation, and dis-

ease/phenotype effects. The structure-based prediction and analysis expand our

knowledge in biological mechanism and human disease and help design drug

treatment in the age of precision medicine.
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Chapter 4

Computational Methods in Mass
Spectrometry-Based Proteomics

Sujun Li and Haixu Tang

Abstract This chapter introduces computational methods used in mass

spectrometry-based proteomics, including those for addressing the critical prob-

lems such as peptide identification and protein inference, peptide and protein

quantification, characterization of posttranslational modifications (PTMs), and

data-independent acquisitions (DIA). The chapter concludes with emerging appli-

cations of proteomic techniques, such as metaproteomics, glycoproteomics, and

proteogenomics.

Keywords Proteomics • Mass spectrometry • Protein identification • Protein

quantification • Post-translational modifications • Algorithms

4.1 Introduction

4.1.1 Overview

Proteome [49] is defined as the entire set of proteins and their alternative forms in a

specific species. Accordingly, the term “proteomics” [58] is defined as a large-

scale, comprehensive study of a certain proteome. Objectives of such studies

include the characterization of protein sequences, abundances, variants, and post-

translational modifications (PTMs), as well as the interactions and pathways among

proteins. Among those rapidly evolving proteomic techniques, for example, protein

microarray [85] and cell flow cytometry [44], mass spectrometry (MS) is the

dominant technology for accurate and high-throughput proteomics, specifically

for identifying and quantifying the proteins in complex proteome samples with

high sensitivity.
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4.1.2 Basic Mass Spectrometry

While there are many alternative procedures in mass spectrometry, shotgun prote-

omics, which combines liquid chromatography with tandem mass spectrometry

(LC-MS/MS), is the most frequently used approach. Shotgun proteomic experi-

ments are normally performed in the following steps: (1) proteins are extracted

from lysed cells; (2) they are enzymatically digested; and (3) the resulting peptides

are chromatographically separated prior to MS/MS analyses. The separated pep-

tides are ionized, and the mass-to-charge (m/z) ratios of these ionized peptides are

analyzed and recorded by mass spectrometry. The acquired mass spectra from the

experimental samples contain multiple dimensions: different elution times of

LC-MS scans, mass-to-charge (m/z) ratios, and their corresponding ion intensities.

For identification purpose, certain selected ionized peptides are subjected to frag-

mentation in a secondary tandem mass spectrometry (MS/MS). The resulting

MS/MS spectra are then used to identify the amino acid sequences associated

with the ionized peptides (e.g., precursor ions). Relative and absolute quantification

methods can be developed based on the quantitative information (e.g., ion intensi-

ties) embedded in MS or MS/MS spectra.

4.1.3 Emerging Applications

Over the past decade, mass spectrometric techniques have made great advancement

on their throughput and sensitivity that enabled the high depth of protein identifi-

cations even in very complex proteome samples [3, 6, 82, 108, 135]. As a result,

shotgun proteomics has been successfully applied to many fields in life sciences.

With the further improvement of protein identifications by proteomic techniques

(the coverage of the current draft of the human proteome has reached 92% of

human proteins [143] and is anticipated to have complete coverage of the human

proteome eventually), shotgun proteomics has become to play a critical role in

functional studies of proteins at the whole genome scale, such as the quantifying

thousands of proteins in eukaryotic organisms [28], profiling dynamic change of

protein phosphorylation in cancer cell lines [99], and identifying cross-linked

peptides in complex samples [145].

4.1.4 Computational Challenges

Due to the complexity and large volume of mass spectrometric data, computational

methods played an essential role in the data analysis. In the last decade, since the

very first few peptide identification algorithms were developed, there was a signif-

icant burst of computational methods for proteomic data analysis. The efforts
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include but are not limited to the fields of peptide identification, protein inference,

protein quantification, identification of PTMs, and cross-linked peptides. To ensure

to deliver reasonable and reliable results, it is necessary to understand the basic

underlying assumptions and theory of these computational proteomic methods, as

well as the pipeline to combine these different methods for various applications of

shotgun proteomics. In this chapter, we will introduce the basic concepts of the

computational methods in proteomics and provide an overview of existing methods

to address specific computational challenges in the field.

4.1.5 Integrative Pipelines

It is desirable by experimental researchers to have integrative computational

framework or software packages such that they can conveniently analyze their

data. We summarized the commonly used computational frameworks, currently

available and actively maintained in proteomics in Table 4.1. The details for each

Table 4.1 Available integrative pipelines for the general purpose proteomic data analyses

Name Type Description Availability

OpenMS [120] Open

source

An open-source Cþþ library for LC-MS

data management and analyses. It offers an

infrastructure for the rapid development of

mass spectrometry-related software

open-ms.

sourceforge.net/

about/

Trans-Proteo-

mic Pipeline

(TPP) [30]

Free

software

TPP includes all steps in the Institute of

Systems Biology (ISB) MS/MS analysis

pipeline after the peptide identification

tools.

proteomecenter.org/

software.php

PeptideShaker

[131]

Open

source

A search-engine-independent platform for

interpretation of proteomic identification

results from multiple search engines, cur-

rently supporting X!Tandem, MSGFþ,

MS Amanda, OMSSA, MyriMatch,

Comet, Tide, Mascot, Andromeda, and

mzIdentML

compomics.github.

io/projects/peptide-

shaker.html

Compomics-

utilities [9]

Open

source

As a user-friendly, well-documented, and

open-source library, compomics-utilities

greatly simplifies the implementation of

the basic features needed in most proteo-

mic tools. Implemented in Java

compomics.github.

io/projects/

compomics-utilities.

html

ProteoWizard

[63]

Open

source

The ProteoWizard software project pro-

vides a modular and extensible set of

open-source, cross-platform tools and

libraries. The tools perform proteomic

data analyses

proteowizard.

sourceforge.net/

PRIDE-

Toolsuite [133]

Open

source

PRIDE-Toolsuite comprises a selection of

mass spectrometry-related tools

github.com/PRIDE-

Toolsuite
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step are laid out in each of the following sections. These frameworks consist of

modules for the purpose of file format conversion, spectra preprocessing, and

interface to different peptide algorithms for protein identification, quantification,

or visualization.

4.2 Peptide Identification and Protein Inference

4.2.1 Peptide Identification

After acquiring the MS/MS spectra, the very first step is to identify the amino acid

sequences corresponding to the spectra. To address this problem, numerous

algorithms have been developed. Depending upon if the process is involved

with theoretical database or pre-existing spectral library, those algorithms are

divided into three categories: protein database searching, de novo sequencing, and

spectral library searching. The predominant method used here is the protein

database searching based on the matching between experimental and theoretical

spectra of peptides in the database. Essentially, the database searching process

compares the experimental spectra with the theoretical spectra generated from a

protein database, which could be predicted from all putative genes in a genome,

and then reported the scores of the top peptide-spectrum matches (PSMs). Based

on the scores and quality assessment of these PSMs, final identification results are

reported. In short, these database searching engines take spectra and a protein

database as the input and then output likely true peptide-spectrum matches

(PSMs). Recently, spectral library searches draw much attention because the

advancement of mass spectrometry instruments improved the experimental

throughput and precision; thus, a large amount of high-quality spectra have

been deposited to the spectra library. In contrast, de novo sequencing methods

only use spectra itself to predict the peptide sequences without any prior knowl-

edge of in silico digested peptides. This section will briefly introduce the protein

database searching algorithms and provide an overview of the publicly available

software tools for peptide/protein identifications.

4.2.2 Protein Database Searching

The protein database searching algorithms were pioneered by Mann and Wilm’s
“peptide sequence tag” method [81] and the SEQUEST algorithm developed by

Yates and colleagues [36]. Currently, many well-established peptide searching

engines have been successfully applied to proteomics, including commonly used

tools such as Mascot [20], X!Tandem [24], OMSSA [46], InsPecT [123],
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MyriMatch [121], Protein Prospector [14, 19], COMPASS [141], Andromeda [22],

Morpheus [140], Comet [37], Peppy [109], MS Amanda [33], and MSGFþ [64].

Protein database searching has become a routine practice in computational prote-

omics [119], similar as the protein homologous search by using BLAST in bioin-

formatics. Despite the different algorithms and features employed by the database

searching engines, all of them follow the same procedure comparing the experi-

mental spectra with spectrum generated from theoretical peptides. Because some

software tools are commercially available and others may not open source yet, we

will use SEQUEST [36] and MSGFþ [64] as examples to illustrate the basic

concept of database searching algorithms.

SEQUEST first preprocesses the experimental spectrum x into a vector bx. Given

a candidate peptide y, a theoretical spectrum by is constructed from y. The length of

by is equal to the length of bx. Cross correlation is then calculated between these two

vectors based on the XCorr score function. In SEQUEST, XCorr score represents

the correlation between the theoretical spectrum and the experimental spectrum

with the consideration of the background noise. The other popular score to use in

SEQUEST is DeltaCN, which represents the difference between the XCorr of the

top-ranked PSM and the other PSMs.

MSGFþ [64] is a recently developed tool toward a universal database search

engine for proteomics. Due to the applicability and speed, it has attracted growing

attention. MSGFþ uses a simple but robust dot-product scoring Score(P, S)¼
P*∙S* after converting peptide P and spectrum S into peptide vector P* and spectral

vector S*. Conversion of a spectrum S into a spectral vector S* uses a probabilistic

model that ensures that the resulting dot-product scoring is adequate and makes the

scoring and the computation of accurate E-values fast. After the dot-product

scoring, MSGFþ then uses E-values to evaluate statistical significance of individ-

ual PSMs and the target-decoy approach to estimate false discovery rates (see the

following sections).

4.2.3 Available Software Tools for Protein Database
Searching

We summarize available and actively maintained software tools in Table 4.2.

4.2.4 De Novo Peptide Sequencing

Besides the protein database searching method, another approach for peptide

identification is de novo sequencing, which requires no prior knowledge of
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Table 4.2 Available software tools for peptide identification by database searching

Name Type Algorithm Availability

SEQUEST

[36]

Commercial Comparing the experimental spectra

with theoretical spectrum by cross

correlation

fields.scripps.edu/

Comet [37] Open

source

An open-source tandem mass spec-

trometry (MS/MS) sequence database

search tool. The open-source version

of SEQUEST

comet-ms.sourceforge.

net/

Tide [31] Free

software

An independent reimplementation of

the SEQUEST algorithm, which iden-

tifies peptides by comparing the

observed spectra to a catalog of theo-

retical spectra derived in silico from a

database of known proteins

noble.gs.washington.

edu/proj/tide/

OMSSA

[46]

Free

software

Probability-based scoring based on

Poisson distribution

No longer maintained

Mascot

[103]

Commercial The most popular searching engine.

Performs searching through a statisti-

cal evaluation of matches between

observed and theoretical peptide

fragments

www.matrixscience.

com/

X!Tandem

[24]

Open

source

Calculate statistical confidence

(expectation values) for all of the

individual spectrum-to-sequence

assignments

www.thegpm.org/

tandem/

MSGFþ
[64]

Open

source

Based on inner product and compute

rigorous E-values (using the generat-

ing function approach)

omics.pnl.gov/soft-

ware/ms-gf

pFind [137] Free upon

request

Machine learning based pfind.ict.ac.cn/

MassWiz

[144]

Open

source

A novel empirical scoring function

that gives appropriate weights to major

ions, continuity of b-y ions, intensities,

and the supporting neutral losses based

on the instrument type

sourceforge.net/pro-

jects/masswiz/

PEAKS DB

[149]

Commercial Integrate algorithm to validate the

searching results

www.bioinfor.com

ProteinPilot

software

[118]

Commercial Easy-to-use ProteinPilot software

streamline protein identification and

quantitation, enabling you to identify

hundreds of peptide modifications and

non-tryptic cleavages simultaneously

sciex.com/products/

software/

Protein

Prospector

[14]

Free

software

Proteomic tools for mining sequence

databases in conjunction with mass

spectrometry experiments

prospector.ucsf.edu/

prospector/mshome.

htm

SimTandem

[95]

Free

software

Employs the parameterized Hausdorff

distance as a mass spectra similarity

function

siret.ms.mff.cuni.cz/

novak/simtandem/

(continued)
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potential peptide sequences. The de novo sequencing can be considered as a peptide

searching in a searching space containing all possible peptides. In general, the

methods of de novo sequencing are divided into four categories based on the

algorithms they adopt: [2] the naive approach, the graph theoretical approach,

the probabilistic approach, and the combinatorial approach. The basic principle of

the naive approach is to use the mass difference between two fragment ions to

predict the potential amino acid residues of the peptide backbone. Many de novo

sequencing methods use a graph theoretical model to compute the longest path in

the spectrum graph by employing a dynamic programming algorithm

[15, 27]. When the low-resolution MS instruments were widely used, the de

novo sequencing algorithms were deemed to give less accurate results. With the

advancement of high-resolution MS instruments, the performance of de novo

sequencing methods has been significantly improved. Multiple methods have

also been developed to utilize a combination of different types (e.g., CID

(collision-induced dissociation) and ETD (electron transfer dissociation)) of

high-resolution MS/MS data to achieve accurate de novo peptide sequencing

[16, 60]. The existing methods for de novo peptide sequencing are summarized

in Table 4.3.

Table 4.2 (continued)

Name Type Algorithm Availability

SQID [72] Open

source

Intensity-incorporated protein identi-

fication algorithm for tandem mass

spectrometry

research.cbc.osu.edu/

wysocki.11/group-

home/bioinformatics/

Andromeda

[22]

Free

software

A novel peptide search engine using a

probabilistic scoring model. It is

included in MaxQuant software suites

www.maxquant.org

MyriMatch

[121]

Open

source

A statistical model to score peptide

matches that is based upon the multi-

variate hypergeometric distribution.

This scorer, part of the “MyriMatch”

database search engine, places greater

emphasis on matching intense peaks

medschool.vanderbilt.

edu/msrc/

Morpheus

[140]

Open

source

A database search algorithm designed

from the ground up for high-resolution

tandem mass spectra

cwenger.github.io/

Morpheus/

MS Amanda

[33]

Free

software

This algorithm is especially designed

for high-resolution and high-accuracy

tandem mass spectra

ms.imp.ac.at/?

goto¼msamanda

Byonic [11] Commercial Advanced method searches for tens or

even hundreds of modification types

simultaneously without a prohibitively

large combinatorial explosion. Sup-

port database search for glycopeptides

www.proteinmetrics.

com/products/byonic/
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4.2.5 Spectral Library Search

Spectral library search approach has become widely used because the mass spec-

trometry data quality has significantly improved. The earliest study for spectral

library search appeared in 1998 [146]. Based on the observation of reproducibility

of mass spectrum generation, this approach constructed a spectral library first and

then matched the incoming peptides to the library. Comparing to the database

searching and de novo sequencing methods, the spectral library search approach

is limited to the searching space of peptides with available high-quality experimen-

tal spectra, and the searching procedure can be slower. The current software for this

purpose include BiblioSpec [42], X!Hunter [25], and SpectraST [67].

Table 4.3 Available software for de novo peptide identification

Name Type Algorithm Availability

PepNovo

[41]

Open

source

PepNovo uses a Bayesian network to model

the peptide fragmentation events in a mass

spectrometer. In addition, it uses a likeli-

hood ratio hypothesis test to determine if

the peaks observed in the mass spectrum

resulted from the fragmentation of a

peptide

proteomics.ucsd.

edu/software-

tools/

PEAKS [149] Commercial First released in 2002, PEAKS Studio soft-

ware has become the industrial standard

software for automated de novo sequencing

and is well known for its accuracy, speed,

and ease of use

www.bioinfor.

com/peaks/

CycloBranch

[96]

Open

source

CycloBranch is a stand-alone, cross-plat-

form, and open-source de novo peptide

search engine for identification of

non-ribosomal peptides (NRPs) from

MS/MS spectra. Currently, the identifica-

tion of linear, cyclic, branched, and branch-

cyclic NRPs is supported

ms.biomed.cas.

cz/cyclobranch/

docs/html/

Lutefisk [62] Open

source

Lutefisk is a software tool for the de novo

interpretation of CID spectra of peptides

www.

hairyfatguy.com/

Lutefisk/

pNovoþ [16] Free upon

request

A de novo peptide sequencing algorithm

using complementary HCD and ETD tan-

dem mass spectra

pfind.ict.ac.cn/

software/pNovo/

UniNovo

[60]

Open

source

A universal de novo peptide sequencing

tool that works well for various types of

spectra and pairs of spectra (e.g., from CID,

ETD, HCD, CID/ETD, etc.)

proteomics.ucsd.

edu/Software/

UniNovo/

Novor [78] Free for

academia

Novor’s scoring functions are based on two
large decision trees built from a peptide

spectral library

www.rapidnovor.

com/
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4.2.6 Validation of Peptide Identification

Because of the complexity of MS/MS spectra, the bias from the scoring functions of

the computational methods, the potential bias from the theoretical background

protein database and other reasons, the best scored PSMs are not always true.

Therefore, in order to get the validated identification, controlling the false discovery

rate (FDR) of the identification results is necessary and is even now mandated by

most proteomic journals for reporting proteomic results. This FDR estimation is

usually addressed by using target-decoy approach (TDA) [34], which becomes the

standard in high-throughput MS studies because of its robustness, simplicity, and

applicability.

Provided as input to the protein database search engines are a set of spectra and a

protein database (i.e., the target database); TDA requires that spectra are searched

not only against the target database but also against a decoy database. To construct a

decoy database, reversing, shuffling, or other ways of randomizing the target

database can be used, as long as the amino acid composition and length distribution

of peptides in the target and decoy databases are similar. We then define the PSMs

identified from the decoy database (e.g., decoy PSMs) are false identifications,

while the PSMs from target database (e.g., target PSMs) are positive (potentially

true but maybe false) identifications.

TDA is based on the assumption that the chance of false PSMs identified from

the decoy database is equal to the false-positive PSMs identified from the target

database because the constructed decoy database exhibits similar statistical prop-

erties as the target database. Therefore, the false discovery rate can be estimated

based on the numbers of decoy PSMs (Nd) and target PSMs (Nt) that are identified

at a certain score cutoff. By adjusting the score cutoff, one can obtain the peptide

identification with a desirable FDR.

Although TDA is simple and intuitive, there is no uniform formula to calculate

the FDRs by TDA. Sometimes the formula 2Nd/(NdþNt) is preferred over the

formula Nd/Nt, sometimes vice versa. The discussion of the best way to compute

FDR is beyond the scope of this chapter. However, researchers have provided a

series of recommendations for better FDR evaluations [59].

4.2.7 Protein Inference

After a reliable set of peptides is identified, the next step is to assemble a reliable list

of proteins from these identified peptides. This process is often referred to as the

protein inference problem. Protein inference is a crucial and nontrivial procedure

because some identified peptides are shared by two or more proteins in the target

database, known as the degenerate peptides. It has been estimated that two million
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out of 3.8 million fully tryptic peptides are degenerated peptides [86]. The problem

of determining which of the proteins are indeed present in the sample is an ongoing

research topic, but has multiple solutions. Nesvizhskii et al. [93] first addressed this

challenge by using a probabilistic model, but different problem formulations and

new solutions have recently been proposed as well [56, 71]. The input of the protein

inference can be modeled as a bipartite graph, in which one part is identified

peptides and the other part is the proteins containing these peptides. Multiple

features need to be considered in this type of graph, for example, score of the

PSMs, peptide detectability, spectral counts, etc. Some existing algorithms exploit

the quality of identified PSMs and the parsimonious rule to rank all potential

proteins, while the other methods also exploit the quantification information of

proteins.

While there are some articles summarizing the existing algorithms [53, 69], we

provided a list of executable software tools for protein inference here as practical

solutions in Table 4.4.

4.3 Protein Quantification

The next step in mass spectrometry proteomics is to quantify the identified peptides

or inferred proteins in the sample. Quantitative proteomics is built upon a routine

shotgun proteomic experiment, in which complex proteome samples are subject to

proteolytic digestion followed by an LC-MS/MS analysis [1]. Multiple quantitative

experimental strategies have been developed in recent years as reviewed in several

articles [35, 116, 138]. Protein quantification provides information about the protein

abundances in the sample and thus can be used as a tool to monitor the changes of

protein expression under different conditions [83, 114], e.g., before and after viral

infection [32] or across samples from healthy and diseased patients [29].

Table 4.4 Available software tools for protein inference

Name Type Algorithm Availability

ProteinProphet

[93]

Open

source

Automatically validates protein identifica-

tions made on the basis of peptides assigned

to MS/MS spectra by database search

engines

proteinprophet.

sourceforge.net/

ProteinLP [56] Open

source

A linear programming model for protein

inference

sourceforge.net/pro-

jects/prolp/

MSBayesPro

[71]

Open

source

A Bayesian protein inference algorithm for

LC-MS/MS proteomic experiment

darwin.informatics.

indiana.edu/yonli/

DQmodel/

Fido [115] Open

source

A graph theoretical model for protein infer-

ence. Now it is integrated into the percolator

percolator.ms/
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4.3.1 Protein Quantification Methods

Depending upon the experimental setting, the quantification methods differ in the

forms of label-free and labeled quantification. The label-free approaches do not use

any chemical modification to label the samples; instead this approach infers the

quantification directly from the shotgun proteomic experimental data. It is used for

the direct comparison of protein abundances across multiple LC-MS analyses of

different samples using peptide peak areas (precursor intensity) [87] or spectral

counts [18, 148] attributable to the proteins of interest. In addition, there was a

recently proposed protein quantification method [47] that measures peptide abun-

dance based on the ion signals of multiple fragments of a given peptide in the

tandem mass spectrum. The labeled quantification methods utilized the isotope

labeling techniques, such as isotope-coded affinity tags (ICAT) [52] and stable

isotope labeling by amino acids in cell culture (SILAC) [101] and isobaric tags for

relative and absolute quantification (iTRAQ) [142, 152]. It can be used to estimate

the relative abundances of proteins in multiple samples through a single LC-MS

analysis in which protein quantities from different samples can be distinguished

based on specific isotopically labeled amino acids. Generally speaking, labeling

techniques yield more accurate estimation of relative peptide/protein abundance in

multiple samples, but require extra steps in sample preparation. Label-free quanti-

fication can achieve much higher throughput, while the quantification accuracy may

be lower.

The tools for the quantitative proteomics are listed in Table 4.5. The list is

somewhat incomplete because the tools are actively being developed in a very fast

pace. Depending upon the experimental procedure for quantitative proteomics, the

appropriate software tools can be different. Some of them may be specialized in

labeled proteomic methods, while the others are with the focus of label-free methods.

Evenwithin the same category of labeling-based or label-free proteomics, themethods

are very different in terms of the quantitative information they exploit. Users need to

understand the experimental details to carefully choose the best-fit software.

4.3.2 Relative and Absolute Quantification

Quantitative proteomics [100] is invaluable when the quantitative information is

used to study specific biological research problems. But in reality, the quantities

provided by most of the quantification methods, labeling-based or label-free

approaches, are primarily representing the relative protein quantification, i.e., the

comparison of the protein abundances across multiple samples (e.g., under different

conditions). The determination of the absolute abundances of different proteins in the

same sample, i.e., the absolute protein quantification, is useful for many other

important biological applications such as the mapping of protein expression patterns

in a whole proteome scale [5]. In contrast to the same-protein-different-sample
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scenario, the quantitative measures such as spectral counts or peptide peak areas of

different proteins in the same sample are not directly comparable. For example, two

proteins of the same abundance may have distinct spectral counts because the

peptides from one protein are more easily identified by LC-MS instruments than

those from another protein. To address this issue, some computational methods are

introduced to correct the bias. For example, emPAI [57] exponentially modified the

protein abundance index (PAI) [106] value to determine the absolute quantification

of proteins. A concept of peptide detectability was proposed to model the identifi-

cation bias of peptides in a standard proteomic experiment [122]. As a result, the

absolute protein abundances can be estimated from each protein’s spectral counts
corrected by the detectabilities of peptides in the protein [76, 134].

Table 4.5 Available software tools for quantitative proteomics

Name Type Algorithm Availability

MaxQuant

[21]

Free

software

A quantitative proteomic software pack-

age designed for analyzing large mass

spectrometric datasets. It specifically

aimed at high-resolution MS data. Several

labeling techniques as well as label-free

quantification are supported

coxdocs.org/doku.

php?id¼maxquant:

start.

MZmine

[104]

Open

source

An open-source software for mass spec-

trometry data processing, with the main

focus on LC-MS data

mzmine.github.io/

PEAKS Q Commercial The module of PEAKS for protein quan-

tification analysis based on mass spec-

trometry data. PEAKS Q supports both

labeling-based and label-free methods

www.bioinfor.com/

VEMS

[110]

Free

software

A program for analysis of MS-based pro-

teomic data. VEMS can furthermore ana-

lyze iTRAQ, Mass Tag, SILAC, and

labeled samples and also support label-

free quantification

portugene.com/

vems.html

PeakView Commercial A stand-alone software application that is

compatible with all SCIEX mass spec-

trometer systems for the quantitative

review of LC-MS and MS/MS data

sciex.com/products/

software/peakview-

software

Protein

Quantifier

[139]

Free

software

An automated pipeline for high-

throughput label-free quantitative proteo-

mics and is integrated in OpenMS [120]

suite

ftp.mi.fu-berlin.de/

pub/OpenMS

ProteoSuite

[48]

Open

source

An open-source framework for the analy-

sis of quantitative proteomic data

www.proteosuite.

org/

MFPaQ

[12]

Open

source

Web application dedicated to parse, vali-

date, and quantify proteomic data. It

allows fast and user-friendly verification

of Mascot result files, as well as data

quantification using isotopic labeling

methods or label-free approaches

mfpaq.sourceforge.

net/
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4.3.3 Label-Free Protein Quantification

Label-free quantification [97] is widely used because they are easy to adopt and can

be integrated in most workflows without modification of the experimental protocols.

But the intensity values derived directly from mass spectrometry are not

recommended to be directly used as the indicator of peptide quantity because the

intensity value is confounding by the ionization efficiency of peptides, which depends

on the amino acid compositions. The algorithm for label-free quantification has to

correct the bias by considering the chemical properties and the length of peptides.

The label-free quantification methods [23, 50] have two major categories: those

based on the peptide peak intensity and those based on the spectral counts. The

former method extracted information from the ion chromatography, i.e., XIC

(extracted ion chromatograms), for given peptides or proteins; the latter simply

counts the number of identified PSMs in a protein. Similar to the spectral counts, the

detected peak areas belonging to different peptides are not directly comparable due

to the detection bias caused by different chemical properties of peptides and thus

need to be properly calibrated when used for absolute protein quantification

[57]. The very first two label-free quantification methods based on spectral counts

are emPAI [57] and absolute protein expression (APEX) [13]. The emPAI method

quantifies a protein by the ratio between the number of observed peptides and the

number of theoretical peptides, which is also implemented in Mascot [103]. The

APEX uses the total observed spectral count normalized by the in silico predicted

(i.e., expected) count of PSMs from each protein. The expected PSM count is

computed by summing the predicted detectabilities of peptides from the proteins.

4.3.4 Labeling-Based Protein Quantification

Labeling-based techniques for protein quantification include isotope-coded affinity

tagging (ICAT) [88], cleavable isotope-coded affinity tagging (cICAT) [70], iso-

baric tags for relative and absolute quantification (iTRAQ) [142], and stable isotope

labeling by amino acids in cell culture (SILAC) [101]. All these techniques except

iTRAQ rely on the search of a pair of MS (precursor) peaks corresponding to the

same peptide with predefined mass difference, which result from the unlabeled

peptide and isotopically labeled peptide (each from one sample to be compared,

respectively). These methods work on two samples in most cases, but can also work

on more samples with multiple isotopic labeling. iTRAQ, isobaric tags for relative

and absolute quantification, uses isobaric tags to label N-terminal and lysine of

peptides. There are currently two main reagents: 4-plex and 8-plex. Thus, the

iTRAQ method can simultaneously label four or eight samples. The fragmentation

of the isobaric tags produces the reporter ions in the low-mass region that give

relative quantification of the peptides and the proteins from which the peptides are

derived. Although the labeling-based quantification followed the same principle,

specific algorithm is still needed for different kinds of labeling techniques. For
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example, for chemical labeling techniques, the mass difference between unlabeled

and labeled peptides depends on the number of labeled amino acids. For iTRAQ

data, it is needed to extract the intensities of reporter ions in MS/MS spectra with

experimentally designated masses. Thus, when using the algorithms or software

tools, one needs to set the parameters appropriately according to the labeling

technique and other experimental settings.

4.4 Post-translational Modification

4.4.1 Principles for PTM Identification via Mass
Spectrometry

PTM, or post-translational modification, is defined as modification of proteins

occurring during or after protein biosynthesis, covalently or enzymatically, by

introducing new chemical groups, such as the phosphate or methyl group, on

amino acid residues (often on their side chains) in a protein. Recent proteomic

studies [43, 51, 99] have revealed many novel PTMs that were previously unknown

and thus significantly expanded the scope of PTMs. It is now estimated that there

are on average 8–12 modified forms for each unmodified peptide [94].

Most of these modifications imposed characteristic mass shift to the unmodified

peptide/proteins, and thus mass spectrometry can be used to detect the mass shifts

corresponding to these modifications. Moreover, the modification sites can be local-

ized [10] through tandem mass spectrometry. However, there is still considerable

difficulty for implementing this simple principle [129], due to various aspects of

PTMs: (1) the large number of potential modifications, (2) the low abundance of

modified proteins, (3) the dynamic change of modifications, (4) the stability of

modifications, and (5) the effect of modification on peptide ionization efficiency.

Regardless of these considerations, the identification of PTMs has been improved to a

great extent in the past few years [65, 90, 91, 124]. Thousands of PTM sites on

proteins now can be confidently identified and localized thanks to the technical

advancement of experimental enrichment of modified peptides [98]. From the quan-

tification perspective, the label-free methods are particularly convenient for PTMs. It

is also possible to determine the stoichiometry of PTMs at a large scale [99]. In this

section, we will provide a brief yet comprehensive review of the computational

methods for PTM identification based on the abovementioned proteomic techniques.

4.4.2 Database Searching for Peptides Containing PTM

For unmodified peptides, the database searching is done by comparing each exper-

imental MS/MS spectrum with the theoretical spectrum. The database searching
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process is very similar when attempting to identify the peptide containing PTMs

except that the mass shift due to the PTM on certain amino acid residues needs to be

specified. For example, phosphorylation can be specified as an 80 Da or 98 Da mass

shift on the S, T, and Y residues. Nonrestricted (blind) PTM searching [17, 66, 91,

129, 147], aiming at any modification on any amino acid, is not yet generally

practical because such searching takes extremely long time, although bioinformatic

algorithms are available. For the restricted PTM searching, conventional database

searching engines, as listed in the above section, can be utilized. Because of the

fragmentation characteristics of certain modifications (e.g., the neutral loss from

phosphorylated peptides), some algorithms specifically designed for the post-

processing [73, 77] of the database searching results have also been developed to

improve the identification for peptides containing these PTMs.

4.4.3 Localization of Modification Sites from MS/MS

When the modification is sufficiently stable to withstand on the amino acid from the

fragmentation energy of MS/MS analysis, the resulting fragment ions will retain the

same mass shift from the precursor. In other words, these modifications can be

identified not only based on the mass shift of the precursor mass but also the mass

shift of the fragment ions containing the modified residue. As a result, the charac-

teristics of these modifications can be incorporated into the post-processing of the

database searching results to pinpoint the location of the modification group

[10]. Many algorithms have been developed to localize modification sites, specif-

ically for phosphorylation. Those algorithms are divided into two categories: one is

based on the probability of fragments that matches with modification [7, 10, 40, 79,

99, 125, 127, 136], e.g., Ascore [10] and phosphoRS [125]; the other is based on the

identification score difference between different modification sites, including

MD-Score [112] and SLIP [8]. In general, PTM localization is not yet a solved

problem, especially for PTMs other than phosphorylation.

4.4.4 Computational Methods for Detecting PTMs

From the abovementioned points of view, we summarized the currently available

computational methods and resources specifically designed for PTMs in Table 4.6.

Note that the general purpose database searching engines are not included in this

table. The predominant types of PTMs of interest are phosphorylation, acetylation,

ubiquitination, and oxidation. Other types of PTMs such as glycosylation have also

become research subjects in the field (see below).
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4.5 Data-Independent Acquisition (DIA)

4.5.1 Overview of DIA

Most shotgun proteomic studies adopt the data-dependent acquisition (DDA), and

targeted proteomics used selected reaction monitoring (SRM) [4]. Some mass

spectrometers offer an alternative operation mode, data-independent acquisition

(DIA) [47, 68]. In the DIA mode, the mass spectrometer fragments all precursor

ions within a window of retention time and mass-to-charge ratio in the sample,

instead of each isolated precursor ion. Comparing to the DDA mode in shotgun

proteomics, DIA has potential advantages [126]. Specifically, the data acquired in

DIA mode is continuous in the time frame and records all fragment ions in the

fragmentation chamber, which in turn retained much more information than the

DDA data that selects precursor ions depending on their intensities (dynamic

exclusion [45]). However, because of the same reasons, DIA data are much more

complex and thus pose new bioinformatic challenges in data analysis.

Table 4.6 Available software tools for posttranslational modification analysis

Name Type Algorithm Availability

Ascore [10] Open

source

Ascore measures the probability of correct

phosphorylation site localization based on

the presence and intensity of site-

determining ions in MS/MS spectra

ascore.med.har-

vard.edu/

PhosphoSitePlus

[54]

Database An online systems biology resource provid-

ing comprehensive information and tools for

the study of protein PTMs including phos-

phorylation, ubiquitination, acetylation, and

methylation

www.

phosphosite.org/

phosphoRS [125] Free

software

This tool enables automated and confident

localization of phosphorylation sites within

validated peptide sequences and can be

applied to all commonly used fragmentation

techniques (CID, ETD, and HCD)

ms.imp.ac.at/?

goto¼phosphors

SysPTM [74] Database The database provides a systematic and

sophisticated platform for proteomic PTM

research, equipped not only with a knowl-

edge base of manually curated multi-type

modifications but also with four fully devel-

oped, in-depth data mining tools

www.biosino.

org/SysPTM/

SLoMo [7] Open

source

A software tool enabling researchers to

localize PTM sites on peptides identified in

MS data

massspec.bham.

ac.uk/slomo/
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4.5.2 Data Analysis Strategies for DIA

Unlike the data analysis pipelines that are well established in DDA shotgun

proteomics, DIA data is more difficult to be analyzed due to their higher complex-

ity. One typical issue is that the MS/MS spectra are always from the mixture of

peptides because the DIA systematically fragmented all precursors by within a

relatively wide mass window. Interpretation of such mixture spectra is nontrivial

because they are not one to one corresponding to the peptide precursors [128]. Cur-

rently, DIA data analysis primarily adopts the strategy of synthesizing tandem mass

spectra from the mixture spectra in silico by extracting precursor and fragment ions

resulting from the same peptide based on their common chromatographic features.

The conventional shotgun proteomic data analysis pipelines can then be applied to

these synthetic MS/MS spectra for both identification and quantification. An alter-

native approach is proposed by the methods derived from SRM-based targeted data

analysis procedure [47, 111], where the extracted ion chromatograms (XIC) of the

most intense transitions of a targeted peptide from the assay library are generated

from all corresponding MS/MS spectra, followed by the retention time alignment,

peak grouping, and statistical analysis.

4.5.3 Methods in DIA

We summarized widely used software packages for DIA data analysis in Table 4.7.

Table 4.7 Available software tools for DIA data analysis

Name Type Algorithm Availability

Skyline [80] Open

source

Windows client application for building and

analyzing selected reaction monitoring (SRM)/

multiple reaction monitoring (MRM), parallel

reaction monitoring (PRM – targeted MS/MS and

DIA/SWATH), and targeted DDA data

skyline.gs.

washington.

edu

OpenSWATH

[111]

Free

software

Proteomic software allowing the analysis of

LC-MS/MS DIA data

www.

openswath.

org/

DIA-Umpire

[128]

Open

source

A Java program enabling untargeted peptide/

protein identification and quantification from

DIA data

diaumpire.

sourceforge.

net/

Group-DIA

[75]

Open

source

Group-DIA combines the elution profiles of pre-

cursor ions and the fragment ions from multiple

data files to determine precursor-fragment pairs.

Those pairs can be used to synthesize MS/MS

spectra in silico that can be analyzed using con-

ventional sequence database searching engines

yuanyueli.

github.io/

group-dia/
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4.6 Emerging Applications

4.6.1 Proteogenomics

Proteogenomics [92] is an emerging research field at the intersection of proteomics

and genomics, owning to the rapid advance of the sequencing technologies, such as

RNA-seq, and the mass spectrometry-based proteomics. The data analysis pipelines

in proteogenomics exploit customized protein sequence databases built upon geno-

mic and transcriptomic sequence data to identify novel or mutated peptides fromMS

data. The corresponding proteomic data can also be used to improve gene annota-

tions of the corresponding genome and to investigate protein expression levels.

When generating customized protein database, six-frame translation of genome

can be directly used, as well as ab initio gene predicted from a genome by using

gene prediction software. Moreover, transcriptomic data may provide novel splic-

ing variants that should be incorporated into the target database. Some other

alternative and integrative methods are also proposed recently, such as MSProGene

[151]. Another focus of proteogenomics is to search for protein variants in a given

variant database constructed from either short insertion and deletions (implicated in

RNA-seq data) or single-amino-acid variants (e.g., from NCBI dbSNP database

[117]). The variants discovered from matched genomic/transcriptomic data can be

appended to the reference database and can be identified by following the routine

proteomic protocols.

4.6.2 Glycoproteomics

Glycoproteomics [102] is a branch of proteomics aiming to identify and character-

ize site-specific glycosylations in proteins containing glycans as a PTM (i.e., the

glycoproteins). Computational methods for glycoproteomics are challenging due to

the inherent structural complexity of glycans as well as the microheterogeneity

associated with each glycosylation site. There are two different common types of

protein glycosylations: N linked (where the glycans are attached to the Asn residue)

and O linked (where the glycans are attached to the Ser/Thr residues). According to

the linked type, the glycoproteomics experimental design differs. For example, the

identification of N-linked glycopeptides may require the combination of collision-

induced dissociation (CID), higher-energy collision dissociation (HCD), and elec-

tron transfer dissociation (ETD) fragmentation methods. While it benefits the

determination of glycan structure [130], the combination of different types of

fragmentation data imposes additional challenges for the algorithm development.

On the other hand, because the computational methods highly relied on the exper-

imental setting, most software tools are designed for specific experimental pro-

tocols, and thus, no common computational pipeline has been widely adopted in the

field. Nevertheless, several computational methods have been developed [55]. For

example, GlycoFragwork [84] is an integrative computational framework to

80 S. Li and H. Tang



analyze multiple pre-aligned LC-MS/MS datasets and reports a glycomap of

identified intact glycopeptides with their mass, elution time, and abundances.

4.6.3 Peptidomics

Peptidomics is another proteomic branch aiming at the study of endogenously

produced protein fragments [26] by employing the conventional proteomic tech-

niques. Endogenous protein fragments can be generated in multiple ways: catabo-

lized dietary proteins, peptides released from food proteins, and peptides created

from protease or protein substrates. With subtle modification of the computational

methods in proteomics, most of these tools can be directly used in peptidomics.

Because of the large variations in endogenous protein fragments, de novo sequenc-

ing methods may be favored over the database searching methods. Nonetheless,

there are several comprehensive peptidomics databases, including SwePep [39] and

Peptidome [61], available for database searching.

4.6.4 Metaproteomics

Similar as the experimental protocols, metaproteomic projects also follow the

bioinformatics approaches used in bottom-up proteomics. Specifically,

metaproteomic data analysis starts from the peptide identification, achieved by

searching MS/MS spectra from an LC-MS/MS experiment against the tryptic

peptides in silico digested from a target database of proteins that are potentially

present in the metaproteomic sample. The conventional peptide search engines as

summarized above can be used for this purpose. Their applications to

metaproteomics rely on the preparation of a target protein database. Early

metaproteomic studies used the collection of proteins encoded by fully sequenced

bacterial genomes that are likely present in a specific environment (e.g., human gut)

as the target database [38, 132]. This collection may be largely incomplete

[105, 113]. Therefore, more recent metaproteomic studies employed a

metagenome-guided approach, in which complete or fragmental coding genes

were first predicted from metagenomic sequences (i.e., contigs or scaffolds),

acquired from the matched community samples, and corresponding protein

sequences were used in peptide identification [89]. Several software tools were

developed for the purpose of gene prediction in metagenomic sequences including

MetaGeneMark [150] and FragGeneScan [107].
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Chapter 5

Informatics for Metabolomics

Kanthida Kusonmano, Wanwipa Vongsangnak,

and Pramote Chumnanpuen

Abstract Metabolome profiling of biological systems has the powerful ability to

provide the biological understanding of their metabolic functional states responding

to the environmental factors or other perturbations. Tons of accumulative

metabolomics data have thus been established since pre-metabolomics era. This

is directly influenced by the high-throughput analytical techniques, especially mass

spectrometry (MS)- and nuclear magnetic resonance (NMR)-based techniques.

Continuously, the significant numbers of informatics techniques for data

processing, statistical analysis, and data mining have been developed. The follow-

ing tools and databases are advanced for the metabolomics society which provide

the useful metabolomics information, e.g., the chemical structures, mass spectrum

patterns for peak identification, metabolite profiles, biological functions, dynamic

metabolite changes, and biochemical transformations of thousands of small mole-

cules. In this chapter, we aim to introduce overall metabolomics studies from pre- to

post-metabolomics era and their impact on society. Directing on post-metabolomics

era, we provide a conceptual framework of informatics techniques for

metabolomics and show useful examples of techniques, tools, and databases for

metabolomics data analysis starting from preprocessing toward functional interpre-

tation. Throughout the framework of informatics techniques for metabolomics

provided, it can be further used as a scaffold for translational biomedical research

which can thus lead to reveal new metabolite biomarkers, potential metabolic

targets, or key metabolic pathways for future disease therapy.
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5.1 Introduction

The word “metabolism” comes from the Greek word “metabolé” which means

transformation or change, while the word “metabolome” is commonly defined as

the measuring metabolites in a biological system. The study of metabolome usually

relies on two different approaches, which are targeted and nontargeted

metabolomics (or metabolite profiles). The targeted metabolomics focuses on the

quantification of known compound, while the nontargeted approach aims for

screening the patterns of the whole set of unknown metabolites. The behaviors of

different metabolites are very dynamic in cellular regulatory and metabolic pro-

cesses [21]. Practically, the levels of most metabolites change with half time of

minutes and seconds or even faster either arising from natural fluctuations or

response to the environmental change or external perturbations. To capture overall

physiological status, metabolomics is considered for a “downstream” process in a

molecular central dogma.

Metabolomics captures global biochemical events by assaying thousands of

small molecules in cells, tissues, organs, or biological fluids followed by the

applications of informatics techniques to define metabolite biomarkers. Currently,

metabolomics can lead to reveal disease mechanisms, identify new diagnostic or

prognostic markers, and also enhance understanding in drug response phenotypes.

In this chapter, we aim to introduce overall metabolomics studies from pre- to post-

metabolomics era. We initially describe the history of metabolomics and its impact

on society. Emphasizing on post-metabolomics era, we provide a basic conceptual

framework of informatics techniques for metabolomics that are used to study the

metabolomics data as illustrated in Fig. 5.1, for instance, acquisition and

preprocessing of the metabolomics data, analysis of the metabolomics data, and

functional interpretation of the metabolomics data. Focusing on the analysis of

metabolomics data in details, we describe three different approaches and show

example researches that apply these techniques based on biomedical data,

(1) unsupervised learning for viewing patterns and grouping the metabolomics

data, (2) supervised learning for building a model for classifying the metabolomics

data, and (3) feature selection for identifying candidate metabolite biomarkers.

Additionally, we also list useful examples of tools and databases that are used for

metabolomics data analysis toward functional interpretation. At the end, we high-

light perspectives on potential metabolomics applications toward translational

research and biomedical informatics.

5.2 History of Metabolomics and Impact on Society

Metabolic biochemists have arguably been “doing metabolomics” for decades. The

earliest use of body fluids to determine a biological condition can be considered as

the first uses of metabolomics, which can be traced back to the ancient Chinese
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cultures (2000–1500 BC). At that time, there were some traditional Chinese doctors

who began to evaluate the glucose level in urine of diabetic patients using ants.

There is not only ancient China but also ancient Egypt and Greece that traditionally

determine the urine taste to diagnose human diseases (300 BC). During this

pre-metabolomics era, the chromatographic separation technique that made the

initial detection of metabolites possible was developed in the late 1960s, which

marked the technical origin of the metabolomics field. One of the medical lumi-

naries of this early metabolomics revolution was Santorio Sanctorius who was the

founding father of metabolic balance studies. His invaluable contributions were on

insensible perspiration and useful invention published under the title of Ars De
Statica Medicina in 1614 [28].

Joseph John Thomson and Francis William Aston were the first pioneers of mass

spectrometry (MS) which was used to determine the nature of positively charged

particles and evidence for isotopes of a stable (nonradioactive) element in 1913.

With this powerful instrument, later on, MS has been greatly developed and

improved regarding separation and sensitivity which led to the development of

the mass spectrograph for metabolite quantification, metabolite profiles, and also

structural elucidation.

Nuclear magnetic resonance (NMR) spectroscopy was afterward discovered in

1946 by Felix Bloch and Edward Purcell. NMR could be used to detect metabolites

in unmodified biological samples [37]. Once instrumental sensitivity improved with

the evolution of higher magnetic field strengths and magic angle spinning, NMR

continues to be a leading analytical tool to investigate cellular metabolism [60, 84].

A development of metabolomics began in 1971 by Pauling’s research team

[65]. Although it was not called as metabolomics at that time, the first paper was

“Quantitative Analysis of Urine Vapor and Breath by Gas–Liquid Partition Chro-

matography.” Their studies investigated biological variability that could be

explained by wider ranges of nutritional requirements than what was recognized.

In analyzing the complicated chromatographic patterns of urine from vitamin

B6-loaded subjects, they also realized that the patterns of hundreds or thousands

of chemical constituents in urine contained much useful information.
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Few years later, the field of metabolomics was exploded, particularly in metab-

olite profiles, which opened an opportunity for setting a framework for

metabolomics-scale investigations. Willmitzer and his research team were recog-

nized as a pioneer group in metabolomics which suggested the promotion of the

metabolomics field and its potential applications from agriculture to medicine and

other related areas in the biological sciences [74, 83].

Considering the highlight of metabolomics on biomedical research fields, the

first completed draft of the human metabolome was consequently published in 2007

[89, 90, 92]. The Human Metabolome Project consists of databases of approxi-

mately 2500 metabolites, 1200 drugs, and 3500 food components. Having collec-

tive and freely available database like the Human Metabolome Database (HMDB),

the research fields on human metabolites related to disease diagnosis and advanced

drug design can be rapidly modulated.

Nowadays, not only research on metabolomics related to human but also other

model organisms have been increased during the post-metabolomics era, e.g.,

yeasts, fungi, insects, and plants [10, 19–21, 38, 56, 76, 87, 99, 102]. Such as in

plants, the number of published paper related to metabolomics presented in several

species, most notably Medicago truncatula and Arabidopsis thaliana, has been

greatly increased for many years [1, 2, 17, 30, 44, 46, 47, 57, 58, 70, 86].

In the post-metabolomics era, the metabolomics data has been dramatically

increased from the rapid development in high-throughput analytical techniques

during pre-metabolomics era. Definitely, the informatics techniques and

metabolomics tools and databases are required. A more developing area is the

tool-aided functional interpretation of metabolite profiles. For instance,

metabolomics tools aided for visual overlay of metabolite profiles onto biochemical

network diagram and detection of statistical evidence for perturbation of particular

pathways (e.g., enrichment analysis), identifying metabolite profile pattern that

reliably indicates specific biological states and further using these patterns to

diagnose the states of biological systems with an overall aim for metabolite

biomarker identification. To illustrate the metabolomics timeline, Fig. 5.2 shows

the highlight on instrumental and methodological development during

pre-metabolomics era and informatics techniques during post-metabolomics era.

5.3 Informatics Techniques for Metabolomics

In order to extract information and knowledge from metabolomics data, informatics

techniques are needed to analyze the derived data. Here we first introduce a data-

centric overview of informatics techniques for metabolomics studies in three

different approaches which include (1) acquisition and preprocessing of the

metabolomics data, (2) analysis of the metabolomics data, and (3) functional

interpretation of the metabolomics data.
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5.3.1 Acquisition and Preprocessing
of the Metabolomics Data

Two of the most crucial and challenging steps for metabolome analysis are (1) how

to acquire the raw (instrumental) data from the chosen high-throughput analytical

techniques based on either MS or NMR and (2) how to convert them into the form

of “extracted” data (e.g., peak tables) that can be easily further identified for

specific metabolites and processed by statistical and data mining tools. So far,

there are several statistical and data mining tools for acquisition and preprocessing

of the metabolomics data as listed in Table 5.1.

5.3.1.1 Metabolomics Data Acquisition

For data acquisition in metabolome analysis, MS and NMR are the most frequently

employed methods of detection. The chromatographic principles aim for the sep-

aration of the components by chromatographic instrumental, i.e., liquid chroma-

tography (LC), gas chromatography (GC), or capillary electrophoresis (CE).

The aim of this process is to collect and generate the spectral datasets from the

designed experimental samples. NMR is particularly very useful for structure
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characterization of unknown compounds and is applied for the analysis of metab-

olites in biological fluid and cell extracts. However, there are some limitations of

using NMR analysis due to its longer running time (several hours) per sample and

low-sensitivity issue, and the equipment costs are much higher compared to

MS-based techniques. The additional advantages of using MS over NMR are its

high throughput in combination to identify the unknown metabolites. Moreover,

NMR has advantages on the possibility to combine with chromatograph separation

techniques (e.g., CE, GC, or LC) expanding the capability for metabolite profiles of

the complex biological samples. Undeniably, there are several available tool appli-

cations as also seen in Table 5.1 (e.g., AMDIS, MASCOT, MZmine2, XCMS, etc.)

for visualizing and searching against the metabolomics library and available data-

bases which can helpfully facilitate the peak identification and functional interpre-

tation of mass spectrometric data.

The recent introduction of ultra-performance liquid chromatography–mass spec-

trometry (UPLC-MS) has greatly enhanced chromatographic performance, increas-

ing the sensitivity and throughput of liquid chromatography–mass spectrometry

(LC-MS) measurements. UPLC-MS routinely detects thousands of features repre-

sentative of hundreds to thousands of metabolites in biological mixtures. Although

the determinations of the exact number of metabolites can be measured by

untargeted UPLC-MS, it is complicated to be analyzed due to hard sample prepa-

ration, chemical diversity of the metabolite matrix, and the sophisticated isotopes

and fragments and also adduct ions. While these analytical chemistry techniques

boast high sensitivity and reproducibility and are capable of untargeted detection of

a vast number of diverse metabolites, the collection and comparison of a large

Table 5.1 List of different tools used for acquisition and preprocessing of the metabolomics data

Tools URL

AMDIS/NIST http://www.amdis.net/

MASCOT http://www.matrixscience.com/search_form_select.html

XCMS https://metlin.scripps.edu/xcms/

MathDAMP http://mathdamp.iab.keio.ac.jp/

MetAlign http://www.wageningenur.nl/en/Expertise-Services/

Research-Institutes/rikilt/show/MetAlign-1.htm

MZmine 2 http://mzmine.github.io/download.html

MetaboAnalyst http://www.metaboanalyst.ca/

MSFACTs http://www.noble.org/plantbio/sumner/msfacts/

COMSPARI http://www.biomechanic.org/comspari/

SpectConnect http://spectconnect.mit.edu/
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number of mass spectra or NMR pose great challenge in data analysis regardless of

whether NMR, gas chromatography–mass spectrometry (GC-MS), or LC-MS is

applied. The spectra generated by these instruments require similar preprocessing

steps before comparative analysis even though the capabilities, specificity, and

sensitivity are quite different. The signatures of thousands of metabolites generated

by UPLC-MS require extensive preprocessing before comparative statistical anal-

ysis. A key step in the analysis of UPLC-MS datasets is the transformation of ion

intensities. This process is based on the elution time into a matrix of features of each

sample (m/z and retention time) which can be applied for peak detection, align-

ment, and area extraction algorithms. Subsequent statistical and data mining anal-

ysis tools can be operated on this matrix of ion intensities and are later mentioned in

the following analysis of the metabolomics data section.

5.3.1.2 Metabolomics Data Preprocessing

The most important purpose of metabolomics data preprocessing is to convert

different metabolomics data into data matrix suitable and comparable for varieties

of statistical analyses. Therefore, the proper metabolomics preprocessing methods

must be selected and performed before the metabolomics data analysis. Two major

approaches are focused on the quantitative or chemometric (screening/profiling) for

data preprocessing. However, some of the preparing steps are regularly required for

the assessment of the metabolomics data quality, e.g., deconvolution of overlapping

peaks, peak picking, integration, alignment, data cleanup, normalization, as well as

metabolite identification [5, 36]. In the following, normalization and metabolite

identification are briefly described for data preprocessing.

Normalization

“Normalization” is the most common step for preparing step for data preprocessing.

The goal of normalization step of datasets is to allow the direct comparison for

metabolome profiling. To reach that point, a representative set of peaks have to be

picked from each dataset. The peak sets of key metabolites can be further aligned

instead of using all the peaks from the datasets. Parameters of a time shift function

based on the mathematical function to model the retention time or migration time

shifts between samples are needed to be analyzed. To obtain those parameters, the

combination of global optimization and dynamic programming is commonly

applied. With the normalization procedure, the optimal parameters can be reliably

found, even if the peak sets contain a small number of corresponding peaks.

Commonly, the MS data has some usual problems needed to be considered, i.e.,

baseline drift, retention time shifts, noise, and artifacts. In general, the targeted

metabolomics data quality can be assessed by selecting a number of representative

compounds for each metabolite category and calculating their concentration rela-

tive to the proper chosen internal standards. On the other hand, the preprocessing of
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the raw NMR data is usually performed by machine vendor tools which can provide

the phase and baseline correction, removal of water and urea resonance, and

spectral binning or bucketing [53]. For both MS- and NMR-based techniques, the

normalization process can be performed based on the sum or total peak area, a

reference compound (i.e., creatinine, internal standard), a reference sample which is

also known as “probabilistic quotient normalization,” dry mass, volume, etc. [25].

Metabolite Identification

To further achieve the goals in metabolomics investigations, it is necessary to

produce a comprehensive metabolome profiling from biological samples. Identifi-

cation of metabolites is one of the necessary steps in metabolomics studies, and the

conclusion drawn from such studies depends on how exactly the metabolites are

identified. The experimental identification of unknown metabolites is an essential

process. Extensive works have thus been established to identify accurate informa-

tion on hundreds to thousands of metabolites. In general, the metabolite identifica-

tion process is largely based on tandem mass spectrometry (MS/MS) spectra

generated separately for peaks of interest identified from previous MS runs. Such

a delayed and labor-intensive procedure creates a barrier to automation. Further,

information embedded in MS data has not been used to its full extent for metabolite

identification. Multimers, adducts, multiply charged ions, and fragments of given

metabolites occupy a substantial proportion (40–80%) of the peaks of a quantita-

tive result [21, 76]. However, extensive information on these derivatives, especially

fragments, may facilitate metabolite identification.

Beyond this, a procedure with automation capability to group and annotate peaks

associated with the same metabolite in the quantitative results of opposite modes

and to integrate this information for metabolite identification is proposed. In

addition to the conventional mass and isotope ratio matches, the annotated frag-

ments with low-energy MS/MS spectra in public databases have been matched.

Additionally, NMR is one of the most selective analytical techniques, which

gives unambiguous structural information of metabolites. Due to complex biolog-

ical sample matrix, metabolite identification needs the application of advanced

NMR techniques and analytical strategies for better accuracy. The major problems

that arise in metabolite identification using NMR in biological samples are high

spectral crowding, the presence of macromolecule, molecular interaction, dynamic

range, enormous solvent concentration, sensitivity, etc. Therefore, several useful

techniques are developed and applied to the metabolite identification, such as

spiking experiments, standard spectra, NMR data banks and libraries, and literature

support. For example, in human body fluids and pathological fluid samples, there is

plenty of literature available related to assignments of metabolites [7, 8, 27, 32, 51,

52, 69, 78, 91]. Increasing applications of metabolomics encourage researchers to

develop databases and tools for automatic and fast data preprocessing. As listed in

Table 5.2, there are several databases, which can be used for metabolite identifica-

tion and available for MS- and NMR-based techniques.
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5.3.2 Analysis of the Metabolomics Data

After completed acquisition and preprocessing of the metabolomics data, analysis

techniques of metabolomics data play an important role helping to extract useful

information. Machine learning techniques are incorporated prominently in this

area, relating the design and development of algorithms that allow computers to

learn based on empirical data [35, 93]. Machine learning can be classified into two

commonly known categories, which are the unsupervised and supervised learning

methods. Unsupervised learning requires data without labels and determines pat-

terns of the data naturally. On the other hand, supervised learning conducts data

with its labels to learn a model to be able to predict new unlabeled data. Besides,

feature selection is another component, playing a key role in both supervised and

unsupervised learning. This feature selection technique aims to select a subset of

relevant features (i.e., metabolites) for constructing robust learning models. In

Table 5.2 List of metabolite identification databases

Databases URL

NMR SDBS http://sdbs.db.aist.go.jp

BioMagResBank http://www.bmrb.wisc.edu/metabolomics/

NMRShiftDB 2 http://nmrshiftdb.nmr.uni-koeln.de/

MMCD http://mmcd.nmrfam.wisc.edu/

MS GMD http://gmd.mpimp-golm.mpg.de/

METLIN https://metlin.scripps.edu/index.php

MassBank http://www.massbank.jp/

NIST http://webbook.nist.gov/chemistry/name-ser.

html

Compound

DBs

LIPIDMAPS http://www.lipidmaps.org/

KNApSAcK http://kanaya.naist.jp/KNApSAcK/KNAp

SAcK-v1200/KNApSAcK.php

ARM http://metabolomics.jp/wiki/Main_Page

ChEBI https://www.ebi.ac.uk/chebi/init.do

PubChem https://pubchem.ncbi.nlm.nih.gov/

ChemSpider http://www.chemspider.com/

Ligand Expo http://ligand-expo.rcsb.org/

3DMet http://www.3dmet.dna.affrc.go.jp/

MyCompoundID http://www.mycompoundid.org/
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biomedical area, the selected features can be considered as biomarkers for diagnosis

and prognosis of diseases or the prediction of therapeutic success. Furthermore,

understanding of functional and biological processes of the candidate features/

metabolites is also important. Candidate metabolite biomarkers are therefore

needed to be interpreted by performing pathway mapping and visualization or

enrichment analysis. Here we explain unsupervised and supervised learning and

feature selection that are applied to metabolomics data, respectively. For the

functional interpretation, it is continuously described in the next section.

5.3.2.1 Unsupervised Learning: Viewing Patterns and Grouping

the Metabolomics Data

Unsupervised learning is a machine learning algorithm that determines how the

unlabeled data are organized. It helps to find patterns of the data and discover new

classes. In the following, we describe concepts of some common unsupervised

learning methods, namely, principal component analysis (PCA), clustering, and

self-organizing map (SOM), that are currently used for metabolomics studies. In

addition, we provide example studies applying these methods for the discovery of

metabolomics patterns of biomedical data.

Principal Component Analysis (PCA)

Principal component analysis (PCA) [71] has been used intensively in

metabolomics data analysis [16, 61, 63]. The method is used for dimension reduc-

tion and provides a visualization of the data. As mentioned previously, the

metabolomics data is a high-dimensional data containing a high number of vari-

ables. PCA can be used to project the data into a lower dimension, e.g., two or three

dimensions, that can be seen and understood by human. The concept of PCA is to

find a one-dimensional subspace that captures the most variance of the data,

referred to as principal component (PC). From the first PC, the second PC is created

by considering the variance that is not captured by the first PC and maximizes the

remained variance. The same principle of finding a direction maximizes the vari-

ance of the data, which can be repeated for the next PC and so on. Usually, the best

two (or three) subspaces are plotted, meaning that the projection of the first two

(or three) PCs is used [6]. By using the PCA, samples can be visualized to assess

similarities and/or differences among them. The natural grouping of samples can be

discovered. This could be used to investigate known classes of the studied samples

(e.g., by plotting samples with different colors of their groups) or to discover new

subclasses (e.g., investigating the grouping patterns). However, by conducting the

PCA, one should keep in mind that PCA reflects the data with a lot lower dimen-

sion, and some contents of the data are lost during the dimension reduction. A user

should keep in mind that the visualization does not represent all contents of the data.

Several studies have applied PCA to analyze metabolomics data for biomedicine.
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Odunsi et al. utilized PCA to show a clear separation between serum specimens

from 38 patients with epithelial ovarian cancer (EOC), 21 premenopausal normal

samples, and patients with the benign ovarian disease by using proton nuclear

magnetic resonance (1H-NMR)-based metabolomics [63]. Another study presented

by Chen et al. showed that PCA was performed to visualize the metabolic alter-

ations and showed a trend of separation between hepatocellular carcinoma (HCC)

patients and healthy controls using serum and urine metabolite profiles [15].

Clustering

Clustering is a method aiming to divide data into clusters according to their

properties [93]. The objects (e.g., samples or metabolites) that are grouped together

or in the same group are more similar to each other than the objects in other groups.

Clustering methods show a natural grouping of the data and help to visualize and

reveal patterns of the data. Here we discuss two well-known clustering algorithms

which are k-means and hierarchical clustering.

K-means clustering tries to group “n” objects into “k” groups. This technique

requires a user to define the number of groups/clusters for dividing the data. The

method is useful when the number of the clusters is known and one needs to

investigate patterns of the data under each subgroup. However, there are some

extensions to the algorithm that provide a computational way to calculate k.

For example, an application of fuzzy k-means clustering was shown to classify

metabolomics data of NMR spectra of breast cancer cell line and type 2 diabetes

patients and animal models [23].

Hierarchical clustering, on the other hand, does not need a number of clusters,

but builds a hierarchy of the clusters. The method provides a dendrogram visual-

izing on how the objects are grouped. Hierarchical clustering has been widely

applied in different omics studies including metabolomics, as it displays data

grouping, which is easy for investigation and interpretation. For instance, a hierar-

chical clustering was performed to display the subtype of pancreatic ductal adeno-

carcinoma (PDAC) through metabolite profiles of cell lines [24]. Three subtypes

were identified, which showed proliferating lines, glycolytic lines, and lipogenic

lines. An output dendrogram showed metabolic patterns changing in different

subtypes.

Self-Organizing Map (SOM)

Self-organizing map (SOM) [45] has been applied to provide visualization of high-

dimensional data in low-dimensional space (typically two dimensions). It is a type

of neural network. While PCA uses a linear projection to reduce the data dimension,

SOM applies more complex of nonlinear pattern recognition. It aims to find a

low-dimensional representation of the input data. Samples, which are similar to

each other, are placed in a similar region [6]. In metabolomics, for example, SOM
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was carried out to visualize metabolic changes in breast cancer tissue [4] from

normal to different tumor grades. SOM has an advantage of providing a nonlinear

mapping for data visualization. However, the algorithm is like a “black box”. The

key metabolites used for the separation are hidden, which is not useful for func-

tional interpretation.

5.3.2.2 Supervised Learning: Building a Model for Classifying

the Metabolomics Data

Supervised learning aims to learn a model from a set of given labeled examples to

recognize new examples. For a general procedure of the classification step, firstly a

classifier/model is trained using labeled training samples. After training and testing

the model, the trained model is used to classify unlabeled subjects or samples. For

example, one can use metabolite profiles to create a model to classify between

healthy and cancer. A classification algorithm could be combined with a feature

selection method to select features/metabolites leading a model to give the best

distinguishing between two groups. The selected features could be potential can-

didate biomarkers for diagnosis, prognosis, or prediction of therapeutic success (see

Feature Selection: An Approach to Identify Candidate Metabolite Biomarkers). In

addition, to avoid model overfitting, a test set for testing a model should be

separated from a training dataset for that is used to construct a model. As described

below, we mention some common classification algorithms including partial least

squares (PLS), support vector machine (SVM), and random forest (RF) for

metabolome analysis and show their example cases in biomedical area.

Partial Least Squares (PLS)

The partial least squares (PLS) [94] method is widely used in metabolomics [6, 15,

61]. The constructed model can be used for classification, e.g., to predict the class of

unknown samples. For the high-dimensional data like metabolome, the method

facilitates dimensional reduction, and the data can also be projected for visualiza-

tion into a low-dimensional space. PLS is a regression-based method, which finds a

linear regression model by projecting the dependent variables Y and the indepen-

dent variables X to a new space. The algorithm tries to maximize the variance of the

dependent variables that are explained by the independent variables. PLS is similar

to PCA in a way that both algorithms focus on finding a subspace capturing the most

variance of the data. In PLS, the generated components are called orthogonal

vectors, while the outputs from PCA are known as principal components. However,

PLS is a supervised learning method. The classes of data or samples are necessary

for building a model.

Partial least squares discriminant analysis (PLS-DA) is a version of PLS when Y

is categorical. It has been applied in several metabolomics studies [15, 61]. For

instance, Nishiumi et al. applied PLS-DA to discriminate stages of pancreatic
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cancer by using serum metabolome [61]. They suggested candidate metabolites as

biomarkers allowing early detection of pancreatic cancer. Besides, by utilizing

orthogonal partial least squares discriminant analysis (OPLS-DA) – an extended

version of PLS-DA – Chen et al. showed plots by using PLS-DA separating clearly

between healthy and HCC patients based on serum data, and the model provided a

good performance for diagnostic markers of HCC [15]. PLS and its extended

algorithms are popular in metabolomics since it provides both a classification

model and visualization of the data, which is easy for data interpretation. As

described above, similar to PCA, PLS displays the data overview into

low-dimensional space. It can visualize how data is categorized into labeled classes.

The output is quite easy to determine by human eyes how the studied classes are

separated. Also, the features, which are used to construct a model, could be

considered as candidate biomarkers [6, 15, 61].

Support Vector Machine (SVM)

Support vector machine (SVM) [85] is known as a classifier providing good

generalization in high-dimensional and noisy data [54, 62]. SVM has been widely

and successfully applied to high-throughput data including metabolome

[33, 54]. The concept of SVM is that it builds an optimal linear hyperplane

separating two classes in a feature space. It seeks the so-called maximum-margin

hyperplane, which gives the greatest separation between the classes. The margin is

the largest distance between the hyperplane and the data points on either side. The

points that are closest to the maximum-margin hyperplane and lie on the margin are

called support vectors [62].

As mentioned above, with the concept of finding a hyperplane, SVM is a good

generalization classifier and has also showed good performance in metabolomics.

For example, Mahadevan et al. showed that SVM gives better predictive model

compared to PLS-DA [54]. They demonstrated the comparison by using NMR

spectra of urine samples from healthy and pneumonia patients as well as a more

ambiguous case, between male and female. Guan et al. employed SVM for a

diagnostic purpose to build a classifier that distinguishes between ovarian cancer

patients and controls using metabolic data (LC/TOF MS) of serum samples

[33]. Classification in a test set was shown with more than 90% accuracy.

Random Forest (RF)

Random forest (RF) [9] has become popular in bioinformatics as it has been

reported to provide high performance on high-dimensional data, such as

transcriptomics and metabolomics data [77, 95]. RF is an ensemble-based machine

learning method. It relies on aggregated results of several individual decision trees.

With its characteristic of the ensemble-based method, it is robust against overfitting

[67]. The predicted class of an unknown sample is assumed to be a class that

5 Informatics for Metabolomics 103



obtained the majority vote from all decision trees. The voting among many decision

trees provides better model performance than one decision tree alone [9, 67].

In metabolomics, RF has been demonstrated with a good performance for

classification. For instance, Chen et al. showed that RF outperforms the other

classifiers, which are PLS, SVM, and linear discriminant analysis (LDA), clinical

metabolic data [18]. The performances were evaluated in metabolomics study of

GC-MS platform between healthy subjects and patients diagnosed with colorectal

cancer. It can be applied for classification and biomarker selection [18].

5.3.2.3 Feature Selection: An Approach to Identify Candidate

Metabolite Biomarkers

Rather than building a classification system, many people are more interested to

discover candidate biological markers (i.e., metabolites), which give the best

distinguishing between two classes of interest, e.g., normal vs. cancer. In the

medical area, the candidate biomarkers can then be verified and applied for

diagnosis, the prognosis of diseases, or prediction of therapeutic success. A feature

selection method can be used as a combination with classification algorithm

[14]. An optimal set of features or metabolites that give the best separation between

two groups is selected as candidate markers. In addition, feature selection methods

can also be applied with unsupervised learning, helping to reduce noises or irrele-

vant features. Depending on a medical purpose, different types of biomarkers can

be classified. Mainly there are three types of biomarkers, which are diagnostic,

prognostic, and predictive biomarkers. A diagnostic biomarker helps in diagnosing

or distinguishing between a healthy person and patient. For example, prostate-

specific antigen (PSA) is used as a biomarker for diagnosis of prostate cancer

[64]. A prognostic biomarker provides information on the likely course of the

disease, for example, it is used to predict recurrence of a disease. A predictive

biomarker can be used to identify subpopulations of patients who are most likely to

respond to a given therapy.

In data mining area, the methods for feature selection can be categorized into

three main types, which are filter, wrapper, and embedded methods [73]. Filter

methods are based on a quality merit of a feature, taking into account its ability to

distinguish between predefined classes. In most cases, a feature score is calculated.

Features are then ranked according to their scores and k best-ranked features which
are commonly selected for supervised or unsupervised learning methods. Wrapper

methods use estimations of discrimination performance provided by machine

learning approaches to evaluate feature subsets. An optimal subset of features

that maximizes the performance of selected machine learning is obtained by

using search strategies. Embedded methods are similar to wrapper methods but

taking into account searching strategies that require less computational power.

Although wrapper methods can select a feature set with high accuracy, they

require high computational power for searching strategies as the dataset has thou-

sands of features. There can be thousands of metabolites in one dataset of metabolic
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data. Embedded methods need less computational power. Nevertheless, both wrap-

per and embedded methods depend on an applied machine learning algorithm or

classifiers. These classifiers affect the evaluation of a feature set. On the other hand,

filter methods are independent of the classification algorithm. In addition, ranked

features or metabolites are easier for researchers/biologists for interpretation.

Metabolites are ranked or prioritized according to their score and can be identified

as candidate biomarkers [48].

As in transcriptomics, filter methods are also commonly used in metabolomics,

for example, student’s t-test or Mann–Whitney U test nonparametric testing

[95]. Wrapper methods were applied in some studies, for example, MS patterns

(with selected metabolites) in serum were utilized to distinguish between cancer

and noncancer in ovarian cancer [66]. Embedded methods seem to be alternative

methods for feature selection in metabolomics [29, 68, 101]. In the following, we

describe some common feature selection methods including statistical hypothesis

testing and support vector machine–recursive feature elimination (SVM-RFE).

Statistical Hypothesis Testing

Student’s t-test [79] is a popular statistical parametric hypothesis testing. It is a

univariate filter method for the two-class problem. The t-test assesses whether the
means of two independent groups are statistically different from each other. The

test value or its p-value can be served as a score for a feature. The test is based on an

assumption that the data is normally distributed. The variances of the two groups

are also expected to be identical. If the data variances are unequal, the Welch test

[88] can be employed. Alternatively, for nonparametric tests, Mann–WhitneyU test

or Wilcoxon rank-sum test [55] is commonly applied. These tests are appropriate

for two-class problems. The studied metabolites can be ranked according to its

score or significant score (p-value). A number of top-ranked metabolites can be

considered as candidate biomarkers.

Support Vector Machine–Recursive Feature Elimination (SVM-RFE)

Support vector machine–recursive feature elimination (SVM-RFE) [34] is an

embedded selection method. It uses the weights of SVM to rank features and

discards features with small weights. It was firstly developed for the discovery of

diagnostic markers in gene expression data and was tested in leukemia and colon

cancer datasets [34]. Variations of SVM-RFE have been broadly applied for MS

data. For example, biomarkers for early stroke diagnosis by using MS data were

purposed [68]. Only 13 features were suggested as potential biomarkers providing

excellent sensitivity, specificity, and model stability. The purpose of a recursive-

support vector machine (R-SVM) [101], which is another variation to SVM-RFE,

was to identify biomarkers in noisy high-throughput MS and microarray data.

Furthermore, an adapted SVM-RFE was also used for tandem MS quality
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assessment [26]. The use of feature selection with SVM appears to be a good

alternative for biomarker identification in metabolomics; however, it is noted that

SVM-RFE is used for a two-class problem only.

5.3.3 Functional Interpretation of the Metabolomics Data

Another challenging step is the functional interpretation of the metabolomics data.

Gaining only a list of identified candidate metabolites does not explain insight

biological process of the studied phenotypes. Notably, the candidate metabolites are

often put into biological context, e.g., annotated metabolites, metabolic pathway, or

metabolic networks, to gain the biological understanding and meaningful data

interpretation. Two main approaches are widely used toward the purpose, which

are pathway mapping and visualization and enrichment analysis [13] as described

in the following.

5.3.3.1 Pathway Mapping and Visualization

Typically, pathway analysis is performed by mapping candidate metabolites onto

metabolic pathways. Several pathway databases and visualization tools are publicly

available as provided in Table 5.3. Examples of visualization tools are provided in

pathway databases (e.g., Kyoto Encyclopedia of Genes and Genomes (KEGG) [41],

Reactome [22], etc.) or intentionally developed by incorporating existing databases

(e.g., interactive Pathways Explorer (iPath) [100], MetaMapp [3], etc.). Mostly

tools that are provided in pathway databases do not contain many features for

visualization as the ones that are intentionally created for only visualization.

However, the later one might not contain updated pathway data. Furthermore,

some tools also provide an integration and visualization of other omics data

[31, 49, 59, 81, 82].

A number of databases contain pathways of various organisms, for example,

KEGG [41], while various databases are dedicated for human metabolic pathways.

For instance, Reactome [22] is a curated pathway database focusing on the biolog-

ical pathway of human. HumanCyc [72], as a part of BioCyc [11], is specific to

human metabolic pathways and provides a visualization of the human metabolic

map. The Small Molecule Pathway Database (SMPDB) [39] is a more specific

database containing small molecule pathways that are found in human. It links to

the Human Metabolome Database (HMDB) [90], a database containing small

molecule metabolites in the human body with their detailed information. In addi-

tion, the Urine Metabolome Database [7] is also integrated to HMDB, which

contains metabolites particular in human urine.

As mentioned above, many tools are provided aiming for the visualization of

metabolic pathways by incorporating data from existing databases. For example,

iPath [100] provides an interactive visualization of pathways maps as a web-based
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tool. It includes data from KEGG, which are metabolic and regulatory pathways,

and biosynthesis of secondary metabolites. MetaMapp [3] is an approach mapping

metabolites from metabolomics data into network graph helping to identify meta-

bolic modularity by using Cytoscape [75]. Metabolomics pathway analysis

(MetPA) [96] is a web application designed for pathway analysis and visualization

of quantitative metabolomics data. Pathos [50] allows displaying metabolites iden-

tified by mass spectrometry in the context of the metabolic pathways using data

from KEGG [41] and MetaCyc [11].

Furthermore, tools providing an integrated visualization of other omics data

have been developed. MapMan [81] displays genomics datasets onto diagrams of

metabolic pathways. KaPPA-View [82] allows mapping of experiment data to the

metabolic pathway. MetScape [43], a plug-in for Cytoscape [75], provides a

framework in the context of human metabolism for the visualization of

metabolomics and expression profiling data in a network form. Paintomics [31] is

a web tool for the integration and visualization of transcriptomics and

Table 5.3 List of pathway databases and visualization tools

Databases/tools URL

KaPPA-View http://kpv2.kazusa.or.jp/kpv4

KEGG http://www.genome.jp/kegg

HumanCyc http://humancyc.org

HMDB http://www.hmdb.ca/

iPath http://pathways.embl.de

MapMan http://mapman.gabipd.org/web/guest/mapman

MetaMapp http://metamapp.fiehnlab.ucdavis.edu/homepage

MetPA http://metpa.metabolomics.ca/MetPA/faces/Home.jsp

MetScape http://metscape.ncibi.org

Paintomics http://www.paintomics.org/cgi-bin/main2.cgi

Pathos http://motif.gla.ac.uk/Pathos

PathVisio http://www.pathvisio.org

ProMeTra http://omictools.com/prometra-s11541.html

Reactome http://www.reactome.org

SMPDB http://smpdb.ca
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metabolomics data. PathVisio [49] is a tool allowing pathway analysis and drawing

and visualization of multi-omics data. ProMeTra [59] provides visualization

methods for multi-omics datasets, such as genomics, transcriptomics, and

metabolomics.

5.3.3.2 Enrichment Analysis

Another approach to facilitate functional interpretation is an enrichment analysis. It

helps to determine enrichment of a set of metabolites in predefined groups of

annotated functionally related metabolites or pathways. A number of tools are

implemented for metabolite enrichment analysis as provided in Table 5.4. Two

main approaches have been implemented and applied to these tools, which are

overrepresentation analysis (ORA) and set enrichment analysis (SEA) [13]. ORA

applies a statistical test to determine whether a set of input metabolites is enriched

in a particular annotation compared to a background set. Users could specify the

input metabolites, for example, a set of input metabolites that are statistically

different between two phenotypes of the study (e.g., healthy and cancer). A weak

point of this approach is that the users have to determine, e.g., a cutoff for selected

metabolite sets. The results of ORA could be different according to the metabolites

used in the analysis. The concept of SEA does not require a cutoff as in ORA. The

SEA approach has been widely applied in gene expression analysis, referred to as

gene set enrichment analysis (GSEA) [80]. It uses the whole ranked list of differ-

entially expressed genes and evaluates the distribution genes in a particular gene set

whether they tend to be in a top or bottom of a ranked list (more upregulated or

downregulated). A statistical method is utilized to provide such a score for enrich-

ment evaluation. The same principle can be applied to metabolic data. Instead of

evaluating the distribution of genes, distribution of metabolites in a predefined

metabolic set can be considered.

Integrated Molecular Pathway-Level Analysis (IMPaLA) [40] applies ORA and

SEA and allows integration to other omics data, transcriptomics and proteomics. It

takes the concept that genes and metabolites are linked through biochemical

Table 5.4 List of metabolite enrichment analysis tools

Tools URL

IMPaLA http://impala.molgen.mpg.de

MBRole http://csbg.cnb.csic.es/mbrole

MPEA http://ekhidna.biocenter.helsinki.fi/poxo/mpea

MSEA http://www.msea.ca/MSEA/faces/Home.jsp
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reactions and are contained in many pathways. This tool is provided via a web

interface.

Metabolite Biological Role (MBRole) [12] performs ORA. The annotations are

biological or chemical annotations from several public databases, for instance,

KEGG, SMPDB, HMDB, ChEBI, and PubChem. These include a biological path-

way; enzyme interaction; disease; tissue, biofluid, and cellular location; pharma-

cological action; biological role; chemical taxonomy; and chemical group.

Metabolite pathway enrichment analysis (MPEA) [42] is designed for functional

analysis and biological interpretation of metabolite profile data, particularly from

GC-MS. It applies SEA testing whether metabolites in a particular set (e.g.,

pathway) appear toward the top or bottom of a ranked compound list.

Metabolite set enrichment analysis (MSEA) [97] has been developed for enrich-

ment analysis and provided as a web-based tool (http://www.msea.ca). It is

designed to identify and interpret patterns of metabolite concentration changes in

a context for human and mammalian study. It provides three types of enrichment

analyses, which are ORA, quantitative enrichment analysis (QEA) – SEA using

metabolite concentration – and single sample profiling (SSP). The following

method determines whether metabolite concentrations are significantly higher or

lower than their normal values. In addition, MSEA can be used as a part of

MetaboAnalyst [98], which is a web-based server that integrated several tools for

metabolomics data analysis, visualization, and interpretation.

5.4 Perspectives

Advancements in instrumental, methodological developments in pre-metabolomics

era toward informatics techniques in post-metabolomics era have been adequate so

far. The subsequent challenges associated with metabolomics are the real applica-

tion to the translational research and biomedical informatics, particularly relevant

in metabolite biomarker discovery and key metabolic pathway identification in

complex human disease. Conceivably, systems biology is likely to lead to a better

understanding of a metabolite biomarker’s role in disease phenotype, especially if

combined with other omics data to reveal a global representation of the system. As

known that the metabolic fluxes and metabolite concentrations can originate from

multiple metabolic routes, such that alterations observed in the metabolic pheno-

type of a biological system can be ambiguous with respect to the origin. Therefore,

even although it can reveal disease biomarkers, it may not provide definitive

information about the underlying biological processes. Using an integration of

high-throughput techniques through multilevel omics data to assess different levels,

such as gene expression and regulation, as well as protein synthesis and expression,

can provide a way to elucidate bioprocesses that control the metabolome and

further identify certain metabolites that appear to be disease biomarkers. The future

direction of integration of metabolomics and systems biology for translational
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biomedical research can thus lead to reveal new biomarkers or potential metabolic

targets for future disease therapy.
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Chapter 6

Metagenomics and Single-Cell Omics Data
Analysis for Human Microbiome Research

Maozhen Han*, Pengshuo Yang*, Hao Zhou, Hongjun Li, and Kang Ning

Abstract Microbes are ubiquitous on our planet, and it is well known that the total

number of microbial cells on earth is huge. These organisms usually live in

communities, and each of these communities has a different taxonomical structure.

As such, microbial communities would serve as the largest reservoir of genes and

genetic functions for a vast number of applications in “bio”-related disci-

plines, especially in biomedicine. Human microbiome is the area in which the

relationships between ourselves as hosts and our microbiomes have been examined.

In this chapter, we have first reviewed the researches in microbes on community,

population and single-cell levels in general. Then we have focused on the effects of

recent metagenomics and single-cell advances on human microbiome research, as

well as their effects on translational biomedical research. We have also foreseen

that with the advancement of big-data analysis techniques, deeper understanding of

human microbiome, as well as its broader applications, could be realized.

Keywords Metagenomics • Single-cell • Omics • Human Microbiome

6.1 Introduction

Microbes are ubiquitous on our planet, and it is well known that the total number of

microbial cells on earth is huge [89]. These organisms usually live in communities,

and each of these communities has a different taxonomical structure. As such,

microbial communities would serve as the largest reservoir of genes and genetic

functions for a vast number of applications in “bio”-related disciplines, including

biomedicine, bioenergy, bioremediation, and biodefense [36].
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In most cases, a microbe itself is a unicellular cell, but different species of

microbes usually live in communities, meaning that microbes of different species

live and interact within a physically close space. Therefore, to understand these

microbes in their native status, it’s essential and indispensable to perform research

on microbes at the community level, including the taxonomical structure, func-

tional profiling, regulation network, etc. By analyzing the taxonomical structure

and the dynamic changes of the target microbial community, we could obtain hints

about new important microbial functional groups, which in turn could provide rich

information that could guide us toward community function regulation.

Human microbiome research (HMR) has mainly focused on human microbiome.

Human microbiome refers to the total genetic material in a microbial community

that live on or in the human body. Human microbial communities could have

different habitats, and they possessed rich resources for functional genomic studies

and applications [19, 43, 93, 116]. For example, the gut bacteria in total have

genomes larger than human genome in size, and they are in dynamic changes

[1]. Gut bacteria are strictly anaerobiotic, and they obtain energy through fermen-

tation process while performing reductive reactions such as methanogenesis,

acetogenesis, nitrate reduction, and sulfate reduction to influence human body

[107]. As gut bacteria have played important roles in the digestive system,

they could profoundly influence our health status.

One of the most famous projects in HMR is the Human Microbiome Project

(HMP), which has been considered as the second Human Genome Project. The

HMP is funded by the National Institutes of Health, launched officially in year

2007. It planned to conduct 900 human microbial whole-genome sequencing in

5 years at a cost of 150 million US dollars [18]. The aim was to explore the

feasibility of the research on human microbiome, to study the relationship between

the changes of the human microbiome for healthy and diseased hosts, and to

provide informatics and technical support for other scientific research areas. After

the completion of HMP, it has been clear that a new chapter in the human

exploration has been opened for the analysis of the relationship between human

themselves and the microbes; thus, it is a milestone for medical research.

6.1.1 The Research in Microbes on Community, Population,
and Single-Cell Levels

The complete understanding of the community genotypes and phenotypes depends

on the understanding of its functions and activities at different levels, namely, the

levels of community, population and single cells (Fig. 6.1). Firstly, at the commu-

nity level, taxonomical structure is the basic character of microbial community and

is also the foundation for analysis of community’s function. Interactions between
species are indispensable for the formation of microbial communities as well. Only

by understanding the interactions of species could we understand the role of
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individual species in the community. Secondly, at the population level, the analysis

of genomic variations and gene expressions within a specific species could reveal

the functional characters of this species in the community. Thirdly, even in the same

population of a species, growth rates and gene expression profiles of different single

cells are different. Therefore, researches at the single-cell level could provide

researchers with better understanding of the phenotypical and functional heteroge-

neities among individuals in the community and are also a method to analyze

uncultured and low-abundant microbes in the community.

6.1.2 Metagenomics and Single-Cell Omics

Metagenome refers to the set of all genetic materials in the whole microbial

community. The metagenomic approach is different from the traditional method

for microbiome research, as for metagenomics, the genetic material for all micro-

organisms, including those that cannot be cultured [48], would be analyzed as a

whole in one run. Among the methods designed to gain access to the physiology and

genetics of uncultured organism, metagenomics has emerged as a powerful solu-

tion. Apparently, the research in metagenomics would have broad impact in various

application areas such as biomedicine and microbial ecosystem.

As for single-cell omics, the sequencing of a single microorganism enables the

discovery and research of unknown microorganisms, from human microbiome to

the microbes living in deep sea, which sometimes would not be possible to

sequence as the traditional ways would need enough number of cells [83]. It heralds

a new era that allows “omics” analysis, including genomics, transcriptomics,

Ecosystem level Population level

Genotyping

Phenotyping

Single-cell level

Fig. 6.1 Analysis of the genotypes and phenotypes of microbial communities at the levels of

community, population, and single cells
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epigenomics, and proteomics, to be performed at the single-cell level. And the

application of single-cell technology could have profoundly promoted the devel-

opment of biomedicine as well.

6.1.3 The Relationship of HMR with Translational
Biomedical Research

HMR aims to study the relationship between the structural changes of microbial

flora on the surface and inside human bodies, by using the method of

metagenomics. The human body is the host for a total of more than 1014 bacteria

[96, 117]; therefore, it can be said that a human body is an ecosystem that is

composed of bacteria and its own cells. In general, human microbial communities

would live in harmony with their host, but when dysbiosis occurs, they may cause

many diseases including respiratory diseases, nervous system diseases, cardiovas-

cular diseases, connective tissue diseases, immune diseases, endocrine diseases

and cancer [10, 54, 87]. Understanding the taxonomical structure of microbial

communities in their stable status and their dysbiosis events would lead to the

better healthcare for many microbial community-related diseases such as inflam-

matory bowel disease (IBD) and colorectal cancer (CRC). The former is an

unexplained intestinal tract disease, which occurs at random location of the intes-

tinal tract. The onset is accompanied by blood in the stool symptoms, fever, etc.,

recurrent and difficult to effect a radical cure. Recent studies on IBD provided a

feasible treatment [7, 100]: in comparison to healthy adults, the intestinal microbial

samples of patients were found to have obvious disorders and deletions. And then

through the treatment of fecal microbiota transplantation (FMT), transplanting the

intestinal microbiota of healthy adults into intestinal tracts of patients, there are no

signs of recurrence in the treated patients. For the latter, the structural variation of

gut microbiota has been found to be responsible for the progression of the CRC

[11]. As exemplified by these, metagenomics provides a brand new perspective for

research on pathogenic mechanism of some complex diseases.

6.2 Metagenomics for HMR

6.2.1 Metagenomics and Its Context

Since over 90% of strains in a microbial community could not be isolated or

cultured [49], metagenomic methods have become popular for analysis of a

microbial community as a whole. Such an approach enables the exploration of

the relationships among microbes, their communities and habitats at the most
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fundamental genomic level. Understanding the taxonomical structure of a microbial

community (alpha diversity) and the differences in taxa among microbial commu-

nities (beta diversity) have become two of the most important problems in

metagenomic research [57, 67, 68], in which understanding beta diversity is

especially critical for studying microbial communities’ heterogeneity ecology.

For example, the Human Microbiome Project [108] and related efforts to study

microbial communities occupying various human body habitats have shown a

surprising amount of diversity among individuals in the skin [73, 109], gut [73]

and mouth ecosystems [45, 77]. Furthermore, even microbial communities from

similar types of environment might differ significantly [76].

Next-generation sequencing (NGS) techniques have enabled fast profiling of

large volumes of metagenomic samples. As a result, a rapidly increasing number of

metagenomic profiles (and datasets) of microbial communities have been archived

in public repositories and research labs around the world. Therefore, it is becoming

more and more important to perform the in-depth analysis for the valuable biolog-

ical information that is hidden in large number of samples. Hence, a system that

provides functionalities for data analysis would be of significant value to a world-

wide user base from multiple disciplines.

6.2.2 NGS Techniques for Metagenomic Researches

The increased throughput and decreased cost of sequencing have made NGS more

and more popular and widely used in various fields. The advantages of NGS have

also allowed an explosion in sequencing of microbial communities and opened the

gate for a revolution in microbial community sequencing and analysis [60]. Based

on metagenomic approach, NGS can sequence all microorganisms in a microbial

community in one run without the need to separate the microorganisms or to

establish a gene library [48]. Currently, both 16S rRNA profiling (amplicon

sequencing) and whole-genome sequencing (WGS) were commonly used to

describe and interpret the taxonomical structure and functional profile of microbial

communities. Sequencing analysis of 16s rRNA amplification is mainly used for the

analysis of microbial community’s taxonomical structure and relative abundance of

taxon in the community. For the application of WGS on microbial communities, the

main purpose would be to understand the functional profiles of the communities.

Based on WGS data, standard functional genomic analyses including genome

assembly, gene prediction and annotation, as well as regulation network recon-

struction would be included. Phylogenetic marker gene in the genome is used to

characterize species diversity as well as genetic diversity, based on which the

distribution and function of species in the community can be investigated [99].
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6.2.3 Computational Techniques for Metagenomic
Researches

As for the metagenomic technology, new algorithms and tools have been devel-

oped, which could provide more powerful technological support for metagenomic

researches. From the preprocessing of sequences, to genome assembly and gene

prediction, to the calculation of diversity of species, to metagenomic sample

comparison, to functional profiling and other processes, more and more excellent

tools will be invented, and these tools will provide powerful help for metagenomic

data analysis.

Based on these researches about functional genomes and metagenomes, some

large sequence databases with different signature sequence, such as Greengenes

[23], SILVA [90], RDP [16], etc., and a series of large datasets have been

established in this field now. Current databases include MG_RAST [73] (http://

metagenomics.anl.gov/, Metagenome database), CAMERA [52] (http://camera.

calit2.net/, Metagenome database, now renamed to iMicrobe), and universal data-

bases like NCBI (http://www.ncbi.nlm.nih.gov/). These databases are playing a

significant role for metagenomic research. At present, the number of the publicly

available metagenomic projects in NCBI, MG_RAST, and CAMERA2 sums up to

more than 10,000, and the data volume is up to several hundred TB. However, these

databases serve mainly as data repositories, with neither comprehensive tools for

comparative analysis nor capabilities for extensive comparison and search.

Currently, the tools for 16s rRNA profiling are more mature than metagenome

analysis tools for metagenomic data. MEGAN [45] is a metagenomic analysis tool

for taxonomical comparisons [77] and statistical analyses [52], which can only

compare single pairs of metagenomic samples based on taxonomical annotations,

as is also the case with STAMP [85]. ShotgunFunctionalizeR [52], Mothur [85],

and METAREP [32] identify the differences between samples using standard

statistical tests (mainly t-tests with some modifications). UniFrac [61] and Fast

UniFrac [35] examine the similarities among species based on their overlaps in

phylogenetic tree to discover ecological patterns.

Because of the lacking of reference database, the process flow of the whole-

genome analysis (based on WGS data) for metagenomic data is not very mature at

present. Every laboratory might have its own method to deal with the whole-

genome sequencing data for microbial communities. STAMP [108] and

MEGAN5 [28] provide some convenience for the whole-genome sequencing

data. MEGAN based on the JAVA mainly uses LCA algorithm to analyze

BLAST result. Except for analyzing species abundance and diversity, MEGAN

also can analyze functional genetic diversity and abundance. STAMP is also an

open-source platform analysis tool and can operate under Linux and Windows.

Friendly interface and simple graphic analysis could provide researchers with

various statistical models to evaluate either a small or a large number of samples

and could provide them with high-quality graphical results.
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The integrated tools have also been developed recently. These tools mainly

include QIIME [12], Mothur [98], and Meta-Mesh system [103]. QIIME is an

open-source process based on Python and developed for specially analyzing high-

throughput sequencing data of microbe PCR products by Rob Knight et al. in 2009,

which collects many tool packages and conducts charts directly during the progress

of analysis. The analysis process includes three steps: firstly, conducting the data

preprocessing including possible assembly; secondly, producing OTU, classifying

OTU, and conducting statistics of OTU abundance by known sequence of character

sequence database; and thirdly, calculating α- and β-diversity and drawing several

graphs including the PCoA graph. In 2009, Mothur was also issued by Patrick

Schloss (University of Michigan, USA), which is popular and widely used in the

bioinformatics analysis field now. Although it can’t draw graph directly from data,

ideal analysis graphs can be gotten with the help of R programming language. At

present, Mothur can already support sequencing data produced by various paltforms

including Sanger, PacBio, IonTorrent, 454, and Illumina (MiSeq/HiSeq).

6.2.4 Metagenomics: Milestone Works for Biomedical
Research

Current emphases of metagenomics researches in applications are mostly on bio-

medicine, biofuel, environmental monitoring and agriculture [22, 25, 41, 48], in

which several milestone works have been conducted.

Firstly, researches have outlined the global profile of human microbiome and

have showed that many diseases have close relations with human microbiome. In

2010, the completion of the first human microbiome profile has provided a deep

insight for the research of human metagenome [17]. There are thousands of billions

of bacteria cells that live on the surface of the human body and inside of the human

body; in other words, the human body is an organic whole that consists of bacteria

and somatic cells. The maintaining of demic normal microbe is significant to the

health of the human body, mainly reflected in the following four sides: (1) synthe-

sizing vitamin and bacteriocin, such as Lactobacillus acidophilus that can synthe-

size vitamin K; (2) promoting the metabolism of the host, such as Lactobacillus
casei that can promote the progress of digestion and reduce the content of choles-

terol in the blood; (3) promoting demic immunity, such as L. rhamnosus that can
increase the number and activity of the immune globulin and macrophage; and

(4) microbial antagonism, like Lactobacillus that can restrain the growth of Staph-
ylococcus aureus.

Secondly, current studies on microbial community in human digestive system

have revealed previously unseen connections between gut microbial communities

and human health. For example, some researches have been done to identify that

oral microbiota has effects on dental caries [86]. In addition, in the research of

obesity, two major flora Bacteroidetes and Firmicutes have been found, which have
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different abundances between healthy people and those with obesity [29]. In type II

diabetes study, researchers found an obvious decrease of lactic acid bacteria in the

gut microbial community for those with type II diabetes [110]. Furthermore, oral

microbiome is antibiotic resistant in their native environment [24]. Gut microbial

communities even can influence our brain by interaction [70]. The relationship

between premature birth and maternal bacterial infection indicated that related

translational medicine treatment might be conducted through mediation of micro-

bial communities [26]. Maternal bacterial and different delivery way would influ-

ence the baby’s intestinal microbiota [5, 66]. This may explain the continuity of the

microorganisms in human body.

Thirdly, microbial community studies might lead to some novel findings for the

research on “agelessness.” Agelessness is our human’s long-cherished wish since

our civilization, for which we have made unremitting efforts and countless

attempts. In the old times, the first emperor developed alchemy, and pharaohs

made mummy to achieve this goal. In modern ages, many are still devoted in

researches on cell reconstruction, chromosome telomere, with aim to extend human

life and finally achieve the longevity goal. And microbes might possess solutions

for agelessness: it has been reported that several kinds of bacteria can produce a

defensive chemical called rapamycin [55], which can make these species live

longer. On the permafrost of Siberia and Canada and in the South Pole, several

bacteria which have survived for half a million years have been studied [88]. These

studies have provided a new avenue on which we might use the metagenome

method to screen chemical substances about disease treatment and antiaging from

environment [65]. Since there are several close ties between microbes and animals

on different levels, metagenomic approach for study on microbes might discover

novel solutions for agelessness treatment as well.

6.3 Single-Cell Omics for HMR

6.3.1 Single-Cell Genotyping and Phenotyping

The monitoring of microbial cells during the time course is a very effective method

to analyze the adaptation of a cell population to changing conditions, such as

nutrient supply and stress exposure. Notwithstanding culminating evidences for

adaptation diversities among individual population members, such endeavors have

only been undertaken recently due to enormous technical challenges that are faced.

Regardless of these obstacles, such studies hold great promise to provide substan-

tially new insight into fundamental physiological processes in microorganisms as

well as to accelerate the development of superior strains for industrial

biotechnology.

Single-cell technologies, like the classical FACS (fluorescence-activated cell

sorting) analysis, possess the capabilities to detect population heterogeneities by
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observing distinct phenotypic parameters. On this level, single-cell-based FACS

techniques would be highly appropriate at resolving the dynamics of cells at

individual level by recording and comparing whole cell phenotypes. Additionally,

it is rational to combine FACS with subsequent omics analysis, as described in

recent publications to (a) detect population heterogeneities with FACS [95] and to

(b) thereupon perform omics characterization on selected (sub-) populations

[6, 33]. However, such novel investigations of microbial cell population dynamics

would require the development of improved microbe FACS profiling and increased

specificity and sensitivity in microbial data acquisition and analysis [38].

6.3.2 NGS Techniques for Single-Cell Omics Researches

When it comes to single-cell omics, the first problem that we will face is about

single-cell DNA extraction, for which novel methods and techniques are needed.

One popular technique is making use of microfluidics to extract single-cell DNA:

single-cell nuclei are immobilized in a micro-channel, and each nucleus will release

the chromosomal DNA when exposed to protease solution [114]. Another single-

cell DNA extraction method is based on using N-lauroylsarcosine salt solution

[106], which is efficient when compared to using other chemicals, and also with

simplified manipulation process.

There are currently several DNA whole-genome amplification (WGA) tech-

niques for single-cell sequencing, among which the most mature one is Multiple

Displacement Amplification (MDA). The rolling circle amplification mechanism in

circular DNA such as plasmid and virus DNA provides the inspiration for the MDA

technique [20]. MDA makes use of annealing random primers to denatured DNA

and then conducts strand displacement synthesis under a constant temperature,

which is catalyzed by φ29 DNA polymerase or the large fragment of Bst (Bacillus
stearothermophilus) DNA polymerase [21]. Thus, MDA has a more uniform

coverage of the single-cell genome and facilitates the analysis of genomes from a

great number of uncultivable microbial species [58, 92].

Multiple annealing and looping-based amplification cycles (MALBAC), which

combine MDA with PCR, use quasi-linear pre-amplification to reduce the bias

associated with nonlinear amplification [53, 120]. As for the primers, random

sequence and a common sequence tag are included. And primers are annealed to

template DNA. Then in the isothermal strand displacement reaction, primers are

extended by the large fragment of Bst DNA polymerase. The strand displacement

synthesis produces some partial amplicons, which are later denatured at the tem-

plate of 94 �C. In a quasi-linear amplification stage, there are five cycles of

annealing, and extension and denaturation are performed. And during this stage,

initial priming events are more evenly distributed over the course of multiple

cycles, which is in order to limit the reaction rate. In addition, when the newly

made amplicons are finished, for which they have a sequence common to each

primer, closed loops can be formed. The advantage is that closed loops can prevent
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them from being copied again. Consequently, the amplification remains linear,

subsequently, making use of PCR amplified on the preamplified DNA to generate

adequate amounts of DNA for sequencing [58]. Based on these reasons, MALBAC

is better than other WGA methods when it comes to amplification bias on ampli-

fying the single-cell genome [120].

Recently, there are more developments in third-generation sequencing technol-

ogies, including nanopore sequencing, single-molecule real-time (SMRT) sequenc-

ing, and direct imaging [97], many might revolutionize single-cell sequencing.

Third-generation sequencing technologies can improve sequencing length and

facilitate the analysis of long repetitive sequences and alternative splicing events.

Most importantly, there is no need to convert RNA into cDNA in third-generation

sequencing [82]. As for the RNA amplification and other RNA sequencing, many

new methods have been developed to improve the global transcriptome sequencing,

like PCR-based methods, IVT (in vitro transcription)-based methods, and phi29

DNA polymerase-based methods (rolling cycle amplification (RCA)) [59, 84]. And

further improvement in the breadth of single-cell mRNA analysis has been

achieved recently using mRNA sequencing (mRNA-Seq) [104] and quantitative

PCR (qPCR) [105].

6.3.3 Computational Techniques for Single-Cell Omics
Researches

Compared with traditional multi-cell samples that contain multiple cells, single-cell

analysis needs amplification of the whole genome (namely, WGA or the whole

transcriptome) before sequencing. Currently, both classical method such as MDA

[14] and new methods such as MALBAC [120] are used for the amplification of

whole-genome DNA. However, these technologies have limitations embodied in

the following two aspects: (1) amplification is difficult for the whole genome,

rendering some certain regions in genome not amplified (and thus not sequenced)

at all, and (2) amplification process might result in bias (uneven distribution of

reads), which means that within amplified regions, some might be amplified more

than other regions. Both of these two problems will create certain challenges for the

subsequent bioinformatics analyses.

For example, for single-cell genome sequencing, the copy number variation

(CNV) and single nucleotide polymorphism (SNP) are two important topics at

present [80]. For SNP, the WGA of single-cell genome will bring the following

problems: (1) As the genome coverage is low, for the uncovered fragments of

amplification, SNP information in these areas would be unknown. And at the same

time, the incomplete diploid genome amplification is likely to have allele dropout.

(2) As there might have errors in the process of amplification (the DNA polymerase

used in amplification has certain error rate), some new “SNP” would be introduced.

In addition, the cost of single-cell sequencing is still very high, rendering deep
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sequencing for a large number of single-cell impractical. Thus, how to accurately

call SNPs from low-coverage sequencing data is desired but still difficult. For CNV,

bias in the process of amplification would also affect the accuracy and resolution of

CNV identification.

6.3.4 Single-Cell Omics for Human Microbiome: Milestone
Works for Biomedical Research

There are huge numbers of microbes in our body; most of them are in the intestinal

tract. The highly diverse intestinal microbiota forms a structured community, which

is engaged in constant communication with itself and its host and is characterized

by extensive ecological interactions [101]. A main benefit is that the microbiota can

protect its host from infecting in a process termed colonization resistance (CR),

which remains insufficiently understood [101]. Now, we can make full use of

single-cell omics to research human microbiome and related diseases, such as

colorectal adenoma carcinoma [31]. In addition, single-cell omics for human

microbiome can be used for diagnosing: Preimplantation genetic diagnosis

(PGD), for example, is the analysis of a single cell from a biopsy of an embryo

after in vitro fertilization. PGD is used to test for genetic diseases and chromosome

aneuploidies [113].

6.4 Combining Metagenomics and Single-Cell Omics Data
Toward Better Interpretation of Human Microbiome

6.4.1 Problems About Single-Cell Heterogeneity

Cellular heterogeneity within an isogenic cell population is a widespread phenom-

enon [34, 46]. Cellular heterogeneity that arises from stochastic expression of

genes, proteins, and metabolites is a fundamental principle of cell biology

[113]. However, it is difficult to probe single-cell heterogeneity only relying on

metagenomics approach. On the contrary, probing single-cell heterogeneity without

considering the physical and chemical properties of the whole community and the

interactions of microbes in the community would tend to be biased. Moreover, it

would be important to probe the physical and chemical indicators of microenvi-

ronment and the reaction of single cells on both single-cell and community levels

[15]. Therefore, it would be advantageous to combine metagenomics and single-

cell omics data as well as related techniques for more in-depth analysis human

microbiome.
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6.4.2 Integrated Data Analysis

As the integration of single-cell omics and phenotype data would provide in-depth

understanding of microbial communities, the collection and organization of these

data from various sources and update of integrated databases would be of para-

mount importance.

Taking single nucleotide polymorphism (SNP) for example, a microbial com-

munity contains many different species, thus containing many different genomes.

Yet each of the single cells in the community has a single genome. Therefore, we

can easily establish a one-to-one relationship by comparing the single-cell genome

and microbial community total genomes. However, single cells have variations

even within the same species, so it will lead to an incomplete match between single-

cell genome and metagenome. Through the ways like SNP detection, we will

identify the differences of genomes between single-cell and microbial community

and thus discover the SNP pattern for the community (Fig. 6.2).

And the integration of metagenomics and single-cell omics data would not only

be beneficial for SNP analyses. Rather, the combination of biological techniques

and computational techniques for both metagenomics and single-cell samples

would result in more powerful tools for microbial community analysis. For exam-

ple, the “mini-metagenome” approach has been proposed recently, which could

divide a community into several small sets of species by sorting techniques (such as

FACS) and then analyze representative sets at single-cell level in more details

[80]. This approach has been successfully applied on the discovery of TM6 genome

(a Gram-negative organism) from a hospital sink biofilm [50, 72] and has provided

some insights for TM6’s functions that might affect clinical practices.

6.5 Discussions

6.5.1 The Needs for the Improvement of Big Data Analysis
Techniques for HMR

WGS approaches for HMR are still costly; therefore, there is a need for better

computational model that could map species to their main functions, especially for

large-scale studies [44, 48].

There are generally two approaches for metagenomic functional profiling, one

relies on sequence alignment, and the other is based on alignment-free approach

[8]. Sequence alignment must search for sequence similarities against the reference

database [8]. However, we know a little about the whole microorganism, and the

annotation is limited and can’t deal with large-scale studies. On the contrary, an

alignment-free sequence can use short sub-sequences (k-mers) [115]. Alignment-

free sequence does not need to use PCR amplification and could be directly used for

analysis. It is an appropriate way to analysis metagenome. There already have many
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tools for this such as CoMeta [51]. Using next-generation sequencing (NGS) with

GPU computing is another way to improve the quality of large-scale studies [102],

and the sequencing simulator NESSM can help to evaluate this [47]. For the

functional annotation using traditional assembly-gene prediction-annotation

Fig. 6.2 Methods for integrating single-cell and metagenomic data to analyze the differences of

genotypes at single-cell and community levels. (a) An illustration of using both metagenome and

single-cell gel electropheresis to identify SNPs. (b) An illustration of using multiple single-cell

omics data for SNP analysis
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approach, software like Velvet can be used for de novo short-read assembly

[118]. MetaGeneAnnotator [79] could be used for gene prediction by hidden

Markov model (HMM).

As more and more software [102] and databases [71] have been developed for

solving the problem of sequence to species assignments and functional categoriza-

tion, a full picture of microbial community structure could be revealed by using

more advanced methods.

6.5.2 The Need for More Samples for More Precise Pattern
Discovery

Although pattern discovery is desired to be as precise as possible, the amount of

samples collected might be the limiting factor [30]. To overcome the obstacle, there

are several aspects for further development in the related fields: (1) with the

development of sequencing facilities of higher throughput, we can obtain more

samples more efficiently, and (2) more modeling and computation methods for

pattern discovery, especially for heterogeneous and noisy samples, would need to

be developed for data mining based on existing samples [30, 44].

6.5.3 The Importance of Phenotypes for Microbial
Community Analysis for Biomedical Research

Omics data are not limited to genetic materials, but could also include phenotypic

data [30]. Microbes’ phenotypes would usually include bacterial cells’ physical and
chemical properties, such as images and infrared spectra. Besides phenotypes on

unitary level such as composition, structure, function, etc., microbial community

also possesses physical and chemical properties on cellular level as it is composed

of bacterial cells, which also determine the uniqueness of the community. For

example, both infrared and Raman spectroscopy methods have shown good repro-

ducibility and high discriminatory power for biological samples [112]. Thus, they

provide the unique advantage of differentiating taxonomical structure at the species

or subspecies level of bacterial cells on the basis of variations in the spectral

features [62]. Represented by the breakthrough publications in nature about using

infrared spectroscopy [78] and Raman spectroscopy [91] to study microorganisms,

these two properties have become important phenotypes of a microbial population

or community. Other physical and chemical properties of bacterial cells such as

images also are more and more involved in research on microbes [3, 81].

For biomedical research, the integration of genotypes and phenotypes would

undoubtedly yield novel insights that were not discovered by traditional methods.
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For example, such integration would reveal the molecular mechanisms responsible

for phenotypic heterogeneity [37] and could provide microbial groups with new

functionality [2].

6.5.4 Broader Application Areas for HMR

With the development of metagenomic and single-cell analytical techniques, HMR

would undoubtedly expand in its application areas. These new application areas

include but not limited to phage therapy for gut bacteria, brain function examina-

tion, and drug development.

1. Human microbial communities that involve in digestive system, phage therapy.
Phage therapy is an old approach to treat bacterial infection: as phage has the

specific host, phage treatment has a great treatment for specific bacteria

[64]. Phage has a flexible genome, and we can modify their genome to change

their capsid protein to bind specific bacteria [4]. Though sometimes phages

might infect bacteria and cause little damage to our host cell, their specificity

is relatively high. Therefore, they would be useful for treating specific bacterial

infection [13].

2. Human microbial communities that involve brain research. It is a novel finding
that our gut microbiota could interact with our brain [69, 94]: first, they influence

intestinal permeability and immune function, then activity in the enteric nervous

system, the HPA axis, pain modulation systems, and the brain [70]. Additionally,

research has found that the diet and diet-related changes could change our gut

microbiota and then influence the gut-brain axis and in turn influence your

behaviors [63]. Furthermore, the gut microbiome will influence our tempera-

ment during our early childhood [74]. Autism spectrum disorder (ASD) is

reported to have a relation with our disordered gut bacteria. A mouse model

which displays features of ASD, maternal immune activation (MIA) model

shows a link between ASD and gut bacteria [42]. Most recently, the human

satiety has been linked with gut microbial community [9]. All of these studies

have shown that there is a potential link between gut microbiota and brain

function.

3. Human microbial communities that involve in drug development. Human micro-

bial communities have been found to be very useful for drug production and drug

scanning in recent years [56, 111]. For example, human microbial communities

could produce bioactive flavonoids by biotransformation like dehydroxylation,

O-methylation, O-demethylation, hydrogenation, etc. [39]. They can also pro-

duce antibiotic: lactocillin, a big community member in vaginal microbiota, can

produce thiopeptide antibiotic [27]. A kind of N-acyl-homoserinelactones-pro-

ducing bacteria was also discovered, which could prevent plant-originated

infections with human pathogens [40]. Furthermore, researchers have already

mined Human Microbiome Project data to identify 3118 small molecule
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biosynthetic gene clusters (BGCs) in genomes of human-associated bacteria, and

they have found a new thiopeptide antibiotic from these candidates [27]. There-

fore, with the development of metagenomic approach, we could find more drugs

from this drug pool and find bacteria which can produce new drug for us [119].

All in all, HMR area is at the stage at which massive amount of sequencing data has

been generated, based on which quite a lot of exciting (sometimes astonishing)

discoveries have been reported [94, 100]. These findings have already deepen our

understanding of human as host and human microbial communities and provided

clues for clinical practices [7, 100]. However, the data bonanza in human microbial

community researches has also created great obstacles for data analyses, interpre-

tations, and applications [44, 99]. Yet we believe that with the rapid acumination of

data and more devotion to the development of analytical methods for big data in

HMR, such obstacles could be overcome [48, 75]. And such breakthroughs can lead

to even better understanding of human microbiome and thus push related transla-

tional medicine applications to a higher level.
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Chapter 7

TextMining for PrecisionMedicine: Bringing
Structure to EHRs and Biomedical Literature
to Understand Genes and Health

Michael Simmons, Ayush Singhal, and Zhiyong Lu

Abstract The key question of precision medicine is whether it is possible to find

clinically actionable granularity in diagnosing disease and classifying patient risk.

The advent of next-generation sequencing and the widespread adoption of elec-

tronic health records (EHRs) have provided clinicians and researchers a wealth of

data and made possible the precise characterization of individual patient genotypes

and phenotypes. Unstructured text—found in biomedical publications and clinical

notes—is an important component of genotype and phenotype knowledge. Publi-

cations in the biomedical literature provide essential information for interpreting

genetic data. Likewise, clinical notes contain the richest source of phenotype

information in EHRs. Text mining can render these texts computationally accessi-

ble and support information extraction and hypothesis generation. This chapter

reviews the mechanics of text mining in precision medicine and discusses several

specific use cases, including database curation for personalized cancer medicine,

patient outcome prediction from EHR-derived cohorts, and pharmacogenomic

research. Taken as a whole, these use cases demonstrate how text mining enables

effective utilization of existing knowledge sources and thus promotes increased

value for patients and healthcare systems. Text mining is an indispensable tool for

translating genotype-phenotype data into effective clinical care that will undoubt-

edly play an important role in the eventual realization of precision medicine.
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7.1 Introduction

The precision medicine ideal is that data about genes, environment, and lifestyle

can enable optimal patient care by allowing physicians to customize each person’s
treatment to reflect these unique health determinants. Governments and healthcare

organizations around the globe have taken interest in this ideal, with the recent

notable instance of the US Precision Medicine Initiative (PMI) announced by

President Barack Obama in January 2015 [12]. Prior to President Obama’s
announcement, many countries, including China, the UK, Iceland, Japan, Canada

and others, had established infrastructures for precision medicine research through

the development of biobanks (repositories of patient DNA with accompanying

databases that link the medical history and lifestyle information of donors to their

biologic samples) [90]. Precision medicine is thus a global hope founded in the

belief that it is possible to harness big data in healthcare and biology to promote

health and relieve suffering.

The core challenge of precision medicine (PM) is that of classification: is it

possible to discern differences between individuals in a heterogeneous population

that can guide treatment decisions and support improved care? Which people, for

example, are going to develop cancer? What medications will treat their cancers

most effectively? What is it about patient A that makes her fundamentally distinct

from patient B, and how should doctors tailor the care of these patients to reflect

these distinctions? These questions have always been relevant to clinical practice,

but a trade-off has always existed between increasing information and decreasing

clinical utility of that information. Precision medicine is a relevant concept now

because technology has advanced in key areas of medicine to such a degree that it is

possible that precise classification of individuals may indeed enable clinically

effective, personalized treatment.

The last decade witnessed the birth of two key sources of data with great promise

to enable the precise classification of individuals for medical care: the sequencing

of the human genome with accompanying improvements in sequencing technology

and the widespread adoption of the electronic health record (EHR). For both these

data sources, much of the information required to conduct precision medicine is

contained within unstructured, written texts such as the biomedical literature and

clinical notes. In its current state, this information is not computable; hence,

“unlocking” this information via natural language processing (NLP) is an essential

and truly exciting area of study.

This chapter is about text mining for precision medicine (TM for PM). Text

mining is a subfield of NLP dedicated to enabling computational analysis of text-

locked data. The text mining workflow generally involves identification of specific

entities in surface text such as diseases, genes, or relational terms and the deep

normalization of these entities to standardized ontologies. Data thus processed

become the input values for a variety of computations. There are two core functions

of text mining: (1) information extraction and (2) hypothesis generation via rela-

tionship extraction.

140 M. Simmons et al.



In this chapter, we devote two sections to the information extraction function-

ality of text mining. The first section addresses mining biomedical literature for the

purpose of assisting database curation in personalized cancer medicine. The second

addresses mining EHRs for the purpose of cohort identification. The third section

of this chapter explores the role of TM for PM as a vehicle for hypothesis

generation and ties the previous two sections together with a discussion of methods

of using biomedical literature and EHR texts to conduct pharmacogenomic

research (Fig. 7.1).

Two key terms to any discussion of precision medicine are the terms “genotype”

and “phenotype.” These terms can be confusing to people who are new to genetics

research because the meaning of both terms is contextual. Genotype, for example,

can refer to the entirety of an individual’s unique assortment of genes, or it can refer

to a specific variant of a single gene that distinguishes an individual from others.

Likewise the term phenotype can be defined as broadly or as narrowly as context

demands (a specific disease, such as age-related macular degeneration (AMD),

could be considered a phenotype, but within a group of people with AMD, the

presence or absence of specific findings such as aberrant blood vessel growth could

also be considered a phenotype). In this chapter, we discuss the biomedical

Fig. 7.1 The structure of this chapter reflects the two core functions of text mining and the two

foremost text sources related to precision medicine. Section 7.1 discusses how text mining

published literature can facilitate curation of genotype-phenotype databases for support of per-

sonalized cancer medicine. Section 7.2 discusses how text mining is useful in defining patient

phenotypes from EHRs. Section 7.3 is about using text mining of both text sources for hypothesis

generation in pharmacogenomics
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literature as an authoritative source of genotype information, and we discuss

electronic health records as a dynamic resource of human phenotypes (Fig. 7.2).

7.2 TM for PM: Personalized Cancer Medicine
and Database Curation

One area where PM has already demonstrated value and great promise is the field of

cancer medicine. This is why the near-term focus of the US Precision Medicine

Initiative is cancer diagnosis and treatment [12].

Cancer is a collection of diseases, all of which involve the development of a

population of cells in the body that gain the potential to replicate infinitely. Cancers

are typically named after the location of the cells that have undergone this trans-

formation (e.g., “breast cancer” if the altered cells were initially breast cells).

Cancer of any form is a disease of the genome [25, 26]. The changes that lead to

cancer development occur within the DNA sequence and result in the removal of

physiologic protections against cancer (loss of function mutations) and the produc-

tion of new stimuli that promote cellular growth (gain of function mutations).

Doctors are hopeful that genomics-driven precision medicine will be particularly

effective in treating cancer because of the genetic nature of the disease process

Fig. 7.2 Text mining brings unstructured information into focus to characterize genotypes and

phenotypes in precision medicine

142 M. Simmons et al.



[12, 21] and because of the demonstrated effectiveness of therapies directed

precisely at the genomic alterations that cause cancer [76].

Text mining has an intuitive place in the conceptual framework for the imple-

mentation of personalized cancer medicine, which involves (1) characterization of

the “driver” mutations in a given patient’s tumor and (2) identification of the drugs

that will best counteract the effects of those driver mutations [21]. Both of these

steps are information extraction tasks, which is a key function of text mining.

Additionally, much of the information needed for performing these two tasks is

contained within the biomedical literature. This section will discuss the current

issues and science behind text mining for assisting database curation in personal-

ized cancer medicine.

7.2.1 Considerations for Text Mining in Database Curation

The biomedical literature helps clinicians and researchers interpret genetic infor-

mation, and many databases in the cancer domain include literature references.

Some prominent databases with literature curations include the Catalogue of

Somatic Mutations in Cancer (COSMIC), Online Mendelian Inheritance in Man

(OMIM), ClinVar, ClinGen (the proposed manually curated component of

ClinVar), Swiss-Prot, Human Gene Mutation Database (HGMD), Pharmaco-

genomics Database (PharmGKB), and Comparative Toxicogenomics Database

(CTD). All the above databases are examples of genotype-phenotype databases

[8]. The gold standard of quality in the curation of literature references for these

databases is manual expert curation, but there is an indisputable need for text

mining tools to assist in the curation process. Baumgartner et al. elegantly illus-

trated this need by applying a found/fixed graph to examine the curation complete-

ness of two databases – Entrez Gene and Swiss-Prot. Ignoring the pace of new

publications, they instead examined the numbers of missing entities within these

two databases and compared the rate of generation of missing data annotations over

time to the rate of resolution of these missing data points. They concluded that

neither database would ever “catch up” to the pace of generation of information

without changes to their curation processes [3]. The rate of biomedical discovery

exceeds the curation capacity of these comprehensive resources.

Although it is true that the pace of article publication exceeds human curation

capabilities, it is a fallacy to conclude that assimilation of all new information is

necessary. In our experience, text mining applications are most likely to be adopted

by domain experts such as clinicians, researchers, and curation teams when the

applications correctly limit the amount of information they return. Curators of

databases may recognize a need to increase the pace and breadth of their curation

efforts, but their intent is not to curate all new articles but rather to curate only the

articles that further their institutional goals [48]. As an example, compare two high-

quality genotype-phenotype databases, Swiss-Prot and ClinVar. Both databases

contain information about diseases associated with protein/gene sequence
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variations, but their institutional scope is different. The chief aim of Swiss-Prot is to

identify variants that alter protein function, while the chief aim of ClinVar is to

provide evidence of the relationship between human genetic variants and pheno-

types. Because of this difference, an article demonstrating a causative association

between a variant and a given disease would likely rank higher in priority for

curation in ClinVar (or its manually curated partner, ClinGen) than in Swiss-Prot.

To be useful to domain experts and database curators, text mining tools must

balance (1) comprehensive analysis of the literature with (2) filtering tools for

ranking and identifying the most useful literature.

7.2.2 Text Mining in Database Curation

The curation workflow for genotype-phenotype databases involves three important

steps where text mining can play a crucial role [41, 100]: (1) information retrieval

and document triage, (2) named entity recognition and normalization, and (3) rela-

tion extraction. Fig. 7.3 provides a schematic overview of this process. For an

excellent treatment of the entire workflow, we direct readers to the review by

Hirschman et al. [28]. In the remainder of this section, we will discuss the latter

two aspects of the workflow.

Fig. 7.3 Genotype data permits incredibly deep classification of individuals. The biomedical

literature contains a wealth of information regarding how to clinically interpret genetic knowledge.

Text mining can facilitate expert curation of this information into genotype-phenotype databases
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An important step in curating genotype-phenotype databases is identifying

relevant entities within text. A wide variety of entities are appropriate for text

mining in precision medicine, including genes, gene variants, chemical/drug

names, species, cohort types, diseases, or even other biological concepts such as

analysis techniques or evidence levels. Tagging these entities is called named entity

recognition (NER), and mapping tagged entities to standard vocabularies is called

normalization. NER and normalization constitute the second step of the biocuration

workflow. Mining named entities from text is challenging because of the variability

of natural language expressions. We will discuss identification of three core entities

for genotype-phenotype database curation: genes, variants, and diseases.

Genes Several forms of natural language variation complicate gene NER: ortho-

graphical variations (e.g., “ESR1” vs “ESR-1”), morphological variations (e.g.,

“GHF-1 transcriptional factor” vs “GHF-1 transcription factor”), and abbreviations
(e.g., “estrogen receptor alpha (ER)”). Ambiguity also arises in texts that discuss

multiple species, since separate species frequently share genes of the same name

with distinct sequences (e.g., ERBB2 can be either a human gene or mouse gene

name). It is also possible for different genes to share the same name. For example,

“AP-1” can refer to either the “jun proto-oncogene” (Entrez Gene: 3725) or the

“FBJ murine osteosarcoma viral oncogene homolog” (Entrez Gene: 2353).

GNormPlus is a state-of-the-art, open-source text mining system for gene NER

and normalization [102]. GNormPlus utilizes multiple sophisticated text mining

techniques and achieves a balanced performance in recall and precision (please see

the text box, “Text Mining Performance Metrics,” in the last section of the chapter

for more information about precision and recall).

Variants Gene variants and mutations are not uniformly reported with standard

nomenclature in biomedical texts so identification and normalization of variant

mentions is challenging. Variant/mutation normalization is also complicated by the

fact that nomenclature standards have evolved over time as researchers have gained

additional insights into genetic complexities. The state-of-the-art tool for variant

extraction is tmVar [100].

Diseases Literature mentions of diseases involve frequent use of abbreviations,

synonyms, morphological or orthographical variations, and inconsistent word

ordering. DNorm is an open-source tool for disease NER and normalization that

maps concepts to the MEDIC vocabulary using a pairwise learning to rank machine

learning algorithm [41].

One of the most recent advancements in curation support is a tool produced by

NCBI called PubTator [101]. This web-based application incorporates multiple

state-of-the-art tools, including all three NER tools discussed above, to support

three curation tasks: document triage, NER and normalization, and relationship

annotation. PubTator combines an intuitive interface with comprehensive access to

all references in PubMed and is truly an excellent multipurpose tool for curation

(Fig. 7.4).
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The identification of semantic relationships between entities is called relation-

ship extraction and is considered the third step in the curation workflow. Conven-

tionally, most relation extraction techniques have used co-occurrence metrics to

relate two entities within a text (e.g., co-occurrence metrics make the assumption

that if gene A and variant B are both in the same abstract, then variant B must be a

variant of gene A). However, co-occurrence approaches ignore contextual content

and result in many errors. For example, in variant-disease relationship extraction,

co-occurrence methods will wrongly interpret negative results as support for an

association. The high rate of false positives associated with co-occurrence methods

significantly lowers the utility of these methods for genotype-phenotype database

curation workflows. In response to these challenges Singhal et al. [82, 83] devel-

oped a machine learning and text mining approach to extract disease-variant

relations from biomedical text. Their machine learning approach learns patterns

from the text to decide whether two entities co-occurring within the text have any

stated relationship or association. The patterns are learned on six predefined

features that capture both in-sentence and cross-sentence relation mentions. Nega-

tive findings within the text are taken into account using numeric sentiment

descriptors. They demonstrate that machine learning delivers significantly higher

performance than the previous co-occurrence-based state of the art [18].

Fig. 7.4 This abstract includes examples of each of the five bio-entities that PubTator identifies.

Note the correct identification of mentions to non-small cell lung cancer regardless of whether the

text uses the full term or its abbreviation, NSCLC. Likewise, PubTator correctly interprets the term

“patients” as a reference to a species, Homo sapiens. Although this abstract uses protein-level

nomenclature to describe gene variants (e.g., “XRCC1 Arg399Gln”), the authors distinguish

genotypes with nucleotides rather than amino acids (e.g., “the XRCC1 399A/A genotype”). This

variability is an example of the challenges inherent to named entity recognition of gene mutations
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7.2.3 Applications of Text Mining in Personalized Cancer
Medicine

Text mining plays an important role in the curation workflow of many cancer-

related genotype-phenotype databases. For example, curators of Swiss-Prot use a

number of text mining resources for document triage in their curation workflow,

including TextPresso and iHOP [94]. In the Pharmacogenomics Database

(PharmGKB), curators use an adaptation of the TextPresso tool, Pharmspresso,

for information retrieval and document triage [22, 94]. The miRCancer database,

which catalogs literature mentions of microRNA expression in cancer cells, uses a

rule-based text mining approach to identify miRNA-cancer mentions for manual

curation [107]. Two groups have used text mining to develop gene methylation

databases for cancer research: MeInfoText [19] and PubMeth [61]. Still other

groups have created cancer-specific databases using text mining. Examples of

such databases include the Osteosarcoma Database [65] and the Dragon Database

of Genes associated with Prostate Cancer (DDPC) [52].

One of the most prominent databases to use text mining to curate information

related to precision cancer medicine is the Comparative Toxicogenomics Database

(CTD), a publicly available database containing manually curated relationships

between chemicals, genes, proteins, and diseases. CTD employs text mining to

triage documents and identify entities in text for curation. They developed a metric

called a document relevancy score to quantify how important a given literature

reference might be to their curation goals, and they found that text mining reliably

identifies articles that are most likely to provide the highest yield of new, relevant,

and biologically interpretable information [14]. CTD has also featured prominently

in several BioCreative community challenges1. Track I of the BioCreative-2012

Workshop involved developing a document triage process with a web interface

[105] for curation in CTD. Likewise, Track 3 of BioCreative IV involved devel-

oping web tools for performing named entity recognition on text passages using

CTD’s controlled vocabulary [1]. More recently, the 2015 BioCreative V challenge

included a chemical-disease relation (CDR) task involving extraction of chemically

induced diseases. The best systems in this task achieved an F1 score of 57% (Wei

et al. [103]).

The need for using text mining in database curation is extremely strong. The

interdisciplinary nature of precision cancer medicine and the volume of information

relevant to customizing patient care necessitate the use of databases to integrate

information and create broad access to it. The biomedical literature constitutes a

relevant and authoritative source of information for such databases, and text mining

can structure and summarize this information for rapid assimilation. As the science

1BioCreative is one of a number of community-wide competitions and collaborative efforts

designed to assess and advance the state of the art in text mining for biomedicine. Past challenges

have addressed many issues related to TM for PM. For more information regarding this unique

aspect of the text mining community, please see the review by Huang and Lu [31].
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of text mining advances and tools become more robust and accurate, the immediate

relevance of TM for PM will only increase.

7.3 TM for PM: EHRs and Phenotype Determination

The previous section discussed how text mining biomedical literature supports

database curation and thus informs clinicians and researchers as they look deeply
into individuals’ genotypes. In this next section, we consider a completely separate

perspective of TM for PM—how text mining electronic health record (EHR) data

can enable physicians to look broadly at an entire population by classifying patient

phenotypes. Such patient phenotypes may be the most accurate means of

representing the interplay of all the health determinants of precision medicine:

genes, environment, and lifestyle.

Consider the case of an actual clinical dilemma that occurred involving a

teenage girl who was hospitalized for an autoimmune disorder called systemic

lupus erythematosus (SLE or lupus) [20]. Several factors complicated this girl’s
condition and predisposed her to forming blood clots. Although blood-thinning

medications could protect against these clots, her providers were also concerned

about paradoxical bleeding if they prescribed these medications. The key clinical

question in this situation—whether to prescribe a blood thinner—was not readily

answerable from published research studies or guidelines, so her provider turned to

her institution’s EHR and used its research informatics platform [47] to identify an

“electronic cohort” of pediatric patients who had in previous years experienced

similar lupus exacerbations. From this cohort, they identified a trend of complica-

tions from blood clots, which convinced them to administer anticoagulants.

This story illustrates the potential of using EHR data to direct personalized care.

The physicians in this case used EHR data to identify a group of similar patients

with known outcomes. The outcome data then enabled them to estimate their

patient’s risk and intervene to modify that risk. Although this analysis did not

yield the statistical confidence of a formal clinical trial, the patient’s physicians felt
that this EHR cohort analysis provided superior information than the alternatives—

pooled opinion and physician recollection [20]. In a large healthcare system,

EHR-derived cohorts can reflect the interplay of genes, environment, and lifestyle

in the health outcomes of a specific group of patients. Many exciting applications of

cohort identification from EHR data exist. This section will discuss two use cases:

patient outcome prediction via patient similarity analytics and cohort identification

for clinical trials. Text mining is integral to the development of these applications

because in many cases the richest and most diverse patient information in EHRs is

contained in free, unstructured notes written by healthcare providers [15] (Fig. 7.5).
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7.3.1 EHR Phenotype Determination

Identifying populations of people with shared health characteristics amounts to

defining a phenotype. EHR data has been shown to be an effective source for

comprehensive measurement of the phenotypic characteristics of populations

[38]. Simply defined, EHRs are information systems that contain electronic records

of all the key clinical and administrative data relevant to the medical history of each

patient in a specific healthcare institution [10]. EHRs consist of both structured and

unstructured data fields (Fig. 7.6). Some of the key structured data fields include

billing data, laboratory and vital signs, and medication records. Unstructured data is

largely present in notes, of which there are two main types: clinical notes (e.g.,

history and physical notes or discharge summaries) and test results (e.g., radiology

reports or pathology reports) [15]. EHR data is a promising source of phenotype

information because

1. information in EHRs is relatively inexpensive to obtain since EHR data is

generated as a by-product of the healthcare process;

2. the scope of EHR data is vaster than the scope of any organized study, both in

terms of the variety of pathology and in terms of longitudinal coverage; and

Fig. 7.5 EHRs are rich sources of phenotype information. Algorithms to extract phenotypes

commonly incorporate text mining of clinical notes as well as billing codes and medications. In

contrast to the deeply individual nature of genotype information, phenotype algorithms generate

clinical insights by first looking broadly at aggregated populations of people with similar condi-

tions and known health outcomes
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3. the resolution of EHR data continually improves over time because additional

encounters for any given individual lead to increased certainty regarding the

presence or absence of a given diagnosis.

There are several noteworthy challenges inherent in using EHR data for preci-

sion medicine [29]. (1) EHR data consists of sensitive and highly confidential

information with extensive legal protections [70] and real ethical pitfalls related

to privacy [81]. (2) EHR data is incomplete for many reasons. One reason is that

patients often utilize multiple healthcare systems (e.g., a given patient may see

specialists at different, unrelated hospitals), but separate systems do not share EHR

data so information within EHRs can be fragmented [15]. (3) EHR data is compli-

cated by multiple biases. The highest quality manner of collecting population

phenotype data is through a prospective observational cohort, like the Framingham

Heart Study (FHS) [46]. In comparison with such studies, EHR data mining ranks

much lower in an evidence hierarchy [27] and should be suspected of significant

biases such as multiple confounders, selection bias (EHRs represent sick people

more than healthy people), and measurement bias (e.g., documented physical exam

findings may differ in reliability between physicians) [78].

In addition to the above challenges inherent to EHR data, the process of

identifying patients with a specific diagnosis (i.e., defining a phenotype from an

Fig. 7.6 The Veterans Information Systems and Technology Architecture (VISTA) is the most

widely used EHR in the United States. Like most EHRs, it contains structured data and unstruc-

tured text
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EHR) has its own attendant challenges. Sun et al. illustrated these challenges in

their work to identify people with the condition of high blood pressure (hyperten-

sion) from their institution’s EHR [86]. Physicians diagnose hypertension by

observing blood pressures that consistently exceed a certain threshold over time.

Even though many EHRs contain blood pressure measurements in structured

formats, using blood pressure measurements alone to identify patients with the

condition of hypertension is surprisingly inaccurate. This is because blood pressure

measurements are inherently variable [33] (e.g., blood pressures may rise in

response to pain or anxiety) and are modifiable through treatment (i.e., the use of

antihypertensive medication by people with the condition will result in normal

blood pressure levels). Thus, in the approach utilized by Sun et al. to detect changes

in HTN control status, detection models incorporating only aggregated blood

pressure measurements identified many more false positives and false negatives

than models that incorporated multiple features from the EHR.

Because of the complexity of determining phenotypes from EHR data, a com-

mon convention is to use billing data such as International Classification of Disease

(ICD) codes and Current Procedural Terminology (CPT) codes for representing

phenotypes [15]. These billing codes are universal between healthcare systems and

are available in structured formats. Yet billing data alone is also insufficient for

accurate representation of disease phenotypes [106]. The best performing

approaches to identifying EHR phenotypes incorporate multiple data fields, includ-

ing text mining [16]. Wei et al. demonstrated the benefit of text mining in pheno-

type development in a study where they examined the advantages and utilities of

billing codes, clinical notes (using text mining), and medications from EHRs in

detection of ten separate disease phenotypes. They found that information collected

from clinical notes through text mining offered the best average sensitivity (0.77)

out of all individual components, whereas billing code data had a sensitivity of 0.67.

They also found that the relevance of using text mining of clinical notes in

identifying phenotypes varied by disease (e.g., 84% of all information in the

EHR necessary for identifying rheumatoid arthritis was contained in clinical

notes, whereas only 2% of information needed for identifying atrial fibrillation

was contained in notes) (Wei et al. [104]). Ultimately, the highest F1 scores resulted

from combinations of two or more separate EHR components, such as billing data

and text mining. In general, incorporating text mining in phenotype algorithms

results in improvements in both the precision and recall [15].

7.3.2 Phenotype Extraction from EHR Text

In this section, we present a classification of the text mining approaches used in

information extraction for EHR phenotype development, and we provide a brief

overview of phenotyping. For a more comprehensive treatment of the entire

approach for identifying patient phenotype cohorts from EHRs, please see the

review by Shivade et al. [80].
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Text in clinical notes differs from text in biomedical literature in several ways.

The foundational difference is that biomedical literature contains formal, peer-

reviewed writing, whereas clinical notes are comparatively informal. Physicians

write clinical notes with the goal of maximizing time efficiency, so clinical notes

contain heavy use of abbreviations, often only decipherable from contextual cues.

For legal reasons, modification of existing clinical notes is not permitted, yet due to

time constraints, physicians often submit notes with only cursory proofreading.

Consequently, spelling errors and unconventional sentence structures are common.

Lastly, clinical notes frequently contain copied and pasted sections of values or text

such as lab findings or vital signs, which complicate parsing of notes [56].

The extraction of relevant information from EHR texts involves four steps:

(1) text segmentation, (2) entity identification and normalization, (3) evaluation

for semantic modifiers such as negation and possibility phrases, and (4) extraction

of special entities from text.

1. Text segmentation. Free text from clinical notes needs to be segmented into

fundamental units called “tokens” before any further processing takes place.

Text segmentation is done using NLP parsers and tokenizers. cTAKES and the

GATE framework are examples of open-source NLP parsers designed for

handling clinical text [73]. Several commercial options are also available.

2. NER and normalization. The most common approach for entity identification is

to map tokens from segmented text into target dictionaries such as SNOMED-

CT, ICD, UMLS, etc. Tools for mapping concepts in biomedical literature such

as MetaMap can also process tokenized clinical texts [2, 4], but other clinically

customized tools exist [43, 55] such as the HITex system [109] and the Knowl-

edge Map Concept Identifier [9, 109].

3. Evaluation for semantic modifiers. Words that modify the semantic meaning of

sentences are important for accurate phenotyping. For example, consider the

significance of the word “no” in the following list that might appear in a

provider’s note for a patient with chest pain: “no history of heart palpitations,

dizziness/fainting, or tobacco use.” In a similar sense, identifying possibility

phrases or status keywords such as “confirmed,” “possible,” “probable,” etc. is

very helpful.

4. Special entity extraction. Other important entities in free text include special

keywords such as numerical measurements and units [23], dates and time-related

words (e.g., “before,” “during,” or “after”) [84], and phenotype-specific

keywords [85].

7.3.3 Phenotype Algorithm Development

The entities extracted from clinical texts serve as inputs along with other structured

EHR data such as billing codes and medications for phenotype algorithms. It is also

worth acknowledging that several studies have looked at external sources such as

imaging data [5, 50], drug characterization databases [45], and scientific articles
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from biomedical literature [110] to extract EHR phenotypes. Regardless of the data

types used, phenotype algorithm development for EHRs involves identifying rele-

vant features and then synthesizing those features—either through the application

of expert-derived rules or through machine learning (ML).

Rule Application For some conditions, clear clinical guidelines exist to guide

phenotype algorithm development. The breathing disorder asthma is one such

condition [49]. One way of defining a phenotype algorithm is to incorporate these

clinical guidelines into a set of rules that can guide identification of patients with a

given condition. Wu et al. took this approach in modifying the asthma diagnostic

criteria and developing a set of rules to identify patients with definite and probable
asthma [106]. Other conditions also lend to rule-based algorithms. Nguyen

et al. [59] used a set of rules to build a classification system to identify lung cancer

stages from free text data from pathology reports. Schmiedeskamp et al. [74] used a

set of empirical rules to combine ICD-9-CM codes, labs, and medication data to

classify patients with nosocomial Clostridium difficile infection. A few studies such

as those by Kho et al. [34], Klompas et al. [37], Trick et al. [95], and Mathias

et al. [53] have used guidelines published by organizations such as the American

Diabetes Association, the Centers for Disease Control and Prevention, the Amer-

ican Cancer Society, and other trusted organizations to develop rule-based

algorithms.

Machine Learning As opposed to rule-based techniques where expert knowledge

determines parameter significance, ML techniques identify patterns (not necessar-

ily rules) from data. ML techniques are ideal for extracting phenotypes when rules

are either not available or not comprehensive. There are two steps to ML phenotype

algorithm development: feature selection and model building. “Feature selection”

refers to the identification of parameters to use in ML algorithms. Establishing a

sufficiently robust feature set prior to model building is important for achieving the

best performance. We encourage the readers to read Bishop [6] for this topic.

Researchers have experimented with several ML models including probability

[32, 77, 110], decision tree [50, 51, 97], discriminant [9, 77] and other types of ML

models [35, 43, 92] to build phenotype categorization systems. In each case, the

models essentially approach phenotyping as a classification or categorization prob-

lem with a positive class (the target phenotype) and a negative class (everything

else). No consensus exists about which ML model is best for phenotype algorithm

development. Wu et al., who developed the rule-based algorithm for identifying

patients with asthma that we previously discussed, also developed an algorithm for

asthma detection using ML. They chose a decision tree model and compared the

results of their ML and rule-based algorithms. Both algorithms substantially

outperformed a phenotyping approach using ICD codes alone, and the ML algo-

rithm performed slightly better than the rule-based algorithm across all perfor-

mance metrics [106].

Phenotype extraction from EHRs is a challenging task that has become the rate-

limiting step for applications of EHR phenotypes; nevertheless, broad, flexible
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phenotyping for point-of-care uses like patient outcome prediction is achievable.

One factor that may aid in broad phenotype determination is the transferability of

phenotype algorithms from one institute to another. The eMERGE Network—a

collaboration between healthcare systems with EHR-linked biobanks—demon-

strated this transferability in a study where separate healthcare systems measured

the performance of phenotype algorithms developed by a primary site at other sites

within the network. They found that the majority of algorithms transferred well

despite dramatic differences in EHR structures between sites. The majority of

algorithms yielded PPV values above 90% [58]. Many phenotype algorithms are

publicly available at the Phenotype Knowledgebase, an online repository of algo-

rithms produced in partnership with the eMERGE Network and the NIH

Collaboratory [93]. Other groups have investigated the possibility of automatic,

high-throughput phenotype development. Yu et al. employed a penalized logistic

regression model to identify phenotypic features automatically and generated

algorithms for identifying cases of rheumatoid arthritis and coronary artery disease

cases using data obtained through text mining of EHRs. Their approach demon-

strated comparable accuracy to algorithms trained with expert-curated features such

as those in the previously mentioned study by the eMERGE Network [108].

7.3.4 Patient Outcome Prediction Through Similarity
Analytics

Widespread interest exists in utilizing EHR phenotype data to produce point-of-

care tools for clinicians [75]. One potential function is patient outcome prediction

through similarity analytics. This is the use case of EHR phenotypes that we

presented at the beginning of this section. Patient outcome prediction is a relatively

new field of study. Consequently, even though text mining is an important compo-

nent of the phenotype-determination algorithms that such prediction tools require,

relatively few studies have examined the role of text mining in end-to-end risk

prediction models. Most studies focus on either patient risk prediction or phenotype

definition [80]. Regarding the former, Lee et al. showed the potential benefit of

phenotype-derived predictions in their work developing a patient similarity metric

to quantify the degree of similarity between patients in an intensive care unit for the

purpose of predicting 30-day mortality [42]. Their model demonstrated that using

data from a relatively small (~100) subset of patients who possessed the greatest

degree of similarity delivered the best predictive performance. One notable study

has used text mining in an end-to-end fashion with patient outcome prediction: Cole

et al. used the NCBO Annotator to process clinical notes related to juvenile

idiopathic arthritis (JIA) and employed this information in combination with billing

code data to predict risk of developing uveitis (a vision-threatening complication of

JIA) [11]. The field of patient similarity analytics using phenotype detection to
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drive outcome prediction is an exciting field of research where TM for PM promises

great results.

7.3.5 Clinical Trial Recruitment

Another application of text mining for phenotype definition from EHRs is auto-

mated clinical trial eligibility screening. Precise phenotype cohort identification

facilitates improvements in both the effectiveness (identifying the best patients) and

efficiency (enrolling the most patients) of clinical trial recruitment. The key goals of

this process are to (1) identify those populations who meet the inclusion criteria for

a study and (2) facilitate the most efficient workflow for enrollment of those

patients into the correct trial [39]. Ni et al. showed that a text mining-based

screening system could accomplish both goals [60]. They identified patient pheno-

types using text mining of notes and billing code data to enable automated patient

screening. At the same time, they obtained from ClinicalTrials.gov the narrative

text of eligibility criteria of the trials being conducted at their institution and used

NLP to extract pattern vectors for each clinical trial. They used these vectors to

identify which trials would best fit a given patient. Ultimately, their process reduced

workload of physicians in screening patients for clinical trials by 85%. Many other

studies have shown similar benefits [39].

Another exciting application of precision EHR phenotyping related to trial

recruitment is that of automated point-of-care clinical trial generation using

EHRs [75]. Conducting randomized interventional studies using the existing infra-

structure of the EHR involves building point-of-care tools into the EHR that will

activate an enrollment process when a clinician is faced with a clinical decision

where medical knowledge is insufficient to guide care [13]—for example, consider

hypothetically the case study of the teen with lupus at the beginning of this section.

In her situation, if an EHR trial was in place regarding the use of anticoagulation in

a lupus exacerbation, and if the patient and her physician were truly ambivalent

about what the right choice was, after she provided consent, the EHR would

randomize the patient to one intervention or the other (i.e., give anticoagulants or

withhold them). All subsequent follow-up would be purely observational through

the data recorded in the course of the patient’s care. The randomized intervention in

this type of study resolves some of the issues of confounding associated with

observational data, and as such, this type of randomized observational study falls

between observational studies and randomized trials in an evidence hierarchy.

Vickers and Scardino proposed that this model might be applied in four areas:

comparison of surgical techniques, “me too” drugs, rare diseases, and lifestyle

interventions [98]. Point-of-care clinical trials are an application of EHR

phenotyping that might be the only cost-effective way to effectively study a large

number of clinical questions related to precision medicine.
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7.4 TM for PM: Hypothesis Generation

Text Mining Performance Metrics

The three most common evaluation metrics for text mining tools are preci-

sion, recall, and F1 score [30]. These metrics apply equally to tools for

processing clinical text and published literature. Precision and recall are

also common metrics for evaluating clinical diagnostic tests. We describe

each below.

Precision is the text mining equivalent of the clinical metric of positive
predictive value and is equal to the ratio of true positives to all positive values
from a test. In lay terms, recall answers the question, “How likely is it that the

results of this tool actually reflect what I was searching for?” Tools with high

precision scores have low numbers of false positives and can thus be trusted

to produce only correct results.

Precision ¼ Positive Predictive Value

¼ True Positives= True Positives þ False Positivesð Þ

Recall is the text mining equivalent of the clinical metric of sensitivity and is

equal to the proportion of all true positives that a test detects. In lay terms,

recall answers the question,

“Can I rely on this tool to identify all relevant entities?” Tools with high

recall scores have low numbers of false negatives and are thus most reliable.

Recall ¼ Sensitivity

¼ True Positives= True Positives þ False Negativesð Þ

A trade-off exists between precision and recall such that it is possible to

improve the precision of any tool at the expense of recall and vice versa. For

this reason, it is common in text mining evaluations to use a composite metric

called F1 score, which is the harmonic mean of precision and recall.

Text mining is useful for identifying genotypes and phenotypes from biomedical

literature and EHRs. Yet information extraction is not the only function of TM for

PM. Text mining tools can also generate hypotheses and by so doing support

precision medicine research. In this section, we will address hypothesis generation

using biomedical literature and EHR data related to one area of precision medi-

cine—pharmacogenomics discovery.

Pharmacogenomics is the study of how genes affect drug response. In the

context of this chapter, it may be helpful to view pharmacogenomics as a particular

kind of genotype-phenotype relationship (i.e., consider response to a drug as a

phenotype). Two areas of applied pharmacogenomics research where text mining
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tools for hypothesis generation have proved useful are drug repurposing (identify-

ing new indications for existing, approved drugs) and drug adverse effect

prediction.

Text mining tools for hypothesis generation universally function through iden-

tification of relationships between entities. These relationships can be semantically

defined relationships, formal relationships in structured ontologies, or relationships

across heterogeneous data sources [24]. Text mining tools that synthesize such

relationships and successfully identify new information can increase research

productivity and provide substantial savings in terms of opportunity cost.

Hypothesis-generating tools are particularly important in precision medicine

because the large data sources associated with precision medicine encourage

execution of multiple tests, which results in increased statistical penalties [8]. For

example, although genetics researchers now have the capability of sequencing

thousands of genes to identify genetic determinants of response to a particular

drug, the analysis of each of these genes results in thousands of tests, each of which

carries a specific probability of returning a false positive. Thus, for every test that

researchers perform, they must increase the value of their significance threshold,

which in turn creates a bias preventing detection of rare variants and variants with

small effect sizes. Well-formulated and supported hypotheses derived in silico from

data such as biomedical literature grant researchers the ability to find support for a

potential gene association before committing resources to test that association

experimentally. As researchers are enabled to test fewer genes, the significance

thresholds for discovery grow smaller, and the likelihood of discovering true

associations increases.

7.4.1 Pharmacogenomic Hypothesis Generation from Text
Mining Biomedical Literature

The world’s biomedical literature, when accessed via text mining, can become an

incredibly rich database of multidimensional relationships, including core

pharmacogenomic relationships such as those between genes, proteins, chemicals,

and diseases. Text mining makes such relationships computationally mappable and

enables discovery of “hidden” relationships that are not explicitly described in

published literature and, indeed, are not yet known. The validity of this conceptual

approach to hypothesis generation was demonstrated in an early application of text

mining that explored disease-chemical relationships to predict a benefit for using

fish oil in Raynaud’s syndrome [87] and for using magnesium to treat migraines

[88]. The discoveries hypothesized in these studies identified a straightforward

form of relationship: if drug A is related to phenotype B in one body of literature,

and disease C is related to phenotype B in a separate body of literature, drug A and

disease C might be related to each other [89]. Reflecting an understanding of the

complexity of biological disease processes, more recent approaches using text
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mining to generate hypotheses for precision medicine have explored drug-gene

relationships, drug-protein interaction networks, and gene pathway relationships.

Regarding drug-gene relationships, Percha et al. hypothesized that drug-drug

interactions (DDIs) occur when different drugs interact with the same gene product.

To prove this hypothesis, they extracted a network of gene-drug relationships from

Medline (the indexed component of PubMed). Their work is notable for their

extraction of the type of relationship between drugs and genes (e.g., “inhibit,”

“metabolize,” etc.) as well as the gene and drug entities themselves. They verified

their approach by predicting a number of known DDIs as well as several DDIs that

were not reported in the literature [64]. In another work, Percha and Altman

approached mapping the rich networks of drug-gene relationships in published

literature by explicitly defining the ways in which gene-drug interactions are

described in literature. They employed a novel algorithm, termed ensemble

biclustering for classification, which they validated against manually curated sets

from PharmGKB and DrugBank. Finally they applied it to Medline, creating a map

of all drug-gene relationships in Medline with at least five mentions. This map

contained 2898 pairs of drug-gene interactions that were novel to PharmGKB and

DrugBank [63].

Drug-protein interactions (DPIs) are another form of relationship from which to

generate pharmacogenomic hypotheses. Li et al. used DPI data to create disease-

specific drug-protein connectivity maps as a tool for drug repurposing. Their

approach involved establishing connectivity maps between text-mined disease-

drug relationships and an outside database of protein-drug interactions. They

demonstrated the utility of this approach by applying their work to Alzheimer

disease, where they used these maps to generate the hypotheses that prazosin,

diltiazem, and quinidine might have therapeutic effects in AD patients. By

searching ClinicalTrials.gov, they discovered that one of these drugs, prazosin,

was already under investigation as a therapy for agitation and aggression in AD

patients [44].

Biological pathways are sequences of interactions between biological entities

such as genes, chemicals, and proteins that combine to exert a change in a cell.

Because these pathways are essentially complex networks of relationships, they

have great potential for hypothesis generation, yet pathways are necessarily high in

order. As we discussed in the biocuration section of this chapter, mining high-order

entities from text remains challenging. Tari et al. made significant progress in this

domain with an approach to construction of pharmacogenomic pathways [91]. They

produced pharmacokinetic pathways for 20 separate drugs (pharmacokinetic path-

ways describe how the body processes a drug). They extracted molecular drug

interaction facts from databases such as DrugBank and PharmGKB and then

expanded this information with text-mined data from Medline. The key contribu-

tion of their approach is their use of automated reasoning to sort these facts and

construct pathways according to logical time points by assigning pre- and post-

condition states to entities. A comparison between their automatically constructed

pathways and manually curated pathways for the same drugs in PharmGKB

revealed that the automated approach achieved 84% precision for the extraction
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of enzymes and 82% for the extraction of metabolites. Their system enabled them

to propose an additional 24 extra enzymes and 48 metabolites that were not

included in the manually curated resources.

7.4.2 Hypothesis Generation from EHRs

Many applications of TM for PM using EHR text for hypothesis generation require

the integration of phenotypic data with genetic data. Although this is uncommon in

EHRs, it is possible with EHR-linked biobanks. Examples of such biobanks include

the NUgene Project at Northwestern University [62], the Personalized Medicine

Research Project of the Marshfield Clinic [54], and BioVu at Vanderbilt [7]. A

fitting starting point to a discussion of TM for PM in hypothesis generation using

EHR text is the experimental design of a genome-wide association study (GWAS),

which detects disease-causing genetic variants [99]. GWA studies are traditionally

conducted by enrolling patients and then obtaining their phenotype and genotype

through physical exam and gene sequencing; however, these studies can also be

conducted using EHR-linked genetic data in conjunction with EHR phenotyping.

In a GWAS, researchers compare genes of people with a disease (the “cases”) to

genes of people without the disease (the “controls”). Gene variants that are found

more commonly among cases than controls are evidence of an association between

a variant and a disease if the difference reaches statistical significance. Because of

the statistical hazards of multiple testing mentioned in the introduction to this

section, significance thresholds in GWAS are often quite stringent [36]. Ritchie

et al. demonstrated the feasibility of using EHR-linked genetic data in performing

GWAS [69]. Text mining is important in EHR-based GWAS since accurately

defining case and control phenotypes is a prerequisite to distinguishing genetic

associations. For example, in an EHR-based GWAS regarding cardiac rhythm,

Denny et al. employed text mining to detect negated concepts and family history

from all physician-generated clinical documents. They linked this text-mined data

with electrocardiogram data, billing codes, and labs to define phenotypes for cases

and controls. The inclusion of text mining in these phenotype algorithms resulted in

substantial improvements in recall while maintaining a high precision. Ultimately,

this approach identified a novel gene for an ion channel involved in cardiac

conduction [15, 17].

Text mining-enabled GWAS using EHR-linked genetic data are a cost-efficient

and flexible avenue of discovery because EHRs can support exploration of an

incredibly dynamic array of phenotypes. For example, Kullo et al. used NLP of

clinical notes and medication lists to identify case and control phenotypes for an

EHR-based GWAS that employed genetic data from a previous study about one

phenotype (peripheral artery disease) to perform an EHR-based GWAS about a

completely separate phenotype (red blood cell traits) and identified a new variant in

a gene previously unknown to be related to RBC function while also successfully

replicating results of previous dedicated GWAS about RBC function [40]. Although
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the biases inherent in EHR data limit the reliability of these findings, this in silico

method of discovery demonstrates the utility of text mining in EHR notes to

generate hypotheses through GWAS.

One limitation of GWA studies is that the selection of cases and controls permits

investigation of only one phenotype at a time and prevents the detection of gene

variants that might predispose to multiple diseases. For example, it took two

separate studies performed at different times to demonstrate that variants in the

FTO gene predispose to both diabetes and to obesity. Text mining EHRs can enable

discovery of such gene-disease relationships through an experimental modality

called a phenome-wide association study (PheWAS), which is essentially the

reverse design of a GWAS. In a PheWAS, the cases and controls are people with

or without a specific gene variant that is suspected of causing disease. Comparison

of a broad array of hundreds of disease phenotypes experienced by people with and

without the variant allows the detection of multiple gene-disease associations and

suggests etiologic relationships between disease types. The first PheWAS used only

billing code data to define phenotypes, but subsequent studies have shown that

using text mining of clinical notes in addition to billing data improves the signif-

icance of results [15].

PheWAS are a powerful hypothesis-generating application of TM for

PM. Moore et al., noting that PheWAS enable discovery of multiple phenotypes

associated with single genes, used clinical trial data from the AIDS Clinical Trials

Group (ACTG) to explore phenotypes related to drug adverse effects in AIDS

therapies. Their first published work established baseline associations between

clinical measurements and patient genotypes, replicating 20 known associations

and identifying several that were novel in HIV-positive cohorts [57]. In other areas

of medicine, Rzhetsky et al. used a PheWAS approach to hypothesize a relationship

between autism, bipolar, and schizophrenia [72]. Likewise, Shameer

et al. performed PheWAS and demonstrated that gene variants that affect charac-

teristics of platelets also have an association with heart attack and autoimmune

diseases [79]. Each of these findings identifies a potential avenue for

pharmacogenomic therapy and demonstrates the potential of text mining EHRs

for hypothesis generation.

7.5 TM for PM Conclusion: Value in Healthcare

One final concept that merits discussion is that of value. Value in healthcare is

defined as health outcomes achieved per dollar spent [66]. Every medical interven-

tion, including precision medicine and TM for PM, should be weighed in terms of

this framework. How much will precision medicine benefit patients and at what

cost?

In many circumstances, value actually opposes the implementation of precision

medicine. For many conditions, increasing the granularity with which we under-

stand our patients may result in benefits, but those benefits may be so slight that the
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cost of obtaining them renders the technology valueless [71]. In some settings, the

current therapies or diagnostics may be so effective and inexpensive that the costs

of PM will not merit the marginal gains. Alternatively, even if PM does greatly

enhance diagnosis and prediction of disease, if no effective therapies exist for that

disease, the overall value of PM will be reduced [67]. It is difficult to predict in the

early stages of adoption of PM which diseases and therapies will benefit from PM

and which will not.

Value is also the tantalizing target of precision medicine. In the 2016 Precision

Medicine Initiative Summit, which took place one year after the announcement of

the Precision Medicine Initiative, US President Barack Obama reviewed the status

of the initiative and asserted the potential of precision medicine to produce efficient

and cost-effective healthcare [68]. Many factors support this assertion. Regarding

the numerator of the value equation (healthcare outcomes), it is likely that precision

medicine will indeed increase prevention of many diseases and improve therapeutic

options for diseases that are detected. Regarding the denominator (cost), two factors

may lower the relative costs and favor its adoption: (1) human DNA is largely

unvarying (with the exception of cancer) within a single individual throughout the

lifespan. Therefore, although genetic sequence analysis may be initially expensive

compared to other diagnostic tests, as our understanding of the role of genes in

health and disease increases, the repeated utility of sequence data will lower the

comparative cost. (2) Data in electronic health records are already widely collected

and stored, so use of this data should require only minimal expense.

Text mining is a vehicle to obtain increased utility from existing information

resources, and it offers several advantages in the precision medicine value equation.

Mining biomedical literature, for example, can help streamline curation and can

improve research efficiency through hypothesis generation. Likewise, mining EHR

text facilitates the use of this underutilized source of important patient phenotype

information and enables a host of useful applications. As far as TM for PM can

demonstrate increased value, its merit and ultimate adoption into mainstream

medicine is assured.
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Chapter 8

Medical Imaging Informatics

William Hsu, Suzie El-Saden, and Ricky K. Taira

Abstract Imaging is one of the most important sources of clinically observable

evidence that provides broad coverage, can provide insight on low-level scale

properties, is noninvasive, has few side effects, and can be performed frequently.

Thus, imaging data provides a viable observable that can facilitate the instantiation

of a theoretical understanding of a disease for a particular patient context by

connecting imaging findings to other biologic parameters in the model (e.g.,

genetic, molecular, symptoms, and patient survival). These connections can help

inform their possible states and/or provide further coherent evidence. The field of

radiomics is particularly dedicated to this task and seeks to extract quantifiable

measures wherever possible. Example properties of investigation include genotype

characterization, histopathology parameters, metabolite concentrations, vascular

proliferation, necrosis, cellularity, and oxygenation. Important issues within the

field include: signal calibration, spatial calibration, preprocessing methods (e.g.,

noise suppression, motion correction, and field bias correction), segmentation of

target anatomic/pathologic entities, extraction of computed features, and

inferencing methods connecting imaging features to biological states.

Keywords Radiomics • Radiogenomics • Magnetic resonance imaging •

Glioblastoma multiforme • Quantitative imaging • Imaging standards • Imaging

informatics

8.1 Introduction

Diagnostic imaging represents an important component of precision medicine.

Clinically, it constitutes a frequent, noninvasive, longitudinal, in vivo approach to

gathering objective patient evidence related to a patient’s condition. Imaging can

capture structural, compositional, and functional information across multiple scales

of evidence, including manifestations of disease processes at the molecular,

genetic, cellular, tissue, and organ levels [56]. It plays a central role in disease
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screening, disease detection, disease assessment, treatment planning, and prognos-

tic assessment. Imaging informatics specifically deals with optimizing those clin-

ical decisions that could be rationalized via radiological, pathological, and/or

ophthalmological evidence. As such, it must work in close association with a

more comprehensive systems view of disease in order to maximize its clinical

benefits.

Using the term imaging to indicate a subspecialty of informatics might seem a

bit odd. Indeed, imaging informatics shares common methodologies with other

subdisciplines of medical informatics. Due to the specific challenges related to the

storage, management, distribution, processing, and visualization of these volumi-

nous, high-dimensional datasets, imaging informatics had developed into its own

subspecialty [8, 110]. Today, the goals of the field have expanded to include

optimizing the use of imaging data across the entire process of patient care. Routine

radiological data can now bridge evidence variables from multiple scales, thereby

helping to substantiate clinical theories of a patient’s diseased condition. Imaging

can provide a whole-body perspective of a diseased state such as metastasis and can

also assist in detecting tumoral mutations, providing important clues as to the

evolving heterogeneity of a patient’s cancer. In this chapter, we explore the

evolving role of imaging informatics with respect to precision medicine, touching

on current views, open computational problems, and developmental approaches.

We explore the field from a number of perspectives including theoretical aspects,

experimental issues, engineering/computational concerns, community goals, and

clinical/patient concerns. We will limit the discussion to radiology imaging, with

emphasis on magnetic resonance imaging. Examples will be mainly drawn from the

clinical area of oncology due to the concentration of applied work in the field. In

this chapter we attempt to crystallize the diversity of tasks using the running

example of treatment planning and management for a patient with glioblastoma

multiforme (GBM), a type of malignant brain cancer.

8.2 The Big Picture: Imaging and Precision Medicine

There has been a tremendous amount of research and development in the advance-

ment of imaging methods for the human body. Specifically, considerable research

has been directed to developing imaging biomarkers, defined as “. . . anatomic,

physiologic, biochemical, or molecular parameters detectable with imaging

methods used to establish the presence or severity of disease which offers the

prospect of improved early medical product development and pre-clinical testing”

[191]. Yet the full utility of image data is not realized, with prevailing interpretation

methods almost entirely relying on the conventional subjective analysis of gray-

scale images. The interdisciplinary field of imaging informatics addresses many

issues that currently prevent the systematic, scientific understanding of radiological

evidence and how this imaging evidence can inform a biologically inspired model

of a disease to improve medical decisions and predictions. The field attempts to
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operationalize fragments of knowledge from medical imaging, clinical medicine,

genomics, systems biology, and cognitive sciences. Briefly, imaging informatics

intersects a number of diverse disciplines including:

Medical Imaging Physics An understanding of how exactly a pixel value is

grounded to physical properties of the patient is nebulous even to most radiologists.

To optimize downstream analysis methods, both the semantics of the imaging data

and the variability due to technical/noise factors need to be considered as part of the

interpretive process.

Clinical Medicine Imaging examinations are motivated to answer a clinical ques-

tion. Thus, mappings between what are the optimal imaging protocols (acquisition

and analysis methods) needed to best answer a clinical question are crucial. An

intelligent order entry system would anticipate relevant propositional entailments

of the clinical question in order to rationalize what particular imaging methods

should be considered. This factoring of the clinical question could also be utilized

to provide a targeted comprehensive report based on the motivations of the study.

Genomics and Systems Medicine It has been observed that patients presenting

with similar clinical phenotypes, provided with similar treatments, can have vastly

different therapeutic responses and prognostic outcomes [65, 84, 134]. High-

throughput technology has shown evidence that the underlying gene expression

can differentiate subgroups of tumors, adding to tissue classification efforts in

pathology and imaging [211, 216, 222]. Thus, bidirectional association studies

to/from low-level biological parameters from/to observable imaging evidence

features are an important line of research. Imaging informatics efforts include

creating knowledge bases and appropriate representations for these associations

such that various queries related to clinical, research, and statistical applications can

be performed. Currently, radiomics studies are geared toward the expansion of

quantitative imaging phenotypes and the integration of molecular high-throughput

data [37, 76]. Together, the intersection of these studies produces the budding field

of radiogenomics.

Molecular Biology Imaging scientists and molecular biologists are developing

imaging probes (i.e., biomarkers) that are used to chemically bind to biological

targets causing imaging signal intensity changes in the area of interest. A number of

important applications of this technique have demonstrated its great promise,

including characterization of gene expression and detection of molecular properties

associated with pre-disease states [73, 220].

Computation Transforming imaging data into a useable form to answer high-level

clinical questions is complex, likely involving a number of fragmented models

spanning variables over multiple domains. Storage, representation, computational

complexity, and computing speed are all critical issues in dealing with this high-

dimensional feature space. Issues at this level also include: how to best integrate

knowledge reported in the primary literature for clinical trials and/or observational

studies, how to address the issue of reproducibility in the context of a state space
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that is extremely large, and how to address issues of sparse training sets that may be

noisy in and of themselves.

Cognitive Science Cognitive frameworks are needed in order to accurately repre-

sent and synthesize fragments of knowledge for the purpose of intelligent reasoning

about a given clinical problem. A rich ontologic representation of concepts, frames,

and processes needs to be maintained so that it can be easily extended and include

the necessary knowledge and details to support various precision medicine type

queries. For example, the extension of ontologies includes those entities that exist

purely in the imaging (e.g., shadows, edges, textures) or computational worlds. The

Quantitative Imaging Biomarker Ontology (QIBO) is an example of such a devel-

opment. In addition, causal and probabilistic inferencing frameworks in large state

spaces need to be developed in order to support imaging-based precision medicine

queries.

Psychophysics Imaging data from an acquisition device produces a matrix of

numerical data. This numerical information is traditionally transformed into some

human perceptual form such as brightness and hue. Radiologists have developed

pattern-matching skills to targeted findings based on these spatial-temporal light

signal patterns. With complex imaging and analysis methods, imaging data can be

mapped to a large number of variations; furthermore, these variations can be

visualized in a number of forms. Thus, methods for summarizing, highlighting,

compressing, and organizing this complex data such that important patterns can be

easily perceived are an important research area in imaging.

Operations Research Finally, the field of imaging informatics must consider

umbrella issues that bring all these components together into an application for

assisting physicians in the interpretation of imaging information. Thus, various end-

to-end operational issues are critical for deployment. Issues in this regard include:

the role of the patient; workflow issues given that the imaging consultation process

may be complicated by advanced acquisition, processing, and reporting steps;

quality assurance; payment policies for computationally intensive consultations;

and coordination of goals and community group efforts in order to accelerate/

stimulate global developments.

Figure 8.1 summarizes the main topics of discussion in this chapter including:

the relationship between imaging informatics and precision medicine (Sect. 8.3),

the nature of imaging signals and their representation (Sect. 8.4), the compilation of

cases for observational research (Sect. 8.5.3.1), the standardization and

preprocessing requirements (Sect. 8.5.3.2), the computation of imaging features

(Sect. 8.5.3.4), the model building (Sect. 8.5.3.5), the validation of models

(Sect. 8.5.3.6), and the clinical implementation issues (Sect. 8.6).
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8.3 Role of Imaging in Instantiating Systems Models
of Disease

Diseases are complex phenomena of nature with etiologies and presentations that

vary tremendously among different individuals. Often, our first notion of how we

perceive a disease is via its name (e.g., breast cancer, non-small cell carcinoma of

the lung, or glioblastoma multiforme). This label primes a physician’s cognitive

system with respect to the patient’s prognosis, the expected disease course, and a

general bias toward how to treat and monitor the disease. However, current

classification schemes for many diseases are far from complete and have margin-

alized this definition over what actually are a number of distinct “subtypes” of a

disease [152]. Thus, most classifications and staging systems are underspecified and

based only on partial constraints such as location, histology, or morphological/

structural characteristics [182].

Current research in genetics and systems biology, for example, has revealed that

breast cancer is better classified into five distinct subtypes [77]; glioblastoma

multiforme can be stratified into four distinct subtypes [211]; and the disease we

label as “autism” may in fact be on the order of 500 different genetic subtypes

[181]. The implications, and indeed the driving motivation, of identifying a

patient’s precise subtype are many, most important of which include matching

the most appropriate targeted therapies for the given subtype based on a theoretical

Fig. 8.1 A high-level framework for radiomics research and application. The blue labels in

parenthesis are references to descriptions in the corresponding sections in the text
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mechanistic model supported by experimental evidence.1 Precision medicine views

of cancer must be adopted by imaging specialists. An overview of the complexity of

this situation involves the following:

1. A patient’s disease may be distributed over several anatomical sites. Tumors for

a cancer patient, for example, may be rooted at various locations within the

patient’s body, each with possibly varied genetic signatures.

2. Within each diseased site, a tumoral mass may itself be composed of many

genetically distinct subregions (mutant colonies) of cells.

3. Each distinct genetic subregion may result in various perturbations of the normal

molecular, cellular, and/or organ/tissue networks of our complex human phys-

iology [52, 78, 226]. The malfunctions caused by these network perturbations

are then the basis for what we might view as a diseased state. A given disease

may have many associated perturbed configurations, adding to the complexity

for a disease description.

4. The expressed phenotypes caused by these network perturbations at various

biological scales can vary based on a host of factors operating at different

biological levels and networks including the states of regulatory systems, epi-

genetic regulation, cellular microenvironments, bacteriome, diet, etc. Different

edge anomalies within a cellular network caused by a given mutant gene set

could result in different phenotypes that may be percolated up and observed

differently at various biological scales of organization [59]. The abilities of a

patient’s autoregulation system toward dealing with such perturbed network

states can influence disease incidence and manifestation.

5. Furthermore, there are scale-level entanglement interactions. Higher-scale phe-

notypes (e.g., tumor level local resources) can trigger low-level genetic muta-

tions (i.e., a downward causation effect). Thus, the monitoring of phenotypes can

be an important factor in predicting probabilities of tumor cell mutations [3].

What Is the Role Then of Imaging Informatics in the Overall Goals

of Precision Medicine? Imaging is one of the most important sources of objective

observable evidence that provides broad coverage, can provide insight on low-level

scale properties, is noninvasive, has few side effects, and can be performed fre-

quently. Multiple magnetic resonance imaging and x-ray computed tomography

studies, for example, are routinely performed on virtually all cancer patients. Thus,

imaging data provides a viable observable within an evidence-based precision

medicine model. Other variables in such a model (e.g., biological parameters and

their joint complex states), which may be vital for therapeutic decisions, may not be

practically measurable or cannot be practically monitored through time. For exam-

ple, it is not possible to obtain a large number of biopsy samples that cover all

suspect areas of disease at frequent intervals due to patient discomfort among other

1“Endotypes” are subtypes in which an underlying causal mechanism has been identified (see

[24]).

“Verotypes” are used to refer to the true population of similar patients for treatment purposes.
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factors. Therefore, imaging information facilitates the instantiation of a theoretical

understanding of a disease for a particular patient context by connecting imaging

findings to other biologic parameters in the model (e.g., genetic, molecular, symp-

toms, and patient survival). These connections can help inform their possible states

and/or provide further coherent evidence.

8.4 Imaging Data in a Nutshell

Modern scanners, from CT, MR, PET, ultrasound, nuclear medicine, etc. gather raw

analog signals generated from low-level phenomena (e.g., atomic/nuclear interac-

tions) [34], which are detected, electronically processed, digitized, and coded in

some relatively “black-box” fashion with respect to most clinicians, including

radiologists. Thus, before one makes interpretations of the imaging data, one

must understand the semantics and properties of images. It should be noted that

the properties of an “image” can change in different settings. For example, in silico

properties (numerical representation) differ from the properties of images when

they are displayed on a computer monitor (e.g., physical brightness and contrast

properties). Thus, before describing how imaging data can be linked to other multi-

scale biological parameters of a precision medicine model, we first present some

important general details of what a medical image represents.

Any given image represents some warped view of reality. It includes noise,

artifacts, and spatial distortions and probes the human body for signals in a very

restricted manner. The basic unit of a digital image is a “pixel” (picture element) for

2D spatial images and a voxel (volume element) for 3D images. As the name

suggests, a pixel exists only within the specialized (artificial) world of an image and

can be viewed as the lowest level of abstraction of information in a digital image. In

image grammars, a pixel is the minimum unit of image syntax (i.e., the basic

building block for how an image is stitched together from a hierarchical organiza-

tion of scene parts).

Space-Time-Energy The value of a pixel is some function of 2D space:

pixelvalue ¼ f x; yð Þ. A voxel is a function of 3D space f x; y; zð Þ. The quantity f
may be regarded as some physical measureable data containing material/dynamic

information about the object under study. It contains information for targeted

signals as well as an undesirable noise component. A pixel/voxel value can also

be further described as a function of space and time: voxelvalue ¼ f x; y; z; tð Þ.
Examples of how a voxel value can change with time include things flowing into

and out of the voxel (e.g., flow studies), change in from physiological state (e.g.,

functional magnetic resonance imaging, fMRI) and imaging systems that accumu-

late counts over time (e.g., nuclear medicine studies, intravenous contrast). A pixel/

voxel value can be characterized as some function of space-time-energy as well:

voxelvalue ¼ f x; y; z; t;Eð Þ. We can represent “spectral” dependencies for the

value of a pixel at a specified location and time. For instance, we often talk about
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multispectral acquisitions in magnetic resonance (MR), obtaining T1-weighted pre-

and post-contrast, T2-weighted, and FLAIR (fluid-attenuated inverse recovery)

sequences for a given patient at a given time. In MR spectroscopy, a voxel can

represent a spectrum of targeted metabolite concentrations.

Mathematical Representation Because images are composed of values that vary

in space, they are often thought of as fields – a function that varies with position.

This abstraction of viewing images as fields brings to light various image

processing methods based on the mathematics associated with fields. A pixel

value f x; y; zð Þ can be a scalar value, in which case, the image is seen as a scalar

field. For example, in x-ray imaging, the primary signal is related to atomic

attenuation characteristics of the patient so that the pixel scalar value is related to

properties such as electron density, atomic number, and mass density. In routine

magnetic resonance imaging, the scalar values are related to the nuclear spin-lattice

and spin-spin interaction time constants associated with such physical properties as

proton density, nuclear mobility, state of matter (e.g., liquid, solid, gas), molecular

size, and local lattice vibration patterns. The intensity value of a digital image f
x; y; zð Þ may represent k-tuples of scalar intensity values across several spectral

bands (i.e., it can span over an “energy” space). A pixel value may also be a vector
quantity that includes a magnitude and direction. For example, a vector field may

represent a dynamic contrast flow through a spatially positioned tissue sample as

depicted on a coronary magnetic resonance angiography study [123]; it may

represent a deformation field used to quantify how a patient’s scan differs from a

standardized anatomic atlas [124] or lung motion field during the respiratory cycle

[83]. Finally, a pixel may be a tensor (more precisely, a tensor of order 2). Defined

in 3D space, a tensor is characterized by a 3x3 matrix. Tensor fields are associated

with images derived from some property of the imaged media that are anisotropic

(i.e., associated with inhomogeneous spatially dependent properties). An example

tensor field is the information obtained via diffusion tensor MRI (DTI) which

measures Brownian motion of water molecules and is used in applications such

as white matter tractography [11].

Spatial Discretization A pixel (and voxel) is a digital representation, being

discretized in both its intensity value, f , and its location x; y; zð Þ within a mathe-

matical lattice. Realistically, a pixel’s value is an average over a small neighbor-

hood of points centered about the point x; y; zð Þ. Thus, pixels are not infinitesimal

elements and can contain a large number of possible image signal carriers (e.g., in a

one millimeter cubic volume, there are on the order of 1019 hydrogen nuclei within

a typical tissue sample). A pixel ideally is a representation of a relatively homoge-

neous environment, and we assume that the property we wish to extract from a pixel

is also homogenous in the region – but this assumption is often incorrect. There can

be both physical inhomogeneities (e.g., chemical) and biological inhomogeneities

(e.g., different cells, physiological dynamics), so a pixel value is often generated via

a mixture of structures and processes. The degree of heterogeneity is related to the

dimensions of the pixel (voxel) under scrutiny. When the spatial resolving power of

an imaging system is poor compared to the dimensions of the effect being studied,
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partial volume effects arise. This is seen, for instance, in studies that attempt to

characterize the fiber tracts and neuro micro-architecture of the brain using rela-

tively large voxels.

8.5 Extending the Precision Medicine Knowledge Network
for Imaging

Now that some of the very basics of imaging data have been explained, we turn our

attention to how inferencing about biological states is performed. Some answers to

basic questions need to be formulated including:

• What type of biological inferences can be made from which particular types of

imaging studies?

• How strong is this correlation with respect to a particular biological (e.g.,

genomic) and/or clinical context?

• How can we operationalize this knowledge using mathematical models relating

the imaging and clinical data for a given patient?

Thus, the path to building precision medicine decision support applications for

imaging, as in other fields of informatics, follows more or less three perspectives of

knowledge modeling:

Firstly, at a basic phenomenological level, the biophysicist/medical physicist

investigates methods of improving and characterizing the means by which one can

infer the chemical/biological state of a tissue sample from a measureable imaging

signal (e.g., T1/T2 relaxation times). The focus here is on constructing the signal/

image processing chain such that acquisition protocols can be tuned for target

physical/biological environments, can be acquired with minimum harm to the

patient, can provide required spatial coverage and resolution, and can be completed

within the time constraints of a tolerable clinical procedure. Table 8.1 shows

examples of various biological parameters associated with the disease

GBM. Table 8.2 shows examples of imaging features and their correlation wtih

varioius biological states. Section 8.5.1 provides further details.

Secondly, clinical researchers may then conduct a formal trial or observation

study to examine the degree to which one class of patients with a known entity

(diseased state) may be differentiated from a control group based on imaging

findings. These studies help to determine the value of an imaging procedure for a

particular patient group with respect to detection, diagnosis, safety, treatment

planning, and/or treatment monitoring. The clinical hypothesis for the trial study

can be motivated by causality connections (i.e., connection between a biological

event/state and a physical imaging signal) or from clinical intuition of imaging

patterns seen regularly for a patient class by a radiologist. Clinical trial studies are

hypothesis driven, formalized by a deductive inference approach to testing. Sec-

tion 8.5.2 provides additional details.
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Table 8.1 A brief summary of some molecular relationships studied in glioblastoma multiforme

Source Relationship Target References Comment

+AKT3 Gene prod-

uct is

"AKT Cancer Genome

Atlas Research Net-

work [35] and Koul

[127]

AKT3 is amplified 2%

in GBM.

"AKT Effect is "Anti-apopto-
sis, #cell cycle
regulation

Furnari et al. [68] ATK decreases FOXO

to bypass cell cycle

check.

"AKT Modulates

protein regu-

lator of

#p53 Furnari et al. [68] AKT

phosphorylates MDM2.

"AKT Modulates "HIF Koul [127]

"ASCL1 Effect is "Stem cell

abilities

Verhaak et al. [211],

Rheinbay

et al. [174], and

Ohgaki and Kleihues

[155]

ASCL1 inhibits DKK1.

"CD44 Effect is "EMT Verhaak et al. [211]

and Ortensi

et al. [156]

+CDK4
and 6

Gene prod-

uct affects

#RB Verhaak et al. [211]

and Furnari

et al. [68]

This causes ~15% RB

inactivity in GBM.

-CDKN2A Gene prod-

uct affects

#RB Verhaak et al. [211],

Furnari et al. [68],

and Ohgaki and

Kleihues [155]

CDKN2A mutants are

in 50–70% high-grade

gliomas.

-CHD5 Gene prod-

uct affects

#p53 Furnari et al. [68]

and Ku et al. [129]

CHD5 is a tumor

suppressor.

"CHI3L1 Modulates

protein regu-

lator of

"MMP 2 and 9 Ku et al. [129]

"CHI3L1 Effect is "Adhesion Ku et al. [129]

+EGFR Gene prod-

uct is

"EGFR Verhaak et al. [211],

Cancer Genome

Atlas Research Net-

work [35], Furnari

et al. [68], and

Ohgaki and Kleihues

[155]

EGFR is amplified in

~40% GBM.

"EGFR Effect is "Growth
stimulation

Verhaak et al. [211],

Cancer Genome

Atlas Research Net-

work [35], Furnari

et al. [68], and

Ohgaki and Kleihues

[155]

Mutant EGFR marks

tumorigenic behavior,

radiation resistance,

and drug resistance.

(continued)
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Table 8.1 (continued)

Source Relationship Target References Comment

"EGFR Modulates "HIF Furnari et al. [68]

and Ohgaki and

Kleihues [155]

EGFR correlates with

edema and

angiogenesis.

"EGFR Modulates

protein regu-

lator of

"AKT Furnari et al. [68]

and Ohgaki and

Kleihues [155]

Activated EGFR leads

to AKT.

"GLI 1 and
2

Effect is "Stem cell

abilities

Verhaak et al. [211]

and Gupta et al. [86]

SMO, overexpressed in

GMB, promotes GLI.

"HIF Modulates

transcription

of

"VEGF Furnari et al. [68]

�IDH 1
and 2

Gene prod-

uct is

#IDH 1 and 2 Verhaak et al. [211]

and Cohen et al. [41]

IDH mutation is an

early tumorigenesis

event.

#IDH
1 and 2

Modulates

protein regu-

lator of

"HIF Cohen et al. [41] IDH promotes HIF

accumulation.

#IDH
1 and 2

Cell affect is #Oxidative
stress defense

Cohen et al. [41] IDH regulates cell

redox state.

+MDM2 Gene prod-

uct affects

#p53 Cancer Genome

Atlas Research Net-

work [35] and

Furnari et al. [68])

MDM2 is amplified in

14% of GBM.

+MDM4 Modulates

transcription

of

#p53 Cancer Genome

Atlas Research Net-

work [35] and

Furnari et al. [68]

MDM4 also

enhances MDM2.

+MET Gene prod-

uct is

"MET Verhaak et al. [211],

Cancer Genome

Atlas Research Net-

work [35], and Joo

et al. [118]

MET is amplified in 4%

of GBM.

"MET Effect is "Growth stim-

ulation,

"invasion,
migration,

motility

Joo et al. [118] HGF (hepatocyte

growth factor) is a

ligand to MET.

-MGMT Gene prod-

uct is

#MGMT Ohgaki and Kleihues

[155] and Hegi

et al. [92]

MGMT promoter meth-

ylation occurs often in

GBM.

-MGMT Effect is #DNA repair Ohgaki and Kleihues

[155] and Hegi

et al. [92]

MGMT removes muta-

genic alkyl groups in

DNA.

-NF1 Gene prod-

uct affects

"AKT Verhaak et al. [211],

McGillicuddy

et al. [147], and

Altomare and

Testa [5])

NF1 activates Ras

leading to ATK

activation.

(continued)

8 Medical Imaging Informatics 177



Table 8.1 (continued)

Source Relationship Target References Comment

"NF-kB Effect is "Anti-apopto-
sis, "necrosis,
"invasion,
migration,

motility

Verhaak et al. [211] TNFR1 and RELB are

overexpressed in GBM

and promote NF-kB.

"NOTCH Effect is "Stem cell

abilities

Verhaak et al. [211],

Fan et al. [66], and

Turchi et al. [210]

JAG1 and DDL3

expressions are altered

in GBM to promote

NOTCH.

"OLIG2 Effect is #Cell cycle
regulation

Verhaak et al. [211]

and LeCun

et al. [137]

-p53 Gene prod-

uct is

#p53 Verhaak et al. [211],

Furnari et al. [68],

and Ohgaki and

Kleihues [155]

p53 mutation is

the highest in GBM.

#p53 Modulates

transcription

of

#PTEN Furnari et al. [68]

and Ohgaki and

Kleihues [155]

Normally, p53

enhances PTEN

transcription.

#p53 Effect is #Cell cycle
regulation,

"anti-apoptosis

Furnari et al. [68]

and Ohgaki and

Kleihues [155]

p53 regulates> 2500

genes as key tumor

suppressor by balancing

cell growth and death.

#p53 Modulates

transcription

of

"p110α Furnari et al. [68]

"p110α Effect is "Growth
stimulation

Furnari et al. [68]

and Weber

et al. [215]

p110α is a part of the

PI3K mitogenic path-

way and promotes

ECM and adhesion

protein expression.

+PIK3CA Gene prod-

uct is

"p110α Verhaak et al. [211]

and Furnari

et al. [68]

PIK3CA is an

oncogene.

+PDFGRA Gene prod-

uct affects

"PDGFR Verhaak et al. [211]

and Heldin [93]

"PDGFR Effect is "Growth stim-

ulation, "EMT,

"angiogenesis

Heldin [93] PDGFR balances

between cell growth

and death.

"PDGFR Modulates

transcription

of

"SOX2 de la Rocha

et al. [50]

PDGF is PDGFR’s
ligand.

-PTEN Gene prod-

uct is

#PTEN Verhaak et al. [211],

Cancer Genome

Atlas Research Net-

work [35], and

Furnari et al. [68]

PTEN mutation occurs

in 36% of GBM.

(continued)
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Thirdly, the clinical practitioner team requires an integrated model that can

perform inductive inferencing on observational data. A data modeling team must

synthesize a model based on fragments of knowledge from observed statistics,

causality relations, decision options, and costs associated with false-positive or

false-negative interpretations. The integrated model should include a comprehen-

sive modeling of variables, relationships, and their strengths and should be able to

guide decisions based on individual patient context. The model must be able to

perform well for patient management decisions that involve complex patient cases

since traditional rule-based guidelines are often overly simplistic [69]. Section 8.5.3

provides further discussions of this level of modeling.

8.5.1 Physical Characterization of Imaging Signals

Figure 8.2 shows the general idea regarding how imaging scientists make biological

inferences from physical imaging signals (we will limit the discussion to x-ray and

magnetic resonance imaging). To begin with, imaging signals from magnetic

resonance and x-ray imaging arise inherently from low-level nuclear and atomic

phenomena.2 Properties such as electron density, atomic number, nuclear proton

density, spin-spin relaxation time, spin-lattice relaxation time, and nuclear mag-

netic resonance (NMR) chemical shift are direct properties related to the physical

process generating the imaging signals. Medical imaging physicists study the

Table 8.1 (continued)

Source Relationship Target References Comment

#PTEN Effect is "Unstable
genome,

"angiogenesis,
"growth
stimulation

Furnari et al. [68]

and Ohgaki and

Kleihues [155]

PTEN suppresses

anchorage-independent

growth.

#PTEN Modulates

protein regu-

lator of

"AKT Furnari et al. [68]

and Ohgaki and

Kleihues [155]

PTEN inhibits the PI3K

pathway, upstream of

AKT.

-RB1 Gene prod-

uct is

#RB Furnani

et al. [68] and

Verhaak et al. [211]

RB1 loss transitions the

cancer to intermediate-

grade glioma.

#RB Effect is #Cell cycle
regulation

Furnari et al. [68] RB is a tumor

suppressor.

"VEGF Effect is "Angiogenesis Jackson et al. [113]

Italicized symbols are genes and un-italicized symbols are proteins. Tables 8.1 and 8.2 comple-

ment Fig. 8.3. See Table 8.2 for abbreviations.

2An exhaustive review of the physics of image signal acquisition is beyond the scope of this

chapter. Suggested references include Bushberg [34], Curry et al. [45], and Smith andWebb [190].
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relationship between these low-level properties to slightly higher-dimensional

properties such as lattice vibration patterns, molecular mobility, molecular size,

electron bonding patterns, and proton diffusivity. In MR imaging, magnetic spin

nuclei in different physicochemical environments exhibit different signal patterns

[114, 145]. For example, protons in a hydrocarbon-rich setting will have a signif-

icantly different MR signal as compared to an aqueous environment. The biophys-

icist may explore relationships to a still higher-scale state space, making

connections with microphysiologic/structural patterns such as cell mobility, cell

density, metabolite concentration, and oxygenation levels. The design of magnetic

resonance contrast agents that (1) provide strong MR signals (T1/T2) and (2) high

sensitivity and specificity to bind with molecular targets is an intense area of

research [73, 220]. Paramagnetic metal cations such as chelated gadolinium or

superparamagnetic nanoparticles have been used as contrast agents and have

shown great potential for detecting physiological/molecular states over broad

patient volumes. A variation of conventional MRI methods is diffusion-weighted

MRI (DW-MRI) which exploits the translational mobility of water molecules to

infer diffusivity properties associated with the tissue, microstructure, and/or path-

ological environment of the water molecules [15, 57]. Biological factors that can

affect DW-MRI signals include diffusion within intracellular fluid (cytoplasm or

organelles), extracellular fluid (e.g., interstitial, intravascular, lymphatic, and ven-

tricular), and/or between intra- and extracellular compartments. Characterization of

these biological properties can help characterize/inform various pathological

Fig. 8.2 Imaging scientists investigate the correlation between low-level properties and higher-

level, more informative physical/biological states
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conditions such as tumor cellularity, tumor heterogeneity, and neurofiber connec-

tivity [13, 74, 126]. Perfusion-weighted MRI is another variation of MRI that

relates to either blood delivery to a tissue element or capillary blood flow. These

methods allow characterization of blood volume, blood velocity, and blood oxy-

genation [64] and have been applied to characterize early stroke and penumbra as

well as vascularity of tumor. Yet another powerful variation of MRI is MR

spectroscopy imaging which can depict metabolite concentrations (e.g., choline,

NAA, and glutamine) that can be correlated with various types of genetic expres-

sions known for given pathologies (specific examples are given below).

To optimize the information that can be derived from a clinical imaging study,

the first step is to normalize the imaging data as best as possible. This can involve

standardization of acquisition protocols, calibration of imaging signals, and/or

calibration of spatial information. The motivation for this step is to reduce vari-

ability of image data with respect to a given clinical query, with respect to studies

performed on a single patient, and/or with respect to a population of patients.

Details of the various aspects of imaging standardization follow.

Protocol Standardization For a given clinical query, the standardization of imag-

ing protocols is an important part of image data collection for clinical trial research

and routine longitudinal patient assessment (e.g., for chronic disease, such as

cancer) in order to reduce technical dependence on pixel signal values. The protocol

may include specifications for acquisition parameters (e.g., kVp, scan time, pulse

sequences, contrast agents, sampling parameters, patient positioning, and recon-

struction algorithms). Specialized nonuniformity correction methods are often

employed in nuclear medicine. In MR examinations that suffer from poor signal

fluctuations and/or spatial distortions due to nonuniform magnetic fields, applica-

tion of shimming operations can be used to correct field inhomogeneities on a

patient-to-patient exam level [138, 213]. The use of standardized imaging protocols

is important to the performance of quantitative image analysis algorithms, such as

for object segmentation or tissue characterization, which may have appearance

models based on pixel values. The disadvantage of standardizing imaging protocols

lies in the difficulty of enforcing the acquisition method across time, scanners, and

institutions.

Signal Calibration In this context, pixel values are mapped from a value that is

technique dependent to one that is (relatively) technique independent. For example,

MR images can have a wide range of intensities depending on a number of factors,

such as magnetic field strength/quality, pulse sequence, and coil design. Even

comparison of images acquired with the same weighted contrast (e.g., T1) is

limited, as pixel intensities will depend on the specifics of the acquisition method.

There are a number of methods for calibrating imaging signals including the use of

phantoms [184], the physics-based models, and the re-representation of signals in

terms of a signal responses with respect to a set of basis materials (e.g., dual-energy

x-ray imaging). For some imaging modalities such as MR [55, 154, 183, 189],

physics-based signal models are theoretically known so that actual physical param-

eters (e.g., T1 and T2) can be estimated from their measured raw signal data and
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their corresponding technique parameters. Compared to non-calibrated pixel inten-

sities, calibrated MR signals of true T1 and T2 values reduce the variability of MR

signal correlation to different types of tissue structures, making possible more

accurate statistical characterization. The disadvantage of physics-based models

lies in the difficulty of estimating analytic solutions from routine protocols that

operate under real-world clinical constraints (e.g., short scan times, reasonable

signal-to-noise ratios (SNR), sufficient spatial resolution and anatomic coverage).

Additionally, the models are often simplified and ignore secondary signal generat-

ing sub-phenomena such as eddy currents and field nonuniformities.

Spatial Calibration Imaging data can also be spatially standardized in certain

cases meaning the spatial coordinate x; y; zð Þ is mapped to a standardized anatomic

coordinate system. This is routine in neuroimaging research [201]. Spatial calibra-

tion involves developing a prototype anatomic model (i.e., digital atlas) for a given

patient cohort (e.g., sex-age group). A reference imaging exam (e.g., MR) for each

group is obtained, and a number of in-class patient scans are then spatially regis-

tered to the reference scan using some warping algorithm. Registration methods can

be roughly classified along the dimensions of being parametric vs. nonparametric,

global versus local, and/or linear versus nonlinear approaches. The scoring function

describing the quality of a transform includes mutual information, correlation ratio,

cross-correlations, and sum of squares. Details of registration methods can be found

in [148, 201]. Registration of imaging datasets is useful in analyzing various

combinations of studies including:

• Same Patient, Different Study Type (Same Time): Registration of the imaging

datasets can help to provide multiple independent pieces of evidence for a single

spatial location. For example, PET (positron emission tomography) and MRI

information can provide a view of the patient that combines functional and

anatomical information.

• Same Patient, Same Study Type (Different Time): A fundamental task of

radiologists is to monitor temporal changes in image appearance and to compare

these findings to some baseline (e.g., a prior study).

• Different Patients, Same Disease: Probabilistic atlases compiled from patients

belonging to healthy and/or diseased states are being developed to investigate

statistical trends related to difference between anatomic morphology and imag-

ing signal levels between comparison groups. Finally, spatial calibration of

scans to a reference atlas can greatly assist in anatomic segmentation and feature

extraction tasks [42].

8.5.2 Imaging Signals to Biological Parameters in a Disease
Context

There have been a large number of clinical scientific studies related to whether there

is a statistically significant detectable difference in imaging patterns of patients in a

diseased state as compared to a control state. A wide range of hypotheses have been
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tested correlating imaging data to biological parameters including those that are

causally proximate (e.g., imaging features to vascularity) as well as those that are

causally distant (imaging features to survival). Preclinical testing of new imaging

approaches need to be optimized and validated within a controlled clinical setting to

objectively determine their impact on patient care. Clinical trial studies in imaging

involve assessing various imaging protocols, contrast agents, kinetic modeling

approaches, and other related imaging aspects in order to better characterize their

performance with respect to understanding the biology and pathophysiology of

disease. Molecular and functional imaging methods, for instance, are being inves-

tigated to study the effects of a given treatment and to study appropriate sampling

frequencies and/or trigger events for anticipatory monitoring and thus be proactive

in management strategies [70, 72].

An important aspect of imaging informatics then is to create knowledge bases

documenting the results of such studies such that a global model of the relation

between imaging and important biological parameters can be appreciated and used

for scientific experiment planning, development of clinical guidelines, and assess-

ment of quality of conclusions and serve as an evidence-based knowledge source

for patient management. As in other areas of medical informatics, creating an

ontologic representation of study results is crucial for the following reasons:

1. Improved Assessment of Quality/Contribution of a Single Research Study: A
reader can be naively led to assume that a correlation is real and can be used in

practice since it was published in a reputable journal. Ioannidis, however,

comments that most research findings reported in the literature are not totally

accurate in the conclusions they draw due to methodological faults related to

experimental framework (e.g., follow-up confirmation studies), bias (e.g., selec-

tive reporting, conflicts of interest, faulty randomization), lack of independent

teams, and lack of statistical power (low number of samples and large state

spaces) [112]. Additionally, study propositions are reported at different levels of

detail and different pathways to effects. The more general the claim, the more

straightforward its application appears although possible patient-specific con-

textual features may be marginalized out. A proper modeling of the details of a

particular investigative study can improve our ability to compare competitive,

corroborative, and/or contradictory studies.

2. Integrated View of Causal and Associative Relations Across Clinical and Bio-
logical Variables: The global integrated model includes an inventory of vari-

ables, relationships, and their strengths that guide decisions as to the extent to which

cliniciansmay generalize research findings for their own patient context. Physicians

will often read a journal article and then base decisions on some evidence that is in

fact only a partial piece of the picture [90]. In fact, a complete understanding of how

to diagnose, treat, and/or manage a disease may require a more comprehensive

understanding of the complex causal chain and interaction dynamics of a disease

process. It is important as knowledge is accumulated regarding a particular disease

to be able to synthesize the information and to see higher-order patterns of infor-

matics that may reveal hidden complexities of the disease.
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Thus, an important focus of imaging informatics is to provide a realistic objec-

tive description of the capabilities, contextual factors, limitations, and uncertainties

associated with various imaging modalities, protocols, and processing methods. For

example, although conventional MRI methods may be the most sensitive modality

available for the detection of brain tumors, its specificity is low, meaning that other

disease processes (e.g., primary versus secondary tumor versus abscess) may share

a similar MRI appearance. And while sensitivity is considered high, studies such as

those by Suzuki et al. showed that the limitations of current MR sensitivity to

identify all brain areas that have been infiltrated with tumor cells are significant or

vast [196]. Statistical significance measures based on, for example, p-values are

controversial, given the many factors that are often ignored may have a great impact

on its calculated value [80, 111]. All these limitations must be considered when

applying such knowledge to the final interpretation of a particular patient imaging

study. For more details related to general approaches to standardizing the repre-

sentation of research studies, see Sim et al. [187] and Tong et al. [208]. One

potential formalism is the adaptation of methods used by ResearchMaps, a graph-

based representation of causal experimental results in neurobiology. Details of this

paradigm can be found in [146, 186].

While it is not possible to provide a comprehensive description of all results of

observational and controlled studies within medical imaging, several examples of

the use of MRI for precision medicine applications follow with focus on glioblas-

toma multiforme (GBM).

GBM was the first cancer to be sequenced by The Cancer Genome Atlas

(TCGA) research network and has been a focus area of radiogenomics. Verhaak,

in 2010, described a molecular classification system elucidating four subtypes that

were based on genetic expression. Using the prior naming classification scheme of

proneural, neural, classical, andmesenchymal subtypes, four aberrations of genetic
expression were correlated: the PDGFRA, IDH1, EGFR, and NF1 groups. Several

aspects of the disease however make it particularly difficult to manage. Firstly,

prognosis of the patient is highly dependent on both the proliferation rate and

invasiveness of the tumor cells. GBMs are aggressive and may widely infiltrate

the nervous system, while areas in the brain that have malignant involvement may

actually still function normally. Diffuse invasion of the lesion can be significant by

the time the lesion is detected and characterized. Extensive infiltration into sur-

rounding brain tissue presents substantial challenges to achieving a desirable

therapeutic index (comparison of dose of therapeutic agent required for desired

effect versus dose that causes toxicity) and increases the probability of nontarget

toxicity to vital brain tissues, thereby affecting the patient’s quality of life. Sec-

ondly, monitoring subclinically diffuse tumor in the surrounding normal tissue is

difficult with current MR imaging methods. Conventional MR technology cannot

accurately demarcate the extent of invasion by tumor cells peripheral to the bulk

tumor mass. Thirdly, clonal heterogeneity due to mutations within a tumor has been

shown to have very pronounced effects on treatment efficacy [122]. The inclusion

of even one secondary strain is sufficient to significantly alter the overall growth

dynamics of a brain tumor. This results in varying degrees of sensitivity among a
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tumor cell population with respect to chemotherapy. Fourthly, brain tumors are

unique among human cancers because of their complex interaction with the brain

itself, which greatly complicates the use of existing therapies. Dose delivery is

complicated by the blood–brain barrier. Accurate estimations of how much drug

intervention to administer for an expected tumor site uptake are difficult and can be

variable on a case-by-case basis. Table 8.1 summarizes a number of important

precision medicine relationships for GBM.

Although current imaging methods are largely still in various stages of devel-

opment, testing, and deployment, imaging protocols are rapidly improving in

characterizing various biological states that can be highly informative in a precision

medicine practice. Below are a few such associations.

Genotype Several studies have attempted to identify genotypic imaging charac-

teristics, which may be useful in targeting therapeutic regimens. For instance, it has

been shown that the allelic loss of 1p and 19q is associated with an indistinct border

on T1 MRI images and mixed signal intensity on T1 and T2 [2, 117, 211]. A

correlation of genotype in oligodendroglial tumors with MR imaging characteris-

tics has also been identified, connecting longer survival and increased therapeutic

responsiveness of certain tumor genotypes (e.g., �1p/�19q) [117]. The first large-

scale MR imaging microRNA-mRNA correlative study in GBM was published by

Zinn et al. in 2011 [230]. The use of novel contrast agents in the form of MRI

reporter genes is an area of promising clinical potential and may soon become a

routine method to monitor gene expression levels and/or monitor dynamic molec-

ular interactions between proteins [75, 87].

Histopathology Dean et al. [51] investigated MR characteristics that could be

used to classify supratentorial gliomas into low-grade astrocytoma, anaplastic

astrocytoma, and GBM, finding that mass effect, cyst formation, and necrosis as

seen on MR were statistically significant in distinguishing low- and high-grade

tumors. Later studies also found heterogeneity of contrast enhancement, edema or

mass effect, cyst formation/necrosis, and flow void to be significantly higher in

GBM [10, 165]. Other suggested MR findings include: correlation between contrast

enhancement and the volume of peritumoral edema in GBMs (vs. meningiomas

which are benign intracranial tumors and typically enhance homogeneously and

have no edema) [102, 151].

Metabolism Cellular functions are mediated through complex systems of macro-

molecules and metabolites linked through biochemical and physical interactions

[226]. MR spectroscopy relies on an atomic/nuclear phenomenon known as chem-

ical shift (resonance frequency shift) dependent on electron distribution properties

(e.g., binding partners, bond lengths, bond angles) local to a nonzero spin nuclear

isotopes (e.g., 1H, 13C, 15N, 15N, 23Na, 31P, 39K) in order to infer certain metabolite

(e.g., N-acetylaspartate, lactate, creatine/phosphocreatine, choline, glutamate, glu-

tamine, glucose) concentrations in a localized voxel region. Thus, it can provide a

coarse map of the spatial distribution of metabolites in an imaging volume. Various

studies have shown that metabolite spectrums within a region can effectively
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distinguish pathological and normal tissues in vivo [85, 104, 150]. Cordova and

colleagues reported a method for identifying infiltrating margins in GBM patients

using whole-brain proton spectroscopic MRI [43]. They obtained surgical core

samples from the periphery of the visible enhancing tumor prior to initial debulking

surgery that demonstrated abnormal choline to N-acetylaspartate ratios, and these

areas predated contrast-enhancing recurrent tumor. Such metabolic markers that

identify infiltration and areas at risk for recurrence can guide initial surgery or

postoperative adjuvant therapy if added to the preoperative MRI assessment of

GBM patients.

Vascular Proliferation/Angiogenesis Tumor angiogenesis is a process whereby

blood vessels are formed to supply nutrients and oxygen for tumor growth. As

gliomas dedifferentiate into more malignant tumors, they express increasing levels

of proangiogenic cytokines like vascular endothelial growth factor (VEGF) which

promotes angiogenesis [71]. This angiogenic cytokine is responsible for prolifera-

tion of highly permeable tumor vessels that are missing the tight gap junctions

found in normal cerebral blood vessels. These leaky tumor vessels have larger than

normal diameters and are heterogeneously distributed within the tumor as it grows,

providing ample flow to some portions of the tumor while providing inadequate

blood flow to other areas of the tumor. The leakiness of these vessels allows

intravenously delivered contrast agents to permeate into the interstitial spaces

resulting in the contrast enhancement seen on T1W MRI images. It also allows

for the weeping of serum plasma from the intravascular space into the interstitial

spaces causing edema, detectable on MRI images as surrounding T2 hyperintensity.

Thus, these two findings as seen on MRI images serve as surrogate measures for

malignancy [119]. Somewhat ironically, the edema caused by these leaky vessels

raises the interstitial pressure compromising the blood flow through the vessels and

consequently compromising the blood supply to the tumor itself resulting in areas

of necrosis. The anti-VEGF compounds are effective in part due to the inhibition of

formation of the immature vessels and the normalization of tumor neovascularity

such that they have more normal gap junctions and are not as weak or leaky. This

improved vascular integrity reduces the incidence of regional necrosis and provides

for better delivery of chemotherapeutic agents to all parts of the tumor. As might be

expected, the therapy also results in less contrast enhancement and less edema, a

condition known as pseudo-normalization, rendering the imaging biomarkers a bit

less reliable in the absence of a good history of treatment [218].

Necrosis The presence of necrosis is one of the diagnostic hallmarks of GBM (see

Fig. 8.4). Necrosis is likely related to the heterogeneous distribution of tumor

vascularity with tumor dying in areas of inadequate blood supply. In 2004, Raza

et al. looked at gene expression in 15 GBM patients and found 9 genes that

positively correlated with necrosis and 17 that negatively correlated with necrosis

[173]. In 2005, Pope and colleagues demonstrate a prognostic significance to the

presence of necrosis on MRI, showing that patients with histologically proven

grade 3 glioma (as opposed to GBM) containing visible necrosis on an imaging

study had survival times similar to GBM patients [169]. Although necrosis is an
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inherent feature of GBM, it can also be manifested as a response to therapy. MR

spectroscopy studies have also shown that a decrease in choline-containing com-

pounds (Cho) and an increase in lactate (Lac) and/or lipids are indicative of

response to therapy and reflect tumor necrosis [166]. Moreover, a total absence of

metabolites in the former tumor region is indicative of necrotic tissue.

Cellularity There is increasing evidence to suggest that DWI and the calculated

ADC values correlate with tissue cellularity [125]. Many cancers demonstrate

restricted diffusion (or high signal intensity on DWI), which has classically been

attributed to the increased cellular density seen within tumors, but other factors are

likely to play a role, such as the tortuosity of the extracellular space, extracellular

fibrosis, and the shape and size of the intercellular spaces [159]. In GBM patients,

DWI/ADC values have been shown to differ within various regions of the tumor.

There is restricted diffusion and lower ADC values in those portions most densely

packed with cells and where there is high nuclear to cytoplasmic ratio. DWI/ADC

values can also help to distinguish non-enhancing tumor (high cellular density)

from peritumoral edema, both of which may appear bright on T2W MR images

[206]. Higano et al. [98] showed a significant negative correlation between mini-

mum MR apparent diffusion coefficient (ADC) values and the immunohistology

Ki-67 labeling index. This trend translated into a lower mean minimum ADC value

in tumors found in the patient group with progressive disease compared to a stable

disease group.

Proteomics One of the earliest reports of correlation of imaging features with

proteomics was written by Hobbs et al. in 2003 [101]. They looked at the gene

expression of approximately 100 proteins in tumor samples of four patients with

glioblastoma multiforme and compared the protein levels within contrast and

non-contrast enhanced portions of tumor on MRI scans. Not only did they discover

that protein levels were different between the two regions within any given patient,

they also noted that protein concentrations were highly variable across the enhanc-

ing regions that had similar histology at light microscopy level. The non-enhancing

portions of tumor were even more similar between patients. This paper was one of

the first to associate genetic profiling with imaging features and to confirm the

highly heterogeneous nature of GBM. In 2010, Barajas and colleagues compared

gene expression in the enhancing central portions of GBMs to the non-enhancing

periphery and found that the enhancing portions demonstrated higher concentration

of vascular hyperplasia and cellular density and increased hypoxia which is thought

to be the underlying mechanism behind necrosis and upregulation of VEGF and

ultimately angiogenesis [16]. There was twice the expression of over 800 proteins

within the enhancing core compared with the non-enhancing periphery.

Oxygenation Oxygen levels have an established role in regulating cell prolifera-

tion and motility [163]. Hypoxia, through the activation of transcription factors,

induces cellular proliferation, tumor neovascularity, and necrosis. Hypoxic tumors

become increasingly aggressive and are more resistant to chemotherapy and radi-

ation therapy [7]. An experiment done in 2008 by Spence and colleagues on
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22 GBM patients prior to undergoing radiotherapy showed that the volume and

intensity of hypoxia within the tumor as determined on 18F fluoromisonidazole

PET and blood venous sampling strongly correlated with poorer time to progression

(TTP) and shorter overall survival [193].

Table 8.2 summarizes some of the important relationships investigated,

connecting imaging findings to biological states. Figure 8.3 summarizes the rela-

tions using an association map to allow a more global visualization. Note that

although Fig. 8.3 provides a succinct first-order summarization of the global picture

of the disease, in practice more highly contextual factors should be considered in

inferring multi-link pathways.

8.5.3 Imaging Data Analysis: Radiomics

With modern imaging methods, we are rapidly advancing the means of routinely

probing into the structure, function, and pathology of the human body. Tradition-

ally, imaging protocols were tailored for optimizing and/or highlighting certain

types of signals present in collected data (e.g., T1/T2 recovery times, bone, soft

tissue, etc.). Special weighting algorithms and/or filters were applied within the

image acquisition computer, and images were then presented to the radiologist

either on a static film and/or displayed on a digital monitor with limited processing

capabilities. The value of the imaging data was then based on how well a radiologist

could visualize and detect spatial-temporal-spectral light patterns depicted on a

visualized image dataset and correlate these imaging patterns to various disease and

normal states.

However, the rich field of medical image analysis has shown many examples in

which a computer’s ability to detect subtle mathematical patterns can exceed a

human’s ability to detect visual patterns. That is, information from modern scanners

is more than just simply pictures for viewing by radiologists; rather they represent

data that may be analyzed mathematically in various ways to infer greater levels of

information related to the image generation process [76]. For example, a computer

cannot only perform analysis at the signal voxel level, but the analysis of imaging

data can also continue to higher-order image element structures ranging from small

patches to ever-increasing coherent regions corresponding to semantically distinct

areas of interest. Group properties associated with regional pixel characteristics

(e.g., size, shape, signal intensity distribution) can be computed to infer still higher-

scale systems biology properties (tumor size, growth rate, pressure, vascularity,

genetic heterogeneity, etc.). It is thus becoming clear that there is a need to

complement a radiologist’s arsenal for image interpretation beyond visual detection

of patterns on spatial brightness maps, expanding the image feature space to include

those that can be identified by a computer algorithm.

These and other image interpretation motives fall into what has been termed

radiomics, which is the study of quantifiable radiological image phenotypes [1, 76,
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95, 130, 133]. The goal then is to relate radiomics features (in conjunction with

other evidence derived from clinical observables) to biological states in order to

support precision medicine type queries. A particular subclass of radiomics is

radiogenomics which is the study of the association of imaging patterns to genetic

states.

Radiomics metrics must be learned from observational data. Researchers rely

heavily on methods from computer vision and machine learning, fields based on

technologies borrowed from computer science, cognitive science, physics, applied

mathematics, electrical engineering, and statistics. The typical steps for radiomics

investigations are summarized in Fig. 8.1. The main issues include: (1) curating a

large pool of imaging cases relevant for a particular biologic investigation, (2) nor-

malization of the pool of images (preprocessing), (3) identification of target regions

of analysis, (4) feature engineering, (5) integration of features for inferencing target

states, and (6) model validation.

8.5.3.1 Case Pool for Training and Testing

As in other areas of informatics, Big Data analytic methods are critical for learning

probabilistic trends under varying contextual patient situations. Thus, there is a

growing need for curating large sample databases that store comprehensive records

Fig. 8.3 A first-order association map summarizing magnetic resonance signals and their

suggested relationships to genetic, molecular, and cellular properties in glioblastoma multiforme.

Nodes are physical entities or processes. Curved arrows indicate direction of affect from one node

to another. Rectangular boxes separate various physiological scales on which nodes are observed

in. See Tables 8.1 and 8.2 for more detailed descriptions, abbreviations, and references. Notation:

plus symbol (gain of function in a gene), minus symbol (loss of function in a gene), up arrow
(increased expression or presence), down arrow (lowered expression or presence), italicized gene
symbol (gene), regular gene symbol (protein). (Figure and related tables are courtesy of Nova

Smedley)
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of patient cases from which mathematical models can be developed [30]. Three

categories of compiled cases for radiomics research can be considered based on the

degree to which control over acquisition and case documentation are enforced:

1. Controlled data collection. This is the ideal means of prospectively collecting

data, for which acquisition and documentation are carefully controlled (e.g.,

within a randomized clinical trial setting). The experimental approach is inves-

tigational from the start. Data collection is centered on carefully collecting

observations driven by the hypothesis describing the effect of interest. One

major advantage of this approach is the ability to design into the protocol,

recording of possible confounding patient variables. This high degree of control

in the data collection process provides a level of assurance that the data is

reproducible, and the population is well characterized. An example of such a

compilation is the data available from the National Lung Cancer Screening Trial

(NLST) which includes CT scans, pathology images, screening exam results,

diagnostic test results, patient behavior variables (e.g., smoking status), and

mortality information from over 50,000 cases [198].

2. Clinical multi-institutional standardized data collection. Multi-institutional

efforts (e.g., ENIGMA [203]) provide the capability of compiling large data-

bases sampled from a wide range of machine models, over large geographic

populations, and diverse clinical settings. These are typically clinically oriented

scans from institutions forming a consortium that agrees to scan patient

populations in a consistent way. The consortia provide resources to securely

store the data in a manner that respects patient privacy (e.g., HIPAA compliance,

institutional review board approval, and informed patient consent) but whose

main vision is broad dissemination with as few restrictions as necessary to allow

qualified researchers to objectively analyze the data using a variety of methods.

The acquisition protocol may include information related to hardware consider-

ations (e.g., magnetic field strength and coil selection), interrogation parameters

(e.g., pulse sequences), patient positioning details, sampling parameters (space

and time), contrast agent information (agent name, dose, injection rate), recon-

struction details (e.g., kernels), parameter estimation methods (e.g., DCE signal

intensity to contrast concentration), and performance timing information (tem-

poral relation of the exam relative to a reference event). Example efforts include:

ENIGMA (Enhancing Neuroimaging Genetics Through Meta-Analysis) [203],

QuIC-ConCePT (Quantitative Imaging in Cancer: Connecting Cellular Pro-

cesses with Therapy) European Consortium, TCIA (The Cancer Imaging

Archive), OAI (Osteoarthritis Initiative), QIN (Quantitative Imaging Network,

TCGA (The Cancer Genome Atlas), and QIBA (Quantitative Imaging Bio-

marker Alliance).

3. Natural data collection. Natural data collection refers to the gathering of imaging

studies from a routine (i.e., natural) setting, as seen in daily clinical practice.

This observational approach does not involve intervening or controlling how the

data is generated. The advantage of natural data collection is the potentially large

number and diversity of cases that can be collected. The downside is that such

data can be messy: in routine practice, images along with the associated
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metadata and documentation are often highly variable, incomplete, imprecise,

and inaccurate. Clinical data is subject to various sampling concerns (precision,

randomness, missing data, selection biases) and representational problems (het-

erogeneous representations, missing context, accuracy of summarizations,

source documentation errors, etc.).

Regardless of the source of images, all efforts should be made to take a

disciplined, meticulous approach to data collection to ensure its utility for model

building. In creating such databases, it is important to understand the quality of the

data in order to best decide how to model the data. The paper by Ellingson et al. [62]

showed that data collection, even with precise protocols in place, can result in

highly variable quality of data. In that study involving a 24-site investigation of

biomarkers associated with diffusion-weighted MR images (DWI) for patients with

recurrent GBM patients, only 68% of the patients had usable data, and only 47%

had high quality data. Thus, the quality of data used for radiomics research can have

a significant impact related to feature selection and model building. Typically there

is a trade-off between the quality of data and number of samples within a corpus. In

some applications, the label noise (i.e., the quality of ground truth) can be some-

what compromised if a sufficiently large corpus of training data can be compiled

[131]. This may open up the opportunity to crowdsource some tasks in limited

applications.

8.5.3.2 Preprocessing of Data

Radiomics involves the statistical analysis of a large number of imaging cases. It

strives to identify quantifiable detectable patterns that can be correlated with a

precision medicine parameter. It is thus critical to first harmonize the imaging data

in such a way as to reduce statistical variations due to differences in acquisition

rather than patient-specific variations. Traditionally, standardization of acquisition

parameters allows physicians to develop a subjective calibration of brightness and

contrast level patterns allowing them to establish mental models of the limitations

in various image properties (e.g., resolution, dynamic range, inherent noise, etc.).
Similarly, computer models which learn to recognize some semantic aspect of a

class of images will benefit (e.g., higher precision and robustness) from reducing

such variability and provide definitive constraints on the class of imaging data for

which a developed technique can be applied. Common types of preprocessing

operations include: (1) signal dynamic range normalization [21, 115, 229],

(2) noise suppression [91], (3) view standardization, (4) voxel size standardization,

(5) motion correction, (6) bias field correction [143], and (7) spatial registration of

volumetric datasets. Calibration methods (see Sect. 8.5.1) should be applied when-

ever possible in order to regularize the interpretation of the data across imaging

centers and time (i.e., day-to-day variations).

There are two important notes related to preprocessing. Firstly, one must always

keep in mind the physical correspondence between a pixel’s value and what the
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value physically represents. Preprocessing operations which are guided by knowl-

edge of the generating image signal/noise (e.g., noise model, signal generation

model, normative distributions, etc.) are likely to better preserve the physical

characterization of the imaged subject. Secondly, each preprocessing operation

may have a varied effect on the performance value of a selected radiomics feature

set. An investigation of the degree to which candidate preprocessing operations

perturb a particular model should be performed. For example, Tourassi

et al. demonstrated the effect of various preprocessing noise algorithms on the

performance ability of a computer-aided diagnosis system for mammography

[209]. Texture analysis methods exploring some aspect of microstructure can be

poorly trained without the distinction of imaging data with an inherently specified

spatial resolution as compared to those that are artificially rescaled. Similarly,

inherent signal strength and noise properties are strongly tied to acquisition voxel

dimensions. Thus, expectations of noise and signal properties can be greatly

distorted if artificial rescaling operations are not evaluated per algorithm.

8.5.3.3 Identifying Regions of Interest

It is often the case that relevant quantifiable measures are computed over an

imaging region of interest (ROI). For example, these ROIs may outline an anatomic

structure, a tumoral mass, or relevant subregions within a mass (e.g., necrotic core

and peripheral area of proliferation; see Fig. 8.4). The problem of segmenting target

ROIs in medical images has been a long-standing challenge in the image under-

standing community. Approaches have been seen along many dimensions.

Degree of Automation This aspect can range from fully manual to fully auto-

mated. Manual segmentation may further require various degrees of domain exper-

tise. Depending upon the difficulty of the task and skill and discipline of annotators,

inter-operator consistency of manual annotations can be quite variable. Manual

efforts, while typically serving as the gold standard of quality, are time-consuming.

Automated methods, while typically less accurate, result in generally more consis-

tent repeatable results. Semiautomated methods (e.g., manually specified seed point

approaches with iterative refinement [82, 105, 168]) fall somewhere in between the

two extremes.

Number of Input Channels Multispectral/multi-parametric data in which multi-

ple acquisition sequences obtained within a relatively short time period for a given

patient which are spatially registered can be used in order to provide improved

characterization of pixel data. For example, T1, T2, and DWI MR datasets can be

co-registered for use for a segmentation algorithm. Cross-modality registration is

also common (e.g., CT-MR, CT-PET, MR-ultrasound, etc.).

Degree of Compositionality Image pattern recognition algorithms often rely on

the concept of compositionality in order to reduce the dimensionality of an image

interpretation problem. Various types of image grammars have been explored
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utilizing both syntactic (e.g., pixels, edges, textures, contours, etc.) and semantic

constituents (e.g., membranes, borders, vessels) [161, 227]. Typically, the interpre-

tation process is hierarchical, with upper levels corresponding to richer semantic

abstractions. The basic issues include determining the types of constituents at each

level and providing a means for specifying how these constituents are related.

Composition rules can be specified by context-free and/or context-sensitive gram-

mars. Bayesian statistical methods are often employed to maximize the interpreta-

tion probability for a given image instance as specified by the grammar. A special

processing class of algorithms for segmentation is deep learning convolution neural

networks (CNN) [128, 137, 188]. CNNs utilize a distributional representation and

employ methods for learning data-driven features via a multilayer architecture. The

learning of these features is largely unsupervised and is achieved by hierarchically

compressing information from lower levels of the network. Successive layers

encode a richer, less redundant set of features that roughly correspond to different

types of semantic object primitives (e.g., edges, textures, borders, vessels, mem-

branes, etc.). Neuron weights are learned in training via batch gradient descent and

Fig. 8.4 Example regions of interest from two patient cases (row 1 and row 2) with GBM. From

these regions of interest, different radiomics features can be quantified. FLAIR images demon-

strate the extent and distribution of edema surrounding the bulk portion of the tumor related to

leakiness of the abnormal tumor vascularity that results from angiogenesis and VEGF production

by the tumor. T1W gadolinium enhanced images (T1 +C) demonstrating better anatomic detail

about the inherent variability in tumor composition including the enhancing margin which is a

result of breakdown of the blood–brain barrier from the development of abnormally leaky tumor

vessels and the central necrosis that results from inhomogeneous distribution of tumor vascularity

(Courtesy of Edgar Rios Piedra)
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backpropagation [136]. The output layer of the CNN is a set of complex features

that best represent the characteristics of the input image and which can be used as

features into a standard machine learning classifier (e.g., maximum entropy and

maximum margin methods).

Degree of Domain Knowledge/Prior Expectations As part of the segmentation

algorithm, various application-specific knowledge can be used for probabilistically

constraining various attributes of image constituents. This may include, for exam-

ple, constraints on intensity levels, parametric values, shape bounds, positional

semantics, homogeneity measures, volume range of target structures, curvature

bounds for boundaries, and smoothness.

Degree of Training Set Quality Segmentation algorithms can be highly sensitive

to the quality of training data. Considerations include number of training samples,

diversity of samples, sampling pool population, sampling strategy, definition of

output label set (e.g., inside, edge, outside tumor object), and quality of gold

standard truth labels. Various algorithms often have strengths and weaknesses

with respect to the quality of these attributes. The combination of the quality of

these attributions can significantly modify the performance of a given instantiated

segmentation program.

Processing Resources/Time Many image segmentation algorithms require a large

amount of processing resources due to the vast input and solution space which must

be globally searched. Some algorithms can be formulated to take advantage of

parallel processing architectures and/or specialized hardware (e.g., GPUs, comput-

ing clouds). Different applications may have different time constraint requirements

based on clinical workflow issues. For example, semiautomated methods may need

to provide user feedback in near real time.

8.5.3.4 Computed Features

At its most fundamental level, an image finding can be seen as a cluster of pixel data

that represents some spatial, temporal, and/or spectral pattern that reveals some

signature of the nature, the extent, and/or the dynamics of a disease. Traditionally,

such features are reported either subjectively (with or without standard terminolo-

gies) and/or semiquantitatively, leading to difficulties in objectively assessing

change, similarity, and/or severity. Below, we give some examples of quantifiable

features that have been used in various radiomics assessments tasks.

Voxel-Level Signal Intensity-Related Features Given a biological phenomenon

of interest (e.g., vascularity), the best discriminating imaging signal type(s) needs to

be determined (see Sect. 8.5.2). Depending on the modality used (e.g., CT, T1-MR,

DCE-MR, PET, etc.), the resulting conclusions about a given radiomics state may

differ. Signal intensities are most useful when they can be placed in the context of a

target region of interest or tissue type (e.g., anatomic structure, diseased area or

subregion). Prior distributions for different states can then be established from
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population studies and used for comparison testing and classification. Voxel values

in the assessment of stroke are often compared to their corresponding contralateral

values in the brain [204]. In complex voxel-level signals, such as those in dynamic

contrast studies and/or diffusion tensor studies, voxel value representations are

often summarized by various parameterizations. In DCE-MR, for example, the

data is fit to a pharmacokinetic model to characterize flow which includes the

parameters Ktrans (transfer constant of a paramagnetic contrast agent from blood

to issue), vp (fractional plasma volume), and kep (reflux rate constant)

[36, 207]. Normal and disease variant distributions for these parameter values

again can be compiled and used in classification models (e.g., tumor vasculari-

zation) and/or for the identification of outlier (out-of-possible range) pixels. In

DTI-MR, voxel data are in the form of a tensor, which can be parameterized

using eigenvectors. The eigenvalue magnitudes often reflect changes in local

tissue microstructure associated with tissue injury [177], disease (e.g.,

Alzheimer’s disease) [195], or normal physiological changes (i.e., aging)

[214]. Finally, a voxel value can be represented in what is known as a distributed

representation as in a neural network (e.g., sparse auto-coding [221]) which

provides computational advantages in algorithms that compare and combine

imaging data in a hierarchical compositional manner [100].

Regional Intensity-Based Features From voxel-level features, various summari-

zations of the data within an ROI can be used for discrimination. A common class of

features are those derived from a histogram of the voxel-level features. From the

histogram distribution, one can compute features such as mean, median, standard

deviation, maximum, minimum, moments, etc. For example, skewness of T2WMR

signal histograms has been used for classifying cancerous versus normal tissue for

prostate cancer [162].

Size Tumor size is an important indicator of therapeutic response and overall

survival time [40]. The most accurate estimation follows from a 3D volumetric

analysis [54]. However, given that any segmentation procedure is not 100%

accurate, some estimation of error with respect to the true volume is needed in

order to objectively assess change. This can be quite a concerning task given tumor

margins may be rather radiographically indistinct, borders may have complex

shapes, and/or surrounding processes (e.g., edema) may obscure radiographic

distinction of the tumor bounds. Furthermore, the measurement accuracy can be

quite different for the same patient study given different sequences (e.g., T1W,

T2W, DCE) [200]. One should also note that all imaging scanners produce some

level of spatial distortion. Considering all these aspects, for some scenarios, med-

ical societies have specified certain criteria for thresholds for clinically significant

size change (e.g., 25% increase in a linear reference dimension). These general

guidelines however may result in a delay in the declaration of a positive size change

that could affect the timely reassessment of therapeutic interventions. Athanasiou

et al. demonstrated error propagation for the characterization of plaque area in MR

imaging data [12]. Methods for bounding size measurement errors due to variations
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in image segmentation software are also being explored [176]. This estimation of

measurement error can be used for applying hypothesis testing for change (e.g., use

of a test statistic and computation of a p-value).

Shape Shape descriptors have been used as important features for assessing tumor

heterogeneity, tumor proliferation, and overall expected survival. For example,

irregularly shaped tumor margins (e.g., degree of spiculation) that show lower

convexity shape scores have been correlated with poor patient outcomes

[81]. Shape irregularities along tumor perimeters are seen in heterogeneous tumors

which contain cell lines with differences in growth patterns. Proliferative tumors

have strong interactions with their environment often manifested by fingerlike

projections into the parenchyma indicative of poor prognosis [103]. Several types

of shape descriptors have been proposed in the literature; a review of common

general shape-based metrics can be found in [224]. Common simple shape descrip-

tors include area, perimeter, eccentricity, elongation, and orientation. Geometry-

based features can be divided twofold: (1) contour-based, in which the calculation

only depends on knowing the shape boundary, and (2) region-based, wherein the

boundary and the internal pixels must be known. Examples of the boundary-based

metrics include perimeter, compactness, eccentricity, and the minimum bounding

box. Examples of the latter include area, shape moments (e.g., centroid), and

convex hull. Tumor shapes have been characterized, for example, by the ratio

between the area of the tumor mask and its convex hull which quantitate the amount

of protuberances and depressions along the tumor border. The boundary shape of an

object can be represented in various ways including chain codes [46, 153] and

Fourier descriptors [63] which have the advantage of well-known, simple equiva-

lents for affine transforms (rotation, scaling, translation, shearing) in the frequency

domain. Shen et al., for example, used a Fourier representation of mammographic

calcification shape to infer malignancy [185]. Topological features refer to proper-

ties of shape that don’t change, so long as perturbations do not tear or join parts. A

useful topological descriptor is the Euler number which is the number of connected

components minus the number of holes in the object and has been used for

evaluating therapy outcome [61]. Shape comparison is often performed based on

their statistical properties. One approach is simply to evaluate distances between

their feature vectors [60]. More complex methods represent shapes as a probability

distribution sampled from a shape function. The dissimilarity between comparison

objects can then be evaluated using common metrics between distributions (e.g.,LN
norm) [157].

Global Morphology Tensor-based morphometry has been used to measure size

and shape changes ongoing in the brain in the context of normal and diseased states.

Spatial registration algorithms between the two imaging dataset are commonly used

via various nonlinear transformations [192]. The determinant of the Jacobian tensor

of the transformation is then a measurement of the local tissue contraction or

dilation [139]. Tensor-based morphometry has been used to study the dynamics

of Alzheimer’s disease (atrophy) and other conditions in the brain [108, 109]. Mor-

phologic instability of tumor masses may provide an indication for tumor tissue
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invasion [44]. The use of geodesic regression in diffeomorphisms for tensor-based

morphometry is a promising emerging method which can extend nonlinear trans-

formation methods to analysis of a number of time-sampled imaging studies for a

patient (>2) and allows interpolation and extrapolation in time in a more theoret-

ically principled manner [19, 67].

Texture Texture is a property associated with a statistically repeated spatial

pattern in an image. It is assumed that these spatial regularities come from the

underlying structural properties of the tissue being imaged. Texture features have

been correlated with EGFR mutation status, intra-tumoral heterogeneity, angiogen-

esis, predication of treatment response, and prognosis in a number of different

cancers and with various imaging modalities (e.g., CT, DCE-MRI, PET, US) [4, 29,

38, 58, 158, 199]. Haralick’s method of using a gray-level co-occurrence matrix

(GLCM) to analyze image texture is a widely used analysis method [88]. Other

local texture representations include run-length matrix (RLM) and neighborhood

gray-tone difference matrix (NGTDM) [6]. Measures that can be computed from

such a matrix representation include energy, entropy, contrast, homogeneity, and

correlation measures. Geometric texture analysis aims for decomposing the texture

of an image area into a set of simple texture elements that can be extracted using

various filters (e.g., Gabor and/or Laws filters) [172]. Transform-based methods

(e.g., Fourier, wavelet, S, and discrete cosine) are also widely used for character-

ization of texture [49]. Fractal analysis measures can be used to characterize

structural pattern changes as a function of scale [144]. Nagao et al. described a

method for quantifying heterogeneous distribution of a radiotracer in SPECT

images by 3D fractal analysis in order to quantify severity of pulmonary emphy-

sema [149]. Szigeti et al. noted a correlation between fractal analysis measures and

the ability to perform early diagnosis and risk assessment of air pollutants to mice

on CT images [197].

Connectivity The communication of cells in the brain can be investigated by high-

resolution diffusion tensor imaging with the application of tractography algorithms

to infer neural pathways [18, 79]. Given N regions of interest (e.g., cortical), a

N � N connectivity matrix can be constructed by quantifying the proportion of

fibers interconnecting a pair of target regions. Given this connectivity network, various

local and global metrics based on graph theory can be computed from such a repre-

sentation [23]. Network connectivity in the brain can be considered at various scales:

from the lowest level, in terms of its synaptic connections, to connections between

cortico-cortico and cortico-deep gray neurons, or at a more macroscopic level, looking

at connections between cortical areas in the form of bundles of white matter tracts

[164, 179].Various neuropsychological deficits have been associated with abnormal

disconnection patterns between brain regions. Common themes of investigation

include functional integration and segregation of brain regions, characterization

of local anatomic circuitry, and characterization of resilience of networks to

insult [179]. Different measures of connectivity are used in different studies to

describe the integrity of the healthy or diseased human brain network and

include the nodal degree, characteristic path length, efficiency, clustering
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coefficient and “small-worldness” [194]. Other metrics include: “rich club”

network property corresponding to high-degree network nodes that are more

interconnected than expected by chance and have been found to correlate with

cognitive impairment as network complexity degenerates [47].

8.5.3.5 Model Development

Inference models attempt to synthesize imaging features and other clinical context

variables in order to predict the states of biological parameters. The task can be

difficult, given that in general, there are a large number of dimensions required to

characterize the range of image patterns associated with all possible biological

interpretations. For example, a lesion may be quite variable and heterogeneous

across patients and tumor types and furthermore depend strongly on acquisition and

preprocessing operations. Thus, models can range from low-dimensional mappings

(e.g., a single image feature to a single target state) to high-dimensional complex

input/complex output state associations. Typically, a large number of models can be

fitted to a set of training examples, implying that optimization criteria need to be

clearly justified. Different modeling approaches have different strengths and weak-

nesses relative to the nature and availability of the training data and complexity of

the inherent modeling problem. Some key considerations in model building

include:

Physical/Biological Insights Amodeling task can be greatly facilitated if there are

known causal/associative connections that can help to impose dependence and

independence constraints on the topological structure of the model [160]. Indepen-

dence constraints are a means of reducing the dimensionality of a modeling

problem, allowing a model to be factored into a number of smaller simpler

problems.

Correlation of Variables Radiomics models often contain a large number of

plausible image features and/or clinical context variables. The problem is that the

dimensionality of the data grows very quickly as the variable count increases,

requiring impractically large amounts of training data for parameter estimation.

Often there are informational overlaps associated with the discriminatory ability of

feature combinations. Various feature selection algorithms can be used to reduce

the number of features without significantly compromising model accuracy. A

review of feature selection techniques (filter, wrapper, eigenspace) can be found

in [14, 180, 228]. Eigenspace methods include principal component analysis

(PCA), Fisher’s linear discriminant analysis (LDA), and independent component

analysis which project or transform the original feature space into uncorrelated or

independent directions. Assumptions regarding the shape of data distributions (e.g.,

Gaussian) differ among these techniques [170]. Regularization methods like

LASSO and ridge regression automatically perform feature selection as part of

the model construction process [140]. The minimax principle approach to feature

selection involves the use of entropy measures to search for an optimal combination
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of features [228]. In this approach, an iterative algorithm is used to progressively

add forward the feature that minimizes the entropy of candidate maximum entropy

models. Some modeling approaches such as maximum entropy models can princi-

pally deal with overlapping variables in a principled way (computation of Lagrang-

ian per feature) [116].

Interaction of Variables Feature selection algorithms often view single variables

at a time and do not take into account their possible complex interaction. The

topology of a belief network is an intuitive means of visualizing such interactions if

they are known. Random forest methods can be used to automatically identify

complex feature interactions by randomly testing different configurations of a

subset of variables [27]. Modern deep learning methods are achieving some success

in this area and have been shown to automatically learn abstract representations of

features (a compressed form) that in turn have supported state-of-the-art results in

domains such as speech recognition, image classification, and disease characteri-

zation [99]. Figure 8.5 shows an example of 64 complex feature maps derived from

the third convolution layer of a deep convolution neural network (CNN) trained to

perform voxel-wise classification of tumor versus non-tumor differentiation. The

Fig. 8.5 Example of 64 complex feature bases derived from the third layer of a deep

convolutional neural network. The feature maps are learned automatically from a set of learning

cases consisting of registered FLAIR, T1W, T1W with contrast, and T2W magnetic resonance

images labeled at the voxel level as tumor or non-tumor. The deep CNN consists of three

sequences of convolutional-nonlinear-pooling layers, followed by two fully connected layers,

and a softmax classifier. This figure illustrates the feature maps (outputs) of the third convolutional

layer. These rich representations can be combined and used by a softmax classifier to better

segment tumor regions (Courtesy of King Chung Johnny Ho)
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deep CNN is trained on a concatenation of FLAIR, MR T1-weighted, MR

T1-weighted with contrast, and MR T2-weighted image sequences.

Representation of States The state definition of variables can have a significant

impact on classifier performance. If continuous values are to be discretized, then

some rationale means for identifying intervals should be used [141, 142]. Agreed-

upon ontologic definition of states can help to improve comparison testing and

application of models.

Quality and Distribution of Training Sets Models are dependent upon the

sample cases from which they are trained. Attributes that can affect model perfor-

mance in this regard include: (1) sampling method (e.g., random, balanced, diver-

sity, highest uncertainty), (2) number of samples, and (3) amount of noise in

training labels – truth determination in imaging can be especially difficult in the

dynamic ecosystem of a cancerous tumor. For example, in the TCGA dataset, what

is the probability that the imaging has taken place after a cancer has undergone

(multiple) mutations?What is the probability that the biopsy sample does not reflect

the majority of tumor cells? This would mean that due to the time difference, a

predicted outcome for a given training case is erroneously labeled for the observed

phenotype.

Model Assumptions In general, the performance of different modeling

approaches depend upon the degree of concordance between the data and the

assumptions inherent to the modeling technique. This could be, for example,

assumptions regarding the shape of distributions, complexity of data, reliability of

frequency estimations of probabilities, and independence of variables.

8.5.3.6 Evaluation and Acceptance

In evaluating a radiomics metric or model, rigorous unbiased testing is necessary in

order to gain scientific trust. Without such evidence, efficacy acceptance by an

oversite organization (e.g., FDA or medical society) is unlikely, and hence wide-

spread clinical adoption cannot be realized. Hence, there may be a greater need for

comparative effectiveness research for radiomics technology [28, 167]. Evaluation

may be with respect to a number of dimensions:

Operational Constraints The process by which a radiomics measure is obtained

may be constrained by clinical operational requirements (e.g., effort, cost, and

timing). Cost may be related to whether a specially trained person is needed. It is

likely that new types of clinical informatics personnel may be required to assist

processing and preparing results for clinical interpretation by a physician team.

Accuracy For the given clinical scenario and for the given class of inputs, the

accuracy of the algorithm should be estimated. For nonbinary-type decisions, a

confusion matrix and/or multiclass receiver operator characteristic (ROC) analysis

[135] should be provided. Estimation of error bounds for the quantitative measure

should be provided [171].
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Model Validation and Reuse An ongoing challenge in predictive modeling is the

inability to reuse models in different contexts. For example, models developed at

one institution often do not achieve the same level of sensitivity and specificity at

another, limiting the clinical utility of such models.

Reproducibility The combination of the type of algorithm and the nature of the

data being processed can greatly influence the reproducibility of a radiomics

quantitative measure. Influential considerations include the choice of initialization

methods, cost functions, convergence rates, operator input, study quality, anatomic

location, etc. Part of quality assurance is to be able to determine the degree to which

various processing algorithms produce consistent results. Testing this property can

be facilitated using image compilations in which clinical scans for the same patient

are acquired with the same technique within a very short time period (e.g., 15 min)

to reflect only acquisition signal detection fluctuations (so-called “coffee break”

study) [225]. Various test statistics can be computed (e.g., concordance correlation

coefficient, Pearson correlation coefficient) to quantify this evaluative aspect.

Robustness Robustness in radiomics applications is a quality associated with how

well the system can handle a diversity of clinical context, including patient situa-

tions that perhaps have not been previously well examined. For example, user input

of out-of-bounds/illegal parameters must be well handled by a clinical software

application.

Effectiveness Given that the radiomics feature is able to perform at its

documented level, effectiveness questions whether there is a clear utility of the

imaging biomarker for improving treatment decisions at the current level of per-

formance accuracy. The utility of a biomarker must be evaluated in terms of what it

adds in addition to established clinical markers.

Documentation Every representation and model have limitations and can produce

artifactual results. It is important to be able to document known assumptions and

limitations related to types of input data, error rates (e.g., confusion matrix), and

descriptions of known bugs. Interpretations to be aware of should be documented as

part of a radiomics study. Buckler et al. describe an early attempt to define an

ontologic representation for imaging biomarkers [31]. The constraints on the types

of data and the expected error bounds need to be known to the end user involved

with patient management.

Software Testing The greater the role a decision support system plays in clinical

practice, the greater the need to insure that complex, multisystem software appli-

cations are thoroughly tested [120]. Due to the complexity of scientific software and

the required specialized domain knowledge needed for its development, scientists/

informaticists often develop these programs without being familiar with accepted

software engineering practices. Due to the lack of systematic testing of scientific

software, subtle faults can remain undetected and affect patient care. Complex

interfaces that are poorly designed can also lead to significant user execution errors.
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8.6 Clinical Considerations

The use of radiomics analysis as part of routine clinical decision making is currently

relatively scarce. A question remains as to whether precision medicine imaging

techniques can be practically translated and integrated into clinical radiology. Its

widespread application will require the coordination of a variety of individuals, the

integration and standardization of a number of software services and representa-

tions, and the enforcement of an overarching clinical workflow protocol [30]. In this

section, we describe some relevant operational issues associated with the deploy-

ment of a precision medicine radiology consultation service.

8.6.1 Request for Examination

The radiology process starts with the request for examination. Typically, the

decision regarding which imaging procedure to order for a patient falls on the

burden of the treating physician. It has become increasingly difficult however to

identify the most appropriate imaging studies given the ever-increasing number of

alternatives, methods, and details (views, protocols, modalities, resolution, and

contrast agents), which must be specified on a clinical order. Currently, there is

no clear guideline on how to define the “reason” for exam, which is the driving basis

for the type of exam, analysis methods, and reporting details. With the advent of

advanced imaging and analysis methods comes the grave possibility of inappropri-

ate expectations of the capabilities of various imaging protocols. A lack of suffi-

cient knowledge by a requesting physician and/or a lack of knowledge about a

patient’s case can lead to ordering of examinations that might not be suitable for the

underlying clinical questions of concern. It is not uncommon, for example, for the

request to originate from physicians who have not even seen the patient and

presumably have little insight into the working hypotheses and evidence related

to the patient. Radiologists, who likely understand imaging procedures best, typi-

cally do not consult with referring physicians on the type of exam to perform for a

given patient situation. (A radiologist performing a diagnostic interpretation is not

considered a treating physician by most insurance companies.) Reimbursement

issues and physician order entry remain a point of discussion between the American

College of Radiology and Centers for Medicare and Medicaid Services (CMS).

In general, guidelines tend to be too simplistic and do not capture all possible

contexts for selection of an imaging exam. Simplicity is emphasized over compre-

hensiveness because a team of physicians with various backgrounds and involve-

ment with the patient need to be easily able to interpret these guidelines. The

explosion of new methods and protocols being developed in the biophysics imaging

community makes the task more daunting as technology rapidly advances. Guide-

lines, furthermore, are often based on statistical trends in which many important

distinguishing contextual features may have been marginalized out. The scope of
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application for specific guidelines is not always obvious; complex patient cases

often do not fit into guidelines created by optimizing some metric across a cohort

population. Guidelines typically are represented by a decision tree, which has flaws

associated with incorporating uncertainty and decision nodes which are not deter-

minant for a given patient case. Guidelines do not provide threshold probabilities

and/or sufficient context for when one should consider one alternative over another.

This often leads to conservative medicine and, in some cases, a greater increase in

low-value exam requests for a given patient. (For example, the US medicolegal

system is such that false-negative results are intolerable, far more so than false-

positive findings.) Furthermore, guidelines often follow a one-size-fits-all approach

that does not leverage the strengths of a particular institution (e.g., advanced

acquisition protocols and/or hardware).

Decision support for physician order entry can be implemented in various forms:

(1) built into a computerized medical information system, (2) a routine person-to-

person service to be conducted before order completion when test utility is deemed

uncertain (i.e., consultative feedback before completion of order), or (3) radiology

gatekeeper model where the radiology department is responsible for choosing the

right test for the patient for their given current situation. Currently, radiology is seen

as a service provider, not a gatekeeper. Thus, service metrics are more aligned with

internal concerns such as volume and turnaround time rather than patient outcomes.

Regardless of the form of a decision support system, the information required

should include [205]: the patient’s differential diagnoses, the expected information

gain (e.g., is the candidate test redundant with respect to a previous recent exam?),

the sensitivity and specificity of each alternative test and corresponding conse-

quences of a false-positive/false-negative/inconclusive diagnosis (diagnosis drives

therapy), the procedure risks (contrast allergies, radiation exposure, invasiveness),

the patient concerns (e.g., phobias, religious, physical status), the availability of test

(scheduling window, location), and the cost/insurance issues.

8.6.2 Imaging and Clinical Context

Precision medicine will require a closer collaboration between diagnostic services

(e.g., radiology and pathology) and the referring clinical team. Reporting details

and diagnostic conclusions (and hence treatment decisions) can be significantly

affected by a lack of clinical information [22, 26, 48]. Currently, radiologists often

receive limited clinical information, typically in the form of high-level “reason-for-

request” statements. Ideally, however, the radiologist and clinicians should have a

consistent canonical framing of the patient’s case in a precision medicine repre-

sentation. This would allow obvious entailment questions to be inferred from the

clinical question to be investigated through imaging. Such related questions should

be anticipated such that the information provided within the corresponding radio-

logical report can be more synchronized with the cognitive reasoning process of the
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referring precision medicine practitioner. One could envision a more coordinated

consultation as follows:

Step 1 – Formulate Clinical Query The clinical team managing a patient case

may have several high-level questions that need to be addressed through imaging.

For example, these questions may be related to the specific subtype of the disease,

patient’s predisposition for disease, prognosis, disease progression, treatment plan-

ning, and therapy monitoring. Methods to improve specificity of reason-for-request

should be developed that encourage meaningful reporting of results.

Step 2 – Infer Entailment Questions The stated reason for request should be

re-factored in terms of logical propositions that can be tested. In this step, consul-

tation with the current working model of the disease is made, and identification of

those pieces of information (e.g., biomarkers) that are relevant to answering the

clinical question are inferred.

Step 3 – Execute Relevant Imaging Protocols Considering the set of proposi-

tions to be tested, decide on an appropriate imaging protocol(s) for the given

patient case.

Step 4 – Data Collection and Standardization After data acquisition, regularize

the imaging data as necessary for advanced processing and visualization.

Step 6 – Data Analysis Analyze the data to provide probabilities regarding the

truth of each of the propositions. Questions related to imaging phenotypes should be

recorded and maintained for future evaluations. Understanding the dynamics of a

disease (i.e., progression) is an important component of phenotyping.

Step 7 – Study Conclusion Query the theoretical model to infer answers to the

high-level clinical question. This can be computer assisted and/or part of the

radiologist’s expertise. A precise, consistent method of documenting such findings

is important to facilitate accurate, unambiguous communication of findings to the

referring physician team.

Some examples of the expanded thought processes that are likely in a precision

medicine radiology service include:

Diagnosis New classification schemes related to genetic/molecular subtyping of

disease are evolving and must be targeted as an endpoint whenever possible during

a radiologic diagnostic investigation. Conclusions should be based on as much

supporting evidence as possible (e.g., biopsy and imaging confirmation). Limita-

tions of test conclusions related to the reality of the situation should be stated.

Furthermore, a more detailed representation for their specification is needed, given,

for example, the dynamic complex ecosystem of cancers with respect to space and

time. Spatial location should be obtained in biopsy samples (e.g., via image-guided

biopsy procedures) in cancers known to be highly heterogeneous.

Surgical Therapy Planning A surgical planning imaging exam can entail many

questions related to location, margins of tumors, surgical pathways, and proximity
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to functional centers of the brain (e.g., language or motor centers). The answers to

such questions will lead to issues related to degree of tumor resection, surgical risk,

and selection between surgery and other treatments [212, 219]. After debulking,

residual tumor margins can be imaged and assessed for heterogeneity which can

guide subsequent chemotherapy.

Therapy Monitoring Heterogeneity is critical to understanding a tumor’s resil-
ience to therapy and to designing strategies for treatments (combinations of drugs/

modalities) that deal specifically with the problem of recurrence. Phenotypic and

genotypic trajectories of a cancer can change rapidly in time and these aspects need

to be monitored. An awareness of possible resistance mechanisms for a given tumor

type and their radiomics signatures need to be anticipated during therapy monitor-

ing assessment. Additionally, monitoring therapeutic side effects and possible

causes of death is important (e.g., herniation, systemic illness, brainstem invasion,

tumor-induced cytotoxicity, and tumor cell burden).

Information Systems Information systems will have to advance accordingly to

meet the new capabilities of a precision medicine radiology practice. Greater

integration of clinical and radiology data will be necessary to improve diagnostic

and monitoring capabilities. A common information model can serve as a frame-

work for improving context for an exam and reporting requirements. Workflows for

integration of processing intense radiomics analysis will need to be enforced.

Likely, new types of personnel specializing in various information processing

tasks will be needed in order to ensure radiologists are presented with all forms

of evidence, computational analysis results, and possible interpretations in order to

make their final conclusions for a given study in a timely manner. Various working

groups, medical societies, and consortia are actively publishing specifications for

reporting to ensure clarity, specificity, and compliance with the information needs

of the clinician. These reporting forms serve as the information interface to ensure

radiology findings have meaningful clinical utility. For example, in 2010, the

Response Assessment in Neuro-Oncology (RANO) Working Group published

updated criteria to address this need and to standardize response assessment for

high-grade gliomas [39]. Reference ontologies that are situational to a given disease

are also assisting in improving clarity and understanding. Finally, interfaces to

complex information sources (images, graphs, text, and statistics) required for

optimizing imaging study interpretations will have to advance in order to provide

visualizations and tools that can greatly enhance the cognitive reasoning skills of

the radiologist.

8.7 Challenges and Opportunities

Precision medicine is predicated in part on our ability to characterize patients in

new ways, evolving our understanding of a disease across biological/physiological

scales, and to learn likely outcomes for an individual. The volume and variety of
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information captured in the health record and medical images is vast and quickly

growing: extracting meaningful insights from clinical big data requires algorithms

that not only discover relevant features and their relationships from a large infor-

mation space but also consider the specific context (i.e., the clinical decision and

patient at hand) under which these relationships hold true. The rate limiting step is

no longer our ability to generate deep phenotypes [53, 178]: the advent of radiomics

and other high-throughput feature extraction techniques have yielded a large

number of potential phenotypes that may correlate with biological processes.

Rather, the overarching challenge is selecting and interpreting features that are

robust and informative to a clinician in deciding on a diagnosis or treatment for a

patient and, thereby, fully achieving the promise of precision imaging. Summariz-

ing the developments presented in previous sections, we highlight three emerging

areas where developments in biomedical imaging informatics play a significant role

in enabling precision medicine.

Infrastructure for High-Throughput Phenotyping While the size of generated

data per patient is continually growing, this information is not captured in a manner

that permits its reuse for research [96]. Contributions from the informatics com-

munity have started addressing information gaps by capturing provenance infor-

mation and contextual details about each observation [217]. Furthermore, new

insights into genotype-phenotype connections are being driven by the establishment

of imaging-based observational databases [32]. For example, at our institution, a

significant effort is underway to link clinical, radiologic, pathologic, and genomic

information about various cancers at the lesion level: segmentations identified on

CT/MR imaging are correlated with whole-mount pathology slides, image-guided

biopsies, and information about patient symptoms, comorbidities, and their out-

comes. This repository supports a wide variety of studies examining how to

improve the sensitivity of detecting prostate lesions on MR as well as the ability

to accurately classify the aggressiveness of a lesion. Collecting this information

longitudinally allows researchers to understand how the biological properties of a

lesion change over time and how such changes are reflected in the clinical and

imaging observations. Moving forward, consortia such as ENIGMA and TCIA

serve as successful models to attain the necessary statistical power to discover

new genetic underpinnings of disease processes using large shared datasets.

Deep Hierarchical Modeling Matching the growth of available biomedical data

is the need for machine learning techniques that are capable of learning robust

patterns from heterogeneous input data. Deep learning is an emerging class of

techniques that has shown promise in learning latent multilevel hierarchical repre-

sentations adaptively from raw data with multiple processing layers [20]. However,

unlike natural images, deep learning techniques such as CNNs, DBMs, and

autoencoders require a large amount of labeled data, and acquiring such a training

set is challenging given that the data are often retrospectively collected and require

manual annotation by domain experts. Furthermore, it is impractical to obtain data

to train a new model each time the model is applied to a new dataset or to perform a

related – but different – classification task (e.g., lung nodule detection versus lung
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nodule classification/diagnosis). Further exploration of techniques such as data

augmentation, regularization, and transfer learning may lead to alternatives for

manually labeling additional data. Moreover, building deep networks is an art

form: a variety of hyperparameters and architectures need to be selected, and

their selection greatly influences model performance. Interpretation of intermediate

layers or the effect of changing network parameters is notoriously difficult to

understand by a domain expert [175, 223]. As such, more tools that permit the

clear understanding of intermediate layers and training on smaller, imperfect

datasets are crucial.

Knowledge Repositories of Biological Imaging Associations While our knowl-

edge about genetic and epigenetic factors in cancer continues to increase, a knowl-

edge gap exists in understanding the significance of these findings and their clinical

manifestations. For example, while the presence of a BRCA1/BRCA2 gene in a

woman imparts an increased risk of breast cancer, it is the environmental factors

that determine whether a woman will ultimately develop cancer. We lack a clear

understanding between the interplay of genetic, molecular, and cellular properties

with information about the microenvironment and environmental exposures that

can be observed using biomedical imaging and clinical evaluation. Knowledge

repositories constructed from models such as the one for GBM depicted in

Fig. 8.3 are necessary to explicitly formalize our growing knowledge of pathways

and interactions among risk factors, bridging genotypic and phenotypic informa-

tion. One important role of such a knowledge repository is to provide a basis for

re-characterizing disease subtypes [152]. Current pathologic staging systems are

insufficient in capturing the growing number of disease subtypes with some sub-

types needing to be reclassified as different diseases. Development of a knowledge

repository that characterizes diseases across clinical, radiologic, pathologic, and

molecular observations will facilitate the discovery of new signatures across these

data sources that uniquely identifies the disease subtype, whether it is indolent or

aggressive and whether it will respond to a specific drug therapy. Furthermore, this

information can be combined with a growing number of pharmacogenomics data-

bases to reveal potential drug targets and imaging biomarkers that predict treatment

response.

Application of Imaging-Derived Insights to Drive Targeted

Therapies Ultimately, the development of these high-throughput image analysis

methods and knowledge repositories is to generate better insights from images and

image-derived information from which clinical decisions can be made.

Operationalizing this information is not trivial: for example, how should the

increasing amount of evidence extracted from imaging and other biomedical data

sources be conveyed both to the image interpreter and referring physician?

Reporting will fundamentally change to not only convey an imager’s qualitative
assessment but also perspectives from multiple disciplines (e.g., radiology, pathol-

ogy) in an effort to provide more consistent and actionable information to referrers

[9]. In addition, clinical departments are realizing the importance of leveraging data

beyond imaging to perform quality assurance [107], demonstrate the utility and
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potential cost savings of performing imaging exams [121], and improve how

imaging exams are ordered [25]. Development of novel user interfaces that inte-

grate imaging and other clinical information [106] as well as provide users with

some sense of potential sources of errors and variability [176] is needed to better aid

in the validation and interpretation of clinically significant findings.

Imaging informatics continues to evolve at a rapid pace to meet the evolving

need for improved methods to harness images and image-derived information to

inform clinical decision making. As evidenced by the examples and developments

highlighted in this chapter, biomedical imaging informatics contributes a valuable

and unique perspective about disease state. When interpreted alongside information

from other biomedical data sources, imaging provides a critical link between

observed clinical phenotypes and their genetic and environmental causes. Recent

developments in imaging informatics have provided the basis for constructing a

high level framework for applying radiomics in clinical practice, illustrated in

Fig. 8.1. Moving forward, further progress in areas such as (1) advancing radiomic

techniques to extract meaningful features from imaging data; (2) utilizing a systems

modeling approach to relate clinical, imaging, and genomic features; and (3) vali-

dating models in their ability to generate relevant diagnoses and treatment recom-

mendations are necessary to move precision medicine forward.
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Chapter 9

LIMS and Clinical Data Management

Yalan Chen, Yuxin Lin, Xuye Yuan, and Bairong Shen

Abstract In order to achieve more accurate disease prevention, diagnosis, and

treatment, clinical and genetic data need extensive and systematically associated

study. As one way to achieve precision medicine, a laboratory information man-

agement system (LIMS) can effectively associate clinical data in a macrocosmic

aspect and genomic data in a microcosmic aspect. This chapter summarizes the

application of the LIMS in a clinical data management and implementation mode. It

also discusses the principles of a LIMS in clinical data management, as well as the

opportunities and challenges in the context of medical informatics.

Keywords Big data • Clinical laboratory techniques • Database • Data

management

9.1 Introduction

With the rapid development of medical informatics and technological break-

throughs in molecular biology, large amounts of clinical and biomedical data

have been accumulated [26]. These data cover multiple levels, including both

clinical data in a macrocosmic aspect and genomic data in a microcosmic aspect,

which present more approaches and new opportunities to research disease and

improve the quality of healthcare [24]. However, most clinical data have no

corresponding genomic data, while most genomic data have no precise clinical

annotation data. How to comprehensively and systematically utilize these data at all
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levels to achieve the precise early detection, prevention, or treatment of diseases

becomes an imminent challenge in the era of precision medicine.

Big data technologies are now increasingly used for biomedical and health-care

informatics researches. Breakthroughs in technological omics, especially with next-

generation sequencing (NGS), bring avalanches of complicated data which need to

undergo effective data management to ensure integrity, security, and maximal

knowledge gleaning [14].

An ideal data management system should include strong system compatibility,

flexible input formats, diverse data entry mechanisms and views, user-friendliness,

attention to standards, hardware and software platform definition, as well as robust-

ness. Relevant solutions elaborated by the scientific community include the labo-

ratory information management system (LIMS), standardization of protocols, and

facilitating data sharing and managing.

The traditional LIMS is a type of information system implemented as a software

utility specifically designed to improve data acquisition and sample monitoring

along laboratory workflows, supporting sample reporting [33]. Most academic

laboratories around the world have adopted diverse LIMSs according to their

research objectives [2, 33, 38, 47]. Organization and presentation of biodiversity

data is greatly facilitated by LIMSs that are specially designed to allow easy data

entry and organized data display [51]. One of the most crucial characteristics of a

day-to-day LIMS is the collection, storage, and retrieval of information about

research subjects and environmental or biomedical samples.

In addition to the routine function of data management, a clinical LIMS should

also have powerful capabilities of compatibility, data sharing, and analysis with

other clinical information systems, such as hospital information systems (HIS),

picture archiving and communication systems, etc. More importantly, as one of the

effective ways to achieve precision medicine [37], a clinical LIMS should have the

ability to perform systems biology researches of disease, to provide the accurate

and comprehensive disease information needed for physicians that will influence

clinical decisions. The roles of the LIMS in clinical data management are signifi-

cant; it can achieve accurate diagnosis, provide convenient and effective access to

disease related data, decrease redundancy and costs, and facilitate the integration

and collection of data from different types of instruments and systems [28]. Point-

of-care testing in the LIMS also allows the rapid and precise analysis of samples to

quickly facilitate prompt and accurate clinical decision-making [27].

At present, many commercial and noncommercial LIMSs are available for this

purpose in clinical studies. However, many limitations are the bottleneck for the

effective utilization of a LIMS in clinical and disease research, such as the effective

sharing of genomic and clinical data, standard data exchange format [50], unified

work processes, etc. [13].

In this chapter, we summarize the application of a LIMS in clinical data

management and implementation mode. We also discuss the principles of the

LIMS in clinical data management and the opportunities and challenges in the

context of medical informatics.
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9.2 Overview of the LIMS in Clinical Data Management

9.2.1 Advances of LIMS in Clinical Data Management

With the gradually deepening study of disease and the rapidly falling cost and

availability of high-throughput sequencing and microarray technologies, clinical

laboratories have accumulated massive research data including patient demo-

graphic data, histopathologic data, imaging data, genomic data, etc. which provide

a valuable resource for medical research.

Currently, different LIMSs based on different platforms, commercial and

noncommercial, have been developed in clinics to facilitate clinical data manage-

ment and application, although, largely, available software solutions are limited to a

large extent and commercial LIMSs are expensive. The general development of

LIMSs in clinical applications mainly experiences the following three stages.

9.2.1.1 Routine Clinical Laboratory Management

At present, a lot of clinical biology laboratories have used multiplex LIMSs to

effectively perform data utilizing of those mainly focused on internal data manage-

ment. Efficient data storage and tracking and monitoring of all phases of laboratory

activities can help to improve work efficiency, identify and troubleshoot problems

more quickly, and reduce the risk of process failures and their related costs [33].

Some LIMSs are customized to realize special functions such as MOLE: a data

management application based on a protein production data model [30]. Many LIMSs

have become comprehensive and searchable databases such as PASSIM – an open-

source software system for managing information in biomedical studies [48], which

contains photographs and micrographs of samples and collection sites, geo-referenced

collecting information, taxonomic data, and standardized sequence data. The majority

of LIMSs possess user-friendly [40] interfaces in order for research teams to share and

explore data generated within different research projects [29].

9.2.1.2 Clinical Study Based on a LIMS

With the promotion of technology and data application, LIMSs gradually play a

growing role in clinical researches, from primitive sampling to data analysis. A

growing number of LIMSs are developed for special clinical purposes, such as

pharmaceutical research [39], drug abuse testing [9], or process development, and

continuing to the execution and requisite follow-up of patients on clinical trials [36].

Some academic or clinical researchers have begun to combine the data of the

LIMS and HIS to perform data analysis, mining researches, and population inves-

tigations [7, 41, 53].
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9.2.1.3 Systems Biology Research Based on the LIMS

With the accumulation of clinical data by LIMSs and continually replenished

genomic data, the multiple levels of data involved in disease occurrence and

development are gradually enriched to form “health big data” [37].

The development of systems biology and translational medicine offers the

opportunity for further, systematical investigations of disease. Tracking and mon-

itoring all the data of a single patient in a LIMS can help to identify and trouble-

shoot problems of individuals more quickly; all this can facilitate the realization of

personalized medicine and precise medicine.

Certainly, all these put forward higher requirements and challenges [17] for the

function of LIMSs which are discussed in later section.

9.2.2 Resources Available for the LIMS in Clinical Data
Management

LIMSs can indeed bring laboratory management to a higher level, but for the

meantime, this requires a sufficient investment of money, time, and technical

efforts [38]. At present, commercial LIMSs are limited by complexity, insufficient

flexibility, high costs, and extended timelines.

Here, based on literature retrieval, we describe a number of the current

noncommercial clinical LIMSs. The platform, name, function description, and

access link of these LIMSs were extracted.

From the results (Table 9.1), we found that most of the current clinical LIMSs

are web based and adopt open-source software, which may be attributed to the

flexible features of web-based platforms; they are easy to develop and can be

modified according to a research group’s needs.

9.2.3 Characters of a Clinical LIMS

The characteristics of LIMS clinical applications can be summarized into three

aspects: business drivers, benefits, and requirements, which are represented in

Fig. 9.1 [19]. By using these features, the main role and requirements of a LIMS

in clinical research can be summarized as follows:

1. To realize the automation and modernization of the clinical laboratory.

2. To meet the analysis requirements of clinical laboratory research work in the

hospital and satisfy different laboratories and different testing procedures, to

maximize the automation of operation, and to further realize the intelligence.
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Table 9.1 LIMS resources available in clinical data management

Type Name Function description Access link

Web

based

(open

source)

AdLIMS [5] A customized open-source software

that allows the bridging of clinical

and basic molecular research studies

http://sourceforge.net/pro

jects/adlims/

MendeLIMS

[12]

Management of our clinical genome

sequencing studies

http://mendelims.stanford.

edu/

Onco-STS

[10]

A sample tracking system for

oncogenomic studies

SMITH [47] Handling NGS

K-screen

[42]

An integrated application environ-

ment that supports data analysis,

management, and presentation

Enzyme

tracker [44]

A web-based laboratory information

management system for sample

tracking, as an open-source and flex-

ible alternative that aims at facilitat-

ing entry, mining, and sharing of

experimental biological data

http://cubique.

fungalgenomics.ca/

enzymedb/index.html/

BonsaiLIMS

[4]

A lab information management sys-

tem for translational medicine

User-

configurable

LIMS [36]

Manage accrual with a healthy

blood-donor protocol, as well as

manufacturing operations for the

production of a master cell bank and

several patient-specific stem cell

products

WIST [15] Provides common LIMS input com-

ponents and allows them to be

arranged and configured using a

flexible language that specifies each

component’s visual and semantic

characteristics

http://vimss.sf.net/

GNomEx

[32]

A tool for generating, analyzing,

distributing, and visualizing genomic

data

http://sourceforge.net/pro

jects/gnomex/

Excel

based

Excel-based

LIMS [23]

A simple, flexible, and cost-/time-

saving solution for improving

workflow efficiencies in early

absorption, distribution, metabolism,

and excretion screening

Unknown Galaxy

LIMS

For NGS http://tron-mainz.de/tron-

facilities/computational-

medicine/galaxy-lims/
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3. To allow clinical laboratory work to meet international practices and realize data

processing and electronic management, networking, standardization, and

modernization.

4. To maximize the realization of an automatic instrument of network operations

and automatic data acquisition and fully guarantee the instrument data to be

original and make data processing according to special requirements at any time.

5. Adopt a comprehensive configurable method, without the need to adopt the

tender to provide development tools or computer language for customization

and secondary operation, and can be modified according to standard laboratory

analysis and provide simple and flexible expansion and maintenance methods.

6. Unified storage and management of important historical data.

7. Including the spectrum map, LIMS software needs to be able to meet massive

data storage and management requirements.

8. Construction according to international standard ISO/IEC17025 and various

countries’ respective standards, such as the Chinese standard GB/T

15481–2000, and also meet hospital accreditation.

9.3 Application of the LIMS in Clinical Data Management

9.3.1 Application Model of a LIMS in Hospitals

The patient data flow based on a LIMS in the whole hospital system is shown in

Fig. 9.2. Once patients are admitted to the hospital, the data is input to the

corresponding system and then converted and shared between different systems.

The system then analyzes the different levels of data associated with the disease

and generates various forms of report to laboratory personnel, medical personnel, and

patients and finally reaches efficient and accurate shared decision-making (SDM)[3].

Fig. 9.1 Typical features of the clinical LIMS
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The LIMS is involved in different levels of function during the whole process,

from the data storage, data exchange, sample tracking, data report, etc. It follows

that LIMSs play an important role in realizing the precision and personalization of

disease treatment.

9.3.2 Customized LIMS for Specific Disease

With in-depth research in different fields of medical care, a more and more

customized and proprietary LIMS has been used in corresponding fields

[44]. Table 9.2 lists the customized LIMSs of several diseases and cancer research

including hepatocellular carcinoma [6], neuromyelitis optica (NMO), leukemia,

and a customized forensic LIMS that ensures the smooth operation of a death

investigation office [20].

Utilizing these customized LIMSs will enable users to extract meaningful results

from large datasets while trusting the robustness of their assays [11]. Based on the

assigned serial number, physicians and pathologists can analyze and input

Fig. 9.2 Data flow and application of the clinical LIMS
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standardized experimental information on particular diseases (e.g., HCC) into the

clinical information section of the database.

9.4 Principles and Standards of the LIMS in Clinical Data
Management

Each LIMS according to the various standards sometimes may be considered as

onerous and complex; however, these standards force systems to increase accuracy

of information, efficiency, and effectiveness of work processes and finally improve

patient safety [16, 45].

A lot of standards are involved in the process of the LIMS application, such as

database construction, medical information exchange and integration among dif-

ferent systems, laboratory management standards, and so on; partial-related stan-

dards are presented as follows:

Medical information exchange and integration is the effective method to solve

the interoperability and medical information island and is the basis of medical

information sharing.

Table 9.2 Customized LIMSs for clinical researches

Name Disease Description Access link

YPRC-PDB

[6]

Hepatocellular

carcinoma

(HCC)

Store, retrieve, and analyze various informa-

tion including two-dimensional electrophore-

sis images and associated spot information

that were obtained during studies of HCC

http://

yprcpdb.

proteomix.

org/

Onco-STS

[10]

Oncogenomic A sample tracking system for oncogenomic

studies

eOncoLIMS

[34]

Cancer A modular data and process management sys-

tem designed to provide the infrastructure and

environment for a collaborative cancer

research project

NMO-DBr

[18]

Neuromyelitis

optica (NMO)

A database system which collects, stores,

retrieves, and analyzes information from

patients with NMO and NMO-related

disorders

Leukemia

patient

LIMS [1]

Leukemia For entry of patient data, clinical details,

sample details, cytogenetics test results, and

data mining for various ongoing research areas

Forensic

LIMS [20]

Forensic A customized forensic LIMS that ensures the

smooth operation of a death investigation

office
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9.4.1 ISO/IEC 17025

Accreditation criteria for the competence of testing and calibration in laboratories,

originally known as the ISO/IEC Guide 25, were initially issued by the Interna-

tional Organization for Standardization in 1999. There are many commonalities

with the ISO 9000 standard, but ISO/IEC 17025 is more specific in requirements for

competence [21].

Since its initial release, a second release was made in 2005 after it was agreed

that it needed to have its quality system words more closely aligned with the 2000

version of ISO 9001. The ISO/IEC 17025 standard itself comprises of five elements

which include scope, normative references, terms and definitions, management

requirements, and technical requirements [35].

The two main sections in ISO/IEC 17025 are management requirements and

technical requirements. Management requirements are primarily related to the

operation and effectiveness of the quality management system within laboratories.

Technical requirements include factors determining the correctness and reliability

of the tests and calibrations performed in the laboratory. The usual contents of the

quality manual follow the outline of the ISO/IEC 17025 standard.

9.4.2 Health Level Seven (HL7) Standard

With the development of the technology in medical informatics area, the Health

Level Seven (HL7) standard for electronic data exchange in all health-care envi-

ronments has become a widely used standard. The gateway is used to connect two

different medical information systems, a HIS and a LIMS, via HL7 message

exchanging [52].

9.4.3 Logical Observation Identifiers Names and Codes
(LOINC)

Logical Observation Identifiers Names and Codes (LOINC) is a universal code

system for identifying laboratory and clinical researches, which is designed for

utilization within messaging standards such as HL7. When LOINC and HL7 are

used together, independent systems can electronically exchange test results with

one another in an understandable way [49].

This data exchange formula has been used widely around the world. Before

health-care organizations can leverage the value of unified data, they must first map

their local test codes to codes in LOINC. Unfortunately, this process is complicated

and resource intensive.
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9.4.4 Standardized Nomenclature of Medicine Clinical
Terms (SNOMED CT)

Standardized Nomenclature of Medicine Clinical Terms (SNOMED CT) is devel-

oped by the International Health Terminology Standards Development Organiza-

tion. It is the world’s largest clinical terminology database and provides broad

coverage of clinical medicine, including diseases and phenotypes. SNOMED CT

includes pre-coordinated concepts (with their terms) and supports post-

coordination, i.e., the principled creation of expressions (logical definitions) for

new concepts [8].

The US edition of SNOMED CT dated March 2015 includes about 300,000

active concepts, of which 103,748 correspond to clinical findings.

9.5 Informatics Challenges of a LIMS

The advent of new technologies has led to an increasing growth in both the quality

and quantity of health data; modern-automated LIMSs have to operate huge

volumes of data. Such growth may entail some challenges, which make adopting

appropriate management methods inevitable. In terms of logistics, data capture,

data analysis, result visualization, and reporting, new challenges have emerged

from such projects [25].

9.5.1 Reliability and Security

From the phenotype to genomics data of the patients, with a LIMS covering various

data quantity and data type, how to achieve fully effective mining and utilization, to

promote individualized and precision medicine, is currently the main direction of

medical development. Data structure standardization, quality control, privacy pro-

tection, and health data are important problems to be solved in the process [46].

The continuity of data should be fully guaranteed, which not only can achieve

efficient sample tracking but also realize the systematic research of disease [26].

Certainly, a series of measures can be taken to improve data reliability and

security, guarantee the consistency of the data, and increase laboratory productiv-

ity, such as effective data encryption to protect the privacy of the patient; all data for

individual samples are linked through unique accession numbers to keep consis-

tency, accession numbers, numerous levels of taxonomy, or collection site provided

to users for searching sample information efficiently online [51].
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9.5.2 Unification of Standard Data, Workflow, etc.

In terms of unification of standard data, one of the main difficulties to implement a

LIMS is the fact that each laboratory has a different routine of experimentation that

changes over time; meanwhile, once validated, major modifications to the LIMS,

such as revising the user interface, are unlikely [19].

At the present time, few LIMSs use LOINC and SNOMED. Many LIMSs record

the order and the result of a laboratory test using local alphanumeric codes

(or worse, a combination of local codes and free text) specific to that laboratory

or to a particular vendor’s LIMS or which may cause new diseases (e.g., severe

acute respiratory syndrome or infection due to a new salmonella serotype) that

cannot be added rapidly.

Lacking of universally accepted clinical LIMS fitting all requirements may be a

great obstacle to medical data sharing and the systematic study of disease [25].

9.5.3 Systems Biology Research Limitations of a LIMS

The organization and systematic analysis of health data are challenging issues today

and even more for the rising amount of information in the future. LIMSs that do not

accept the currently accepted clinical research on a system, medical data sharing,

and diseases will bring great obstacles. Although a large amount of data are

generated from high-throughput large-scale techniques, a connection of these

mostly heterogeneous data from different analytical platforms and of various

experiments is limited.

Data mining procedures and algorithms are often insufficient to extract mean-

ingful results from large datasets and therefore limit the exploitation of generated

biological information [31].

How to reduce the gap between clinical data and genetic data and improve the

association between phenotyping and genotyping data are all significant issues for

the research of diseases by systems biology.

9.5.4 More Communications Between Health-Care Providers
and Clinical Laboratory Personnel

Poor communication between health-care providers and clinical laboratory person-

nel can lead to medical errors. Therefore, researchers and clinicians must collabo-

rate closely to achieve a comprehensive interpretation of heterogeneous biomedical

data, especially with respect to clinical diagnosis and treatment [34].

With the development of medical informatics participatory medicine [22, 43],

the relationship among doctors, patients, and medical researchers are linked more
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closely, but how to regard patients as central and how to use disease data to make

more accurate decisions are two of the major challenges of precision medicine.

9.6 Future Directions

By increasing the function of the LIMS and better standardization of standards, future

LIMSs can achieve data structure standardization and powerful data storage capacity,

allow easy data entry and organized data display, streamline all phases of a workflow,

and provide powerful compatibility and sharing with other medical systems.

The LIMS function was designed not only to minimize the gaps between

different data type and processes but also to perform output function in various

report formats to satisfy different users. The procedures for collecting and catego-

rizing samples should be scientific and standardized, which can be verified by

physicians, surgeons, and pathologists, and the users can input entire sets of

information into LIMS and assign a serial number to each sample. The workflow

generator encapsulates a user-friendly visual tool that allows users to design

customized workflows [33].

A smart LIMS operating environment in a particular facility strongly influences

clinical decisions and developments in medicine. If there are demands for LIMSs,

the education and training of the administrator, data analysts, and patients also

should be considered in the future.

9.7 Conclusions

Although there are many limitations and obstacles in the way of the clinical LIMS

application, we firmly believe that a LIMS can facilitate the “seamless connectiv-

ity” between clinical data and genetic data, realize the system researches of disease,

improve early disease prevention, also facilitate decision-making, improve quality

and productivity of disease care services, promote the development of 4P medicine

(predictive medicine, preventive medicine, personalized medicine, and participa-

tory medicine), and, lastly, achieve precision medicine.
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Chapter 10

Biobanks and Their Clinical Application
and Informatics Challenges

Lan Yang, Yalan Chen, Chunjiang Yu, and Bairong Shen

Abstract Biobanks are one of the most important biomedical research resources

and contribute to the development of biomarker detection, molecular diagnosis,

translational medicine, and multidisciplinary disease research, as well as studies of

interactions between genetic and environmental or lifestyle factors. Aiming for the

wide clinical application of biobanks, biobanking efforts have recently switched

from a focus on accumulating samples to both formalizing and sustaining collec-

tions in light of the rapid progress in the fields of personalized medicine and

bioinformatics analysis. With the emergence of novel molecular diagnostic tech-

nologies, although the bioinformatics platform of biobanks ensures reliable bioin-

formatics analysis of patient samples, there are a series of challenges facing

biobanks in terms of the overall harmonization of policies, integrated processes,

and local informatics solutions across the network. Further, there is a controversy

regarding the increased role of ethical boards, governance, and accreditation bodies

in ensuring that collected samples have sufficient informatics capabilities to be used

in biobanks. In this volume, we present a selection of current issues on the

inevitable challenges of the clinical application of biobanks in informatics.
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10.1 Introduction

10.1.1 Definition of the Biobank

Biobanks are storage banks for samples of human origin for use in national and

international research in the field of biomedicine [38]. Their most significant

feature is the storing of specimens for research purposes. Biobanks collect, store,

and distribute biospecimens such as blood, urine, tissue, and DNA/RNA and

involve not only the specimens, disease history, and characteristics but also their

associations with lifestyle, environmental factors, and comorbid health burden

[42]. Biobanks are the best large-scale instruments to link molecular and clinical

findings to patients’ prognosis. They vary in size, ranging from small disease-

specific biobanks to ones for general health care.

All biomedical research requires collecting data and biological samples from

people affected by a disease, as well as from people not affected by the disease, to

analyze and draw conclusions for improving knowledge and advancing the diag-

nosis and/or treatment of diseases under research. Nowadays, biobanks are

redefining many aspects of research by allowing ongoing access to research

populations, exploring methods of consent and governance, and creating new

models for conducting translational research [45].

10.1.2 Classification of Biobanks

Revisions in the purpose, operations, and clientele of biobanks have caused a

review of biobank classification systems, which previously grouped human

biobanks according to their research purpose [34].

Human-driven biobanks include three major types [35]:

(A) Population banks. Their primary goal is to obtain biomarkers of susceptibility

and population identity, and their operational substrate is germinal-line DNA

acquired from a large number of healthy donors that is representative of a

discrete country/region or ethnic cohort.

(B) Disease-oriented banks for epidemiology. Their activity is focused on bio-

markers of exposure using a huge number of samples, usually following a

healthy exposed cohort/case–control design, and studying germinal-line DNA

or serum markers and a great amount of certain designed and collected data.

(C) Disease-oriented general biobanks (i.e., tumor banks). Their goals correspond

to biomarkers of diseases through prospective and/or retrospective collections

of tumor and non-tumor samples and their derivates (DNA/RNA/proteins),

usually in association with clinical data and sometimes with clinical trials.

According to the CTRNet system [44, 55, 56], mono-user biobanks aim to

facilitate one research project, oligo-user biobanks serve several research groups,
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and poly-user biobanks support unspecified research projects undertaken by exter-

nal researchers. Biobanking, the large-scale, systematic collection of data and tissue

for open-ended research purposes, is on the rise, particularly in clinical research.

10.2 Clinical Application of Biobanks

10.2.1 The Importance of the Establishment of Biobanks

We are increasingly becoming aware of the importance of biomedical research to

improve human health. Among the many existing biomedical and health platforms,

biobanks are one of the most attractive options and contribute to building bridges

between basic, translational, and clinical research and practice. The key purpose of

biobanking in translational medicine and other medical research is to provide

biological samples that are integrated with clinical information.

The main mission for which biobanks have been established is to empower those

biomedical studies considered particularly relevant, focusing on the analysis and

improvement of knowledge of conditions or diseases including cancer, infections,

“rare” diseases, etc. [10]. Further, biobanks are comprehensively applied in many

types of research such as in epidemiological studies [26], health-related quality of

life deficits [42], central nervous system disease [20], lipid-related diseases [58],

etc. Therefore, large samples are required to obtain certain demographic character-

istics of not only the samples and social and food habits but also the environmental

characteristics of the patients’ living environment, lifestyle of patients and risk

factors associated with the diseases of patients.

By sharing clinical experiences, patient treatment principles, and biobank strat-

egies, clinical teams in Japan and Sweden, respectively, are aiming to develop

predictive and drug-related protein biomarkers [32]. For instance, pre-therapeutic

histological distinction between large-cell neuroendocrine cancer (LCNEC) of the

lung and small-cell lung carcinoma has been problematic so far, leading to adverse

clinical outcomes. Thus, the establishment of protein targets characteristic of those

in the LCNEC biobank would be quite helpful for optimizing decision-making in

therapeutic strategies by diagnosing individual patients.

The storage of human biological material and associated information in

biobanks not only enables biological research but also the development and utili-

zation of new diagnostic and therapeutic techniques in previously stored specimens.

In Denmark, opportunities for exploiting leftover dried blood spot cards from

neonatal screening for genomic research have been considered [47] in recent years.

The emergence of clinical biobanking is associated with general shifts in bio-

medical research toward molecular-level investigations to understand and intervene

in the mechanisms of disease, particularly with the uptake of genomics in clinical

research and medicine. Clinical samples can also be archived into repositories for

future studies to investigate the root causes of disease using genetic, genomic,
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proteomic, and metabonomic approaches. For example, Middha and colleagues

examined the genotype–phenotype correlation from whole-exome sequencing

(WES) studies in a series of individuals representing a broad range of phenotypes

based on a set of samples from the Mayo Clinic Biobank [28].

Using different approaches, such as genomics and proteomics, researchers can

identify biomarkers of these processes and help design new target molecules for the

development of drugs and therapeutic alternatives. In the case of rheumatology

research, the possibility offered by biobanks in terms of samples from each patient

in different formats (solid, liquid) and at different times of the disease progression

(diagnosis, progression, pre- or posttreatment, etc.) may help to elucidate the

mechanisms involved in various pathologies associated with this area [10]. As for

proteomics in biomedical research, it can help with the identification of specific

biomarkers for diagnosis, classification, and prediction and may contribute to

defining new therapeutic targets [41].

Research using samples from large biobanks is essential for understanding not

only genetic risks for common diseases caused by gene variants but also uncommon

environmental and other risk exposures that impact health. Furthermore, studies

utilizing biobank samples are useful in developing personalized therapeutics,

targeting biomarkers in disease progression and prognosis, and implementing

personalized medicine projects. The application areas of biobanks in human

research can be seen in Fig. 10.1.

Fig. 10.1 Clinical applications of biobanks
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10.2.2 The Prerequisite of Biobanks for Clinical
Applications

Facilitating the integration required to achieve proper clinical applications of

biobanking involves large amounts of work standardizing and harmonizing the

data and tissue provision, as well as establishing quality control, certification of

workflow, essential and procedural benchmarks for data and tissue collection and

management, and evidence-based data models [29, 38].

The prerequisite for maintaining a tissue sample repository is the establishment

of quality standards to ensure that samples are equivalent in terms of form (fresh,

frozen, wax block, sections on slides, etc.), physical integrity (processing and

storage), and availability for use (identity labels, aliquot size). Standard operating

procedures should define the exact steps performed for each process in the sample

life cycle to minimize both pre-analytic variability and storage artifacts [27].

However, the mass storage of biological samples raises complex technical issues

that affect sample collection, transportation, identification, traceability, storage at

different temperatures, the recovery of the stored samples, the processing of the

data, etc. Thus, several essential processes must be developed, such as the unifica-

tion of the protocols, establishment of an appropriate methodology for coding and

identification of samples, rigorous informed consent, and hiring of well-qualified

staff [10]. Further, a biobank information management system (BIMS) is necessary

to manage the data and samples in biobanks. Worldwide standardization of sam-

ples, preparation, storage, and analysis will help to ensure regulated utilization of

the sample sets in future health-care studies, serving in the development of new

medicines and diagnostics as well as novel methodologies and innovative technol-

ogy platforms. Improving the ways we collect and utilize samples will also depend

on integrated systems that allow for search routines on sample collections, types,

and datasets that have been generated from biobanks [27]. Additionally, data on

recurrences and survival status related to treatment therapies and genetic profiling

will provide much information on the progression and outcome of the disease. In

order to exploit the potential of genomics and other molecular analytical tech-

niques, there has been increasing emphasis on the differentiation and stratification

of target objectives and populations; however, there are many challenges in

establishing statistically significant associations between diseases and disease

markers, which require data from ever larger target populations of both healthy

individuals and patients [4]. With these efforts, the combination and harmonization

of clinical examinations, pathological diagnoses, follow-up cases, and clinical

samples could also create shortcuts for quick and efficient analysis.

In this era of increased interest in personalized medicine, the linkage of molec-

ular data and genetic profiling with demographic, pathologic, and clinical records

will greatly enhance future studies of disease etiology and risk factors. As long-

term storage of biological materials and data is a critical component of any

epidemiological or clinical study, when designing biobanks, informatics play a

vital role in the handling of samples and data in a timely fashion [25]. However, a
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series of challenges have emerged because of the large amount of biomedical

informatics data from various biobanks as well as the high complexity of the data

analysis and integration. Policies for enrolling participants, returning research

results, and obtaining samples and data will have far-reaching implications on the

types of research that can be carried out on each biobank. Population-based

biobanking setup specifically for research purposes has received considerable

attention in studies devoted to ethical, legal, and social aspects of biobanking

[21, 46].

10.3 Informatics Challenges Faced by Biobanks

10.3.1 Properly Designed Projects and Approaches
Demanded in Biobanks

As biobank samples are increasingly used for translational research and clinical

implementation projects, issues that must be addressed by each biobank include

questions regarding the appropriate means to have ongoing engagement with

participants, best consenting methods, the return of personal results, and other

policy issues. With the rapid development of bioinformatics, which we often

emphasize together with the objective of “personalized medicine,” current

approaches to biomedical research therefore involve not only individualized, strat-

ified, and differentiated forms of intervention but also new forms of population-

level surveillance [37]. The scientific goal is to initiate and stimulate scientific

research of high quality and of international importance. However, during the

clinical application of biobanks, there are inevitably new informatics challenges

associated with ethical, legal, and privacy issues.

Recent research has reported that the most important factor for achieving this

goal is the implementation of a solid national research infrastructure with standard-

ized data collection and a solid long-term storage strategy [19]. Therefore, firstly,

we should design appropriate projects that can help us to further understand how

biomedical findings might correlate with various medical diseases. If the clinical

data are linked to the biomaterial, it can be used to conduct more advanced research.

This may ultimately lead to better health care for patients with the studied medical

condition, as the treatment can be more personalized. For example, the Netherlands

has the Esophageal and Gastric Cancer Pearl, a nationwide clinical biobanking

project. In this project, all participating researchers are permitted to submit their

study proposal to the scientific committee of the Esophageal and Gastric Cancer

Pearl to conduct research using the clinical data and biomaterial gathered in the

database, thus providing opportunities for future studies to gain more insight into

the etiology, treatment, and prognosis of esophageal and gastric cancer [19]. In

order to determine prognostic biomarkers and therapeutic targets for esophageal

adenocarcinoma including whole-genome sequencing, Oesophageal Cancer
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Clinical and Molecular Stratification study group in the UK has also started a

similar program for tissue and data collection from patients with esophageal cancer

across multiple specialist centers [35, 57].

Secondly, because the integrity of collection protocols in biobanking is essential

for a high-quality sample preparation process, with multisource well-informed

consent [7], which can improve patient autonomy in conscious decision-making,

an effective sample collection process such as Community Networks Program

Centers ([51]) and an electronic specimen collection protocol schema (eSCPS)

[12] can improve the biospecimen collection as well as involvement in prevention,

screening, and therapeutic trials.

The study of the molecular basis of cancer also needs many, often thousands of,

biospecimens in order to find answers to questions related to environmental expo-

sure to genetic predispositions (which are typically beyond the control of the

individuals) [18]. Besides, these centers try to increase the community’s capacity
to conduct cancer education and, via training activities, to enhance the probability

of successful research. Accumulating biospecimens and recruiting individuals from

diverse groups to prevention and treatment trials will help allow the contribution of

personalized medicine to all, regardless of their health status.

With the quickly expanding biospecimen needs and limited health-care budgets,

biobanks may need to be selective as to what is stored. Thirdly, we still require

effective methods such as the open electronic health record (EHR) archetype

approach [48] and the specific data model [11] to help model the data in the

database as well as enable data analysis compliance with the data privacy regula-

tions of the existing BIMS. Although establishing exact mapping between the fields

in the database and the elements of the existing archetypes that have been designed

for clinical practice can be challenging and time-consuming and involves resolving

many common system integration conflicts, we can provide a proper harmonization

procedure which should be developed that allows large-scale collaboration and

contributes to the harmonization of the clinical and test data collection acquired in

various biobank resources [54]. The main projects and approaches used in current

biobanks are listed in Table 10.1.

10.3.2 Bioinformatics Technologies for Data Management

As concomitant analysis of patients’ personal and clinical data, such as family

history, smoking and drinking habits, race, medical history, etc., can also be

performed to identify disease-related factors, the key data management challenges

faced by disease research projects include the high complexity and heterogeneity of

the data types involved and the variability among experimental platforms. The data

obtained from these different sources can be analyzed jointly to determine which

environmental or behavioral factors play meaningful roles in cancer genesis

[16]. Additionally, the high volume of data and the distributed nature of the sources

make traditional approaches to data management impractical, and new solutions are

therefore required.
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Table 10.1 Projects and approaches currently used in biobanks

Number

Tool name used in

biobanks (types) Function Application field Reference

1 The Esophageal and

Gastric Cancer Pearl

(a nationwide clinical

biobanking project in

the Netherlands)

Provide opportunity

for future studies to

gain more insight in the

etiology, treatment,

and prognosis of

esophageal and gastric

cancer

Esophageal and gas-

tric cancer

[19]

2 A data management

procedure

Offers an easy way for

the transformation of a

nonautomated biobank

from the small-scale,

early stage to the large-

scale, highly automated

level

Different types of

diseases

[17]

3 Endometriosis

Phenome and

Biobanking Harmo-

nization Project

Harmonizes the collec-

tion of nonsurgical

clinical and epidemio-

logic data relevant to

endometriosis research,

allowing large-scale

collaboration

Endometriosis [54]

4 Community Net-

works Program

Centers

Successfully engages

the groups to partici-

pate in the biospecimen

collection and in pre-

vention, screening, and

therapeutic trials

Cancer research [52]

5 An electronic speci-

men collection proto-

col schema (eSCPS)

Improves the integrity

and facilitates the

exchange of specimen

collection protocols in

the existing open-

source BIMS

Prostate cancer [12]

6 Linkage of data from

diverse data sources

(LDS)—a data model

Provides an effective

approach to distribute

clinical and repository

data from different data

sources to enable data

analysis compliance

with data privacy

regulations

Prostate cancer [11]

7 A multisource

informed consent

procedure

Allows a high rate of

understanding and the

study participations’
awareness of their roles

as research stake-

holders in a cancer

biobank

Cancer [7]

(continued)
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With the emergence of new sequencing techniques, it is necessary for

researchers to develop more effective bioinformatics techniques to manage and

analyze the large amounts of data in biobanks, with the aim of being able to

understand the mechanisms that contribute to the development of diseases. Ferretti

and colleagues developed a web-based computer system—called BioBankWarden

(BBW)—that enables researchers to store, retrieve, and integrate data on biomo-

lecular researchers trying to integrate information across sample collections. BBW

allows for the creation and association of different projects involving different

groups of users and has a requisition module to manage the output of material

based on roles and permissions for exchanges among collaborative groups. The

researchers who participate in the projects contribute by detailing the system

requirements and evaluating the prototypes. Along with some databases such as

Institut Curie [31] and Breast Cancer Campaign Tissue Bank (BCCTBbp) [9], we

also need valuable software such as the Sample avAILability (SAIL) system, which

first created harmonized variables and annotated and made searchable information

on the number of specimens available in individual biobanks in various phenotypic

categories [49]. Furthermore, an integrated platform connecting databases, regis-

tries, biobanks, and clinical bioinformatics or a sharing service platform is another

requisite for data analysis ([8]; [52]). As data must be linked at both the individual

patient and whole cohort levels to enable researchers to gain a complete view of

their disease and the patient population of interest, data access and authorization

procedures are required to allow researchers in multiple institutions to securely

compare results and gain new insights. The databases, software, and platforms that

can be used on data containing disease associations between different phenotypes

and mechanisms of diseases are listed in Table 10.2.

Table 10.1 (continued)

Number

Tool name used in

biobanks (types) Function Application field Reference

8 The ONCO-I2b2

project

Integrates biobank

information and clini-

cal data to support

translational research

in oncology

Oncology [43]

9 Open EHR archetype

approach

Development of an

interoperable elec-

tronic biomedical

research record

(eBMRR) to support

biomedical knowledge

discovery

Prostate cancer [48]

10 The Clinical Infor-

mation Integration

System (CIIS)

Systematically collects

and manages various

human-origin biomedi-

cal resources and the

donors’ clinical infor-
mation with their

signed consent

Cancer, digestive

organ disease, pul-

monary disease,

other diseases, and

cohort projects

[22]
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Table 10.2 Databases, software, and platforms used in biobanks

Number

Tool name used in

biobanks (types) Function Application field Reference

1 Institut Curie

(database)

Responsible for the

overall coordination

and management of

data

Cervical cancer [31]

2 BCCTBbp (database) Improved the ability of

the biobanks to partici-

pate and share their

samples and data

within the network

Breast cancer [9]

3 The Sample avAIL-

ability (SAIL) (soft-

ware package)

Data linking, harmoni-

zation, submission of

samples and phenotype

information

Prostate cancer

quality registry;

SUMMIT for

GWAS genotyping

and omics analysis

[50]

4 BioBankWarden

(BBW, database)

Be used to store and

retrieve specific infor-

mation from different

clinical fields linked to

biomaterials

Provides different

datasets for each

clinical area

according to the

user’s needs

[16]

5 A sharing service

platform

Integrates clinical

practice and biological

information that can be

used in diverse medical

and pharmaceutical

research studies

Diverse medical and

pharmaceutical

research studies

[8]

6 The Human Tissue

and Cell Research

(HTCR) web

application

To develop an infor-

mation system

supporting acquisition,

processing, and storage

of remnant biomaterial

from surgical treat-

ment, as well as its

allocation to research

projects

Support of research

based on human

specimens

[30]

7 RD-Connect platform An integrated platform

connecting databases,

registries, biobanks,

and clinical

bioinformatics

For rare disease

research

[52]

8 “Compass” approach

(self-organizing maps

and association

mining)

Can generate a highly

condensed and struc-

tured output for effi-

cient manual screening

of potentially interest-

ing rules through the

use of Associative

Variable Groups

Prostate cancer and

breast cancer

[23]

(continued)
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Furthermore, running such a comprehensive clinical bank requires massive

coordination among the biobanks, specific clinical departments, pathology depart-

ment, biochemistry lab, and hospital administration department. Powerful technol-

ogies critical to personalized medicine and targeted therapeutics require the

analysis of carefully validated, procured, stored, and managed biospecimens. Infor-

matics challenges that are faced in the development of biobanks and the

recommended strategies can be seen in Fig. 10.2.

Table 10.2 (continued)

Number

Tool name used in

biobanks (types) Function Application field Reference

9 The Federated Utah

Research and Trans-

lational Health elec-

tronic Repository

(FURTHeR)

Combine electronic

health records (EHR)

and biospecimen data

by both institutions to

demonstrate the

robustness of the

infrastructure

More than 20 dis-

eases (not detailed)

[24]

10 Dataset called

MIABIS (Minimum

Information About

BIobank data

Sharing)

Facilitates data discov-

ery through harmoni-

zation of data elements

describing a biobank at

the aggregate level

Not mentioned [33]

Fig. 10.2 Informatics challenges and recommended strategies for the development of biobanks
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10.3.3 Clinical Biobanking Challenges Research
Governance

Due to the heterogeneity of the specimens in biobanks, the uncertain and hetero-

geneous landscape also demands careful consideration and planning by biobank

managers to maintain high-quality practices in the acquisition, storage, and release

of specimens, all the while striving to protect the rights of the subjects. Clinical

biobanking also poses challenges to clinical research governance. Based on a recent

study [1], such governance is aimed at enacting and enforcing the distinctions and

boundaries between research and care. In the authors’ opinion, the first issue raised
by the bio-objectification of clinical biobanking relates to the core principle under-

pinning the ethics of human subject research: the protection of the autonomy of the

research participants. Secondly, such models of governance are complicated by the

extent to which clinical biobanking initiatives are organized as complex arrange-

ments. Further, these models often involve overlapping organizational responsibil-

ities for various aspects of tissue and data processing. Thirdly, regarding the

practices of the residual use of human tissue and data, these issues usually do not

adapt to the remit of most clinical research legislations. Informed consent of their

participants of various scope and specificity may help to solve this problem. There

has been debate among ethicists and legal scholars about whether researchers and

biobanks have duties and responsibilities toward the participants and donors with

regard to incidental findings generated from the banked tissue and data. Because

limiting the scope of research exemptions in data protection legislations would

severely hamper biomedical research, we should emphasize justifying these broad

forms of consent, which are oriented toward enhancing the collective benefits of

research. Since there is no international convention that regulates human research

biobanks, we must look to national legal systems to determine the principles and

legislations capable of forming a regulatory framework for the activities of

biobanks to ensure that they function with efficiency, technical reliability, and

respect for ethical standards [15].

Nowadays, different attempts have been made at integrating health-care data for

research in projects focusing on large-scale systematic integration of medical data

infrastructure into biomedical research, such as the controversial UK care.data

project [6] and the ONCO-I2b2 project [43]. As a result, the challenge was not to

set up a new biobank system but to provide a mechanism that could facilitate

searching across many existing database systems and structures [36]. As research

becomes more globalized, the systems should also be able to record sample data in a

global database. Thus, an international network will be necessary to realize this

goal. While informatics capabilities of biobanks remain consistent with what is

represented within the ISBER (International Society for Biological and Environ-

mental Repositories) informatics survey, forging virtual networks of biobanks with

meaningful annotations will be extremely challenging [13]. Biobanks and biobank

networks are established as the optimal methods to store large amounts of human

biological samples to ensure their optimum quality, harmonization, and security, as
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well as the ethical and legal requirements guaranteeing the rights of participants

[10]. In contrast to the more straightforward technical and management issues,

ethical and regulatory practices often involve issues that are more controversial and

difficult to standardize [53].

10.3.4 Considerations About Privacy and Confidentiality

Biological issues from the interpretation of genetic data can provide genetic

information. Genetic information retrieves an individual’s biological inheritance

in terms of individual, family, and lineage history. For this reason, research projects

that involve biological materials stored in biobanks always have ethical and legal

considerations. Privacy and confidentiality are the main issues we should be

concerned with: privacy as a human right and confidentiality as a professional

prima facie duty [40]. Although the boundaries of privacy vary in different coun-

tries because of cultural differences, confidentiality remains a core professional

duty in all countries, even after a patient dies [39]. There are many other infra-

constitutional laws, such as the new Civil Code [2] and the Biosecurity Law [3], as

well as other administrative guidelines and regulations [14] that codes for funda-

mental rights and privacy.

Research should not infringe the rules concerning personal rights; further, they

should protect the patient’s right of privacy. Besides, in terms of confidentiality,

health research investigators have the same duty to prevent personally identifiable

data from disclosure. Data handling is one of the most important aspects in the

activity of biobanks. During processing, personal data must be identified and stored

using cryptography, which helps to protect privacy. Sometimes, however, this

cannot be accomplished in some exceptional situations. For instance, if the research

subject gives specific permission for disclosure, the researcher does not have to

observe the duty of confidentiality toward the data obtained during research activ-

ities. Furthermore, if the data concerns an endemic or highly contagious disease, we

may inevitably need to disclose data as long as it is carried out in a sincere,

conscientious, and responsible manner, because of consideration of public order,

or even by the force of the law [15]. Thus, the problem lies between private life and

public interest. Either the issue primarily concerns an aspect of someone’s private
life, in which case it must be kept within the private sphere, or it is something that

deserves broad visibility, owing to the acknowledged presence of a public

interest [5].

Another important aspect of the management of information in the activity of

biobanks that affects the privacy of research subjects is the sharing of information

among researchers and the creation of research networks that are increasingly

connected globally. The cultural borders of the concept of privacy must be consid-

ered as a new challenge to research projects that involve the utilization of biological

samples stored in biobanks. The challenge of privacy in the context of genetics
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research must be emphasized according to the criteria established by the legal

system so as to preserve justice. We should consider privacy from the personal,

social, and historical perspectives in the clinical application of biobanks.

10.4 Conclusions

In this chapter, we discussed the clinical application of biobanks and bioinformatics

challenges faced by biobanks during the practice process. Biobanks are an impor-

tant resource for medical research. Biological material from large numbers of

specimens can yield valuable information that could improve our understanding

of mechanisms and genetic–environmental interactions and the genesis and devel-

opment of the early onset disorders of diseases. Although every biobank has

internal standards for record-keeping, quality assurance, and medical procedures,

considering the complexity of different types of data, efforts are required to

standardize sample quality, form, processes, and an effective integration of

multidimensional data across the network, or at least harmonization among various

ethical, social, and legal issues, as well as common practices for the management of

biobanks. As long as we recognize the importance of ethical, legal, and social issues

in human tissue research in both society and the research community specifically

and take proper measures to deal with informatics challenges during the realization

process of biobanks, we will gain the full benefits of biobanks and improve modern

scientific biomedical research.
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Chapter 11

XML, Ontologies, and Their Clinical
Applications

Chunjiang Yu and Bairong Shen

Abstract The development of information technology has resulted in its penetra-

tion into every area of clinical research. Various clinical systems have been

developed, which produce increasing volumes of clinical data. However, saving,

exchanging, querying, and exploiting these data are challenging issues. The devel-

opment of Extensible Markup Language (XML) has allowed the generation of

flexible information formats to facilitate the electronic sharing of structured data

via networks, and it has been used widely for clinical data processing. In particular,

XML is very useful in the fields of data standardization, data exchange, and data

integration. Moreover, ontologies have been attracting increased attention in vari-

ous clinical fields in recent years. An ontology is the basic level of a knowledge

representation scheme, and various ontology repositories have been developed,

such as Gene Ontology and BioPortal. The creation of these standardized reposi-

tories greatly facilitates clinical research in related fields. In this chapter, we discuss

the basic concepts of XML and ontologies, as well as their clinical applications.

Keywords Data exchange • Data integration • Knowledge representation •

Ontology • XML

11.1 Introduction

At present, various clinical systems are available such as clinical information systems,

clinical decision support systems (CDSSs), clinical practice guideline (CPG) system,

electronic health record (EHR) systems, case-based reasoning (CBR)-driven medical

diagnostic systems, clinical trial management systems (CTMSs), unified medical

language systems, laboratory information management systems, and electronic patient
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care systems. These systems are used to collect, save, query, and utilize data. Data may

be collected in various formats, including electronic patient records (EPRs), biomedical

data, literature, manuals, and books, where these data may be scattered among a variety

of information sources, e.g., information systems, on the Internet, and text data. After

the data has been collected, they must be consolidated, organized, and processed into a

unified data format (Fig. 11.1).

The design goals of Extensible Markup Language (XML) emphasize the sim-

plicity, generality, and usability of the Internet. XML data are known as self-

describing, which means that the structure of the data is embedded with the data.

The XML format can be used by anyone to share information in a consistent

manner. XML is defined by a number of related specifications, including those

for XML, XML Pointer Language, XML Linking Language, Extensible Stylesheet

Language (XSL), XSL Transformation (XSLT), and document-type definitions.

During data processing, XML can organize data in different formats using the

unified XML format. For example, CBR-driven medical diagnostic systems require

a large number of clinical cases [1]. In general, clinical cases are distributed in the

clinical system of each hospital, and the clinical systems used by hospitals may

differ, with various data storage formats. XML can be used to convert clinical cases

in different formats into a unified format. In some scenarios, we may need to

exchange heterogeneous data within or between systems, e.g., data obtained from

experiments using human tissue specimens have little actual value unless they can

be combined with medical data [5]. In the past, research data were correlated with

medical data by manually retrieving pathology reports, patient charts, radiology

reports, and the results of special procedures. However, manually annotating

research data are very difficult when experiments involve thousands of tissue

specimens, which involve the export of large and complex data collections.

The same word may have different meanings, e.g., in the UK, football refers to

“association football,” whereas “soccer” is used in the USA, but it also could refer

to “rugby” football, while football generally means “American football” in the

XML

Electrical patient 
records

Literature

Biomedical data

Web applications

Books

Manuals

Fig. 11.1 XML provides a

common mechanism for

data interchange
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USA. In addition, the same thing can be represented using different words. Thus, an

ontology is a good solution if we want to share a common understanding of the

structure of information among people or software agents, as well as reusing

domain knowledge, making domain assumptions explicit, separating domain

knowledge from operational knowledge, and analyzing domain knowledge. An

ontology is the basic level of a knowledge representation scheme, which defines a

common vocabulary for researchers who need to share information within a

domain. An ontology includes machine-interpretable definitions of basic concepts

in the domain and the relations among them.

There is no common definition of the term “ontology” itself, but the definitions

can be categorized into three rough groups:

1. Ontology is a philosophical term that means “theory of existence.”

2. Ontology is an explicit specification of conceptualization.

3. Ontology is a body of knowledge that describes a domain.

Ontology is important for enabling the sharing and reuse of knowledge. The

backbone of ontology is often a taxonomy, which is a classification of things in a

hierarchical form.

Many disciplines have now developed standardized ontologies, which can be

used by domain experts to share and annotate information in their fields, e.g., large

standardized and structured vocabularies have been produced in medicine. General-

purpose ontologies are also emerging such as the Basic Formal Ontology and Open

Biomedical Ontology Foundry.

When researchers conduct domain-specific research, they need to develop an

ontology for their specific domain by defining a common vocabulary in order to

share information. XML can facilitate data-level integration, but it is difficult to use

XML for semantic-level data integration. An ontology can integrate data at the

semantic level, where the integration of multiple databases involves creating an

ontology for each database, before integrating multiple ontologies into a unified

ontology. Users can search data using the unified ontology in order to execute a

semantic query [31]. CPGs are increasingly important for clinical applications, and

they have become instruments for supporting patient care [25]. CPGs are generally

provided in the form of free text. However, it is known that nationally or interna-

tionally produced guidelines, particularly those that do not involve medical pro-

cesses at the time of the consultation, do not consider local factors and they have no

consistent implementation strategy, which limits their impact on changing the

behavior of physicians or patterns of care [15]. We can perform semantic-sensitive

searches by creating a CPG ontology because semantic-based searches outperform

free-text queries. In general, the precision is greater when more ontological ele-

ments are used in the query [26]. The widespread adoption of CDSSs in clinical

practice has been hampered mainly by the difficulty of expressing domain knowl-

edge and patient data in a unified formalism [50], but the CPG ontology can be

integrated into CDSSs. Thus, Zhang et al. proposed a semantic-based approach by

integrating Health Level Seven (HL7) Reference Information Model (RIM) and an

ontology to obtain a unified representation of healthcare domain knowledge and

patient data to support practical clinical decision-making applications [50]. Clinical
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trials are designed to assess whether a new intervention is better than the current

alternatives [30] and they play important roles in the development of therapeutic

methods, drug development, and verification. Ontologies are very helpful for

supporting clinical trial data reuse and semantic queries.

11.2 Clinical Applications of XML

11.2.1 Application of XML to Clinical Data Storage

11.2.1.1 Using XML to Store Data

XML data are known as self-describing or self-defining, which means that the

structure of the data is embedded with the data. Thus, the power of XML is related

to its simplicity, where large chunks of information can be consolidated into an

XML document, and the meaningful pieces structure and organize the information

(Fig. 11.2).

GeneClinics is an online genetic information resource that comprises descriptions

of specific inherited disorders. GeneClinics acquires content from authors via tem-

plates and converts it into an XML document that reflects the underlying database

schema, which is then loaded into a database [46]. A drug formulary comprises drug

data and treatment guidelines, where the guidelines are a textual description, with

related information such as drug substances and drug brand names. If a clinical user

wants to access the information, this will require some effort, but XML can be used to

restructure the text description [37]. The XML Transaction Architecture for the

Management of Internet Objects (TAMINO) database management system

(DBMS) is designed for handling XML documents. Queries can be processed rapidly

Name, Age, Department, Major
Text Stream

XML Doc

Employee
Name
Age
Department
Major

Fig. 11.2 XML for a

simple text
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against text using purely native XML TAMINO DBMS to store electronic medical

records (EMRs), where the queries are compared with annotations added to the text to

select documents from many different areas of interest [20]. A clinical path is a

method for managing care and checklists for a certain disease, which provides a

useful tool for hospital management. Clinical paths can help hospitals to reduce

variation in the care of patients. At present, clinical path is defined by each separate

hospital and there is no standard format. Benchmark testing between the clinical

paths used by different hospitals is important for evaluatingmedical practices in order

to develop more effective improved practices. Description rules for medications have

been introduced in XML, which can be used to compare the different medications in

the clinical paths prescribed in multiple hospitals [28].

11.2.1.2 Creation of an XML Vocabulary to Store Domain-Specific

Documents

Generic XML document vocabularies, such as DocBook XML for software

documentation, XHTML for Web documents, and the HL7 Clinical Document

Architecture narrative block, cannot meet the requirements of domain-specific doc-

uments. Thus, to format domain-specific documents, we need to create domain-

specific XML markup vocabularies. Compared with a document formatted using a

general-purpose XML markup vocabulary, a document formatted by a domain-

specific markup vocabulary is easier to edit and read, with a simpler structure, and

it is easier to traverse during search and retrieval. The Pittsburgh Biomedical Infor-

matics Training Program created the Clinical Laboratory Procedure Markup Lan-

guage (CLP-ML) for formatting CLPmanuals. When used with appropriate software,

CLP-ML can support electronic authoring, reviewing, distributing, and searching of

CLPs from a central repository, thereby decreasing the procedure maintenance effort

and increasing the utility of procedure information [34].

11.2.1.3 Formatting Data into XML for Querying

Clinical data are found in various forms in documents, e.g., discharge letters,

reports, forms, textbooks, articles, and guidelines, but these unstructured or semi-

structured documents make it difficult to find useful information when a reference is

required. This lack of structure limits the automatic identification and extraction of

the information contained in these resources. For example, most clinical guidelines

are text based, so it will take a long time to go through these documents when

medical staff need to refer to clinical guidelines in clinical practice. If we store

these types of documents in a structured manner using XML and establish the

corresponding query system, then medical staff can readily access selected and

specific information at the point of care. Thus, XML empowers applications for

in-context searching as well as allows the same content to be represented in

different ways [15].
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11.2.1.4 Data Retrieval from XML Documents

The content of XML documents can be customized using XML technology, where

XSL is used to refer to a family of languages for transforming and rendering XML

documents. Using XSLT technology, an XML document can be transformed into an

HTML document or another XML document. Cascading Style Sheets (CSS) is a

style sheet language used for describing the presentation of a document written in a

markup language. CSS was primarily designed to allow the separation of the

document content from document presentation. Using these methods, we can

extract the XML content to display it in different forms (Fig. 11.3).

At present, large volumes of clinical data are available, such as XML-based EPRs,

and useful information is present in these data. The extraction of useful information

from EPRs can help to create a corresponding system for use by physicians or

researchers, including extracting clinical cases from XML-based EPRs for medical

CBR systems. The development and usage of CBR-drivenmedical diagnostic systems

require a large volume of clinical cases to illustrate the problem-solving methods of

medical experts [22]. In addition, clinical cases need to be updated continually, but

collecting CBR-compliant cases is quite challenging. Adding clinical cases manually

places a heavy workload on physicians who may be unfamiliar with computer

systems, thereby preventing the implementation of this task. Abidi et al. proposed a

novel medical knowledge acquisition approach that exploits routinely generated

XML-based EMRs as an alternative source for CBR-compliant cases [1].

11.2.2 Application of XML to Clinical Data Exchange

EMRs have been under development for many years and they are already at a

certain scale. In recent years, the application of EMRs has developed rapidly, and

the DICOM3, HL7, and other data exchange standards have been created. However,

there is no standard unified technology or implementation framework to meet

different demands and address the main problems. Therefore, it is difficult to

exchange and share data between various systems.

<book>
<title>XML technology</title>
<publishyear>2016</publishyear>
<author>Tom Yu</author>
<publisher>MIT</publisher>
<price>20</price>
</book>

XML
Parser
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Fig. 11.3 XML parsers extract information from XML
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XML data are known as self-describing or self-defining, which means that the

structure of the data is embedded with the data, which facilitates data exchange

between systems that can “understand” these features. The data in a system can be

imported into an XML document with a specific structure. Systems that need to use

the data can parse the XML document and extract useful information to allow data

exchange. XML provides an ideal solution to address the massive flow of informa-

tion in EMRs with various complex data types, as well as data exchange and sharing

between heterogeneous systems.

11.2.2.1 Exchanging Data Within Systems

Clinical systems usually contain multiple function modules, where each module

executes an independent function. We need to define a data exchange format if we

want to transfer information between modules, which can be achieved using XML.

For example, a CPG system may include a query interface module, logic inference

module, and recommendation display module. The query interface module accepts

query criteria from users, and XML formats the query criteria before transfer to the

logic inference module. The logic inference module parses the query criteria and

uses the knowledge base for logic inference to obtain a recommendation. The logic

inference module uses XML to format the recommendation before its transfer to the

recommendation display module. The recommendation display module shows

recommendations to users [2]. During the software design process, the program is

modularized according to the requirements of software engineering, thereby

improving the efficiency of the program and clarifying the structure of the program.

Each module is independent, which ensures that the system has a low degree of

coupling and it is highly coherent, as well as easy to manage and maintain.

11.2.2.2 Exchanging Data Between Systems

Clinical information systems often integrate multiple systems to provide services,

e.g., EHR systems, clinical patient record systems, CDSSs, and patient accounting

systems, where each system has a relatively independent function. However, these

systems need to exchange data to provide better services. Thus, a CDSS needs data

from clinical patient record systems, and a patient accounting system needs data

from clinical patient record systems. If a unified data format is not employed, we

cannot exchange data effectively between these systems. XML can allow the

exchange of information between systems, but we need to predefine the unified

data format before exchanging data. A system that provides data to other systems

requires a data output interface, so the systems that want to import data can call the

interface. For example, a patient accounting system can call the clinical patient

record system’s interface to obtain data related to therapy, medication, and

an operation to calculate the overall cost when a patient is discharged from

hospital [11]. Thus, clinical patient record systems require the implementation of
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an interface, which accepts data from the caller, retrieves the corresponding data

from the system, formats the data into an XML file, and sends it back to the caller.

11.2.2.3 Exchanging Data Using XML Topic Maps

Most clinical data comprise narrative text, and they are often not accessible or

searchable at the point of care. Text matching methods will fail to represent implicit

relationships between data, e.g., the relationship between HIV and AIDS [38].

Thus, XML can be used to produce a topic map, which provides a flexible data

model for representing arbitrary relationships between resources. When searching

for information, instead of performing simple text matching, the search content is

processed semantically using the XML topic map, thereby allowing the search

engine to improve the search accuracy and hit rate.

11.2.2.4 Exchanging Data in Different Formats

XML documents can be converted into different data formats. By employing XML

with other W3C standards, informaticists can design systems for the storage and

retrieval of structured knowledge, as well as for the rapid transformation of this

knowledge into many different usable formats. A single XML document can serve

multiple purposes, including content review, application data, printed material, and

executable logic. Using XSLT, the content of an XML document can be retrieved

according to different demands and provided to the user in different formats. For

example, certain professionals might use tables to display data, whereas nonpro-

fessionals could employ a user-friendly interface to present the data. An XML

document can also be converted into a PDF file for printing or retrieving data in a

system-specific format to import into a system, e.g., import into a CDSS [18].

11.2.3 Application of XML to Clinical Data Integration

Increasingly heterogeneous data sources are being produced due to the develop-

ment and popularization of networks and distributed application. Thus, the integra-

tion of heterogeneous data is becoming more important, but the problem of

integrating data from a wide range of sources with high heterogeneity is difficult

to solve.

The early data integration systems generally adopted a relational model or object

model as common data models before the appearance of XML, but XML provides

the opportunity to integrate heterogeneous data from different sources. Thus,

researchers have implemented data integration based on XML technology.
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11.2.3.1 Integrating Different Types of Clinical Data

Clinical information systems comprise multiple subsystems, each of which defines

its own format according to the data employed. These data need to be integrated

with each other to make them more useful. For example, large amounts of human

tissue samples have little value if they cannot be integrated with pathological and

clinical information. In the past, research data were correlated with medical data by

manually reading, retrieving, abstracting, and assembling patient charts, pathology

reports, radiology reports, and the results of special tests and procedures. However,

the manual annotation of research data is impractical when experiments involve

hundreds or thousands of tissue samples in large and complex data collections [5].

Defining general data standards in XML can facilitate the integration of

biomedical data.

11.2.3.2 Integrating the Same Types of Clinical Data

Large amounts of homogeneous data are distributed in many hospitals and research

centers, which would be more valuable if they could be aggregated according to

some framework. There are many solutions to this problem, such as retrieving

distributed data in XML files and importing them into a central database, thereby

allowing data use simply by querying the central database. Another solution to the

distribution of data in multiple systems is producing an integration framework to

access the data. The integration framework usually includes the data source layer,

XML middle layer, and application layer. The data source layer is the lowest level,

which provides data to the system from different data sources such as databases,

documents, and multimedia. The XML middle layer provides data transfer tools or

modules, where this layer can access the data in the database, transfer database data

to XML files, or transfer XML files to database data. The application layer allows

the manipulation of data in XML files and transmission to the XMLmiddle layer, or

data can be obtained from the XML middle layer and transmitted to the application

layer.

In clinical settings, some patients need joint treatments [24]. In order to share

patient profiles, hospitals need to share distributed EPRs so different hospitals can

view the EPRs for the same patient. Thus, different doctors can view the contents of

the patient profiles. XML is suitable for addressing this problem because it is

system independent and it is easy to retrieve content from XML documents. In

order to support clinical research to improve the treatment of HIV, access to

multisite clinical data regarding the treatment and outcomes of HIV-infected

patients in routine care is required. Thus, a relational XML schema has been

developed to extend the existing observational research repository and to integrate

real-time clinical information from EMRs at six centers for AIDS research into a

repository [6].
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11.3 Clinical Applications of Ontologies

11.3.1 Creation of Clinical Ontologies

The power of ontologies is based on their ability to represent knowledge explicitly,

to encode semantics, and to facilitate a shared understanding of formal knowledge

representations within and between humans and machines. Formally, an ontology

comprises entities, relationships, properties, instances, functions, constraints, rules,

and other inference procedures.

11.3.1.1 Creation of Ontology Principles

Base on their experience, researchers have proposed various principles and methods

for constructing ontologies. In 1995, Gruber proposed five principles of ontology

construction: clarity, coherence, extendibility, minimal encoding bias, and minimal

ontological commitment.

Gómez-Pérez supplemented this list with principles that have proved useful in

the development of ontologies: the ontological distinction principle (i.e., classes in

an ontology should be disjoint), diversification (multiple inheritance) of hierar-

chies, modularity, minimization of the semantic distance between sibling concepts,

and standardization of names.

There are no unified standards for guiding principles, procedures, or methods for

evaluating ontology construction. In each domain, researchers summarize their

experience based on practice as a method for guidance. However, during the

process of building a domain-specific ontology, it is generally accepted that experts

in the field should participate.

11.3.1.2 Creating Ontology Methods

1. Basic ideas for ontology creation:

(a) Ontology creation employs domain-specific resources, including unstruc-

tured text, semi-structured Web pages, XML documents, lexicon, and struc-

tured relational databases. The most commonly used method is creating an

ontology from the bottom up with the help of domain experts.

(b) Transforming an existing thesaurus or taxonomy into an ontology. An

ontology is an effective expansion of a thesaurus, which can be considered

a simplified ontology. The existing thesaurus concept and the conceptual

relationships of a thesaurus can be used to create an ontology.

(c) Integrating with an existing ontology. A general ontology or reference

ontology can be created after merging with an existing ontology and orga-

nizing it in an effective manner.
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2. Approaches for building ontologies

The most commonly used methods for building ontologies include the Seven-

Step method, METHONTOLOGY method, IDEF5 method, TOVE method, and

skeleton method (Table 11.1).

11.3.1.3 Tools for Creating Ontologies

Research into ontology has led to the increased development of ontologies by

various research communities. Ontology development is an enormous knowledge

engineering task. However, various problems are encountered when creating ontol-

ogy using the methods mentioned above, such as consistency checking and ontol-

ogy presentation. Thus, there is a need for tools to facilitate the task of ontology

development, and some ontology creation tools have emerged. Many research

organizations have attempted to develop an ontology creation environment for

specific fields to support several stages of ontology development. Using these

tools, ontology creators can focus on the organization of the ontology contents

without understanding the details of the ontology description language and the

description method, which greatly facilitates the creation of ontologies. The cur-

rently available ontology creation tools include Protégé, OntoEdit, WebOnto,

WebODE, KAON, etc.

Protégé is a tool developed for knowledge acquisition by Stanford University,

which is mainly applied to knowledge acquisition as well as the combination and

arrangement of an existing ontology. Protégé is open source and it can be

downloaded for free. It supports the creation and editing of one or more ontologies

in a single workspace via a completely customizable user interface, where its

refactor operations include ontology merging, moving axioms between ontologies,

and renaming multiple entities.

Table 11.1 Commonly used methods for building ontologies

Ontology creation

method Developer Application domain

Creation

tool

Seven-Step method Stanford University

School of Medicine

Widely used in the field of subject

knowledge

Protégé

METHONTOLOGY

method

Technical University

of Madrid

Creating a chemical ontology WebODE

IDEF5 method KBSI company

of the USA

Describing and producing enterprise

ontologies

TOVE method Gruninger, Fox,

et al.

Business process and activity

model ontology

Skeleton method Uschold and King Enterprise modeling ontology

for definition and terminology

collection between commercial

enterprises
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Protégé has the following features: W3C standards compliance, semantic Web

technology support (e.g., OWL, RDF, and SPARQL), customizable user interface,

visualization support, ontology refactoring support, direct interface to reasoners,

and a highly pluggable architecture.

Protégé is one of the most popular ontology editing tools because of its ease to

use, continuous upgrades, free availability, and powerful functional scalability.

A lot of clinical ontologies were created by researchers (Table 11.2).

11.3.2 Application of Ontologies to Clinical Data Integration

It is increasingly important for investigators to efficiently and effectively access,

interpret, and analyze data from diverse biological, literature, and annotation

sources in a unified manner. Ontology-based data integration is a good solution

for addressing the heterogeneity and semantic conflicts involved in heterogeneous

data integration.

Clinical and biological research often requires different systems to handle

various tasks, thereby producing different types of data. Researchers can obtain

more useful data, expand the study samples, and achieve excellent outcomes via

data integration. However, semantic conflicts will be encountered during heteroge-

neous data integration, such as conflicts caused by using different terms in hetero-

geneous systems to express the same entity or the same term in heterogeneous

systems to denote a different entity, where an example is the use of the word

football, as mentioned above. A common strategy for addressing semantic conflicts

is the use of an ontology with explicitly defined schema terms. This approach is

called ontology-based data integration. An ontology also allows the users to query

different database systems together by merging them at a semantic level.

An ontology has many advantages during data integration. First, an ontology

provides a rich and predefined lexicon, which can be used as the stable concept

interface for a data source and it is independent of the data mode. Second, the

knowledge in an ontology representation is sufficient to convert all relevant infor-

mation sources. Third, an ontology supports consistent management and

non-consistent data recognition.

At the computer technology center of the University of Bremen in Germany,

Wache and colleagues investigated the existing ontology-based integrated systems

and research in Europe and the USA, where they analyzed 25 ontology-based

integrated systems, and three ontology-based integration approaches were summa-

rized: single ontology integration method, multiple ontology integration method,

and hybrid ontology integration method [49]:

1. The single ontology integration method is also known as the global ontology

integration method, which uses a global ontology to describe all of the data

sources in an integrated system. Thus, all of the information sources establish

semantic relationships with the same shared lexicon. In addition, all user queries

are processed with this ontology (Fig. 11.4).
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Table 11.2 Clinical ontologies

Ontology name Domain Function

Adverse Drug Event Ontology [3] Clinical

surveillance

To address the problem of adverse

drug event identification, a gap

assessment was completed by cre-

ating a comprehensive ontology

using a minimal clinical data set

framework, which incorporated

existing identification approaches,

clinical literature, and a large set of

inpatient clinical data

Disease Ontology [36] Biological and

clinical human

disease-related

data

The Disease Ontology is populated

with consensus-driven disease data

descriptors, which incorporate dis-

ease terms utilized by genomic and

genetic projects, as well as

resources employed in studies to

understand the genetics of human

disease using model organisms

Clinical Data Element Ontology

[19]

Data elements This ontology organizes clinical

data elements originating from dif-

ferent medical data repositories into

a single unified conceptual struc-

ture. This allows the highly selec-

tive search and retrieval of relevant

data elements from multiple medi-

cal data repositories, thereby

enabling clinical documentation

and clinical research data

aggregation

Bacterial Clinical Infectious

Diseases Ontology [10]

Clinical infectious

disease treatment

This ontology defines a controlled

terminology for clinical infectious

diseases and domain knowledge

that is widely used in hospital set-

tings for making clinical infectious

disease treatment decisions

Clinical Measurement Ontology,

Measurement Method Ontology,

and Experimental Condition Ontol-

ogy [41]

Rat Genome

Database

These ontologies were developed

for the Rat Genome Database to

standardize quantitative rat pheno-

type data in order to integrate

results from multiple studies into

the PhenoMiner database and data

mining tool

Core Clinical Protocol Ontology

[40]

Clinical guidelines This ontology includes definitions

for clinical guideline recommenda-

tions and the process of

recommendation

Epilepsy and Seizure Ontology [35] Epilepsy and

seizure

This ontology uses a four-

dimensional epilepsy classification

system, which integrates the latest

International League Against

(continued)
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If the granularity of the local view of a data source exhibits high disparity, it is

not easy to formulate a unified global ontology, and this increased the difficulty of

integration. In addition, the single ontology integration method is readily affected

by changes in the data source, e.g., adding a new data source or removing an old

data source. The global ontology also needs to make corresponding changes after

changes to the data sources. This is an inherent problem with the single ontology

integration method.

The process of integrating different databases using an ontology is generally

divided into three layers: the presentation layer, the database and ontology mapping

layer, and the data layer (Fig. 11.5). The user sends a database query request

through the presentation layer. The mapping layer analyzes the query request.

The database and ontology mapping relationship converts the user query request

into a query against the database. The result of the query against the database is

returned to the mapping layer. The mapping layer maps the data onto the semantic

ontology and it is returned to the user. In the presentation layer, the user can query

data via the semantic contents without considering the storage format of the

underlying data [23].

The schemas employed for databases and ontologies are similar in some

respects, but they differ in many other. A database schema defines the structure

Table 11.2 (continued)

Ontology name Domain Function

Epilepsy terminology recommen-

dations and National Institute of

Neurological Disorders and Stroke

common data elements

Biomedical Resource Ontology [47] Biomedical

resources

This ontology enables semantic

annotation and the discovery of

biomedical resources

Haghighi-Koeda Mood Disorder

Ontology [12]

Mood disorder This ontology includes both medi-

cal and psychological approaches

to mood disorders in order to pro-

mote the exchange of information

between psychiatrists and

psychologists

Clinical Bioinformatics Ontology

[16]

Clinical

bioinformatics

This ontology is a semantic net-

work for describing clinically sig-

nificant genomics concepts

Global ontology

Data source Data source Data source

Fig. 11.4 Single ontology

integration method
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of a database, whereas an ontology describes the knowledge for a subject area.

Therefore different applications obtain various schemas for databases. An ontology

is a body of knowledge that describes a domain, particularly a commonsense

domain, so it is independent of specific applications.

The mapping layer needs to map table fields from several databases onto the

ontology concepts. There are three types of mapping: one-to-one mapping, many-

to-one mapping, and one-to-many mapping. The problem of semantic heterogene-

ity is encountered during mapping, e.g., the same patient might be in a different

table name in two systems, or two systems may define the same table field, but the

meaning of the fields could be different. This semantic heterogeneity problem can

be addressed by mapping between database fields and ontology concepts.

If fields with the same meaning in different databases use different standards, we

must create a mapping between these standards. For example, prostate cancer data

uses different standards to determine how much cancer is in the body and where it is

located. Staging describes the severity of an individual’s cancer based on the

magnitude of the original tumor as well as the extent of the cancer’s spread

throughout the body. For example, the American Joint Committee on Cancer uses

the tumor-node-metastasis (TNM) staging system and the International Federation

of Gynecology and Obstetrics (FIGO) staging system.

2. The multiple ontology integration method is used to overcome the inherent

shortcomings of the single ontology integration method, as shown in Fig. 11.6.

In the multiple ontology integration method, each data source is described by its

own ontology, and it is not affected by the semantics of other data sources. It is

necessary to create a mapping with the local ontology during data source

integration. During mapping, a query of one data source is transferred to other

data sources to allow multiple data source integration.

The biggest problem with the multiple ontology integration method is

establishing mapping relationships between multiple local ontologies. In general,

an additional representation is used to define the mapping between ontologies,

which is one of the main difficulties with ontology-based data integration.

Presentation layer Mapping layer Data layer

Server

Database

Database

Database

Application

Application

Application

Global

ontology

Fig. 11.5 Database

integration model using an

ontology
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3. The hybrid ontology integration method overcomes the shortcomings of the

multiple ontology integration method by establishing mappings between differ-

ent ontologies (Fig. 11.7). Similar to the multiple ontology integration method,

during the process of hybrid ontology integration, each data source uses its own

local ontology to describe the semantics in order to ensure the autonomy of the

local data sources. In addition, the hybrid ontology integration method applies

the idea of single ontology integration, where a shared vocabulary is established

above the local ontology to make comparisons between local ontologies. This

shared vocabulary contains the basic terminologies from the local ontology.

Thus, a query based on the shared vocabulary can easily be converted into a local

query.

Nevertheless, hybrid ontology integration methods still need to solve the prob-

lems of ontology mapping. Thus, establishing a mapping between the local ontol-

ogy and shared vocabulary is an important task for the hybrid ontology integration

method.

Pérez-ReyIn et al. proposed the ONTOFUSION system using the hybrid ontol-

ogy integration method as an ontology-based system for biomedical database

  

Fig. 11.7 Hybrid ontology integration method

Fig. 11.6 Multiple ontology integration method
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integration. In the ONTOFUSION system, the physical database layer contains

private databases, public databases, and biomedical ontology databases. During the

mapping process, the physical schema of each database is mapped onto a virtual

schema. Each physical database has a corresponding virtual schema. During the

unification process, the local ontologies are unified to create unified virtual

schemas, which can be accessed by users in order to retrieve data from various

sources at the same time. To create the unified virtual schema, the biomedical

ontology is referenced as a knowledge base. The unified virtual schemas are

ontologies that reflect the conceptual structure of the information stored in various

databases. The user can retrieve data through the unified virtual schemas, where the

unified virtual schemas retrieve data from virtual schemas, and the virtual schemas

retrieve data from physical databases [31] (Fig. 11.8).

11.3.3 Application of Ontologies to CPGs

11.3.3.1 CPG Concept

CPGs are defined by the Institute of Medicine as “systematically developed state-

ments to assist practitioner and patient decisions about appropriate health care for

specific clinical circumstances” [27].

Fig. 11.8 ONTOFUSION mapping and unification
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CPGs are generally specified by a CPG committee, where the statements contain

recommendations based on evidence from a rigorous systematic review and a

synthesis of the published medical literature. CPGs are evidence-based documents

that allow healthcare professionals and providers to use existing knowledge in the

diagnosis and management of patients. Every year, many CPGs are specified by

various organizations. For example, the National Guideline Clearinghouse (NGC)

is a public resource for evidence-based CPGs. The mission of the NGC is to provide

physicians and others with an accessible mechanism for obtaining objective

detailed information about CPGs and to further their dissemination, implementa-

tion, and use.

The application of CPGs can have many benefits for medical staff, such as

providing a standard operating process and reducing the incidence of errors.

CPGs also have many constraints because they are based on existing evidence

and they are not specific to a particular hospital. In addition, CPGs identify and

describe generally recommended courses of intervention without considering the

specific environment. Thus, when hospitals use CPGs, they need to be customized

first. CPGs are usually represented in free text, so it is difficult to use them

effectively at the point of care. Furthermore, several CPGs may be available for

the same disease, and conflicts may exist between the different CPGs, which

prevent their widespread application.

11.3.3.2 Application of Ontologies to CPGs

Several CPGs may be available for the same disease because different organiza-

tions have developed their own CPGs. For example, the European Association of

Urology developed “Guidelines on Prostate Cancer” and the National Comprehen-

sive Cancer Network (NCCN) of America developed the “NCCN Clinical Practice

Guidelines in Oncology—Prostate Cancer.” Many inconsistencies are found if we

analyze different versions of CPGs. Even within the same state, different versions

developed by different organizations for the same disease can be very different. For

example, Galopin et al. used ontological modeling to evaluate the consistency of

adult hypertension CPGs [8], where they found inconsistencies in CPGs covering

the same topic. The analysis of different profiles and their associated recommended

actions showed that the recommended actions were potentially inconsistent for the

majority of profiles.

Ontological modeling is generally used to model CPGs first in order to facilitate

the use of CPGs. The Guideline Elements Model (GEM) is an XML-based guide-

line document model, which can store and organize the heterogeneous information

contained in practical guidelines. GEM is intended to facilitate the translation of

natural language guideline documents into a format that can be processed by

computers. The GEM Cutter tool can annotate CPGs with GEM elements. The

computerization of paper-based CPGs will identify many problems such as
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ambiguities. Several methods can resolve these ambiguities such as consulting with

cancer oncologists, reviewing the available literature, and applying personal clin-

ical experience. The CPG ontology is derived from the contents of the knowledge

components in the GEM representation of CPGs. The developed CPG ontology can

be applied to CDSS. Thus, Abidi et al. performed a project to computerize and

deploy breast cancer follow-up CPGs in a breast cancer follow-up decision support

system for use by family physicians in a primary care setting [2].

Most guidelines are text based, and they are published primarily in medical

journals or posted on the Internet. However, it can be difficult and time consuming

to browse the Internet to find the correct guidelines for an existing diagnosis and

adequate recommendations for a specific clinical problem [15]. For example, the

NGC initiative by the Agency for Healthcare Research and Quality contains CPGs

from different Web portals in a uniform internal structure, which are indexed by

MeSH concepts. The Guidelines International Network includes CPGs from a wide

range of countries, and its members can browse and perform full-text searches.

Guidelines Finder3 contains CPGs from the UK, and it allows simple text-based

search to access free-text CPGs. However, most digital libraries mainly provide

unstructured free-text CPGs and the most basic search techniques using terms and

keywords. These basic search techniques cannot deliver the required query effi-

ciency. Thus, using an ontology can facilitate the context-sensitive search and

retrieval of CPGs. For most recall levels, context-sensitive search methods

outperform traditional full-text search [27].

11.3.4 Application of Ontologies to Clinical Trials

11.3.4.1 Clinical Trial Concept

Clinical trials are defined by the WHO International Clinical Trials Registry

Platform as: “For the purposes of registration, a clinical trial is any research study

that prospectively assigns human participants or groups of humans to one or more

health-related interventions to evaluate the effects on health outcomes” (http://

www.who.int/ictrp/en/). When a new product or approach is being studied, it is

usually unclear whether it will be helpful, harmful, or no different compared with

available alternatives. Thus, it is necessary to determine the safety and efficacy of

the intervention by measuring certain outcomes in participants. There is a growing

international recognition of the need to record the existence of clinical trials so they

can be publicly accessed, which improves research transparency and ultimately

strengthens the validity and value of the scientific evidence base. There has been a

push by governments and international organizations, especially since 2005, to

make clinical trial information more widely available as well as to standardize

registries and registration processes.
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At present, there are several clinical trials registry platforms in use throughout

the world. ClinicalTrials.gov is a Web-based resource, which provides patients,

their family members, healthcare professionals, researchers, and the public with

readily accessible information on publicly and privately supported clinical studies

of a wide range of diseases and conditions. ClinicalTrials.gov currently lists

209,390 studies located in all 50 states of the USA and 192 countries (https://

clinicaltrials.gov/).

11.3.4.2 Application of Ontologies to Clinical Trials

In recent years, it has been recognized that ontologies can play important roles in

clinical trials. However, most clinical trials fail to recruit participants on schedule,

and it is difficult to find eligible patients automatically based on EHR systems. This

process is time consuming and inefficient, and it also requires specialized training.

Patrao et al. developed an ontology-based information retrieval system for clinical

trial recruitment [30], where this system uses EHR data, represents medical knowl-

edge with ontologies, integrates several databases, and allows searches for struc-

tured data and free text. The preliminary quality assessments obtained excellent

recall rates.

CTMSs promise to help researchers in hospitals and biotechnology companies

to better manage the tremendous amounts of data that are generated when

conducting clinical trials. It is still usual to collect data at each trial site on

paper-based case report forms and to input them into CTMSs. In general, these

case report forms are designed according to specific clinical trial requirements.

Thus, it is difficult to compare and exchange data between different clinical trials

because there is no unified standard. Stenzhorn et al. developed an ontology-based

trial management application (ObTiMA), which allows data reusability according

to shared concepts defined in an ontology that covers the entire cancer care and

research spectrum [44].

The management of clinical trials involves the use of several software applica-

tions, which generate large volumes of data during the course of a trial. It is

important to solve the problem of semantically integrating heterogeneous applica-

tions to facilitate the efficient management of trials and subsequent analyses of

clinical trial data. Shankar et al. devised an ontology-based architecture to support

interoperability among clinical trial software applications, where this approach

focused on a suite of clinical trial ontologies that define the vocabulary and

semantics required to represent information about clinical trials [39].

A clinical study is conducted according to a research plan known as a clinical

trial protocol, which is a document that describes how a clinical trial will be

conducted (the objective, design, methodology, statistical considerations, and

organization of the clinical trial), thereby ensuring the safety of the trial subjects

and the integrity of the data collected. The number of clinical trials is increasing,
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and international multicenter clinical trials are being conducted more fre-

quently. However, no standards are available for the structure of trial protocols

or reusable concepts for use in a clinical trial context. Heller et al. developed a

medical and trial-specific term data dictionary for clinical trial protocols to

improve quality assurance in clinical trial protocols. The data dictionary is

based on domain-specific ontologies and the top-level ontology of the General

Ontological Language [13].

11.3.5 Application of Ontologies to CDSSs

11.3.5.1 CDSS Concept

A CDSS is a health information technology system designed to provide physicians

and other health professionals with clinical decision support (CDS). The following

working definition was proposed by Hayward at the Centre for Health Evidence:

“Clinical decision support systems link health observations with health knowledge

to influence health choices by clinicians for improved health care.” The American

Medical Informatics Association defines CDS as: “Clinical decision support pro-

vides clinicians, staff, patients or other individuals with knowledge and person-

specific information, intelligently filtered or presented at appropriate times, to

enhance health and better health care.” There are two main types of CDSSs: a

CDSS that uses a knowledge base, applies rules to patient data using an inference

engine, and displays the results to the end user and systems without a knowledge

base, which rely on machine learning to analyze clinical data.

CDS interventions can be applied throughout the medication management cycle

to optimize medication safety and other pertinent outcomes. A useful framework

for achieving success in this regard is the “CDS Five Rights” approach. The CDS

Five Rights framework asserts that to improve targeted healthcare decisions with

well-developed CDS interventions, the interventions must provide the right infor-

mation (evidence-based guidance in response to a clinical need) to the right people

(the entire care team, including the patient) through the right channels (e.g., EHR,

mobile device, or patient portal) with the right intervention formats (e.g., order sets,

flow sheets, dashboards, or patient lists) at the right points in the workflow (for

decision making or action).

11.3.5.2 Application of Ontologies to CDSSs

The widespread adoption of CDSSs in clinical practice has been hampered mainly

by the difficulty of expressing domain knowledge and patient data in a unified

formalism. However, integrating domain knowledge and patient data by using an
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ontology to develop a CDSS can yield high accuracy and a better acceptance rate in

practical applications. Evaluation results demonstrate the technical feasibility and

application prospects of the ontology approach [50]. There is a large amount of

clinical evidence in medical records. In the medical domain, knowledge represen-

tation is a key issue because it should be used effectively in reasoning as part of the

CDSS. Ontologies describe and organize domain knowledge in a manner that

machines can read and humans can understand, so decision support may be

promoted by computer-based systems or applications [4].

In clinical treatment, CPGs can guide medical staff to make decisions. CPG

ontologies can be integrated into CDSSs for disease treatment. Thus, Omaish

et al. conducted the ontology-based computerization of acute coronary syndrome

clinical guidelines to develop a CDSS for acute coronary syndrome [29]. CPGs

generally focus on a specific medical disorder, but actual patients often present

multiple pathologies, and the management of multiple morbidities can be a major

challenge for clinicians. Using an ontology to integrate multiple relevant CPGs can

solve this problem. Galopin et al. developed a framework where ontological

reasoning was used to enrich the patient description at different levels of abstrac-

tion, thereby increasing the number of appropriate recommendations [9]. CPG

computerization involves modeling and the conversion of paper-based CPGs into

an electronic and executable format, which can be accessed by physicians as well as

be embedded within clinical decision support systems at the point of care. Several

CPG modeling formalisms are available such as GEM. Abidi et al. used GEM to

model breast cancer follow-up CPGs and the Jena inference engine to develop a

CDSS [2].

11.4 XML and Ontology Tools

11.4.1 XML Tools

Many XML tools are available for editing XML files as shown in Table 11.3.

Many XML tools have been created during the development of clinical domain

projects, as shown in Table 11.4.

11.4.2 Ontology Tools

Many ontology tools are available for editing ontology files, as shown in

Table 11.5.

Many ontology tools have been created during the development of clinical

domain projects, as shown in Table 11.6.
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Table 11.3 XML tools

No. Name Function Free URL

1 XMLSpy XMLSpy is the industry’s best-selling
XML editor and development envi-

ronment for all XML-related technol-

ogies. It offers the world’s leading
schema designer; code generation; file

converters; debuggers; profilers; full

database integration; support for XSD,

XSLT, XPath, XQuery, WSDL,

SOAP, XBRL, and Office Open

XML; and many more features

No http://www.altova.

com/xml_tools.html

2 MapForce MapForce is an award-winning any-

to-any graphical data mapping, con-

version, and integration tool for

mapping data between any combina-

tion of XML, SQL database, EDI,

XBRL, flat file, Excel, JSON, and/or

Web service structures, which trans-

forms data instantly or autogenerates

royalty-free data integration code for

executing recurrent conversions

No http://www.altova.

com/xml_tools.html

3 StyleVision StyleVision is an award-winning tool

for designing compelling presenta-

tion layouts and document formats

from input sources including XML,

SQL databases, and XBRL.

StyleVision makes the full presenta-

tion and format conversion power of

XSLT readily available in a graphical

design tool for HTML, Word, PDF,

and Authentic® output

No http://www.altova.

com/xml_tools.html

4 DiffDog DiffDog is a powerful, XML-aware

diff/merge utility for files, directories,

and database schemas and tables.

DiffDog makes it easy to compare and

merge text or source code files, syn-

chronize directories, and compare

database schemas and tables. DiffDog

also provides advanced XML-aware

differencing and editing capabilities

No http://www.altova.

com/xml_tools.html

5 SchemaAgent SchemaAgent is a visionary tool for

analyzing and managing relationships

between XSD, XML, XSLT, and

WSDL files across a project, an

intranet, or even an enterprise. It

allows you to view and manage XML

file relationships easily via its graph-

ical design view and drag and drop to

automatically configure imports,

includes, and/or redefines (IIRs)

No http://www.altova.

com/xml_tools.html

(continued)
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Table 11.3 (continued)

No. Name Function Free URL

6 Authentic Authentic is a powerful and dynamic

electronic form editor for enterprise

XML solutions. By employing

Authentic, business users can work

with intuitive and dynamic forms to

view and edit information stored in

XML documents and SQL databases,

as well as XBRL information man-

agement systems, without being

exposed to the underlying technology

No http://www.altova.

com/xml_tools.html

7 Microsoft XML

Core Services

(MSXML)

MSXML allows customers to build

high-performance XML-based appli-

cations, which provide a high degree

of interoperability with other appli-

cations that adhere to the XML 1.0

standard. MSXML provides devel-

oper support for the following core

services: Document Object Model,

Helper APIs, XML Schema Defini-

tion, Simple API for XML, Schema

Object Model, and XML Digital

Signatures

Yes https://msdn.microsoft.

com/en-us/library/

cc507432(v¼vs.85).

aspx

8 EditiX EditiX is a powerful and easy to use

XML editor, Visual Schema Editor,

XQuery Editor, and XSLT debugger

for Windows, Linux, and Mac OS X,

which was designed to help Web

authors and application programmers

to take advantage of the latest XML

and XML-related technologies, such

as XSLT/FO, DocBook, and XSD

Schema

No http://www.editix.com

9 XmlPad XmlPad is a professional editor for

XML processing documents, which

allows the presentation of data in a

tabular format. It includes a text edi-

tor with syntax highlighting, string

numeration, collapsing, and element

autocompletion options

Free http://www.wmhelp.

com/xmlpad3.htm

10 XML Notepad XML Notepad is an open-source

XML editor written by Chris Lovett

and published by Microsoft. This

editor features incremental search in

both tree and text views, drag/drop

support, IntelliSense, find/replace

with regular expressions and XPath

expressions, and support for XInclude

Free https://xmlnotepad.

codeplex.com
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Table 11.4 Domain-specific XML tools

No. Name Function

1 CLP-ML [34] CLP-ML was designed to support electronic

authoring, reviewing, distribution, and searching

of CLPs from a central repository, thereby

decreasing the procedure maintenance effort and

increasing the utility of procedure information

2 cMDX Editor [7] cMDX can represent pathological findings related

to the prostate in schematic styles. cMDX docu-

ments can be converted into different data formats

such as text, graphics, and PDFs

3 DoT-U2 [32] DoT-U2 is an XML-based knowledge-supported

checklist software system for documenting new-

born clinical screening examinations. Physicians

can enter findings in a tree-structured protocol

with management of the logical dependencies

4 CLinical Accounting InforMation

(CLAIM) intranet health clinic [11]

CLAIM is an XML-based data exchange standard

for connecting EMR systems to patient account-

ing systems

Table 11.5 Ontology tools

No. Name Function Free URL

1 Protégé Protégé is a free, open-source

visual ontology editor and

knowledge-based framework The

Protégé platform supports two

main ways of modeling ontologies

via the Protégé-Frames and

Protégé-OWL editors. Protégé

ontologies can be exported into a

variety of formats, including RDF

(S), OWL, and XML schema

Yes http://protege.stanford.

edu

2 SemanticWorks Altova’s SemanticWorks is a

visual Semantic Web editor,

which features a graphical RDF

and RDFS editor and a graphical

OWL editor. It supports OWL

Lite, OWL Full, and OWL DL

dialects

No http://www.lesliesikos.

com/altova-

semanticworks-visual-rdf-

and-owl-editor

3 BioMixer BioMixer is a Web-based envi-

ronment for visualizing and

exploring biomedical ontologies.

It is the underlying technology for

the visualization components

found in BioPortal, the world’s
most comprehensive repository of

biomedical ontologies

Yes http://thechiselgroup.org/

biomixer

(continued)

11 XML, Ontologies, and Their Clinical Applications 283

http://protege.stanford.edu/
http://protege.stanford.edu/
http://www.lesliesikos.com/altova-semanticworks-visual-rdf-and-owl-editor
http://www.lesliesikos.com/altova-semanticworks-visual-rdf-and-owl-editor
http://www.lesliesikos.com/altova-semanticworks-visual-rdf-and-owl-editor
http://www.lesliesikos.com/altova-semanticworks-visual-rdf-and-owl-editor
http://thechiselgroup.org/biomixer
http://thechiselgroup.org/biomixer


Table 11.5 (continued)

No. Name Function Free URL

4 OntoBuilder The OntoBuilder project supports

the extraction of ontologies from

Web search interfaces, which

range from simple search engine

forms to multiple-page, complex

reservation systems. OntoBuilder

enables fully automatic ontology

matching

Yes http://ontobuilder.

bitbucket.org

5 NeOn toolkit The NeOn toolkit is a state-of-the-

art, open-source multi-platform

ontology engineering environ-

ment, which provides comprehen-

sive support for the ontology

engineering life cycle

Yes http://neon-toolkit.org/

wiki/Main_Page

Table 11.6 Domain-specific ontology tools

No. Name Function

1 OntoStudyEdit [49] OntoStudyEdit is a software tool for ontology-

based representation and management of metadata

in clinical and epidemiological research

2 Recruit [30] An ontology-based information retrieval system for

clinical trial recruitment

3 MorphoCol [43] An ontology-based knowledge base for the charac-

terization of clinically significant bacterial colony

morphologies

4 Onto Clinical Research Forms

(OntoCRF) [21]

OntoCRF is a framework for the definition, model-

ing, and instantiation of clinical data repositories

5 Duke Enterprise Data Unified

Content Explorer (DEDUCE) [33]

DEDUCE is a self-service query tool developed to

provide clinicians and researchers with access to

data within the Duke Medicine Enterprise Data

Warehouse

6 Semantator [42] Semantator is a semiautomatic tool for document

annotation with Semantic Web ontologies

7 OnWARD [48] OnWARD is an ontology-driven, secure, rapidly

deployed, Web-based framework to support data

capture for large-scale multicenter clinical research

8 TrialWiz [14] TrialWiz is an authoring tool for encoding a clinical

trial knowledge base. TrialWiz manages the com-

plexity of the protocol-encoding process and

improves the efficiency of knowledge acquisition

284 C. Yu and B. Shen

http://ontobuilder.bitbucket.org/
http://ontobuilder.bitbucket.org/
http://neon-toolkit.org/wiki/Main_Page
http://neon-toolkit.org/wiki/Main_Page


11.5 Conclusion

The application of information technology in clinical areas has facilitated the

development of medical and biotechnology technology, as well as gene technology,

thereby generating increasing numbers of clinical systems and volumes of data. The

growing volume and diversity of health and biomedical data indicate that the era of

Big Data has arrived for healthcare. In the Big Data era, the management and

exploitation of data will bring new challenges for modern medicine. The organi-

zation and management of these data sources will present problems involving data

exchange and data integration. XML techniques facilitate data management from

the data level, while ontologies promote data management from the semantic level,

and these methods have been remarkably effective in clinical applications in recent

years. The large volumes of available medical data contain useful information, and

mining these data can generate information with clinical applications, thereby

facilitating the future development of medical science.
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Chapter 12

Bayesian Computation Methods for Inferring
Regulatory Network Models Using
Biomedical Data

Tianhai Tian

Abstract The rapid advancement of high-throughput technologies provides

huge amounts of information for gene expression and protein activity in the

genome-wide scale. The availability of genomics, transcriptomics, proteomics,

and metabolomics dataset gives an unprecedented opportunity to study detailed

molecular regulations that is very important to precision medicine. However, it is

still a significant challenge to design effective and efficient method to infer the

network structure and dynamic property of regulatory networks. In recent years a

number of computing methods have been designed to explore the regulatory

mechanisms as well as estimate unknown model parameters. Among them, the

Bayesian inference method can combine both prior knowledge and experimental

data to generate updated information regarding the regulatory mechanisms.

This chapter gives a brief review for Bayesian statistical methods that are used

to infer the network structure and estimate model parameters based on

experimental data.

Keywords Bayesian inference • Approximate Bayesian computation • Genetic

regulation • Reverse engineering

12.1 Introduction

Precision medicine involves using detailed, patient-specified molecular information

to diagnose and categorize disease, then guide treatment to improve clinic outcome

[42]. To achieve these goals, precision medicine aims to develop computational

models that integrate data and knowledge from both clinic and basic research to

gain a mechanistic understanding of disease [14]. Compared with bioinformatics

approaches, computational models are able to predict mode of action and responses
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to treatments not only at the molecular level but across all levels of biological

organizations as well, including molecular level (gene network, cell-signaling

pathway, and metabolic network), cell population level, tissue level, and even

whole organism levels. However, a significant challenge facing precision medicine

is the incorporation of models at different levels into a single framework by the

integration of heterogeneous datasets [58].

With the rapid advancement of high-throughput technologies such as microar-

ray, RNA sequencing, and mass spectrometry (MS)-based proteomics, enormous

amounts of information are available for gene expression and kinase activity in the

genome-wide scale [9, 44, 55]. These datasets give opportunities to develop

mathematical models to explore the regulatory mechanisms and study system

dynamics of molecular networks. Although the datasets contain enormous amounts

of information, it is still a challenge to develop effective methods to extract useful

knowledge from observations [41]. Currently regulatory networks can be

constructed by using one of the 2 days, namely, approaches for identifying large-

scale molecular interaction networks from “omics” datasets and methods for

examining detailed mechanisms through functional properties of the interactions

between network components [6]. The latter approach not only captures the

dynamic behavior of molecular networks but also provides more detailed regulatory

information than the former one [15]. However, the limitation of this method is that

it can deal with small-scale network model only.

Since many unknown parameters need to be estimated in mechanism models, it

is particularly important to design effective and efficient methods for parameter

inference, which is also referred to as model calibration, model fitting, or parameter

estimation, in order to produce small simulation errors against experimental data.

There are two types of inference methods, namely, optimization methods and

Bayesian statistical methods. Aiming at minimizing an objective function is the

optimization method search in a directed manner within the parameter space. The

inferred set of parameters produces the best fit between simulations and experi-

mental data [28]. A variety of different approaches have been developed. They all

share two main ingredients: a cost function for specifying the distance between

simulated data and experimental data and an optimization algorithm for searching

for parameters that optimize the cost function. When the cost function landscape is

complex, which is often the case for systems biology models with high-dimensional

parameter spaces, these methods are unlikely to find the global optimum. To tackle

this issue, global optimization methods try to explore complex surfaces as widely as

possible; among these, genetic algorithms are particularly well known and have

been applied to ordinary various models [49]. Comparison studies have been

conducted by applying several global optimization algorithms on the test

models [16].

Compared with optimization methods, Bayesian inference is able to infer the

whole probability distribution of parameters by updating prior probability estimates

using Bayes’ rule. In addition, Bayesian methods are more robust in dealing with

stochastic models and/or experimental data with noise [19, 56]. The recent
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advances in approximate Bayesian computation (ABC) provide more effective

methods without any restriction on the requirement of likelihood function. In recent

years Bayesian methods have been used successfully in a diverse range of fields and

provide promise to the application in precision medicine [47]. This chapter provides

a brief review for Bayesian computation and also prospective for future application

in systems biology and precision medicine.

12.2 High-Throughput Biomedical Data

Current high-throughput techniques allow simultaneous examination of thousands

of genes, transcripts, proteins, and metabolites. In addition, various bioinformatics

tools have been designed to extract insightful information from omics datasets.

With the help of omics technologies, it is possible to investigate cellular states as

well as biological correlations in cell lines, primary tissues, and the whole

organism.

12.2.1 Genomics

The genome is the total DNA of a cell or organism, and genomics is the systematic

study of an organism’s genome. Genomics applies recombinant DNA,

DNA-sequencing methods, and bioinformatics tools to sequence, assemble, and

analyze the function and structure of genomes. Research areas of genomics include

functional genomics for describing the dynamic aspects such as gene transcription,

translation, and protein–protein interactions, structural genomics for studying the

three-dimensional structure of every protein encoded by a given genome,

epigenomics for investigating the complete set of epigenetic modifications on the

genetic material of a cell, and metagenomics for exploring genetic material recov-

ered directly from environmental samples. The variations in DNA sequences

between people are of particular interest when linked with diseases with a genetic

determination. These studies have a role in pharmacogenomics in exploring indi-

vidual patient responses to drugs.

12.2.2 Transcriptomics

Transcriptome is the total mRNA in a cell or organism and the template for protein

synthesis in the process of translation. Compared with the static information of

DNA sequence, transcriptomics measures transcriptome that reflects the genes that

are actively expressed at any given moment. A key omics technique is the gene
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expression microarrays that measure packaged mRNA (mRNA with the introns

spliced out) as a summary of gene activity. During the past 10 years, advances in

microarray technology have generated a huge amount of gene expression data and

resulted in progress in genomics and transcriptomics. Microarray gene expression

datasets are major resources for the reverse engineering of genetic regulatory

networks [30]. However, gene expression microarrays only measure changes in

mRNA abundance, not protein, and thus there is a lack of consensus around the

interpretation of microarray data.

12.2.3 Proteomics

The proteome is the entire complement of proteins. Unlike the genome that is more

or less constant, the proteome differs from cell to cell, as well as varies over time

and distinct requirements that a cell or organism undergoes. Proteomics represents

the large-scale study of proteins, especially their structure and function. It aims to

characterize information flow within the cell and the organism, through protein

pathways and networks, with the eventual aim of understanding the functional

relevance of proteins [9]. In recent years, mass spectrometry-based

phosphoproteome has generated huge amount of quantitative data of kinase activ-

ities in different types of cells and under various experimental conditions. The

generated proteomic datasets are precious information for the development of

mathematical models for large-scale cell-signaling pathway [50].

12.2.4 Metabolomics

Metabolome refers to the complete set of small-molecule metabolites (such as

metabolic intermediates, hormones and other signaling molecules, and secondary

metabolites) to be found within a biological sample, such as a single organism.

Metabolomics can generally be defined as the study of global metabolite profiles

in a system (cell, tissue, or organism) under a given set of conditions [18]. Unlike

other omics studies that have much unknown molecular knowledge,

metabolomics has a number of theoretical advantages over the other omic

approaches. The metabolome is the final downstream product of gene transcrip-

tion and, therefore, changes in the metabolome are amplified relative to changes

in the transcriptome and the proteome. Although the metabolome contains the

smallest domain (5000 metabolites), it is more diverse, containing many different

biological molecules, making it more physically and chemically complex than the

other omics studies. In 2015, real-time metabolome profiling was demonstrated

for the first time [29].
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12.3 Bayesian Inference Methods

This section gives a brief overview over methods from Bayesian statistics for

estimating parameters in systems biology models. In statistical inference the central

concept is the likelihood that measures the probability of a given parameter set θ for
realizing experimental data D, given by

L θð Þ ¼ P D
��θ� �

Here P(D|θ) is a probability density function if it is considered as a function of data
D; or a likelihood function if it is a function of θ. The purpose of inference is, for the
given observation dataD, to find the optimal parameter θ that the probability P(θ|D)
reaches the maximum. According to the Bayesian theorem, this probability can be

written as

P θ
��D� � ¼ P D

��θ� �
P θð Þ

P Dð Þ
/ P D

��θ� �
P θð Þ

where P(θ) is the prior distribution of parameter, which summarizes our prior

knowledge about the parameter under investigation, and P(θ|D) is the posterior

probability distribution over the model parameter. If likelihood function P(D|θ) is
available, the classic Metropolis–Hastings algorithm is applied to find a Markov

chain of the parameter. If the target distribution function is f D
��θ� �

and the prior

distribution of parameter is denoted as f θð Þ, the Metropolis–Hastings algorithm is

given below.

Algorithm 1 (Metropolis–Hastings Algorithm)

1. Initialization: Choose a starting value θ0 for which P θjDð Þ > 0:
2. For i ¼ 1, 2, � � �,N

(a) Choose candidate θ* from a proposal distribution g θ*
��θi�1

� �
.

(b) Compute the ratio

r θ*
��θi�1

� � ¼ f D
��θ*� �

f θ*
� �

=g θ*
��θi�1

� �
f D

��θi�1

� �
f θi�1ð Þ=g θi�1

��θ*� �
(c) Get samples from the uniformly distributed random variable s � U 0; 1ð Þ;

and set

θi ¼ θ*, if s < r θ*; θi�1

� �
θi�1, else

�
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Note that in the classic Metropolis algorithm, the proposal distribution is sym-

metric, namely, g θ*jθi�1

� � ¼ g θi�1jθ*
� �

, while in the Metropolis–Hastings algo-

rithm, the symmetric property is not required. The Bayesian “equivalent” to the cost

function in optimization methods is the Bayesian posterior distribution. In the

Bayesian setting, Markov chain Monte Carlo (MCMC) methods have been used

to establish a framework for Bayesian parameter estimation and evidential model

ranking over models of biochemical systems [54]. In addition, Kalman filtering has

been applied to the estimation of both parameters and hidden variables of nonlinear

state-space models [39]. To obtain confidence intervals for a point estimate in a

frequentist setting, a range of techniques can be applied that include variance–

covariance matrix-based techniques, profile likelihood, and bootstrap methods

[46]. However, the limitation of the Metropolis–Hastings algorithm is the require-

ment for the density function P(D|θ). For complex models in systems biology, it is

difficult to have such analytical density function. To tackle this challenge, ABC was

proposed to avoid directly calculation of the likelihood function.

12.4 Approximate Bayesian Computation (ABC)

ABC was initially designed for studying the plausible mutation schemes and

estimating the variance in mutation size. Instead of calculating likelihood function

P(D|θ), ABC generates a simulation of the model that is regarded as an artificial

dataset Y. The method then relies on some metric to determine the distance between

simulated data Y and experimental data D. The widely used metric includes the sum

of squared error or more generally the weighted square error [33]. For stochastic

models the normal kernel density function is widely used to measure the probability

of transitional density [21]. Similar to the optimization methods, a key issue is how

to find point estimates of parameters by minimizing the metric using a given

technique. However, unlike the optimization methods, the goal of ABC is not to

find a set of estimate for parameters with minimum metric. Instead, we hope to

obtain the posterior distribution of the estimated parameters. There are three major

types of ABC methods: the rejection method, ABC-MCMC (Markov chain Monte

Carlo) method, and ABC-sequential Monte Carlo (SMC) method [53]. In the

simplest form, for the given experimental data D and model with unknown

parameters θ, an error threshold value ε, and a prior distribution π θð Þ, the rejection
method is implemented as follows:

Algorithm 2 (The Rejection Method)

Step 1: Sample a candidate parameter from the prior distribution θ*i eπ θð Þ.
Step 2: Generate a simulated dataset Y from the model with parameter θ*i :
Step 3: Compare the distance between the simulated dataset Y and experimental

data D using a distance metric ρ D; Yð Þ.
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Step 4: If ρ D; Yð Þ < ε, accept the sample θi ¼ θ*i and set step index to i+ 1.

Otherwise, reject sample θ*i . Go to Step 1.

The output of the ABC rejection algorithm is samples of parameters from a

distribution P θ
��ρ D; Yð Þ < ε

� �
. If error threshold value ε (tolerance level) is

sufficiently small, then the distribution P θ
��ρ D; Yð Þ < ε

� �
will be a good approxi-

mation to the posterior distribution P(θ|D). The key difference of this method from

the optimization methods is that we accept a number of samples that satisfy the

error tolerance criterion, rather than only the best estimate that has the smallest

error. The tolerance ε in Algorithm 2 may determine the efficiency of ABC. The

ABC rejection algorithm is one of the basic ABC algorithms that may result in long

computing time when a badly prior distribution that is far away from posterior

distribution is chosen. In addition, there is no learning process in this algorithm; and

thus no information could be obtained from the previous accepted samples of

parameters. When the search space is complex, the convergence rate may be

very slow.

12.4.1 ABC-MCMC Algorithm

Following the principle of the rejection method, a number of algorithms have been

proposed to improve the efficiency. One of them is the combination of the Markov

chain Monte Carlo (MCMC) sampling technique with approximation computation.

ABC-MCMC introduces a concept of acceptance probability during the decision-

making step which saves computing time. MCMC sampling is a process that filters

proposed values for θ to arrive at a sample of values drawn from the desired

posterior distribution. There are a number of MCMC samplers. Based on the

most popular Metropolis–Hastings algorithm, the ABC-MCMC algorithm accepts

a sample θ*i based on

α ¼ min 1;
π θ*i
� �

q θi�1

��θ*i� �
π θi�1ð Þq θ*i

��θi�1

� � !
if ρ D; Yð Þ < ε

0 else

8><>:
where π θð Þ is the prior distribution for θ, and q is the proposed distribution. Similar

to the Metropolis–Hastings algorithm, we draw a sample from the uniform distri-

bution and accept the sample θ* if this sample is less than the value of α [31].

The convergence property of the generated chain (θ1, θ2, . . . , θn
�
is important

because MCMC algorithm may suffer if the proposal distribution is poorly chosen

[10]. A potential issue is that the chain may be likely to get “stuck” in low

probability region of the posterior, and we may never be able to get a good

approximation [13]. The ABC-MCMC algorithm is particularly susceptible to
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this because the proposed sample θ* must meet two criteria, namely, the generated

data should be close to the experimental data and the standard Metropolis–Hastings

sample criteria. Thus the rejection rate of the ABC-MCMC may be extremely high.

12.4.2 Sequential Monte Carlo Sampling Algorithm

To tackle the challenges in ABC-MCMC, the idea of particle filtering and sequen-

tial Monte Carlo sampling has been introduced. Sequential Monte Carlo sampling

differs from the MCMC approach by using the technique of particle filtering.

Rather than drawing one candidate sample θ* at a step, this algorithm considers a

pool with a large number of samples θ*1; . . . ; θ
*
N

� �
simultaneously and treats each

parameter vector as a particle. The sequential Monte Carlo-based ABC algorithm

[45, 52] starts from sampling a pool of N particles for parameter vector θ through

prior distribution π(θ). The sampled particle candidates θ1, . . . , θNð Þwill be chosen
randomly from the prior distribution, and their distance measures satisfy the

tolerance level. Then we will assign each particle a corresponding weight wi to

be considered as the sampling probability. In the first step, the weight of each

particle is assumed to be the same, namely, 1/N.
In the subsequent iterations, samples of parameter will be drawn from the

particles in the previous iteration according to the weight wi assigned to the

particles. A perturbation is generated from the transition kernel q ∙ jθ*� �
to generate

sample candidate θ** ¼ θ* þ Δ. The filtering process is then applied to let the

generated sample still meet the required tolerance level. A new weight will be

assigned to the accepted particle based on the prior distribution, error of simulation,

and weights of the previous iteration as well as the transitional kernel. For discrete

chemical reaction systems, we proposed to use the following formula to calculate

the weight of the ith particle in kth iteration

wk
i ¼ π θ k

i

� �
bk θ k

i

� �XN

j¼1
wk�1
j q θ k

i

��θk�1
j

� �
where bk θð Þ is the match of simulation data generated by using parameter θ to

experimental data [60].

A number of effective methods have been designed by using different transitional

kernel and/or different approaches to assign weights to each particle, including the

ABC-PRC (partial rejection control) algorithm [45], ABC-PMC (population Monte

Carlo) sampling [4], and ABC-SMC (sequential Monte Carlo) sampling [52]. Among

them, the ABC-SMC algorithm is particularly useful when the transition kernel in

ABC-PMC cannot have infinite support (e.g., cannot be Gaussian). For models in

systems biology, this property is important because the estimated rate constants

in chemical reactions are positive. In addition, we may have prior knowledge about
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the range of rate constant. Another advantage of the SMC technique is that the

tolerance level may change over iterations, and the tolerance level can be determined

adaptively [25].

12.4.3 Implementation of ABC-SMC

Implementation of ABC requires the choice of three major factors, namely, the

summary statistics, tolerance level, and distance measure. For high-dimensional

data, it is very important to identify an informative and low-dimensional set of

summaries. Techniques and methods for selecting ABC summary statistics fall into

three major categories, namely, subset selection, projection technique, and regular-

ization technique [5]. The subset selection approach selects a best subset from a

number of candidates that are evaluated and ranked using various information-

based criteria. Projection techniques reduce the dimension by projecting the orig-

inal dataset into a lower-dimensional space. The regularization technique aims to

reduce over-fitting in a model by penalizing model complexity. Although summary

statistics is an important issue in discussing high-dimensional data, this issue is less

important when we study small-scale regulatory networks.

The threshold value for accepting samples is important for the efficiency of

ABC. A large threshold value may lead to posterior distribution with larger error,

but it would be difficult to search satisfactory samples if the threshold value is too

small. This result is illustrated in Fig. 12.1. Instead of choosing threshold value

carefully, it can be selected adaptively. For example, assuming the simulation

errors to experimental data in kth iteration are ek1 ; e
k
2 ; . . . ; e

k
N

� �
for the N particles.

We can use the median value of these values or the mean of these values as the

threshold value of the (k+ 1)th iteration [25]. In addition, the number of samples in

each generation and number of generations can also be determined by accepted

samples [11]. This approach is very effective for deterministic models such as

ordinary differential equation (ODE) models for genetic regulation. However, for

stochastic models such as chemical reaction systems, our recent simulation results

suggest that more work is still needed for the adaptive techniques when inferring

stochastic models.

The distance function is the key measure to assess the quality of parameter

samples. For dynamic models such as ODE models or chemical reaction systems,

experimental data normally are observed molecular activities/concentrations

D1, . . .DMð Þ in a number of observation time points. The distance function will

measure the error of simulation Y1, . . . YMð Þ to experimental data. The widely used

error function is the mean square root function, the absolute error function, or the

weighted error function
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Error ¼
XN
i¼1

1

wi
Yi � Dij jp

where p¼ 1 and 2 are for the absolute error and mean square error, respectively, and

wi is the weight. If wi ¼1 (wi¼Di), it is the absolute error (relative error).

In addition to the values of simulation, the derivative and second-order deriva-

tive have also been used in the error function, which gives smoother approximation

to experimental data. We have further developed a continuous distance function

using a spline function to generate the continuous simulation and dataset over the

whole time period. Compared with the discrete criteria using data at observation

time points only, the continuous criteria lead to more accurate estimates [12]. In

addition, the model using estimated parameter from continuous approaches has

better robustness property than that using parameter from discrete approaches.

Fig. 12.1 The averaged error of estimated parameters and mean count of sample tests for

obtaining an accepted particle with step size Δt of 1 and 5 of the data using decreased tolerance

levels over five iterations of ABC for inferring parameters in a stochastic model of a gene network

[59]. A smaller tolerance level normally leads to smaller simulation value but larger number of

sample tests
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For stochastic models, the transitional probability density function f Diþ1

��Di, θ
� �

measures the probability of realizing the observation Diþ1 with the given Di and

parameter θ. A good estimate should make the joint transitional density

f D0; θð Þ
XN�1

i¼0

f Diþ1

��Di, θ
� �

to reach the maximum. An equivalent measure is the negative log-likelihood

function

L ϑð Þ ¼ � log
�
f D0; ϑð Þ �

XN�1

i¼1

log
�
f Diþ1

��Di, ϑ
� �

Note that, if we choose the density function as an exponential function

f Diþ1jDi, θð Þ ¼ exp � Yiþ1 � Diþ1ð Þ2
� �

;

the negative log-likelihood function actually is the mean square error. Since the

closed-form expression of the transitional density is usually unavailable, we use a

nonparametric kernel density function

f Diþ1; tiþ1ð Þ ¼ 1

MB

XM
j¼1

K
Yij � Di

B

� 	

to evaluate the transitional density based on M stochastic simulations [21]. Here

K ∙ð Þ is a nonnegative kernel function enclosing unit probability mass. The normal

kernel is one of the widely used kernel functions for inferring parameters in

stochastic models. In addition, based on the discrete nature of chemical reactions,

the frequency distribution of simulation molecular numbers was proposed to eval-

uate the transitional density [51]. Numerical results showed that the frequency

distribution gives more stable estimations of the transitional density than the normal

kernel density functions for discrete chemical reaction systems.

We have proposed two ABC algorithms using simulated likelihood density,

which have been applied to estimate unknown rate constants in chemical reaction

systems. Compared with other distance measures, the simulated likelihood density

function provides more accurate estimates. Figure 12.2 suggests that the probabi-

listic distribution starts from nearly a uniform distribution in the second iteration

(Fig. 12.2a) and gradually converges to a normalized-like distribution (Fig. 12.2d)

with a mean value that is close to the exact rate constant.
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12.4.4 Criterion for Selecting Estimated Candidates

A major challenge in the inference of model parameters is that different estimates,

whose value may vary over a wide range, all are able to faithfully realize experi-

mental data. Thus additional criterion is needed to select the final estimate from

candidates. Since robustness is a ubiquitously observed property of biological

systems, this property has been widely used recently as an important measure to

select the optimal network structure or model parameters from estimated candi-

dates, including genetic regulatory networks and cell-signaling pathways [2, 7,

32]. Here robustness is defined as the ability of a system to function correctly in

the presence of both internal and external uncertainty [3]. This theory has been

extensively studied by Kitano and coworkers [23, 24]. A formal and abstract

definition of the robustness property has been widely used in analyzing robustness

properties of biological systems [3]. Recently more detailed definitions have been

proposed to calculate the robustness property of biological systems [40].

Fig. 12.2 Probabilistic distributions of the estimated rate constant C7 over four iterations

(k¼ 2,3,4,5) using ABC-SMC for inferring parameters in a stochastic model of a gene network

[60]. The distribution of the first iteration (k¼ 1) is nearly a uniformly distribution
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According to the definition in Kitano [23], the robustness property of a mathe-

matical model with respect to a set of perturbations P is defined as the average of an

evaluation function Ds
a;P of the system over all perturbations p2P, weighted by the

perturbation probabilities prob( p), given by

Rs
a,P ¼

Z
p2P

prob pð ÞDs
a,Pdp ð12:1Þ

We have also proposed to use the following measures to evaluate the average

behavior

RM
a,P ¼

X
i, j

Z
p2P

prob pð Þxij pð Þdp

 �

ð12:2Þ

which is the mean of simulated system dynamics that should be close to the

simulated dynamics obtained from the unperturbed parameters [50]. In addition,

the impact of perturbations on nominal behavior is defined by

RN
a,P ¼

X
i, j

Z
p2P

prob pð Þ xij pð Þ � xij pð Þ
� �2

dp


 �
ð12:3Þ

where xij( p) and xij are the simulated dynamics xi at time point tj with perturbed and

unperturbed parameters, respectively, and xij pð Þ is the mean of xij( p) over all the
perturbed parameters. For each parameter ki, the perturbation is set to follow a

uniform distribution or Gaussian distribution.

In addition, other additional criteria have been used to select the candidate

estimates. Sloppy is a concept to measure sensitivity of model parameters to

external perturbation. A model is termed as sloppy if its sensitivity eigenvalues

were approximately equally spaced in their logarithm [20]. This study suggested

that, even with precise datasets, many parameters are unknowable to the trajectory

measurements. Using the epidermal growth factor (EGF) and neuronal growth

factor (NGF) signaling pathways as the test systems, research results suggest

optimism for the prospects for calibrating even large models. Success of parameter

estimation is intimately linked to the experimental perturbations used. Thus exper-

imental design methodology is important for parameter fitting of biological models

and may determine the accuracy of estimation [1].

Another concept related to Bayesian inference is entropy, which is a measure in

thermodynamics for the number of specific realizations or microstates that may

realize a thermodynamic system in a defined state. Entropy has been used in ABC in

a number of ways. For example, minimization of the estimated entropy of the

posterior approximation is used as a heuristic for the selection of summary statistics

[35]. Another related concept is the Shannon Information. The information theory

has been combined with ABC to identify experiments that maximize the informa-

tion contents of the resulting data [26].
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12.5 ABC Software Packages

A number of computer software packages have been designed to implement ABC in

different platforms using various computer languages. A software package,

BioBayes, provides a framework for Bayesian parameter estimation and evidential

model ranking over models of biochemical systems defined using ordinary differ-

ential equations. The package is extensible allowing additional modules to be

included by developers [54]. Recently, a Python package, ABC-SysBio, imple-

ments parameter inference and model selection for dynamical systems in the ABC

framework [27]. ABC-SysBio combines three algorithms: ABC rejection sampler,

ABC-SMC for parameter inference, and ABC-SMC for model selection. It is

designed to work with models written in Systems Biology Markup Language

(SBML). Deterministic and stochastic models can be analyzed in ABC-SysBio.

In addition, a computational tool SYSBIONS has been designed for model selection

and parameter inference using nested sampling [22]. Using a data-based likelihood

function, this package calculates the evidence of a model and the corresponding

posterior parameter distribution. This is a C-based, GPU-accelerated implementa-

tion of nested sampling that is designed for biological applications.

A number of software packages have been designed in the R platform. Among

them, abc implements ABC-rejection with many methods of regression post-

processing; while easyABC implements a wide suite of ABC algorithms but not

post-processing [36]. The abctools package has been designed to complement the

existing software provision of ABC algorithms by focusing on tools for tuning

them. It implements many previous unavailable methods from literature and makes

them easy available to the research community [36]. In addition, there are two

packages implemented as MATLAB toolbox, including EP-ABC for state space

models and related models and ABC-SDE for inferring parameters in stochastic

differential equations [38]. There are a number of other software packages that have

been reviewed in [36]), including ABCreg, ABCtoolbox, Bayes SSC, DIY-ABC,

and PopABC. Due to the limit of space, more information of these software

packages can be found in Nunes and Prangle [36].

12.6 Applications

ABC has been applied to infer parameters in a wide range of regulatory networks in

systems biology. This section only gives a few examples. For the mitogen-activated

protein (MAP) kinase phosphorylation cascade, ABC allows to approximate the

posterior distribution over parameters and shows how this can add insights into our

understanding of the system dynamics [43]. This study highlights the added benefit

of using the distribution of parameters rather than point estimates of parameter

values when considering the notion of sloppy models in systems biology. In

addition, a general statistical inference framework was designed based on ABC

for constructing stochastic transcription–translation networks [37]. An exact
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inference algorithm and an efficient variational approximation allow scalable

inference and learning of the model parameters.

The ABC-SMC method has been used to estimate the parameters in an ODE

model of the glucose metabolism network using data from pH-controlled continu-

ous culture experiments [48]. In addition, the profile likelihood estimation (PLE)

was used to improve the calculation of confidence intervals for the same parame-

ters. This study suggests that the approximate posterior is strongly non-Gaussian,

and calculations of confidence intervals using the PLE method back this up [48]. In

addition, ABC was used to infer parameters in a statistical thermodynamic model of

gene regulation that combines the activity of a morphogen with the transcriptional

network it controls [8]. A dynamical model was developed for the sonic hedgehog

(Shh) patterning of the ventral neural tube for accurately predicting tissue pattern-

ing. This approach provides a unifying framework to explain the temporospatial

pattern of morphogen-regulated gene expression.

Bayesian computation has also been applied to induce the network motifs

through spike-timing dependent plasticity in combination with activity-dependent

changes in the excitability of neurons. To deal with mixture of quantitative mea-

sures (i.e., likelihood and qualitative fitness) simultaneously, a Bayesian framework

is formulated for hybrid fitness measures (HFM) [34]. The MCMC-HFM is applied

to an apoptosis signal transduction network. The mixed use of quantitative and

qualitative fitness measures narrowed down the acceptable range of parameters. In

addition, for discrete chemical reactions systems, we developed two algorithms and

applied them to infer rate constants in a model of genetic regulatory network [60].

12.7 Discussion

Recent decades have observed substantial progress in the development of Bayesian

inference methods and in particular ABC algorithms. Various effective methods

have been designed to improve the accuracy of inference results and reduce the

huge amount of computing time of Monte Carlo methods. The open-access com-

puter software packages accelerate the application of Bayesian inference methods

to more practical problems. However, recent advances in mathematical modeling

have raised complex and large-scale models that should be studied using compu-

tational statistical methods. The era of big data provides a large number of datasets

with huge amount of information in biology, engineering, finance, and social

sciences. Therefore Bayesian computation is still an exciting and productive

research topic in the frontier of statistical studies.

This chapter only discusses the Bayesian computational methods, but the appli-

cation of these methods has not been addressed in detail. In fact substantial

challenges will immediately arise when applying these methods to develop math-

ematical models. For example, considering a gene network with a number of genes,

a popular and important topic is how to infer the regulatory mechanisms using the

microarray or RNA-seq time series data. The regulatory network should be sparse

since a gene normally is regulated by a small number of genes. However, it is still a
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challenge to infer a sparse network structure using inference methods. There are a

number of issues that are related to this challenge, including mathematical model to

reflect biological regulation, inference methods to search global optimal model

parameters, effective numerical methods with small simulation error, and reliable

experimental data that is less influenced by noise. The development of Bayesian

inference methods will be more or less influenced by the other issues.

Heterogeneous datasets in social sciences and single-cell biological studies have

posed substantial need to develop stochastic and/or multi-scale mathematical

models for describe random dynamics. However, parameter inference for stochastic

dynamic models is harder and less developed than that for deterministic models

because of the generally intractable analytical form of the likelihood. In addition, a

large number of stochastic simulations are needed to derive reliable measure of the

probability for transitional density. Although a number of inference methods have

been designed for stochastic models [17, 21, 51, 57, 60], the huge computing time

and reliability of estimates are still major questions. Generally the reliability of

estimates can be improved when more stochastic simulations are used in inference.

The inference of network model requires a thorough understanding for the

properties of network dynamics. Currently simulation error is the key measure to

assess the quality of the generated parameter samples. In some cases the difference

between the simulation errors of different samples is so small that it is difficult to

distinguish which sample is really better than the others. In such cases, system

property will help us to select optimal estimate from candidates that have similar

simulation error. In recent year, robustness property, bistability, entropy, and

Shannon information have been used as the additional criteria to infer model

parameters. More work is needed in this area to find more selection criterion and

develop effective methods to calculate these system properties.

12.8 Conclusions

This chapter gives a brief review for the statistic computational methods for

inferring parameters in mathematical models. Focusing on Monte Carlo sampling

methods, we discussed various approximate Bayesian computing algorithms and

related issues in implementations. In addition, we discussed the property of network

dynamics that is related to the inference of network parameters.
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Chapter 13

Network-Based Biomedical Data Analysis

Yuxin Lin, Xuye Yuan, and Bairong Shen

Abstract Complex diseases are caused by disorders of both internal and external

factors, and they account for a large proportion of human diseases. They are

multigenetic and rarely a consequence of the dysfunction of single molecules.

Systems biology views the living organism as an organic network. Compared

with reductionism-based viewpoints, systems biology pays more attention to the

interactions among molecules located at different omics levels. Based on this

theory, the concepts of network biomarkers and network medicine have been

proposed sequentially, which integrate clinical data with knowledge of network

sciences, thereby promoting the investigation of disease pathogenesis in the era of

biomedical informatics. The former aims to identify precise signals for disease

diagnosis and prognosis, whereas the latter focuses on developing effective thera-

peutic strategies for specific patient cohorts. In this chapter, the basic concepts of

systems biology and network theory are presented, and clinical applications of

biomolecular networks, network biomarkers, and network medicine are then

discussed.

Keywords Centrality • Cross-scale analysis • Network biomarker • Network

medicine • Sequential network

13.1 Introduction

Complex diseases comprise a large class of common diseases, which originate from

interactions among multiple factors such as gene mutations, environmental effects,

and personal lifestyle choices [1]. The morbidity, mortality, and recurrence rates of

these diseases are growing rapidly throughout the world at present. Due to the

initiation and development of P4 (predictive, preventive, personalized, and partic-

ipatory) medicine and precision medicine, medical paradigms are constantly

shifting. Many traditional methods that focus only on single genes or proteins and

Y. Lin • X. Yuan • B. Shen (*)

Center for Systems Biology, Soochow University, No. 1 Shizi Street, 206, 215006 Suzhou,

Jiangsu, China

e-mail: bairong.shen@suda.edu.cn

© Springer Science+Business Media Singapore 2016

B. Shen et al. (eds.), Translational Biomedical Informatics, Advances in
Experimental Medicine and Biology 939, DOI 10.1007/978-981-10-1503-8_13

309

mailto:bairong.shen@suda.edu.cn


that view a living organism as simple systems cannot provide a clear understanding

of the essential mechanisms of complex diseases such as cancer, diabetes, and

cardiovascular and neuronal diseases [2]. Therefore, systematic theories and

approaches need to be provided and translated into clinical practice.

Systems biology is one of the most effective and powerful weapons for fighting

complex diseases [3], where it emphasizes the dynamic interactions among biolog-

ical molecules at different omics levels as well as elucidating their in-depth

behaviors or mechanisms from a systematic perspective. These interactions connect

biological components to generate complex interacting modules or networks, which

have great significance for case studies and clinical applications [4]. More impor-

tantly, most of these biological networks tend to have meaningful structural char-

acteristics, which are of great value for discovering potential rules or patterns of

occurrence and progression for complex diseases [5, 6].

Among the principles of systems biology, network analysis is now becoming the

main approach for investigating biological processes and functions in the field of

biomedical informatics [7]. Various holistic concepts such as network biomarkers

[8] and network medicine [9], which break the shackles of reductionist viewpoints,

offer new methods for exploring the complexities of human diseases as well as

helping to address biomedical problems at the systems level. Due to the popular-

ization of next-generation sequencing (NGS), increasing numbers of studies are

combining static networks with large-scale dynamic expression data [10], thereby

elucidating the changes in diseases at different time points. All of these innovations

facilitate the diagnosis and treatment of complex diseases, as well as building a

strong bridge between fundamental research and clinical sciences.

13.2 Networks and Graphs

A network is a description and abstraction of real things and their relationships,

which can be represented as a graph model with two essential components: a set of

vertexes (or nodes), V¼ {v1,v2,. . .,vN}, and a set of edges (or lines), E¼ {e1,e2,. . .,
eM}, between pairs of vertexes. There are many instances of networks such as social

networks, traffic networks, and financial networks, but we focus on biological

networks.

13.2.1 Classification of Networks

13.2.1.1 Directed and Undirected Networks

Networks can be divided into two types according to the directivity that they

indicate: directed networks and undirected networks. In a directed network, an

edge (i, j) indicates that a relationship exists from vertex i to j, but not vice versa.
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Thus, i and j are known as the starting points and ending points, respectively. In an

undirected network, two vertexes are bidirectionally reachable when their edges are

linked. Among the different types of biological networks, a protein-protein inter-

action (PPI) network is typically an undirected network, whereas microRNA-

mRNA regulatory networks are recognized more commonly as directed networks.

13.2.1.2 Weighted or Valued Networks

Network data often contain extra information regarding the extent or strength of

each relationship. For example, in gene co-expression networks, correlation coef-

ficients are usually calculated in order to quantify the extent of the interactions

among genes [11]. This extra information is referred to as a weight or value in

network science. Thus, the two basic network types mentioned above can be

extended to four, as shown in Fig. 13.1a–d.

13.2.1.3 Bipartite Networks

Given a network N¼ {V, E}, if the vertex set V can be divided into two independent

subsets V1 and V2 (V1 [V2¼V, V1 \V2¼Φ), and all edges are between paired

vertexes belonging to different subsets, then the network can be represented as a

bipartite network (or bipartite graph; see Fig. 13.1e). Bipartite networks are used

widely in biological research. For instance, a human gene-disease network is

bipartite, where one set of vertexes are diseases and the other set are genes that

are closely related to linked diseases.

Fig. 13.1 Fundamental types of networks. (a) Unweighted undirected network. (b) Unweighted
directed network. (c) Weighted undirected network. (d) Weighted directed network. (e) Bipartite
network
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13.2.2 Centrality of Vertexes

13.2.2.1 Degree Centrality

In undirected networks, the degree of a certain vertex i (termed k(i)) equals the

number of edges that are incident on it. In directed networks, the vertex degree k(i)
is partitioned into two parts, the in-degree kI(i) and out-degree kO(i) (mathemati-

cally, k(i)¼ kI(i) + kO(i)), which are equivalent to the number of vertexes that are

adjacent to and from the vertex i, respectively. Degree centrality is the most

common property used to measure the importance of a vertex in a network, and it

equals the ratio of the actual to theoretical maximum degree of a given vertex. This

metric indicates that vertexes with larger degrees are more critical in the network.

For example, old genes with significant biological functions often have large

degrees, and they lie at the heart of a PPI network [12].

13.2.2.2 Closeness Centrality

This metric indicates how close the given vertex is to all of the other vertexes in the

network. In general, the vertex with the highest closeness centrality is located at the

optimum position for viewing the information flow. The vertex closeness centrality

can be calculated for both nondirectional and directional relations. If we consider an

undirected network as an example, the closeness centrality of vertex i (CC(i)) in an
undirected network with N vertexes is

CC ið Þ ¼ N
PN

j¼1 d i; jð Þ ð13:1Þ

where d(i, j) represents the distance from vertex i to j.

13.2.2.3 Betweenness Centrality

Interactions between two nonadjacent vertexes in a network can be affected by the

actions of other vertexes, especially by those that lie between them. Some

vertexes are important because all the shortest paths along which information

flows from any vertex at one side to the other must pass through them, and thus the

betweenness centrality is the metric used to describe the importance of a given

vertex based on the number of shortest paths that it penetrates. Vertexes with

higher betweenness centrality hint may have a greater capacity to control the flow

of information. In an undirected network, the betweenness centrality of the given

vertex i (BC(i)) is
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BC ið Þ ¼
X

a 6¼i6¼b

mi
ab

nab
ð13:2Þ

where nab is the number of shortest paths linking vertex a and b and mi
ab is the

number of shortest paths linking vertex a and b that contain vertex i.

13.2.3 Topological Properties of Networks

13.2.3.1 Degree Distribution

The degree distribution P(k) of a network is equivalent to the fraction of vertexes in
the network with degree k. If the network is directional, the distribution should be

refined as an in-degree distribution or out-degree distribution. Vertexes in different

networks tend to follow different degree distributions, such as the normal distribu-

tion (or Gaussian distribution), binomial distribution, and long tail distribution

(or scale-free distribution) (see Fig. 13.2a–c).

Fig. 13.2 Schematic diagrams of four common degree distributions. (a) Normal distribution.

(b) Binomial distribution. (c) Long tail distribution. (d) Power-law distribution
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13.2.3.2 Power-Law Distribution

In 1999, Barabasi and his colleagues showed that the in-degree and out-degree

distribution of the World Wide Web has a power-law tendency [13]. In network

science, networks with this property are often known as scale-free networks.

Mathematically, P(k) ~ k–γ, where γ is a parameter with a value that usually ranges

among 2< γ< 3 (see Fig. 13.2d). In fact, many important biological networks are

also scale-free. For example, the human PPI network has an approximately scale-

free characteristic [14] with a degree exponent of 1.49 [12], which indicates that

proteins (or genes) with large degrees (i.e., hubs) are few in number and they may

affect the whole network greatly.

13.3 Biomolecular Networks and Their Clinical
Applications

Biological molecules interact to promote the activity and evolution of living

organisms. These interactions contribute to various types of biological networks,

where they may influence the significance and complexity of biological processes

in many ways.

13.3.1 Protein-Protein Interaction (PPI) Networks

Proteins are the direct products of functional genes, and they are large biological

molecules that mediate the functions of living organisms. Accumulating evidence

indicates that PPIs are closely associated with biological processes [15, 16], where

they play pivotal roles in a large number of cellular behaviors and their abnormal

activities may lead to the development of numerous diseases [17].

Protein interactions (“interactome”) have generally been identified based on

multiple biological experiments or computational approaches. However, due to

the development of biological and computational techniques, the volume of PPI

data increases year, and many publicly available databases have been created to

store these data, thereby providing valuable information for interactome research.

Table 13.1 lists six manually curated PPI databases. The data in these databases

have been verified by experiments or published studies. To fully exploit these data

and analyze them at a higher level, Wu et al. integrated their interactions and

constructed a PPI network analysis platform (called PINA) for investigating the

underlying latent information [18]. The platform was then enhanced in version 2.0

by including interactome modules identified by the global PPI network for six

model organisms [19].
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It is widely acknowledged that the functions of biomolecules are affected by

their structures [26, 27] and network structures with special characteristics can also

indicate the possible mechanisms of interactions among given biomolecules

[28]. Many studies have shown that PPI networks tend to be scale-free [29] and

proteins/genes with large degrees or centralities (or hubs) may play important roles

in relevant biological processes. In addition, PPI networks have been reported as

modular [30], so some studies have addressed the substructural analysis of PPI

networks. For example, Luo et al. [31] separated five modules related to the

initiation of early-onset colorectal cancer using a PPI network based on gene

expression data and cluster analysis and then screened five hub genes as key

indicators or candidate therapeutic targets for this disease. Gene ontology and

pathway enrichment analyses demonstrated the validity of their results. Zanzoni

and Brun [32] designed a computational approach that considers both PPI network

and stage-based proteomics profiles to identify dysregulated cellular functions

during the progression of different cancers. They extracted several functional

modules using the OCG algorithm [33] and annotated them based on gene ontology

terms and pathway signals. Combined with actual proteomics datasets obtained at

different stages of cancers, they selected modules with increasing, decreasing, or

stage-specific importance during cancer progression. This study showed that pro-

tein modules are functional in different biological processes and that the interac-

tions among them are usually as important as the proteins themselves. To some

extent, PPI networks can provide a comprehensive understanding of molecular

interactivity rather than single proteins, thereby presenting more opportunities for

elucidating the potential mechanisms under different conditions. This could allow

great breakthroughs in the diagnosis and treatment of complex diseases.

13.3.2 Gene Co-expression Networks

PPI networks represent the interactions among proteins/genes from a static per-

spective. However, these interactions might not be exactly the same in different

conditions due to the specificity of samples or groups with different backgrounds. In

recent decades, due to the rapid development of experimental technologies, the

number of expression profile data identified by high-throughput screening has

Table 13.1 Protein-protein interaction databases

Name Version Link Citation

BioGRID 3.4.132 http://www.thebiogrid.org/ Stark et al. [20]

DIP 2004 update http://dip.doe-mbi.ucla.edu/ Salwinski et al. [21]

HPRD Release 9 http://www.hprd.org/ Keshava Prasad et al. [22]

IntAct 4.2.3.1 http://www.ebi.ac.uk/intact/ Aranda et al. [23]

MINT 2012 update http://mint.bio.uniroma2.it/mint/ Ceol et al. [24]

MIPS MPact Not available http://mips.gsf.de/genre/proj/mpact/ Guldener et al. [25]
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increased greatly, thereby providing unprecedented opportunities for integrative

analyses of clinical diseases based on static networks and dynamic expression

information.

Gene co-expression networks combine the similarity of expression among

coordinated genes with the topological properties of networks, which can provide

a systematic view of the dynamic changes of molecular activities and cellular

functions during the evolution of biological processes. Using gene co-expression

networks to analyze complex biological phenomena is simple and efficient

[34]. Importantly, they are beneficial for building condition- or disease-specific

networks, which are useful for elucidating the underlying mechanisms related to the

progression of specific diseases [35].

Rotival and Petretto [36] reviewed some well-known computational methods for

co-expression network analysis, which can be divided into two categories according

to specific guiding principles. The first category comprises potential foundational

factors, the influences of which may lead to changes in gene expression. These

methods first select the principal factors and their induced genes from a pool of

candidate factors based on principal components analysis or nonnegative matrix

factorization algorithms [37], before extracting functional modules based on the

factor-gene pairs. The other methods for co-expression network analysis are largely

dependent on graph-based modeling, where vertexes or edges with similar features

are clustered into the same modules. As shown in Fig. 13.3, co-expressed genes are

usually measured by correlation analysis, such as Pearson’s correlation coefficient

(PCC), Spearman’s rank correlation, or Kendall correlation tests, where the func-

tional modules are finally inferred for further research.

In the era of biomedical informatics, co-expression network analysis greatly

improves the speed and accuracy of disease-associated gene discovery. Zhang

Fig. 13.3 Pipeline for graph-based gene co-expression network analysis
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et al. [38] confirmed that five crucial genes can be used as prognostic markers for

chronic lymphocytic leukemia, where they constructed a co-expression network

using the CODENSE algorithm [39] and they focused mainly on modules

containing the key gene ZAP70. Yang et al. [40] built gene co-expression networks
for four different types of cancers and found that the features of prognostic genes

did not lie at hub positions in cancer-specific co-expression networks, but instead

they were often enriched in modules conserved among different cancer networks.

This may be an important insight that could facilitate the identification of cancer

prognostic genes in clinics.

13.3.3 MicroRNA-mRNA Regulatory Networks

MicroRNAs (miRNAs) are small noncoding RNAs that comprise approximately

22–24 nucleotides. miRNAs silence gene expression at the posttranscriptional

level by base-paring with their target mRNAs [41]. According to previous

studies, miRNAs are involved in a variety of important biological processes, such

as cell proliferation, development, apoptosis, and immune responses [42, 43, 44].

In addition, the aberrant expressions of miRNAs may cause many serious diseases

[45, 46, 47].

The relationships between miRNAs and their targets can be abstracted as a

bipartite network (or bipartite graph), which is called a miRNA-mRNA regulatory

network. The pairs in the network comprise miRNA-mRNA regulations, which can

be determined using experimental and computational methods. Table 13.2 lists

several useful databases that store miRNA-mRNA pairs.

Some well-known tools are also available for miRNA-target prediction. For

example, TargetScan [55] infers miRNA targets by matching the seed region of

Table 13.2 miRNA-mRNA regulatory pair databases

Type Name Version Link Citation

Experimentally

validated

miRTarBase 6.0 http://mirtarbase.mbc.nctu.

edu.tw/

Chou

et al. [48]

TarBase 7.0 http://www.microrna.gr/

tarbase/

Vlachos

et al. [49]

miRecords 4.0 http://miRecords.umn.edu/

miRecords/

Xiao

et al. [50]

miR2Disease Not

available

http://www.miR2Disease.

org/

Jiang

et al. [51]

Computationally

predicted

HOCTAR 2.0 http://hoctar.tigem.it/ Gennarino

et al. [52]

ExprTargetDB Not

available

http://www.scandb.org/

apps/microrna/

Gamazon

et al. [53]

starBase 2.0 http://starbase.sysu.edu.cn/ Li et al. [54]
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each input miRNA. miRanda [56] is an optimized method that relies only on

sequence complementarity and user-specified rules to enhance the accuracy of

predicted results. In general, the miRNA-mRNA pairs identified by

low-throughput experiments such as real-time PCR are more convincing than

those determined using high-throughput techniques such as microarrays or NGS,

while the pairs predicted by computational algorithms often have a high false-

positive rate. Thus, it is necessary to clean the data before constructing the final

network.

miRNAs function in the development of many diseases, and many studies have

attempted to discover disease-associated miRNAs based on miRNA-mRNA regu-

latory networks. One of the most popular approaches is based on the theory that

miRNAs may be functionally synergistic so they can co-regulate the expression of

their target genes. Bandyopadhyay et al. [57] found that the miRNAs included in a

module may have a combinatorial effect on their targets, where those located next

to the module appeared to have similar dysregulatory patterns. Based on this

observation, several computational frameworks or programs have been developed

to identify abnormal miRNAs or miRNA regulatory modules in human diseases

[58, 59].

Instead of the synergistic functions of miRNAs, Zhang et al. [5] focused on the

substructures of miRNA-mRNA regulatory networks and found evidence that

miRNAs can regulate genes independently. They defined a novel bioinformatics

model using the NOD (novel out-degree) parameter to quantify the independent

regulatory power and employed it to detect key miRNAs in prostate cancer [5, 60],

gastric cancer [61], and sepsis [62]. The model was expanded later by considering

the biological functions of miRNA targets [6]. Unlike some machine learning-based

methods that are highly reliant on the training data, the improved model identified

crucial miRNAs without any prior knowledge, and its application to biomarker

discovery for pediatric acute myeloid leukemia demonstrated its great predictive

power.

Another typical application of miRNA-mRNA networks in clinical research is

the approach proposed by Zhao et al. [63], who utilized a network as a bridge to

infer cancer-related miRNAs from dysfunctional genes and their enriched path-

ways. The method is flexible because it can identify cancer-related miRNAs

without requiring miRNA expression profiles. All of the studies mentioned above

demonstrate the importance of miRNA-mRNA regulatory networks, especially in

the field of disease-associated miRNA discovery.

13.3.4 Competing Endogenous RNA (CeRNA) Regulatory
Networks

It has been widely reported that miRNAs may repress a large proportion of

transcripts and they can act as oncogenes [64] or tumor suppressor genes [65] in
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many diseases such as cancers. Recent studies have demonstrated that the

transcriptome has a large number of components, including protein-coding RNAs

(or mRNAs), pseudogene transcripts, and long noncoding RNAs (lncRNAs), which

“talk” with each other using the “letter” miRNA response elements (MREs) by

competitively binding the limited sites in common miRNAs to influence the

regulatory effects of miRNAs on their targets [66]. Salmena et al. [67] formally

proposed the ceRNA concept to represents the group of RNAs with these abilities.

The activities of competing endogenous RNA (ceRNAs) form a large-scale

regulatory network at the posttranscriptional level, and thus the traditional para-

digm of “miRNA!RNA” has gradually been replaced by

“RNA!miRNA!RNA.” As shown in Fig. 13.4, in this new model, miRNAs are

often recognized as mediators, where different ceRNAs bind them competitively to

promote changes in the expression of the target genes (or mRNAs) mediated by

miRNAs.

In ceRNA regulatory networks, miRNAs can target a large number of

co-expressed transcripts, and the expression of one targeted transcript can be

affected by changes in the concentration of other transcripts [68]. Multiple RNA

transcripts may share one miRNA via MREs in their 3’ untranslated regions. Su

et al. [69] found that overexpressed ceRNAs may increase the concentration of

specific MREs to change the distribution of miRNAs, thereby leading to increases

in the expression levels of their targets.

In recent years, studies have demonstrated that the initiation and progression of

cancer are closely related to the dysregulation of ceRNA networks. Thus, Sumazin

et al. [66] discovered a miRNA-mediated network with more than 248,000 inter-

actions, and they showed that the network regulated various established genes and

oncogenic pathways with close relationships to the initiation and development of

glioblastoma. Tay et al. [70] confirmed that the ceRNA regulatory network was

Fig. 13.4 Schematic diagram of two regulatory paradigms. (a) “miRNA!RNA” paradigm and

miRNA regulatory network. (b) “RNA!miRNA!RNA” paradigm and ceRNA regulatory

network
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functional for protein-coding RNAs and tests based on the tumor suppressor gene

PTEN showed that the expression patterns of protein-coding RNA transcripts were

consistent with PTEN. Overall, it was concluded that ceRNAs and their networks

may play crucial roles in disease development processes.

Understanding the competition mechanisms of ceRNAs may provide great

insights into the pathogenesis of specific diseases. For instance, Zhou et al. [71]

constructed a breast cancer-specific ceRNA regulatory network by combining

miRNA-mRNA relationships with miRNA and mRNA expression datasets from

patients with breast cancer, where they found that the network also tended to follow

a power-law. Moreover, functional analysis indicated that the hub genes and dense

clusters were strongly linked to cancer hallmarks, which proved valuable for risk

assessments in breast cancer. Thus, ceRNA regulatory network-based analyses may

inspire new approaches to both fundamental and clinical studies of complex

diseases.

13.3.5 Others

Due to the complexity of disease progression, other biological networks such as drug-

target interaction networks [72], metabolic networks [73], and epigenetic networks

[74] may also have important functions during the occurrence and development of

diseases. However, due to space limitations, please refer to the references cited for

further details.

13.4 Network Biomarkers in Complex Diseases

Biological markers, also known as biomarkers, are unique molecules that can

indicate changes or potential changes in biological conditions from normality to

abnormality in living organism [75]. Clinically, biomarkers with high sensitivity

and specificity could serve as powerful indicators for disease diagnosis and prog-

nosis. Instead of using single biomarkers, network-based biomarkers are now

becoming more popular because they can help to investigate the overall behaviors

of biological molecules and they may reflect the system-level states of diseases.

13.4.1 Single Molecular Biomarkers and Network
Biomarkers

Many studies have shown that single biological molecules can be effective bio-

markers for both the diagnosis and prognosis of human diseases. For instance, the
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protein prostate-specific antigen is widely used for the early detection of prostate

cancer [76]. The BRCA1 and BRCA2 genes can also be useful markers for breast

cancer [77]. In addition, some noncoding RNAs such as miRNAs may also have

diagnostic or prognostic roles in many complex diseases [78, 79].

The traditional methods used to detect candidate biomarkers rely mainly on

biological experiments. Most begin by identifying differentially expressed or

deregulated molecules based on large-scale expression profiling data, before vali-

dating the selected candidates in low-throughput experiments [80]. Considering the

limited availability of samples and time-consuming pipelines, several computa-

tional approaches have been developed to improve the efficiency of biomarker

signature discovery [81].

Single molecules may be dysfunctional in many cellular processes, but they are

still not sufficiently powerful to explore the underlying mechanisms of certain

diseases due to the diversity and complexity of disease development. In fact,

complex diseases are usually due to interactions among multiple factors rather

than the breakdown of single molecules. Moreover, single biomarkers identified in

samples from patients with similar diseases by different methods tend to exhibit

high heterogeneity [82]. Complex diseases should be considered more as disorders

in a system; therefore, the concept of network biomarkers has been proposed, and

novel strategies have been developed for explaining genetic or epigenetic changes

across diseases.

There are two main types of network biomarkers: static network biomarkers

(SNBs) and dynamic network biomarkers (DNBs). As shown in Fig. 13.5, the

former integrates the interactions, annotations, and pathway signals of molecules

by focusing only on the static nature of networks, whereas the latter pays considers

the states of a disease at different time points, which is useful for monitoring the

progression of diseases [83].
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Fig. 13.5 Three different types of biomarkers: single molecular biomarkers, static network bio-

markers (SNBs), and dynamic network biomarkers (DNBs)
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13.4.2 Static Network Biomarkers (SNBs)

Complex diseases are always caused by system-level disorders in living organisms.

Thus, network biomarkers are more useful for explaining the pathogenesis of

diseases than single molecular markers. Improvements in experimental techniques

and theories of informatics mean that more interactions among biological mole-

cules have been elucidated as well as their annotations and signal transduction

pathways, thereby providing static information for exploring diseases within a

systems biology framework and helping to translate theoretical analyses into

clinical research.

As a solid bridge between the genotype and phenotype, proteins are vital

biological molecules with significant roles in the occurrence and evolution of

diseases. Thus, many studies have focused on protein-based network biomarkers,

and they are valuable for validating mechanistic hypotheses related to the progres-

sion of diseases. The main pipeline is shown in Fig. 13.6. First, disease-associated

proteins/genes are selected by analyzing experimental data or other publications,

which are then mapped onto the reference PPI network where the knowledge-based

PPIs are integrated. Thus, a disease-specific PPI network is constructed. Second,

subnetworks of candidate biomarkers are scored and identified from the disease-

Fig. 13.6 Pipeline for protein-based network biomarker discovery
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specific network according to their actual expression levels, existing knowledge, or

the topological properties of the network. Finally, in vitro experiments or machine

learning methods such as support vector machines (SVMs) [84] or artificial neural

networks [85] can be used to validate the results and to perform further research.

To highlight the carcinogenic mechanisms of lung cancer, Wang and Chen [86]

constructed a biomarker network based on microarray data and PPIs. They identi-

fied 40 proteins that had significant associations with lung carcinogenesis using the

network, and they found that three-quarters of the total (30/40) had annotations

related to cell growth. The biomarker network had the potential to diagnose

smokers with signs of lung cancer, which could be an effective therapeutic target

to fight cancer.

In addition to disease diagnosis, biomarker networks are capable of

distinguishing metastatic and non-metastatic tumors. Chuang et al. [87] combined

breast cancer metastatic and non-metastatic data with a PPI network using the

“subnetwork activity matrix” and greedy algorithm to prioritize high-ranked sub-

networks as candidate biomarkers. They found that genes in these biomarker

networks were enriched for the hallmarks of cancer, and the results of SVM

classification showed that these network biomarkers were highly accurate in sepa-

rating metastatic and non-metastatic breast tumors, which may have significant

utility for tumor progression investigations.

In addition to protein-based biomarker networks, noncoding RNAs are essential

during the disease development process. It is obvious that interactions among these

RNAs and their targets or regulators can form functional or even biomarker

networks. Lu et al. [88] built miRNA biomarker networks containing miRNA

targets and relevant transcription factors and applied them to the diagnosis of

gastric cancer. Cui et al. [89] identified three lncRNA co-expression modules

connected with prostate cancer, one of which may be recognized as a module

biomarker for prostate cancer diagnosis.

13.4.3 Dynamic Network Biomarkers (DNBs)

Traditional molecular biomarkers and network biomarkers can only distinguish

between diseases in two stable states. This static information limits their capacity to

detect certain pre-disease states. However, pre-disease states may reflect crucial

signs of disease progression, and they could be key indicators for early diagnosis

and the prevention of diseases.

The novel DNB concept was proposed to overcome these limitations and to

elucidate more dynamic changes in diseases. Based on complex network theory and

nonlinear dynamical theory, DNBs can evaluate the stages of diseases at different

time points and represent molecules and their relations in a three-dimensional

image, as well as facilitating the discovery of stage-specific or personalized bio-

markers in the era of biomedical informatics [83].
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Chen et al. [90, 91] partitioned the process of disease development into three

stages: normal, pre-disease, and disease. The normal stage is stable, and it repre-

sents the state of health or early disease. In this stage, changes are usually gradual.

The pre-disease stage indicates the state immediately before critical changes have

been reached. Molecules in living systems undergo dramatic transitions during this

stage until another stable stage (the state of disease or advanced disease) occurs.

The pre-disease stage is crucial because it may provide latent signals of disease

progression, which could be pivotal markers for the early diagnosis of disease.

To quantify signals and detect DNBs during system-level transitions, a compos-

ite index (CI) is defined as follows [90]:

CI ¼ SDd � PCCd

PCCo
ð13:3Þ

where SDd is the average standard deviation (SD) of the DNB molecules (mole-

cules in DNB), PCCd represents the average PCC among DNB molecules as

absolute values, and PCCo represents the average PCC among DNB molecules

and other molecules as absolute values. In fact, the DNB comprises a group of

molecules in the system, which can provide significant information about the

changes at critical points of the pre-disease stage. These molecules are functional

compared with other non-DNB molecules in the same system. The expression of

these molecules is identified mainly using experimental data, especially those

obtained from high-throughput omic experiments.

The theory of DNB has been employed to detect early-warning signs for both type

1 and type 2 diabetes, especially recognizing the key points at which the state

reverses. In a study of type 1 diabetes [92], two DNBs were built to predict sudden

changes during the progressive disease deterioration. Previous studies and functional

analyses demonstrated that these two DNBs are highly relevant to type 1 diabetes and

they may be useful for its early diagnosis. Based on this study, tissue-specific DNBs

were constructed for type 2 diabetes mellitus, and two significant states were iden-

tified that had strong associations with severe inflammation and insulin resistance

[90]. The genes in the DNBs were shown to be dysfunctional at the point of disease

deterioration according to a cross-tissue analysis. Importantly, they were mostly

located upstream of the signaling pathways, and they acted as leaders during the

transcriptional processes. These results demonstrate that DNB can be predictors of

the occurrence of disease, as well as transducers that may facilitate a better under-

standing of the molecular mechanisms of disease development.

13.4.4 Evolution of Network Biomarkers During
Disease Progression

Network biomarkers are system-level molecular modules that are helpful for

investigating the evolutionary mechanism of disease progression. Wong
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et al. [93] constructed two PPI-based network biomarkers for the early and late

stages of bladder cancer. First, they downloaded microarray data for the two stages

of bladder cancer and for normal samples from the Gene Expression Omnibus

repository, before constructing two different networks for the two stages of bladder

cancers using statistical methods. Second, proteins/genes were extracted with

significant carcinogenesis relevance values together with their network structures.

The activities of these proteins tended to exhibit remarkable changes in normal and

disease samples, and these changes may be essential in bladder cancer carcinogen-

esis. The results obtained by pathway enrichment analysis showed that proteins in

the biomarker network for early-stage bladder cancer were significantly more

enriched in pathways related to ordinary cancer mechanisms such as the cell

cycle, pathways in cancer, and Wnt signaling pathway, and these proteins may

also be functional in other cancers such as prostate cancer, chronic myeloid

leukemia, and small cell lung cancer. By contrast, the ribosome and spliceosome

pathway were the top two pathways targeted by the biomarker network for late-

stage bladder cancer. Obviously, during the evolution of bladder cancer, proteins

and their interactions change gradually, but ultimately there is a shift in the enriched

pathways from universal to specific types.

Meaningful evolutionary patterns were also discovered in a study of hepatocel-

lular carcinoma (HCC) [94], where Wong et al. analyzed the evolution of network

biomarkers from the early to late stages of HCC using a framework analogous to

that employed for bladder cancer research. However, NGS datasets were used in

this study. They found that the common pathways enriched for network biomarkers

in both the early and late stages of HCC were associated with the ordinary

mechanisms of cancers, where the spliceosome pathway was prominent in the

late stages of both hepatocellular and bladder cancer.

Both of these studies provide new insights into disease-targeted therapies at

different stages or time points, and they merit further clinical research.

13.5 Network Medicine in Clinical Practice

The Human Genome Project shifted genome-wide studies from isolated genes or

proteins to the networks of interconnections among them. The traditional methods

for disease diagnosis and drug discovery are symptom-based or molecule-based.

However, the occurrence of diseases is rarely a consequence of the disorder of

single molecules, and different diseases are likely to share similar symptoms.

Thus, the concept of network medicine, which emphasizes treating disease pro-

gression at the systems level, may provide new directions for disease analysis and

therapeutics.
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13.5.1 Paradigm of Network Medicine

The pattern for disease classification and drug discovery has changed greatly due to

the continuous deepening of biomedical ideas and techniques. During the early

period, diseases were often simply classified based on knowledge of clinical

symptoms. However, this method is inaccurate, and it may miss opportunities for

disease prevention due to its low sensitivity and specificity. Clearly, symptoms may

be totally absent during the early stage of a disease, and most ordinary symptoms

are not specific to a certain disease [95].

The emergence and development of genomic research has provided various types

of molecular data, which facilitate investigations of the underlying mechanisms of

disease progression. Therefore, the disease analysis paradigm has gradually shifted

from studies of outward manifestations to internal mechanisms. For example, com-

plex diseases can be caused by multiple changes in biomolecules, such as DNA

methylation, single nucleotide polymorphisms, and DNA copy number variations.

Similar disease symptoms may be apparent, but the treatments will be quite different

according to the differences in pathogenesis. Therefore, molecule-based methods are

more beneficial for the personalized and precise treatment of diseases [96].

Recently, many analyses have shown that complex diseases are multigenic,

resulting from the synergistic actions of genetic and environmental factors. Simple

molecule-based methods focus only on biological molecules that act as key players in

the system. However, these single components are not sufficient to create system-level

disruption. Instead, network medicine treats disease diagnosis and therapeutics from a

global perspective by linking the potential factors that are relevant to disease occur-

rence and development to form an organic network, thereby identifying reasonable

therapeutic strategies at specific time points according to both the static and dynamic

properties of the network. The pathogenic behavior of complex interactions among

molecules can be uncovered at various omics levels using this systemic approach, and

effective drugs may be obtained to reach the goal of precision medicine [97].

13.5.2 Foundations and Resources

Network medicine is based on a series of hypotheses that are widely acknowledged

by researchers. However, the theory continues to improve due to the development

of systems biology and network science. The main focus is on linking network

structures and disease occurrence. Thus, the topological structures of biological

networks might potentially reflect the roles of specific molecules during disease

initiation and progression. In particular, evidence has shown that essential proteins/

genes often lie at the heart of a PPI network, whereas nonessential disease proteins

are not found in these central locations. This is quite similar to a social network

where important people or leaders are usually hub nodes who can control the

information flow. In addition, proteins appear to cooperate with each other, espe-

cially those involved in the same diseases. Many studies have shown that proteins
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often participate in biological processes in the form of modules, which highlights

the existence of synergistic mechanisms. Moreover, cells that exist in a microen-

vironment of diseases with similar phenotypes tend to have common disease-

associated components. This may help to explain why comorbidities usually

occur. Finally, the causal molecular pathways are parsimonious, and they often

form the shortest paths between known components of diseases [95].

The essential resources for network medicine study are suitable data or datasets.

It is obvious that sufficient data can drive research to become more precise and

specific due to differences between omics levels, disease stages, and even individ-

uals or groups. Chen and Butte [96] summarized eight publicly available data

sources for network medicine, which offer great opportunities for disease analysis

and drug discovery. Furthermore, databases such as HMDD [98] and DriverDBv2

[99] aim to represent the relationships between biomolecules and diseases, thereby

providing great insights into the pathogenic nature of diseases. Details of these

databases are listed in Table 13.3.

Bioinformatics approaches perform well at mining functional molecules or

molecular modules for disease diagnosis and treatment. The most remarkable

Table 13.3 Publicly available data sources for network medicine study

Name Description Link

CCLE Cancer Cell Line Encyclopedia: genetic and

pharmacological characterization of cancer models

http://www.

broadinstitute.org/ccle/

CMAP Connectivity Map: a collection of genome-wide tran-

scriptional expression profiles

http://www.

broadinstitute.org/

cmap/

ChEMBL Biological activities for drug-like molecules https://www.ebi.ac.uk/

chembl/

DriverDBv2 Relationships between driver genes/mutations and

cancers

http://driverdb.tms.

cmu.edu.tw/

driverdbv2/

ENCODE Encyclopedia of DNA Elements: comprehensive

database of genome-wide functional elements

http://genome.ucsc.

edu/ENCODE/

GEO Gene Expression Omnibus: a functional genomics data

repository

http://www.ncbi.nlm.

nih.gov/geo/

HMDD Human microRNA Disease Database: a collection of

human microRNAs and their related diseases

http://cmbi.bjmu.edu.

cn/hmdd/

ICGC International Cancer Genome Consortium: a compre-

hensive description of changes at different omics

levels in different cancers

https://icgc.org/

ImmPort Immunology Database and Analysis Portal: data and

advanced techniques in immunology

https://immport.niaid.

nih.gov/

LINCS Library of Integrated Cellular Signatures: signatures of

different cellular states and development tools for data

analysis

http://www.lincscloud.

org/

PubChem Connects PubChem substance, compound, and bioas-

say data

http://pubchem.ncbi.

nlm.nih.gov/

TCGA The Cancer Genome Atlas: a platform for searching,

downloading, and analyzing cancer-related data

http://cancergenome.

nih.gov/
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achievement is the discovery and application of network biomarkers. As described

in Sect. 11.4, network biomarkers indicate dysfunctional modules during disease

progression, and they facilitate the development of macroscopic explanations of

disease initiation. It is clear that they are indispensable components of network

medicine because they can provide important signals, which are sensitive and

specific for both disease research and drug design.

13.5.3 Research Significance and Practical Challenges

Network medicine combines systematic thinking with clinical sciences, and by

utilizing network theory as a mediator, it is poised to promote the understanding of

disease pathogenesis and to forecast disease development trajectories or tendencies.

It focuses on predicting the key players in disease progression, with the aim of

providing better therapeutic strategies for patients [100].

The development of ideas is always accompanied by opportunities and chal-

lenges, and network medicine is not an exception. The volume of data available for

network medicine study is huge, but that with practical value may be limited.

Furthermore, the structure of the data is inconsistent, especially clinical data,

which is rooted in different schemas and ontologies [96]. Thus, necessary criteria

should be established for data representation, or the process of data integration and

further analysis may be hindered. Due to the complexity of biological mechanisms,

networks should be more specific. It has been reported that response networks for

the same drug tend to exhibit distinct heterogeneity in different cell lines. The

components and activities of real living organisms are more complex than those in

computational models because networks or functions are generally not condition-

specific and they fail to consider the effects of the external environment. Thus,

effective methods and tools should be developed for constructing models across

different omics levels in the era of big data, as well as to aid discovery in

personalized therapeutics for different populations with different diseases under

the guidance of precision medicine.

13.6 Conclusions

Analyzing complex biological problems within a network framework facilitates

deeper investigations of the behaviors of biomolecules and their interconnections.

The application of network biomarkers and network medicine may accelerate the

understanding of disease pathogenesis, as well as promoting the transformation from

fundamental research to clinical practice in the era of biomedical informatics. In

particular, the human system is far more complex than simply emulating networks,

where even the size or shape of cells may affect their biological functions. Thus,

cross-scale analyses and dynamic simulations are urgently needed in the future.
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